Science.gov

Sample records for al ca cu

  1. Effects of Ca, Cu, Al and La on pectin gel strength: implications for plant cell walls.

    PubMed

    McKenna, Brigid A; Nicholson, Timothy M; Wehr, J Bernhard; Menzies, Neal W

    2010-06-16

    Rheology of Ca-pectate gels is widely studied, but the behaviour of pectate gels formed by Cu, Al and La is largely unknown. It is well known that gel strength increases with increasing Ca concentration, and it is hypothesised that this would also be the case for other cations. Pectins are a critical component of plant cell walls, imparting various physicochemical properties. Furthermore, the mechanism of metal toxicity in plants is hypothesised to be, in the short term, related to metal interactions with cell wall pectin. This study investigated the influence of Ca, Cu, Al and La ion concentrations at pH 4 on the storage modulus as a function of frequency for metal-pectin gels prepared from pectin (1%) with a degree of esterification of 30%. Gels were formed in situ over 6d in metal chloride solution adjusted daily to pH 4. Cation concentration was varied to develop a relationship between gel strength and cation concentration. At similar levels of cation saturation, gel strength increased in the order of La<Ca < or =Al. The swelling of the gels also varied between cations with Ca gels being the most swollen.

  2. Effects of Ca, Cu, Al and La on pectin gel strength: implications for plant cell walls.

    PubMed

    McKenna, Brigid A; Nicholson, Timothy M; Wehr, J Bernhard; Menzies, Neal W

    2010-06-16

    Rheology of Ca-pectate gels is widely studied, but the behaviour of pectate gels formed by Cu, Al and La is largely unknown. It is well known that gel strength increases with increasing Ca concentration, and it is hypothesised that this would also be the case for other cations. Pectins are a critical component of plant cell walls, imparting various physicochemical properties. Furthermore, the mechanism of metal toxicity in plants is hypothesised to be, in the short term, related to metal interactions with cell wall pectin. This study investigated the influence of Ca, Cu, Al and La ion concentrations at pH 4 on the storage modulus as a function of frequency for metal-pectin gels prepared from pectin (1%) with a degree of esterification of 30%. Gels were formed in situ over 6d in metal chloride solution adjusted daily to pH 4. Cation concentration was varied to develop a relationship between gel strength and cation concentration. At similar levels of cation saturation, gel strength increased in the order of La<Ca < or =Al. The swelling of the gels also varied between cations with Ca gels being the most swollen. PMID:20457449

  3. Microwave dielectric properties of CaCu3Ti4O12-Al2O3 composite

    NASA Astrophysics Data System (ADS)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Karim, Saniah Ab; Zaman, Rosyaini Afindi; Ain, Mohd Fadzil; Ahmad, Zainal Arifin; Mohamed, Julie Juliewatty

    2016-07-01

    (1-x)CaCu3Ti4O12 + (x)Al2O3 composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO3, CuO and TiO2 powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al2O3 were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sintered samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl2O4 and Corundum (Al2O3) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al2O3 (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al2O3 (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al2O3 was reduced both dielectric loss and permittivity at least for an order of magnitude.

  4. Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Bhasin, K. B.; Stan, M. A.; Kong, K. S.; Itoh, T.

    1992-01-01

    Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.

  5. Superconductivity up to 114 K in the Bi-Al-Ca-Sr-Cu-O compound system without rare-earth elements

    NASA Technical Reports Server (NTRS)

    Chu, C. W.; Bechtold, J.; Gao, L.; Hor, P. H.; Huang, Z. J.

    1988-01-01

    Stable superconductivity up to 114 K has been reproducibly detected in Bi-Al-Ca-Sr-Cu-O multiphase systems without any rare-earth elements. Pressure has only a slight positive effect on T(c). These observations provide an extra material base for the study of the mechanism of high-temperature superconductivity and also the prospect of reduced material cost for future applications of superconductivity.

  6. Al15Ge4Ni3: A new intergrowth structure with Cu3Au- and CaF2-type building blocks

    NASA Astrophysics Data System (ADS)

    Reichmann, Thomas L.; Jandl, Isabella; Effenberger, Herta S.; Herzig, Peter; Richter, Klaus W.

    2015-05-01

    The new ternary compound Al15Ge4Ni3 (τ2 in the system Al-Ge-Ni) was synthesized in single crystalline form by a special annealing procedure from samples located in the three phase fields [L+Al+τ2] and [L+Ge+τ2]. The crystal structure of Al15Ge4Ni3 was determined by single-crystal X-ray diffraction. The compound crystallizes in a new structure type in space group I4¯3m, Pearson Symbol cI88, cubic lattice parameter a=11.405(1) Å. Phase diagram investigations indicate stoichiometric composition without considerable homogeneity range; τ2 melts peritectically at T=444 °C. The crystal structure of Al15Ge4Ni3 shows a unique combination of simple Cu3Au- and CaF2-type building blocks: a three dimensional network of CaF2-type units, formed by Ni and Al atoms, is interspaced by clusters (Al6Ge8) resembling unit cells of the Cu3Au-type. Both structural motifs are connected by Al-Ge bonds. The ground state energy of the compound was obtained by DFT calculations and the densities of states were analyzed in detail. In addition, electron density maps were calculated in four different sections through the unit cell using the full potential linearized augmented plane-wave (FLAPW) method. The bonding situation in Al15Ge4Ni3 was discussed combining results from electronic calculations with the analysis of the coordination of atoms.

  7. Preparation and characterization of Tl sub 2 Ba sub 2 CaCu sub 2 O sub 8 films on (100) LaAlO sub 3

    SciTech Connect

    Holstein, W.L.; Parisi, L.A.; Kountz, D.J.; Wilker, C.; Matthews, A.L. ); Arendt, P.N. ); Taber, R.C. )

    1991-03-01

    A two-step process for the fabrication of 0.12-1.20 {mu}m-thick Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8} films on (100) LaAlO{sub 3} has been developed. The process involves the deposition of a BaCaCuO precursor film at low temperature by rf magnetron sputtering, followed by annealing in the presence of Tl{sub 2}O vapor to convert the precursor film into Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}. Over a distance of 4 cm, film composition was Tl:Ba:Ca:Cu = 2.05 {plus minus} 0.09:2.05 {plus minus} 0.06:1.0 {plus minus} 0.3:1.94 {plus minus} 0.6 and thickness was uniform to within 6%. The films contain only trace quantities of secondary phases and are epitaxially oriented, with the c-axis of Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8} perpendicular to the surface and the two a-axes aligned with the pseudo-cubic a-axes of the underlying LaAlO{sub 3} substrate. Films had a T{sub c} for zero dc resistivity of 106.5 {plus minus} 0.5 K,a transport critical current density for continuous current of 2.9 {times} 10{sup 6} A-cm{sup {minus}2} at 77 K, and a sharp ({lt}0.3{degrees} C) ac inductance transition with an onset temperature of 105 {plus minus} 2 K. Surface resistance at 20 GHz less than 2 m{Omega}, about 10X lower than Cu, was routinely achieved for temperatures below 90 K and, for the best films, at temperatures up to 100 K. Surface resistance at about 10 GHz on one film was 0.067 m{Omega} at 4.2 K, 0.36 m{Omega} at 77 K, and 0.74 m{Omega} at 90 K. Films have been reproducibly fabricated on substrates up to 2.54 cm square.

  8. Synthesis and properties of superconducting (Hg,Re)-Ba-Ca-Cu-O thick films on polycrystalline LaAlO 3 substrate obtained by screen-printing method

    NASA Astrophysics Data System (ADS)

    Przybylski, K.; Brylewski, T.; Bućko, M.; Prażuch, J.; Morawski, A.; Łada, T.

    2003-05-01

    A superconducting Hg 0.7Re 0.3Ba 2Ca 2Cu 3O 8+ δ thick film on a polycrystalline LaAlO 3 (LAO) substrate was obtained by a two-step method by screen-printing a Re 0.3Ba 2Ca 2Cu 3O x precursor coating on the substrate followed by high-pressure gas firing in Hg vapour. Morphological observations have revealed that the adherent to the ceramic substrate film exhibited highly porous microstructure composed of plate-like crystallites characterized by a superconducting transition temperature of about 110 K. The major phases identified were a high- Tc (Hg,Re)-1223 phase and a low- Tc (Hg,Re)-1212 phase. Non-superconducting secondary impurity phases were also identified. Energy dispersion X-ray spectroscopy analyses at the substrate/film boundary showed a thin continuous layer of BaLa 2O 4 compound, the presence of which confirmed chemical interaction between the LAO substrate and (Hg,Re)-Ba-Ca-Cu-O film.

  9. Improvement in dielectric and mechanical performance of CaCu3.1Ti4O12.1 by addition of Al2O3 nanoparticles.

    PubMed

    Puchmark, Chompoonuch; Rujijanagul, Gobwute

    2012-01-05

    The properties of CaCu3.1Ti4O12.1 [CC3.1TO] ceramics with the addition of Al2O3 nanoparticles, prepared via a solid-state reaction technique, were investigated. The nanoparticle additive was found to inhibit grain growth with the average grain size decreasing from approximately 7.5 μm for CC3.1TO to approximately 2.0 μm for the unmodified samples, while the Knoop hardness value was found to improve with a maximum value of 9.8 GPa for the 1 vol.% Al2O3 sample. A very high dielectric constant > 60,000 with a low loss tangent (approximately 0.09) was observed for the 0.5 vol.% Al2O3 sample at 1 kHz and at room temperature. These data suggest that nanocomposites have a great potential for dielectric applications.

  10. Improvement in dielectric and mechanical performance of CaCu3.1Ti4O12.1 by addition of Al2O3 nanoparticles

    PubMed Central

    2012-01-01

    The properties of CaCu3.1Ti4O12.1 [CC3.1TO] ceramics with the addition of Al2O3 nanoparticles, prepared via a solid-state reaction technique, were investigated. The nanoparticle additive was found to inhibit grain growth with the average grain size decreasing from approximately 7.5 μm for CC3.1TO to approximately 2.0 μm for the unmodified samples, while the Knoop hardness value was found to improve with a maximum value of 9.8 GPa for the 1 vol.% Al2O3 sample. A very high dielectric constant > 60,000 with a low loss tangent (approximately 0.09) was observed for the 0.5 vol.% Al2O3 sample at 1 kHz and at room temperature. These data suggest that nanocomposites have a great potential for dielectric applications. PMID:22221316

  11. Giant dielectric response and low dielectric loss in Al{sub 2}O{sub 3} grafted CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    SciTech Connect

    Rajabtabar-Darvishi, A.; Bayati, R. E-mail: mbayati@ncsu.edu; Sheikhnejad-Bishe, O.; Wang, L. D.; Li, W. L.; Sheng, J.; Fei, W. D. E-mail: mbayati@ncsu.edu

    2015-03-07

    This study sheds light on the effect of alumina on dielectric constant and dielectric loss of novel CaCu{sub 3}Ti{sub 4}O{sub 12} composite ceramics. Alumina, at several concentrations, was deposited on the surface of CaCu{sub 3}Ti{sub 4}O{sub 12} particles via sol-gel technique. The dielectric constant significantly increased for all frequencies and the dielectric loss substantially decreased for low and intermediate frequencies. These observations were attributed to the change in characteristics of grains and grain boundaries. It was found that the insulating properties of the grain boundaries are improved following the addition of Al{sub 2}O{sub 3}. The relative density of CaCu{sub 3}Ti{sub 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics decreased compared to the pure CaCu{sub 3}Ti{sub 4}O{sub 12} and the grain size was greatly changed with the alumina content affecting the dielectric properties. With the addition of alumina into CaCu{sub 3}Ti{sub 4}O{sub 12}, tighter interfaces formed. The 6%- and 10%-alumina ceramics showed the minimum dielectric loss and the maximum dielectric constant, respectively. Both the dielectric constant and loss tangent decreased in the 20%-alumina ceramic due to the formation of CuO secondary phase. It was revealed that Al serves as an electron acceptor decreasing the electron concentration, if Al{sup 3+} ions substitute for Ti{sup 4+} ions, and as an electron donor increasing the electron concentration, if Al{sup 3+} ions substitute for Ca{sup 2+} ions. We established a processing-microstructure-properties paradigm which opens new avenues for novel applications of CaCu{sub 3}Ti{sub 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics.

  12. Bi2Sr2CaCu2O8 + x round wires with Ag/Al oxide dispersion strengthened sheaths: microstructure-properties relationships, enhanced mechanical behavior and reduced Cu depletion

    NASA Astrophysics Data System (ADS)

    Kajbafvala, Amir; Nachtrab, William; Wong, Terence; Schwartz, Justin

    2014-09-01

    Ag/Al alloys with various Al content (0.50 wt%, 0.75 wt%, 1.00 wt%, and 1.25 wt%) are made by powder metallurgy and used as the outer sheath material for Bi2Sr2CaCu2O8 + x (Bi2212)/Ag/AgAl multifilamentary round wires (RW). Bi2212/Ag/AgAl RW microstructural, mechanical and electrical properties are studied in various conditions, including as-drawn, after internal oxidation, and after partial melt processing (PMP). The results are compared with the behavior of a Bi2212/Ag/Ag0.20Mg wire of the same geometry. The grains in as-drawn Ag/Al alloys are found to be ˜25% smaller than those in the corresponding Ag/0.20 wt%Mg, but after PMP, the Ag/Al and Ag/0.20 wt%Mg grain sizes are comparable. Tensile tests show that Bi2212/Ag/AgAl green wires have yield strength (YS) of ˜115 MPa, nearly 65% higher than that of Bi2212/Ag/Ag0.20Mg. After PMP, the Bi2212/Ag/AgAl YS is about 35% greater than that of Bi2212/Ag/Ag0.20Mg. Furthermore, Bi2212/Ag/AgAl wires exhibit higher ultimate tensile strength and modulus and twice the elongation-to-failure. Atomic resolution high-angle annular dark-field scanning transmission electron microscopy, high resolution transmission electron microscopy and energy dispersive spectroscopy demonstrate the formation of nanosize MgO and Al2O3 precipitates via internal oxidation. Large spherical MgO precipitates are observed on the Ag grain boundaries of Ag/0.20 wt%Mg alloy, whereas the Al2O3 precipitates are distributed homogenously in the dispersion-strengthened (DS) Ag/Al alloy. Furthermore, it is found that less Cu diffused from the Bi2212 filaments in the Bi2212/Ag/Ag0.75Al wire during PMP than from the filaments in the Bi2212/Ag/Ag0.20Mg wire. These results show that DS Ag/Al alloy is a strong candidate for improved Bi2212 wire.

  13. Crystalline orientations of Tl2Ba2Ca2Cu3O(x) grains on MgO, SrTiO3, and LaAlO3 substrates

    NASA Technical Reports Server (NTRS)

    Liou, S. H.; Wu, C. Y.

    1992-01-01

    Crystalline orientations of Tl2Ba2Ca2Cu3O(x) grains in magnetron sputtered films on MgO (001), SrTiO3 (001), and LaAlO3 (001) substrates were investigated by scanning electron microscopy. In contrast to the nearly single crystalline films on the lattice matched substrates SrTiO3 and LaAlO3, films on the MgO (001) substrate, being polycrystalline in nature, exhibit several preferred in-plane grain orientations. These orientations agree well with a simplified theory of near-coincidence site lattices between Tl2Ba2Ca2Cu3O(x) and MgO.

  14. Al{sub 15}Ge{sub 4}Ni{sub 3}: A new intergrowth structure with Cu{sub 3}Au- and CaF{sub 2}-type building blocks

    SciTech Connect

    Reichmann, Thomas L.; Jandl, Isabella; Effenberger, Herta S.; Herzig, Peter; Richter, Klaus W.

    2015-05-15

    The new ternary compound Al{sub 15}Ge{sub 4}Ni{sub 3} (τ{sub 2} in the system Al–Ge–Ni) was synthesized in single crystalline form by a special annealing procedure from samples located in the three phase fields [L+Al+τ{sub 2}] and [L+Ge+τ{sub 2}]. The crystal structure of Al{sub 15}Ge{sub 4}Ni{sub 3} was determined by single-crystal X-ray diffraction. The compound crystallizes in a new structure type in space group I4-bar3m, Pearson Symbol cI88, cubic lattice parameter a=11.405(1) Å. Phase diagram investigations indicate stoichiometric composition without considerable homogeneity range; τ{sub 2} melts peritectically at T=444 °C. The crystal structure of Al{sub 15}Ge{sub 4}Ni{sub 3} shows a unique combination of simple Cu{sub 3}Au- and CaF{sub 2}-type building blocks: a three dimensional network of CaF{sub 2}-type units, formed by Ni and Al atoms, is interspaced by clusters (Al{sub 6}Ge{sub 8}) resembling unit cells of the Cu{sub 3}Au-type. Both structural motifs are connected by Al–Ge bonds. The ground state energy of the compound was obtained by DFT calculations and the densities of states were analyzed in detail. In addition, electron density maps were calculated in four different sections through the unit cell using the full potential linearized augmented plane-wave (FLAPW) method. The bonding situation in Al{sub 15}Ge{sub 4}Ni{sub 3} was discussed combining results from electronic calculations with the analysis of the coordination of atoms. - Graphical abstract: The new compound Al{sub 15}Ge{sub 4}Ni{sub 3} shows a unique combination of simple Cu{sub 3}Au- and CaF{sub 2}-type building blocks. - Highlights: • The crystal structure of Al{sub 15}Ge{sub 4}Ni{sub 3} (space group I4-bar3m) was determined. • It shows a unique combination of CaF{sub 2}- and Cu{sub 3}Au-type building blocks. • Electronic (DFT) calculations were performed to gain insight to chemical bonding.

  15. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming.

    PubMed

    Xi, Hongjuan; Hou, Xiaoning; Liu, Yajie; Qing, Shaojun; Gao, Zhixian

    2014-10-27

    Cu-Al spinel oxide, which contains a small portion of the CuO phase, has been successfully used in methanol steam reforming (MSR) without prereduction. The omission of prereduction not only avoids the copper sintering prior to the catalytic reaction, but also slows down the copper-sintering rate in MSR. During this process, the CuO phase can initiate MSR at a lower temperature, and CuAl2O4 releases active copper gradually. The catalyst CA2.5-900, calcined at 900 °C with n(Al)/n(Cu) = 2.5, has a higher CuAl2O4 content, higher BET surface area, and smaller CuAl2O4 crystal size. Its activity first increases and then decreases during MSR. Furthermore, both fresh and regenerated CA2.5-900 showed better catalytic performance than the commercial Cu-Zn-Al catalyst. PMID:25213737

  16. Reorientable dipolar CuCa antisite and anomalous screening in CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Delugas, Pietro; Alippi, Paola; Fiorentini, Vincenzo; Raineri, Vito

    2010-02-01

    Based on first-principles calculations, we show that the abundant CuCa antisite defect contributes sizably to dielectric screening in single-crystal CaCu3Ti4O12 . CuCa has a multi-minimum off-center equilibrium configuration, whereby it possesses a large and easily reorientable dipole moment. The low-temperature and frequency cut-off behavior of CuCa -induced response is consistent with experiment.

  17. Study of OSL in NaF: Ca,Cu

    NASA Astrophysics Data System (ADS)

    More, Y. K.; Wankhede, S. P.; Moharil, S. V.

    2013-06-01

    Sodium Fluoride containing Cu+ ions was prepared by R.A.P. followed by melt-quenching technique. Results on photo, thermo and optically stimulated luminescence in NaF:Ca,Cu are reported. OSL sensitivity of NaF:Ca,Cu is approximately 2 times than that of standard phosphor LMP. The rate of OSL depletion for 90% decay for NaF:Ca,Cu is 0.3 times as that of OSL phosphor LMP. NaF:Ca,Cu thus deserves much more attention than it has received up till now.

  18. Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au

    NASA Astrophysics Data System (ADS)

    Michel, R.; Bodemann, R.; Busemann, H.; Daunke, R.; Gloris, M.; Lange, H.-J.; Klug, B.; Krins, A.; Leya, I.; Lüpke, M.; Neumann, S.; Reinhardt, H.; Schnatz-Büttgen, M.; Herpers, U.; Schiekel, Th.; Sudbrock, F.; Holmqvist, B.; Condé, H.; Malmborg, P.; Suter, M.; Dittrich-Hannen, B.; Kubik, P.-W.; Synal, H.-A.; Filges, D.

    1997-07-01

    Cross sections for residual nuclide production by p-induced reactions were measured from thresholds up to 2.6 GeV using accelerators at CERN/Geneve, IPN/Orsay, KFA/Jülich, LANL/Los Alamos, LNS/Saclay, PSI/Villigen, TSL/Uppsala, LUC/Louvain La Neuve. The target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au were investigated. Residual nuclides were measured by X- and γ-spectrometry and by Accelerator Mass Spectrometry (AMS). The measured cross sections were corrected for interfering secondary particles in experiments with primary proton energies above 200 MeV. Our consistent database covers presently ca 550 nuclear reactions and contains nearly 15000 individual cross sections of which about 10000 are reported here for the first time. They provide a basis for model calculations of the production of cosmogenic nuclides in extraterrestrial matter by solar and galactic cosmic ray protons. They are of importance for many other applications in which medium energy nuclear reactions have to be considered ranging from astrophysics over space and environmental sciences to accelerator technology and accelerator-based nuclear waste transmutation and energy amplification. The experimental data are compared with theoretical ones based on calculations using an INC/E model in form of the HETC/KFA2 code and on the hybrid model of preequilibrium reactions in form of the AREL code.>

  19. Dielectric Properties of Ca2CuO3-CaCu2O3-CuO Composite Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Qing-Shou; Zhang, Yun-Qiang; Li, Li-Ben; Zang, Guo-Zhong

    2013-03-01

    The Ca2CuO3-CaCu2O3-CuO ceramics were synthesized by traditional solid-state sintering method. The complex dielectric response of the samples measured from 102-106 Hz and from 300-500 K reveals very high real part of ɛ > 104. The activation energy (being about 0.63 eV) calculated by the Arrhenius equation indicates that the oxygen vacancies may contribute to the high dielectric response. And the fitting to a Schottky barrier model of capacitance versus applied voltage suggests that the existence of Schottky barrier at the grain boundaries may be another important reason for the origination of good dielectric properties.

  20. Surface step terrace tuned microstructures and dielectric properties of highly epitaxial CaCu3Ti4O12 thin films on vicinal LaAlO3 substrates

    NASA Astrophysics Data System (ADS)

    Yao, Guang; Gao, Min; Ji, Yanda; Liang, Weizheng; Gao, Lei; Zheng, Shengliang; Wang, You; Pang, Bin; Chen, Y. B.; Zeng, Huizhong; Li, Handong; Wang, Zhiming; Liu, Jingsong; Chen, Chonglin; Lin, Yuan

    2016-10-01

    Controllable interfacial strain can manipulate the physical properties of epitaxial films and help understand the physical nature of the correlation between the properties and the atomic microstructures. By using a proper design of vicinal single-crystal substrate, the interface strain in epitaxial thin films can be well controlled by adjusting the miscut angle via a surface-step-terrace matching growth mode. Here, we demonstrate that LaAlO3 (LAO) substrates with various miscut angles of 1.0°, 2.75°, and 5.0° were used to tune the dielectric properties of epitaxial CaCu3Ti4O12 (CCTO) thin films. A model of coexistent compressive and tensile strained domains is proposed to understand the epitaxial nature. Our findings on the self-tuning of the compressive and tensile strained domain ratio along the interface depending on the miscut angle and the stress relaxation mechanism under this growth mode will open a new avenue to achieve CCTO films with high dielectric constant and low dielectric loss, which is critical for the design and integration of advanced heterostructures for high performance capacitance device applications.

  1. Surface step terrace tuned microstructures and dielectric properties of highly epitaxial CaCu3Ti4O12 thin films on vicinal LaAlO3 substrates

    PubMed Central

    Yao, Guang; Gao, Min; Ji, Yanda; Liang, Weizheng; Gao, Lei; Zheng, Shengliang; Wang, You; Pang, Bin; Chen, Y. B.; Zeng, Huizhong; Li, Handong; Wang, Zhiming; Liu, Jingsong; Chen, Chonglin; Lin, Yuan

    2016-01-01

    Controllable interfacial strain can manipulate the physical properties of epitaxial films and help understand the physical nature of the correlation between the properties and the atomic microstructures. By using a proper design of vicinal single-crystal substrate, the interface strain in epitaxial thin films can be well controlled by adjusting the miscut angle via a surface-step-terrace matching growth mode. Here, we demonstrate that LaAlO3 (LAO) substrates with various miscut angles of 1.0°, 2.75°, and 5.0° were used to tune the dielectric properties of epitaxial CaCu3Ti4O12 (CCTO) thin films. A model of coexistent compressive and tensile strained domains is proposed to understand the epitaxial nature. Our findings on the self-tuning of the compressive and tensile strained domain ratio along the interface depending on the miscut angle and the stress relaxation mechanism under this growth mode will open a new avenue to achieve CCTO films with high dielectric constant and low dielectric loss, which is critical for the design and integration of advanced heterostructures for high performance capacitance device applications. PMID:27703253

  2. Controlling the preferential orientation in sol-gel prepared CaCu3Ti4O12 thin films by LaAlO3 and NdGaO3 substrates

    NASA Astrophysics Data System (ADS)

    Pongpaiboonkul, Suriyong; Kasa, Yumairah; Phokharatkul, Ditsayut; Putasaeng, Bundit; Hodak, Jose H.; Wisitsoraat, Anurat; Hodak, Satreerat K.

    2016-11-01

    Researchers have paid considerable attention to CaCu3Ti4O12 (CCTO) due to the colossal dielectric constant over a wide range of frequency and temperature. Despite of the growing number of works dealing with CCTO, there have been few studies of the role played by the substrate in inducing structural and dielectric effects of this material. In this work, highly-oriented CCTO thin films have been deposited on LaAlO3(100), NdGaO3(100) and NdGaO3(110) substrates using a sol-gel method. These single crystal substrates were chosen in terms of small lattice mismatch between CCTO and the substrate. The X-ray diffraction patterns showed that the CCTO film layers grow with different orientations depending upon the substrate used. We show that the preferred orientation of CCTO thin films can be manipulated to a high degree by growing it on specific crystal planes of the substrates without the use of buffer layers. Colossal dielectric constants are observed in our films which appear to correlate with the film crystallinity and preferred orientation.

  3. Phase Equilibria of ``Cu2O''-``FeO''-CaO-MgO-Al2O3 Slags at PO2 of 10-8.5 atm in Equilibrium with Metallic Copper for a Copper Slag Cleaning Production

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Pizarro, Claudio; Font, Jonkion; Moyano, Alex; Hayes, Peter C.; Jak, Evgueni

    2010-12-01

    Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.

  4. Room Temperature Radiolytic Synthesized Cu@CuAlO2-Al2O3 Nanoparticles

    PubMed Central

    Abedini, Alam; Saion, Elias; Larki, Farhad; Zakaria, Azmi; Noroozi, Monir; Soltani, Nayereh

    2012-01-01

    Colloidal Cu@CuAlO2-Al2O3 bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a 60Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO2-Al2O3 nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO2-Al2O3 nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation. PMID:23109893

  5. Room temperature radiolytic synthesized Cu@CuAlO(2)-Al(2)O(3) nanoparticles.

    PubMed

    Abedini, Alam; Saion, Elias; Larki, Farhad; Zakaria, Azmi; Noroozi, Monir; Soltani, Nayereh

    2012-01-01

    Colloidal Cu@CuAlO(2)-Al(2)O(3) bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a (60)Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO(2)-Al(2)O(3) nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO(2)-Al(2)O(3) nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation. PMID:23109893

  6. Crystal structure and superconductivity in (Cu,Hg)Ba2Ca4Cu5Oy

    NASA Astrophysics Data System (ADS)

    Akimoto, J.; Kawaguchi, K.; Sohma, M.; Hayakawa, H.; Gotoh, Y.; Oosawa, Y.; Tokiwa, K.; Iyo, A.; Ihara, H.

    1997-02-01

    A new solid-solution superconductor, (Cu,Hg)Ba2Ca4Cu5Oy with the tetragonal lattice parameters a = 3.849(2) Å and c = 21.496(3) Å, has been synthesized by the high-temperature and high-pressure technique. The structure refinement of the as-prepared (Cu,Hg)-1245 by the single-crystal X-ray diffraction method confirmed the substitutional composition (Cu0.76Hg0.24)Ba2Ca4Cu5O12.45, whose cationic composition was close to that obtained by chemical analysis. The additional Cu atoms at the mercury site construct the chain-like oxygen coordination. The superstructure observed in Cu-1245 disappeared by the partial substitution of mercury for copper in the present (Cu,Hg)-1245. The structure refinement of the as-prepared Hg-1245 revealed the mercury-site deficiency of about 20%.

  7. Thin films of the Bi2Sr2Ca2Cu3O(x) superconductor

    NASA Technical Reports Server (NTRS)

    Mei, YU; Luo, H. L.; Hu, Roger

    1990-01-01

    Using RF sputtering technique, thin films of near single phase Bi2Sr2Ca2Cu3O(x) were successfully prepared on SrTiO3(100), MgO(100), and LaAlO3(012) substrates. Zero resistance of these films occurred in the range of 90-105 K.

  8. Performance of two-pole bandpass filters photodefined on double-sided Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O thin films

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Toncich, S. S.; Bhasin, K. B.

    1993-01-01

    The performance of 7.3-GHz two-pole bandpass filters (5% bandwidth) fabricated on double-sided Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O thin films deposited on LaAlO3 is discussed. At 77 K, the Tl-Ba-Ca-Cu-O and Y-Ba-Cu-O superconducting filters exhibited minimum passband insertion losses of 0.3 and 1.2 dB, respectively. An insertion loss of 3.4 dB was measured for an all-gold filter at 77 K.

  9. Hydrogen isotope trapping in Al-Cu binary alloys

    SciTech Connect

    Chao, Paul; Karnesky, Richard A.

    2016-01-01

    In this study, the trapping mechanisms for hydrogen isotopes in Al–X Cu (0.0 at. % < X < 3.5 at. %) alloys were investigated using thermal desorption spectroscopy (TDS), electrical conductivity, and differential scanning calorimetry. Constant heating rate TDS was used to determine microstructural trap energies and occupancies. In addition to the trapping states in pure Al reported in the literature (interstitial lattice sites, dislocations, and vacancies), a trap site due to Al–Cu intermetallic precipitates is observed. The binding energy of this precipitate trap is (18 ± 3) kJ•mol–1 (0.19 ± 0.03 eV). Typical occupancy of this trap is high; for Al–2.6 at. % Cu (a Cu composition comparable to that in AA2219) charged at 200 °C with 130 MPa D2 for 68 days, there is ca. there is 3.15×10–7 mol D bound to the precipitate trap per mol of Al, accounting for a third of the D in the charged sample.

  10. Hydrogen isotope trapping in Al-Cu binary alloys

    DOE PAGES

    Chao, Paul; Karnesky, Richard A.

    2016-01-01

    In this study, the trapping mechanisms for hydrogen isotopes in Al–X Cu (0.0 at. % < X < 3.5 at. %) alloys were investigated using thermal desorption spectroscopy (TDS), electrical conductivity, and differential scanning calorimetry. Constant heating rate TDS was used to determine microstructural trap energies and occupancies. In addition to the trapping states in pure Al reported in the literature (interstitial lattice sites, dislocations, and vacancies), a trap site due to Al–Cu intermetallic precipitates is observed. The binding energy of this precipitate trap is (18 ± 3) kJ•mol–1 (0.19 ± 0.03 eV). Typical occupancy of this trap is high;more » for Al–2.6 at. % Cu (a Cu composition comparable to that in AA2219) charged at 200 °C with 130 MPa D2 for 68 days, there is ca. there is 3.15×10–7 mol D bound to the precipitate trap per mol of Al, accounting for a third of the D in the charged sample.« less

  11. Processing, electrical and microwave properties of sputtered Tl-Ca-Ba-Cu-O superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1993-01-01

    A reproducible fabrication process has been established for TlCaBaCuO thin films on LaAlO3 substrates by RF magnetron sputtering and post-deposition processing methods. Electrical transport properties of the thin films were measured on patterned four-probe test devices. Microwave properties of the films were obtained from unloaded Q measurements of all-superconducting ring resonators. This paper describes the processing, electrical and microwave properties of Tl2Ca1Ba2Cu2O(x) 2122-plane phase thin films.

  12. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression.

    PubMed

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-08-13

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s(-1) (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g(-1) for the CuAlZn alloy and 5.0 J g(-1) for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402936

  13. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression.

    PubMed

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-08-13

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s(-1) (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g(-1) for the CuAlZn alloy and 5.0 J g(-1) for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  14. Phase correlations in the CuAlSe2-CuAlTe2 system

    NASA Astrophysics Data System (ADS)

    Korzun, B. V.; Fadzeyeva, A. A.; Bente, K.; Schmitz, W.; Kommichau, G.

    2005-07-01

    Alloys in the CuAlSe2-CuAlTe2 system were synthesized in BN-crucibles in silica tubes under vacuum to obtain the corresponding phase equilibria. X-ray powder diffraction and thermal analytic data of the T-x phase diagram revealed a complete solid solutions series in the subsolidus region. Within the CuAlSe2xTe2(1-x) system the refined lattice parameters a and c approximately obey the Vegard rule and also the cell volume and the heat of fusion confirm linear correlations with the composition of the mixed crystals. The anion position parameter calculated after S. C. Abrahams & J. L. Bernstein (uAB) and J. E Jaffe & A. Zunger (uJZ) is greater than 0.25 and reveals a linear dependence on composition. The liquidus part of the CuAlSe2xTe2(1-x) system with x < 0.35 exhibits vertical section behaviour with a ternary peritectic followed up by a ternary monotectic whereas the region with x > 0.35 shows quasibinary equilibria.

  15. Enhancement of magnetoresistance and ferromagnetic coupling in the complex perovskites CaCu{sub 3}(Mn{sub 4−x}Al{sub x})O{sub 12} (x = 0, 0.2, 0.4, and 0.6): A neutron diffraction study

    SciTech Connect

    Ben Hassine, R.; Cherif, W.; Sánchez-Benítez, J.; Mompean, F. J.; Alonso, J. A.; Fernández-Díaz, M. T.; Elhalouani, F.

    2015-09-14

    New compounds of the series CaCu{sub 3}(Mn{sub 4−x}Al{sub x})O{sub 12} have been prepared under high pressure conditions (2 GPa), in the presence of KClO{sub 4} as oxidizing agent to stabilize Mn{sup 3+,4+} mixed valence. The polycrystalline samples have been characterized by x-ray diffraction, neutron powder diffraction (NPD), magnetic, and magnetotransport measurements. All the samples are cubic, space group Im-3. These oxides adopt a superstructure of ABO{sub 3} perovskite given by the long-range 1:3 ordering of Ca{sup 2+} and Cu{sup 2+} ions at the A sublattice. The NPD study for x = 0.4 shows that Al{sup 3+} ions are statistically distributed at the octahedral positions, being the (Mn,Al)O{sub 6} octahedra strongly tilted, with superexchange (Mn,Al)-O-(Mn,Al) angles of 142.1°. Also, neutron data clearly show that some Mn{sup 3+} ions (0.65(2) per formula) are located together with Cu{sup 2+} at the square-planar 6b positions. Regarding the magnetic properties, all the compounds present a spontaneous increase of the magnetization below T{sub C}, typical of ferro-or ferrimagnetic materials, with T{sub C} decreasing upon Al introduction. The magnetic structure determined from low-temperature NPD data unveils a ferromagnetic coupling between (Cu{sup 2+}, Mn{sup 3+}){sub 6b} spins and Mn{sub 8c} spins at octahedral positions; this is in contrast with the ferrimagnetic structure observed for RCu{sub 3}Mn{sub 4}O{sub 12} and CaCu{sub 3}Mn{sub 4}O{sub 12}, where an AFM coupling is observed between both magnetic sublattices. Interestingly, an enhancement of the magnetoresistance effect is observed for x = 0.2, well beyond that found for the parent compound. This effect, in materials subtly doped with non-magnetic elements at the Mn positions, may be of interest for applications.

  16. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    NASA Astrophysics Data System (ADS)

    Amani, H.; Soltanieh, M.

    2016-08-01

    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods ( i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  17. The reaction of vapor-deposited Al with Cu oxides

    SciTech Connect

    Taylor, T.N.; Martin, J.A.

    1990-01-01

    Interfaces formed by controlled deposition of Al on Cu oxides at 300K have been characterized using Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS). When Al is deposited onto a thin oxide grown on Cu(110) by atmospheric exposure, it completely scavenges the oxygen from the substrate material, increasing the O(1s) binding energy by 2.0 eV to give the value found for atmospheric oxidation of a thin Al film. Similar oxygen behavior is seen for Al deposition on sputter-deposited CuO with an enriched oxygen surface region, where multilayers of Al erase the shakeup satellites in the Cu(2p) region of the XPS spectrum to give features like those exhibited by Cu{sub 2}O or metallic Cu. Having calibrated the fluence of the Al source with Rutherford backscattering spectrometry, the attenuation of the Cu 2p{sub 1/2} satellite after approximately one monolayer of Al deposition is associated with the removal of oxygen from the top 20 {angstrom} of the CuO. Approximately 7--8 equivalent monolayers of Al are converted to an oxide in the initial rapid reaction process. Further deposition leads to progressive development of the metallic Al signature in both the XPS and AES spectra. These measurements clearly demonstrate the dominant role played by Al, a strong oxide former, when it is placed in intimate contact with the distinctively weaker Cu oxide. 9 refs., 5 figs.

  18. Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al.

    PubMed

    Lien, Hsing-Lung; Zhang, Weixian

    2002-10-01

    A low-cost and high effective copper/aluminum (Cu/Al) bimetal has been developed for treatments of halogenated methanes, including dichloromethane, in near neutral and high pH aqueous systems. Bimetallic Cu/Al was prepared by a simple two-step synthetic method where Cu was deposited onto the Al surface. The presence of Cu on Al significantly enhanced rates of degradation of halogenated methanes and reduced toxic halogenated intermediates. The stability of Cu/Al was preliminarily studied by a multi-spiking batch experiment where complete degradation of carbon tetrachloride was achieved for seven times although the Cu/Al aging was found. Roles of Cu may involve protecting Al against an undesirable oxidation with water, enhancing reaction rates through the galvanic corrosion, and increasing the selectivity to a benign compound (i.e., methane). Kinetic analyses indicated that the activity of bimetallic Cu/Al was comparable to that of iron-based bimetals (e.g., palladized iron) and zero-valent metals. Bimetallic Cu/Al could be a promising reactive reagent for remediation of halogenated solvents-contaminated groundwater associated with high pH problems.

  19. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liang, Shuhua; Yang, Qing; Wang, Xianhui

    2016-11-01

    Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl2 + HCl solution. Compared to Cu40Al60 and Cu45Al55 alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu17Al83 alloy as the starting alloy. The growth direction of the FDC is <110>, and all angles between the trunks and branches are 60°. Nanoscale Cu2O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu17Al83 alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl2 intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  20. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du Yong

    2012-12-15

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  1. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, W.L.; Kubat-Martin, K.A.; Salazar, K.V.; Phillips, D.S.; Peterson, D.E.

    1994-04-05

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi[sub a]Pb[sub b]Sr[sub c]Ca[sub d]Cu[sub e]O[sub f] wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10[+-]z by reacting a mixture of Bi[sub 4]Sr[sub 3]Ca[sub 3]Cu[sub 4]O[sub 16[+-]z], an alkaline earth metal cuprate, e.g., Sr[sub 9]Ca[sub 5]Cu[sub 24]O[sub 41], and an alkaline earth metal plumbate, e.g., Ca[sub 2[minus]x]Sr[sub x]PbO[sub 4] wherein x is about 0.5, is disclosed.

  2. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.

    1994-01-01

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.

  3. Comment on ``Frustrating interactions and broadened magnetic interactions in the edge-sharing CuO2 chains in La5Ca9Cu24O41''

    NASA Astrophysics Data System (ADS)

    Leidl, R.; Selke, W.

    2004-02-01

    Using Monte Carlo techniques, we show that the two-dimensional anisotropic Heisenberg model reproducing nicely inelastic neutron scattering measurements on La5Ca9Cu24O41 [M. Matsuda et al., Phys. Rev. B 68, 060406(R) (2003)] seems to be insufficient to describe correctly measurements on thermodynamic quantities like the magnetization or the susceptibility. Possible reasons for the discrepancy are suggested.

  4. Electrical-transport properties and microwave device performance of sputtered TlCaBaCuO superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1992-01-01

    The paper describes the processing and electrical transport measurements for achieving reproducible high-Tc and high-Jc sputtered TlCaBaCuO thin films on LaAlO3 substrates, for microelectronic applications. The microwave properties of TlCaBaCuO thin films were investigated by designing, fabricating, and characterizing microstrip ring resonators with a fundamental resonance frequency of 12 GHz on 10-mil-thick LaAlO3 substrates. Typical unloaded quality factors for a ring resonator with a superconducting ground plane of 0.3 micron-thickness and a gold ground plane of 1-micron-thickness were above 1500 at 65 K. Typical values of penetration depth at 0 K in the TlCaBaCuO thin films were between 7000 and 8000 A.

  5. Accelerated formation of 110 K high T sub c phase in the Ca- and Cu-rich Bi-Pb-Sr-Ca-Cu-O system

    SciTech Connect

    Huang, Y.T.; Liu, R.G.; Lu, S.W.; Wu, P.T. ); Wang, W.N. )

    1990-02-19

    The crystal structure and superconducting properties of the Bi-Pb-Sr-Ca-Cu-O system with Ca- and Cu-rich nominal composition were investigated. A nearly single-phased 110 K high {ital T}{sub {ital c}} superconductor can be obtained with 852 {degree}C/20 h sintering from the starting composition of Bi{sub 1.7}Pb{sub 0.4}Sr{sub 1.6}Ca{sub 2.4}Cu{sub 3.6}O{sub {ital y}}. X-ray diffraction patterns, resistivity measurement, diamagnetic susceptibility results, and scanning electron micrographs all indicate that the Ca- and Cu-rich nominal composition would result in better superconducting properties than those of Ca:Sr=1:1 Bi-Pb-Sr-Ca-Cu-O compounds in a much shorter sintering time.

  6. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    NASA Astrophysics Data System (ADS)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  7. Thermal stability of Al-Cu-Fe icosahedral alloys

    NASA Astrophysics Data System (ADS)

    Bessière, M.; Quivy, A.; Lefebvre, S.; Devaud-Rzepski, J.; Calvayrac, Y.

    1991-12-01

    A stable ideally quasiperiodic phase exists in a small range of concentration, close to the composition Al{62}Cu{25.5}Fe{12.5}. Reducing the iron content, or replacing small amounts of copper by aluminium, lead to icosahedral alloys which exhibit around 650 ^{circ}C structural transformations of unclear nature: in the X-ray powder diffraction pattern, the peak profiles become purely Lorentzian (Al{62.3}Cu{25.3}Fe{12.4}) or diffuse “side-bands” appear in the tails of the Bragg peaks (Al{63}Cu{24.5}Fe{12.5}). In the last case long annealing treatments eventually transform the Bragg peaks into diffuse peaks located at positions clearly off the ideal icosahedral symmetry. Small deviations from this composition range lead to Bragg peaks with shoulders whatever the heat-treatment may be; perfect icosahedral order is never obtained for these compositions (Al{63,25}Cu{24,5}Fe{12,25}, Al{64}Cu{24}Fe{12}, Al{63}Cu{25}Fe{12}). Une phase stable idéalement quasipériodique existe dans un petit domaine de concentration, au voisinage de la composition Al{62}Cu{25,5}Fe{12,5}. La diminution de la teneur en fer, ou le remplacement de faibles quantités de cuivre par de l'aluminium, conduisent à des alliages icosaédriques qui subissent vers 650 ^{circ}C des transformations structurales dont la nature n'est pas clairement identifiée: dans le diagramme de diffraction des rayons X sur poudre, les profils de raies deviennent purement Lorentziens (Al{62,3}Cu{25,3}Fe{12,4}) ou bien des raies diffuses apparaissent dans le pied des pics de Bragg (Al{63}Cu{24,5}Fe{12,5}). Dans ce dernier cas un long traitement de recuit transforme finalement les pics de Bragg en des pics diffus localisés à des positions clairement en dehors de celles correspondant à la symétrie icosaédrique idéale. De faibles écarts à ce domaine de compositions conduisent à des diagrammes de rayons X où les pics de Bragg sont épaulés quel que soit le traitement thermique ; l'ordre icosaédrique parfait n

  8. Positron lifetime studies of decomposition in 2024 (Al-Cu-Mg) and 7010 (Al-Zn-Cu-Mg) alloys

    SciTech Connect

    Dlubek, G. |; Lademann, P.; Krause, H.; Krause, S.; Unger, R.

    1998-09-04

    In the current paper, the decomposition behavior of the engineering alloys 2024 (Al-Cu-Mg) and 7010 (Al-Zn-Cu-Mg) is studied using positron lifetime measurements. Positrons probe open volume defects such as vacancies and dislocations. However, they may also be used to investigate coherent zones and incoherent precipitates. In order to understand the rather complicated precipitation sequences and the response of positrons to different type of precipitates occurring in 2024 and 7010 alloys, binary and ternary laboratory alloys were also investigated under the same experimental conditions as the engineering alloys. The interpretations of the results are based on experiences of the group from extensive positron studies of laboratory alloys such as Al-Zn, Al-Zn-Mg, Al-Cu, and further Al alloys (see also the review (4)). Their collected results are shown as lifetimes and curve-shape parameters S of the electron-positron momentum distribution curves characteristic for different precipitates in Al alloys.

  9. Interfacial Reaction during Friction Stir Welding of Al and Cu

    NASA Astrophysics Data System (ADS)

    Genevois, C.; Girard, M.; Huneau, B.; Sauvage, X.; Racineux, G.

    2011-08-01

    Commercially pure copper was joined to a 1050 aluminum alloy by friction stir welding. A specific configuration where the tool pin was fully located in the aluminum plate was chosen. In such a situation, there is no mechanical mixing between the two materials, but frictional heating gives rise to a significant thermally activated interdiffusion at the copper/aluminum interface. This gives rise to the formation of defect-free joints where the bonding is achieved by a very thin intermetallic layer at the Cu/Al interface. Nanoscaled grains within this bonding layer were characterized using transmission electron microscopy (TEM). Two phases were identified, namely, Al2Cu and Al4Cu9 phases. The nucleation and growth of these two phases are discussed and compared to the standard reactive interdiffusion reactions between Cu and Al.

  10. Observations of Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.

  11. Synthesis of porous Cu from Al-Cu-Co decagonal quasicrystalline alloys

    NASA Astrophysics Data System (ADS)

    Kalai Vani, V.; Kwon, O. J.; Hong, S. M.; Fleury, E.

    2011-07-01

    The formation of a porous Cu structure from cast Al-Cu-Co decagonal quasicrystalline alloys has been studied using a selective corrosion technique. Two alkaline solutions were selected based on the electrochemical properties of the constituent elements. Selective corrosion of Al and Co was achieved by chemical immersion of the cast Al-Cu-Co alloy in both 5 M NaOH and 0.5 M Na2CO3 solutions; values for BET surface-to-weight ratio of up to 30 m2/g could be reached. Microstructural analyses indicated that the architecture of the resulting porous structures was composed of a needle-type phase, remaining from the decagonal phase, in addition to Cu and Cu-Co phases.

  12. Structural and Physical Properties Diversity of New CaCu5-Type Related Europium Platinum Borides

    PubMed Central

    2013-01-01

    Three novel europium platinum borides have been synthesized by arc melting of constituent elements and subsequent annealing. They were characterized by X-ray powder and single-crystal diffraction: EuPt4B, CeCo4B type, P6/mmm, a = 0.56167(2) nm, c = 0.74399(3) nm; Eu3Pt7B2, Ca3Al7Cu2 type as an ordered variant of PuNi3, R3̅m, a = 0.55477(2) nm, c = 2.2896(1) nm; and Eu5Pt18B6–x, a new unique structure type, Fmmm, a = 0.55813(3) nm, b = 0.95476(5) nm, c = 3.51578(2) nm. These compounds belong to the CaCu5 family of structures, revealing a stacking sequence of CaCu5-type slabs with different structural units: CaCu5 and CeCo3B2 type in EuPt4B; CeCo3B2 and Laves MgCu2 type in Eu3Pt7B2; and CaCu5-, CeCo3B2-, and site-exchange ThCr2Si2-type slabs in Eu5Pt18B6–x. The striking motif in the Eu5Pt18B6–x structure is the boron-centered Pt tetrahedron [BPt4], which build chains running along the a axis and plays a decisive role in the structure arrangement by linking the terminal fragments of repeating blocks of fused Eu polyhedra. Physical properties of two compounds, EuPt4B and Eu3Pt7B2, were studied. Both compounds were found to order magnetically at 36 and 57 K, respectively. For EuPt4B a mixed-valence state of the Eu atom was confirmed via magnetic and specific heat measurements. Moreover, the Sommerfeld value of the specific heat of Eu3Pt7B2 was found to be extraordinarily large, on the order of 0.2 J/mol K2. PMID:23540751

  13. Icosahedral phase stabilities in Al-Cu-Ru alloys

    SciTech Connect

    Shield, J.E.; Hoppe, C.; McCallum, R.W.; Goldman, A.I. ); Kelton, K.F.; Gibbons, P.C. )

    1992-02-01

    By examining a wide region of the Al-Cu-Ru phase diagram, a thorough analysis of the compositional and thermal stability of the icosahedral phase has been completed. The primary solidification product of rapid solidification was a topologically and chemically disordered icosahedral phase with an extensive compositional region. Crystallization through exothermic events of the as-solidified materials produced crystalline phases, without the formation of the face-centered-icosahedral (FCI) phase. However, the FCI phase does form at higher temperatures through an endothermic reaction, indicating that it is a stable phase of the system, but only at elevated temperatures. Of the alloys studied, the FCI phase field was found to encompass Al{sub 65}Cu{sub 23}Ru{sub 12}, Al{sub 65}Cu{sub 20}Ru{sub 15}, Al{sub 70}Cu{sub 20}Ru{sub 10}, and Al{sub 70}Cu{sub 15}Ru{sub 15}. The transformation to the FCI phase involves an intermediate approximant phase that is very similar to the FCI structure. Also, a cubic approximant containing atomic arrangements with local icosahedral symmetry similar to {alpha}-Al Mn Si was determined to exist near the FCI phase field.

  14. Temperature dependence diode parameters studies of Al/CuPc/n-Si/Al structure

    NASA Astrophysics Data System (ADS)

    Kumar, Ratnesh; Kaur, Ramneek; Sharma, Mamta; Kaur, Maninder; Tripathi, S. K.

    2015-08-01

    This paper presents the fabrication of Al/CuPc/n-Si/Al metal-organic-semiconductor diode. The copper phthalocyanine as organic layer is deposited on Si substrate by thermal evaporation technique. The temperature dependent current-voltage measurements are performed on Al/CuPc/n-Si structure. The important diode parameters i.e. the barrier height and ideality factor have been calculated. The temperature dependence of barrier height and ideality factor has been studied.

  15. Method of forming superconducting Tl-Ba-Ca-Cu-O films

    DOEpatents

    Wessels, Bruce W.; Marks, Tobin J.; Richeson, Darrin S.; Tonge, Lauren M.; Zhang, Jiming

    1993-01-01

    A method of forming a superconducting Tl-Ba-Ca-Cu-O film is disclosed, which comprises depositing a Ba-Ca-Cu-O film on a substrate by MOCVD, annealing the deposited film and heat-treating the annealed film in a closed circular vessel with TlBa.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x and cooling to form said superconducting film of TlO.sub.m Ba.sub.2 Ca.sub.n-1 Cu.sub.n O.sub.2n+2, wherein m=1,2 and n=1,2,3.

  16. Formation Mechanism of CuAlO2 Prepared by Rapid Thermal Annealing of Al2O3/Cu2O/Sapphire Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Shih, C. H.; Tseng, B. H.

    Single-phase CuAlO2 films were successfully prepared by thin-film reaction of an Al2O3/Cu2O/sapphire sandwich structure. We found that the processing parameters, such as heating rate, holding temperature and annealing ambient, were all crucial to form CuAlO2 without second phases. Thermal annealing in pure oxygen ambient with a lower temperature ramp rate might result in the formation of CuAl2O4 in addition to CuAlO2, since part of Cu2O was oxidized to form CuO and caused the change in reaction path, i.e. CuO + Al2O3 → CuAl2O4. Typical annealing conditions successful to prepare single-phase CuAlO2 would be to heat the sample with a temperature rampt rate higher than 7.3 °C/sec and hold the temperature at 1100 °C in air ambient. The formation mechanism of CuAlO2 has also been studied by interrupting the reaction after a short period of annealing. TEM observations showed that the top Al2O3 layer with amorphous structure reacted immediately with Cu2O to form CuAlO2 in the early stage and then the remaining Cu2O reacted with the sapphire substrate.

  17. Supercoducting property of Zr-Cu-Al-Ni-Nb alloys

    NASA Astrophysics Data System (ADS)

    Okai, D.; Motoyama, G.; Kimura, H.; Inoue, A.

    The superconducting property of Zr55Cu(30-X)Al10Ni5NbX alloys prepared by arc melting and liquid quenching methods was investigated by magnetic susceptibility measurements. The crystalline alloys with X = 0∼25 at.% prepared by arc melting method exhibited superconductivity with maximum Tc,on of 10.1 K. The alloys (X = 10∼23 at.%) with crystalline particles embedded in an amorphous structure, which were fabricated by melt spinning method, showed superconductivity with Tc,on of less than 4.0 K. The superconducting property of the Zr-Cu-Al-Ni-Nb alloys was attributed to superconducting phases of Zr2Cu, Zr2Ni, Zr65Al10Nb25 and Zr-Nb contained in the Zr-Cu-Al-Ni-Nb alloys. The melt-spun Zr55Cu(30-X)Al10Ni5NbX (X = 10∼20 at.%) alloys exhibited glass transition at 718∼743 K and were found to be superconducting metallic glasses.

  18. Thermally stimulated luminescence studies of undoped, Cu- and Mn-doped CaSO4 compounds

    NASA Astrophysics Data System (ADS)

    Manam, J.; Das, S.

    Thermally stimulated luminescence (TSL) of undoped and doped CaSO4 with activators such as Cu and Mn has been investigated. The polycrystalline samples of undoped and doped CaSO4 are prepared by the melting method. The formation of CaSO4 compound is confirmed by X-ray diffraction and Fourier transform infrared studies. Scanning electron microscopic studies of CaSO4 are also carried out. The TSL glow curves of undoped CaSO4, Cu- and Mn-doped CaSO4 are studied. Comparison of the thermoluminescence (TL) intensity of the most intensive glow peak of Cu-doped CaSO4 compound with that of undoped CaSO4 shows that addition of Cu impurity in CaSO4 compound enhances the TL intensity by about four times. However, the addition of Mn impurity to undoped CaSO4 increases the TL intensity by about three times when compared with that of undoped CaSO4. The TL-dose dependence of all three samples was studied and was observed to be almost linear in the studied range of irradiation time. Among the samples studied, namely undoped CaSO4 and Cu- and Mn-doped CaSO4, Cu-doped CaSO4 is found to be the most sensitive. The trap parameters, namely order of kinetics (b), activation energy (E) and frequency factor (s) associated with the most intensive glow peaks of CaSO4:Mn, CaSO4:Cu and CaSO4 phosphors were determined using the glow curve shape (Chen's) method.

  19. Impact of Zn, Cu, Al and Fe on the partitioning and bioaccessibility of (14)C-phenanthrene in soil.

    PubMed

    Obuekwe, Ifeyinwa S; Semple, Kirk T

    2013-09-01

    This investigation considered the effects of Zn, Cu, Al and Fe (50 and 500 mg kg(-1)) on the loss, sequential extractability, using calcium chloride (CaCl2), hydroxypropyl-β-cyclodextrin (HPCD) and dichloromethane (DCM) and biodegradation of (14)C-phenanthrene in soil over 63 d contact time. The key findings were that the presence of Cu and Al (500 mg kg(-1)) resulted in larger amounts of (14)C-phenanthrene being extracted by CaCl2 and HPCD. Further, the CaCl2 + HPCD extractions directly predicted the biodegradation of the PAH in the presence of the metals, with the exception of 500 mg kg(-1) Cu and Zn. The presence of high concentrations of some metals can impact on the mobility and accessibility of phenanthrene in soil, which may impact on the risk assessment of PAH contaminated soil. PMID:23770460

  20. Phase formation in a Bi-Sr-Ca-Cu oxide superconductor

    NASA Astrophysics Data System (ADS)

    Mei, Yu; Green, S. M.; Jiang, C.; Luo, H. L.

    1988-12-01

    The formation of different superconducting phases in the Bi-Sr-Ca-Cu-oxide system sensitively depends on the preparation procedures, particularly the firing temperatures. The tangled X-ray powder diffraction patterns of coexisting Bi2Sr2CaCu2O(y) and Bi2Sr2Ca2Cu3O(y) have been completely identified. The basic unit cells are of approximate tetragonal symmetry. The lattice constants of the latter have been determined to be 5.40 x 5.40 x 37.09 cu A.

  1. Optical properties of the giant dielectric material CaCu_3Ti_4O_12 and CdCu_3Ti_4O_12 \\unboldmath

    NASA Astrophysics Data System (ADS)

    Homes, Christopher

    2002-03-01

    The cubic perovskite-related oxide CaCu_3Ti_4O_12 has one of the largest dielectric constants at room temperature ever measured, ɛ_0~= 80 000, [ɛ_0≈ ɛ_1(ω arrow 0)]; ɛ0 drops by a factor of 1000 below about 100 K to ɛ_0~= 100, but curiously no change in the crystallographic structure is observed. The substitution of Cd for Ca results in a much lower value for the dielectric constant of ɛ_0~= 500, but the same general temperature dependence. The temperature-dependent reflectance of CaCu_3Ti_4O_12 and CdCu_3Ti_4O_12 has been measured over a wide frequency range, and the real and imaginary parts of the complex dielectric function were calculated from a Kramers-Kronig analysis. The optical properties are dominated by the unscreened lattice modes. There are a total of 11 infrared-active Tu modes expected; all 11 modes are observed in the CdCu_3Ti_4O_12 material, but only 10 are found in CaCu_3Ti_4O_12; the mode at ≈ 480 cm-1 is absent. The low frequency mode at ≈ 120 cm-1 in CaCu_3Ti_4O_12 shows an anomalous increase in oscillator strength at low temperature, in violation of the f-sum rule.(C.C. Homes et al.), Science 293, 673 (2001). The same behavior is found, although to a lesser extent, in the Cd material. A normal coordinate analysis of the vibrational modes indicates that the low-frequency mode involves primarily the Ca(Cd) atoms, as well as the Cu-O sublattice. The increase in strength of this mode is an indication that this bonding is becoming more ionic, implying that there is a redistribution of charge on this sublattice at low temperature. This suggests that the electric fields responsible for the large value of ɛ0 may originate not from the TiO6 octahedra, as is often seen in ferroelectrics, but from the Ca/Cu-O sublattice. A possible mechanism for the reduction of ɛ0 at low temperature will be discussed in light of recent high-resolution structural studies.

  2. Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios.

    PubMed

    Giordanino, Filippo; Vennestrøm, Peter N R; Lundegaard, Lars F; Stappen, Frederick N; Mossin, Susanne; Beato, Pablo; Bordiga, Silvia; Lamberti, Carlo

    2013-09-21

    Cu-SSZ-13 has been characterized by different spectroscopic techniques and compared with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios and prepared by the same ion exchange procedure. On vacuum activated samples, low temperature FTIR spectroscopy allowed us to appreciate a high concentration of reduced copper centres, i.e. isolated Cu(+) ions located in different environments, able to form Cu(+)(N2), Cu(+)(CO)n (n = 1, 2, 3), and Cu(+)(NO)n (n = 1, 2) upon interaction with N2, CO and NO probe molecules, respectively. Low temperature FTIR, DRUV-Vis and EPR analysis on O2 activated samples revealed the presence of different Cu(2+) species. New data and discussion are devoted to (i) [Cu-OH](+) species likely balanced by one framework Al atom; (ii) mono(μ-oxo)dicopper [Cu2(μ-O)](2+) dimers observed in Cu-ZSM-5 and Cu-β, but not in Cu-SSZ-13. UV-Vis-NIR spectra of O2 activated samples reveal an intense and finely structured d-d quadruplet, unique to Cu-SSZ-13, which is persistent under SCR conditions. This differs from the 22,700 cm(-1) band of the mono(μ-oxo)dicopper species of the O2 activated Cu-ZSM-5, which disappears under SCR conditions. The EPR signal intensity sets Cu-β apart from the others. PMID:23842567

  3. Reduced Cu concentration in CuAl-LPE-grown thin Si layers

    SciTech Connect

    Wang, T.H.; Ciszek, T.F.; Asher, S.; Reedy, R.

    1995-08-01

    Cu-Al has been found to be a good solvent system to grow macroscopically smooth Si layers with thicknesses in tens of microns on cast MG-Si substrates by liquid phase epitaxy (LPE) at temperatures near 900{degrees}C. This solvent system utilizes Al to ensure good wetting between the solution and substrate by removing silicon native oxides, and employs Cu to control Al doping into the layers. Isotropic growth is achieved because of a high concentration of solute silicon in the solution and the resulting microscopically rough interface. The incorporation of Cu in the Si layers, however, was a concern since Cu is a major solution component and is generally regarded as a bad impurity for silicon devices due to its fast diffusivity and deep energy levels in the band gap. A study by Davis shows that Cu will nonetheless not degrade solar cell performance until above a level of 10{sup 17} cm{sup -3}. This threshold is expected to be even higher for thin layer silicon solar cells owing to the less stringent requirement on minority carrier diffusion length. But to ensure long term stability of solar cells, lower Cu concentrations in the thin layers are still preferred.

  4. Processing-microstructure-property relationships of Al[sub 2]O[sub 3]-fiber-reinforced high-temperature superconducting (Bi,Pb)[sub 2]Sr[sub 2]Ca[sub 2]Cu[sub 3]O[sub y] composite

    SciTech Connect

    Wong, M.S.; Miyase, A.; Yuan, Y.S.; Wang, S.S. )

    1994-11-01

    Monolithic high-temperature superconducting (HTS) materials are recognized to have inherently weak mechanical properties, such as low strength and fracture toughness. These drawbacks usually can be improved by introducing strong continuous fibers into the brittle ceramic materials. In this study, a systematic investigation on the relationships among processing variables, microstructure, and superconducting and mechanical properties of a continuous Al[sub 2]O[sub 3]-fiber-reinforced HTS (Bi,Pb)[sub 2]Sr[sub 2]Ca[sub 2]Cu[sub 3]O[sub y] composite is presented. The Al[sub 2]O[sub 3]/BPSCCO composite is fabricated initially by a slurry method, followed by binder extraction up to 800 C in an 8% O[sub 2] atmosphere, and finally hot pressed at 800 C in an 8% O[sub 2] atmosphere, and finally hot pressed at 800 C in air. Phases present in the HTS composite are identified by XRD, and the microstructure and microchemistry studied by SEM and EPMA. Of particular interest is the fiber/matrix interface; the interfacial reaction is studied for composite specimens which have undergone long heat treatment. The HTS composite is observed to have a good combination of superconducting properties and mechanical properties.

  5. Ab initio molecular dynamics simulations of short-range order in Zr50Cu45Al5 and Cu50Zr45Al5 metallic glasses

    DOE PAGES

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.

    2016-02-01

    Comparative analysis between Zr-rich Zr50Cu45Al5 and Cu-rich Cu50Zr45Al5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr50Cu45Al5 and Cu50Zr45Al5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons < 0,0,12,0 > is dominant, and in the Cu-rich one the distorted icosahedral orders, especially < 0,2,8,2 > and < 0,2,8,1 >, are prominent. And the < 0,2,8,2 > polyhedra in Cu50Zr45Al5more » MG mainly originate from Al-centered clusters, while the < 0,0,12,0 > in Zr50Cu45Al5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. Lastly, the relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr50Cu45Al5.« less

  6. Effects of the Formation of Al x Cu y Gradient Interfaces on Mechanical Property of Steel/Al Laminated Sheets by Introducing Cu Binding-Sheets

    NASA Astrophysics Data System (ADS)

    Wei, Aili; Liu, Xinghai; Shi, Quanxin; Liang, Wei

    2015-07-01

    Steel/Cu/Al laminated sheets were fabricated by two-pass hot rolling to improve the mechanical properties of steel/Al sheets. The bonding properties and deformability of the steel/Cu/Al sheets were studied. Steel/Al and steel/Cu/Al samples were rolled at 350°C for 15 min with the first-pass reduction of 40%, and then heated at 600°C for 5 min with different reductions. It was found that the steel/Cu/Al samples rolled by the second-pass reduction of 85% could endure the maximum 90° bend cycle times of 45, exhibiting excellent fatigue resistance as well as deformability. The steel/Al samples could only reach the maximum 90° bend cycle times of 20. Furthermore, the scanning electron microscope, energy-dispersive spectrometer, and electron backscattered diffraction results showed that the preferred growth orientations of Cu, Al4Cu9, and Al2Cu on the steel/Cu/Al laminated sheets are {-1, 1, 2} <1, -1, 1>, {1, 0, 0} <0, 1, 0> and {-1, 1, 2} <1, -1, 1> {1, 1, 0} <0, 0, 1>. The orientation relationships between Cu and Al2Cu are {1, 1, 0}(fcc)//{1, 1, 0}(bct) and {1, 1, 1}(fcc)//{1, 1, 1}(bct). The improved bonding property and excellent fatigue resistance as well as deformability were mainly ascribed to the tight combination and consistent deformability across steel, Al, and the transition layers (Cu, Al4Cu9, and Al2Cu).

  7. Intermetallic Formation at Interface of Al/Cu Clad Fabricated by Hydrostatic Extrusion and Its Properties.

    PubMed

    Lee, Jongbeom; Jeong, Haguk

    2015-11-01

    Al/Cu clad composed of Al core and Cu sheath has been produced by hydrostatic extrusion at 523 K, at an extrusion rate of 27. The prepared specimen was post-annealed at temperatures of 673 K and 773 K for various time durations, and the effect of annealing conditions have been analyzed. The hardness at the interface between Al and Cu matrix of the Al/Cu bimetal clad increases because of annealing. Results indicate that the hardness is more sensitive to annealing temperature than the annealing time. Three kinds of intermetallic compounds (IMC), namely, CuAl, Cu3Al2, and CuAl2, are formed at the Al-Cu interface, upon annealing at 673 K. On the other hand, four kinds of IMCs, namely, Cu4Al3, CuAl, Cu3Al2, CuAl2, are formed at the annealing temperature of 773 K. The growth of each IMC follows the parabolic law as a function of annealing times at certain annealing temperature. The growth rate of each IMC is limited to its interdiffusion rate constant. The IMC Cu4Al3 appears upon annealing at 773 K, and not during annealing at 673 K, because of the higher value of activation energy associated with its formation, when compared to other IMCs. PMID:26726557

  8. Phosphorescence quenching by mechanical stimulus in CaZnOS:Cu

    SciTech Connect

    Tu, Dong; Kamimura, Sunao; Xu, Chao-Nan; Fujio, Yuki; Sakata, Yoshitaro; Ueno, Naohiro

    2014-07-07

    We have found that phosphorescence intensity of CaZnOS:Cu decreased visibly under an applied load. This mechanical quenching (MQ) of phosphorescence in CaZnOS:Cu corresponded to the mechanical stimuli. We have thus demonstrated that the MQ of CaZnOS:Cu could be used for visualizing stress distributions in practical applications. We propose that MQ arises from non-radiative recombination due to electron-transfer from trap levels to non-radiative centers as a result of the mechanical load.

  9. Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

    SciTech Connect

    Kim, Hyong June

    2011-01-01

    Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

  10. Formation of infinite-layered (Ca(1-x)Sr(x)) CuO2 and NaCuO2-type (Ca(1-y)Na(y))(0.85)CuO2 in tartrate route

    NASA Astrophysics Data System (ADS)

    Kikkawa, Shinichi; Kato, Namie; Taya, Noriko; Tada, Masakazu; Kanamaru, Fumikazu

    1995-05-01

    Both NaCuO2-type Ca(0.85)CuO2 and infinite-layered (Ca(1 - x)Sr(x))CuO2 could be prepared much more easily by firing the dried solids from mixed acetate aqueous solutions titrated with tartaric acid than by normal calcination. The presence of a narrow solid-solution composition range of 0.10 less than x less than 0.16 was confirmed in infinite-layered (Ca(1 - x)Sr(x))CuO2 in the preparation using the tartrate route. The calcium could also be substituted by sodium in a range of y less than 0.15 in NaCuO2-type (Ca(1 - y)Na(y))(0.85)CuO(2) using the same route. Further substitution of Ca(2+)/ with Y(3+)/ might also be possible in infinite-layered (Ca(1 - x)Sr(x))CuO2, but resulted in the NaCuO2-type compound in the substitution with Na(+).

  11. Viscous and acoustic properties of AlCu melts

    NASA Astrophysics Data System (ADS)

    Khusnutdinoff, R. M.; Mokshin, A. V.; Menshikova, S. G.; Beltyukov, A. L.; Ladyanov, V. I.

    2016-05-01

    The atomic dynamics of the binary Al100- x Cu x system is simulated at a temperature T = 973 K, a pressure p = 1.0 bar, and various copper concentrations x. These conditions (temperature, pressure) make it possible to cover the equilibrium liquid Al100- x Cu x phase at copper concentrations 0 ≤ x ≤ 40% and the supercooled melt in the concentration range 40% ≤ x ≤ 100%. The calculated spectral densities of the time correlation functions of the longitudinal {tilde C_L}( k, ω) and transverse {tilde C_T}( k, ω) currents in the Al100- x Cu x melt at a temperature T = 973 K reveal propagating collective excitations of longitudinal and transverse polarizations in a wide wavenumber range. It is shown that the maximum sound velocity in the v L ( x) concentration dependence takes place for the equilibrium melt at an atomic copper concentration x = 10 ± 5%, whereas the supercooled Al100- x Cu x melt saturated with copper atoms ( x ≥ 40%) is characterized by the minimum sound velocity. In the case of the supercooled melt, the concentration dependence of the kinematic viscosity ν( x) is found to be interpolated by a linear dependence, and a deviation from the linear dependence is observed in the case of equilibrium melt at x < 40%. An insignificant shoulder in the ν( x) dependence is observed at low copper concentrations ( x < 20%), and it is supported by the experimental data. This shoulder is caused by the specific features in the concentration dependence of the density ρ( x).

  12. Indium Helps Strengthen Al/Cu/Li Alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  13. Study of the superconducting properties of the Bi-Ca-Sr-Cu-O system

    NASA Technical Reports Server (NTRS)

    Khan, Musheer H.; Naqvi, S. M. M. R.; Zia-Ul-haq, S. M.

    1991-01-01

    High Temperature Superconductivity in the Bi-Ca-Sr-Cu-O System has been observed and has attracted considerable attention in 1988. The 80 K superconductivity phase has been identified to have a composition of Bi2CaSr2Cu2Ox, while the 110 K phase as reported in the literature has a possible composition of Bi2Ca2Sr2Cu3O(x). Researchers present here a study of the electrical properties of bulk samples of the slowly cooled and rapidly quenched 2:1:2:2 system. The samples used in this study were prepared from appropriate amounts of Bi2O3, CuO, SrCO3, CaCO3.

  14. HREM and Simulation Study in the Bi-Sr-Ca-Cu-O System

    NASA Astrophysics Data System (ADS)

    Boussiri, K. El.; Snoeck, E.; Clin, M.; Toledano, J. C.; Rais, T.

    1997-08-01

    We have studied the Bi-Sr-Ca-Cu-O family by high resolution electron microscopy (HREM). We have simulated the HREM images using a phenomenological model. The experimental and calculated results agree quite well.

  15. Sintering of bulk high-{Tc} superconductors: Bi-Sr-Ca-Cu-O

    SciTech Connect

    Goretta, K.C.; Lanagan, M.T.; Kaufman, D.Y.; Biondo, A.C.; Wu, C.T.; Loomans, M.E.; Cheesman, M.R.; Poeppel, R.B.; Nash, A.S.

    1992-05-01

    Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} (2212) and (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (2223) superconductors have orthorhombic crystal structures. They form platelike grains that at high temperatures grow primarily in the a-b planes and not in the c direction. The diffusional properties of Bi-Sr-Ca-Cu-O superconductors are so anisotropic that 2212 and 2223 cannot, in general, be densified by solid-state sintering. Improved densification can be achieved by application of pressure or by use of transient liquid phases. Most useful bulk Bi-Sr-Ca-Cu-O superconductors are composites that contain Ag. The Ag lowers the melting points of the superconductors, which has significant effects on microstructural development. The results of disparate sintering studies are presented and discussed.

  16. Sintering of bulk high- Tc superconductors: Bi-Sr-Ca-Cu-O

    SciTech Connect

    Goretta, K.C.; Lanagan, M.T.; Kaufman, D.Y.; Biondo, A.C.; Wu, C.T.; Loomans, M.E.; Cheesman, M.R.; Poeppel, R.B. ); Nash, A.S. )

    1992-05-01

    Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} (2212) and (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (2223) superconductors have orthorhombic crystal structures. They form platelike grains that at high temperatures grow primarily in the a-b planes and not in the c direction. The diffusional properties of Bi-Sr-Ca-Cu-O superconductors are so anisotropic that 2212 and 2223 cannot, in general, be densified by solid-state sintering. Improved densification can be achieved by application of pressure or by use of transient liquid phases. Most useful bulk Bi-Sr-Ca-Cu-O superconductors are composites that contain Ag. The Ag lowers the melting points of the superconductors, which has significant effects on microstructural development. The results of disparate sintering studies are presented and discussed.

  17. Study of the superconducting properties of the Bi-Ca-Sr-Cu-O system

    NASA Technical Reports Server (NTRS)

    Khan, Musheer H.; Qidwai, A. A.; Zia-Ul-haq, S. M.; Binsaif, Rashid

    1990-01-01

    High Temperature Superconductivity in the Bi-Ca-Sr-Cu-O System has been observed and has attracted considerable attention in 1988. The 80 K superconductivity phase has been identified to have a composition of Bi2CaSr2Cu2Ox, while the 110 K phase as reported in the literature has a possible composition of Bi2Ca2Sr2Cu3Ox. Researchers present here a study of the electrical properties of bulk samples of the slowly cooled and rapidly quenched 2:1:2:2 system. The samples used in this study were prepared from appropriate amounts of Bi2O3, CuO, SrCO3, CaCO3.

  18. Metallicity of Ca2Cu6P5 with single and double copper-pnictide layers

    DOE PAGES

    Li, Li; Parker, David; Chi, Miaofang; Tsoi, Georgiy M.; Vohra, Yogesh K.; Sefat, Athena S.

    2016-02-16

    Here, we report thermodynamic and transport properties, and also theoretical calculations, for Cu-based compound Ca2Cu6P5 and compare with CaCu2-dP2. Both materials have layers of edge-sharing copper pnictide tetrahedral CuP4, similar to Fe–As and Fe–Se layers (with FeAs4, FeSe4) in the iron-based superconductors. Despite the presence of this similar transition-metal pnictide layer, we find that both Ca2Cu6P5 and CaCu2-δP2 have temperature-independent magnetic susceptibility and show metallic behavior with no evidence of either magnetic ordering or superconductivity down to 1.8 K CaCu2-δP2 is slightly off-stoichiometric, with δ = 0.14. Theoretical calculations suggest that unlike Fe 3d-based magnetic materials with a large densitymore » of states (DOS) at the Fermi surface, Cu have comparatively low DOS, with the majority of the 3d spectral weight located well below Fermi level. The room-temperature resistivity value of Ca2Cu6P5 is only 9 μΩ-cm, due to a substantial plasma frequency and an inferred electron-phonon coupling λ of 0.073 (significantly smaller than that of metallic Cu). Also, microscopy result shows that Cu–Cu distance along the c-axis within the double layers can be very short (2.5 Å), even shorter than metallic elemental copper bond (2.56 Å). The value of dρ/dT for CaCu2-δP2 at 300 K is approximately three times larger than in Ca2Cu6P5, which suggests the likelihood of stronger electron-phonon coupling. This study shows that the details of Cu-P layers and bonding are important for their transport characteristics. In addition, it emphasizes the remarkable character of the DOS of ‘122’ iron-based materials, despite much structural similarities.« less

  19. Ideal structure of icosahedral Al-Cu-Li quasicrystals

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akiji

    1992-03-01

    A structure model for the icosahedral Al-Cu-Li quasicrystal has been derived. This is described in six-dimensional space as a six-dimensional crystal, having four kinds of occupation domains with complicated polyhedral shape. A general structure-factor formula is derived for such polyhedral domains, and a simple description of the structure using the site symmetry is proposed. The model gives R factors of 0.076 and 0.085 for recent x-ray and neutron-single-crystal-diffraction data [Boissieu, Janot, Dubois, Audier, and Dubost, J. Phys. 3, 1 (1991)]. The structure consists of a large number of icosahedral clusters and linking atoms joining them. It leads to an ideal cubic R-Al-Cu-Li structure and a large number of other cubic crystals when appropriate phason strains are taken into account. Two structures, the ideal R-Al-Cu-Li structure and a fictitious structure with a period (1+ √5 )/2 times longer, are shown.

  20. Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange

    NASA Astrophysics Data System (ADS)

    Gillen, Roland; Robertson, John

    2011-07-01

    We report density functional theory band structure calculations on the transparent conducting oxides CuAlO2, CuGaO2, CuInO2, and CuCrO2. The use of the hybrid functional screened-exchange local density approximation (sX-LDA) leads to considerably improved electronic properties compared to standard LDA and generalized gradient approximation (GGA) approaches. We show that the resulting electronic band gaps compare well with experimental values and previous quasiparticle calculations, and show the correct trends with respect to the atomic number of the cation (Al, Ga, In). The resulting energetic depths of Cu d and O p levels and the valence-band widths are considerable improvements compared to LDA and GGA and are in good agreement with available x-ray photoelectron spectroscopy data. Lastly, we show the calculated imaginary part of the dielectric function for all four systems.

  1. Mixed Cu-simple metal dimers and trimers - CuLi, CuLi2, CuNa, CuK, CuBe, CuBe2, Cu2Be, CuAl, and CuAl2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Walch, Stephen P.

    1987-01-01

    Theoretical studies of selected diatomic and triatomic molecules containing copper and the simple metals Li, Na, K, Be, and Al are presented, with emphasis on elucidating the nature of the bonding in mixed transition metal-simple metal systems. Large Gaussian basis sets are used in the diatomic calculations, and are used to calibrate the triatomic calculations, in which somewhat smaller Gaussian basis sets are employed. Electron correlation is incorporated using both the single-reference singles plus doubles configuration interaction and coupled pair functional methods. It is found that alkali atoms form very polar sigma bonds with copper, and that the ionicity increases with the inclusion of higher excitations because they improve the electron affinity of copper, which in turn allows a larger negative charge on copper. Aluminum is found to form stronger bonds than beryllium, since it does not have to undergo sp hybridization. Some of the trimers bond by forming three-center three-electron bonds. These multicenter bonds are quite strong even when compared to the two-electron bonds in the dimers or to other bonding mechanisms in the trimers.

  2. Non-Fermi-liquid scaling in U(Cu,Al){sub 5} compounds

    SciTech Connect

    Nakotte, H.; Buschow, K.H.J.; Brueck, E.; Klaasse, J.C.P.

    1996-08-01

    We report on the electronic properties of various UCu{sub x}Al{sub 5-x} compounds (2.9{le}x{le}3.5). These compounds crystallize in the hexagonal CaCu{sub 5} structure. For all compounds, we find that the low-temperature specific heat diverges logarithmitically, which may be taken as an indication of non-Fermi-liquid scaling in these materials. Also we find a large magnetic anisotropy in all compounds studied, and we show that the magnetic anisotropy should not be neglected in the analysis of other bulk properties. Though for some of UCu{sub x}Al{sub 5-x} polycrystals non-Fermi-liquid scaling is found also in the magnetic susceptibility, comparison with single-crystal results on UCu{sub 3}Al{sub 2} indicates that any temperature dependence may be due to averaging anisotropic response over all crystallographic directions.

  3. The photosensitivity of carbon quantum dots/CuAlO2 films composites

    NASA Astrophysics Data System (ADS)

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-07-01

    Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.

  4. The effect of Ti-B on stabilization of Cu-Zn-Al martensite

    SciTech Connect

    Stipcich, M.; Romero, R. |

    1998-10-05

    The application of shape memory effect in devices requires, in many cases, stable and reliable transformation temperatures. However, as a consequence of diffusional processes, in Cu-based shape memory alloys, reverse transformation temperature significantly rises after aging at temperatures above room temperature. This generally unwanted behavior is usually referred to as the stabilization of martensite. Numerous investigations have been carried out on this subject as reviewed by Ahlers and Chandrasekaran et al. Within the Cu-based alloys the Cu-Zn-Al are claimed to be more prone to stabilization than Cu-Al-Ni on aging. It has been proposed that in the Cu-Zn-Al the stabilization is due to the interchange of Cu and Zn atoms assisted by vacancies, changing, consequently, the long range order inherited from the {beta} phase. In the present work, the authors investigate the stabilization behavior of polycrystalline samples of stress induced Cu-Zn-Al and Cu-Zn-Al-B martensite.

  5. Al-matrix composite materials reinforced by Al-Cu-Fe particles

    NASA Astrophysics Data System (ADS)

    Bonneville, J.; Laplanche, G.; Joulain, A.; Gauthier-Brunet, V.; Dubois, S.

    2010-07-01

    Al-matrix material composites were produced using hot isostatic pressing technique, starting with pure Al and icosahedral (i) Al-Cu-Fe powders. Depending on the processing temperature, the final reinforcement particles are either still of the initial i-phase or transformed into the tetragonal ω-Al00.70Cu0.20Fe0.10 crystalline phase. Compression tests performed in the temperature range 293K - 823K on the two types of composite, i.e. Al/i and Al/ω, indicate that the flow stress of both composites is strongly temperature dependent and exhibit distinct regimes with increasing temperature. Differences exist between the two composites, in particul ar in yield stress values. In the low temperatureregime (T <= 570K), the yield stress of the Al/ω composite is nearly 75% higher than that of the Al/i composite, while for T > 570K both composites exhibit similar yield stress values. The results are interpreted in terms of load transfer contribution between the matrix and the reinforcement particles and elementary dislocation mechanisms in the Al matrix.

  6. LiCaAl/sub 6/:Cr/sup 3+/

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Smith, L.K.; Krupke, W.F. )

    1988-11-01

    The authors report the discovery of a new laser, LiCaAIF/sub 6/:Cr/sup 3/ (Cr/sup 3+/ :LiCAF). The intrinsic (extrapolated maximum) slope efficiency was found to be 67 percent. For comparison, they also measured the intrinsic slope efficiencies of BeAl/sub 2/O/sub 4/:Cr/sup 3+/ (alexandrite), Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, and ScBO/sub 3/:Cr/sup 3+/, and obtained values of 65,28, and 26 percent, respectively. The tuning range of LiCaAIF/sub 6/:Cr/sup 3+/ was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well.

  7. 120 K superconductor TlBaCaCu/sub 2/O/sub y/

    SciTech Connect

    Zhao, Z.X.; Chen, L.Q.; Mai, Z.H.; Huang, Y.Z.; Xiao, Z.L.; Chu, X.; Zheng, D.N.; Jia, S.L.; Wang, J.H.; Chen, G.H.

    1988-01-01

    The author have prepared 120K superconductor in Tl-Ba-Ca-Cu oxide system. This 120K superconductor has been investigated by x-ray diffraction and EDAX micro-analysis. EDAX analysis shows that the composition of this superconductor is very close to TLBa(Ca/sub 1/-/sub x/Cu/sub x/)CuO/sub y/(chi - 0.3). Most of the x-ray powder diffractions including all the strong ones can be indexed according to a tetragonal structure with /alpha/ = 5.46 A and c = 36.2A which means that the sample is nearly a single phase material.

  8. Enthalpies of mixing of liquid systems for lead free soldering: Al-Cu-Sn system.

    PubMed

    Flandorfer, Hans; Rechchach, Meryem; Elmahfoudi, A; Bencze, László; Popovič, Arkadij; Ipser, Herbert

    2011-11-01

    The present work refers to high-temperature drop calorimetric measurements on liquid Al-Cu, Al-Sn, and Al-Cu-Sn alloys. The binary systems have been investigated at 973 K, up to 40 at.% Cu in case of Al-Cu, and over the entire concentrational range in case of Al-Sn. Measurements in the ternary Al-Cu-Sn system were performed along the following cross-sections: x(Al)/x(Cu) = 1:1, x(Al)/x(Sn) = 1:1, x(Cu)/x(Sn) = 7:3, x(Cu)/x(Sn) = 1:1, and x(Cu)/x(Sn) = 3:7 at 1273 K. Experimental data were used to find ternary interaction parameters by applying the Redlich-Kister-Muggianu model for substitutional solutions, and a full set of parameters describing the concentration dependence of the enthalpy of mixing was derived. From these, the isoenthalpy curves were constructed for 1273 K. The ternary system shows an exothermic enthalpy minimum of approx. -18,000 J/mol in the Al-Cu binary and a maximum of approx. 4000 J/mol in the Al-Sn binary system. The Al-Cu-Sn system is characterized by considerable repulsive ternary interactions as shown by the positive ternary interaction parameters.

  9. Growth and oxidation of thin film Al{sub 2}Cu

    SciTech Connect

    Son, K.A.; Missert, N.A.; Barbour, J.C.; Hren, J.J.; Copeland, R.G.; Minor, K.G.

    1999-11-09

    Al{sub 2}Cu thin films ({approximately}382 nm) are fabricated by melting and resolidifying Al/Cu bilayers in the presence of a {approximately}3 nm Al{sub 2}O{sub 3} passivating layer. X-ray Photoelectron Spectroscopy (XPS) measures a 1.0 eV shift of the Cu2p{sub 3/2} peak and a 1.6 eV shift of the valence band relative to metallic Cu upon Al{sub 2}Cu formation. Scanning Electron Microscopy (SEM) and Electron Back-Scattered Diffraction (EBSD) show that the Al{sub 2}Cu film is composed of 30--70 {mu}m wide and 10--25 mm long cellular grains with (110) orientation. The atomic composition of the film as estimated by Energy Dispersive Spectroscopy (EDS) is 67{+-}2% Al and 33{+-}2% Cu. XPS scans of Al{sub 2}O{sub 3}/Al{sub 2}Cu taken before and after air exposure indicate that the upper Al{sub 2}Cu layers undergo further oxidation to Al{sub 2}O{sub 3} even in the presence of {approximately}5 nm Al{sub 2}O{sub 3}. The majority of Cu produced from oxidation is believed to migrate below the Al{sub 2}O{sub 3} layers, based upon the lack of evidence for metallic Cu in the XPS scans. In contrast to Al/Cu passivated with Al{sub 2}O{sub 3}, melting/resolidifying the Al/Cu bilayer without Al{sub 2}O{sub 3} results in phase-segregated dendritic film growth.

  10. Structural, dynamical and electronic properties of CaCuO2

    NASA Technical Reports Server (NTRS)

    Agrawal, Bal K.; Agrawal, Savitri

    1995-01-01

    The scalar relativistic version of an accurate first principles full potential self-consistent linearized muffin tin orbital (LMTO) method has been employed for describing the physical properties of the parent system of the high-T(sub c) oxide superconductors, i.e., CaCuO2. The presently employed modified version of the LMTO method is quite fast and goes beyond the usual LMTO ASA method in the sense that it permits a completely general shape of the potential and the charge density. Also, in contrast to LMTO ASA, the present method is also capable of treating distorted lattice structures accurately. The calculated values of the lattice parameters of pure CaCuO2 lie within 3% of the experimentally measured values for the Sr-doped system Ca(0.86)Sr(0.14)CuO(2). The computed electronic structures and the density of states is quite similar to those of the other oxide superconductors, except of their three- dimensional character because of the presence of strong coupling between the closely spaced CuO2 layers. The van Hove singularity peak appears slightly below the Fermi level and a small concentration of oxygenation /or/ substitutional doping may pin it at the Fermi level. The calculated frequencies for some symmetric frozen phonons for undoped CaCuO2 are quite near to the measured data for the Sr-doped CaCuO2.

  11. Structural, dynamical & electronic properties of CaCuO{sub 2}

    SciTech Connect

    Agrawal, B.K.; Agrawal, S.

    1994-12-31

    The scalar relativistic version of an accurate first principles full potential self- consistent linearized muffin tin orbital (LMTO) method has been employed for describing the physical properties of the parent system of the high-Tc oxide superconductors, i.e., CaCuO2. The presently employed modified version of the LMTO method is quite fast and goes beyond the usual LMTO-ASA method in the sense that it permits a completely general shape of the potential and the charge density. Also, in contrast to LMTO-ASA, the present method is also capable of treating distorted lattice structures accurately. The calculated values of the lattice parameters of pure CaCuO2 lie within 3% of the experimentally measured values for the Sr-doped system Ca(.86)Sr(.14)CuO(2). The computed electronic structures and the density of states is quite similar to those of the other oxide superconductors, except of their three- dimensional character because of the presence of strong coupling between the closely spaced CuO2 layers. The van Hove singularity peak appears slightly below the Fermi level and a small concentration of oxygenation /or/ substitutional doping may pin it as the Fermi level. The calculated frequencies for some symmetric frozen phonons for undoped CaCuO2 are quite near to the measured data for the Sr-doped CaCuO2.

  12. Solidification behavior and structure of Al-Cu alloy welds

    SciTech Connect

    Brooks, J.A.; Li, M.; Yang, N.C.Y.

    1997-09-01

    The microsegregation behavior of electron beam (EB) and gas tungsten arc (GTA) welds of Al-Cu alloys covering a range from 0.19 to 7.74 wt% Cu were characterized for dendrite core concentrations and fraction eutectic solidification. Although a single weld speed of 12.7 mm/sec was used, some differences were observed in the segregation behavior of the two weld types. The microsegregation behavior was also modeled using a finite differences technique considering dendrite tip and eutectic undercooling and solid state diffusion. Fairly good agreement was observed between measured and calculated segregation behavior although differences between the two weld types could not be completely accounted for. The concept of dendrite tip undercooling was used to explain the formation of a single through thickness centerline grain in the higher alloy content GTA welds.

  13. Effect of reaction time and (Ca+Mg)/Al molar ratios on crystallinity of Ca-Mg-Al layered double Hydroxide

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Nugrahaningtyas, K. D.; Sanjaya, F. B.; Darojat, A. A.; Handayani, D. S.; Hidayat, Y.

    2016-02-01

    Ca-Mg-Al Layered Double Hydroxides (Ca-Mg-Al-LDH) compounds were successfully synthesized from brine water and AlCl3.6H2O as the starting materials by coprecipitation method. The product result was characterized by X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR). The effects of the reaction time and the molar ratios of the raw material on the crystallinity of Ca-Mg-Al-LDH were examining. Results show that increasing reaction time (30; 60 and 90 min.) could improve the crystallinity and monodispersity of layered double hydroxide compounds particles. The well-defined Ca-Mg- Al-LDH could be prepared with (Ca+Mg)/Al molar ratios 0.5.

  14. CO sub 2 induced inhibition of the localized corrosion of aluminum, Al-0. 5% Cu, and Al-2% Cu in dilute HF solution

    SciTech Connect

    Scully, J.R. . Dept. of Materials Science); Peebles, D.E. )

    1991-01-01

    This study presents work on corrosion of aluminum, Al-.5% Cu, and Al-2% Cu. Electrochemical tests were performed in dilute HF solutions both with and without CO{sub 2} sparging. It is suggested that CO{sub 2} or its reaction products interact with the passive film so that exposure of Cu in the oxide-solution interface is minimized. CO{sub 2} is investigated as a corrosion inhibitor. 4 refs. (JDL)

  15. Anisotropic Responses of Mechanical and Thermal Processed Cast Al-Si-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Adeosun, S. O.; Akpan, E. I.; Balogun, S. A.; Onoyemi, O. K.

    2015-05-01

    The effects of ambient directional rolling and heat treatments on ultimate tensile strength (UTS), hardness (HD), percent elongation (PE), and impact energy (IE) on Al-Si-Mg-Cu alloy casting with reference to inclination to rolling direction are discussed in this article. The results show that rolled and quenched (CQ) sample possess superior UTS and HD to as-cast and those of rolled and aged samples (CA). Improved IE resistance with ductility is shown by both CQ and CA samples. However, these mechanical properties are enhanced as changes in the test sample direction moved away from rolling direction for all heat-treated samples. The CQ samples displayed highest tensile strength (108 MPa) and PE (19.8%) in the 90° direction.

  16. Photocatalytic property and structural stability of CuAl-based layered double hydroxides

    SciTech Connect

    Lv, Ming; Liu, Haiqiang

    2015-07-15

    Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV–Vis diffuse reflectance spectrum (UV–vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO{sub 2} reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210 mmol/g h, which was high efficient. In addition, the influence of the different M{sup 2+} on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials. - Graphical abstract: The host–guest calculation models and XRD patterns of CuMAl-LDHs: CuMgAl-LDHs (a), CuZnAl-LDHs (b) and CuNiAl-LDHs (c). - Highlights: • Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) has been synthesized. • CuMgNi shows narrower band gap and more excellent textural properties than other LDHs. • The band gap: CuMgAl based on result from UV–vis analysis. • CuMgAl shows the highest stability and lowest photocatalytic activity, while CuNiAl just opposite.

  17. Electronic properties of 3R-CuAlO2 under pressure: Three theoretical approaches

    NASA Astrophysics Data System (ADS)

    Christensen, N. E.; Svane, A.; Laskowski, R.; Palanivel, B.; Modak, P.; Chantis, A. N.; van Schilfgaarde, M.; Kotani, T.

    2010-01-01

    The pressure variation in the structural parameters, u and c/a , of the delafossite CuAlO2 is calculated within the local-density approximation (LDA). Further, the electronic structures as obtained by different approximations are compared: LDA, LDA+U , and a recently developed “quasiparticle self-consistent GW ” (QSGW) approximation. The structural parameters obtained by the LDA agree very well with experiments but, as expected, gaps in the formal band structure are underestimated as compared to optical experiments. The (in LDA too high lying) Cu3d states can be down shifted by LDA+U . The magnitude of the electric field gradient (EFG) as obtained within the LDA is far too small. It can be “fitted” to experiments in LDA+U but a simultaneous adjustment of the EFG and the gap cannot be obtained with a single U value. QSGW yields reasonable values for both quantities. LDA and QSGW yield significantly different values for some of the band-gap deformation potentials but calculations within both approximations predict that 3R-CuAlO2 remains an indirect-gap semiconductor at all pressures in its stability range 0-36 GPa, although the smallest direct gap has a negative pressure coefficient.

  18. Corrosion behavior of Cu and the Cu-Zn-Al shape memory alloy in simulated uterine fluid.

    PubMed

    Chen, Bangyi; Liang, Chenghao; Fu, Daojun; Ren, Deming

    2005-09-01

    Chemical immersion tests, electrochemical methods and atomic absorption spectrometry were employed to investigate the corrosion behavior of Cu and the Cu-Zn-Al shape memory alloy (SMA) in simulated uterine fluid. The effect of pH on corrosion rate and corrosion potential was also investigated. The results indicated that in the static state in simulated uterine fluid, dealuminumification of the Cu-Zn-Al alloy occurred with Cl- combining with aluminum ions to form hydroxyl aluminum chloride. The hydroxyl aluminum chloride hydrolyzed readily and facilitated further dealuminumification corrosion. The corrosion process of Cu and Cu-Zn-Al SMA in simulated uterine fluid was controlled by cathodic reduction of oxygen. Because the tendency for surface ionization is greater for aluminum than for zinc, a compact protective aluminum layer was formed, which inhibited the cathodic reduction of oxygen. Hence, the corrosion rate of Cu-Zn-Al SMA was smaller than that of Cu in simulated uterine fluid. With increasing pH, the corrosion rate of Cu and Cu-Zn-Al SMA in simulated uterine fluid decreased and the open-circuit potential moved in a positive direction. PMID:16102560

  19. Viscosities of aluminum-rich Al-Cu liquid alloys

    NASA Astrophysics Data System (ADS)

    Ganesan, S.; Speiser, R.; Poirier, D. R.

    1987-06-01

    Viscosity data for Al-Cu liquid alloys in the ranges of 0≤ C L≤33.1 wt pct Cu and 1173≤ T ≤973 K are reviewed. It was found that Andrade's equation can be used to represent the variation of viscosity with temperature for a given composition, but that each of the two parameters in Andrade's equation shows no systematic variation with composition of the liquid-alloys. Consequently, arithmetic averages of the parameters were used and assumed to apply to all compositions in the range 0≤ C L ≤33.1 wt pct Cu. Such a procedure implies that the viscosity happens to vary with composition solely because the specific volume varies with composition. In order to establish the predictability of extrapolating such simple behavior, a more complex model was considered. The latter model was recently presented by Kucharski and relates viscosity to the structure and thermodynamics of liquid alloys. Viscosities obtained by interpolating Andrade's equation and Kucharski's model compare closely; furthermore, values obtained by extrapolations to lower temperatures also compare favorably. Finally the simpler model was used to calculate the viscosity of the interdendritic liquid during solidification.

  20. High Energy Magnetic Excitations from the Edge-sharing CuO2 Chains in Ca2Y2Cu5O10

    NASA Astrophysics Data System (ADS)

    Matsuda, Masaaki; Kakurai, Kazuhisa; Yethiraj, Mohana; Oka, Kunihiko

    2005-05-01

    Ca2Y2Cu5O10 is a quasi-one-dimensional magnet, which consists of the ferromagnetic edge-sharing CuO2 chains. It was previously reported from neutron inelastic scattering experiments in Ca2Y2Cu5O10 up to ˜14 meV that in the magnetically ordered state there is an anomalous broadening of spin-wave excitations along the chain, which is caused mainly by the antiferromagnetic interchain interactions [M. Matsuda et al.: Phys. Rev. B 63 (2001) 180403(R)]. In this study we extended an energy range of the measurement up to ˜25 meV. The experimental result suggests that there exist two excitation modes, which is consistent with a theoretical result qualitatively. One mode corresponds to the relatively sharp spin-wave excitations, which broaden with increasing qchain and disappear around qchain˜ 0.2 r.l.u. and ω˜ 10 meV. Another one corresponds to the very broad excitations apparent at qchain˜ 0.2--0.3 r.l.u. and ω˜ 12--25 meV.

  1. Thermal, solution and reductive decomposition of Cu-Al layered double hydroxides into oxide products

    SciTech Connect

    Britto, Sylvia; Vishnu Kamath, P.

    2009-05-15

    Cu-Al layered double hydroxides (LDHs) with [Cu]/[Al] ratio 2 adopt a structure with monoclinic symmetry while that with the ratio 0.25 adopt a structure with orthorhombic symmetry. The poor thermodynamic stability of the Cu-Al LDHs is due in part to the low enthalpies of formation of Cu(OH){sub 2} and CuCO{sub 3} and in part to the higher solubility of the LDH. Consequently, the Cu-Al LDH can be decomposed thermally (150 deg. C), hydrothermally (150 deg. C) and reductively (ascorbic acid, ambient temperature) to yield a variety of oxide products. Thermal decomposition at low (400 deg. C) temperature yields an X-ray amorphous residue, which reconstructs back to the LDH on soaking in water or standing in the ambient. Solution decomposition under hydrothermal conditions yields tenorite at 150 deg. C itself. Reductive decomposition yields a composite of Cu{sub 2}O and Al(OH){sub 3}, which on alkali-leaching of the latter, leads to the formation of fine particles of Cu{sub 2}O (<1 {mu}m). - Graphical abstract: SEM image of (a) the Cu{sub 2}O-Al(OH){sub 3} composite obtained on reductive decomposition of CuAl{sub 4}-LDH and (b) Cu{sub 2}O obtained on leaching of Al(OH){sub 3} from (a).

  2. Cu-Al-Ni-SMA-Based High-Damping Composites

    NASA Astrophysics Data System (ADS)

    López, Gabriel A.; Barrado, Mariano; San Juan, Jose; Nó, María Luisa

    2009-08-01

    Recently, absorption of vibration energy by mechanical damping has attracted much attention in several fields such as vibration reduction in aircraft and automotive industries, nanoscale vibration isolations in high-precision electronics, building protection in civil engineering, etc. Typically, the most used high-damping materials are based on polymers due to their viscoelastic behavior. However, polymeric materials usually show a low elastic modulus and are not stable at relatively low temperatures (≈323 K). Therefore, alternative materials for damping applications are needed. In particular, shape memory alloys (SMAs), which intrinsically present high-damping capacity thanks to the dissipative hysteretic movement of interfaces under external stresses, are very good candidates for high-damping applications. A completely new approach was applied to produce high-damping composites with relatively high stiffness. Cu-Al-Ni shape memory alloy powders were embedded with metallic matrices of pure In, a In-10wt.%Sn alloy and In-Sn eutectic alloy. The production methodology is described. The composite microstructures and damping properties were characterized. A good particle distribution of the Cu-Al-Ni particles in the matrices was observed. The composites exhibit very high damping capacities in relatively wide temperature ranges. The methodology introduced provides versatility to control the temperature of maximum damping by adjusting the shape memory alloy composition.

  3. Influence of Cu-site substitution on La2Ca1Ba2Cu5Oz superconducting system

    NASA Astrophysics Data System (ADS)

    Bhalodia, J. A.; Mankadia, S. R.; Dalsaniya, S. M.; Gonal, M. R.

    2012-07-01

    We have prepared a series of La2CaBa2Cu5-xCoxOz; x = 0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 (La-2125) compounds by the standard solid state reaction method and characterized for their structural, superconducting, magnetic properties and oxygen content through X-ray diffraction, scanning electron microscopy, d. c. resistivity, magnetic susceptibility and iodometric titration respectively. All the compounds crystallize with the tetragonal LaBa2Cu3Oz type structure, space group P4/mmm. Here the effect of higher Co substitution for Cu in the La2CaBa2Cu5-xCoxOz system has been studied. It is observed that only 2 at. % Co substitution for Cu destroys the superconductivity of the sample. For heavily doped samples (with x >= 0.1) are found non-superconducting presumably because of magnetic pair- breaking effect. These samples do not show superconductivity but are of interest for understanding the interplay between superconductivity and magnetism. Possible reasons for destruction of superconductivity are discussed in this communication.

  4. Estimation Model for Electrical Conductivity of CaF2-CaO-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Shi, Guan-yong; Zhang, Ting-an; Dou, Zhi-he; Niu, Li-ping

    2016-09-01

    Electrical conductivity is one of the most important properties of molten slags. It has an important influence on process parameter selection of the electroslag remelting process. In the present work, a new model for estimating electrical conductivity of high-temperature slags has been proposed via calculating the conductivity by electrical conductivity of pure substances and interaction parameters between the different components in the slag has been proposed. In this model, the Arrhenius law is used to describe the relationship between electrical conductivity and temperature of slags. This model has been successfully applied to the CaF2-Al2O3, CaF2-CaO, and CaO-Al2O3, as well as CaF2-CaO-Al2O3 systems, and the calculated results are in good agreement with the measured values.

  5. Al-Cu-Li and Al-Mg-Li alloys: Phase composition, texture, and anisotropy of mechanical properties (Review)

    NASA Astrophysics Data System (ADS)

    Betsofen, S. Ya.; Antipov, V. V.; Knyazev, M. I.

    2016-04-01

    The results of studying the phase transformations, the texture formation, and the anisotropy of the mechanical properties in Al-Cu-Li and Al-Mg-Li alloys are generalized. A technique and equations are developed to calculate the amounts of the S1 (Al2MgLi), T1 (Al2CuLi), and δ' (Al3Li) phases. The fraction of the δ' phase in Al-Cu-Li alloys is shown to be significantly higher than in Al-Mg-Li alloys. Therefore, the role of the T1 phase in the hardening of Al-Cu-Li alloys is thought to be overestimated, especially in alloys with more than 1.5% Li. A new model is proposed to describe the hardening of Al-Cu-Li alloys upon aging, and the results obtained with this model agree well with the experimental data. A texture, which is analogous to that in aluminum alloys, is shown to form in sheets semiproducts made of Al-Cu-Li and Al-Mg-Li alloys. The more pronounced anisotropy of the properties of lithium-containing aluminum alloys is caused by a significant fraction of the ordered coherent δ' phase, the deformation mechanism in which differs radically from that in the solid solution.

  6. Actinide chemistry in Allende Ca-Al-rich inclusions

    NASA Technical Reports Server (NTRS)

    Murrell, M. T.; Burnett, D. S.

    1987-01-01

    Fission track radiography is used to investigate the U and Th microscale distribution in a set of Allende-meteorite Ca-Al-rich inclusions. In the Type B inclusions, the major phases melilite and fassaite are important actinide host phases, and on the rims of Type B inclusions and throughout all other inclusions studied, perovskite is the dominant actinide host phase. Results suggest that neither alteration nor loss or gain of an actinide-rich phase appears to have been an important Th/U fractionation mechanism, and that volatility differences may be the dominant factor. Th/U and rare earth element abundance patterns for the spinel and perovskite rim suggest rim formation by volatilization of interior material, and within the constraints of the brief time scale required for this heating, several mechanisms for spinel-perovskite rim formation are possible.

  7. Superconducting glass-ceramics in the Bi-Sr-Ca-Cu-O system

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kim, Cheol J.; Bausal, Narottam P.

    1990-01-01

    Differential thermal analysis, XRD, SEM, and resistivity measurements, have been used to study the recrystallization during various heat treatments of a Bi1.5SrCaCu2O(z) glass obtained by rapid quenching from the melt. Heating at 450 C formed the Bi(2+x)Sr(2-x)-CuO(z) solid solution designated 'R'. Between 765 and 845 C, R reacts slowly with the glass to form the 80 K superconductor Bi2(Sr,Ca)3Cu2O(z), together with CuO. Heating for 7 days at the higher temperature, followed by slow cooling, raised the temperature of zero resistance to 77 K.

  8. Processing Bi-Pb-Sr-Ca-Cu-O superconductors from amorphous state

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Freiman, S. W.; Wong-Ng, W.; Hwang, N. M.; Shapiro, A. J.; Hill, M. D.; Cook, L. P.; Shull, R. D.; Swartzendruber, L. J.; Bennett, L. H.

    1990-01-01

    Researchers produced superconducting ceramics of the Bi-Pb-Sr-Ca-Cu-O system started from a glass. To form the glass, the mixed oxide powder was melted at 1200 C in air. The liquid was quenched rapidly by pouring it onto an aluminum plate and rapidly pressing with another plate. The quenched compound was in the form of black amorphous solid, whose x-ray powder pattern has no crystalline peaks. After heat treatment at high temperatures, the glass crystallized into a superconductor. The crystalline phases in the superconductor identified using x-ray diffraction patterns. These phases were that associated with the superconducting phases of T(sub c) = 80 K (Bi2Ca1Sr2Cu2Ox) and of T(sub c) = 110 K (Bi2Ca2Sr2Cu3Ox). The dc resistivity and the ac susceptibility of these superconductors were studied.

  9. Pulsed laser deposition of Tl-Ca-Ba-Cu-O films

    NASA Technical Reports Server (NTRS)

    Ianno, N. J.; Liou, S. H.; Woollam, John A.; Thompson, D.; Johs, B.

    1990-01-01

    Pulsed laser deposition is a technique commonly used to deposit high quality thin films of high temperature superconductors. This paper discusses the results obtained when this technique is applied to the deposition of Tl-Ca-Ba-Cu-O thin films using a frequency doubled Nd:YAG laser operating at 532 nm and an excimer laser operating at 248 nm. Films with onset temperatures of 125 K and zero resistance temperatures of 110 K deposited on (100) oriented MgO from a composite Tl2Ca2Ba2Cu3Ox target were obtained at both wavelengths upon appropriate post deposition annealing. Films deposited at 532 nm exhibit a rough surface, while those deposited at 248 nm are smooth and homogeneous. Upon annealing, films deposited at both wavelengths are single phase Tl2Ca2Ba2Cu3Ox.

  10. Reduced pressure MOCVD of C-axis oriented BiSrCaCuO thin films

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Norihito; Vigil, J.; Gardiner, R.; Kirlin, P. S.

    1990-01-01

    BiSrCaCuO thin films were deposited on MgO (100) single-crystal substrates by metalorganic chemical vapor deposition at 500 C and 2 torr using fluorinated beta-diketonate complexes of Sr, Ca, and Cu and triphenylbismuth. An inverted vertical reaction chamber allowed uniform film growth over large areas (7.7 cm diameter). The as-deposited films were amorphous mixtures of oxides and fluorides; a two-step annealing protocol (750 C + 850-870 C) was developed which gives c-axis oriented films of Bi2Sr2Ca1Cu2O(x). The postannealed films showed onsets in the resistive transition of 110 K, and zero resistivity was achieved by 83 K. Critical current densities as high as 11,000 A/sq cm were obtained at 25 K.

  11. Discovery of New Al-Cu-Fe Minerals in the Khatyrka CV3 Meteorite

    NASA Astrophysics Data System (ADS)

    Ma, C.; Lin, C.; Bindi, L.; Steinhardt, P. J.

    2016-08-01

    Our nanomineralogy investigation of Khatyrka has revealed two new alloy minerals (AlCu with a Pm-3m CsCl structure and Al3Fe with a C2/m structure) and associated icosahedrite (quasicrystal Al63Cu26Fe11 with a five-fold symmetry) in section 126A of USNM 7908.

  12. Fabrication and electrical properties of p-CuAlO2/(n-, p-)Si heterojunctions

    NASA Astrophysics Data System (ADS)

    Suzhen, Wu; Zanhong, Deng; Weiwei, Dong; Jingzhen, Shao; Xiaodong, Fang

    2014-04-01

    CuAlO2 thin films have been prepared by the chemical solution deposition method on both n-Si and p-Si substrates. X-ray diffraction analysis indicates that the obtained CuAlO2 films have a single delafossite structure. The current transport properties of the resultant p-CuAlO2/n-Si and p-CuAlO2/p-Si heterojunctions are investigated by current-voltage measurements. The p-CuAlO2/n-Si has a rectifying ratio of ~35 within the applied voltages of -3.0 to +3.0 V, while the p-CuAlO2/p-Si shows Schottky diode-like characteristics, dominated in forward bias by the flow of space-charge-limited current.

  13. Characterization of Al/CuO nanoenergetic multilayer films integrated with semiconductor bridge for initiator applications

    NASA Astrophysics Data System (ADS)

    Zhu, Peng; Shen, Ruiqi; Ye, Yinghua; Fu, Shuai; Li, Dongle

    2013-05-01

    This paper describes the ignition characteristics of Al/CuO nanoenergetic multilayer films (nEMFs) integrated with semiconductor bridge (SCB). The as-deposited Al/CuO nEMFs were identified with SEM and differential scanning calorimetry. Results show that distinct Al/CuO nEMFs are sputter deposited in a layered geometry, and the Al/CuO nEMFs gives a reaction heat equal to 2181 J/g. The firing experiments show that Al/CuO nEMFs have no influence on the electrical properties of SCB. Furthermore, the rapid combustion of Al/CuO nEMFs is able to assist SCB generating high-temperature plasma and products, such that enhance the ignition reliability.

  14. Electronic Structure and Characteristics of Chemical Bonds in CuInSe2, CuGaSe2, and CuAlSe2

    NASA Astrophysics Data System (ADS)

    Maeda, Tsuyoshi; Wada, Takahiro

    2010-04-01

    Electronic structural calculations of chalcopyrite-type CuInSe2 and its related compounds, CuGaSe2 and CuAlSe2, were performed by a recently proposed screened-exchange local density approximation (sX-LDA) method. The theoretical band gaps of CuInSe2, CuGaSe2, and CuAlSe2, obtained by the conventional calculation method using a generalized gradient approximation (GGA) functional, were 0.04, 0.14, and 1.11 eV, respectively. These values were considerably underestimated in comparison with their experimental values of 1.04, 1.68, and 2.67 eV because the exchange-correlation energy was not precisely calculated. Therefore, electronic structural calculations of chalcopyrite-type CuInSe2 and related compounds were performed with an sX-LDA functional to obtain accurate electronic structure. The present sX-LDA calculation successfully reproduced the band gaps of CuInSe2 (0.96 eV), CuGaSe2 (1.36 eV), and CuAlSe2 (2.22 eV). The obtained electronic structures and band gap energies of CuInSe2, CuGaSe2, and CuAlSe2 are discussed on the basis of schematic molecular orbital diagrams of tetrahedral CuSe47-, InSe45-, GaSe45-, and AlSe45- clusters.

  15. Distribution of Ca, Fe, Cu and Zn in primary colorectal cancer and secondary colorectal liver metastases

    NASA Astrophysics Data System (ADS)

    Al-Ebraheem, A.; Mersov, A.; Gurusamy, K.; Farquharson, M. J.

    2010-07-01

    A microbeam synchrotron X-ray fluorescence (μSRXRF) technique has been used to determine the localization and the relative concentrations of Zn, Cu, Fe and Ca in primary colorectal cancer and secondary colorectal liver metastases. 24 colon and 23 liver samples were examined, all of which were formalin fixed tissues arranged as microarrays of 1.0 mm diameter and 10 μm thickness. The distribution of these metals was compared with light transmission images of adjacent sections that were H and E stained to reveal the location of the cancer cells. Histological details were provided for each sample which enable concentrations of all elements in different tissue types to be compared. In the case of liver, significant differences have been found for all elements when comparing tumour, normal, necrotic, fibrotic, and blood vessel tissues (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have also been found to be significantly different among tumour, necrotic, fibrotic, and mucin tissues in the colon samples (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have been compared between primary colorectal samples and colorectal liver metastases. Concentration of Zn, Cu, Fe and Ca are higher in all types of liver tissues compared to those in the colon tissues. Comparing liver tumour and colon tumour samples, significant differences have been found for all elements (Mann Whitney, P<0.0001). For necrotic tissues, significant increase has been found for Zn, Ca, Cu and Fe (Mann Whitney, P<0.0001 for Fe and Zn, 0.014 for Ca, and 0.001 for Cu). The liver fibrotic levels of Zn, Ca, Cu and Fe were higher than the fibrotic colon areas (independent T test, P=0.007 for Zn and Mann Whitney test P<0.0001 for Cu, Fe and Ca). For the blood vessel tissue, the analysis revealed that the difference was only significant for Fe ( P=0.009) from independent T test.

  16. First principles study of CuAlO2 doping with S

    NASA Astrophysics Data System (ADS)

    Gao, Haigen; Zhou, Jian; Lu, Minghui

    2010-07-01

    We study the electronic properties of CuAlO2 doped with S by the first principles calculations and find that the band gap of CuAlO2 is reduced after the doping. At the same time, the effective masses are also reduced and the density of states could cross the Fermi level. These results show that the conductivity of CuAlO2 could be enhanced by doping the impurities of S, which needs to be further studied.

  17. Superconductivity in the high-Tc Bi-Ca-Sr-Cu-O system - Phase identification

    NASA Technical Reports Server (NTRS)

    Hazen, R. M.; Prewitt, C. T.; Angel, R. J.; Ross, N. L.; Finger, L. W.

    1988-01-01

    Four phases are observed in superconducting Bi-Ca-Sr-Cu-O samples. The superconducting phase, with onset temperature near 120 K, is a 15.4-A-layered compound with composition near Bi2Ca1Sr2Cu2O9 and an A-centered orthorhombic unit subcell 5.41 x 5.44 x 30.78 A. X-ray diffraction and electron microscopy data are consistent with a structure of alternating perovskite and Bi2O2 layers. High-resolution transmission electron microscopy images reveal a b-axis superstructure of 27.2 A, numerous (001) stacking faults, and other defects.

  18. Critical currents of aligned grains of Tl-Ba-Ca-Cu-O compounds

    NASA Technical Reports Server (NTRS)

    Fang, M. M.; Finnemore, D. K.; Farrell, D. E.; Bansal, N. R.

    1989-01-01

    A study of irreversibility in the magnetization curves of Tl2Ba2Ca2Cu3O10 and Tl2Ba2Ca1Cu2O8 was undertaken to determine the intragranular critical currents and the effects of flux-creep in grain-aligned samples of these materials. For fields of greater than 0.3 T, and H parallel to c axis, the critical supercurrent falls approximately exponentially with both magnetic field and temperature. Flux-creep is found to be linear in the logarithm of time at low fields over a wide temperature range.

  19. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1994-10-11

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  20. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1994-01-01

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor.

  1. Superconductivity in Pb-doped Bi-Ca-Sr-Cu-O system

    SciTech Connect

    Xia, J.S.; Fan, M.H.; He, Z.H.; Zhang, Q.R. ); Chen, J.; Chen, Z.Y.; Qian, Y.T. )

    1989-03-20

    A new superconducting transition near 100 {Kappa} was observed in the Pb-doped Bi-Ca-Sr-Cu-O samples. Compared with the 107 {Kappa} and 65 {Kappa} phases, the volume fraction of this superconducting phase is very small, but forms an effective connection between the grains of other two phases. It is suggested that the new phase plays an important role for T/sub c/ above 100 {Kappa} in the Bi/sub 2-chi/Pb/sub chi/Ca/sub 2/Sr/sub 2/Cu/sub 3/O/sub y/ system.

  2. Characteristics of Cu stabilized Nb3Al strands with low Cu ratio

    SciTech Connect

    Kikuchi, A.; Yamada, R.; Barzi, E.; Kobayashi, M.; Lamm, M.; Nakagawa, K.; Sasaki, K.; Takeuchi, T.; Turrioni, D.; Zlobin, A.V.; /NIMC, Tsukuba /Fermilab /Hitachi, Tsuchiura Works /KEK, Tsukuba

    2008-12-01

    Characteristics of recently developed F4-Nb{sub 3}Al strand with low Cu ratio are described. The overall J{sub c} of the Nb{sub 3}Al strand could be easily increased by decreasing of the Cu ratio. Although the quench of a pulse-like voltage generation is usually observed in superconducting unstable conductor, the F4 strand with a low Cu ratio of 0.61 exhibited an ordinary critical transition of gradual voltage generation. The F4 strand does not have magnetic instabilities at 4.2 K because of the tantalum interfilament matrix. The overall J{sub c} of the F4 strand achieved was 80-85% of the RRP strand. In the large mechanical stress above 100 MPa, the overall J{sub c} of the F4 strand might be comparable to that of high J{sub c} RRP-Nb{sub 3}Sn strands. The Rutherford cable with a high packing factor of 86.5% has been fabricated using F4 strands. The small racetrack magnet, SR07, was also fabricated by a 14 m F4 cable. The quench current, I{sub q}, of SR07 were obtained 22.4 kA at 4.5 K and 25.2 kA at 2.2 K. The tantalum matrix Nb{sub 3}Al strands are promising for the application of super-cooled high-field magnets as well as 4.2 K operation magnets.

  3. Electrical conductivity studies on CuBr containing Al2O3 particles

    NASA Technical Reports Server (NTRS)

    Dubec, P. M.; Wagner, J. B., Jr.

    1984-01-01

    The conductivity of CuBr was studied and the role of a second phase, Al2O3, dispersed in CuBr was tested. CuBr melts at 493 C and exhibits three phases in the solid state. CuBr is a good ionic conductor with a transport number for copper ions of virtually unity with weighed proportions of the appropriate chemicals used. The CuBr materials were heated above melting point of CuBr, and the samples were sandwiched between copper electrodes. The ac conductivity, was determined at 1 kHz between 25 and 440 C depending on the sample. It was shown that at low temperatures, the conductivity for CuBr (Al2O3) increased by as much as 100, whereas in the beta phase the conductivity of CuBr containing Al2O3 decreased. The electrical conductivity studies are in agreement with earlier data.

  4. Enthalpies of formation of CaAl4O7 and CaAl12O19 (hibonite) by high temperature, alkali borate solution calorimetry

    NASA Technical Reports Server (NTRS)

    Geiger, C. A.; Kleppa, O. J.; Grossman, L.; Mysen, B. O.; Lattimer, J. M.

    1988-01-01

    Enthalpies of formation were determined for two calcium aluminate phases, CaAl4O7 and CaAl12O19, using high-temperature alkali borate solution calorimetry. The aluminates were synthesized by multiple-cycle heating and grinding stoichiometric mixtures of CaCO3 and Al2O3, and the products were characteized by X-ray diffraction and SEM microbeam analysis. The data on impurities (CaAl4O7 was found to be about 89.00 percent pure by weight and the CaAl12O19 samples about 91.48 percent pure) were used to correct the heat of solution values of the synthetic products. The enthalpies of formation, at 1063 K, from oxides, were found to be equal to -(25.6 + or - 4.7) kJ/g.f.w. for CaAl4O7 and -(33.0 + or - 9.7) kJ/g.f.w. for CaAl12O19; the respective standard enthalpies of formation from elements, at 298 K, were estimated to be -4007 + or - 5.2 kJ/g.f.w. and -10,722 + or - 12 kJ/g.f.w.

  5. Strengthening mechanism of super-hard nanoscale Cu/Al multilayers with negative enthalpy of mixing

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Li, S.; Huang, P.; Xu, K. W.; Wang, F.; Lu, T. J.

    2016-09-01

    We present unusual high hardness (up to 7.7 GPa) achieved in Cu/Al multilayers relative to monolithic Cu and Al films (˜2 GPa and ˜1 GPa, respectively). Nanotwins and stacking faults (SFs) were proposed to be the main contributors of hardness enhancement, especially when h < 5 nm. Using molecular dynamics simulations of deposition, we demonstrated that intermixing near Cu/Al interface was paramount in stabilizing the SFs in both Cu and Al layers. Our experimental results indicated that the high strength caused by layer intermixing was in sharp contrast to the general belief that only sharp interface structures could strengthen the multilayers.

  6. Photoelectric phenomena in the Cu (Al, In)/p-CuIn{sub 3}Se{sub 5} Schottky barriers

    SciTech Connect

    Bodnar', I. V. Rud, V. Yu. Rud', Yu. V.

    2007-01-15

    Structures are formed on the p-CuIn{sub 3}Se{sub 5} crystals and photoelectric phenomena in the Cu/p-CuIn{sub 3}Se{sub 5}, Al/p-CuIn{sub 3}Se{sub 5}, and In/p-CuIn{sub 3}Se{sub 5} Schottky barriers are studied. The spectra of quantum efficiency for photoconversion in new structures were obtained for the first time. The characteristics of the interband transitions are discussed, and the CuIn{sub 3}Se{sub 5} band gap is determined. It is concluded that CuIn{sub 3}Se{sub 5} crystals can be used in the fabrication of high-efficiency broadband photoconverters of optical radiation.

  7. Influence of Al/CuO reactive multilayer films additives on exploding foil initiator

    SciTech Connect

    Zhou Xiang; Shen Ruiqi; Ye Yinghua; Zhu Peng; Hu Yan; Wu Lizhi

    2011-11-01

    An investigation on the influence of Al/CuO reactive multilayer films (RMFs) additives on exploding foil initiator was performed in this paper. Cu film and Cu/Al/CuO RMFs were produced by using standard microsystem technology and RF magnetron sputtering technology, respectively. Scanning electron microscopy characterization revealed the distinct layer structure of the as-deposited Al/CuO RMFs. Differential scanning calorimetry was employed to ascertain the amount of heat released in the thermite reaction between Al films and CuO films, which was found to be 2024 J/g. Electrical explosion tests showed that 600 V was the most matching voltage for our set of apparatus. The explosion process of two types of films was observed by high speed camera and revealed that compared with Cu film, an extra distinct combustion phenomenon was detected with large numbers of product particles fiercely ejected to a distance of about six millimeters for Cu/Al/CuO RMFs. By using the atomic emission spectroscopy double line technique, the reaction temperature was determined to be about 6000-7000 K and 8000-9000 K for Cu film and Cu/Al/CuO RMFs, respectively. The piezoelectricity of polyvinylidene fluoride film was employed to measure the average velocity of the slapper accelerated by the explosion of the films. The average velocities of the slappers were calculated to be 381 m/s and 326 m/s for Cu film and Cu/Al/CuO RMFs, respectively, and some probable reasons were discussed with a few suggestions put forward for further work.

  8. Concentric nano rings observed on Al-Cu-Fe microspheres

    NASA Astrophysics Data System (ADS)

    Li, Chunfei; Wang, Limin; Hampikian, Helen; Bair, Matthew; Baker, Andrew; Hua, Mingjian; Wang, Qiongshu; Li, Dingqiang

    2016-05-01

    It is well known that when particle size is reduced, surface effect becomes important. As a result, micro/nanoparticles tend to have well defined geometric shapes to reduce total surface energy, as opposed to the irregular shapes observed in most bulk materials. The surface of such micro/nanostructures are smooth. Any deviation from a smooth surface implies an increased surface energy which is not energetically favorable. Here, we report an observation of spherical particles in an alloy of Al65Cu20Fe15 nominal composition prepared by arc melting. Such spherical particles stand out from those reported so far due to the decoration of concentric nanorings on the surface. Three models for the formation of these concentric ring patterns are suggested. The most prominent ones assume that the rings are frozen features of liquid motion which could open the door to investigate the kinetics of liquid motion on the micro/nanometer scale.

  9. Microstructure Evolution in Al-Cu-Fe Quasicrystalline Thin Films

    NASA Astrophysics Data System (ADS)

    Widjaja, Edy; Marks, Laurence

    2003-03-01

    Transmission Electron Microscopy (TEM) was performed to study the microstructure evolution in Al-Cu-Fe quasicrystalline thin films. Thin films were grown by magnetron sputtering on sodium chloride crystals which were subsequently dissolved in water to acquire free-standing films. Nanocrystalline films were found in the as-deposited sample. When annealed at 400oC the films changed to metastable crystalline phases that transformed into icosahedral phases upon further annealing at 500oC. TEM imaging combined with electron diffraction revealed various features associated with the phase evolution in the crystalline-quasicrystalline phase transformation. Some grains in the film functioned as sacrificial grains allowing others to grow into icosahedral phases. Elements near the boundary of the sacrificial grains diffused to form the icosahedral phases, resulting in fragments in the center of the grain. The oxide layer of the film was amorphous aluminum oxide that exhibited poor adhesion to the quasicrystalline films.

  10. Refractive index of the CuAlO2 delafossite

    NASA Astrophysics Data System (ADS)

    Pellicer-Porres, J.; Segura, A.; Kim, D.

    2009-01-01

    The refractive index of the CuAlO2 delafossite has been determined from interference measurements in single crystals performed in the visible, near and mid infrared regions of the spectrum. The analysis of the refractive index dispersion corresponding to light polarization perpendicular to the c-axis (P ⊥ c) yields a static dielectric constant of epsilon0 = 7.7 ± 0.8 and a low frequency electronic constant epsilon∞ = 5.1 ± 0.1. The relevant infrared active E^{\\uparrow}_u(\\rm TO) mode is found to be at 550 ± 25 cm-1. The electronic contribution can be well described by a Penn gap at 39 000 ± 1000 cm-1. Both the refractive index and its dispersion are found to be smaller for P||c than for P ⊥ c.

  11. Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films

    NASA Astrophysics Data System (ADS)

    Shtansky, D. V.; Batenina, I. V.; Kiryukhantsev-Korneev, Ph. V.; Sheveyko, A. N.; Kuptsov, K. A.; Zhitnyak, I. Y.; Anisimova, N. Yu.; Gloushankova, N. A.

    2013-11-01

    A key property of multicomponent bioactive nanostructured Ti(C,N)-based films doped with Ca, P, and O (TiCaPCON) that can be improved further is their antibacterial effect that should be achieved without compromising the implant bioactivity and biocompatibility. The present work is focused on the study of structure, chemical, mechanical, tribological, and biological properties of Ag- and Cu-doped TiCaPCON films. The films with Ag (0.4-4 at.%) and Cu (13 at.%) contents were obtained by simultaneous sputtering of a TiC0.5-Ca3(PO4)2 target and either an Ag or a Cu target. The film structure was studied using X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray spectroscopy, glow discharge optical emission spectroscopy, and Raman-shift and IR spectroscopy. The films were characterized in terms of their hardness, elastic modulus, dynamic impact resistance, friction coefficient and wear rate (both in air and normal saline), surface wettability, electrochemical behavior and Ag or Cu ion release in normal saline. Particular attention was paid to the influence of inorganic bactericides (Ag and Cu ions) on the bactericidal activity against unicellular yeast fungus Saccharomyces cerevisiae and gram-positive bacteria Lactobacillus acidophilus, as well as on the attachment, spreading, actin cytoskeleton organization, focal adhesions, and early stages of osteoblastic cell differentiation. The obtained results show that the Ag-doped films are more suitable for the protection of metallic surfaces against bacterial infection compared with their Cu-doped counterpart. In particular, an excellent combination of mechanical, tribological, and biological properties makes Ag-doped TiCaPCON film with 1.2 at.% of Ag very attractive material for bioengineering and modification of load-bearing metal implant surfaces.

  12. Temperature effect on ideal shear strength of Al and Cu

    NASA Astrophysics Data System (ADS)

    Iskandarov, Albert M.; Dmitriev, Sergey V.; Umeno, Yoshitaka

    2011-12-01

    According to Frenkel’s estimation, at critical shear stress τc=G/2π, where G is the shear modulus, plastic deformation or fracture is initiated even in defect-free materials. In the past few decades it was realized that, if material strength is probed at the nanometer scale, it can be close to the theoretical limit, τc. The weakening effect of the free surface and other factors has been discussed in the literature, but the effect of temperature on the ideal strength of metals has not been addressed thus far. In the present study, we perform molecular dynamics simulations to estimate the temperature effect on the ideal shear strength of two fcc metals, Al and Cu. Shear parallel to the close-packed (111) plane along the [112¯] direction is studied at temperatures up to 800 K using embedded atom method potentials. At room temperature, the ideal shear strength of Al (Cu) is reduced by 25% (22%) compared to its value at 0 K. For both metals, the shear modulus, G, and the critical shear stress at which the stacking fault is formed, τc, decrease almost linearly with increasing temperature. The ratio G/τc linearly increases with increasing temperature, meaning that τc decreases with temperature faster than G. Critical shear strain, γc, also decreases with temperature, but in a nonlinear fashion. The combination of parameters, Gγc/τc, introduced by Ogata as a generalization of Frenkel’s formula, was found to be almost independent of temperature. We also discuss the simulation cell size effect and compare our results with the results of abinitio calculations and experimental data.

  13. LPE growth of AlN from Cu-Al-Ti solution under nitrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Kamei, K.; Inoue, S.; Shirai, Y.; Tanaka, T.; Okada, N.; Yauchi, A.

    2006-05-01

    Synthesis of single crystalline AlN has long been the subjects of intensive studies since it has exceptional properties suitable for the substrate materials for optoelectronic and electronic devices. The solution growth technique has some advantages over the sublimation growth technique. Its growth temperature is generally much lower than that of the sublimation growth. The obtained crystal is believed to show superior crystallinity since it is grown under nearly equilibrium condition. In the present study we have developed a new solution growth technique using Cu and Ti as solvents under atmospheric pressure of nitrogen. By using this solution, we have grown AlN single crystalline layer on 6H-SiC substrate at relatively low growth temperatures such as 1600-1800 °C. The thickness of the grown layer was larger than 30 μm. TEM observation revealed the fairly low dislocation density such as 105/cm2 in the obtained AlN layers.

  14. Effect of Cd substitution on the optical and transport properties of CaCu_3Ti_4O_12 boldmath

    NASA Astrophysics Data System (ADS)

    Homes, C. C.; Vogt, T.; Subramanian, M. A.; Ramirez, A. P.

    2003-03-01

    The effect of Cd doping on the transport and optical properties of CaCu_3Ti_4O_12 has been studied. At room temperature, CaCu_3Ti_4O_12 has a very high dielectric constant, \\varepsilon_0 ˜ 10^4. However, substituting Cd for Ca reduces \\varepsilon0 by nearly two orders of magnitude. Cd has a strong effect on the low frequency infrared active modes, and in addition a new mode is activated. A normal coordinate analysis has been performed to determine the nature of the vibrational modes, in particular the activated mode as well as the low frequency vibration, where an anomalous increase in the oscillator strength has been observed.(C.C. Homes et al.), Science 293, 673 (2001). It has been suggested that the large values of \\varepsilon0 may be due to a internal barrier layer capacitance effect due to twinning. The lower value for \\varepsilon0 in the Cd material may have implications for the degree of twinning and the associated changes in vibrational structure. This work was supported by the Department of Energy under contract number DE-AC02-98CH10886.

  15. Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr 3 , AlCu 3 , and AlCu 2 Zr: First-principles study

    NASA Astrophysics Data System (ADS)

    Parvin, R.; Parvin, F.; Ali, M. S.; Islam, A. K. M. A.

    2016-08-01

    The electronic properties (Fermi surface, band structure, and density of states (DOS)) of Al-based alloys AlM 3 (M = Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method within the generalized gradient approximation (GGA). The structural parameters and elastic constants are evaluated and compared with other available data. Also, the pressure dependences of mechanical properties of the compounds are studied. The temperature dependence of adiabatic bulk modulus, Debye temperature, specific heat, thermal expansion coefficient, entropy, and internal energy are all obtained for the first time through quasi-harmonic Debye model with phononic effects for T = 0 K-100 K. The parameters of optical properties (dielectric functions, refractive index, extinction coefficient, absorption spectrum, conductivity, energy-loss spectrum, and reflectivity) of the compounds are calculated and discussed for the first time. The reflectivities of the materials are quite high in the IR-visible-UV region up to ˜ 15 eV, showing that they promise to be good coating materials to avoid solar heating. Some of the properties are also compared with those of the Al-based Ni3Al compound.

  16. Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr 3 , AlCu 3 , and AlCu 2 Zr: First-principles study

    NASA Astrophysics Data System (ADS)

    Parvin, R.; Parvin, F.; Ali, M. S.; Islam, A. K. M. A.

    2016-08-01

    The electronic properties (Fermi surface, band structure, and density of states (DOS)) of Al-based alloys AlM 3 (M = Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method within the generalized gradient approximation (GGA). The structural parameters and elastic constants are evaluated and compared with other available data. Also, the pressure dependences of mechanical properties of the compounds are studied. The temperature dependence of adiabatic bulk modulus, Debye temperature, specific heat, thermal expansion coefficient, entropy, and internal energy are all obtained for the first time through quasi-harmonic Debye model with phononic effects for T = 0 K–100 K. The parameters of optical properties (dielectric functions, refractive index, extinction coefficient, absorption spectrum, conductivity, energy-loss spectrum, and reflectivity) of the compounds are calculated and discussed for the first time. The reflectivities of the materials are quite high in the IR–visible–UV region up to ∼ 15 eV, showing that they promise to be good coating materials to avoid solar heating. Some of the properties are also compared with those of the Al-based Ni3Al compound.

  17. Synthesis and superconducting properties of Tl-Ba-Ca-Cu-O films

    NASA Technical Reports Server (NTRS)

    Liou, S. H.; Chan, V. K.; Foong, F.; Lee, W. Y.; Gou, Y. S.

    1991-01-01

    Tl-Ba-Ca-Cu-O superconducting films were synthesized by sputtering either from a single target or from two oxide targets in a symmetric configuration. Films with zero resistance Tc of up to 122 K were obtained after various postannealing treatments at 870-950 C under an oxygen atmosphere. The composition of the films is not very homogeneous on the submicrometer scale. The critical current of these films at 77 K is in the 1000 A/sq cm to 10,000 A/sq cm range, which is much smaller than that of films prepared on SrTiO3 and LaAlO3 substrates. The low critical current density in these films is probably due to the granularity in the films. The morphology, structure, and magnetic and superconducting properties of the films were studied. Films prepared by two different sputtering techniques have similar results which depend mostly on the film compositions and their annealing conditions. It is found that the induced magnetic flux in the film decreases rapidly with increasing temperature, indicating weak flux pinning.

  18. High temperature superconductor step-edge Josephson junctions using Ti-Ca-Ba-Cu-O

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Hohenwarter, G.K.G.; Martens, J.S.; Plut, T.A.; Tigges, C.P.; Vawter, G.A.; Zipperian, T.E.

    1994-10-25

    A process is disclosed for formulating non-hysteretic and hysteretic Josephson junctions using HTS materials which results in junctions having the ability to operate at high temperatures while maintaining high uniformity and quality. The non-hysteretic Josephson junction is formed by step-etching a LaAlO[sub 3] crystal substrate and then depositing a thin film of TlCaBaCuO on the substrate, covering the step, and forming a grain boundary at the step and a subsequent Josephson junction. Once the non-hysteretic junction is formed the next step to form the hysteretic Josephson junction is to add capacitance to the system. In the current embodiment, this is accomplished by adding a thin dielectric layer, LaA1O[sub 3], followed by a cap layer of a normal metal where the cap layer is formed by first depositing a thin layer of titanium (Ti) followed by a layer of gold (Au). The dielectric layer and the normal metal cap are patterned to the desired geometry. 8 figs.

  19. High temperature superconductor step-edge Josephson junctions using Ti-Ca-Ba-Cu-O

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.; Martens, Jon S.; Plut, Thomas A.; Tigges, Chris P.; Vawter, Gregory A.; Zipperian, Thomas E.

    1994-10-25

    A process for formulating non-hysteretic and hysteretic Josephson junctions using HTS materials which results in junctions having the ability to operate at high temperatures while maintaining high uniformity and quality. The non-hysteretic Josephson junction is formed by step-etching a LaAlO.sub.3 crystal substrate and then depositing a thin film of TlCaBaCuO on the substrate, covering the step, and forming a grain boundary at the step and a subsequent Josephson junction. Once the non-hysteretic junction is formed the next step to form the hysteretic Josephson junction is to add capacitance to the system. In the current embodiment, this is accomplished by adding a thin dielectric layer, LaA1O.sub.3, followed by a cap layer of a normal metal where the cap layer is formed by first depositing a thin layer of titanium (Ti) followed by a layer of gold (Au). The dielectric layer and the normal metal cap are patterned to the desired geometry.

  20. Mechanical properties of Al-Cu alloy-SiC composites

    SciTech Connect

    Anggara, B. S.; Handoko, E.; Soegijono, B.

    2014-09-25

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  1. Optoelectronic properties of novel amorphous CuAlO2/ZnO NWs based heterojunction

    NASA Astrophysics Data System (ADS)

    Bu, Ian Y. Y.

    2013-08-01

    Amorphous p-type CuAlO2 thin films were grown onto n-type crystalline ZnO NWs forming a heterojunction through the combination of sol-gel process and hydrothermal growth method. The effects of temperature on structure and optoelectronic properties of CuAlO2 thin films were investigated through various measurement techniques. It was found that the derived CuAlO2 is Al-rich with thin film. UV-Vis measurements showed that the deposited CuAlO2 films are semi-transparent with maximum transmittance ∼82% at 500 nm. Electrical characterization and integration into pn junction confirms that the amorphous CuAlO2 is p-type and exhibited photovoltaic behavior.

  2. Synthesis and microstructural TEM investigation of CaCu{sub 3}Ru{sub 4}O{sub 12} ceramic and thin film

    SciTech Connect

    Brize, Virginie; Autret-Lambert, Cecile; Wolfman, Jerome; Gervais, Monique; Gervais, Francois

    2011-10-15

    CaCu{sub 3}Ru{sub 4}O{sub 12} (CCRO) is a conductive oxide having the same structure as CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO{sub 4} substrate. Structural and physical properties of bulk CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation. - Graphical Abstract: Structure of CaCu{sub 3}Ru{sub 4}O{sub 12} showing the RuO{sub 6} octahedra and the square planar environment for Cu{sup 2+}. Highlights: > In this study, we investigate the structural properties and microstructure of ceramics CaCu{sub 3}Ru{sub 4}O{sub 12}. > We study the conduction properties of polycrystalline material. > Then we synthesize the conductive thin film which is deposited on a high K material with the same structure (CaCu{sub 3}Ti{sub 4}O{sub 12}).

  3. Preparation of Bi-Sr-Ca-Cu-O superconductors from oxide-glass precursors

    DOEpatents

    Hinks, David G.; Capone, II, Donald W.

    1992-01-01

    A superconductor and precursor therefor from oxide mixtures of Ca, Sr, Bi and Cu. Glass precursors quenched to elevated temperatures result in glass free of crystalline precipitates having enhanced mechanical properties. Superconductors are formed from the glass precursors by heating in the presence of oxygen to a temperature below the melting point of the glass.

  4. Superconducting behavior in the Bi-In-Sr-Ca-Cu-Pb-O system

    NASA Astrophysics Data System (ADS)

    Okada, M.; Homma, M.; Murakami, T.; Matsuoka, D.; Cross, K.

    1990-09-01

    The superconducting behavior of the nominal composition of (Bi/1-x/In/x/)2Sr2Ca2Cu3Pb/0.6/O/y/ was studied. It was found that the samples with x equal to or less than 0.90 fired at 850 C for 50 h in air showed zero resistance above 60 K. The sample with x = 0.25 showed the highest zero resistance transition temperature of 92 K and an onset temperature of 110 K. It was found that the grains with the composition of Bi2Sr2Ca2Cu3O/y/ for the sample with x = 0.25 contained 9 percent In for the amount of Bi. The surface of the sample with x = 0.90, which showed zero resistance above 60 K, was covered with Bi2Sr2Ca1Cu2O/y/ because the In oxide is volatile from its surface over 850 C. The addition of In to the system has no effect on the critical temperatures, but is effective in increasing the volume fraction of the Bi2Sr2Ca2Cu3O10 compound.

  5. Chemical trend of superconducting transition temperature in hole-doped delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-12-01

    We have performed the first-principles calculations about the superconducting transition temperature Tc of hole-doped delafossite CuAlO2, AgAlO2 and AuAlO2. Calculated Tc are about 50 K (CuAlO2), 40 K (AgAlO2) and 3 K(AuAlO2) at maximum in the optimum hole-doping concentration. The low Tc of AuAlO2 is attributed to the weak electron-phonon interaction caused by the low covalency and heavy atomic mass.

  6. Structural, magnetic, and superconducting properties of pulsed-laser-deposition-grown La1.85 Sr0.15 CuO4 / La2/3 Ca1/3 MnO3 superlattices on (001)-oriented LaSrAlO4 substrates

    DOE PAGES

    Das, S.; Sen, K.; Marozau, I.; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Khaydukov, Y.; Soltwedel, O.; Keller, T.; Döbeli, M.; et al

    2014-03-12

    Epimore » taxial La1.85 Sr0.15 CuO4 / La2/3 Ca1/3 MnO3 (LSCO/LCMO) superlattices (SL) on (001)- oriented LaSrAlO4 substrates have been grown with pulsed laser deposition (PLD) technique. Their structural, magnetic and superconducting properties have been determined with in-situ reflection high energy electron diffraction (RHEED), x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy (STEM), electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO (a = 0.3779 nm) and LCMO (a = 0.387 nm) these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LSAO substrate, a sizeable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of Tconset ≈ 36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H ∥ ab and a sizeable paramagnetic shift for H ∥ c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a strongly ferromagnetic state with a Curie temperature of TCurie ≈ 190 K and a large low-temperature saturation moment of about 3.5 (1) μB. These results suggest that the LSCO/LCMO superlattices can be used to study the interaction between the antagonistic ferromagnetic and superconducting orders and, in combination with previous studies on YBCO/LCMO superlattices, may allow one to identify the relevant

  7. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D.; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-04-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase’s total volume and decrease of each column’s transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope.

  8. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy.

    PubMed

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-04-19

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase's total volume and decrease of each column's transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope.

  9. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy.

    PubMed

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-01-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase's total volume and decrease of each column's transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope. PMID:27091383

  10. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy

    PubMed Central

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D.; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-01-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase’s total volume and decrease of each column’s transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope. PMID:27091383

  11. Interconnection between microstructure and microhardness of directionally solidified binary Al-6wt.%Cu and multicomponent Al-6wt.%Cu-8wt.%Si alloys.

    PubMed

    Vasconcelos, Angela J; Kikuchi, Rafael H; Barros, André S; Costa, Thiago A; Dias, Marcelino; Moreira, Antonio L; Silva, Adrina P; Rocha, Otávio L

    2016-05-31

    An experimental study has been carried out to evaluate the microstructural and microhardness evolution on the directionally solidified binary Al-Cu and multicomponent Al-Cu-Si alloys and the influence of Si alloying. For this purpose specimens of Al-6wt.%Cu and Al-6wt.%Cu-8wt.%Si alloys were prepared and directionally solidified under transient conditions of heat extraction. A water-cooled horizontal directional solidification device was applied. A comprehensive characterization is performed including experimental dendrite tip growth rates (VL) and cooling rates (TR) by measuring Vickers microhardness (HV), optical microscopy and scanning electron microscopy with microanalysis performed by energy dispersive spectrometry (SEM-EDS). The results show, for both studied alloys, the increasing of TR and VL reduced the primary dendrite arm spacing (l1) increasing the microhardness. Furthermore, the incorporation of Si in Al-6wt.%Cu alloy to form the Al-6wt.%Cu-8wt.%Si alloy influenced significantly the microstructure and consequently the microhardness but did not affect the primary dendritic growth law. An analysis on the formation of the columnar to equiaxed transition (CET) is also performed and the results show that the occurrence of CET is not sharp, i.e., the CET in both cases occurs in a zone rather than in a parallel plane to the chill wall, where both columnar and equiaxed grains are be able to exist.

  12. Interconnection between microstructure and microhardness of directionally solidified binary Al-6wt.%Cu and multicomponent Al-6wt.%Cu-8wt.%Si alloys.

    PubMed

    Vasconcelos, Angela J; Kikuchi, Rafael H; Barros, André S; Costa, Thiago A; Dias, Marcelino; Moreira, Antonio L; Silva, Adrina P; Rocha, Otávio L

    2016-05-31

    An experimental study has been carried out to evaluate the microstructural and microhardness evolution on the directionally solidified binary Al-Cu and multicomponent Al-Cu-Si alloys and the influence of Si alloying. For this purpose specimens of Al-6wt.%Cu and Al-6wt.%Cu-8wt.%Si alloys were prepared and directionally solidified under transient conditions of heat extraction. A water-cooled horizontal directional solidification device was applied. A comprehensive characterization is performed including experimental dendrite tip growth rates (VL) and cooling rates (TR) by measuring Vickers microhardness (HV), optical microscopy and scanning electron microscopy with microanalysis performed by energy dispersive spectrometry (SEM-EDS). The results show, for both studied alloys, the increasing of TR and VL reduced the primary dendrite arm spacing (l1) increasing the microhardness. Furthermore, the incorporation of Si in Al-6wt.%Cu alloy to form the Al-6wt.%Cu-8wt.%Si alloy influenced significantly the microstructure and consequently the microhardness but did not affect the primary dendritic growth law. An analysis on the formation of the columnar to equiaxed transition (CET) is also performed and the results show that the occurrence of CET is not sharp, i.e., the CET in both cases occurs in a zone rather than in a parallel plane to the chill wall, where both columnar and equiaxed grains are be able to exist. PMID:27254454

  13. High temperature phase equilibria studies in the Bi-Sr-Ca-Cu-O-Ag system

    SciTech Connect

    Margulies, Lawrence

    1999-11-08

    A variety of experimental techniques were utilized to examine the high temperature phase equilibria in the Bi-Sr-Ca-Cu-O-Ag system. Quenching studies were used to determine the liquid solubility of Ag in the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (Bi2212) melt and the details of the peritectic decomposition pathway of Bi2212 as a function on Ag content and oxygen partial pressure (PO{sub 2}). A liquid immiscibility region between oxide and Ag liquids in the 8--98 at% range was found above 900 C. Two eutectics were found in the Bi2212-Ag pseudobinary. On the oxide rich side, a eutectic exists at approximately 4 at% Ag. On the Ag rich side, a eutectic exists at approximately 98 at% Ag at a temperature of 15 C below the melting point of pure Ag. Six distinct solid phases were found to be in equilibrium with the partial melt within the Ag content and PO{sub 2} range studied. The stability of these solid phases were found to be highly sensitive to PO{sub 2}, and to a much lesser extent Ag content. High temperature x-ray diffraction (HTXRD) studies of this system are in conflict with these results. It is suggested that these discrepancies are due to experimental artifacts caused by the significant thermal gradients and lack of full bulk sampling which is inherent in conventional HTXRD designs. In part 2, a new furnace design compatible with synchrotron radiation sources is introduced to address these problems. This design allows for full bulk sampling in a low thermal gradient environment using Debye-Scherrer transmission geometry. Sample spinning is also introduced in the design to eliminate preferred orientation and incomplete powder averaging and allow for quantitative phase analysis and structural refinement. Studies on model systems are presented to demonstrate the capabilities for high resolution structural studies (Al{sub 2}O{sub 3}) and time resolved phase transformation studies (SrCO{sub 3}). Finally, the Bi2212 system is examined to confirm the quenching results

  14. Origin of colossal dielectric response of CaCu3Ti4O12 studied by using CaTiO3/CaCu3Ti4O12/CaTiO3 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Mitsugi, Masakazu; Asanuma, Shutaro; Uesu, Yoshiaki; Fukunaga, Mamoru; Kobayashi, Wataru; Terasaki, Ichiro

    2007-06-01

    To elucidate the origin of the colossal dielectric response (CDR) of CaCu3Ti4O12 (CCTO), multilayer thin films of CCTO interposed in insulating CaTiO3 (CTO) were synthesized using a pulsed laser deposition technique. The capacitance C of CTO/CCTO/CTO films with different layer thicknesses is measured. After removing the capacitance of CTO by extrapolating C to zero CTO thickness, the real part of dielectric constant of CCTO is estimated to be 329-435, which is much smaller than the reported value for CCTO thin films. This fact indicates that the CDR of CCTO is extrinsic and originates from an internal barrier layer capacitor.

  15. Pressure-Induced Structural Transition and Enhancement of Energy Gap of CuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka

    2011-02-01

    By using first-principles calculations, we studied the stable crystal structures and energy gaps of CuAlO2 under high pressure. Our simulation shows that CuAlO2 transforms from a delafossite structure to a leaning delafossite structure. The critical pressure of the transition was determined to be 60 GPa. The energy gap of CuAlO2 increases through the structural transition due to the enhanced covalency of Cu 3d and O 2p states. We found that a chalcopyrite structure does not appear as a stable structure under high pressure.

  16. Infiltration of Saffil alumina fiber with AlCu and AlSi alloys

    SciTech Connect

    Garbellini, O.; Morando, C.; Biloni, H.; Palacio, H. . Inst. de Fisica de Materiales)

    1999-06-18

    Currently there is a considerable scientific and technological interest in the composite materials, which a strong ceramic reinforcement is incorporated into a metal matrix (MMC) to tailor its properties for specific applications. Among the various techniques for fabricating MMC, the liquid metal infiltration process by means of a pressurized gas is an attractive fabrication route for near net shaped metal matrix composite and has been successfully used to fabricate Al, Mg and more recently, Ni and Ni aluminide matrix composites, which can be reinforced by SiC or Al[sub 2]O[sub 3] particles, whiskers, or short fibers. This paper describes the experimental technique used and presents an experimental investigation of the effects of the process parameters employed, such as the preform and melt temperatures, the volume fraction of fibers in the preform and the applied pressure upon the infiltration length of a chopped preform during a unidirectional infiltration aided by gas pressure casting. The experiments of the present work were conducted to provide kinetic data with a view to optimizing the selection of the process initial conditions for infiltration which have an effect on the infiltration length of the molten matrix alloy into a preform and it is a first step in investigating the correlation between the infiltration length (fluidity) of AlCuSi matrix alloys and the microstructure of the composites fabricated by pressure casting. For this purpose, this paper focuses on AlCu and AlSi matrix alloys reinforced by short-fibers [delta]-alumina SAFFIL. The experiments reported here were performed with the fibers initially at a temperature significantly below the metal melting point. This is the case of practical interest for the fabrication of many fiber-reinforced metal components.

  17. [CuO-Ru/Al2O3 catalytic ozonation of acetophenone in water].

    PubMed

    Zhang, Hua; Shi, Rui; Zang, Xing-jie; Tong, Shao-ping; Ma, Chun-an

    2010-03-01

    Two-component CuO-Ru based on active Al2O3 (CuO-Ru/Al2O3) catalyst was prepared by incipient wetness impregnation and used to catalytic ozonation of acetophenone (AP). The results showed that doping Ru could significantly improve the catalytic activity of CuO/Al2O3. For example, the COD removal rates of AP solution after 30 min by ozonation alone, CuO/Al2O3/O3, and CuO-Ru/Al2O3/O3 were 6.3%, 20.0% and 54.0%, respectively. The change of pH almost had no affect on degradation efficiency of AP. However, a comparison of COD removal between ozonation alone and catalytic ozonation indicated that CuO-Ru/Al2O3 catalyst was more suitable for application in neutral or acidic condition. CuO-Ru/Al2O3 catalyst could accelerate decomposition rate of ozone in water, and its decomposition rate constant reached 2.58 x 10(-3) s(-1) while that of ozone alone in double-water was 1.19 x 10(-3) s(-1). The experimental result of t-butanol indicated that CuO-Ru/Al2O3 catalytic ozonation of AP followed a radical-type mechanism. PMID:20358832

  18. Structure, phase composition, and strengthening of cast Al-Ca-Mg-Sc alloys

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Naumova, E. A.; Bazlova, T. A.; Alekseeva, E. V.

    2016-02-01

    The structure and phase composition of Al-Ca-Mg-Sc alloys containing 0.3 wt % Sc, up to 10 wt % Ca, and up to 10 wt % Mg have been investigated in the cast state and state after heat treatment. It has been shown that only binary phases Al4Ca, Al3Sc, and Al3Mg2 can be in equilibrium with the aluminum solid solution. It has been found that the maximum strengthening effect caused by the precipitation of Al3Sc nanoparticles for all investigated alloys is attained after annealing at 300-350°C.

  19. Thermoluminescence dosimetry properties of new Cu doped CaF(2) nanoparticles.

    PubMed

    Zahedifar, M; Sadeghi, E

    2013-12-01

    Nanoparticles of Cu-doped calcium fluoride were synthesised by using the hydrothermal method. The structure of the prepared nanomaterial was characterised by the X-ray diffraction (XRD) pattern and energy dispersive spectrometer. The particle size of 36 nm was calculated from the XRD data. Its shape and size were also observed by scanning electron microscope. Thermoluminescence (TL) and photoluminescence of the produced phosphor were also considered. The computerised glow curve deconvolution procedure was used to identify the number of glow peaks included in the TL glow curve of the CaF2:Cu nanoparticles. The TL glow curve contains two overlapping glow peaks at ∼413 and 451 K. The TL response of this phosphor was studied for different Cu concentrations and the maximum sensitivity was found at 1 mol% of Cu impurity. Other dosimetric characteristics of the synthesised nanophosphor are also presented and discussed.

  20. Optical behavior and structural property of CuAlS₂ and AgAlS₂ wide-bandgap chalcopyrites.

    PubMed

    Ho, Ching-Hwa; Pan, Chia-Chi

    2014-08-01

    Single crystals of CuAlS₂ and AgAlS₂ were grown by chemical vapor transport method using ICl₃ as the transport. The as-grown CuAlS₂ crystals reveal transparent and light-green color. Most of them possess a well-defined (112) surface. The AgAlS₂ crystals essentially show transparent and white color in vacuum. As the AgAlS₂ was put into the atmosphere, the crystal surface gradually darkened and became brownish because of the surface reaction with humidity or hydrogen gas. After a long-term chemical reaction process, the AgAlS₂ will transform into a AgAlO₂ oxide with yellow color. From x-ray diffraction measurements, both CuAlS₂ and AgAlS₂ as-grown crystals show single-phase and isostructural to a chalcopyrite structure. The (112) face is more preferable for the formation of the chalcopyrite crystals. The energies of interband transitions of the CuAlS₂ and AgAlS₂ were determined accurately by thermoreflectance measurements in a wide energy range of 2-6 eV. The valence-band electronic structures of CuAlS₂ and AgAlS₂ have been detailed and characterized using polarized-thermoreflectance measurements in the temperature range between 30 and 300 K. The band-edge transitions belonging to the E(∥) and E(⊥) polarizations have been, respectively, identified. The band edge of AgAlS₂ is near 3.2 eV while that of AgAlS₂ is about 3.5 eV. On the basis of the experimental analyses, optical and sensing behaviors of the chalcopyrite crystals have been realized.

  1. Integration of calcium and chemical looping combustion using composite CaO/CuO-based materials.

    PubMed

    Manovic, Vasilije; Anthony, Edward J

    2011-12-15

    Calcium looping cycles (CaL) and chemical looping combustion (CLC) are two new, developing technologies for reduction of CO(2) emissions from plants using fossil fuels for energy production, which are being intensively examined. Calcium looping is a two-stage process, which includes oxy-fuel combustion for sorbent regeneration, i.e., generation of a concentrated CO(2) stream. This paper discuss the development of composite materials which can use copper(II)-oxide (CuO) as an oxygen carrier to provide oxygen for the sorbent regeneration stage of calcium looping. In other words, the work presented here involves integration of calcium looping and chemical looping into a new class of postcombustion CO(2) capture processes designated as integrated CaL and CLC (CaL-CLC or Ca-Cu looping cycles) using composite pellets containing lime (CaO) and CuO together with the addition of calcium aluminate cement as a binder. Their activity was tested in a thermogravimetric analyzer (TGA) during calcination/reduction/oxidation/carbonation cycles. The calcination/reduction typically was performed in methane (CH(4)), and the oxidation/carbonation stage was carried out using a gas mixture containing both CO(2) and O(2). It was confirmed that the material synthesized is suitable for the proposed cycles; with the very favorable finding that reduction/oxidation of the oxygen carrier is complete. Various schemes for the Ca-Cu looping process have been explored here that would be compatible with these new composite materials, along with some different possibilities for flow directions among carbonator, calciner, and air reactor.

  2. Energy band engineering and controlled p-type conductivity of CuAlO2 thin films by nonisovalent Cu-O alloying

    NASA Astrophysics Data System (ADS)

    Yao, Z. Q.; He, B.; Zhang, L.; Zhuang, C. Q.; Ng, T. W.; Liu, S. L.; Vogel, M.; Kumar, A.; Zhang, W. J.; Lee, C. S.; Lee, S. T.; Jiang, X.

    2012-02-01

    The electronic band structure and p-type conductivity of CuAlO2 films were modified via synergistic effects of energy band offset and partial substitution of less-dispersive Cu+ 3d10 with Cu2+ 3d9 orbitals in the valence band maximum by alloying nonisovalent Cu-O with CuAlO2 host. The Cu-O/CuAlO2 alloying films show excellent electronic properties with tunable wide direct bandgaps (˜3.46-3.87 eV); Hall measurements verify the highest hole mobilities (˜11.3-39.5 cm2/Vs) achieved thus far for CuAlO2 thin films and crystals. Top-gate thin film transistors constructed on p-CuAlO2 films were presented, and the devices showed pronounced performance with Ion/Ioff of ˜8.0 × 102 and field effect mobility of 0.97 cm2/Vs.

  3. The photosensitivity of carbon quantum dots/CuAlO2 films composites.

    PubMed

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-07-31

    Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior. PMID:26150398

  4. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  5. Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted fluoride accumulation in tea plants (Camellia sinesis L.).

    PubMed

    Zhang, Xian-Chen; Gao, Hong-Jian; Wu, Hong-Hong; Yang, Tian-Yuan; Zhang, Zheng-Zhu; Mao, Jing-Dong; Wan, Xiao-Chun

    2015-11-01

    Tea plant (Camellia sinensis (L.) O. kuntze) is known to be a fluoride (F) and aluminum (Al(3+)) hyper-accumulator. Previous study showed that pre-treatment of Al(3+) caused a significant increase of F accumulation in tea plants. However, less is known about the intricate network of Al(3+) promoted F accumulation in tea plants. In this study, the involvement of endogenous Ca(2+) and CaM in Al(3+) pretreatment-promoted F accumulation in tea plants was investigated. Our results showed that Al(3+) induced the inverse change of intracellular Ca(2+) fluorescence intensity and stimulated Ca(2+) trans-membrane transport in the mature zone of tea root. Also, a link between internal Ca(2+) and CaM was found in tea roots under the presence of Al(3+). In order to investigate whether Ca(2+) and CaM were related to F accumulation promoted by Al(3+) pretreatment, Ca(2+) chelator EGTA and CaM antagonists CPZ and TFP were used. EGTA, CPZ, and TFP pretreatment inhibited Al(3+)-induced increase of Ca(2+) fluorescence intensity and CaM content in tea roots, and also significantly reduced Al(3+)-promoted F accumulation in tea plants. Taken together, our results suggested that the endogenous Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted F accumulation in tea roots. PMID:26318146

  6. Synthesis and investigation of (Hg 1- xCu x)Ba 2Ca 2Cu 3O 8+ δ

    NASA Astrophysics Data System (ADS)

    Lokshin, K. A.; Pavlov, D. A.; Kovba, M. L.; Putilin, S. N.; Antipov, E. V.; Bryntse, I.

    2002-02-01

    A reproducible synthesis method for superconducting HgBa 2Ca 2Cu 3O 8+ δ (Hg-1223) has been developed, using sealed silica tubes and a CoO/Co 3O 4 mixture as oxygen getter to achieve a controlled partial pressure of oxygen. Samples containing more than 95% of Hg-1223 were prepared with this technique. A significant range of substitution of Cu for Hg was revealed by EDS analysis in samples synthesized at 900°C. After post-anneal in oxygen the lattice parameters were calculated from XRD data and Tc was determined to be 135 K, by susceptibility methods. We suggest that a high synthesis temperature and a low partial pressure of mercury promote substitution in the Hg-1223 phase.

  7. Cyclo- and carbophosphazene-supported ligands for the assembly of heterometallic (Cu2+/Ca2+, Cu2+/Dy3+, Cu2+/Tb3+) complexes: synthesis, structure, and magnetism.

    PubMed

    Chandrasekhar, Vadapalli; Senapati, Tapas; Dey, Atanu; Das, Sourav; Kalisz, Marguerite; Clérac, Rodolphe

    2012-02-20

    The carbophosphazene and cyclophosphazene hydrazides, [{NC(N(CH(3))(2))}(2){NP{N(CH(3))NH(2)}(2)}] (1) and [N(3)P(3)(O(2)C(12)H(8))(2){N(CH(3))NH(2)}(2)] were condensed with o-vanillin to afford the multisite coordination ligands [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-OH)(m-OCH(3))}(2)}] (2) and [{N(2)P(2)(O(2)C(12)H(8))(2)}{NP{N(CH(3))N═CH-C (6)H(3)-(o-OH)(m-OCH(3))}(2)}] (3), respectively. These ligands were used for the preparation of heterometallic complexes [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuCa(NO(3))(2)}] (4), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{Cu(2)Ca(2)(NO(3))(4)}]·4H(2)O (5), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(4)}]·CH(3)COCH(3) (6), [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(3)}] (7), and [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuTb(NO(3))(3)}] (8). The molecular structures of these compounds reveals that the ligands 2 and 3 possess dual coordination pockets which are used to specifically bind the transition metal ion and the alkaline earth/lanthanide metal ion; the Cu(2+)/Ca(2+), Cu(2+)/Tb(3+), and Cu(2+)/Dy(3+) pairs in these compounds are brought together by phenoxide and methoxy oxygen atoms. While 4, 6, 7, and 8 are dinuclear complexes, 5 is a tetranuclear complex. Detailed magnetic properties on 6-8 reveal that these compounds show weak couplings between the magnetic centers and magnetic anisotropy. However, the ac susceptibility experiments did not reveal any out of phase signal suggesting that in these compounds slow relaxation of magnetization is absent above 1.8 K. PMID:22320309

  8. Luminescence Properties of SrCaS:Cu Thin Film Phosphors

    NASA Astrophysics Data System (ADS)

    Mohammed, Edris; Park, Won; Tong, Wusheng; Stock, Stuart; Summers, Chris

    2000-03-01

    Luminescence Properties of SrxCa1-xS:Cu Thin Film Phosphors E. Mohammed, W. Park, W. Tong, S. Stock and C. J. Summers Phosphor Technology Center of Excellence Georgia Institute of Technology, Atlanta, GA 30332-0560 The luminescence properties of MBE grown thin film SrCaS:Cu phosphors are investigated. 10K photoluminescence (PL) results showed a broad emission band of Cu that shifted between 2.98eV and 2.58eV, with a large increase in linewidth ranging from 0.36eV for CaS:Cu to 0.49eV as the Sr composition was increased. The significant increase in linewidth suggested that the broad emission band of Cu was composed of two closely spaced bands suggesting a possible spin-orbit or Jahn-Teller splitting of the emitting level. Curve fitting of the 10K PL showed that the splitting varied from 100meV for x=0 to 240 meV for x=0.98. In the excitation spectra, the optical absorption edge shifted from 5.1eV to 4.7eV while the energies of the two direct excitation bands of Cu shifted from 4.4 to 4.8eV and 4.0 to 4.2eV respectively. The crystal field parameter 10Dq obtained from experiments showed a linear as the composition of Sr was varied between x=0 to x=0.98 and the result was in excellent agreement with crystal field calculations.

  9. A Cu NQR study in a d-electron heavy-fermion system, CaCu3Ru4O12

    NASA Astrophysics Data System (ADS)

    Kato, Harukazu; Tsuruta, Takuya; Nishioka, Takashi; Matsumura, Masahiro; Sakai, Hironori; Kambe, Shinsaku

    2007-11-01

    Cu nuclear quadrupole resonance (NQR) studies have been carried out for CaCu3Ru4O12, which has been suggested to show a heavy-fermion-like behavior although it possess no f electron. A Lorentzian shape of the Cu NQR line with a narrow width implies that no magnetic ordering appears, at least, down to 5 K. The spin lattice relaxation rate of the Cu nuclei probes a change of the Cu 3d electron nature, resulting in the Fermi liquid state at a low temperature. These facts strongly support that the heavy fermion picture is available in the concerned compound.

  10. Multiple diffraction in an icosahedral Al-Cu-Fe quasicrystal

    NASA Astrophysics Data System (ADS)

    Fan, C. Z.; Weber, Th.; Deloudi, S.; Steurer, W.

    2011-07-01

    In order to reveal its influence on quasicrystal structure analysis, multiple diffraction (MD) effects in an icosahedral Al-Cu-Fe quasicrystal have been investigated in-house on an Oxford Diffraction four-circle diffractometer equipped with an Onyx™ CCD area detector and MoKα radiation. For that purpose, an automated approach for Renninger scans (ψ-scans) has been developed. Two weak reflections were chosen as the main reflections (called P) in the present measurements. As is well known for periodic crystals, it is also observed for this quasicrystal that the intensity of the main reflection may significantly increase if the simultaneous (H) and the coupling (P-H) reflections are both strong, while there is no obvious MD effect if one of them is weak. The occurrence of MD events during ψ-scans has been studied based on an ideal structure model and the kinematical MD theory. The reliability of the approach is revealed by the good agreement between simulation and experiment. It shows that the multiple diffraction effect is quite significant.

  11. Bi-Sr-Ca-Cu-O high TC superconductors (abstract)

    NASA Astrophysics Data System (ADS)

    Sherwood, R. C.; Tiefel, T. H.; Jin, S.; Davis, M. E.; Kammlott, G. W.; Fastnacht, R. A.

    1988-11-01

    A recent paper by Maeda et al.1 reported the discovery of a new 120 K superconductor based on a rare-earth-free ceramic material in the bismuth-strontium-calcium-copper-oxide system. We have confirmed the existence of the 120-K phase in the oxide system. The resistivity-temperature curve showed a fairly well-defined double-dip shape with the first dip starting at ˜120 K and the second at ˜95 K. The transition temperature, TC(R=0), was 84 K. This material appears to contain two superconducting phases with different TC's. A pellet made from this superconductor levitates well at 77 K (liquid-nitrogen temperature) above a neodynium-iron-boron magnet with a surface magnetic field of ˜3000 Oe, thus indicating a nontrivial critical field in this material. The critical current density and its magnetic field dependence will be reported. The magnetic and mechanical behavior of the new superconductor will also be discussed.

  12. SDAS, Si and Cu Content, and the Size of Intermetallics in Al-Si-Cu-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Sivarupan, Tharmalingam; Taylor, John Andrew; Cáceres, Carlos Horacio

    2015-05-01

    Plates of Al-(a)Si-(b)Cu-Mg-(c)Fe alloys with varying content of (mass pct) Si ( a = 3, 4.5, 7.5, 9, 10, or 11), Cu ( b = 0, 1, or 4), and Fe ( c = 0.2, 0.5 or 0.8) were cast in sand molds with a heavy chill at one end to ensure quasi-directional solidification over a wide range of Secondary Dendrite Arm Spacing (SDAS). Statistical analysis on the size of the β-Al5FeSi, α-Al8Fe2Si, or Al2Cu intermetallics on Backscattered Electron images showed that a high Si content reduced the size of the β platelets in alloys with up to 0.5 Fe content regardless of the SDAS, whereas at small SDAS the refining effect extended up to 0.8 Fe, and involved α-phase intermetallics which replaced the beta platelets at those concentrations. At low Si contents, a high Cu level appeared to have similar refining effects as increased Si, through the formation of α-phase particles in the post-eutectic stage which agglomerated with the Al2Cu intermetallics. A high content of Si appears to make the overall refining process less critical in terms of SDAS/cooling rate.

  13. Superconductivity in TlSr 2- xCa xYbCu 2O 7 by isovalent cation substitution

    NASA Astrophysics Data System (ADS)

    Ohshima, Eriko; Kikuchi, Masae; Syono, Yasuhiko

    1996-02-01

    TlSr 2YbCu 2O 7 was found to be non-superconducting, in harmony with the formal valence of Cu 2+ and Tl 3+. However, isovalent cation substitution of Ca 2+ for Sr 2+ made TlSr 2- xCa xYbCu 2O 7 superconducting for x ≥ 0.2, although no change would be expected in the formal valence of Cu. These observations strongly suggest that hole carriers are self-doped due to overlap between Tl 6s and Cu 3d x2- y2 bands, which is enhanced by the observed shortening of the Cu bond length in the CuO 2 sheet by Ca substitution for Sr.

  14. Influence of Cu content on the mechanical properties and corrosion resistance of Mg-Zn-Ca bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Zhao, Yan-feng; Zhu, Jian; Chang, Li; Song, Jing-guo; Chen, Xiao-hua; Hui, Xi-dong

    2014-05-01

    (Mg66.2Zn28.8Ca5)100- x Cu x (at%, x = 0, 1, 3, and 5) bulk metallic glasses (BMGs) of 2 mm in diameter were prepared by the conventional copper mold injection casting method. Besides, the influence of Cu content on the microstructure, thermal stability, mechanical properties, and corrosion behavior of Mg-Zn-Ca BMGs was investigated. It is found that the addition of Cu decreases the glass-forming ability of Mg-Zn-Ca BMGs. Crystalline phases are precipitated at a higher Cu content, larger than 3at%. The compressive fracture strength of Mg-Zn-Ca BMGs is enhanced by the addition of Cu. With the formation of in-situ composites, the compressive strength of the Mg-Zn-Ca alloy with 3at% Cu reaches 979 MPa, which is the highest strength among the Mg-Zn-Ca alloys. Furthermore, the addition of Cu also results in the increase of corrosion potential and the decrease of corrosion current density in Mg-Zn-Ca BMGs, thereby delaying their biodegradability.

  15. Phase Compositions of Self Reinforcement Al2O3/CaAl12O19 Composite using X-ray Diffraction Data and Rietveld Technique

    NASA Astrophysics Data System (ADS)

    Asmi, D.; Low, I. M.; O'Connor, B.

    2008-03-01

    The analysis of x-ray diffraction (XRD) patterns by the Rietveld technique was tested to the quantitatively phase compositions of self reinforcement Al2O3/CaAl12O19 composite. Room-temperature XRD patterns revealed that α-Al2O3 was the only phase presence in the CA0 sample, whereas the α-Al2O3 and CaAl12O19 phases were found for CA5, CA15, CA30, and CA50 samples. The peak intensity of CA6 in the self reinforcement Al2O3/CaAl12O19 composites increased in proportion with increase in CaAl12O19 content in contrast to α-Al2O3. The diffraction patterns for CA100 sample shows minor traces of α-Al2O3 even in relatively low peak intensity. It is suggesting that the in-situ reaction sintering of raw materials were not react completely to form 100 wt% CaAl12O19 at temperature 1650 °C. Quantitative phase compositions of self reinforcement Al2O3/CaAl12O19 composites by Rietveld analysis with XRD data has been well demonstrated. The results showed that the GOF values are relatively low and the fluctuation in the difference plots shows a reasonable fit between the observed and the calculated plot.

  16. Submillimeter and microwave residual losses in epitaxial films of Y-Ba-Cu-O and Tl-Ca-Ba-Cu-O

    SciTech Connect

    Miller, D.; Richards, P.L. ); Garrison, S.M.; Newman, N. ); Eom, C.B.; Geballe, T.H. . Dept. of Applied Physics); Etemad, S.; Inam, A.; Venkatesan, T. ); Martens, J.S. (Sandia National Labs., Albuquerque, NM (Unite

    1992-03-01

    We have used a novel bolometric technique and a resonant technique to obtain accurate submillimeter and microwave residual loss data for epitaxial thin films of YBa{sub 2}Cu{sub 3}O{sub 7}, Tl{sub 2}Ca{sub 2}Ba{sub 2}Cu{sub 3}O{sub 10} and Tl{sub 2}CaBa{sub 2}Cu{sub 2}O{sub 8}. For all films we obtain good agreement between the submillimeter and microwave data, with the residual losses in both the Y-Ba-Cu-O and Tl-Ca-Ba-Cu-O films scaling approximately as frequency squared below {approximately} 1 THz. We are able to fit the losses in the Y-Ba-Cu-O films to a weakly coupled grain model for the a-b plane conductivity, in good agreement with results from a Kramers-Kronig analysis of the loss data. We observe strong phonon structure in the Tl-Ca-Ba-Cu-O films for frequencies between 2 and 21 THz, and are unable to fit these losses to the simple weakly coupled grain model. This is in strong contrast to the case for other high {Tc} superconductors such as YBa{sub 2}Cu{sub 3}O{sub 7}, where phonon structure observed in ceramic samples is absent in epitaxial oriented films and crystals because of the electronic screening due to the high conductivity of the a-b planes.

  17. Optical and microwave detection using Bi-Sr-Ca-Cu-O thin films

    NASA Technical Reports Server (NTRS)

    Grabow, B. E.; Sova, R. M.; Boone, B. G.; Moorjani, K.; Kim, B. F.; Bohandy, J.; Adrian, F.; Green, W. J.

    1991-01-01

    Recent progress at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in the development of optical and microwave detectors using high temperature superconducting thin films is described. Several objectives of this work have been accomplished, including: deposition of Bi-Sr-Ca-Cu-O thin films by laser abation processing (LAP); development of thin film patterning techniques, including in situ masking, wet chemical etching, and laser patterning; measurements of bolometric and non-bolometric signatures in patterned Bi-Sr-Ca-Cu-O films using optical and microwave sources, respectively; analysis and design of an optimized bolometer through computer simulation; and investigation of its use in a Fourier transform spectrometer. The focus here is primarily on results from the measurement of the bolometric and non-bolometric response.

  18. Consolidation and plasticity of Bi-Sr-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Nash, A. S.; Goretta, K. C.; Wheeler, R.; Moon, B. M.; Wu, C. T.; Nash, P.

    1991-05-01

    The Bi2Sr2CaCu2O(x) (2212) superconductor consists of platelike grains that grow up very rapidly in two directions at high temperature. The grain growth is so fast that this superconductor can not be sintered by conventional means. Densification can be achieved, however, by hot isostatic pressing by a combination of flat rolling and sintering. Results from 2212 and 2212 + 15 wt. percent Ag specimens produced by these consolidation methods are compared with those from sintering studies. Scanning and transmission electron microscopy were used to assess the mechanisms by which 2212 densifies. The superconducting properties of each type of specimen were measured. It was found that only forms in which the platelike grains exhibited substantial preferred orientation were capable of carrying large amounts of current. This result has important implications to the thermomechanical processing of Bi-Sr-Ca-Cu-O superconductors.

  19. Processing Bi-Pb-Sr-Ca-Cu-O superconductors from amorphous state

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Wong-Ng, W.; Cook, L. P.; Freiman, S. W.; Hwang, N. M.; Vaudin, M.; Hill, M. D.; Shull, R. D.; Shapiro, A. J.; Swartzendruber, L. J.

    1991-01-01

    The bismuth based high T sub c superconductors can be processed via an amorphous Bi-Pb-Sr-Ca-Cu oxide. The amorphous oxides were prepared by melting the constituent powders in an alumina crucible at 1200 C in air followed by pouring the liquid onto an aluminum plate, and rapidly pressing with a second plate. In the amorphous state, no crystalline phase was identified in the powder x ray diffraction pattern of the quenched materials. After heat treatment at high temperature the amorphous materials crystallized into a glass ceramic containing a large fraction of the Bi2Sr2Ca2Cu3O(x) phase T sub c = 110 K. The processing method, crystallization, and results of dc electrical resistivity and ac magnetic susceptibility measurements are discussed.

  20. Preparation and investigation of thermoluminescence properties of CaSO4:Tm,Cu.

    PubMed

    Kása, I; Chobola, R; Mell, P; Szakács, S; Kerekes, A

    2007-01-01

    A new sort of thermoluminescent phosphor has been developed with the purpose of enlarging the range of linear dose-response. The thermoluminescence properties of CaSO(4):Tm,Cu, prepared according to our method, were studied in the dose range of 0.5 Gy-125.0 kGy. The results of the present work show that the CaSO(4):Tm,Cu is an excellent new dosimetric material due to its relatively simple glow curve, as a consequence of its simple trap system. Several applications are possible in dosimetry due to its wide range of linearity (2 x 10(-6) to 2 x 10(3) Gy), from environmental and space dosimetry to accidental and high-dose irradiation, e.g. gamma irradiation facilities, electron accelerators, nuclear power plants, radiotherapy, medical physics, and so on. PMID:16905762

  1. Dielectric spectroscopy analysis of CaCu3Ti4O12 polycrystalline systems

    NASA Astrophysics Data System (ADS)

    Bueno, P. R.; Ramírez, M. A.; Varela, J. A.; Longo, E.

    2006-11-01

    Dielectric spectroscopy was used in this study to examine CaCu3Ti4O12 polycrystalline samples. The analysis involved systems presenting low non-Ohmic properties, and the grain's internal domain was evaluated separately from the contribution of barrier-layer capacitances associated with Schottky-type barriers in this type of material. The effect of oxygen-rich atmosphere and high cooling rate was evaluated, revealing a strong increase in the dielectric properties of the CaCu3Ti4O12 system under these conditions. This effect was attributed to a chemical change in the grain's internal domain, which may be considered an internal barrier-layer capacitance of the polycrystalline material.

  2. Fabrication and chemical composition of RF magnetron sputtered Tl-Ca-Ba-Cu-O high Tc superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Radpour, F.; Kapoor, V. J.; Lemon, G. H.

    1990-01-01

    The preparation of TlCaBaCuO superconducting thin films on (100) SrTiO3 substrates is described, and the results of their characterization are presented. Sintering and annealing the thin films in a Tl-rich ambient yielded superconductivity with a Tc of 107 K. The results of an XPS study support two possible mechanisms for the creation of holes in the TlCaBaCuO compound: (1) partial substitution of Ca(2+) for Tl(3+), resulting in hole creation, and (2) charge transfer from Tl(3+) to the CuO layers, resulting in a Tl valence between +3 and +1.

  3. Surface structures of Al-Pd-Mn and Al-Cu-Fe icosahedral quasicrystals

    SciTech Connect

    Shen, Z.

    1999-02-12

    In this dissertation, the author reports on the surface structure of i-Al-Pd-Mn twofold, threefold, fivefold and i-Al-Cu-Fe fivefold surfaces. The LEED studies indicate the existence of two distinct stages in the regrowth of all four surfaces after Ar{sup +} sputtering. In the first stage, upon annealing at relatively low temperature: 500K--800K (depending on different surfaces), a cubic phase appears. The cubic LEED patterns transform irreversibly to unreconstructed quasicrystalline patterns upon annealing to higher temperatures, indicating that the cubic overlayers are metastable. Based upon the data for three chemically-identical, but symmetrically-inequivalent surfaces, a model is developed for the relation between the cubic overlayers and the quasicrystalline substrate. The model is based upon the related symmetries of cubic close-packed and icosahedral-packed materials. These results may be general among Al-rich, icosahedral materials. STM study of Al-Pd-Mn fivefold surface shows that terrace-step-kink structures start to form on the surface after annealing above 700K. Large, atomic ally-flat terraces were formed after annealing at 900K. Fine structures with fivefold icosahedral symmetry were found on those terraces. Data analysis and comparison of the STM images and structure model of icosahedral Al-Pd-Mn suggest that the fine structures in the STM images may be the pseudo Mackay (PMI) clusters which are the structure units of the structure model. Based upon his results, he can conclude that quasicrystalline structures are the stable structures of quasicrystal surfaces. In other words, quasicrystalline structures extend from the bulk to the surface. As a result of the effort reported in this dissertation, he believes that he has increased his understanding of the surface structure of icosahedral quasicrystals to a new level.

  4. Evaluation of the microstructure of Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 4

    NASA Technical Reports Server (NTRS)

    Pickens, Joseph R.; Kumar, K. S.; Brown, S. A.; Gayle, Frank W.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy designed to have ultrahigh strength and to serve in aerospace applications. The alloy displays significantly higher strength than competitive alloys in both naturally aged and artificially aged tempers. The strengthening phases in such tempers have been identified to, in part, explain the mechanical properties attained. In general, the alloy is strengthened by delta prime Al3Li and Guinier-Preston (GP) zones in the naturally aged tempers. In artificially aged tempers in slightly underaged conditions, strengthening is provided by several phases including GP zones, theta prime Al2Cu, S prime Al2CuMg, T(sub 1) Al2CuLi, and possibly a new phase. In the peak strength artificially aged tempers, T(sub 1) is the predominant strengthening phase.

  5. Superconductivity in the Tl-Ca-Ba-Cu-O System:. Synthesis, Characterization and Mechanism

    NASA Astrophysics Data System (ADS)

    Ganguli, A. K.; Swamy, K. S. Nanjunda; Subbanna, G. N.; Rajumon, M. K.; Sarma, D. D.; Rao, C. N. R.

    Synthesis and characterization of some of the members of the Tl-Ca-Ba-Cu-O system are presented. Tc in both the TlCan-1Ba2CunO2n+3 and Tl2Can-1Ba2CunO2n+4 series increase with the number of Cu-O layers, n; Tc in the latter series with two Tl-O layers are generally higher than in the former with a single Tl-O layer. Tl in the cuprates is in the 3+ state while Cu is in the 1+ and 2+ states, showing the importance of oxygen holes. The concentration of these holes seems to increase with the number of Tl-O layers.

  6. Stability of Tl-Ba-Ca-Cu-O Superconducting Thin Films

    SciTech Connect

    Siegal, M.P.; Overmyer, D.L.; Venturini, E.L.; Padilla, R.R.; Provencio, P.N.

    1999-08-23

    We report the stability of TlBa{sub 2}CaCu{sub 2}O{sub 7} (Tl-1212) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8} (T1-2212) thin films and by inference, the stability of TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 9} (Tl-1223) and Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Tl-2223) thin films, under a variety of conditions. In general, we observe that the stability behavior of the single Tl-O layer materials (Tl-1212 and Tl-1223)are similar and the double Tl-O layer materials (Tl-2212 and Tl-2223) are similar. All films are stable with repeated thermal cycling to cryogenic temperatures. Films are also stable in acetone and methanol. Moisture degrades film quality rapidly, especially in the form of vapor. Tl-1212 is more sensitive to vapor than Tl-2212. These materials are stable to high temperatures in either N{sub 2}, similar to vacuum for the cuprates, and O{sub 2} ambients. While total degradation of properties (superconducting and structural) occur at the same temperatures for all phases, 600 C in N{sub 2} and 700 C in O{sub 2}, the onset of degradation occurs at somewhat lower temperatures for Tl-1212 than for Tl-2212 films. In all cases, sample degradation is associated with Tl depletion from the films.

  7. Enhanced ultrasonic attenuation of Tl-Ca-Ba-Cu-O at the superconducting transition

    NASA Technical Reports Server (NTRS)

    Sun, K. J.; Winfree, W. P.; Xu, M.-F.; Levy, M.; Sarma, Bimal K.

    1990-01-01

    Temperature-dependent ultrasonic attenuation measurements have been performed on polycrystalline samples of Tl-Ca-Ba-Cu-O at various frequencies. An attenuation anomaly was observed close to the superconducting transition temperature T(c) (103 K) whose temperature position was frequency-independent. The attenuation decreased exponentially with temperature in the superconducting state for both transverse and longitudinal waves. It was also found that the temperature-dependent sound velocity showed a slope change around T(c).

  8. Preparation of Bi-Sr-Ca-Cu-O superconductors from oxide-glass precursors

    NASA Astrophysics Data System (ADS)

    Hinks, D. G.; Soderholm, L.; Capone, D. W., II; Dabrowski, B.; Mitchell, A. W.

    1988-08-01

    Efforts to synthesize the new Ca-Sr-Bi-Cu-O superconductors from amorphous glasses are reported. These glasses are produced by quenching melts of the constituent oxides, followed by firing to produce the supercoducting phase. This synthetic route produces denser, more uniform samples than those obtained from firing intimate mixtures of the constituent binary oxides and carbonates. Ultimately, this technique may yield pure materials with enhanced bulk properties.

  9. Giant dielectric constant in CaCu3Ti4O12 nanoceramics

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohamad M.

    2013-06-01

    Nanoceramics of CaCu3Ti4O12 (CCTO) were synthesized by mechanosynthesis and spark plasma sintering with grain size of 150-200 nm. Giant dielectric constant properties are observed in the CCTO nanoceramics due to internal barrier layer capacitance (IBLC) effects. Impedance spectroscopy data suggest that the presence of resistive grain boundaries in addition to resistive domain boundaries is the origin of the IBLCs in CCTO nanoceramics.

  10. Effect of doping in the Bi-Sr-Ca-Cu-O superconductor

    NASA Technical Reports Server (NTRS)

    Akbar, S. A.; Wong, M. S.; Botelho, M. J.; Sung, Y. M.; Alauddin, M.; Drummer, C. E.; Fair, M. J.

    1991-01-01

    The results of the effect of doping on the superconducting transition in the Bi-Sr-Ca-Cu-O system are reported. Samples were prepared under identical conditions with varying types (Pb, Sb, Sn, Nb) and amounts of dopants. All samples consisted of multiple phases, and showed stable and reproducible superconducting transitions. Stabilization of the well known 110 K phase depends on both the type and amount of dopant. No trace of superconducting phase of 150 K and above was observed.

  11. Effect of the composition of Al-Li alloys on the quantitative relation between the δ'(Al3Li), S1(Al2MgLi), and T1(Al2CuLi) phases

    NASA Astrophysics Data System (ADS)

    Betsofen, S. Ya.; Antipov, V. V.; Grushin, I. A.; Knyazev, M. I.; Khokhlatova, L. B.; Alekseev, A. A.

    2015-01-01

    Al-Li alloys are considered. A quantitative approach to the determination of the ratio of the fractions of the binary and ternary intermetallic phases in Al-Mg(Cu)-Li alloys is developed on the basis of chemical and phase composition balance equations and the experimentally measured lattice parameter of the α solid solution. The ratio of the fractions of the δ'(Al3Li) and S1(T1) phases in Al-Mg(Cu)-Li alloys is shown to be determined by the ratio of the mole fractions of Li and Mg(Cu). Equations are proposed for calculating the weight fractions of the S1(Al2MgLi), T1(Al2CuLi) and δ'(Al3Li) phases in domestic and foreign Al-Mg-Li alloys 1420, 1424, 5090 and Al-Cu-Li alloys 1440, 1460, 1461, 1441, 1469, 2090, 2095, 8090, and Weldalite 049.

  12. P- T- X controls on Ca and Na distribution between Mg-Al tourmaline and fluid

    NASA Astrophysics Data System (ADS)

    Berryman, Eleanor J.; Wunder, Bernd; Rhede, Dieter; Schettler, Georg; Franz, Gerhard; Heinrich, Wilhelm

    2016-04-01

    Ca-Na partitioning between tourmaline and a coexisting fluid is investigated in the system CaO-Na2O-B2O3-Al2O3-MgO-SiO2-H2O-Cl between 0.2-4.0 GPa and 500-700 °C. The synthesis experiments produced a mineral assemblage of tourmaline, coesite/quartz, and in some cases additional phases, typically comprising <1 wt% of the solid product. The synthesized tourmalines are solid solutions of dravite [NaMg3Al6Si6O18(BO3)3(OH)3(OH)], "oxy-uvite" (i.e. "Ca-Mg-O root name") [CaMg3Al6Si6O18(BO3)3(OH)3O], and magnesio-foitite [☐(Mg2Al)Al6Si6O18(BO3)3(OH)3(OH)]. Starting materials comprised a fluid of constant ionic strength (2.00 m) and an oxide mixture with a constant Mg/Al ratio. As a result, the number of vacancies at the X site and the Mg/Al ratio of tourmaline crystals synthesized at the same temperature vary only slightly. The major solid solution is Ca-Na exchange at the X site via the exchange vector X Ca W O[ X Na W (OH)]-1, with the exchange vector X (Ca☐)[ X Na2]-1 serving as a secondary Ca-incorporation mechanism. Tourmaline's X-site composition reflects the fluid composition, whereby the Ca (or Na) concentration in the fluid corresponds with the Ca (or Na) content in tourmaline at each pressure and temperature. At 0.2 GPa, 700 °C, Ca preferentially partitions into tourmaline, producing the most Ca-rich tourmaline crystals synthesized here. At pressures >1.0 GPa, Ca partitions preferentially into the fluid, resulting in Na-dominant tourmaline compositions. Temperature has a secondary effect on Ca-Na partitioning, with higher temperatures correlating with increased Ca incorporation in tourmaline. Based on the experimental findings, tourmaline is expected to have Ca-rich compositions when it forms in low pressure, high-temperature Ca-rich rocks, consistent with the current record of tourmaline occurrence. The bulk Mg/Al ratio and the pH of the tourmaline-forming system may also affect Ca incorporation in tourmaline, but remain to be investigated experimentally.

  13. Microstructural variations in Cu/Nb and Al/Nb nanometallic multilayers

    SciTech Connect

    Polyakov, M. N.; Hodge, A. M.; Courtois-Manara, E.; Wang, D.; Kuebel, C.; Chakravadhanula, K.

    2013-06-17

    Miscible (Al/Nb) and immiscible (Cu/Nb) nanometallic multilayer systems were characterized by means of transmission electron microscopy techniques, primarily by automated crystallographic orientation mapping, which allows for the resolution of crystal structures and orientations at the nanoscale. By using this technique, distinctive Nb orientations in relation to the crystallographic state of the Al and Cu layer structures can be observed. Specifically, the Al and Cu layers were found to consist of amorphous, semi-amorphous, and crystalline regions, which affect the overall multilayer microstructure.

  14. [Catalytic degradation of naphthalene by CuO (-CeO2)/Al2O3].

    PubMed

    Zha, Jian; Zhou, Hong-Cang; He, Du-Liang; Shan, Long; Zhang, Lu; Xie, Jie

    2014-10-01

    Three catalysts CuO/Al2O3, CeO2/Al2O3 and CuO-CeO2/Al2O3 were prepared by the impregnation method. The textural and structural properties of the synthesized catalysts were characterized by N2 adsorption/desorption, SEM and XRD, and the effect of active ingredients, flow rate and reaction temperature on catalytic degradation of naphthalene (NaP) were investigated in fixed-bed reactor. The experimental results show that the prepared 18% CeO2/Al2O3 has a low catalytic activity of NaP. Nevertheless, both 18% CuO/Al2O3 and 9% CuO-9% CeO2/Al2O3 exhibit high catalytic activity whose removal efficiencies at 300°C can reach 91% and 89%, respectively. Besides, compared with CuO/Al2O3, CuO-CeO2/Al2O3 possesses a higher low-temperature activity. Furthermore, the variation of flow rates has little effect on the performance of two catalysts.

  15. [Catalytic degradation of naphthalene by CuO (-CeO2)/Al2O3].

    PubMed

    Zha, Jian; Zhou, Hong-Cang; He, Du-Liang; Shan, Long; Zhang, Lu; Xie, Jie

    2014-10-01

    Three catalysts CuO/Al2O3, CeO2/Al2O3 and CuO-CeO2/Al2O3 were prepared by the impregnation method. The textural and structural properties of the synthesized catalysts were characterized by N2 adsorption/desorption, SEM and XRD, and the effect of active ingredients, flow rate and reaction temperature on catalytic degradation of naphthalene (NaP) were investigated in fixed-bed reactor. The experimental results show that the prepared 18% CeO2/Al2O3 has a low catalytic activity of NaP. Nevertheless, both 18% CuO/Al2O3 and 9% CuO-9% CeO2/Al2O3 exhibit high catalytic activity whose removal efficiencies at 300°C can reach 91% and 89%, respectively. Besides, compared with CuO/Al2O3, CuO-CeO2/Al2O3 possesses a higher low-temperature activity. Furthermore, the variation of flow rates has little effect on the performance of two catalysts. PMID:25693411

  16. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis.

  17. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis. PMID:25740001

  18. 110K Bi-Sr-Ca-Cu-O superconductor oxide and method for making same

    DOEpatents

    Veal, B.W.; Downey, J.W.; Lam, D.J.; Paulikas, A.P.

    1992-12-22

    A superconductor is disclosed consisting of a sufficiently pure phase of the oxides of Bi, Sr, Ca, and Cu to exhibit a resistive zero near 110K resulting from the process of forming a mixture of Bi[sub 2]O[sub 3], SrCO[sub 3], CaCO[sub 3] and CuO into a particulate compact wherein the atom ratios are Bi[sub 2], Sr[sub 1.2-2.2], Ca[sub 1.8-2.4], Cu[sub 3]. Thereafter, heating the particulate compact rapidly in the presence of oxygen to an elevated temperature near the melting point of the oxides to form a sintered compact, and then maintaining the sintered compact at the elevated temperature for a prolonged period of time. The sintered compact is cooled and reground. Thereafter, the reground particulate material is compacted and heated in the presence of oxygen to an elevated temperature near the melting point of the oxide and maintained at the elevated temperature for a time sufficient to provide a sufficiently pure phase to exhibit a resistive zero near 110K. 7 figs.

  19. 110K Bi-Sr-Ca-Cu-O superconductor oxide and method for making same

    DOEpatents

    Veal, Boyd W.; Downey, John W.; Lam, Daniel J.; Paulikas, Arvydas P.

    1992-01-01

    A superconductor consisting of a sufficiently pure phase of the oxides of Bi, Sr, Ca, and Cu to exhibit a resistive zero near 110K resulting from the process of forming a mixture of Bi.sub.2 O.sub.3, SrCO.sub.3, CaCO.sub.3 and CuO into aparticulate compact wherein the atom ratios are Bi.sub.2, Sr.sub.1.2-2.2, Ca.sub.1.8-2.4, Cu.sub.3. Thereafter, heating the particulate compact rapidly in the presence of oxygen to an elevated temperature near the melting point of the oxides to form a sintered compact, and then maintaining the sintered compact at the elevated temperature for a prolonged period of time. The sintered compact is cooled and reground. Thereafter, the reground particulate material is compacted and heated in the presence of oxygen to an elevated temperature near the melting point of the oxide and maintained at the elevated temperature for a time sufficient to provide a sufficiently pure phase to exhibit a resistive zero near 110K.

  20. Estimated daily intake of Fe, Cu, Ca and Zn through common cereals in Tehran, Iran.

    PubMed

    Kashian, S; Fathivand, A A

    2015-06-01

    This paper presents the findings of study undertaken to estimate the dietary intake of iron (Fe), copper (Cu), calcium (Ca) and zinc (Zn) through common cereals in Tehran, Iran. 100 samples of rice, wheat and barley were collected from various brands between August and October 2013. The samples were analyzed performing instrumental neutron activation analysis (INAA). The dietary intake for adults was estimated by a total cereal study. Calculations were carried out on the basis of the reported adults' average food consumption rate data. The total daily intake estimated in mgd(-1) for Tehran population were 3.6 (Fe), 10.2 (Zn), 0.3 (Cu) and 234.5 (Ca). Wheat showed the highest contribution to Zn, Cu and Ca intakes. Furthermore, intakes were compared with recommended dietary allowance (RDA). Zn total intake (10.2mgd(-1)) was comparable with RDA values for males (11mgd(-1)) and was higher than recommended value for females (8mgd(-1)). The intakes of other studied elements were below the respective RDAs. PMID:25624223

  1. CaCu3Ti4O12: One-step internal barrier layer capacitor

    NASA Astrophysics Data System (ADS)

    Sinclair, Derek C.; Adams, Timothy B.; Morrison, Finlay D.; West, Anthony R.

    2002-03-01

    There has been much recent interest in a so-called "giant-dielectric phenomenon" displayed by an unusual cubic perovskite-type material, CaCu3Ti4O12; however, the origin of the high permittivity has been unclear [M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, J. Solid State Chem. 151, 323 (2000); C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Science 293, 673 (2001); A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S. M. Shapiro, Solid State Commun. 115, 217 (2000)]. Impedance spectroscopy on CaCu3Ti4O12 ceramics demonstrates that they are electrically heterogeneous and consist of semiconducting grains with insulating grain boundaries. The giant-dielectric phenomenon is therefore attributed to a grain boundary (internal) barrier layer capacitance (IBLC) instead of an intrinsic property associated with the crystal structure. This barrier layer electrical microstructure with effective permittivity values in excess of 10 000 can be fabricated by single-step processing in air at ˜1100 °C. CaCu3Ti4O12 is an attractive option to the currently used BaTiO3-based materials which require complex, multistage processing routes to produce IBLCs of similar capacity.

  2. The role of copper species on Cu/γ-Al2O3 catalysts for NH3-SCO reaction

    NASA Astrophysics Data System (ADS)

    Liang, Chunxia; Li, Xinyong; Qu, Zhenping; Tade, Moses; Liu, Shaomin

    2012-02-01

    UV-vis spectra, XRD, H2-TPR, TEM and ESR were used to characterize a series of Cu/γ-Al2O3 catalysts, which were prepared by incipient wetness impregnation using copper nitrate, copper acetate or copper sulfate as precursors, to study the role of Cu species on Cu/γ-Al2O3 catalysts for NH3-SCO reaction. It was found that the mixture of CuO phase and CuAl2O4 phase formed on various Cu/γ-Al2O3 catalysts, and the Cu species and dispersion had significant influence on the Cu/γ-Al2O3 activity. Highly dispersed CuO phase on the support would be related with its high activity for the NH3-SCO reaction.

  3. Nucleation Effects in Thermally Managed Graphite Fiber-Reinforced Al-Cu and Al-Si Composites

    NASA Astrophysics Data System (ADS)

    Seong, H. G.; Lopez, H. F.; Gajdardziska-Josifovska, M.; Rohatgi, P. K.

    2007-11-01

    The influence of heat extraction through fiber reinforcements on the resultant solidification morphologies was investigated in cast Al-Cu and Al-Si alloy composites reinforced with graphite fibers (GRFs). For this purpose, the GRFs were externally cooled by exposing their ends to ambient air during pressure infiltration. It was found that in the Al-Cu system, heat extraction through the fiber ends promoted the development of single α-Al envelopes around the GRFs. In particular, radial growth of the α envelopes occurred with a planar solid/liquid solidification front as a result of heat extraction. Apparently, the high thermal conductivity of GRFs causes significant heat extraction to enable the development of a positive temperature gradient at the GRF/melt interface. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAD) unveiled the occurrence of (002) α-Al//(0002)GR orientation relationship at α-Al/GRF interfaces. Preferential nucleation of primary Si along the graphite surfaces of the GRF-reinforced Al-Si alloy composite was also promoted by external fiber heat extraction. However, in this case, numerous nucleation events along the fiber interfaces were common, as well as nucleation at active substrates within the constrained melt. Finally, differential thermal analysis (DTA) indicated that the onset temperatures for nucleation shift toward higher values (by 7 °C for the Al-Cu composite and 2 °C for the Al-Si composite) when compared with their corresponding matrix alloys.

  4. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters.

  5. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters. PMID:25649390

  6. Thick film of HgBa 2Ca 2Cu 3O 8+δ via the sol-gel technique

    NASA Astrophysics Data System (ADS)

    Yoo, S. H.; Wong, K. W.; Xin, Y.

    1997-02-01

    We have prepared superconducting HgBa 2Ca 2Cu 3O 8+δ thick films on polycrystalline MgO substrate via the sol-gel technique together with a slow annealing method. A precursor film of Ba 2Ca 2Cu 3O 7 was annealed with a bulk mixture of unreacted HgBa 2Ca 2Cu 3O 8+δ and a precursor, Ba 2Ca 2Cu 3O 7, pellet that was employed to control the HgO vapor pressure. Our films show an onset superconducting transition temperature of 140 K and a zero resistance temperature of 130 K after oxygen annealing. The high Tc thick films are consistently reproducible.

  7. The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2015-09-01

    A simple and fast method of the analysis of green coffee infusions was developed to measure total concentrations of Ca, Cu, Fe, Mg and Mn by high resolution-continuum source flame atomic absorption spectrometry. The precision of the method was within 1-8%, while the accuracy was within -1% to 2%. The method was used to the analysis of infusions of twelve green coffees of different geographical origin. It was found that Ca and Mg were leached the easiest, i.e., on average 75% and 70%, respectively. As compared to the mug coffee preparation, the rate of the extraction of elements was increased when infusions were prepared using dripper or Turkish coffee preparation methods. Additionally, it was established that the antioxidant activity of green coffee infusions prepared using the mug coffee preparation was high, 75% on average, and positively correlated with the total content of phenolic compounds and the concentration of Ca in the brew.

  8. The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2015-09-01

    A simple and fast method of the analysis of green coffee infusions was developed to measure total concentrations of Ca, Cu, Fe, Mg and Mn by high resolution-continuum source flame atomic absorption spectrometry. The precision of the method was within 1-8%, while the accuracy was within -1% to 2%. The method was used to the analysis of infusions of twelve green coffees of different geographical origin. It was found that Ca and Mg were leached the easiest, i.e., on average 75% and 70%, respectively. As compared to the mug coffee preparation, the rate of the extraction of elements was increased when infusions were prepared using dripper or Turkish coffee preparation methods. Additionally, it was established that the antioxidant activity of green coffee infusions prepared using the mug coffee preparation was high, 75% on average, and positively correlated with the total content of phenolic compounds and the concentration of Ca in the brew. PMID:25842341

  9. Evidence of electrochemical resistive switching in the hydrated alumina layers of Cu/CuTCNQ/(native AlOx)/Al junctions

    NASA Astrophysics Data System (ADS)

    Knorr, Nikolaus; Bamedi, Ameneh; Karipidou, Zoi; Wirtz, René; Sarpasan, Mustafa; Rosselli, Silvia; Nelles, Gabriele

    2013-09-01

    We have investigated bipolar resistive switching of Cu/CuTCNQ/Al cross-junctions in both vacuum and different gas environments. While the generally observed S-shaped I-V hysteresis was reproduced in ambient air, it was reversibly suppressed in well-degassed samples in vacuum and in dry N2. The OFF-switching currents in ambient air peaked when approximately +2.6 V was applied to the Al electrode at low voltage sweep rates. OFF-switching at constant bias was accelerated in humid and oxygen-rich atmospheres. For unbiased samples stored in air, ON-state (RON) and OFF-state (ROFF) resistances increased with time, and RON surpassed the initial ROFF after approximately one week. Retention times were enhanced for samples stored in vacuum and those with a larger cross-junction area. We suggest that resistive switching occurs in a hydrated native alumina layer at the CuTCNQ/Al interface that grows in thickness during exposure to ambient humidity: ON-switching by electrochemical metallization of free Al and/or Cu ions and OFF-switching by anodic oxidation of the Al electrode and previously grown metal filaments.

  10. Thermoelectric properties of Ni-doped CuAlO 2

    NASA Astrophysics Data System (ADS)

    Wongcharoen, Ngamnit; Gaewdang, Thitinai

    2009-07-01

    The polycrystalline Ni-doped CuAlO2 were obtained by solid state reaction method. The mixture of high purity grade of CuO, Al2O3 and Ni(NO3)2.6H2O powders was ground and then pressed by using uniaxial pressure. The obtained pellet was sintered in air at 1423 K for 24 h. XRD patterns showed the crystal structure of the as-sintered CuAl1-xNixO2 (0≤x≤0.10) belonging to rhombohedral, space group. No evidence of second phase was observed when Ni doping up to x=0.01. At Ni content x≥0.01 CuAl1-xNixO2 solid solution phase along with the CuO and CuAl2O4 phases were observed. From SEM micrographs, the grain size decreased from 6 to 2 μm when the amount of Ni in CuAl1-xNixO2 samples increased. Hall mobility and hole concentration of the as-sintered samples were obtained from Hall effect measurements at room temperature. The activation energy values deduced from the electrical resistivity measurements as a function of temperature were reported. The variation of Seebeck coefficient and power factor as a function of temperature was also investigated. From the experimental results, the substitution of Ni2+ ion in Cu+ site of CuAl1-xNixO2 material may be drawn.

  11. Finite Element Modeling for the Structural Analysis of Al-Cu Laser Beam Welding

    NASA Astrophysics Data System (ADS)

    Hartel, Udo; Ilin, Alexander; Bantel, Christoph; Gibmeier, Jens; Michailov, Vesselin

    Laser beam welding of aluminum and copper (Al-Cu) materials is a cost efficient joining technology to produce e.g. connector elements for battery modules. Distortion low connections can be achieved, which have electrical favorable properties. Numerical simulation of the laser beam welding process of Al-Cu dissimilar materials can provide further insight into principal process mechanisms and mechanical response of the joint parts. In this paper a methodology is introduced to investigate the structural behavior of Al-Cu joints in overlap joint with respect to welding distortions and residual stresses. First the material model of the homogeneous base materials are validated. Next, a generic material model approach is used to simulate the structural behavior of heterogeneous Al-Cu connections.

  12. Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses

    PubMed Central

    Lou, H. B.; Fang, Y. K.; Zeng, Q. S.; Lu, Y. H.; Wang, X. D.; Cao, Q. P.; Yang, K.; Yu, X. H.; Zheng, L.; Zhao, Y. D.; Chu, W. S.; Hu, T. D.; Wu, Z. Y.; Ahuja, R.; Jiang, J. Z.

    2012-01-01

    Pressure-induced amorphous-to-amorphous configuration changes in Ca-Al metallic glasses (MGs) were studied by performing in-situ room-temperature high-pressure x-ray diffraction up to about 40 GPa. Changes in compressibility at about 18 GPa, 15.5 GPa and 7.5 GPa during compression are detected in Ca80Al20, Ca72.7Al27.3, and Ca66.4Al33.6 MGs, respectively, whereas no clear change has been detected in the Ca50Al50 MG. The transfer of s electrons into d orbitals under pressure, reported for the pressure-induced phase transformations in pure polycrystalline Ca, is suggested to explain the observation of an amorphous-to-amorphous configuration change in this Ca-Al MG system. Results presented here show that the pressure induced amorphous-to-amorphous configuration is not limited to f electron-containing MGs. PMID:22530094

  13. Growth and characterization of CaCu3Ru4O12 single crystal

    NASA Astrophysics Data System (ADS)

    Wang, Rong-Juan; Zhu, Yuan-Yuan; Wang, Li; Liu, Yong; Shi, Jing; Xiong, Rui; Wang, Jun-Feng

    2015-09-01

    High-quality single crystals of A-site ordered perovskite oxides CaCu3Ru4O12 were synthesized by flux method with CuO serving as a flux. The typical size of these single crystals was around 1 × 1 × 1 mm3 and the lattice constant was determined to be 7.430±0.0009 Å by using x-ray single crystal diffraction. The surfaces of the samples were identified to be (100) surface. The high quality of the single crystal samples was confirmed by the rocking curve data which have a full width at half maximum of approximately 0.02 degree. The x-ray photoelectron spectroscopy measurement was performed and the temperature-dependent specific heat, magnetic susceptibility, and electric resistivity were measured along the [100] direction of the single crystals. All these measurements showed that the physical properties of CaCu3Ru4O12 single crystals are similar to that of polycrystals. However, the single crystals have a lower Curie susceptibility tail and a smaller residual resistivity than polycrystals, which indicates that the amount of paramagnetic impurities can be controlled by tuning the number of defects in CaCu3Ru4O12 samples. Project supported by the National Basic Research Program of China (Grant No. 2012CB821404), the National Natural Science Foundation of China (Grant Nos. 51172166 and 61106005), the National Science Fund for Talent Training in Basic Science of China (Grant No. J1210061), and the Doctoral Fund of Ministry of Education of China (Grant No. 20110141110007).

  14. CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route

    PubMed Central

    Huo, Chengli; Ouyang, Jing; Yang, Huaming

    2014-01-01

    Highly ordered aluminum-containing mesoporous silica (Al-MCM-41) was prepared using attapulgite clay mineral as a Si and Al source. Mesoporous complexes embedded with CuO nanoparticles were subsequently prepared using various copper sources and different copper loadings in a direct synthetic route. The resulting CuO/Al-MCM-41 composite possessed p6mm hexagonally symmetry, well-developed mesoporosity, and relatively high BET surface area. In comparison to pure silica, these mesoporous materials embedded with CuO nanoparticles exhibited smaller pore diameter, thicker pore wall, and enhanced thermal stability. Long-range order in the aforementioned samples was observed for copper weight percentages as high as 30%. Furthermore, a significant blue shift of the absorption edge for the samples was observed when compared with that of bulk CuO. H2-TPR measurements showed that the direct-synthesized CuO/Al-MCM-41 exhibited remarkable redox properties compared to the post-synthesized samples, and most of the CuO nanoparticles were encapsulated within the mesoporous structures. The possible interaction between CuO and Al-MCM-41 was also investigated. PMID:24419589

  15. Formation of the 110-K superconducting phase in Pb-doped Bi-Sr-Ca-Cu-O thin films

    SciTech Connect

    Kula, W.; Sobolewski, R.; Gorecka, J.; Lewandowski, S.J. )

    1991-09-15

    Investigation of the 110-K Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} phase formation in superconducting thin films of Bi-based cuprates is reported. The films were dc magnetron sputtered from single Bi(Pb)-Sr-Ca-Cu-O targets of various stoichiometries, and subsequently annealed in air at high temperatures. The influence of the initial Pb content, annealing conditions, as well as the substrate material on the growth of the 110-K phase was investigated. We found that the films, fully superconducting above 100 K could be reproducibly fabricated on various dielectric substrates from Pb-rich targets by optimizing annealing conditions for each initial Pb/Bi ratio. Heavy Pb doping considerably accelerated formation of the 110-K phase, reducing the film annealing time to less than 1 h. Films containing, according to the x-ray measurement, more than 90% of the 110-K phase were obtained on MgO substrates, after sputtering from the Bi{sub 2}Pb{sub 2.5}Sr{sub 2}Ca{sub 2.15}Cu{sub 3.3}O{sub {ital x}} target and annealing in air for 1 h at 870 {degree}C. The films were {ital c}-axis oriented, with 4.5-K-wide superconducting transition, and zero resistivity at 106 K. Their critical current density was 2 {times} 10{sup 2} A/cm{sup 2} at 90 K, and above 10{sup 4} A/cm{sup 2} below 60 K. The growth of the 110-K phase on epitaxial substrates, such as CaNdAlO{sub 4} and SrTiO{sub 3}, was considerably deteriorated, and the presence of the 80- and 10-K phases was detected. Nevertheless, the best films deposited on these substrates were fully superconducting at 104 K and exhibited critical current densities above 2 {times} 10{sup 5} A/cm{sup 2} below 60 K{minus}one order of magnitude greater than the films deposited on MgO.

  16. Solidification of hypereutectic Al-38 wt pct Cu alloy in microgravity and in unit gravity

    SciTech Connect

    Yu, H.; Tandon, K.N.; Cahoon, J.R.

    1997-05-01

    Solidification in microgravity aboard the space shuttle Endeavour resulted in a dramatic change in the morphology of the primary Al{sub 2}Cu phase compared to ground-based solidification in unit gravity. An Al-38 wt pct Cu ingot directionally solidified at a rate of 0.015 mm/s with a temperature gradient of 1.69 K/mm exhibited large, well-formed dendrites of primary Al{sub 2}Cu phase. Ingots solidified under similar conditions in unit gravity contained primary Al{sub 2}Cu phase with smooth, faceted surfaces. The primary Al{sub 2}Cu phase spacing in the microgravity ingot was much greater than that in the unit gravity ingot, 670 {micro}m compared to 171 {micro}m. It is suggested that thermosolutal mixing in the unit gravity ingot reduces the buildup of an Al-rich layer at the solid/liquid interface, which increases the stability of the interface resulting in smooth, faceted particles of Al{sub 2}Cu phase. It is also suggested that the large difference in primary phase spacings is due mostly to the difference in morphology rather than changes in parameters that might influence dendrite ripening mechanisms. The presence or absence of gravity had no effect on the interlamellar spacing of the inter-Al{sub 2}Cu phase eutectic. The ingot solidified in microgravity exhibited almost no longitudinal macrosegregation, in agreement with the theory of inverse segregation in the absence of thermosolutal convection. The ingot solidified in unit gravity exhibited considerable longitudinal macrosegregation, with the chilled end having about 6 wt pct more Cu than the average composition. It is not clear whether the segregation results from thermosolutal convection during solidification or from sedimentation during melting.

  17. The microstructure-strength relationship in a deformation processed Al-Ca composite

    SciTech Connect

    Tian, Liang; Kim, Hyongjune; Anderson, Iver; Russell, Alan

    2013-02-07

    An Al-9 vol% Ca composite was produced by powder metallurgy and deformation processing. The Al–Ca composite was extruded, swaged and wire drawn to a deformation true strain of 13.8. Both Al and Ca are face-centered cubic, so the Ca second phase deformed into continuous, nearly cylindrical filaments in the Al matrix. The formation of intermetallic compounds, filament coarsening, and spheriodization at elevated temperature was observed by scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. Both the thickness and spacing of the Ca filaments decreased exponentially with increasing deformation. The ultimate tensile strength of the composite increased rapidly with increased deformation, especially at high deformation processing strains. The relation between deformation true strain and ultimate tensile strength is underestimated by the rule of mixtures; a modified Hall–Petch barrier strengthening model was found to fit the data better.

  18. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    SciTech Connect

    Ganz, P. R.; Schaadt, D. M.

    2011-12-23

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  19. Microstructure and Erosion Resistance Performance of ZrAlN/Cu Coating

    NASA Astrophysics Data System (ADS)

    Du, Jun; Zhu, Xiaoying; Zhang, Ping; Cai, Zhihai

    ZrAlN/Cu coating has been deposited onto Ti-6Al-4 V substrate by reactive magnetron sputtering in order to improve its erosion resistance. The morphology and microstructure were studied combined with Field Emission Scanning Electron Microscrope(FSEM), X-ray Diffraction(XRD), X-ray Photoelectron Spectroscopy(XPS) and Transmission Electron Microscopy(TEM). Coatings hardness and toughness were measured by nano-indentation method and Vicker indentation method respectively. It has been found that Zr0.79Al0.19Cu0.02N coating possess dense columnar structure with 20∼40 nm columnar grains exbibiting (100) preferential orientation. XRD reflection peaks slightly shifts to higher angle, showing some of 19at%Al and 2at%Cu substitutely dissolves into face-centered cubic(FCC) ZrN lattice, XPS proves the existence of AlN and Cu phase in coating. Zr0.79Al0.19Cu0.02N coating demonstrates best erosion resistance at 15°∼90° impingement angle compared with Ti6Al4 V substrate, ZrN and Zr0.80Al0.20N coating, attributing to combination of high hardness(40.7 GPa) and good toughness.

  20. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  1. Formation of CuAlO2 Film by Ultrasonic Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Iping, S.; Lockman, Zainovia; Hutagalung, S. D.; Kamsul, A.; Matsuda, Atsunori

    2011-10-01

    Smooth, crack free and homogenous CuAlO2 film was produced by chemical solution deposition process via spray pyrolysis technique on a cleaned Si substrate. The precursor solution used was comprised of a mixture of 45.87 mmol Cu(NO3)2.3H2O and 90 mmol Al(NO3)3.9H2O at ratio of Cu:Al = 1.2:1. The precursor solution was placed in a mist chamber and was atomized by a nebulizer to produce precursor mist. The precursor mist was then carried out by Ar gas and was sprayed onto a heated Si. Two main parameters were studied: the distance between the nozzle of the precursor mist chamber and the Si and the temperature of the Si substrate. It appears that from the XRD data, CuAlO2 can be detected for samples prepared by spraying the precursor mist at temperature of > 550 °C with distance between the nozzle and the substrate of 3cm. Reaction of the Cu and Al ions in the mist near the substrate may have promoted the crystallisation of CuAlO2.

  2. Dissolution of Precipitates During Solution Treatment of Al-Mg-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xukai; Guo, Mingxing; Zhang, Jishan; Zhuang, Linzhong

    2016-02-01

    A model combining classical diffusion-controlled dissolution equation for a single spherical particle and Johnson-Mehl-Avrami-like equation is used to deal with dissolution process for different kinds of precipitations (Si, Mg2Si, Q(Al1.9Mg4.1Si3.3Cu)) in Al-Mg-Si-Cu alloys. The results reveal that the dissolution time of precipitates increases with increasing their sizes and solute concentrations in the alloy matrix; for the same size and concentration, their dissolution times follow Si > Q(Al1.9Mg4.1Si3.3Cu) > Mg2Si. Two precipitates (Mg2Si and Al1.9Mg4.1Si3.3Cu) with a size of about 700 nm were obtained in a cold rolled Al-Mg-Si-Cu-Zn alloy, and the complete dissolution time is about 15 seconds, which is basically the same as the calculated time by the developed model. The theoretical prediction of dissolution time can be greatly used to design solution treatment and thermomechanical processing parameters of Al-Mg-Si-Cu alloys.

  3. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity.

    PubMed

    Chang, Po-Hsueh; Chang, Yen-Po; Chen, San-Yuan; Yu, Ching-Tsung; Chyou, Yau-Pin

    2011-12-16

    We present the design and synthesis of Ca-rich Ca-Al-O oxides, with Ca(2+)/Al(3+) ratios of 1:1, 3:1, 5:1, and 7:1, which were prepared by hydrothermal decomposition of coprecipitated hydrotalcite-like Ca-Al-CO(3) precursors, for high-temperature CO(2) adsorption at 500-700 °C. In situ X-ray diffraction measurements indicate that the coprecipitated, Ca-rich, hydrotalcite-like powders with Ca(2+)/Al(3+) ratios of 5:1 and 7:1 contained Ca(OH)(2) and layered double hydroxide (LDH) phases. Upon annealing, LDH was first destroyed at approximately 200 °C to form an amorphous matrix, and then at 450-550 °C, the Ca(OH)(2) phase was converted into a CaO matrix with incorporated Al(3+) to form a homogeneous solid solution without a disrupted lattice structure. CaO nanocrystals were grown by thermal treatment of the weakly crystalline Ca-Al-O oxide matrix. Thermogravimetric analysis indicates that a CO(2) adsorption capacity of approximately 51 wt. % can be obtained from Ca-rich Ca-Al-O oxides prepared by calcination of 7:1 Ca-Al-CO(3) LDH phases at 600-700 °C. Furthermore, a relatively high CO(2) capture capability can be achieved, even with gas flows containing very low CO(2) concentrations (CO(2)/N(2) = 10 %). Approximately 95.6 % of the initial CO(2) adsorption capacity of the adsorbent is retained after 30 cycles of carbonation-calcination. TEM analysis indicates that carbonation-promoted CaCO(3) formation in the Ca-Al-O oxide matrix at 600 °C, but a subsequent desorption in N(2) at 700 °C, caused the formation CaO nanocrystals of approximately 10 nm. The CaO nanocrystals are widely distributed in the weakly crystalline Ca-Al-O oxide matrix and are present during the carbonation-calcination cycles. This demonstrates that Ca-Al-O sorbents that developed through the synthesis and calcination of Ca-rich Ca-Al LDH phases are suitable for long-term cyclic operation in severe temperature environments.

  4. Flux Pinning by Cr Nanoparticles in Cu_{0.5}Tl_{0.5}Ba2Ca2Cu3O_{10-δ } Superconductor

    NASA Astrophysics Data System (ADS)

    Waqee-ur-Rehman, M.; Mumtaz, M.; Qasim, Irfan; Nadeem, K.

    2016-09-01

    Increase in flux pinning strength of Cu_{0.5}Tl_{0.5}Ba2Ca2Cu3O_{10-δ }(CuTl-1223) superconductor has been observed after addition of Cr nanoparticles. We have thoroughly investigated the infield response of Cr nanoparticles-added CuTl-1223 superconductor in an external applied magnetic field in the range of 0-7 T. Solid-state reaction technique has been employed to synthesize (Cr)x-CuTl-1223; x = 0-1.00 wt% nanoparticle-superconductor composites. The flux pinning mechanism has been analyzed on the basis of thermally activated flux flow model in the presence of a small current (10 μ A). The increase in activation energy and decrease in transition width of CuTl-1223 superconducting phase show the enhancement in its flux pinning strength upon the addition of Cr nanoparticles.

  5. Effect of delayed aging on mechanical properties of an Al-Cu-Mg alloy

    SciTech Connect

    Ravindranathan, S.P.; Kashyap, K.T.; Kumar, S.R.; Ramachandra, C.; Chatterji, B.

    2000-02-01

    The effect of delayed aging on mechanical properties is characteristically found in Al-Mg-Si alloys. Delayed aging refers to the time elapsed between solutionizing and artificial aging. Delayed aging leads to inferior properties. This effect was investigated in an Al-Cu-Mg alloy (AU2GN) of nominal composition Al-2Cu-1.5Mg-1Fe-1Ni as a function of delay. This alloy also showed a drop in mechanical properties with delay. The results are explained on the basis of Pashley's kinetic model to qualitatively explain the evolution of a coarse precipitate structure with delay. It is found that all the results of delayed aging in the Al-Cu-Mg alloys are similar to those found in Al-Mg-Si alloys.

  6. First-principles study of nitrogen-doped CuAlO2

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Ao, Zhi Min; Yuan, Ding Wang

    2012-08-01

    The electronic structure and formation energies of N-doped CuAlO2 are studied using first-principles calculations. It is found that, when a N atom is doped into CuAlO2, the N atom prefers to substitute an O atom rather than to occupy an interstitial site of the Cu layer. The NO acts as a shallow accepter while the Ni acts as a deep accepter. The results of the electronic structure show that the N-doping doesn't alter the band gap of CuAlO2 for the both cases. In the substitutional case, the N impurity states occur at the top of valance band maximum (VBM), which provides holes and increases the p-type conductivity. However, in the interstitial case, the N impurity states occur in the middle of the band gap, which are more localized and this indicates that it is not good for p-type conductivity.

  7. TlCaBaCuO high Tc superconducting microstrip ring resonators designed for 12 GHz

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1993-01-01

    Microwave properties of sputtered Tl-Ca-Ba-Cu-O thin films were investigated by designing, fabricating, and testing microstrip ring resonators. Ring resonators designed for 12 GHz fundamental resonance frequency, were fabricated and tested. From the unloaded Q values for the resonators, the surface resistance was calculated by separating the conductor losses from the total losses. The penetration depth was obtained from the temperature dependence of resonance frequency, assuming that the shift in resonance frequency is mainly due to the temperature dependence of penetration depth. The effective surface resistance at 12 GHz and 77 K was determined to be between 1.5 and 2.75 mOmega, almost an order lower than Cu at the same temperature and frequency. The effective penetration depth at 0 K is approximately 7000 A.

  8. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO₂)₁-x(CuCrO₂)x.

    PubMed

    Barton, Phillip T; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J

    2012-01-11

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO(2) and the t(2g)(3)frustrated antiferromagnet CuCrO(2). The evolution with composition x in CuAl(1-x)Cr(x)O(2) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μ(eff) is equal to the Cr(3+) spin-only S = 3/2 value throughout the entire solid solution. Θ(CW) is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant J(BB) was estimated by mean-field theory to be 3.0 meV. Despite the sizable Θ(CW), long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO(2) above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder. PMID:22133702

  9. Effects of microstructure and CaO addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Hsu, Yung-Fu; Liu, Yi-Xin; Hsieh, Chung-Kai

    2015-11-01

    In this study, the effects of grain size and the addition of CaCO3 on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. The bending strength of the ferrites increased from 66 to 84 MPa as the grain size of the sintered ceramics decreased from 10.25 μm to 7.53 μm, while the change in hardness was insignificant. The addition of various amounts of CaCO3 densified the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics at 1075 °C. In the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic, second phase CuO was segregated at the grain boundaries. With the CaCO3 content ≥1.5 wt%, a small amount of discrete plate-like second phase Fe2CaO4 was observed, together with the disappearance of the second phase CuO. The grain size of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic dropped from 7.80 μm to 4.68 μm, and the grain size distribution widened as the CaCO3 content increased from 0 to 5 wt%. Initially rising to 807 after CaCO3 addition up to 2.0 wt%, due to a reduced grain size, the Vickers hardness began to drop as the CaCO3 content increased. The bending strength grew linearly with the CaCO3 content and reached twice the value for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with an addition of 5.0 wt% CaCO3. The initial permeability of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic decreased substantially from 402 to 103 as the addition of CaCO3 in ferrite increased from 0 to 5 wt%, and the quality factor of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic was maximized at 95 for 1.0 wt% CaCO3 addition.

  10. Local atomic configuration and Auger Valence Electron Spectra in BiSrCaCuO single crystals

    SciTech Connect

    Fujiwara, Y.; Hirata, S.; Nishikubo, M.; Kobayashi, T. ); Nakayama, H.; Fujita, H. . Faculty of Engineering)

    1991-03-01

    This paper reports on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (2212) and Ca-doped Bi{sub 2}Sr{sub 2}CuO{sub y} (2201) single crystals systematically investigated by Auger Valence Electron Spectroscopy (AVES). In AVES measurements on two kinds of crystals, a drastic difference was observed in the spectral shape of Ca(2p,3p,3p), reflecting a difference in spin-orbit splitting induced by local atomic configuration in the vicinity of Ca atoms. Furthermore, Ca(2p,3p,4s) spectrum appeared in both the crystals, which indicates that the real valency of Ca atoms is deviated from + 2 in the crystals. These results suggest that AVES is a promising probe for characterizing local atomic configuration and valence electron states of the constituent elements.

  11. Synthesis and characterization of high-Tc superconductors in the Tl-Ca-Ba-Cu-O system

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Farrell, D. E.

    1989-01-01

    Both Tl2Ca2Ba2Cu3O10 and TlCa3BaCu3O8.5 are investigated for superconductivity as a function of the sintering temperature, time, atmosphere, and quench rate in an effort to synthesize the high-Tc superconducting phase in the thallium system. The samples are characterized by electrical resistivity measurements, X-ray diffraction, and scanning electron microscopy. Samples of starting composition Tl2Ca2Ba2Cu3O10 fired in air at 860-900 C and rapidly quenched show a Tc of 96-107 K. In contrast, specimens of starting composition TlCa3BaCu3O8.5 when baked at 900 C and slowly cooled in oxygen superconduct at 116 K and above and consist of Tl2Ca2Ba2Cu3O(10+x) as the dominant phase. The results also show that, in contrast to the case of YBa2Cu3O(7-x), doping with a small concentration of fluorine sharpens the resistive transition and produces a large Tc increase in thallium-based superconductors.

  12. Synthesis and characterization of high-Tc superconductors in the Tl-Ca-Ba-Cu-O system

    NASA Astrophysics Data System (ADS)

    Bansal, Narottam P.; Farrell, D. E.

    1989-05-01

    Both Tl2Ca2Ba2Cu3O10 and TlCa3BaCu3O8.5 are investigated for superconductivity as a function of the sintering temperature, time, atmosphere, and quench rate in an effort to synthesize the high-Tc superconducting phase in the thallium system. The samples are characterized by electrical resistivity measurements, X-ray diffraction, and scanning electron microscopy. Samples of starting composition Tl2Ca2Ba2Cu3O10 fired in air at 860-900 C and rapidly quenched show a Tc of 96-107 K. In contrast, specimens of starting composition TlCa3BaCu3O8.5 when baked at 900 C and slowly cooled in oxygen superconduct at 116 K and above and consist of Tl2Ca2Ba2Cu3O(10+x) as the dominant phase. The results also show that, in contrast to the case of YBa2Cu3O(7-x), doping with a small concentration of fluorine sharpens the resistive transition and produces a large Tc increase in thallium-based superconductors.

  13. Experimental Determination of the Liquidus Surface of the Cu-O-ZnO-CaO System in Equilibrium with Air

    NASA Astrophysics Data System (ADS)

    Xia, Longgong; Liu, Zhihong; Taskinen, Pekka

    2016-08-01

    Phase relationships of the Cu-O-ZnO-CaO system in equilibrium with air (p tot = 1 atm, p_{O}2} = 0.21 atm) have been studied using the equilibration and quenching technique within the temperature range from 1273 K to 1773 K (1000 °C to 1500 °C). The chemical compositions of the molten oxide and solid phases in equilibrium were analyzed by EPMA. The eutectic point in the Cu-O-ZnO-CaO system was found to be 1293 K ± 2 K (1020 °C ± 2 °C) and 0.6785 mole fraction tenorite (`CuO'), 0.1793 mole fraction halite (CaO), and 0.1422 mole fraction wurtzite (ZnO). The results from the present study have been used in constructing the liquidus surface of the Cu-O-ZnO-CaO system. The liquidus surface expands dramatically along with increasing temperature, and it moves simultaneously toward the primary phase fields of wurtzite (ZnO) and halite (CaO). The constructed liquidus surfaces have been compared with the isothermal sections (`Cu2O'-ZnO-CaO) calculated by MTDATA 5.10 software and its Mtox 8.1 database. Deviations between the thermodynamically assessed diagrams and the experimental results are significant. Thus, the system requires a reassessment.

  14. Flux pinning by precipitates in the Bi-Sr-Ca-Cu-O system

    DOEpatents

    Shi, Donglu

    1992-01-01

    A fundamental pinning mechanism has been identified in the Bi-Sr-Ca-Cu-O system. The pinning strength has been greatly increased by the introduction of calcium- and copper-rich precipitates into the sample matrix. The calcium and copper are supersaturated in the system by complete melting, and the fine calcium and copper particles precipitated during subsequent crystallization anneal to obtain the superconducting phases. The intragrain critical current density has been increased from the order of 10.sup.5 A/cm.sup.2 to 10.sup.7 A/cm.sup.2 at 5 T.

  15. New method for fabrication of superconducting pipes in the Bi-Sr-Ca-Cu-O system

    NASA Astrophysics Data System (ADS)

    Abe, Yoshihiro; Hosono, Hideo; Lee, Won-Hyuk; Hosoe, Masahiro; Nakamura, Koichi; Inukai, Eikichi

    1993-01-01

    Pipes or hollow cylinders in the Bi-Sr-Ca-Cu-O system were found to be fabricated easily by inspiring or sucking the low viscosity melt into a cold silica glass tube. The outer part of the cast rod-like melt solidified, and the inner hot low-viscosity part of the rod melt was expired. The precursor pipes were reheated at 800 C for 50 h in air, resulting in the formation of superconducting (Tc = 87 K) pipes which were of smooth surface without machining and high bending strength (100-150 MPa).

  16. Microwave surface resistance of bulk Tl-Ba-Ca-Cu-O superconductors

    SciTech Connect

    Newman, H.S.; Singh, A.K.; Sadananda, K.; Imam, M.A.

    1989-01-23

    The first measurements of the microwave surface resistance at 18 GHz of bulk Tl-Ba-Ca-Cu-O superconductors produced by the hot isostatic pressing (HIP) process are reported. The superconducting samples, prepared by solid-state reaction with subsequent sintering and consolidation to obtain ideal density, were measured by replacing the end wall of a TE/sub 011/ circular mode gold-plated copper cavity with the sample and determining the cavity Q for the temperature range 4--300 K. Results indicated that HIP samples which underwent subsequent annealing exhibit, below the critical temperature, a surface resistance approaching an order of magnitude less than copper.

  17. The growth and characterization of Pb-doped Bi-Sr-Ca-Cu-O thin films

    SciTech Connect

    Tseng, M.R.; Chu, J.J.; Huang, Y.T.; Wu, P.T. ); Wang, W.N. )

    1990-03-01

    The growth and characterization of Bi-Pb-Sr-Ca-Cu-O films on single-crystal (001)MgO substrates by rf magnetron sputtering with a single target are reported. The comparison of different post-annealing conditions revealed that the film annealed under controlled Pb potential gave best superconducting properties with {ital T}{sub {ital c}0} above 105 K. The proper doping of Pb not only accelerated the formation of the high-{ital T}{sub {ital c}} phase, but also improved the connectivity of high-{ital T}{sub {ital c}} grains.

  18. Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films

    PubMed Central

    2011-01-01

    The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated. PMID:21711646

  19. Hyper- and hypobaric processing of Tl-Ba-Ca-Cu-O superconductors

    SciTech Connect

    Goretta, K.C.; Routbort, J.L.; Shi, Donglu; Chen, J.G.; Hash, M.C.

    1989-11-01

    Tl-based superconductors of initial composition Tl:Ca:Ba:Cu equal to 2:2:2:3 and 1:3:1:3 were heated in oxygen at pressures of 10{sup 4} to 6 {times} 10{sup 5} Pa. The 2:2:2:3 composition formed primarily the 2-layer superconductor with zero resistance from 77 to 104 K. The 1:3:1:3 composition formed nearly phase pure 3-layer superconductor with a maximum zero resistance temperature of 120 K. Application of hyperbaric pressure influenced phase purities and transition temperatures slightly; phase purities decreased significantly with application of hypobaric pressures. 10 refs., 1 fig.

  20. Hyper- and hypobaric processing of Tl-Ba-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Goretta, K. C.; Routbort, J. L.; Shi, Donglu; Chen, J. G.; Hash, M. C.

    1989-11-01

    Tl-based superconductors of initial composition Tl:Ca:Ba:Cu equal to 2:2:2:3 and 1:3:1:3 were heated in oxygen at pressures of 10(sup 4) to 6 (times) 10(sup 5) Pa. The 2:2:2:3 composition formed primarily the 2-layer superconductor with zero resistance from 77 to 104 K. The 1:3:1:3 composition formed nearly phase pure 3-layer superconductor with a maximum zero resistance temperature of 120 K. Application of hyperbaric pressure influenced phase purities and transition temperatures slightly; phase purities decreased significantly with application of hypobaric pressures.

  1. Native point defects in CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Delugas, P.; Alippi, P.; Raineri, V.

    2010-02-01

    We report first principles computations on native point defects in CCTO. Vacancies present a general high formation energy, their concentration never exceed 1016 cm-3. Oxygen vacancies present stable positive charge states and are thus able to act as donor. Copper vacancies present instead stable negative charge states and are thus potential native acceptors for the material. As to anti-sites, the CuCa defect results to be the energetically favorite in most of the possible conditions, and may reach concentrations as high as 1019 cm-3.

  2. Separation of dielectric and space charge polarizations in CaCu3Ti4O12/CaTiO3 composite polycrystalline systems

    NASA Astrophysics Data System (ADS)

    Bueno, Paulo R.; Ribeiro, William C.; Ramírez, Miguel A.; Varela, José A.; Longo, Elson

    2007-04-01

    The complex analysis of dielectric/capacitance is a very useful approach to separate different polarization contributions existing in polycrystalline ceramics. In this letter, the authors use this type of spectroscopic analysis to separate the bulk's dielectric dipolar relaxation contributions from the polarization contribution due to space charge in the grain boundaries of a CaCu3Ti4O12/CaTiO3 polycrystalline composite system. The bulk dielectric dipolar relaxation was attributed to the self-intertwined domain structures from the CaCu3Ti4O12 phase coupled to the dipole relaxation from the CaTiO3 phase, while the space charge relaxation was attributed to the Schottky-type potential barrier responsible for the highly non-Ohmic properties observed in this composite polycrystalline system.

  3. High strength kiloampere Bi2Sr2CaCu2Ox cables for high-field magnet applications

    NASA Astrophysics Data System (ADS)

    Shen, Tengming; Li, Pei; Jiang, Jianyi; Cooley, Lance; Tompkins, John; McRae, Dustin; Walsh, Robert

    2015-06-01

    Multifilamentary Ag-sheathed Bi2Sr2CaCu2Ox (Bi-2212) wire can carry sufficient critical current density Jc for the development of powerful superconducting magnets. However, the range of its applications is limited by the low mechanical strength of the Ag/Bi-2212 strand. A potential solution is to cable Ag/Bi-2212 wire with high-strength materials that are compatible with the Bi-2212 heat treatment in an oxygen atmosphere. Past attempts have not always been successful, because the high-strength materials reacted with Bi-2212 wires, significantly reducing their Jc. We examined the nature of reactions occurring when Ag/Bi-2212 wires are heat-treated in direct contact with several commonly used high-strength alloys and a new Fe-Cr-Al alloy. INCONEL X750 and INCONEL 600 resulted in significant Jc loss, whereas Ni80-Cr caused little or no Jc loss; however, all of them formed chromium oxide that subsequently reacted with silver, creating cracks in the silver sheath. We found that Fe-Cr-Al did not show significant reactions with Ag/Bi-2212 strands. Scanning electron microscopy (SEM) and energy dispersive x-ray (EDS) examinations revealed that the Fe-Cr-Al alloy benefits from the formation of a uniform, crack-free, continuous alumina layer on its surface that does not react with Ag and that helps minimize the Cu loss found with INCONEL X750 and INCONEL 600. We fabricated prototype 6-around-1 cables with six Bi-2212 strands twisted and transposed around an Fe-Cr-Al alloy core coated with TiO2. After standard 1 bar melt processing, the cable retained 100% of the total current-carrying capability of its strands, and, after a 10 bar overpressure processing, the cable reached a total current of 1025 A at 4.2 K and 10 T. Tensile tests showed that Fe-Cr-Al becomes brittle after being cooled to 4.2 K, whereas INCONEL X750 remains ductile and retains a modulus of 183 GPa. We proposed new cable designs that take advantage of the chemical compatibility of Fe-Cr-Al and high strength of

  4. Processing and microstructural characterization of Al-Cu alloys produced from rapidly solidified powders

    SciTech Connect

    Conlon, K.T.; Maire, E.; Wilkinson, D.S.; Henein, H.

    2000-01-01

    This paper concerns the processing of Al-Cu alloys via a novel powder-metallurgy route. The specific technique used for powder processing involves the rapid solidification of coarse, molten droplets following impulse atomization. This produces a fine, homogeneous, dendritic microstructure within the alloy granules. Following consolidation via hot pressing, the microstructure consists mostly of an Al matrix with fine CuAl{sub 2} particles and partially recrystallized dendrites. Further heat treatment and/or thermomechanical processing completes the spheroidization process in the CuAl{sub 2} phase. Blending powders with different Cu has been used to make materials with a bimodal distribution of the local particle-volume-fraction content. The high temperature (773 K) strength of these materials decreases with increasing CuAl{sub 2} content. This can be explained using a flow model based on superplastic deformation, controlled by diffusion-accommodated sliding at Al grain boundaries. This mechanism may also explain the deformation-enhanced particle coarsening observed during channel-die forging operations.

  5. Phosphate-sulfide assemblages and Al/Ca ratios in type-3 chondrites

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Grossman, J. N.

    1985-09-01

    Electron microscopic examinations were carried out on various chondrites to re-examine previously reported anomalously high Al/Ca ratios. Polished thin sections of the three CV3, two CO3 and the Krymka LL3 chondrites were scanned to characterize the phosphate-sulfide inclusions. The formation of the assemblages was interpreted as proceeding in five steps, starting with the formation of metal grains with early nebular material and finishing with a reaction between schreibersite with Ca, O and Cl to form merrillite and chloropatite. The abundances of the observed assemblages were not high enough to imply Al/Ca ratios similar to whole-rocks. It is concluded that the specimens were originally examined with a broader electron beam than used to examine standard samples, and resulted in the anomalously high Al/Ca ratios.

  6. Phosphate-sulfide assemblages and Al/Ca ratios in type-3 chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, A. E.; Grossman, J. N.

    1985-01-01

    Electron microscopic examinations were carried out on various chondrites to re-examine previously reported anomalously high Al/Ca ratios. Polished thin sections of the three CV3, two CO3 and the Krymka LL3 chondrites were scanned to characterize the phosphate-sulfide inclusions. The formation of the assemblages was interpreted as proceeding in five steps, starting with the formation of metal grains with early nebular material and finishing with a reaction between schreibersite with Ca, O and Cl to form merrillite and chloropatite. The abundances of the observed assemblages were not high enough to imply Al/Ca ratios similar to whole-rocks. It is concluded that the specimens were originally examined with a broader electron beam than used to examine standard samples, and resulted in the anomalously high Al/Ca ratios.

  7. STM study of the atomic structure of the icosahedral Al-Cu-Fe fivefold surface

    NASA Astrophysics Data System (ADS)

    Cai, T.; Fournée, V.; Lograsso, T.; Ross, A.; Thiel, P. A.

    2002-04-01

    We use scanning tunneling microscopy (STM) to investigate the atomic structure of the icosahedral (i-) Al-Cu-Fe fivefold surface in ultra high vacuum (UHV). Studies show that large, atomically flat terraces feature many ten-petal ``flowers'' with internal structure. The observed flower patterns can be associated with features on Al rich dense atomic planes generated from two-dimensional cuts of bulk models based on x-ray and neutron diffraction experiments. The results confirm that the fivefold surface of i-Al-Cu-Fe corresponds to a bulk-terminated plane.

  8. Evaluation of the effect of the stoichiometric ratio of Ca/Cu on the electrical and microstructural properties of the CaCu3Ti4O12 polycrystalline system

    NASA Astrophysics Data System (ADS)

    Ramírez, M. A.; Bueno, P. R.; Tararam, R.; Cavalheiro, A. A.; Longo, E.; Varela, J. A.

    2009-09-01

    The structural, microstructural, non-ohmic and dielectric properties of perovskite-type CaCu3Ti4O12 (CCTO) with Ca/Cu stoichiometries of 1/3, 1/1 and 3/1 are discussed. The 1/3 Ca/Cu ratio system presents very high dielectric permittivity (~9000 at 10 kHz) and a low non-ohmic property (α = 9), whereas the 1/1 Ca/Cu ratio system shows the opposite effect, i.e. the dielectric permittivity decreases (2740 at 10 kHz) and the non-ohmic property increases (α = 42), indicating that these properties are not directly correlated. The results of this work reinforce the idea that the greatest contribution to the very high permittivity is caused by the presence of planar defects inside the CCTO grains, generating internal nanometric domains associated with stacking faults, according to the nanoscale barrier layer capacitance model proposed very recently in the literature [1]. The non-ohmic property is related to the presence and distribution of phases such as CaTiO3 (CTO) and CuO, segregated or precipitated at the grain boundary, which generate large numbers of electrically active interfaces.

  9. Formation Mechanism of CaS-Bearing Inclusions and the Rolling Deformation in Al-Killed, Low-Alloy Steel with Ca Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Guang; Jiang, Zhouhua; Li, Yang

    2016-08-01

    The existing form of CaS inclusion in Ca-treated, Al-killed steel during secondary refining process was investigated with scanning electron microscopy and an energy-dispersive spectrometer (EDS). The results of 12 heats industrial tests showed that CaS has two kinds of precipitation forms. One form takes place by the direct reaction of Ca and S, and the other takes place by the reaction of CaO in calcium aluminates with dissolved Al and S in liquid steel. Thermodynamic research for different precipitation modes of CaS under different temperature was carried out. In particular, CaO-Al2O3-CaS isothermal section diagrams and component activities of calcium aluminates were calculated by the thermodynamic software FactSage. By thermodynamic calculation, a precipitation-area diagram of oxide-sulfide duplex inclusion was established by fixing the sulfur content. The quantity of CaS, which was precipitated in a reaction between [Al], [S] and (CaO), can be calculated and predicted based on the precipitation-area diagram of oxide-sulfide duplex inclusion. Electron probe microanalysis and EDS were used for observing rolling deformation of different types of CaS-bearing inclusions during the rolling process. Low modification of calcium aluminates wrapped by CaS has different degrees of harm to steel in the rolling process. A thick CaS layer can prevent some fragile calcium aluminates from being crushed during the rolling process. Some oxide-sulfide duplex inclusion contains little CaS performed better deformation during the rolling process, but when CaS in oxide-sulfide duplex inclusion becomes more, it will cause the whole inclusion to lose plastic yielding ability. The plastic deformation region of CaS-bearing inclusion in a CaO-Al2O3-CaS isothermal section diagram is confirmed.

  10. Tuning the formation of p-type defects by peroxidation of CuAlO{sub 2} films

    SciTech Connect

    Luo, Jie; Lin, Yow-Jon; Yang, Yao-Wei; Hung, Hao-Che; Liu, Chia-Jyi

    2013-07-21

    p-type conduction of CuAlO{sub 2} thin films was realized by the rf sputtering method. Combining with Hall, X-ray photoelectron spectroscopy, energy dispersive spectrometer, and X-ray diffraction results, a direct link between the hole concentration, Cu vacancy (V{sub Cu}), and interstitial oxygen (O{sub i}) was established. It is shown that peroxidation of CuAlO{sub 2} films may lead to the increased formation probability of acceptors (V{sub Cu} and O{sub i}), thus, increasing the hole concentration. The dependence of the V{sub Cu} density on growth conditions was identified for providing a guide to tune the formation of p-type defects in CuAlO{sub 2}. Understanding the defect-related p-type conductivity of CuAlO{sub 2} is essential for designing optoelectronic devices and improving their performance.

  11. Effect of Ag Addition on the Electrochemical Performance of Cu10Al in Artificial Saliva

    PubMed Central

    Salgado-Salgado, R. J.; Sotelo-Mazon, O.; Rodriguez-Diaz, R. A.; Salinas-Solano, G.

    2016-01-01

    In this work we proposed to evaluate the corrosion resistance of four different alloys by electrochemical techniques, a binary alloy Cu10Al, and three ternary alloys Cu10Al-xAg (x = 5, 10, and 15 wt.%) to be used like biomaterials in dental application. Biomaterials proposed were tested in artificial saliva at 37°C for 48 h. In addition, pure metals Cu, Al, Ag, and Ti as reference materials were evaluated. In general the short time tests indicated that the Ag addition increases the corrosion resistance and reduces the extent of localized attack of the binary alloy. Moreover, tests for 48 hours showed that the Ag addition increases the stability of the passive layer, thereby reducing the corrosion rate of the binary alloy. SEM analysis showed that Cu10Al alloy was preferably corroded by grain boundaries, and the Ag addition modified the form of attack of the binary alloy. Cu-rich phases reacted with SCN− anions forming a film of CuSCN, and the Ag-rich phase is prone to react with SCN− anions forming AgSCN. Thus, binary and ternary alloys are susceptible to tarnish in the presence of thiocyanate ions. PMID:27660601

  12. Effect of Ag Addition on the Electrochemical Performance of Cu10Al in Artificial Saliva.

    PubMed

    Salgado-Salgado, R J; Porcayo-Calderon, J; Sotelo-Mazon, O; Rodriguez-Diaz, R A; Salinas-Solano, G; Salinas-Bravo, V M; Martinez-Gomez, L

    2016-01-01

    In this work we proposed to evaluate the corrosion resistance of four different alloys by electrochemical techniques, a binary alloy Cu10Al, and three ternary alloys Cu10Al-xAg (x = 5, 10, and 15 wt.%) to be used like biomaterials in dental application. Biomaterials proposed were tested in artificial saliva at 37°C for 48 h. In addition, pure metals Cu, Al, Ag, and Ti as reference materials were evaluated. In general the short time tests indicated that the Ag addition increases the corrosion resistance and reduces the extent of localized attack of the binary alloy. Moreover, tests for 48 hours showed that the Ag addition increases the stability of the passive layer, thereby reducing the corrosion rate of the binary alloy. SEM analysis showed that Cu10Al alloy was preferably corroded by grain boundaries, and the Ag addition modified the form of attack of the binary alloy. Cu-rich phases reacted with SCN(-) anions forming a film of CuSCN, and the Ag-rich phase is prone to react with SCN(-) anions forming AgSCN. Thus, binary and ternary alloys are susceptible to tarnish in the presence of thiocyanate ions. PMID:27660601

  13. Effect of Ag Addition on the Electrochemical Performance of Cu10Al in Artificial Saliva

    PubMed Central

    Salgado-Salgado, R. J.; Sotelo-Mazon, O.; Rodriguez-Diaz, R. A.; Salinas-Solano, G.

    2016-01-01

    In this work we proposed to evaluate the corrosion resistance of four different alloys by electrochemical techniques, a binary alloy Cu10Al, and three ternary alloys Cu10Al-xAg (x = 5, 10, and 15 wt.%) to be used like biomaterials in dental application. Biomaterials proposed were tested in artificial saliva at 37°C for 48 h. In addition, pure metals Cu, Al, Ag, and Ti as reference materials were evaluated. In general the short time tests indicated that the Ag addition increases the corrosion resistance and reduces the extent of localized attack of the binary alloy. Moreover, tests for 48 hours showed that the Ag addition increases the stability of the passive layer, thereby reducing the corrosion rate of the binary alloy. SEM analysis showed that Cu10Al alloy was preferably corroded by grain boundaries, and the Ag addition modified the form of attack of the binary alloy. Cu-rich phases reacted with SCN− anions forming a film of CuSCN, and the Ag-rich phase is prone to react with SCN− anions forming AgSCN. Thus, binary and ternary alloys are susceptible to tarnish in the presence of thiocyanate ions.

  14. Effect of Ag Addition on the Electrochemical Performance of Cu10Al in Artificial Saliva.

    PubMed

    Salgado-Salgado, R J; Porcayo-Calderon, J; Sotelo-Mazon, O; Rodriguez-Diaz, R A; Salinas-Solano, G; Salinas-Bravo, V M; Martinez-Gomez, L

    2016-01-01

    In this work we proposed to evaluate the corrosion resistance of four different alloys by electrochemical techniques, a binary alloy Cu10Al, and three ternary alloys Cu10Al-xAg (x = 5, 10, and 15 wt.%) to be used like biomaterials in dental application. Biomaterials proposed were tested in artificial saliva at 37°C for 48 h. In addition, pure metals Cu, Al, Ag, and Ti as reference materials were evaluated. In general the short time tests indicated that the Ag addition increases the corrosion resistance and reduces the extent of localized attack of the binary alloy. Moreover, tests for 48 hours showed that the Ag addition increases the stability of the passive layer, thereby reducing the corrosion rate of the binary alloy. SEM analysis showed that Cu10Al alloy was preferably corroded by grain boundaries, and the Ag addition modified the form of attack of the binary alloy. Cu-rich phases reacted with SCN(-) anions forming a film of CuSCN, and the Ag-rich phase is prone to react with SCN(-) anions forming AgSCN. Thus, binary and ternary alloys are susceptible to tarnish in the presence of thiocyanate ions.

  15. Synthesis and Electrochemical Characterization of M2Mn3O8 (M=Ca,Cu) Compounds and Derivatives

    SciTech Connect

    Park, Yong Joon; Doeff, Marca M.

    2005-08-25

    M{sub 2}Mn{sub 3}O{sub 8} (M=Ca{sup 2+}, Cu{sup 2+}) compounds were synthesized and characterized in lithium cells. The M{sup 2+} cations, which reside in the van der Waal's gaps between adjacent sheets of Mn{sub 3}O{sub 8}{sup 4-}, may be replaced chemically (by ion-exchange) or electrochemically with Li. More than 7 Li{sup +}/Cu{sub 2}Mn{sub 3}O{sub 8} may be inserted electrochemically, with concomitant reduction of Cu{sup 2+} to Cu metal, but less Li can be inserted into Ca{sub 2}Mn{sub 3}O{sub 8}. In the case of Cu{sup 2+}, this process is partially reversible when the cell is charged above 3.5 V vs. Li, but intercalation of Cu{sup +} rather than Cu{sup 2+} and Li{sup +}/Cu{sup +} exchange occurs during the subsequent discharge. If the cell potential is kept below 3.4 V, the Li in excess of 4Li{sup +}/Cu{sub 2}Mn{sub 3}O{sub 8} can be cycled reversibly. The unusual mobility of +2 cations in a layered structure has important implications both for the design of cathodes for Li batteries and for new systems that could be based on M{sup 2+} intercalation compounds.

  16. Adhesion strength and nucleation thermodynamics of four metals (Al, Cu, Ti, Zr) on AlN substrates

    NASA Astrophysics Data System (ADS)

    Tao, Yuan; Ke, Genshui; Xie, Yan; Chen, Yigang; Shi, Siqi; Guo, Haibo

    2015-12-01

    Devices based on AlN generally require adherent and strong interfaces between AlN and other materials, whereas most metals are known to be nonwetting to AlN and form relatively weak interfaces with AlN. In this study, we selected four representative metals (Al, Cu, Ti, and Zr) to study the adhesion strength of the AlN/metal interfaces. Mathematical models were constructed between the adhesion strength and enthalpy of formation of Al-metal solid solutions, the surface energies of the metals, and the lattice mismatch between the metals and AlN, based on thermodynamic parameters calculated using density functional theory. It appears that the adhesion strength is mainly determined by the lattice mismatch, and is in no linear correlation with either the Al-metal solution's formation enthalpies or the metals' surface energies. We also investigated the nucleation thermodynamics of the four metals on AlN substrates. It was found that Ti forms the strongest interface with AlN, and has the largest driving force for nucleation on AlN substrates among the four metals.

  17. Assessment of Post-eutectic Reactions in Multicomponent Al-Si Foundry Alloys Containing Cu, Mg, and Fe

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2015-07-01

    Post-eutectic reactions occurring in Al-Si hypoeutectic alloys containing different proportions of Cu, Mg, and Fe were thoroughly investigated in the current study. As-cast microstructures were initially studied by optical and electron microscopy to investigate the microconstituents of each alloy. Differential scanning calorimetry (DSC) was then used to examine the phase transformations occurring during the heating and cooling processes. Thermodynamic calculations were carried out to assess the phase formation under equilibrium and in nonequilibrium conditions. The Q-Al5Cu2Mg8Si6 phase was predicted to precipitate from the liquid phase, either at the same temperature or earlier than the θ-Al2Cu phase depending on the Cu content of the alloy. The AlCuFe-intermetallic, which was hardly observed in the as-cast microstructure, significantly increased after the solution heat treatment in the alloys containing high Cu and Fe contents following a solid-state transformation of the β-Al5FeSi phase. After the solution heat treatment, the AlCuFe-intermetallics were mostly identified with the stoichiometry of the Al7Cu2Fe phase. Thermodynamic calculations and microstructure analysis helped in determining the DSC peak corresponding to the melting temperature of the N-Al7Cu2Fe phase. The effect of Cu content on the formation temperature of π-Al8Mg3FeSi6 is also discussed.

  18. The optically stimulated luminescence (OSL) properties of LiF:Mg,TI, Li2B4O7:CU, CaSO4:Tm, and CaF2:MN thermoluminescent (TL) materials.

    PubMed

    Kearfott, Kimberlee J; Geoffrey West, William; Rafique, Muhammad

    2015-05-01

    This paper reports on an investigation into the optically stimulated luminescence (OSL) properties of several known thermoluminescent materials, namely LiF:Mg,Ti, Li2B4O7:Cu, CaSO4:Tm, and CaF2:Mn. Samples were irradiated to air doses of 15mGy, 150mGy and 1.5Gy and analyzed using a commercially available OSL reader system to determine their luminescence response to continuous blue and infrared light (IR) excitation, centered at 470nm and 830nm wavelengths, respectively. CaF2:Mn did not show an OSL response with either IR or blue light stimulation. Li2B4O7:Cu and LiF:Mg,Ti demonstrated relatively weak OSL signals only under blue light excitation. CaSO4:Tm exhibited OSL under both IR and blue light stimulation at sensitivities roughly one order of magnitude less than the OSL response of α-Al2O3:C under the same conditions. PMID:25769010

  19. Microstructural changes to AlCu6Ni1 alloy after prolonged annealing at elevated temperature.

    PubMed

    Wierzbińska, M; Sieniawski, J

    2010-03-01

    This work presents results of microstructure examination of AlCu(6)Ni(1) aluminium alloy. The commercial AlCu(4)Ni(2)Mg(2) (M-309) alloy is widely used for elements of aircraft and automotive engines. Modification its chemical composition was aimed at improving the stability of mechanical properties of the alloy subjected to long-term exposure to high temperature. The alloy after standard T6 heat treatment (solution heat treated at 818 K/10 h/water quenched followed by ageing at 498 K/8 h/air cooled) was annealed for 150 h at elevated temperature of 573 K corresponding to the maximum value at which structural elements of jet piston engines made of aluminium alloys operate. It was found that applied heat treatment caused an increasing in the particles of hardening phase (theta'-Al(2)Cu) size. The significant growth of the length of theta'-Al(2)Cu precipitations was observed in particularly. Nevertheless, it did not strongly result in change of its shape - the 'crystallites' and 'rods' were still characteristic of hardening phase morphology. The phenomena of the growth of theta'-Al(2)Cu precipitates caused decreasing the mechanical properties of the alloy, what is the subject of further investigations by the authors.

  20. Electroless Cu Plating on Anodized Al Substrate for High Power LED.

    PubMed

    Rha, Sa-Kyun; Lee, Youn-Seoung

    2015-03-01

    Area-selective copper deposition on screen printed Ag pattern/anodized Al/Al substrate was attempted using a neutral electroless plating processes for printed circuit boards (PCBs), according to a range of variation of pH 6.5-pH 8 at 70 °C. The utilized basic electroless solution consisted of copper(II) sulfate pentahydrate, sodium phosphinate monohydrate, sodium citrate tribasic dihydrate, ammonium chloride, and nickel(II) sulfate hexahydrate. The pH of the copper plating solutions was adjusted from pH 6.5 to pH 8 using NH4OH. Using electroless plating in pH 6.5 and pH 7 baths, surface damage to the anodized Al layer hardly occurred; the structure of the plated Cu-rich films was a typical fcc-Cu, but a small Ni component was co-deposited. In electroless plating at pH 8, the surface of the anodized Al layer was damaged and the Cu film was composed of a lot of Ni and P which were co-deposited with Cu. Finally, in a pH 7 bath, we can make a selectively electroless plated Cu film on a PCB without any lithography and without surface damage to the anodized Al layer. PMID:26413680

  1. Microstructural changes to AlCu6Ni1 alloy after prolonged annealing at elevated temperature.

    PubMed

    Wierzbińska, M; Sieniawski, J

    2010-03-01

    This work presents results of microstructure examination of AlCu(6)Ni(1) aluminium alloy. The commercial AlCu(4)Ni(2)Mg(2) (M-309) alloy is widely used for elements of aircraft and automotive engines. Modification its chemical composition was aimed at improving the stability of mechanical properties of the alloy subjected to long-term exposure to high temperature. The alloy after standard T6 heat treatment (solution heat treated at 818 K/10 h/water quenched followed by ageing at 498 K/8 h/air cooled) was annealed for 150 h at elevated temperature of 573 K corresponding to the maximum value at which structural elements of jet piston engines made of aluminium alloys operate. It was found that applied heat treatment caused an increasing in the particles of hardening phase (theta'-Al(2)Cu) size. The significant growth of the length of theta'-Al(2)Cu precipitations was observed in particularly. Nevertheless, it did not strongly result in change of its shape - the 'crystallites' and 'rods' were still characteristic of hardening phase morphology. The phenomena of the growth of theta'-Al(2)Cu precipitates caused decreasing the mechanical properties of the alloy, what is the subject of further investigations by the authors. PMID:20500428

  2. CuAl{sub 2} revisited: Composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy

    SciTech Connect

    Grin, Yuri . E-mail: grin@cpfs.mpg.de; Wagner, Frank R.; Armbruester, Marc; Kohout, Miroslav; Leithe-Jasper, Andreas; Schwarz, Ulrich; Wedig, Ulrich; Georg von Schnering, Hans

    2006-06-15

    The structure of CuAl{sub 2} is usually described as a framework of base condensed tetragonal antiprisms [CuAl{sub 8/4}]. The appropriate symmetry governed periodic nodal surface (PNS) divides the space of the structure into two labyrinths. All atoms are located in one labyrinth, whereas the second labyrinth seems to be 'empty'. The bonding of the CuAl{sub 2} structure was analyzed by the electron localization function (ELF), crystal orbital Hamiltonian population (COHP) analysis and Raman spectroscopy. From the ELF representation it is seen, that the 'empty' labyrinth is in fact the place of important covalent interactions. ELF, COHP in combination with high-pressure X-ray diffraction and Raman spectroscopy show that the CuAl{sub 2} structure is described best as a network built of interpenetrating graphite-like nets of three-bonded aluminum atoms with the copper atoms inside the tetragonal-antiprismatic cavities. - Graphical abstract: Atomic interactions in the crystal structure of the intermetallic compound CuAl{sub 2}: Three-bonded aluminum atoms form interpenetrating graphite-like nets. The copper atoms are located in the channels of aluminum network by means of three-center bonds. The bonding model is in agreement with the result of polarized Raman spectroscopy and high-pressure X-ray powder diffraction.

  3. Defect structure of the high-dielectric-constant perovskite Ca Cu3 Ti4 O12

    NASA Astrophysics Data System (ADS)

    Wu, L.; Zhu, Y.; Park, S.; Shapiro, S.; Shirane, G.; Tafto, J.

    2005-01-01

    Using transmission electron microscopy (TEM) we studied CaCu3Ti4O12 , an intriguing material that exhibits a huge dielectric response, up to kilohertz frequencies, over a wide range of temperature. Neither in single crystals, nor in polycrystalline samples, including sintered bulk and thin films, did we observe the twin domains suggested in the literature. Nevertheless, in the single crystals, we saw a very high density of dislocations with a Burger vector of [110], as well as regions with cation disorder and planar defects with a displacement vector (1)/(4)[110] . In the polycrystalline samples, we observed many grain boundaries with oxygen deficiency, in comparison with the grain interior. The defect-related structural disorders and inhomogeneity, serving as an internal barrier layer capacitance in a semiconducting matrix, might explain the very large dielectric response of the material. Our TEM study of the structure defects in CaCu3Ti4O12 supports a recently proposed morphological model with percolating conducting regions and blocking regions.

  4. [delta] precipitation in an Al-Li-Cu-Mg-Zr alloy

    SciTech Connect

    Prasad, K.S.; Mukhopadhyay, A.K.; Gokhale, A.A.; Banerjee, D. ); Goel, D.B. Univ. of Roorkee . Dept. of Metallurgical Engineering)

    1994-05-15

    AlLi based [delta] phase has an NaTl structure (i.e., a diamond cubic) with a = 0.637nm and is an equilibrium phase in the binary Al-Li system. In heat treated binary Al-Li alloys of appropriate compositions, [delta] phase can format grain boundaries as well as within the grains. In commercially heat treated Al-Li-Cu alloys of 2090 specification, the grain boundary precipitate [delta] of the binary Al-Li system is replaced by a combination of T[sub 2](Al[sub 6]CuLi[sub 3]), R(Al[sub 5]CuLi[sub 3]) and T[sub 1](Al[sub 2]CuLi) phases. In similarly treated Al-Li-Cu-Mg alloys of 8090 specification, the copper rich T[sub 2] phase, present in the form of Al[sub 6]CuLi[sub 3[minus]x]Mg[sub x], is known to be the major coarse g.b. precipitate. The presence of an Al-Li-Cu-Mg based C phase at the grain boundaries of the commercially heat treated 8090 alloys has also been documented. No detailed study has yet been carried out to verify whether the [delta] phase can be present at the grain boundaries of the commercially heat treated 8090 alloys. Given the correlations between the g.b. phase morphology, g.b. phase chemistry, and the stress corrosion cracking resistance of these alloys, it is important that the g.b. precipitates be examined and identified. In this paper results using TEM are presented to show that the [delta] phase can be present in varying amounts at the grain boundaries in an 8090 alloy when heat treated in the temperature range of 170--350 C. An examination is also made of the [delta] precipitation within the grain to establish that the T[sub 2]/[alpha]-Al interface is the dominant nucleation site for the noncoherent [delta] phase.

  5. Microstructural characterization of Ag-sheathed Tl-Ba-Ca-Cu-O and Bi-Sr-Ca-Cu-O superconducting tapes by analytical electron microscopy

    SciTech Connect

    Hu, J.G.; Miller, D.J.; Goretta, K.C.; Poeppel, R.B.

    1992-09-01

    The microstructures of Tl(1223) and Pb-doped Bi(2223) silver tapes produced by the powder-in-tube (PM) method have been examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS). The Tl tapes annealed below the melting point exhibited fine grains and a high density of pores while tapes subjected to partial melting prior to solid state annealing were fully dense with large grains. However, these tapes also showed an increase in the size and density of impurity particles, particularly CaO and a Ba-Cu rich phase. Silver powders added to the precursors tended to promote the growth of Tl(1223) at lower temperatures but also interfered with the development of texture by providing nucleation sites of random orientations. In contrast, the Bi(2223) tape exhibited a high degree of texture and alignment. The incorporation of silver within the superconducting phase was found to be negligible for both the Tl(1223) and Bi(2223) tapes.

  6. Two-step reset in the resistance switching of the Al/TiOx/Cu structure.

    PubMed

    Shao, Xing L; Zhao, Jin S; Zhang, Kai L; Chen, Ran; Sun, Kuo; Chen, Chang J; Liu, Kai; Zhou, Li W; Wang, Jian Y; Ma, Chen M; Yoon, Kyung J; Hwang, Cheol S

    2013-11-13

    Two-step reset behaviors in the resistance switching properties of the top Al/TiOx/bottom Cu structure were studied. During the electroforming and set steps, two types of conducting filaments composed of Cu and oxygen vacancies (Cu-CF and V(O)-CF) were simultaneously (or sequentially) formed when Al was negatively biased. In the subsequent reset step with the opposite bias polarity, the Cu-CFs ruptured first at ~0.5 V, and formed an intermediate state. The trap-filled V(O)-CFs were transformed into a trap-empty state, resulting in a high-resistance state at ~1 V. Matrix phase in the electrochemical metallization cell can play an active role in resistance switching. PMID:24099490

  7. High resolution electron microscopy study of a high Cu variant of Weldalite (tm) 049 and a high strength Al-Cu-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Herring, R. A.; Gayle, Frank W.; Pickens, Joseph R.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy that is strengthened in artificially aged tempers primarily by very thin plate-like precipitates lying on the set of (111) matrix planes. This precipitate might be expected to be the T(sub 1) phase, Al2CuLi, which has been observed in Al-Cu-Li alloys. However, in several ways this precipitate is similar to the omega phase which also appears as the set of (111) planes plates and is found in Al-Cu-Ag-Mg alloys. The study was undertaken to identify the set of (111) planes precipitate or precipitates in Weldalite (trademark) 049 in the T8 (stretched and artificially aged) temper, and to determine whether T(sub 1), omega, or some other phase is primarily responsible for the high strength (i.e., 700 MPa tensile strength) in this Al-Cu-Li-Ag-Mg alloy.

  8. Influences of film thickness on the structural, electrical and optical properties of CuAlO2 thin films

    NASA Astrophysics Data System (ADS)

    Dong, Guobo; Zhang, Ming; Wang, Mei; Li, Yingzi; Gao, Fangyuan; Yan, Hui; Diao, Xungang

    2014-07-01

    CuAlO2 films with different thickness were prepared by the radio frequency magnetron sputtering technique. The structural, electrical and optical properties of CuAlO2 were studied by X-ray diffraction, atomic force microscope, UV-Vis double-beam spectrophotometer and Hall measurements. The results indicate that the single phase hexagonal CuAlO2 is formed and the average grain size of CuAlO2 films increases with increasing film thickness. The results also exhibit that the lowering of bandgap and the increase of electrical conductivity of CuAlO2 films with the increase of their thickness, which are attributed to the improvement of the grain size and the anisotropic electrical property. According to the electrical and optical properties, the biggest figure of merit is achieved for the CuAlO2 film with the appropriate thickness of 165 nm.

  9. Temperature variation of the size effect in dilute AlMg and AlCa alloys: Measurement and theory

    NASA Astrophysics Data System (ADS)

    Gilder, H. M.; Asty, M.; Audit, Ph.

    1980-12-01

    Optical-interferometric-differential-length and x-ray lattice-parameter measurements performed at low temperatures in dilute AlMg and AlCa alloys indicate that the temperature variation of the size effect corresponds to a relatively large difference between the intrinsic coefficient of thermal expansion βi of the solute atom structure and that, β, of the solvent. This result is another example of the surprising expansive properties of point defects previously described by Gilder and co-workers (high-temperature vacancy diffusion) and more recently by Ganne (low-temperature dilatometry on irradiated specimens). Specifically, in the temperature range 0.2Ca)β~-4. This, as well as the fact that the sign of the change in the coefficient of thermal expansion Δβ of the host metal caused by the introduction of the solute atom is positive for Mg and negative for Ca, indicates that solute-solvent valence effects play a minor role in determining the coefficient of thermal expansion of the dilute alloy. It is also found, to within the experimental precision, that Δβ(Mg) and Δβ(Ca) are temperature independent, suggesting a type of Matthiessen's rule for thermal expansion. A model calculation of the size effect and its temperature variation in the infinitely dilute alloy is presented. The volume-dependent forces are treated by means of a term describing the elastic energy associated with the solute-solvent volume misfit, whereas the temperature-dependent potential of Dagens et al. is used to calculate the pairwise interaction between the solvent ions and the solute ion. Good agreement with the experimental data is obtained for the size effect in both AlMg and AlCa. The calculated values of Δβ(Mg)Ci, Ci being the solute concentration, and βi(Mg) fall between the measured values in the two AlMg alloys studied. The calculation of Δβ(Ca)Ci and βi(Ca) is not possible due to a lack of elastic-constants data for pure, metallic

  10. Effect of the Cu and Ni content on the crystallization temperature and crystallization mechanism of La-Al-Cu(Ni) metallic glasses

    NASA Astrophysics Data System (ADS)

    Li, Peiyou

    2016-02-01

    The effect of the Cu and Ni content on the crystallization mechanism and the crystallization temperatures of La-Al-Cu(Ni) metallic glasses (MGs) was studied by differential scanning calorimetry (DSC). The experimental results have shown that the DSC curves obtained for the La-Al-Cu and La-Al-Ni MGs exhibit two and three crystallization temperatures, respectively. The crystallization temperatures of the La-Al-Cu and La-Al-Ni MGs result from the merging and splitting of thermal events related to the corresponding eutectic atomic pairs in the La72Cu28 and La81.6Al18.4 MGs, and La72Ni28 and La81.6Al18.4 MGs, respectively. In addition, Al- and Ni-containing clusters with weak or strong atomic interaction in the Al-Ni atomic pairs strongly affect the crystallization mechanism and thus the crystallization temperature of La-Al-Ni MGs. This study provides a novel understanding of the relation between the crystallization temperature and the underlying crystallization mechanisms in La-Al-Cu(Ni) MGs.

  11. Chemical Trend of Superconducting Critical Temperatures in Hole-Doped CuBO2, CuAlO2, CuGaO2, and CuInO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi; Ishikawa, Takahiro; Shimizu, Katsuya

    2016-09-01

    We calculated the superconducting critical temperature (Tc) for hole-doped CuXO2 (X = B, Al, Ga, and In) compounds using first-principles calculations based on rigid band model. The compounds with X = Al, Ga, and In have delafosite-type structures and take maximum Tc values at 0.2-0.3 with respect to the number of holes (Nh) in the unit-cell: 50 K for CuAlO2, 10 K for CuGaO2, and 1 K for CuInO2. The decrease of Tc for this change in X is involved by covalency reduction and lattice softening associated with the increase of ionic mass and radius. For CuBO2 which is a lighter compound than CuAlO2, the delafosite structure is unstable and a body-centered tetragonal structure emerges as the most stable structure. As the results, the electron-phonon interaction is decreased and Tc is lower by approximately 43 K than that of CuAlO2 at the hole-doping conditions of Nh = 0.2-0.3.

  12. Phase composition and structure of aluminum Al-Cu-Si-Sn-Pb alloys

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Stolyarova, O. O.; Murav'eva, T. I.; Zagorskii, D. L.

    2016-06-01

    The structure and phase composition of cast and heat treated Al-Cu-Si-Sn-Pb alloys containing 6 wt % Sn, 2 wt % Pb, 0-4 wt % Cu, 0-10 wt % Si have been studied using calculations and experimental methods. Polythermal and isothermal sections are reported, which indicate the existence of two liquid phases. It was found that the low-melting phase is inhomogeneous and consists of individual leadand tin-based particles.

  13. Surface tension of liquid Al-Cu and wetting at the Cu/Sapphire solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Schmitz, J.; Brillo, J.; Egry, I.

    2014-02-01

    For the study of the interaction of a liquid alloy with differently oriented single crystalline sapphire surfaces precise surface tension data of the liquid are fundamental. We measured the surface tension of liquid Al-Cu contactlessly on electromagnetically levitated samples using the oscillating drop technique. Data were obtained for samples covering the entire range of composition and in a broad temperature range. The surface tensions can be described as linear functions of temperature with negative slopes. Moreover, they decrease monotonically with an increase of aluminium concentration. The observed behaviour with respect to both temperature and concentration is in agreement with a thermodynamic model calculation using the regular solution approximation. Surface tensions were used to calculate interfacial energies from the contact angles of liquid Cu droplets, deposited on the C(0001), A(11-20), R(1-102) surfaces of an α-Al2O3 substrate. The contact angles were measured by means of the sessile drop method at 1380 K. In the Cu/α-Al2O3 system, no anisotropy is evident neither for the contact angles nor for the interfacial energies of different surfaces. The work of adhesion of this system is isotropic, too.

  14. Raman scattering measurements of phonon anharmonicity in CuAlO2 thin films

    NASA Astrophysics Data System (ADS)

    Singh, Manoj K.; Dussan, S.; Sharma, Ganpat L.; Katiyar, Ram S.

    2008-12-01

    CuAlO2 thin films were grown on single crystalline sapphire substrates with c-axis orientation by rf sputtering method. The x-ray diffraction data indicate the formation of delafossite structure and tend to be oriented along (001). Temperature dependent Raman spectra of CuAlO2 thin films were measured from 80 to 1273 K, and we observed two optical modes at Eg (˜418 cm-1) and A1g(˜767 cm-1) showing anomalous frequency and linewidth shifts with temperature, which were interpreted as an experimental evidence of combined effect of lattice expansion and anharmonic phonon-phonon interaction in CuAlO2. At high temperature, polaronic state and change in effective mass due to lattice expansion also affect the frequency shift and the linewidth of the observed Raman modes.

  15. Optical and electrical properties of mechanochemically synthesized nanocrystalline delafossite CuAlO2.

    PubMed

    Prakash, T; Prasad, K Padma; Ramasamy, S; Murty, B S

    2008-08-01

    Nanocrystalline p-type semiconductor copper aluminum oxide (CuAlO2) has been synthesized by mechanical alloying using freshly prepared Cu2O and alpha-AlO2O3 nanocrystals in toluene medium. A study on structural property performed with different alloying and post annealing durations, by X-ray diffraction (XRD) reveals the formation of single phase with average crystallite size approximately 45 nm. Optical absorbance onset at 364.5 nm confirms its wide band gap nature (E(g) = 3.4 eV) and the fluorescence emission behaviour (390 nm) confirms its direct band type transition. The activation energy for electrical conduction has been calculated by Arrhenius plots using impedance measurement. Both grain and grain boundary conductivity takes place with almost equal activation energies of approximately 0.45 eV. The paper discusses synthesis, structural, optical and electrical properties of delafossite CuAlO2 in detail. PMID:19049217

  16. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Peng, Jian; Nyberg, Eric A.; Pan, Fu-sheng

    2016-04-01

    The microstructures and corrosion resistance of magnesium-5 wt% aluminum-0.3 wt% manganese alloys (Mg-Al-Mn) with different Ca additions (0.2-4 wt%) were investigated. Results showed that with increasing Ca addition, the grain of the alloys became more refined, whereas the corrosion resistant ability of the alloys initially increased and then decreased. The alloy with 2 wt% Ca addition exhibited the best corrosion resistance, attributed to the effect of the oxide film and (Mg,Al)2Ca phases which were discontinuously distributed on the grain boundaries. These phases acted as micro-victims, they preferentially corroded to protect the α-Mg matrix. The oxide film formed on the alloy surface can hinder the solution further to protect the α-Mg matrix.

  17. Sol-gel production of Cu/Al co-doped zinc oxide: Effect of Al co-doping concentration on its structure and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Bu, Ian Yi-Yu

    2014-12-01

    Sol-gel deposition of ZnO:Cu:Al thin films were co-doped different Cu:Al ratio. The optoelectronic and structural properties of the resultant film were evaluated using scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy, photoluminescence spectroscopy and UV-VIS spectroscopy. It was found that the Al content leads to narrowing of the band gap and that excessive Al doping concentration greater than 5 at% degrade the film's properties.

  18. Preparation of high T(c) Tl-Ba-Ca-Cu-O thin films by pulsed laser evaporation and Tl2O3 vapor processing

    NASA Technical Reports Server (NTRS)

    Johs, B.; Thompson, D.; Ianno, N. J.; Woollam, John A.; Liou, S. H.

    1989-01-01

    Tl-Ba-Ca-Cu-O superconducting thin films with zero-resistance temperatures up to 115 K have been prepared using a Tl2O3 vapor process on Ba-Ca-Cu-O precursor thin films. The Ba-Ca-Cu-O thin films were made by laser deposition on Y-stabilized ZrO2 substrates. This technique minimizes problems caused by the toxicity of Tl2O3, and its subsequent decomposition to the volatile and toxic Tl2O upon heating. Therefore, it may have practical application in the fabrication of high T(c) Tl-Ba-Ca-Cu-O superconducting thin-film devices.

  19. Theoretical Study of Electronic Structure and Thermoelectric Properties of Doped CuAlO2

    NASA Astrophysics Data System (ADS)

    Poopanya, P.; Yangthaisong, A.; Rattanapun, C.; Wichainchai, A.

    2011-05-01

    The doping level dependence of thermoelectric properties of delafossite CuAlO2 has been investigated in the constant scattering time ( τ) approximation, starting from the first principles of electronic structure. In particular, the lattice parameters and the energy band structure were calculated using the total energy plane-wave pseudopotential method. It was found that the lattice parameters of CuAlO2 are a = 2.802 Å and c = 16.704 Å, and the internal parameter is u = 0.1097. CuAlO2 has an indirect band gap of 2.17 eV and a direct gap of 3.31 eV. The calculated energy band structures were then used to calculate the electrical transport coefficients of CuAlO2. By considering the effects of doping level and temperature, it was found that the Seebeck coefficient S( T) increases with increasing acceptor doping ( A d) level. The values of S( T) in our experiments correspond to an A d level at 0.262 eV, which is identified as the Fermi level of CuAlO2. Based on our experimental Seebeck coefficient and the electrical conductivity, the constant relaxation time is estimated to be 1 × 10-16 s. The power factor is large for a low A d level and increases with temperature. It is suggested that delafossite CuAlO2 can be considered as a promising thermoelectric oxide material at high doping and high temperature.

  20. Improvement of the shape memory characteristics of a Cu-Zn-Al alloy with manganese and zirconium addition

    SciTech Connect

    Zou, W.H.; Lam, C.W.H.; Chung, C.Y.; Lai, J.K.L.

    1997-04-15

    Cu-based shape memory alloys (SMAs) possess good shape memory effect (SME) and have the advantage of lower price than Ti-Ni SMA. However, there are still some problems which should be solved before they can be used widely. Addition of suitable alloying elements can improve the mechanical properties, stabilization of martensitic transformations and also the SME of Cu-based SMAs significantly. Cu-Zn-Al is an important Cu-based SMA that suffers from the martensite stabilization and intergranular cracking in the processing procedures and service. As a modification of Cu-Zn-Al SMAs, the effects of Mn and Zr addition on the structure and martensite transformation behavior of different heat treated Cu-21Zn-6Al-1Mn-0.5Zr (wt%) SMA have been studied and compared to that of Cu-21Zn-6Al (wt%) SMA in the present paper.

  1. Nanoscale Disorder in CaCu3Ti4O12: A New Route to Enhanced Dielectric Response

    SciTech Connect

    Zhu,Y.; Zhang, J.; Wu, L.; Frenkel, A.; Hanson, J.; Northrup, P.; Ku, W.

    2007-01-01

    Significant nanoscale disorder of Cu and Ca atomic substitution is observed in CaCu{sub 3}Ti{sub 4}O{sub 12}, based on our integrated study using quantitative electron diffraction and extended x-ray absorption fine structure. Unambiguous identification of this previously omitted disorder is made possible by the unique sensitivity of these probes to valence-electron distribution and short-range order. Furthermore, first-principles-based theoretical analysis indicates that the Ca-site Cu atoms possess partially filled degenerate e{sub g} states, suggesting significant boost of dielectric response from additional low-energy electronic contributions. Our study points to a new route of enhancing dielectric response in transitional metal oxides by exploiting the strong electronic correlation beyond classical static pictures.

  2. Density Measurements of Low Silica CaO-SiO2-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Muhmood, Luckman; Seetharaman, Seshadri

    2010-08-01

    Density measurements of a low-silica CaO-SiO2-Al2O3 system were carried out using the Archimedes principle. A Pt 30 pct Rh bob and wire arrangement was used for this purpose. The results obtained were in good agreement with those obtained from the model developed in the current group as well as with other results reported earlier. The density for the CaO-SiO2 and the CaO-Al2O3 binary slag systems also was estimated from the ternary values. The extrapolation of density values for high-silica systems also showed good agreement with previous works. An estimation for the density value of CaO was made from the current experimental data. The density decrease at high temperatures was interpreted based on the silicate structure. As the mole percent of SiO2 was below the 33 pct required for the orthosilicate composition, discrete {text{SiO}}4^{4 - } tetrahedral units in the silicate melt would exist along with O2- ions. The change in melt expansivity may be attributed to the ionic expansions in the order of {text{Al}}^{ 3+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ - } Structural changes in the ternary slag also could be correlated to a drastic change in the value of enthalpy of mixing.

  3. Electronic structure of p-type transparent conducting oxide CuAlO2

    NASA Astrophysics Data System (ADS)

    Mo, Sung-Kwan; Yoon, Joonseok; Liu, Xiaosong; Yang, Wanli; Mun, Bongjin; Ju, Honglyoul

    2014-03-01

    CuAlO2 is a prototypical p-type transparent conducting oxide. Despite its importance for potential applications and number of studies on its band structure and gap characteristics, experimental study on the momentum-resolved electronic structure has been lacking. We present angle-resolved photoemission data on single crystalline CuAlO2 using synchrotron light source to reveal complete band structure. Complemented by the x-ray absorption and emission spectra, we also study band gap characteristics and compare them with theory.

  4. Electron crystallography applied to the structure determination of Nb(Cu,Al,X) Laves phases.

    PubMed

    Gigla, M; Lelatko, J; Krzelowski, M; Morawiec, H

    2006-09-01

    The presence of primary precipitates of the Laves phases considerably improves the mechanical properties and the resistance to thermal degradation of the high-temperature shape memory Cu-Al-Nb alloys. The structure analysis of the Laves phases was carried out on particles contained in the ternary and quaternary alloys as well on synthesized compounds related to the composition of the Nb(Cu,Al,X)(2) phase, where X = Ni, Co, Cr, Ti and Zr. The precise structure determination of the Laves phases was carried out by the electron crystallography method using the CRISP software.

  5. A new series of oxycarbonate superconductors (Cu(0.5)C(0.5))(m)Ba(m+1)Ca(n-1)Cu(n)O2(m+n)+1

    NASA Technical Reports Server (NTRS)

    Takayama-Muromachi, E.; Kawashima, T.; Matsui, Y.

    1995-01-01

    We found a new series of oxycarbonate superconductors in the Ba-CaCu-C-O system under high pressure of 5 GPa. Their ideal formula is (Cu(0.5)C(0.5)(m)Ba(m+1)Ca(n-1)Cu(n)O2)((m+n)+1) ((Cu,C)-m(m+1)(n-1)n). Thus far, n = 3, 4 members of the m = 1 series, (Cu,C)-1223 and (Cu,C)-1234, have been prepared in bulk while n = 4, 5 members, (Cu,C)-2334 and (Cu,C)-2345, have been prepared for the m = 2 series. (Cu,C)-1223 shows superconductivity below 67 K while T(sub c)'s of other compounds are above 110 K. In particular, (Cu,C)-1234 has the highest T(sub c) of 117 K.

  6. Characterization of Al-Cu-Mg-Ag Alloy RX226-T8 Plate

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Domack, Marcia S.

    2003-01-01

    Aluminum-copper-magnesium-silver (Al-Cu-Mg-Ag) alloys that were developed for thermal stability also offer attractive ambient temperature strength-toughness combinations, and therefore, can be considered for a broad range of airframe structural applications. The current study evaluated Al-Cu-Mg-Ag alloy RX226-T8 in plate gages and compared performance with sheet gage alloys of similar composition. Uniaxial tensile properties, plane strain initiation fracture toughness, and plane stress tearing resistance of RX226-T8 were examined at ambient temperature as a function of orientation and thickness location in the plate. Properties were measured near the surface and at the mid-plane of the plate. Tensile strengths were essentially isotropic, with variations in yield and ultimate tensile strengths of less than 2% as a function of orientation and through-thickness location. However, ductility varied by more than 15% with orientation. Fracture toughness was generally higher at the mid-plane and greater for the L-T orientation, although the differences were small near the surface of the plate. Metallurgical analysis indicated that the microstructure was primarily recrystallized with weak texture and was uniform through the plate with the exception of a fine-grained layer near the surface of the plate. Scanning electron microscope analysis revealed Al-Cu-Mg second phase particles which varied in composition and were primarily located on grain boundaries parallel to the rolling direction. Fractography of toughness specimens for both plate locations and orientations revealed that fracture occurred predominantly by transgranular microvoid coalescence. Introduction High-strength, low-density Al-Cu-Mg-Ag alloys were initially developed to replace conventional 2000 (Al-Cu-Mg) and 7000 (Al-Zn-Cu-Mg) series aluminum alloys for aircraft structural applications [1]. During the High Speed Civil Transport (HSCT) program, improvements in thermal stability were demonstrated for candidate

  7. Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Mu, Chunhong; Song, Yuanqiang; Wang, Haibin; Wang, Xiaoning

    2015-05-01

    CaCu3Ti4-xCoxO12 (x = 0, 0.2, 0.4) ceramics were prepared by a conventional solid state reaction, and the effects of cobalt doping on the room temperature magnetic and dielectric properties were investigated. Both X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the presence of Cu and Co rich phase at grain boundaries of Co-doped ceramics. Scanning electron microscopy micrographs of Co-doped samples showed a striking change from regular polyhedral particle type in pure CaCu3Ti4O12 (CCTO) to sheet-like grains with certain growth orientation. Undoped CaCu3Ti4O12 is well known for its colossal dielectric constant in a broad temperature and frequency range. The dielectric constant value was slightly changed by 5 at. % and 10 at. % Co doping, whereas the second relaxation process was clearly separated in low frequency region at room temperature. A multirelaxation mechanism was proposed to be the origin of the colossal dielectric constant. In addition, the permeability spectra measurements indicated Co-doped CCTO with good magnetic properties, showing the initial permeability (μ') as high as 5.5 and low magnetic loss (μ″ < 0.2) below 3 MHz. And the interesting ferromagnetic superexchange coupling in Co-doped CaCu3Ti4O12 was discussed.

  8. Effect of thermally stable Cu- and Mg-rich aluminides on the high temperature strength of an AlSi12CuMgNi alloy

    SciTech Connect

    Asghar, Z.

    2014-02-15

    The internal architecture of an AlSi12CuMgNi piston alloy, revealed by synchrotron tomography, consists of three dimensional interconnected hybrid networks of Cu-rich aluminides, Mg-rich aluminides and eutectic/primary Si embedded in an α-Al matrix. The strength at room temperature and at 300°C is studied as a function of solution treatment time at 490°C and compared with results previously reported for an AlSi12Ni alloy. The addition of 1 wt% Cu and 1 wt% Mg to AlSi12CuMgNi increases the room temperature strength by precipitation hardening while the strength at 300°C is similar for both alloys in as-cast condition. The strength of AlSi12CuMgNi decreases with solution treatment time and stabilizes at 4 h solution treatment. The effect of solution treatment time on the strength of the AlSi12CuMgNi alloy is less pronounced than for the AlSi12Ni alloy both at room temperature and at 300°C. - Highlights: • The 3D microstructure of AlSi12CuMgNi is revealed by synchrotron tomography. • An imaging analysis procedure to segment phases with similar contrasts is presented. • 1 wt% Cu and Mg results in the formation of 3D networks of rigid phases. • AlSi12CuMgNi is stronger than AlSi12Ni owing to the stability of the 3D networks.

  9. The determination of interfacial structure and phase transitions in Al/Cu and Al/Ni interfaces by means of surface extended x-ray absorption fine structure

    SciTech Connect

    Barrera, E.V. . Dept. of Mechanical Engineering and Materials Science); Heald, S.M. )

    1991-01-01

    Surface extended x-ray absorption fine structure (SEXAFS) was used to investigate the interfacial conditions of Al/Cu and Al/Ni shallow buried interfaces. Previous studies using glancing angle extended x-ray absorption fine structure, x-ray reflectivity, photoemission, and SEXAFS produced conflicting results as to whether or not the interfaces between Al and Cu and Al and Ni were reacted upon room temperature deposition. In this study polycrystalline bilayers of Al/Cu and Al/Ni and trilayers of Al/Cu/Al and Al/Ni/Al were deposited on tantalum foil at room temperature in ultra high vacuum and analyzed to evaluate the reactivity of these systems on a nanometer scale. It become overwhelming apparent that the interfacial phase reactions were a function of the vacuum conditions. Samples deposited with the optimum vacuum conditions showed reaction products upon deposition at room temperature which were characterized by comparisons to standards and by least squares fitting the be CuAl{sub 2} and NiAl{sub 3} respectively. The results of this study that the reacted zone thicknesses were readily dependent on the deposition parameters. For both Al on Cu and Al on Ni as well as the metal on Al conditions 10{Angstrom} reaction zones were observed. These reaction zones were smaller than that observed for bilayers of Al on Cu (30{Angstrom}) and Al on Ni (60{Angstrom}) where deposition rates were much higher and samples were much thicker. The reaction species are evident by SEXAFS, where the previous photoemission studies only indicated that changes had occurred. Improved vacuum conditions as compared to the earlier experiments is primarily the reason reactions on deposition were seen in this study as compared to the earlier SEXAFS studies.

  10. The determination of interfacial structure and phase transitions in Al/Cu and Al/Ni interfaces by means of surface extended x-ray absorption fine structure

    SciTech Connect

    Barrera, E.V.; Heald, S.M.

    1991-12-31

    Surface extended x-ray absorption fine structure (SEXAFS) was used to investigate the interfacial conditions of Al/Cu and Al/Ni shallow buried interfaces. Previous studies using glancing angle extended x-ray absorption fine structure, x-ray reflectivity, photoemission, and SEXAFS produced conflicting results as to whether or not the interfaces between Al and Cu and Al and Ni were reacted upon room temperature deposition. In this study polycrystalline bilayers of Al/Cu and Al/Ni and trilayers of Al/Cu/Al and Al/Ni/Al were deposited on tantalum foil at room temperature in ultra high vacuum and analyzed to evaluate the reactivity of these systems on a nanometer scale. It become overwhelming apparent that the interfacial phase reactions were a function of the vacuum conditions. Samples deposited with the optimum vacuum conditions showed reaction products upon deposition at room temperature which were characterized by comparisons to standards and by least squares fitting the be CuAl{sub 2} and NiAl{sub 3} respectively. The results of this study that the reacted zone thicknesses were readily dependent on the deposition parameters. For both Al on Cu and Al on Ni as well as the metal on Al conditions 10{Angstrom} reaction zones were observed. These reaction zones were smaller than that observed for bilayers of Al on Cu (30{Angstrom}) and Al on Ni (60{Angstrom}) where deposition rates were much higher and samples were much thicker. The reaction species are evident by SEXAFS, where the previous photoemission studies only indicated that changes had occurred. Improved vacuum conditions as compared to the earlier experiments is primarily the reason reactions on deposition were seen in this study as compared to the earlier SEXAFS studies.

  11. Activity and diffusivity of oxygen in liquid Ag-Yb1Ba2Cu3 and Tl1Ba2Ca2Cu3 alloys

    NASA Astrophysics Data System (ADS)

    Chou, H.; Chen, H. S.; Fang, W. C.; Wu, M. K.

    1992-12-01

    We have measured the activity and diffusivity of oxygen in liquid Ag-Yb1Ba2Cu3 and Tl1Ba2Ca2Cu3 at 930 and 900 °C, respectively, by a modified coulometric titration method on the galvanic cell: O_ in liquid alloys/yttria stabilized zirconia/air, Pt. The standard Gibbs formation energy and the diffusivity of oxygen in liquid Ag-Yb1Ba2Cu3 alloy for 1/2O2(1 atm)→O_(1 at. %) are determined to be ΔG=-247.4 kJ/g atom, and D=1.52×10-4 cm2/s. The oxygen solubility Cs in the Ag-Yb1Ba2Cu3 alloy is 0.0913 at. %, a factor of 5.5 higher than that in Yb1Ba2Cu3 alloy. The addition of Ag does not alter the growth mechanism and the oxygen diffusion controls the film growth. The growth speed is enhanced as a result of the enhanced oxygen solubility. ΔG and the diffusion coefficient of oxygen in the Tl1Ba2Ca2Cu3 liquid alloy are -257 kJ/g atom and 1.2×10-4 cm2/s, respectively. The oxygen solubility of the Tl1Ba2Ca2Cu3 alloy at 900 °C is found to be very high at ˜5.74 at. %. All thermodynamic data for oxygen in the precursor alloys are consistent with each other but there is a deviation of activity coefficient with composition for the different alloys from the theoretical model.

  12. A study of the semiconductor compound СuAlO2 by the method of nuclear quadrupole resonance of Cu

    NASA Astrophysics Data System (ADS)

    Matukhin, V. L.; Khabibulin, I. Kh.; Shul'gin, D. A.; Smidt, S. V.

    2012-07-01

    The method of nuclear quadrupole resonance of Cu (NQR Cu) is used to study the samples of a semiconductor compound CuAlO2. The crystal structure of CuAlO2 belongs to the family of delafossite - the mineral of a basic CuFeO2 structure. Transparent semiconductor oxides, such as CuAlO2, have attracted recent attention as promising thermoelectric materials.

  13. Introduction of artificial pinning centres in Bi2Sr2CaCu2O8 ceramics

    NASA Technical Reports Server (NTRS)

    Majewski, P.; Elschner, S.; Bestgen, H.; Aldinger, F.

    1995-01-01

    Considering the phase equilibrium diagram of the system Bi203-SrO-CaO-CuO, single phase 'Bi2Sr2CaCu208' ceramics have been transformed by a simple annealing procedure into multiphase samples. The transformation results in the formation of second phases and in an increase of the intra-grain critical current density at 1 T of five times. This increase is believed to express improved pinning properties of the superconducting crystals. The prepared pinning centers are believed to be e.g. coherent precipitates (Guinier-Preston-zones) within the superconducting crystals.

  14. Conducting grain boundaries in the high-dielectric-constant ceramic CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Chen, K.; Li, G. L.; Gao, F.; Liu, J.; Liu, J. M.; Zhu, J. S.

    2007-04-01

    To clarify the electrical property of grain boundaries, the fine-grained ceramics CaCu3Ti4O12 have been treated with the hydrofluoric acid to remove the parts of grain boundaries. The dielectric response difference between the etched samples and the pristine ones indicates that the ceramic CaCu3Ti4O12 consists of insulating or semiconducting grains with conducting grain boundaries. Therefore, the giant dielectric phenomenon is supposed not to derive from the grain boundary barrier layer capacitance effect. The possible mechanism is discussed.

  15. The effect of Yttrium on the Ca and Sr planes of Y-doped Bi 2Sr 2Ca 1Cu 2O 8

    NASA Astrophysics Data System (ADS)

    Alméras, P.; Berger, H.; Margaritondo, G.

    1993-08-01

    Photoemission spectromicroscopy experiments on a series of Y-doped Bi 2Sr 2Ca 1Cu 2O 8 single crystals show that the doping changes the valence of copper as required for the observed modification of the critical temperature. The doping, however, affects with substitutional reactions not only the CaO planes, but also the SrO planes. Des expériences de photoémission sur une série de monocristaux de Bi 2Sr 2Ca 1Cu 2O 8 dopés avec de l'yttrium montrent que le dopage change la valence du cuivre, comme on dopage, pourtant, ne modifie pas seulement les plans CaO par des réactions de substitution, mais également les plans SrO. Esperimenti di fotoemissione condotti su una serie di monocristalli di Bi 2Sr 2Ca 2O 8 con impurezze di Y mostrano che tali impurezze modificano la valenza del rame, com'é indipendentemente reso necessario dal fatto che si osservano dei cambiamenti della temperature di transizione. Si nota peraltro che le impurezze non modificano solamente i piani CaO mediante reazioni di sostituzione, ma anche i piani SrO.

  16. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-08-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  17. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-10-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  18. Low-Temperature Sintering and Electromagnetic Properties of NiCuZn/CaTiO3 Composites

    NASA Astrophysics Data System (ADS)

    Yang, Haibo; Yang, Yanyan; Lin, Ying; Zhu, Jianfeng; Wang, Fen

    2012-04-01

    Dense CaTiO3/Ni0.37Cu0.20Zn0.43Fe1.92O3.88 (CTO/NiCuZn) composites were prepared by the conventional solid-state reaction method and sintered at 950°C. The phase compositions and surface morphologies of the composites were investigated using x-ray diffraction and scanning electron microscopy, respectively. The dielectric and magnetic properties of the composites were also investigated. The results show that the CTO/NiCuZn composites possess high dielectric constants and permeabilities, which can be used in high-frequency communications for capacitor-inductor integrating devices such as electromagnetic interference filters and antennas. With increasing NiCuZn concentration, the permeabilities of the CTO/NiCuZn composites increase, while the dielectric constants and cutoff frequencies decrease.

  19. Composition dependence of superconductivity in YBa2(Cu(3-x)Al(x))Oy

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1991-01-01

    Eleven different compositions in the system YBa2(Cu(3-x)Al(x))O(y) (x = 0 to 0.3) have been synthesized and characterized by electrical resistivity measurements, powder x-ray diffraction, and scanning electron microscopy. The superconducting transition temperature T sub c (onset) was almost unaffected by the presence of alumina due to its limited solubility in YBa2Cu3O(7-x). However, T sub c(R = 0) gradually decreased, and the resistive tails became longer with increasing Al2O3 concentration. This was probably due to formation of BaAl2O4 and other impurity phases from chemical decomposition of the superconducting phase by reaction with Al2O3.

  20. Composition dependence of superconductivity in YBa2(Cu(3-x)Al(x))O(y)

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.

    1993-01-01

    Eleven different compositions in the system YBa2(Cu(3-x)Al(x))O(y) (x = 0 to 0.3) have been synthesized and characterized by electrical resistivity measurements, powder X-ray diffraction, and scanning electron microscopy. The superconducting transition temperature T sub c (onset) was almost unaffected by the presence of alumina due to its limited solubility in YBa2Cu3O(7-x). However, T sub c(R = 0) gradually decreased, and the resistive tails became longer with increasing Al2O3 concentration. This was probably due to formation of BaAl2O4 and other impurity phases from chemical decomposition of the superconducting phase by reaction with Al2O3.

  1. Microstructural evolution in Al-Zn-Mg-Cu-Sc-Zr alloys during short-time homogenization

    NASA Astrophysics Data System (ADS)

    Liu, Tao; He, Chun-nian; Li, Gen; Meng, Xin; Shi, Chun-sheng; Zhao, Nai-qin

    2015-05-01

    Microstructural evolution in a new kind of aluminum (Al) alloy with the chemical composition of Al-8.82Zn-2.08Mg-0.80Cu-0.31Sc-0.3Zr was investigated. It is found that the secondary phase MgZn2 is completely dissolved into the matrix during a short homogenization treatment (470°C, 1 h), while the primary phase Al3(Sc,Zr) remains stable. This is due to Sc and Zr additions into the Al alloy, high Zn/Mg mass ratio, and low Cu content. The experimental findings fit well with the results calculated by the homogenization diffusion kinetics equation. The alloy shows an excellent mechanical performance after the short homogenization process followed by hot-extrusion and T6 treatment. Consequently, a good combination of low energy consumption and favorable mechanical properties is obtained.

  2. Energy gaps in Bi2Sr2CaCu2O8+δ cuprate superconductors

    PubMed Central

    Ren, J. K.; Zhu, X. B.; Yu, H. F.; Tian, Ye; Yang, H. F.; Gu, C. Z.; Wang, N. L.; Ren, Y. F.; Zhao, S. P.

    2012-01-01

    The relationship between the cuprate pseudogap (Δp) and superconducting gap (Δs) remains an unsolved mystery. Here, we present a temperature- and doping-dependent tunneling study of submicron Bi2Sr2CaCu2O8+δ intrinsic Josephson junctions, which provides a clear evidence that Δs closes at a temperature Tc0 well above the superconducting transition temperature Tc but far below the pseudogap opening temperature T*. We show that the superconducting pairing first occurs predominantly on a limited Fermi surface near the node below Tc0, accompanied by a Fermi arc due to the lifetime effects of quasiparticles and Cooper pairs. The arc length has a linear temperature dependence, and as temperature decreases below Tc it reduces to zero while pairing spreads to the antinodal region of the pseudogap leading to a d-wave superconducting gap on the entire Fermi surface at lower temperatures. PMID:22355760

  3. Vortex matter in Bi2Sr2CaCu2O8 with pointlike disorder

    NASA Astrophysics Data System (ADS)

    Konczykowski, M.; van der Beek, C. J.; Koshelev, A. E.; Mosser, V.; Li, M.; Kes, P. H.

    2009-03-01

    We investigate the effect of point-like disorder, introduced by irradiation with 2.3 MeV electrons, on the mixed state phase diagram of Bi2Sr2CaCu2O8 single crystals. We focus on the higher irradiation doses that produce a significant depression of the critical temperature Tc, to as low as 2/3 of the initial value. Surprisingly, the first order phase transition (FOT) of the vortex ensemble, from a crystal to the pancake vortex liquid, persists in those highly disordered samples. The second peak in the irreversible magnetization, observed at low temperatures, is equally observed after high irradiation doses, but at much lower magnetic fields. A simple scaling of the phase diagram for samples with various degrees of disorder is not possible, indicating that several fundamental parameters of the superconductor are affected. From the analysis of the angular dependence of the FOT, we deduce that the effective anisotropy factor increases after irradiation.

  4. Performance of TlCaBaCuO 30 GHz 64 element antenna array

    NASA Technical Reports Server (NTRS)

    Lewis, L. L.; Koepf, G.; Bhasin, K. B.; Richard, M. A.

    1993-01-01

    A 64-element, 30-GHz microstrip antenna array with corporate feed network was designed and built on a 0.254-mm (10-mil) thick lanthanum aluminate substrate. One antenna pattern was fabricated from gold film, and a second pattern used TlCaBaCuO high-temperature superconductor. Both antennas used gold ground planes deposited on the reverse side of the substrate. Gain and radiation patterns were measured for both antennas at room temperature and at cryogenic temperatures. Observations agree well with simple models for loss and microwave beam width, with a gain on boresight of 20.3 dB and beam width of 15 deg for the superconducting antenna. The antenna loss is only 1.9 dB.

  5. Fabrication and characterization of (Bi,Pb)-Sr-Ca-Cu-O (2223) bars

    SciTech Connect

    Chudzik, M.P.; Polzin, B.J.; Thayer, R.; Picciolo, J.J.; Fisher, B.L.; Lanagan, M.T.

    1996-08-01

    Bulk bars for current lead applications were fabricated from (Bi,Pb)- Sr-Ca-Cu-O (Bi-2223) for low thermal conductivity and high critical current. Bars measuring 17.8 cm in length were made by uniaxially pressing Bi-2223 powder of controlled (1.7/0.34)223 and (1.8/0.4)223 phase composition. The bulk bars were densified by subjecting them to a schedule of alternate liquid-phase sintering and cold isostatic pressing. Liquid phase sintering temperatures were optimized from differential thermal analysis and microstructure morphology. Phase purity and microstructure were evaluated by x-ray diffraction and scanning electron microscopy. Low-resistance silver contacts were applied to the bars by hot-pressing at 820{degrees}C and 3 MPa. Critical current densities {approx} 1000 A/cm{sup 3} (critical currents of 750 A at 77 K in self-field conditions) were achieved.

  6. Vortex fluctuation in HgBa 2Ca 3Cu 4O 10+δ

    NASA Astrophysics Data System (ADS)

    Kim, Mun-Seog; Kim, Wan-Seon; Lee, Sung-Ik; Yu, Seong-Cho; Itskevich, E. S.; Kuzemskaya, I.

    1997-08-01

    Reversible magnetization with the external magnetic fields of 1 T ≤ H ≤ 5 T parallel to the c-axis has been measured for the grain aligned HgBa2Ca3Cu4O10+δ. A strong vortex fluctuation effect was clearly observed and the magnetization is well described by the vortex fluctuation model. From this analysis, the penetration depth λab(0) = 1583 Å and the effective interlayer spacing s = 44.6 Å were estimated. However, the value of s is significantly larger than the lattice parameter c = 19 Å, which is different from the prediction of the vortex fluctuation model. From the model on superconducting fluctuations proposed by Koshelev, in which not only the critical fluctuations at the lowest Landau level but also the Gaussian fluctuations at higher Landau levels were considered, the different value of s = 15.4 Å was obtained.

  7. Microwave Absorption Study on (Bi, Pb)-Sr-Ca-Cu-O Granular Superconductors

    NASA Astrophysics Data System (ADS)

    Jurga, W.; Piekara-Sady, L.; Gazda, M.

    2008-07-01

    (Bi, Pb)-Sr-Ca-Cu-O is considered as a system of 2201, 2212 and 2223 superconductors embedded in the insulating matrix. The size of the grains depends on the time of recrystallization. These types of ceramics exhibit a two-step transition to superconducting state. Because electrical properties depend among other on the Josephson coupling between grains, the magnetically modulated microwave absorption study was undertaken. Magnetically modulated microwave absorption signal was observed to arise just as temperature had been lowered below T1. The shape of this signal was studied to recognize the second temperature T2. Some strong oscillations appear on magnetically modulated microwave absorption at lower temperatures, which might be related to local percolation breakdown in superconducting network.

  8. Suppression of activation energy and superconductivity by the addition of Al{sub 2}O{sub 3} nanoparticles in CuTl-1223 matrix

    SciTech Connect

    Jabbar, Abdul; Qasim, Irfan; Mumtaz, M.; Zubair, M.; Nadeem, K.; Khurram, A. A.

    2014-05-28

    Low anisotropic (Cu{sub 0.5}Tl{sub 0.5})Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10−δ} (CuTl-1223) high T{sub c} superconducting matrix was synthesized by solid-state reaction and Al{sub 2}O{sub 3} nanoparticles were prepared separately by co-precipitation method. Al{sub 2}O{sub 3} nanoparticles were added with different concentrations during the final sintering cycle of CuTl-1223 superconducting matrix to get the required (Al{sub 2}O{sub 3}){sub y}/CuTl-1223, y = 0.0, 0.5, 0.7, 1.0, and 1.5 wt. %, composites. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray, and dc-resistivity (ρ) measurements. The activation energy and superconductivity were suppressed with increasing concentration of Al{sub 2}O{sub 3} nanoparticles in (CuTl-1223) matrix. The XRD analysis showed that the addition of Al{sub 2}O{sub 3} nanoparticles did not affect the crystal structure of the parent CuTl-1223 superconducting phase. The suppression of activation energy and superconducting properties is most probably due to weak flux pinning in the samples. The possible reason of weak flux pinning is reduction of weak links and enhanced inter-grain coupling due to the presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries. The presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries possibly reduced the number of flux pinning centers, which were present in the form of weak links in the pure CuTl-1223 superconducting matrix. The increase in the values of inter-grain coupling (α) deduced from the fluctuation induced conductivity analysis with the increased concentration of Al{sub 2}O{sub 3} nanoparticles is a theoretical evidence of improved inter-grain coupling.

  9. The Electronic Structure and Formation Energies of Ni-doped CuAlO2 by Density Functional Theory Calculation

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Li, Fei; Sheng, Wei; Nie, Guo-Zheng; Yuan, Ding-Wang

    2014-03-01

    The electronic structure and formation energies of Ni-doped CuAlO2 are calculated by first-principles calculations. Our results show that Ni is good for p-type doping in CuAlO2. When Ni is doped into CuAlO2, it prefers to substitute Al-site. NiAl is a shallow acceptor, while NiCu is a deep acceptor and its formation energy is high. Further electronic structure calculations show that strong hybridization happens between Ni-3d and O-2p states for Ni substituting Al-site, while localized Ni-3d states are found for Ni substituting Cu-site.

  10. Interactive intoxicating and ameliorating effects of tannic acid, aluminum (Al), copper (Cu), and selenate (SeO) in wheat roots: a descriptive and mathematical assessment.

    PubMed

    Kinraide, Thomas B; Hagermann, Ann E

    2010-05-01

    Tannic acids and tannins are produced by plants and are important components of soil and water organic matter. These polyphenolic compounds form complexes with proteins, metals and soil particulate matter and perform several physiological and ecological functions. The tannic acid (TA) used in our study was a mixture of gallic acid and galloyl glucoses ranging up to nonagalloyl glucose. TA inhibited root elongation in wheat seedlings (Triticum aestivum L. cv. Scout 66) at concentrations >4 mg l(-1); but TA alleviated the toxicity of Al(3+), Cu(2+) and SeO(4)(2-); and Al(3+) and SeO(4)(2-) alleviated the toxicity of TA. The interactions of Al(3+) and TA (each toxic but each alleviating the toxicity of the other) were stoichiometric. Growth was affected as though 1 kg TA bound 2.76 mol Al so strongly that if (mol Al)/(kg TA) <2.76, then free Al approximately 0, and if (mol Al)/(kg TA) >2.76, then free TA approximately 0. This stoichiometry is consistent with one mole of galloyl groups binding approximately 0.5 mol Al. Using this binding scheme, growth was modeled successfully on the basis of free TA and free Al. TA enhanced the negativity of root surfaces and enhanced the binding of Al and Cu there without enhancing their toxicity. These and other interactions among TA, Al(3+), Cu(2+), SeO(4)(2-), Ca(2+), Na(+) and H(+) were quantified with a comprehensive non-linear equation with statistically significant coefficients.

  11. A multireference configuration interaction study of CuB and CuAl molecular constants and photoionization spectra.

    PubMed

    Ferrão, Luiz F A; Spada, Rene F K; Roberto-Neto, Orlando; Machado, Francisco B C

    2013-09-28

    Accurate potential energy curves and molecular constants for the low-lying electronic states of CuX(y) (X = B, Al; y = 0, +1) were investigated using the complete active space self-consistent field/multireference configuration interaction (MRCI) methodology with aug-cc-pV5Z basis set. The photoionization spectra of CuX were computed, showing electron detachment in the region of far ultraviolet. The results complement the previous theoretical characterizations and the few experimental studies. A comparative analysis was carried out concerning the different choices of reference configuration state functions in the MRCI calculations with and without the contribution of scalar relativistic effects. The results obtained with a small reference set adequately constructed are competitive to those using a much larger number of configuration state functions, and also the scalar relativistic effects improve significantly the molecular constants in this kind of system containing a 3d metal atom.

  12. Apatite layer growth on glassy Zr48Cu36Al8Ag8 sputtered titanium for potential biomedical applications

    NASA Astrophysics Data System (ADS)

    Thanka Rajan, S.; Karthika, M.; Bendavid, Avi; Subramanian, B.

    2016-04-01

    The bioactivity of magnetron sputtered thin film metallic glasses (TFMGs) of Zr48Cu36Al8Ag8 (at.%) on titanium substrates was tested for bio implant applications. The structural and elemental compositions of TFMGs were analyzed by XRD, XPS and EDAX. X-ray diffraction analysis displayed a broad hump around the incident angle of 30-50°, suggesting that the coatings possess a glassy structure. An in situ crystal growth of hydroxyapatite was observed by soaking the sputtered specimen in simulated body fluid (SBF). The nucleation and growth of a calcium phosphate (Ca-P) bone-like hydroxyapatite on Zr48Cu36Al8Ag8 (at.%) TFMG from SBF was investigated by using XRD, AFM and SEM. The presence of calcium and phosphorus elements was confirmed by EDAX and XPS. In vitro electrochemical corrosion studies indicated that the Zr-based TFMG coating sustain in the stimulated body-fluid (SBF), exhibiting superior corrosion resistance with a lower corrosion penetration rate and electrochemical stability than the bare crystalline titanium substrate.

  13. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy

    NASA Astrophysics Data System (ADS)

    Cai, Yuan-hua; Wang, Cong; Zhang, Ji-shan

    2013-07-01

    Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like β/δ-AlFeSi white intermetallics, and Chinese script-like α-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like β-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like δ-phase does not show any morphological and size changes. Phase transitions from β-AlFeSi to α-AlFeSi and from δ-AlFeSi to β-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.

  14. Chemical short-range order and the Meyer - Neldel rule for liquid alloys: AlCa and GaAlCa

    NASA Astrophysics Data System (ADS)

    You, D.; Schnyders, H. S.; Van Zytveld, J. B.

    1997-02-01

    We have measured the electrical resistivity, 0953-8984/9/7/006/img1, its specific temperature dependence, 0953-8984/9/7/006/img2, and the thermopower, S, of two series of ternary liquid alloys: 0953-8984/9/7/006/img3 and 0953-8984/9/7/006/img4. We also provide new analysis for the binary liquid alloy AlCa. We do not see the unusually large values for S that were found earlier for amorphous solid ternary alloys of the approximate composition 0953-8984/9/7/006/img5. We do find that, while chemical short-range order (CSRO) appears to occur in the liquid binary alloy 0953-8984/9/7/006/img6, CSRO is apparently destroyed by substitution of one Ga atom for one Al per complex: 0953-8984/9/7/006/img7. CSRO may exist in the liquid alloy 0953-8984/9/7/006/img8. And we find that the activated conductivities of these ternary liquid alloys (and also of liquid AlCa) are consistent with the Meyer - Neldel rule (MNR), extending the range of applicability of the MNR to systems with activation energies about an order of magnitude smaller than previously observed. These results appear to rule out two physical models as universal bases for the MNR, but are consistent with one based on a hopping conductivity whose characteristic energy is that of a polaron shift.

  15. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c) (R=0) of 107.2 K and transition width delta T(sub c) (10 to 90 percent) of approx. 2 K.

  16. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and transition width delta T(sub c)(10 to 90 percent) of approx. 2 K.

  17. Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase

    NASA Astrophysics Data System (ADS)

    Sun, Y. F.; Wei, B. C.; Wang, Y. R.; Li, W. H.; Cheung, T. L.; Shek, C. H.

    2005-08-01

    Zr48.5Cu46.5Al5 bulk metallic glass matrix composites with diameters of 3 and 4mm were produced through water-cooled copper mold casting. Micrometer-sized bcc based B2 structured CuZr phase containing martensite plate, together with some densely distributed nanocrystalline Zr2Cu and plate-like Cu10Zr7 compound, was found embedded in a glassy matrix. The microstructure formation strongly depends on the composition and cooling rate. Room temperature compression tests reveal significant strain hardening and plastic strains of 7.7% and 6.4% before failure are obtained for the 3-mm- and 4-mm-diam samples, respectively. The formation of the martensite phase is proposed to contribute to the strain hardening and plastic deformation of the materials.

  18. Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase

    SciTech Connect

    Sun, Y.F.; Wei, B.C.; Wang, Y.R.; Li, W.H.; Cheung, T.L.; Shek, C.H.

    2005-08-01

    Zr{sub 48.5}Cu{sub 46.5}Al{sub 5} bulk metallic glass matrix composites with diameters of 3 and 4 mm were produced through water-cooled copper mold casting. Micrometer-sized bcc based B2 structured CuZr phase containing martensite plate, together with some densely distributed nanocrystalline Zr{sub 2}Cu and plate-like Cu{sub 10}Zr{sub 7} compound, was found embedded in a glassy matrix. The microstructure formation strongly depends on the composition and cooling rate. Room temperature compression tests reveal significant strain hardening and plastic strains of 7.7% and 6.4% before failure are obtained for the 3-mm- and 4-mm-diam samples, respectively. The formation of the martensite phase is proposed to contribute to the strain hardening and plastic deformation of the materials.

  19. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  20. Chemical reactions and morphological stability at the Cu/Al2O3 interface.

    PubMed

    Scheu, C; Klein, S; Tomsia, A P; Rühle, M

    2002-10-01

    The microstructures of diffusion-bonded Cu/(0001)Al2O3 bicrystals annealed at 1000 degrees C at oxygen partial pressures of 0.02 or 32 Pa have been studied with various microscopy techniques ranging from optical microscopy to high-resolution transmission electron microscopy. The studies revealed that for both oxygen partial pressures a 20-35 nm thick interfacial CuAlO2 layer formed, which crystallises in the rhombohedral structure. However, the CuAlO2 layer is not continuous, but interrupted by many pores. In the samples annealed in the higher oxygen partial pressure an additional reaction phase with a needle-like structure was observed. The needles are several millimetres long, approximately 10 microm wide and approximately 1 microm thick. They consist of CuAlO2 with alternating rhombohedral and hexagonal structures. Solid-state contact angle measurements were performed to derive values for the work of adhesion. The results show that the adhesion is twice as good for the annealed specimen compared to the as-bonded sample. PMID:12366593

  1. Influence of temperature on AC conductivity of nanocrystalline CuAlO2

    NASA Astrophysics Data System (ADS)

    Prakash, T.

    2012-07-01

    Nanocrystalline CuAlO2 was synthesized by mechanical alloying of Cu2O and α-Al2O3 powders in the molar ratio of 1:1 for 20 h in toluene medium with tungsten carbide balls and vials using planetary ball mill. The ball milling was carried out at 300 rpm with a ball to powder weight ratio of 10:1 and then annealed at 1373 K in a platinum crucible for 20 h to get CuAlO2 phase with average crystallite size 45 nm. Complex impedance spectroscopic measurement in the frequency region 1 Hz to 10 MHz between the temperatures 333 to 473 K was carried out for nanocrystalline CuAlO2 sample. The obtained complex impedance data was analyzed for AC conductivities, DC and AC conductivities correlations and crossover frequencies ( f co ). The BNN (Barton, Nakajima and Namikawa) relation was applied to understand the correlation between DC and AC conductivities. The observed experimental results were discussed in the paper.

  2. Energetic igniters realized by integrating Al/CuO reactive multilayer films with Cr films

    NASA Astrophysics Data System (ADS)

    Zhu, Peng; Shen, Ruiqi; Ye, Yinghua; Zhou, Xiang; Hu, Yan

    2011-10-01

    This paper deals with the energetic igniters realized by integrating Al/CuO reactive multilayer films (RMFs) with Cr Films, which could be used in micro-ignition system. The as-deposited Al/CuO RMFs has been characterized with varied analytical techniques. Results show that distinct Al/CuO RMFs is sputter deposited in a layered geometry, and the Al/CuO RMFs gives a heat of reaction equal to 2760 J/g. The structure of igniter is similar to a capacitor, which may place an electric field across the igniter and allow the instantaneous large-current to drift through the igniter. Firing characteristics of the igniter were accomplished using constant voltage firing set. The experiment shows that the ignition delay time and total released energy of the igniter discharged in 40 V are 0.7 ms and 482.34 mJ, respectively. In addition, the explosion temperature could keep an approximately constant value of 3500 °C for 1.4 ms.

  3. Production of Cu-Al-Ni Shape Memory Alloys by Mechanical Alloy

    SciTech Connect

    Goegebakan, Musa; Soguksu, Ali Kemal; Uzun, Orhan; Dogan, Ali

    2007-04-23

    The mechanical alloying technique has been used to produce shape memory Cu83Al13Ni4 alloy. The structure and thermal properties were examined by using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The morphology of the surface suggests the presence of martensite.

  4. X-ray imaging and controlled solidification of Al-Cu alloys toward microstructures by design

    DOE PAGES

    Clarke, Amy J.; Tourret, Damien; Imhoff, Seth D.; Gibbs, Paul J.; Fezzaa, Kamel; Cooley, Jason C.; Lee, Wah -Keat; Deriy, Alex; Patterson, Brian M.; Papin, Pallas A.; et al

    2015-01-30

    X-ray imaging, which permits the microscopic visualization of metal alloy solidification dynamics, can be coupled with controlled solidification to create microstructures by design. This x-ray image shows a process-derived composite microstructure being made from a eutectic Al-17.1 at.%Cu alloy by successive solidification and remelting steps.

  5. Optically stimulated luminescence in LiCaAlF6:Eu2+ phosphor.

    PubMed

    More, Y K; Wankhede, S P; Moharil, S V; Kumar, Munish; Chougaonkar, M P

    2015-09-01

    Results on optically stimulated luminescence (OSL) in LiCaAlF6:Eu(2+) are reported. Continuous wave OSL signal as recorded using blue (470 nm) stimulation was found to be ~31% that of standard phosphor lithium magnesium phosphate. The rate of OSL depletion for standard phosphor lithium magnesium phosphate is only three times less as compared with that of LiCaAlF6:Eu(2+). Strong photoluminescence (PL) in the near ultraviolet region is observed for LiCaAlF6:Eu(2+) with the characteristic Eu(2+) emission at 369 nm for 254 nm excitation. The thermoluminescence (TL) glow peak for LiCaAlF6:Eu(2+) was observed at around 180°C. The glow peak was about six times more intense compared with the dosimetric peak of the well known thermoluminescence dosimetric (TLD) phosphor LiF-TLD 100. Thus this phosphor deserves much more attention than it has received until now and may be useful as a dosimetric material in radiation dosimetry. PMID:25620581

  6. Formation Mechanism of CaS-Al2O3 Inclusions in Low Sulfur Al-Killed Steel After Calcium Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Jianfei; Huang, Fuxiang; Wang, Xinhua

    2016-04-01

    The laboratory experiments of alumina inclusions modified by calcium treatment in Al-killed steel were carried out at 1873 K (1600 °C), and the inclusions in steel samples were characterized at 1, 5, and 10 minutes after calcium addition. The results show that the type of inclusions after calcium treatment was determined by the sulfur and T.O contents of steel. CaS-Al2O3 inclusions were obtained in steels with high sulfur and low T.O contents. The mass ratio between CaS and Al2O3 was determined by T.Ca and T.O contents of steel. The influence of holding time after calcium addition on the composition of inclusions was negligible. The thermodynamics for the formation of CaS-Al2O3 inclusions after calcium treatment was discussed, and a simple formation mechanism was proposed. Moreover, the CaO, Al2O3, and CaS contents in the inclusions were predicted through the sulfur, total calcium (T.Ca), and T.O contents, and it was found that the CaO content decreases with increasing S/T.O, while (pctCaS)/(pctAl2O3)1/3 increases with increasing T.Ca/T.O.

  7. Microstructure and mechanical behavior of spray-deposited Al-Cu-Mg(-Ag-Mn) alloys

    NASA Astrophysics Data System (ADS)

    Del Castillo, L.; Lavernia, E. J.

    2000-09-01

    The effect of alloy composition on the microstructure and mechanical behavior of four spray-deposited Al-Cu-Mg(-Ag-Mn) alloys was investigated. Precipitation kinetics for the alloys was determined using differential scanning calorimetry (DSC) and artificial aging studies coupled with transmission electron microscopy (TEM) analysis. DSC/TEM analysis revealed that the spray-deposited alloys displayed similar precipitation behavior to that found in previously published studies on ingot alloys, with the Ag containing alloys exhibiting the presence of two peaks corresponding to precipitation of both Ω-Al2Cu and θ'-Al2Cu and the Ag-free alloy exhibiting only one peak for precipitation of θ'. The TEM analysis of each of the Ag-containing alloys revealed increasing amounts of Al20Mn3Cu2 with increasing Mn. In the peak and over-aged conditions, Ag-containing alloys revealed the presence of Ω, with some precipitation of θ' for alloys 248 and 251. Tensile tests on each of the alloys in the peak-aged and overaged (1000 hours at 160 °C) conditions were performed at both room and elevated temperatures. These tests revealed that the peak-aged alloys exhibited relatively high stability up to 160 °C, with greater reductions in strength being observed at 200 °C (especially for the high Mn, low Cu/Mg ratio (6.7) alloy 251). The greatest stability of tensile strength following extended exposure at 160 °C was exhibited by the high Cu/Mg ratio (14) alloy 248, which revealed reductions in yield strength of about 2.5 pct, with respect to the peak-aged condition, for the alloys tested at both room temperature and 160 °C.

  8. Ca-,Al-rich inclusions in the unique chondrite ALH85085 - Petrology, chemistry, and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Kimura, M.; El Goresy, A.; Palme, H.; Zinner, E.

    1993-05-01

    A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.

  9. Influence of temperature on Al/p-CuInAlSe2 thin-film Schottky diodes

    NASA Astrophysics Data System (ADS)

    Parihar, Usha; Ray, Jaymin; Panchal, C. J.; Padha, Naresh

    2016-06-01

    Al/p-CuInAlSe2 Schottky diodes were fabricated using the optimized thin layers of CuInAlSe2 semiconductor. These diodes were used to study their temperature-dependent current-voltage (I-V) and capacitance-voltage (C-V) analysis over a wide range of 233-353 K. Based on these measurements, diode parameters such as ideality factor ( η), barrier height (ϕbo) and series resistance ( R s) were determined from the downward curvature of I-V characteristics using Cheung and Cheung method. The extracted parameters were found to be strongly temperature dependent; ϕbo increases, while η and R s decrease with increasing temperature. This behavior of ϕbo and η with change in temperature has been explained on the basis of barrier inhomogeneities over the MS interface by assuming a Gaussian distribution (GD) of the ϕbo at the interface. GD of barrier height (BH) was confirmed from apparent BH (ϕap) versus q/2 kT plot, and the values of the mean BH and standard deviation (σs) obtained from this plot at zero bias were found to be 1.02 and 0.14 eV, respectively. Also, a modified ln ( {J_{{s}} /T2 } ) - q2 σ_{{s}}2 /2k2 T2 versus q/ kT plot for Al/p-CuInAlSe2 Schottky diodes according to the GD gives ϕbo and Richardson constant ( A ** ) as 1.01 eV and 26 Acm-2 K-2, respectively. The Richardson constant value of 26 Acm-2 K-2 is very close to the theoretical value of 30 Acm-2 K-2. The discrepancy between BHs obtained from I-V and C-V measurements has also been interpreted.

  10. A DFT study on CO oxidation catalyzed by subnanometer AlCu n ( n = 1-3) clusters

    NASA Astrophysics Data System (ADS)

    Dong, Xiaona; Guo, Ling; Wen, Caixia; Ren, Ningning; Niu, Shuangshu

    2014-07-01

    Through the first-principle density-functional theory (DFT) calculations, we have made an exhaustive study of the mechanism of CO oxidation catalyzed by AlCu n ( n = 1-3) clusters on gas phase. It is shown that mixing two different metals (Al and Cu) can have beneficial effects on the catalytic activity than monometallic Cu n + 1 ( n = 1-3) cluster toward the reaction of CO oxidation and the alloyed AlCu3 cluster is proposed as the best effective nanocatalysts.

  11. Dosimetric properties and stability of thermoluminescent foils made from LiF:Mg,Cu,P or CaSO4:Dy during long-term use

    NASA Astrophysics Data System (ADS)

    Kłosowski, M.; Liszka, M.; Kopeć, R.; Bilski, P.; Kędzierska, D.

    2014-11-01

    A few dosimetric systems based on thermoluminescence [TL] foils were developed in recent years (Nariyama et al. 2006, Radiat. Prot. Dosim. 120, 213-218; Olko et al. 2006 Radiat. Prot. Dosim. 118, 213-218) (Czopyk et al. 2008, Radiat. Meas., 43, 977-980; Kłosowski et al. 2010, Radiat. Meas., 45, 719-721; Kopeć et al. 2013, Radiat.Meas., 56, 380-383). Major application of these systems is mapping of 2D dose distribution for medical treatment plan verification, similarly to photochromic or radiochromic films. The advantage of TL foils compared to other films is their re-usability. In this work we present dosimetric properties as dose linearity and fadding of the foils made from LiF:Mg,Cu,P or CaSO4:Dy phosphors and high temperature polymers. Both types of the foils have good linearity in the range 1-20 Gy for LiF:Mg,Cu,P and 0.1-2 Gy for CaSO4:Dy. Their long term fading does not exceed 3.7% and 9% respectively. We additionally investigated effects of sensitivity loss and emission spectra for both types of the foils. One shortcoming of TL foils is that every heat process may have negative influence on their properties, causing changes of their sensitivity. Register signal of the foils after 15 readouts may be reduced by 16% of the initial. We consider that the main reason of these changes is oxidation of organic contamination on the surface and degradation of a polymer which is one of the components of the foils. Effect of sensitivity decreasing may be slowed down by proper use and cleaning detectors by solvent.

  12. High strength oxide dispersion strengthened silver aluminum alloys optimized for Bi2Sr2CaCu2O8+x round wire

    NASA Astrophysics Data System (ADS)

    Kajbafvala, Amir; Nachtrab, William; Kumar, Raj; Hunte, Frank; Wong, Terence; Schwartz, Justin

    2013-12-01

    High strength dispersion strengthened (DS) Ag/Al alloys with various Al content are studied as candidates for sheathing Bi2Sr2CaCu2O8+x (Bi2212) wire. The Ag/Al alloys are fabricated by powder metallurgy and internally oxidized in pure oxygen. The time and temperature of the internal oxidation heat treatment is varied to maximize the strength after undergoing the Bi2212 partial melt process (PMP). Vickers micro-hardness number (HVN), room temperature tensile behavior, optical and scanning electron microscopy, ion channeling contrast imaging using a focused ion beam and electrical resistivity measurements are used to characterize the alloys. An Ag/0.2wt%Mg (Ag/Mg) alloy is used for comparison. Results show that internal oxidation at 650-700  ° C for 4 h produces the highest HVN for the DS Ag/Al alloy; when oxidized at 675 ° C for 4 h the HVN, yield strength and tensile strength of the DS Ag/Al are 50% higher than the corresponding values of Ag/Mg. Microstructural observations show that Al2O3 precipitates play the main role in strengthening the DS Ag/Al alloy. The alloy retains its fine grain structure and strength after PMP heat treatment.

  13. A basin-hopping Monte Carlo investigation of the structural and energetic properties of 55- and 561-atom bimetallic nanoclusters: the examples of the ZrCu, ZrAl, and CuAl systems

    NASA Astrophysics Data System (ADS)

    De Souza, Douglas G.; Cezar, Henrique M.; Rondina, Gustavo G.; de Oliveira, Marcelo F.; Da Silva, Juarez L. F.

    2016-05-01

    We report a basin-hopping Monte Carlo investigation within the embedded-atom method of the structural and energetic properties of bimetallic ZrCu, ZrAl, and CuAl nanoclusters with 55 and 561 atoms. We found that unary Zr55, Zr561, Cu55, Cu561, Al55, and Al561 systems adopt the well known compact icosahedron (ICO) structure. The excess energy is negative for all systems and compositions, which indicates an energetic preference for the mixing of both chemical species. The ICO structure is preserved if a few atoms of the host system are replaced by different species, however, the composition limit in which the ICO structure is preserved depends on both the host and new chemical species. Using several structural analyses, three classes of structures, namely ideal ICO, nearly ICO, and distorted ICO structures, were identified. As the amounts of both chemical species change towards a more balanced composition, configurations far from the ICO structure arise and the dominant structures are nearly spherical, which indicates a strong minimization of the surface energy by decreasing the number of atoms with lower coordination on the surface. The average bond lengths follow Vegard’s law almost exactly for ZrCu and ZrAl, however, this is not the case for CuAl. Furthermore, the radial distribution allowed us to identify the presence of an onion-like behavior in the surface of the 561-atom CuAl nanocluster with the Al atoms located in the outermost surface shell, which can be explained by the lower surface energies of the Al surfaces compared with the Cu surfaces. In ZrCu and ZrAl the radial distribution indicates a nearly homogeneous distribution for the chemical species, however, with a slightly higher concentration of Al atoms on the ZrAl surface, which can also be explained by the lower surface energy.

  14. A basin-hopping Monte Carlo investigation of the structural and energetic properties of 55- and 561-atom bimetallic nanoclusters: the examples of the ZrCu, ZrAl, and CuAl systems.

    PubMed

    De Souza, Douglas G; Cezar, Henrique M; Rondina, Gustavo G; de Oliveira, Marcelo F; Da Silva, Juarez L F

    2016-05-01

    We report a basin-hopping Monte Carlo investigation within the embedded-atom method of the structural and energetic properties of bimetallic ZrCu, ZrAl, and CuAl nanoclusters with 55 and 561 atoms. We found that unary Zr55, Zr561, Cu55, Cu561, Al55, and Al561 systems adopt the well known compact icosahedron (ICO) structure. The excess energy is negative for all systems and compositions, which indicates an energetic preference for the mixing of both chemical species. The ICO structure is preserved if a few atoms of the host system are replaced by different species, however, the composition limit in which the ICO structure is preserved depends on both the host and new chemical species. Using several structural analyses, three classes of structures, namely ideal ICO, nearly ICO, and distorted ICO structures, were identified. As the amounts of both chemical species change towards a more balanced composition, configurations far from the ICO structure arise and the dominant structures are nearly spherical, which indicates a strong minimization of the surface energy by decreasing the number of atoms with lower coordination on the surface. The average bond lengths follow Vegard's law almost exactly for ZrCu and ZrAl, however, this is not the case for CuAl. Furthermore, the radial distribution allowed us to identify the presence of an onion-like behavior in the surface of the 561-atom CuAl nanocluster with the Al atoms located in the outermost surface shell, which can be explained by the lower surface energies of the Al surfaces compared with the Cu surfaces. In ZrCu and ZrAl the radial distribution indicates a nearly homogeneous distribution for the chemical species, however, with a slightly higher concentration of Al atoms on the ZrAl surface, which can also be explained by the lower surface energy.

  15. Solidification Paths and Phase Components at High Temperatures of High-Zn Al-Zn-Mg-Cu Alloys with Different Mg and Cu Contents

    NASA Astrophysics Data System (ADS)

    Shu, W. X.; Hou, L. G.; Liu, J. C.; Zhang, C.; Zhang, F.; Liu, J. T.; Zhuang, L. Z.; Zhang, J. S.

    2015-11-01

    Studies were carried out systematically on a series of Al-8.5 wt pct Zn- xMg- yCu alloys ( x is about 1.5, 2.0, and 2.5 wt pct, and y is about 1.5, 2.0, 2.5, and 2.9 wt pct). The effects of alloying elements Mg and Cu on the microstructures of as-cast and homogenized alloys were investigated using the computational/experimental approach. It shows that Mg(Zn,Al,Cu)2 ( σ) phase can exist in all the as-cast alloys without any observable Mg32(Al,Zn)49/Al2Mg3Zn3 ( T) or Al2CuMg ( S) phase, whereas Al2Cu ( θ) phase is prone to exist in the alloys with low Mg and high Cu contents. Thermodynamic calculation shows that the real solidification paths of the designed alloys fall in between the Scheil and the equilibrium conditions, and close to the former. After the long-time homogenization [733 K (460 °C)/168 hours] and the two-step homogenization [733 K (460 °C)/24 hours + 748 K (475 °C)/24 hours], the phase components of the designed alloys are generally consistent with the calculated phase diagrams. At 733 K (460 °C), the phase components in the thermodynamic equilibrium state are greatly influenced by Mg content, and the alloys with low Mg content are more likely to be in single-Al phase field even if the alloys contain high Cu content. At 748 K (475 °C), the dissolution of the second phases is more effective, and the phase components in the thermodynamic equilibrium state are dominated primarily by (Mg + Cu) content, except the alloys with (Mg + Cu) ≳ 4.35 wt pct, all designed alloys are in single-Al phase field.

  16. Interfacial chemistry in Al/CuO reactive nanomaterial and its role in exothermic reaction.

    PubMed

    Kwon, Jinhee; Ducéré, Jean Marie; Alphonse, Pierre; Bahrami, Mehdi; Petrantoni, Marine; Veyan, Jean-Francois; Tenailleau, Christophe; Estève, Alain; Rossi, Carole; Chabal, Yves J

    2013-02-01

    Interface layers between reactive and energetic materials in nanolaminates or nanoenergetic materials are believed to play a crucial role in the properties of nanoenergetic systems. Typically, in the case of Metastable Interstitial Composite nanolaminates, the interface layer between the metal and oxide controls the onset reaction temperature, reaction kinetics, and stability at low temperature. So far, the formation of these interfacial layers is not well understood for lack of in situ characterization, leading to a poor control of important properties. We have combined in situ infrared spectroscopy and ex situ X-ray photoelectron spectroscopy, differential scanning calorimetry, and high resolution transmission electron microscopy, in conjunction with first-principles calculations to identify the stable configurations that can occur at the interface and determine the kinetic barriers for their formation. We find that (i) an interface layer formed during physical deposition of aluminum is composed of a mixture of Cu, O, and Al through Al penetration into CuO and constitutes a poor diffusion barrier (i.e., with spurious exothermic reactions at lower temperature), and in contrast, (ii) atomic layer deposition (ALD) of alumina layers using trimethylaluminum (TMA) produces a conformal coating that effectively prevents Al diffusion even for ultrathin layer thicknesses (∼0.5 nm), resulting in better stability at low temperature and reduced reactivity. Importantly, the initial reaction of TMA with CuO leads to the extraction of oxygen from CuO to form an amorphous interfacial layer that is an important component for superior protection properties of the interface and is responsible for the high system stability. Thus, while Al e-beam evaporation and ALD growth of an alumina layer on CuO both lead to CuO reduction, the mechanism for oxygen removal is different, directly affecting the resistance to Al diffusion. This work reveals that it is the nature of the monolayer

  17. Theory of the dielectric response of CaCu_3Ti_4O_12

    NASA Astrophysics Data System (ADS)

    Vanderbilt, David

    2002-03-01

    I will review our recent work(L. He, J.B. Neaton, M.H. Cohen, D. Vanderbilt, and C. Homes, submitted to Phys. Rev. B.) in which calculations of the structural and electronic properties of CaCu_3Ti_4O_12 were carried out in an attempt to understand the anomalous dielectric and optical properties(M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, and A. W. Sleight, J. Solid State Chem. 151), 323 (2000).^,(A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S. M. Shapiro, Solid State Commun. 115), 217 (2000).^,(C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Science 293), 673 (2001). of this unusual material. Among the most difficult features to understand are the origin of the enormous dielectric constant ( ~10^5) observed over a wide temperature range, the nature of the Debye relaxation observed at low frequencies, and the anomalies in the infrared spectra that appear to suggest a violation of an oscillator sum rule. Our calculations use local spin-density theory to compute the ground-state structural and electronic properties, zone-center phonon frequencies, oscillator strengths, and lattice dielectric response of CaCu_3Ti_4O_12. We confirm the experimental identification of the ground-state structure, which is not ferroelectric, and we check that our phonon frequencies are in good agreement with the measured ones. These results lead to an understanding of the lattice dielectric response that is generally consistent with observations at frequencies above the Debye relaxation rate, but do not provide a natural explanation for the enormous dielectric constant observed at lower frequencies. Therefore, in the remainder of the talk I will speculate on three possible types of explanations for these behaviors. First, I consider whether some unusual intrinsic lattice mechanism could nonetheless be responsible. Second, I discuss whether an intrinsic electronic mechanism might possibly play a role. The most obvious picture of the

  18. A comparative study on shock compression of nanocrystalline Al and Cu: Shock profiles and microscopic views of plasticity

    SciTech Connect

    Ma, Wen; Hou, Yong; Zhu, Wenjun

    2013-10-28

    Shock compressions of nanocrystalline (nc) metals Al and Cu with the same grain size and texture are studied by using molecular dynamics simulations. Results have revealed that the shock front of both Al and Cu can be divided into three stages: elastic, grain-boundary-mediated, and dislocation-mediated plastic deformation. The transition planes among these three stages are proven to be non-planar by two-dimensional shock response analysis, including local stress, shear, temperature, and atom configuration. The difference between shocked Al and Cu is that the rise rate of the elastic stage of Cu is slightly higher than that of Al, and that the shock-front width of Al is wider than Cu at the same loading conditions. For the plastic stage, the dislocation density of shocked Al is lower than Cu, and the contribution of grain-boundary-mediated plasticity to shock front and strain for nc Al is more pronounced than for nc Cu. These results are explained through intrinsic material properties and atomistic analysis of the plastic process. In the case of the shocked Al sample, partial dislocations, perfect dislocations, and twins are observed, but few evidence of perfect dislocations and twins are observed in the shocked Cu.

  19. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  20. Dielectric Properties of CaCu_3Ti_4O_12: Influence of Temperature, Pressure and Doping

    NASA Astrophysics Data System (ADS)

    Grubbs, Robert; Venturini, Gene; Clem, Paul; Richardson, Jacob; Tuttle, Bruce; Samara, George

    2004-10-01

    It has been recently discovered that CaCu_3Ti_4O_12 (CCTO) has a colossal dielectric constant, and a temperature insensitive plateau region near room temperature. Although complex dipole relaxation models have been suggested to explain this dielectric response, it is now generally agreed that the observed behavior is not intrinsic. Doping CCTO with small concentrations of Fe and Nb affects the overall dielectric response by reducing both the dielectric constant and the dielectric losses. Higher Fe doping is shown to dramatically affect the dielectric response in such a way as to reveal the masked intrinsic dielectric response of CCTO. Using measured kinetic data, the CCTO results are modeled with a barrier layer capacitor model assuming semiconducting grains and insulating grain boundaries. The model reproduces the dielectric response and the dielectric losses confirming the observed colossal dielectric constant is an extrinsic effect. Sandia is operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. DOE under contract DE-AC04-94AL85000.

  1. Thermochemistry of glasses and liquids in the systems CaMgSi 2O 6-CaAl 2Si 2O 8-NaAlSi 3O 8, SiO 2-CaAl 2Si 2O 8-NaAlSi 3O 8 and SiO 2-Al 2O 3-CaO-Na 2O

    NASA Astrophysics Data System (ADS)

    Navrotsky, A.; Hon, R.; Weill, D. F.; Henry, D. J.

    1980-10-01

    Enthalpies of solution in 2PbO· B 2O 3 at 712°C have been measured for glasses in the systems albite anorthite diopside, NaAlO 2-SiO 2, Ca 0.5AlO 2-SiO 2 and albite-anorthite-quartz. The systems albite-anorthite and diopside-anorthite show substantial negative enthalpies of mixing, albite-diopside shows significant positive heats of mixing. For compositions up to NaAlO2 = 0.42 (which includes the subsystem albite-silica) the system NaAlO 2-SiO 2 shows essentially zero heats of mixing. A negative ternary excess heat of mixing is found in the plagioclase-rich portion of the albite-anorthite-diopside system. The join Si 4O 8-CaAl 2Si 2O 8 shows small but significant heats of mixing. In albite-anorthite-quartz. ternary glasses, the ternary excess enthalpy of mixing is positive. Based on available heat capacity data and appropriate consideration of the glass transition, the enthalpy of the crystal-glass transition (vitrification) is a serious underestimate of the enthalpy of the crystal-liquid transition (fusion) especially when the melting point, Tf, is many hundreds of degrees higher than the glass transition temperature, Tg. On the other hand, the same heat capacity data suggest that the enthalpies of mixing in albite-anorthite-diopside liquids are calculated to be quite similar to those in the glasses. The enthalpies of mixing observed in general support the structural models proposed by TAYLOR and BROWN (1979a, b) and others for the structure of aluminosilicate glasses.

  2. Development of Cu alloy anode and separator coated with Al-Ni intermetallic compound

    SciTech Connect

    Toyokura, K.; Hoshino, K.; Yamamoto, M.

    1996-12-31

    Anode made of Cu alloy and separator coated with Al-Ni intermetallic compound have been developed for VCFC. Anode of Ni alloy is usually used. However, the alternative of cost lower than Ni alloy anode should be needed, because Ni is expensive. Cu is attractive as an anode material for VCFC because it is inexpensive and electrochemically noble. However, the creep resistance of Cu is not sufficient, compared with Ni alloy. In this study, strengthening due to oxide-dispersed microstructure has been developed in Cu-Ni-Al alloy with the two-step sintering process. A wet-seal technique has been widely applied for gas-sealing and supporting of electrolyte in MCFC. Since the wet-seal area is exposed to a severe corrosive environment, corrosion resistance of material for wet sealing is related with the cell performance. Al-Ni plating with post-heat treating for stainless steel has been investigated. Stainless steel substrate was plated with Al after being coated with Ni, then heat-treated at 750 {degrees}C for 1 hour in Ar gas atmosphere. Due to the treatment, Al-Ni intermetallic compound ( mainly Al3Ni2 ) layer is formed on stainless steel surface. The long-term immersion test was carried out till 14,500 hours in 62 mol% Li{sub 2}CO{sub 3}-38 mol% K{sub 2}CO{sub 3} at 650 {degrees}C under air-30%CO{sub 2} atmosphere, for the purpose of evaluating the corrosion resistance and thermal stability of Al-Ni intermetallic compound layer in actual generating with VCFC.

  3. A systematic study of superconductivity in BiPb(Sn)-Sb Sr-Ca-Cu-O systems

    NASA Technical Reports Server (NTRS)

    Akbar, Sheikh A.; Botelho, M. J.; Wong, M. S.; Alauddin, M.

    1990-01-01

    Superconducting transition above 160 K has been reported in the Bi-Pb-Sb-Sr-Ca-Cu-O system. Results of a systematic study emphasizing the correlations between the type and amount of dopant, and superconducting transition is presented. The effect of Sn (instead of Pb) substitution is also highlighted.

  4. Pb solubility of the high-temperature superconducting phase Bi2Sr2Ca2Cu3O(10+d)

    NASA Technical Reports Server (NTRS)

    Kaesche, Stefanie; Majewski, Peter; Aldinger, Fritz

    1995-01-01

    For the nominal composition of Bi(2.27-x)Pb(x)Sr2 Ca2 Cu3 O(10+d) lead content was varied from x = 0.05 to 0.45. The compositions were examined between 830 and 890 C which is supposed to be the temperature range over which the so-called 2223 phase (Bi2Sr2Ca2Cu3O(10+d)) is stable. Only compositions between x = 0.18 to 0.36 could be synthesized in a single phase state. For x is greater than 0.36 a lead containing phase with a stoichiometry of Pb4(Sr,Ca)5CuO(d) is formed, for x is less than 0.18 mainly Bi2Sr2CaCu2O(10+d) and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830 to 890 C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.

  5. STM Studies of Near-Optimal Doped Bi_2Sr_2CaCu_2O_8 delta

    SciTech Connect

    Kapitulnik, Aharon

    2010-04-05

    In this paper we summarize our STM studies of the density of electronic states in nearly optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8 + {delta}} in zero field. We report on the inhomogeneity of the gap structure, density of states modulations with four-lattice constant period, and coherence peak modulation.

  6. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOEpatents

    Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.

    1996-01-01

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  7. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOEpatents

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  8. Pb-DOPING Effects in Hg1-xPbxBa2Ca2Cu3O8+δ

    NASA Astrophysics Data System (ADS)

    Xue, Y. Y.; Huang, Z. J.; Qiu, X. D.; Beauvais, L.; Zhang, X. N.; Sun, Y. Y.; Meng, R.; Chu, C. W.

    Samples with a nominal composition of Hg1-xPbxBa2Ca2Cu3O8+δ (x~0.1, 0.2, and 0.3) have been synthesized and characterized. The Pb-doping promotes the formation of the three CuO2-layer compound Hg1-xPbxBa2Ca2Cu3O8+δ, and reduces the release of Hg vapor at the synthesis temperature. The intergrain electric coupling is also significantly enhanced by the doping, resulting in lower normal-state resistivity and higher intergrain critical current density. The carrier concentration of the as-synthesized samples increases with the increase of x, ranging from underdoped (x~0) to overdoped (x≥0.2).

  9. Electrical conductivity and superconductivity in (Bi-Pb)-Sr-Ca-Cu-O glass ceramics during the first minutes of crystallization

    NASA Astrophysics Data System (ADS)

    Gazda, M.; Kusz, B.; Chudinov, S.; Stizza, S.; Natali, R.

    2003-05-01

    (Bi 0.8Pb 0.2) 4Sr 3Ca 3Cu 4O x glass ceramic samples were obtained by annealing at temperatures between 700 and 870 °C for a short time. The measurements of the temperature dependence of resistivity in annealed samples were carried out with the conventional four-terminal method in a temperature range from 3 to 300 K. The dynamic changes of resistivity during the process of annealing were also monitored in some of the studied annealing temperatures. Low temperature resistivity measurements show that during the growth of crystalline phases a gradual change of conduction mechanism occurs. Some samples were superconducting with transition temperatures characteristic for (Bi 0.8Pb 0.2) 2Sr 2CuO x and (Bi 0.8Pb 0.2) 2Sr 2CaCu 2O x materials.

  10. Synthesis and characterization of CuAlO(2) and AgAlO(2) delafossite oxides through low-temperature hydrothermal methods.

    PubMed

    Xiong, Dehua; Zeng, Xianwei; Zhang, Wenjun; Wang, Huan; Zhao, Xiujian; Chen, Wei; Cheng, Yi-Bing

    2014-04-21

    In this work, we present one-step low temperature hydrothermal synthesis of submicrometer particulate CuAlO2 and AgAlO2 delafossite oxides, which are two important p-type transparent conducting oxides. The synthesis parameters that affect the crystal formation processes and the product morphologies, including the selection of starting materials and their molar ratios, the pH value of precursors, the hydrothermal temperature, pressure, and reaction time, have been studied. CuAlO2 crystals have been synthesized from the starting materials of CuCl and NaAlO2 at 320-400 °C, and from Cu2O and Al2O3 at 340-400 °C, respectively. AgAlO2 crystals have been successfully synthesized at the low temperature of 190 °C, using AgNO3 and Al(NO3)3 as the starting materials and NaOH as the mineralizer. The detailed elemental compositions, thermal stability, optical properties, and synthesis mechanisms of CuAlO2 and AgAlO2 also have been studied. Noteworthy is the fact that both CuAlO2 and AgAlO2 can be stabilized up to 800 °C, and their optical transparency can reach 60%-85% in the visible range. Besides, it is believed the crystal formation mechanisms uncovered in the synthesis of CuAlO2 and AgAlO2 will prove insightful guildlines for the preparation of other delafossite oxides. PMID:24702474

  11. Scanning Tunneling Microscopy Studies of Surface Structures of Icosahedral Al-Cu-Fe Quasicrystals

    SciTech Connect

    Tanhong Cai

    2002-12-31

    Three papers are included in this dissertation. The first paper: ''Structural aspects of the fivefold quasicrystalline Al-Cu-Fe surface from STM and dynamical LEED studies'', is in press with ''Surface Science''. The second paper: ''An STM study of the atomic structure of the icosahedral Al-Cu-Fe fivefold surface'' is submitted to ''Physical Review B, Rapid Communication''. The third paper: ''Pseudomorphic starfish: arrangement of extrinsic metal atoms on a quasicrystalline substrate'' is submitted to ''Nature''. Following the third paper are general conclusions and appendices that document the published paper ''Structural aspects of the three-fold surface of icosahedral Al-Pd-Mn'' (appearing in volume 461, issue 1-3 of ''Surface Science'' on page L521-L527, 2000), the design as well as the specifications of the aluminum evaporator used in the aluminum deposition study in this dissertation, an extended discussion of the aluminum deposition on the quasicrystalline surface, and the STM database.

  12. Combustion Synthesis of CaAl2Si2O8:Eu2+, Dy3+ And CaSrAl2SiO7:Eu2+ Long After Glow Phosphors

    NASA Astrophysics Data System (ADS)

    Talwar, Gurjeet; Joshi, C. P.; Moharil, S. V.; Kondawar, V. K.

    2011-10-01

    CaSrAl2SiO7:Eu2+ and CaAl2Si2O8:Eu2+, Dy3+ are prepared through modified combustion technique. The photoluminescence and long after glow decay characteristics are studied. PL emission spectra of both the phosphors are obtained in blue region.

  13. Consistency in Al/CuPc/ n-Si Heterojunction Diode Parameters Extracted Using Different Techniques

    NASA Astrophysics Data System (ADS)

    Ullah, Irfan; Shah, Mutabar; Khan, Majid; Wahab, Fazal

    2016-02-01

    This paper reports fabrication and characterization of an Al/CuPc/ n-Si heterojunction diode. The heterojunction was fabricated by depositing the active organic semiconducting material copper phthalocyanine (CuPc) on the n-Si substrate using the thermal vacuum evaporation technique. Electrical characterization of the fabricated heterojunction was carried out at ambient conditions. Various diode parameters, such as the ideality factor ( n), barrier height (Φ_{{b}}), and series resistance ( R s), were extracted from the current-voltage ( I- V) characteristic curve. These parameters are consistent with techniques used by Cheung, Norde and Hernandez et al. Furthermore these parameters are consistent with capacitance-voltage (C-V) characterization method. The conduction mechanism at the interface of CuPc and n-Si was also investigated. The surface morphology of the CuPc film was studied using atomic force microscopy and scanning electron microscopy. The optical bandgap of the CuPc film was calculated from the absorption spectrum using Tauc's law.

  14. Transport, electronic, and structural properties of nanocrystalline CuAlO2 delafossites

    NASA Astrophysics Data System (ADS)

    Durá, O. J.; Boada, R.; Rivera-Calzada, A.; León, C.; Bauer, E.; de la Torre, M. A. López; Chaboy, J.

    2011-01-01

    This work reports on the effect of grain size on the electrical, thermal, and structural properties of CuAlO2 samples obtained by solid-state reaction combined with ball milling. Electrical characterization made in microcrystalline and nanocrystalline samples shows that the electrical conductivity decreases several orders of magnitude for the nanocrystalline samples, and, in addition, there is a large discrepancy between the activation energies associated to thermoelectric power ES. The study of the Cu K-edge x-ray absorption spectra of the CuAlO2 samples shows that the local structure around Cu is preserved after the sintering process, indicating that the observed behavior of the electrical conductivity is of intrinsic origin. Complex conductivity measurements as a function of frequency allow us to discard grain-boundaries effects on the electrical transport. Thus, the changes in σ(T) and S(T) are interpreted in terms of charge localization in the framework of small polarons. This is in agreement with the analysis of the near-edge region of the absorption spectra, which indicates that sintering favors the Cu-O hybridization. As a consequence, oxygen atoms progressively lose their capability of trapping holes, and the electrical conductivity is also enhanced.

  15. Aluminum-Magnesium and Oxygen Isotope Study of Relict Ca-Al-rich Inclusions in Chondrules

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; McKeegan, Kevin D.; Huss, Gary R.; Liffman, Kurt; Sahijpal, Sandeep; Hutcheon, Ian D.; Srinivasan, Gopalan; Bischoff, Adolph; Keil, Klaus

    2006-03-01

    Relict Ca-Al-rich inclusions (CAIs) in chondrules crystallized before their host chondrules and were subsequently partly melted together with chondrule precursors during chondrule formation. Like most CAIs, relict CAIs are 16O enriched (Δ17O<-20‰) compared to their host chondrules (Δ17O>-9‰). Hibonite in a relict CAI from the ungrouped carbonaceous chondrite Adelaide has a large excess of radiogenic 26Mg (26Mg*) from the decay of 26Al, corresponding to an initial 26Al/27Al ratio [(26Al/27Al)I] of (3.7+/-0.5)×10-5 in contrast, melilite in this CAI and plagioclase in the host chondrule show no evidence for 26Mg* [(26Al/27Al)I of <5×10-6]. Grossite in a relict CAI from the CH carbonaceous chondrite PAT 91546 has little 26Mg*, corresponding to a (26Al/27Al)I of (1.7+/-1.3)×10-6. Three other relict CAIs and their host chondrules from the ungrouped carbonaceous chondrite Acfer 094, CH chondrite Acfer 182, and H3.4 ordinary chondrite Sharps do not have detectable 26Mg* [(26Al/27Al)I<1×10-5, <(4-6)×10-6, and <1.3×10-5, respectively]. Isotopic data combined with mineralogical observations suggest that relict CAIs formed in an 16O-rich gaseous reservoir before their host chondrules, which originated in an 16O-poor gas. The Adelaide CAI was incorporated into its host chondrule after 26Al had mostly decayed, at least 2 Myr after the CAI formed, and this event reset 26Al-26Mg systematics.

  16. Structural stability of the icosahedral AlCuFe quasicrystal under high-pressure and high-temperature

    NASA Astrophysics Data System (ADS)

    Takagi, S.; Kyono, A.; Nakamoto, Y.; Hirao, N.

    2015-12-01

    We report high-pressure and high-temperature in-situ X-ray diffraction study of icosahedral (i)-AlCuFe quasicrystal "icosahedrite" which is the first known naturally occurring quasicrystal mineral discovered in the Khatyrka meteorite. The i-AlCuFe quasicrystal was synthesized in laboratory from a powder mixture with an atomic ratio of Al : Cu : Fe = 65 : 20 : 15. The high-temperature and high-pressure X-ray diffraction experiments were performed using the laser-heated diamond anvil cell system installed at BL10XU, SPring-8, Japan. The i-AlCuFe showed a characteristic X-ray diffraction pattern of quasicrystal. With only compression, the diffraction patterns of the i-AlCuFe were continued until 75 GPa. At a pressure of 87 GPa two small new peaks occurred and then kept up to the maximum pressure of 104 GPa in the study. The results indicate that the pressure-induced structural phase transition of the i-AlCuFe occurs above 87 GPa, and the structure of the i-AlCuFe remains unchanged at least up to 75 GPa. Under simultaneously high pressure and high temperature, on the other hand, the i-AlCuFe was readily transformed to crystalline phase. It can be characterized by an irreversible transformation process. The structure of the i-AlCuFe is therefore more affected by thermal metamorphism than by pressure metamorphism. The present high-pressure and high-temperature experiments clearly revealed the thermal and pressure stability of the i-AlCuFe quasicrystal which may help to explain the formation of the naturally occurring quasicrystal in the solar system.

  17. Effect of Surplus Phase on the Microstructure and Mechanical Properties in Al-Cu-Mg-Ag Alloys with High Cu/Mg Ratio

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofeng; Zhao, Yuguang; Wang, Xudong; Zhang, Ming; Ning, Yuheng

    2015-11-01

    In order to examine the effect of surplus phase on the microstructure and mechanical properties, different compositions with high Cu/Mg ratio of the T6-temper extruded Al-Cu-Mg-Ag alloys were studied in this investigation. The results show that the Al-5.6Cu-0.56Mg-0.4Ag alloy obtains superior mechanical properties at room temperature, while the yield strength of Al-6.3Cu-0.48Mg-0.4Ag alloy is 378 MPa at 200 °C, which is 200 MPa higher than that of Al-5.6Cu-0.56Mg-0.4Ag alloy. Although the excessive Cu content causes the slight strength loss and elongation decrease in the Al-6.3Cu-0.48Mg-0.4Ag alloy at room temperature, the surplus phases and recrystallized microstructure will play an effective role in strengthening the alloy at elevated temperature.

  18. Anomalous shifts of oxygen-mode frequencies in La sub 2 minus x Sr sub x CuO sub 4 , YBa sub 2 Cu sub 3 O sub 7 minus. delta. and Tl sub 2 Ba sub 2 Ca sub 1 minus x Gd sub x Cu sub 2 O sub 8

    SciTech Connect

    Mihailovic, D. J. Stefan Institute, Jamova 39, Ljubljana, ); Foster, C.M.; Voss, K.F. ); Mertelj, T.; Poberaj, I. ); Herron, N. )

    1991-07-01

    Comparison of photoinduced local modes (PILM's) of insulating YBa{sub 2}Cu{sub 3}O{sub 6.3} and Tl{sub 2}Ba{sub 2}Ca{sub 1{minus}{ital x}}Gd{sub {ital x}}Cu{sub 2}O{sub 8} with Raman spectra of their metallic counterparts suggests that carrier injection anomalously increases the frequencies of phonons involving {ital z}-axis apex-oxygen motion in both the dilute (insulator) and concentrated (metallic) limit. In La{sub 2}CuO{sub 4}, we observe PILM's whose frequencies suggest a correspondence with the ghost modes'' observed in neutron scattering (Rietschel {ital et} {ital al}., Physica C 162--164, 1705 (1989)). These data, together with Raman data on apex-oxygen anharmonicity, enable us to discuss the vibronic mode couplings involved in polaron formation in the three materials.

  19. Thermoluminescent characteristics of LiF:Mg, Cu, P and CaSO4:Dy for low dose measurement.

    PubMed

    Del Sol Fernández, S; García-Salcedo, R; Mendoza, J Guzmán; Sánchez-Guzmán, D; Rodríguez, G Ramírez; Gaona, E; Montalvo, T Rivera

    2016-05-01

    Thermoluminescence (TL) characteristics for LiF:Mg, Cu, P, and CaSO4:Dy under the homogeneous field of X-ray beams of diagnostic irradiation and its verification using thermoluminescence dosimetry are presented. The irradiation were performed utilizing a conventional X-ray equipment installed at the Hospital Juárez Norte of México. Different thermoluminescence characteristics of two material were studied, such as batch homogeneity, glow curve, linearity, detection threshold, reproducibility, relative sensitivity and fading. Materials were calibrated in terms of absorbed dose to the standard calibration distance and they were positioned in a generic phantom. The dose analysis, verification and comparison with the measurements obtained by the TLD-100 were performed. Results indicate that the dosimetric peak appears at 202°C and 277.5°C for LiF:Mg, Cu, P and CaSO4:Dy, respectively. TL response as a function of X-ray dose showed a linearity behavior in the very low dose range for all materials. However, the TLD-100 is not accurate for measurements below 4mGy. CaSO4:Dy is 80% more sensitive than TLD-100 and it show the lowest detection threshold, whereas LiF:Mg, Cu, P is 60% more sensitive than TLD-100. All materials showed very good repeatability. Fading for a period of one month at room temperature showed low fading LiF:Mg, Cu, P, medium and high for TLD-100 and CaSO4:Dy. The results suggest that CaSO4:Dy and LiF:Mg, Cu, P are suitable for measurements at low doses used in radiodiagnostic. PMID:26922395

  20. Adsorption and desorption of Zn(II) and Cu(II) on Ca- alginate immobilized activated rice bran

    NASA Astrophysics Data System (ADS)

    Suratman, A.; Kamalia, N. Z.; Kusumawati, W. A.

    2016-02-01

    Ca-alginate immobilized activated rice bran has been used for adsorption of Zn(II) and Cu(II) from aqueous solution. The effect of the pH, kinetics model, adsorption isotherm and desorption on the adsorption performance was investigated. Activated rice bran was immobilized by the entrapment in alginate beads. The adsorption strength of Ca-alginate immobilized activated rice bran was compared to Ca-alginate and non-immobilized activated rice bran. The concentrations of adsorbed ions were analyzed using Atomic Absorption Spectrophotometer (AAS). The result showed that pH of 4.0 and the contact time of 120 min are the optimum condition for adsorption of Zn(II) and Cu(II). The adsorption kinetic of Zn(II) and Cu(II) followed the pseudo-second-order model with adsorption rate constant 4.9 x 10-2 and 3.14 g.mg-1.min-1, respectively. The both adsorption processes obeyed Langmuir isotherm with adsorption capacity of 2.03 and 2.42 mg.g-1 of adsorbent, respectively. The strength of Zn adsorption on Ca-alginate immobilized activated rice bran (86.63%) was more effective compared to Ca-alginate beads (60.96%) and activated rice bran (43.85%). The strength of Cu adsorption was 80.00%, 61.50% and 22.10%, respectively. The desorption of Zn(II) and Cu(II) showed that recovery percentage of the adsorption was 76.56% and 57.80% with the condition of using HCl 0.1 M as desorption agent for 1 hour.

  1. Electron-beam induced disorder effects in optimally doped Bi2Sr2CaCu2O8+x single crystal samples

    NASA Astrophysics Data System (ADS)

    Vobornik, I.; Berger, H.; Pavuna, D.; Margaritondo, G.; Forro, L.; Grioni, M.; Rullier-Albenque, F.; Onellion, M.; EPFL Collaboration; Laboratoire Des Solides Irradiés Collaboration

    2000-03-01

    We report on the effects of electron-beam induced disorder in optimally doped Bi2Sr2CaCu2O8+x single crystal samples, measured with angle-resolved photoemission. In the superconducting state, the disorder fills in the gap, without changing the binding energy or the width of the narrow coherent feature.[1] In the normal state, disorder leads to an anisotropic pseudogap in angle-resolved photoemission, with the largest pseudogap near the (0,p) point and no pseudogap in the direction.[2,3] We discuss implications of these data. 1. I. Vobornik et.al., Phys. Rev. Lett. 82 , 3128 (1999). 2. I. Vobornik, Ph.D. thesis, EPFL, Lausanne, Switzerland, October, 1999. 3. I. Vobornik et.al., unpublished.

  2. Laser micro-processing of amorphous and partially crystalline Cu45Zr48Al7 alloy

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.; Kovacs, Z.; Browne, D. J.

    2010-11-01

    This paper presents a microstructural study of laser micro-processed high-purity Cu45Zr48Al7 alloys prepared by arc melting and Cu-mould casting. Microprocessing of the Cu45Zr48Al7 alloy was performed using a Rofin DC-015 diffusion-cooled CO2 slab laser system with 10.6-μm wavelength. The laser was defocused to a spot size of 0.2 mm on the sample surface. The laser parameters were set to give 300- and 350-W peak power, 30% duty cycle and a 3000-Hz laser pulse repetition frequency (PRF). About 100-micrometer-wide channels were scribed on the surfaces of disk-shaped amorphous and partially crystalline samples at traverse speeds of 500 and 5000 mm/min. These channels were analysed using scanning electron microscopy (SEM) and 2D stylus profilometry. The metallographic study and profile of these processed regions are discussed in terms of the applied laser processing parameters. The SEM micrographs showed that striation marks developed at the edge and inside these regions as a result of the laser processing. The results from this work showed that microscale features can be produced on the surface of amorphous Cu-Zr-Al alloys by CO2 laser processing.

  3. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    PubMed

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution. PMID:25185834

  4. Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites

    NASA Astrophysics Data System (ADS)

    Pauly, S.; Liu, G.; Wang, G.; Das, J.; Kim, K. B.; Kühn, U.; Kim, D. H.; Eckert, J.

    2009-09-01

    In the present work we prepared an in situ Cu47.5Zr47.5Al5 bulk metallic glass matrix composite derived from the shape memory alloy CuZr. We use a strength model, which considers percolation and a three-microstructural-element body approach, to understand the effect of the crystalline phase on the yield stress and the fracture strain under compressive loading, respectively. The intrinsic work-hardenability due to the martensitic transformation of the crystalline phase causes significant work hardening also of the composite material.

  5. Semiconductor bridge, SCB, ignition studies of Al/CuO thermite

    SciTech Connect

    Bickes, R.W. Jr.; Wackerbarth, D.E.; Mohler, J.H.

    1997-04-01

    The authors briefly summarize semiconductor bridge operation and review their ignition studies of Al/CuO thermite as a function of the capacitor discharge unit (CDU) firing set capacitance, charge holder material and morphology of the CuO. Ignition thresholds were obtained using a brass charge holder and a non-conducting fiber-glass-epoxy composite material, G10. At - 18 C and a charge voltage of 50V, the capacitance thresholds were 30.1 {mu}F and 2.0 {mu}F respectively. They also present new data on electrostatic discharge (ESD) and radio frequency (RF) vulnerability tests.

  6. Superelasticity of Cu-Ni-Al shape-memory fibers prepared by melt extraction technique

    NASA Astrophysics Data System (ADS)

    Li, Dong-yue; Zhang, Shu-ling; Liao, Wei-bing; Geng, Gui-hong; Zhang, Yong

    2016-08-01

    In the paper, a melt extraction method was used to fabricate Cu-4Ni-14Al (wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy (SEM) and a dynamic mechanical analyzer (DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation.

  7. Superconductivity and chemical composition of the high-Tc phase (Tc = 111 K) in the Sb-Pb-Bi-Sr-Ca-Cu-O system

    NASA Astrophysics Data System (ADS)

    Kijima, Naota; Gronsky, Ronald; McKernan, Steffen K.; Endo, Hozumi; Oguri, Yasuo

    1991-01-01

    A superconducting phase with a critical temperature of 111 K in the Sb-Pb-Bi-Sr-Ca-Cu-O system has been synthesized by means of a long firing period. Its crystal structure is similar to the high-Tc phase (107 K) in the Pb-Bi-Sr-Ca-Cu-O system, and its average chemical composition is 4.3, 2.6, 19.2, 21.4, 15.8 and 36.9 percent for Sb, Pb, Bi, Sr, Ca, and Cu, respectively. The summation of the Sb concentration and the Ca concentration is approximately the same for all the samples of this phase, implying that Sb substitutes for Ca, and oxygen atoms are introduced to compensate the oxygen deficiency in the central Cu-O layer sandwiched by the two Ca layers in the crystal structure of the high-Tc phase.

  8. A simple method for the normal pressure synthesis of Cu 1- xTl xBa 2Ca 3Cu 4O 12- δ superconductor

    NASA Astrophysics Data System (ADS)

    Khan, Nawazish A.; Khurram, A. A.; Javed, Asim

    2005-05-01

    A very simple method for the direct synthesis of Cu 1- xTl xBa 2Ca 3Cu 4O 12- δ (Cu 1- xTl x-1234) superconductor is reported. A predominant single phase Cu 1- xTl x-1234 is achieved by the solid state reaction of Ba(NO 3) 2, CaCO 3 and Cu(CN) at first stage and with appropriate amount of Tl 2O 3 at the second stage. These materials were fired twice for 24 h at 880 °C followed by intermediate grinding. Thoroughly ground and fired material was mixed with Tl 2O 3 in appropriate amount and pellets were made by applying a pressure of 5 tons. Pellets were wrapped in an aluminum foil and sintered at 880 °C for 3-30 min. A predominantly single phase of Cu 1- xTl xBa 2Ca 3Cu 4O 12- δ was achieved with an inclusion of unknown impurity. The resistivity measurements established the onset temperature of superconductivity [ Tc (onset)] at 120 K and zero resistivity critical temperature [ Tc( R = 0)] at 106 K. Bulk superconductivity was also confirmed by ac-magnetic susceptibility measurements. The surface of the samples was analyzed by electron microscopy and their composition by energy dispersive X-ray spectroscopy (EDX) measurements. For optimizing the carriers in the final compound, post-annealing experiments were carried out in the flowing nitrogen atmosphere. For the study of the doping mechanisms, in the post-annealed samples, the phonon modes of Cu 1- xTl x-1234 were investigated by infrared absorption measurements. The absorption mode of O δ [O3] atoms decreased in intensity after the post-annealing and the apical oxygen modes were softened to lower wave numbers. The softening of these phonon modes suggested the reduction of thallium from Tl 3+ to Tl 1+; which resulted in an increase of [ Tc( R = 0)] of the material.

  9. Crystal structure study of (Ca, Gd){sub 2}(Al, Ti)O{sub 4}

    SciTech Connect

    Sawada, Haruo; Marumo, Fumiyuki; Kodama, Nobuhiro

    1998-08-01

    The crystal structures of two crystals of (Ca, Gd){sub 2} (Al, Ti)O{sub 4} [tetragonal I4/mmm; Z = 4], one strongly fluorescent and the other weakly fluorescent, having minor differences in their precise compositions have been studied with single-crystal X-ray diffraction methods. The unit cell is significantly smaller for the weakly fluorescent crystal, which also shows alteration of the coordination polyhedraon around the (Ca, Gd) site, suggesting the formation of vacancies at an oxygen site.

  10. Ternary CaCu{sub 4}P{sub 2}-type pnictides AAg{sub 4}Pn{sub 2} (A=Sr, Eu; Pn=As, Sb)

    SciTech Connect

    Stoyko, Stanislav S.; Khatun, Mansura; Scott Mullen, C.; Mar, Arthur

    2012-08-15

    Four ternary pnictides AAg{sub 4}Pn{sub 2} (A=Sr, Eu; Pn=As, Sb) were prepared by reactions of the elements at 850 Degree-Sign C and their crystal structures were determined from single-crystal X-ray diffraction studies. These silver-containing pnictides AAg{sub 4}Pn{sub 2} adopt the trigonal CaCu{sub 4}P{sub 2}-type structure (Pearson symbol hR21, space group R3-bar m, Z=3; a=4.5555(6) A, c=24.041(3) A for SrAg{sub 4}As{sub 2}; a=4.5352(2) A, c=23.7221(11) A for EuAg{sub 4}As{sub 2}; a=4.7404(4) A, c=25.029(2) A for SrAg{sub 4}Sb{sub 2}; a=4.7239(3) A, c=24.689(2) A for EuAg{sub 4}Sb{sub 2}), which can be derived from the trigonal CaAl{sub 2}Si{sub 2}-type structure of the isoelectronic zinc-containing pnictides AZn{sub 2}Pn{sub 2} by insertion of additional Ag atoms into trigonal planar sites within [M{sub 2}Pn{sub 2}]{sup 2-} slabs built up of edge-sharing tetrahedra. Band structure calculations on SrAg{sub 4}As{sub 2} and SrAg{sub 4}Sb{sub 2} revealed that these charge-balanced Zintl phases actually exhibit no gap at the Fermi level and are predicted to be semimetals. - Graphical abstract: SrAg{sub 4}As{sub 2} and related pnictides adopt a CaCu{sub 4}P{sub 2}-type structure in which additional Ag atoms enter trigonal planar sites within slabs built from edge-sharing tetrahedra. Highlights: Black-Right-Pointing-Pointer AAg{sub 4}Pn{sub 2} are the first Ag-containing members of the CaCu{sub 4}P{sub 2}-type structure. Black-Right-Pointing-Pointer Ag atoms are stuffed in trigonal planar sites within CaAl{sub 2}Si{sub 2}-type slabs. Black-Right-Pointing-Pointer Ag-Ag bonding develops through attractive d{sup 10}-d{sup 10} interactions.

  11. Changes of microstructure and magnetic properties of Nd-Fe-B sintered magnets by doping Al-Cu

    NASA Astrophysics Data System (ADS)

    Ni, Junjie; Ma, Tianyu; Yan, Mi

    2011-11-01

    The microstructural and magnetic properties of Al 100- xCu x (15at%≤ x≤45 at%) doped Nd-Fe-B magnets were studied. The distribution and alloying effects of Cu or Al on the intergranular microstructure were investigated by thermodynamic analysis, differential scanning calorimetery and microscopy techniques. It was observed that when the Cu content of Al 100 xCu x exceeds to 25 at%, the (Pr, Nd)Cu and CuAl 2 phases form in these magnets. The formation of (Pr, Nd)Cu phase depends on the negative formation enthalpy of (Pr, Nd)Cu and the exclusive distribution of Cu in the intergranular regions. The eutectic reaction between (Pr, Nd)Cu phase and (Pr, Nd) occurs at 480 °C, which forms the liquid phase that dissolves the (Pr, Nd) 2Fe 14B surface irregularities and thus increases the quantities of (Pr, Nd)-rich phase at the grain boundaries. These changes benefit the grain boundary microstructure, especially the distribution of (Pr, Nd)-rich phase, which effectively improves the intrinsic coercivity iHc due to the decreases of exchange coupling between the (Pr, Nd) 2Fe 14B grains.

  12. High-Tc superconductivity at the interface between the CaCuO2 and SrTiO3 insulating oxides

    DOE PAGES

    Di Castro, D.; Cantoni, C.; Ridolfi, F.; Aruta, C.; Tebano, A.; Yang, N.; Balestrino, G.

    2015-09-28

    At interfaces between complex oxides it is possible to generate electronic systems with unusual electronic properties, which are not present in the isolated oxides. One important example is the appearance of superconductivity at the interface between insulating oxides, although, until now, with very low Tc. We report the occurrence of high Tc superconductivity in the bilayer CaCuO2/SrTiO3, where both the constituent oxides are insulating. In order to obtain a superconducting state, the CaCuO2/SrTiO3 interface must be realized between the Ca plane of CaCuO2 and the TiO2 plane of SrTiO3. Only in this case can oxygen ions be incorporated in themore » interface Ca plane, acting as apical oxygen for Cu and providing holes to the CuO2 planes. In addition, a detailed hole doping spatial profile can be obtained by scanning transmission electron microscopy and electron-energy-loss spectroscopy at the O K edge, clearly showing that the (super)conductivity is confined to about 1–2 CaCuO2 unit cells close to the interface with SrTiO3. The results obtained for the CaCuO2/SrTiO3 interface can be extended to multilayered high Tc cuprates, contributing to explaining the dependence of Tc on the number of CuO2 planes in these systems.« less

  13. Thermal transformation of quaternary compounds in NaF-CaF{sub 2}-AlF{sub 3} system

    SciTech Connect

    Zaitseva, Julia N.; Yakimov, Igor S.; Kirik, Sergei D.

    2009-08-15

    Details of quaternary compounds formation in the system NaF-CaF{sub 2}-AlF{sub 3} are specified. To achieve this aim, the samples of phases NaCaAlF{sub 6} and Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} have been obtained by high-temperature solid-phase synthesis. Their thermal behavior when heated up to 800 deg. C has been studied using the methods of high-temperature X-ray diffraction (XRD) and thermal analysis (TA). The system under consideration can be regarded as a quasibinary section CaF{sub 2}-NaAlF{sub 4}, where at T=745-750 deg. C invariant equilibrium is implemented with the phases CaF{sub 2}-NaCaAlF{sub 6}-Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14}-(liquid melt)-(NaAlF{sub 4}). The peculiarity of the equilibrium is NaAlF{sub 4} metastability at normal pressure. Below the equilibrium temperature the quaternary phase Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} is stable and NaCaAlF{sub 6} above this temperature. The phase NaCaAlF{sub 6} fixed by rapid quenching from high temperatures and when heated up to 640 deg. C decomposes, yielding Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14}. Further heating in vacuum at temperature up to 740 deg. C results in decomposition of Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} into CaF{sub 2} and Na{sub 3}AlF{sub 6}. The expected reverse transformation of Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} into NaCaAlF{sub 6} has not been observed under experimental conditions. Transformations in bulk samples reveal direct and reverse transformation of quaternary phases. Synopsis: Thermal transformation of the quaternary compounds in system (NaF-CaF{sub 2}-AlF{sub 3}) was investigated using high-temperature X-ray diffraction (XRD) and thermal analysis (TA). In the system the invariant equilibrium is implemented with the phases CaF{sub 2}-NaCaAlF{sub 6}-Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14}-(liquid melt)-(NaAlF{sub 4}) at T=745-750 deg. C. - Graphical Abstract: The paper concerns of a small piece of the ternary system (NaF-CaF{sub 2}-AlF{sub 3}) which is very important for

  14. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D. V.

    2015-12-01

    In this work, we investigated the microstructure and mechanical properties of Al25Ti25Ni25Cu25 Al22.5Ti22.5Ni20Cu20Fe15 and Al20Ti20Ni20Cu20Fe20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al25Ti25Ni25Cu25, Al22.5Ti22.5Ni20Cu20Fe15 and Al20Ti20Ni20Cu20Fe20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al22.5Ti22.5Ni20Cu20Fe15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  15. Interface Development in Cu-Based Structures Transient Liquid Phase (TLP) Bonded with Thin Al Foil Intermediate Layers

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Meng, Wen Jin; Eastman, J. A.

    2014-08-01

    Proper bonding and assembly techniques are essential for fabrication of functional metal-based microdevices. Transient liquid phase (TLP) bonding is a promising technique for making enclosed metallic microchannel devices. In this paper, we report results of TLP bonding of Cu-based structures at temperatures between 823 K and 883 K (550 °C and 610 °C) with thin elemental Al foils as intermediate boding layers. In situ X-ray diffraction was utilized to examine the structure of Cu/Al interface in real time, resulting in a proposed sequence of structural evolution of the Cu/Al/Cu TLP bonding interface region. Three different types of bonding interface structures, the " γ 1 structure," the "eutectoid structure" ("E structure"), and the "E/ γ 1/E structure," were observed through electron microscopy, and related to the proposed sequence of interfacial structural evolution. Tensile fracture tests were conducted on TLP-bonded Cu/Al/Cu coupon assemblies. Hardness of the various phases within the bonding interface region was probed with instrumented nanoindentation. Results of mechanical testing were correlated to the structure of the bonding interface region. The present results provide an understanding of the structural evolution within the Cu/Al/Cu TLP bonding interface region, and offer guidance to future bonding of Cu-based microsystems.

  16. The Microstructure-Processing-Property Relationships in an Al Matrix Composite System Reinforced by Al-Cu-Fe Alloy Particles

    SciTech Connect

    Tang, Fei

    2004-01-01

    Metal matrix composites (MMC), especially Al matrix composites, received a lot of attention during many years of research because of their promise for the development of automotive and aerospace materials with improved properties and performance, such as lighter weight and better structural properties, improved thermal conductivity and wear resistance. In order to make the MMC materials more viable in various applications, current research efforts on the MMCs should continue to focus on two important aspects, including improving the properties of MMCs and finding more economical techniques to produce MMCs. Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. Microstructures and tensile properties of AYAl-Cu-Fe composites were characterized. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of

  17. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    PubMed

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. PMID:15744719

  18. Dynamic mechanical analyze of superelastic CuMnAl shape memory alloy

    NASA Astrophysics Data System (ADS)

    (Dragoș Ursanu, A. I.; Stanciu, S.; Pricop, B.; Săndulache, F.; Cimpoeșu, N.

    2016-08-01

    A new shape memory alloy was obtain from high purity Cu, Mn and Al elements using a induce furnace. The intelligent material present negative transformation temperatures and an austenite like state at room temperature. The austenite state of CuMnAl shape memory alloy present superelasticity property. Five kilograms ingot was obtain of Cu10Mn10Al alloy. From the base material (melted state) were cut samples with 6 mm thickness using a mechanical saw. After an homogenization heat treatment the samples were hot rolled through four passes with a reduction coefficient of 20%. Experimental lamellas were obtained with 1.5 mm thickness and 90x10 mm length and width. After the hot rolled treatment the materials were heat treated at 800°C for 20 minutes and chilled in water. Four samples, one just laminated and three heat treated by aging, were analyzed with a Netzsch DMA equipment to establish the elastic modulus and the internal friction values of the materials. Metallic materials microstructure was analyzed using a scanning electron microscope Vega Tescan LMH II type. After the aging heat treatment a decrease of internal friction is observed on the entire analyze range which is assigned to formation of Al-based precipitates that block the internal movement of the alloy characteristic phases.

  19. Electroactive complex in thermally treated Ge-Si <Cu, Al> crystals

    SciTech Connect

    Azhdarov, G. Kh.; Zeynalov, Z. M.; Zakhrabekova, Z. M.; Kyazimova, A. I.

    2010-05-15

    It is shown by Hall measurements that quenching complexly doped Ge{sub 1-x}Si{sub x}<Cu, Al> (0 {<=} x {<=} 0.20) crystals from 1050-1080 K leads to the formation of additional electroactive acceptor centers in them. The activation energy of these centers increases linearly with an increase in the silicon content in the crystal and is described by the relation E{sub k}{sup x} = (52 + 320x) meV. Annealing these crystals at 550-570 K removes the additional acceptor levels. It is established that the most likely model for the additional electroactive centers is a pair composed of substituent copper and aluminum atoms (Cu{sub s}Al{sub s}) or interstitial copper and substituent aluminum atoms (Cu{sub i}Al{sub s}). It is shown that the generation of additional deep acceptor levels must be taken into account when using the method of precise doping of Ge{sub 1-x}Si{sub x}<Al> crystals with copper.

  20. A nuclear microscopy study of trace elements Ca, Fe, Zn and Cu in atherosclerosis

    NASA Astrophysics Data System (ADS)

    Watt, F.; Rajendran, R.; Ren, M. Q.; Tan, B. K. H.; Halliwell, B.

    2006-08-01

    Quantitative mapping of trace elements Ca, Fe, Zn and Cu can be achieved in biological tissue using a nuclear microprobe. Presented here is a brief review of the work we have carried out in the last decade using the nuclear microscope to try and elucidate the role of trace elements Fe, Zn, Cu and Ca in induced atherosclerosis in New Zealand White rabbits fed on a 1% cholesterol diet. The lesions were studied using nuclear microscopy, incorporating a combination of ion beam techniques: particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and scanning transmission ion microscopy (STIM). Iron is present in early lesions at concentrations around seven times higher than the artery wall. Measurements of localized lesion iron concentrations were observed to be highly correlated with the depth of the lesion in the artery wall for each individual animal, implying that local elevated concentrations may provide an accelerated process of atherosclerosis in specific regions of the artery. When the rabbits were kept mildly anaemic, thereby reducing iron levels in the lesion, the progression of the disease was significantly slowed. Iron chelation using desferal showed that early treatment (three weeks into the high fat diet) for relatively long periods (nine weeks) significantly retarded the progression of the disease. Zinc is depleted in the lesion and is also observed to be anti-correlated with local lesion development and feeding the rabbits on a high fat diet with zinc supplements inhibited lesion development, although since no significant increase in lesion zinc levels was measured, this anti-atherosclerotic effect may be indirect. Copper, measured at low levels (∼3 ppm) in the early lesion, is also depleted compared to the artery wall, suggesting that it is not a major factor in atherogenesis. Calcium is also depleted in early lesions, although at a later stage mineral deposition (hydroxyapatite) is observed to take place in the lesion

  1. Origin of Ca-Al-rich inclusions. II - Sputtering and collisions in the three-ph8se interstellar medium

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1981-01-01

    The theory put forward by Clayton (1977) for the formation of the Ca-Al-rich inclusions within C3 meteorites is extended to an evolutionary history in a three-phase interstellar medium. Widespread supersonic turbulence in the hot interstellar medium is maintained by supernova shock waves, giving rise to heavy sputtering of the refractory dust. Subsequent reaccumulation with varying dust/gas ratios or varying particle sizes produces isotopically fractionated Ca-Al-rich accumulates. It is thought that the Ca-Al-rich inclusions themselves are formed by the following sequence in the solar system: (1) cold accumulation of larger-than-average Ca-Al-rich particles containing supernova condensate cores into macroscopic (approximately 1 cm) Ca-Al-rich agglomerates, probably by sedimentation; and (2) fusion of the supernova condensates into macroscopic minerals by exothermic chemical reactions that begin when the accumulate has been warmed, thereby releasing energy from the unequilibrated forms accumulated from the interstellar medium.

  2. Tuning the formation of p-type defects by peroxidation of CuAlO2 films

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Lin, Yow-Jon; Hung, Hao-Che; Liu, Chia-Jyi; Yang, Yao-Wei

    2013-07-01

    p-type conduction of CuAlO2 thin films was realized by the rf sputtering method. Combining with Hall, X-ray photoelectron spectroscopy, energy dispersive spectrometer, and X-ray diffraction results, a direct link between the hole concentration, Cu vacancy (VCu), and interstitial oxygen (Oi) was established. It is shown that peroxidation of CuAlO2 films may lead to the increased formation probability of acceptors (VCu and Oi), thus, increasing the hole concentration. The dependence of the VCu density on growth conditions was identified for providing a guide to tune the formation of p-type defects in CuAlO2. Understanding the defect-related p-type conductivity of CuAlO2 is essential for designing optoelectronic devices and improving their performance.

  3. Theoretical study of band gap in CuAlO2: Pressure dependence and self-interaction correction

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-08-01

    By using first-principles calculations, we studied the energy gaps of delafossite CuAlO2: (1) pressure dependence and (2) self-interaction correction (SIC). Our simulation shows that CuAlO2 transforms from a delafossite structure to a leaning delafossite structure at 60 GPa. The energy gap of CuAlO2 increases through the structural transition due to the enhanced covalency of Cu 3d and O 2p states. We implemented a self-interaction correction (SIC) into first-principles calculation code to go beyond local density approximation and applied it to CuAlO2. The energy gap calculated within the SIC is close to experimental data while one calculated without the SIC is about 1 eV smaller than the experimental data.

  4. TPR investigations on the reducibility of Cu supported on Al 2O 3, zeolite Y and SAPO-5

    NASA Astrophysics Data System (ADS)

    Hoang, Dang Lanh; Dang, Thi Thuy Hanh; Engeldinger, Jana; Schneider, Matthias; Radnik, Jörg; Richter, Manfred; Martin, Andreas

    2011-08-01

    Reducibility of Cu supported on Al 2O 3, zeolite Y and silicoaluminophosphate SAPO-5 has been investigated in dependence on the Cu content using a method combining conventional temperature programmed reduction (TPR) by hydrogen with reoxidation in N 2O followed by a second the so-called surface-TPR (s-TPR). The method enables discrimination and a quantitative estimation of the Cu oxidation states +2, +1 and 0. The quantitative results show that the initial oxidation state of Cu after calcination in air at 400 °C, independent on the nature of the support, is predominantly +2. Cu 2+ supported on Al 2O 3 is quantitatively reduced by hydrogen to metallic Cu 0. Comparing the TPR of the samples calcined in air and that of samples additionally pre-treated in argon reveals that in zeolite Y and SAPO-5 Cu 2+ cations are stabilized as weakly and strongly forms. In both systems, strongly stabilized Cu 2+ ions are not auto-reduced by pre-treatment in argon at 650 °C, but are reduced in hydrogen to form Cu +. The weakly stabilized Cu 2+ ions, in contrast, may be auto-reduced by pre-treatment in argon at 650 °C forming Cu + but are reduced in hydrogen to metallic Cu 0.

  5. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  6. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  7. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  8. Strong excitonic effects in CuAlO2 delafossite transparent conductive oxides

    NASA Astrophysics Data System (ADS)

    Laskowski, Robert; Christensen, Niels Egede; Blaha, Peter; Palanivel, Balan

    2009-04-01

    The imaginary part of the dielectric function of CuAlO2 has been calculated including the electron-hole correlation effects within Bethe-Salpeter formalism (BSE). In the initial step of the BSE solver the band structure was calculated within density-functional theory plus an orbital field (LDA/GGA+U) acting on Cu atoms. We discuss the influence of the strength of the additional orbital field on the band structure, electric field gradients, and the dielectric function. The calculated dielectric function shows very strong electron-hole correlation effects manifested with large binding energies of the lowest excitons. The electron-hole pair for the lowest excitations are very strongly localized at a single Cu plane and confined within only a few neighboring shells.

  9. The Effect of Premixed Al-Cu Powder on the Stir Zone in Friction Stir Welding of AA3003-H18

    NASA Astrophysics Data System (ADS)

    Abnar, B.; Kazeminezhad, M.; Kokabi, A. H.

    2015-02-01

    In this research, 3-mm-thick AA3003-H18 non-heat-treatable aluminum alloy plates were joined by friction stir welding (FSW). It was performed by adding pure Cu and premixed Cu-Al powders at various rotational speeds of 800, 1000, and 1200 rpm and constant traveling speeds of 100 mm/min. At first, the powder was filled into the gap (0.2 or 0.4 mm) between two aluminum alloy plates, and then the FSW process was performed in two passes. The microstructure, mechanical properties, and formation of intermetallic compounds were investigated in both cases of using pure Cu and premixed Al-Cu powders. The results of using pure Cu and premixed Al-Cu powders were compared in the stir zone at various rotational speeds. The copper particle distribution and formation of Al-Cu intermetallic compounds (Al2Cu and AlCu) in the stir zone were desirable using premixed Al-Cu powder into the gap. The hardness values were significantly increased by formation of Al-Cu intermetallic compounds in the stir zone and it was uniform throughout the stir zone when premixed Al-Cu powder was used. Also, longitudinal tensile strength from the stir zone was higher when premixed Al-Cu powder was used instead of pure Cu powder.

  10. Laser cladding of quasi-crystal-forming Al-Cu-Fe-Bi on an Al-Si alloy substrate

    NASA Astrophysics Data System (ADS)

    Biswas, Krishanu; Chattopadhyay, Kamanio; Galun, Rolf; Mordike, Barry L.

    2005-07-01

    We report here the results of an investigation aimed at producing coatings containing phases closely related to the quasi-crystalline phase with dispersions of soft Bi particles using an Al-Cu-Fe-Bi elemental powder mixture on Al-10.5 at. pct Si substrates. A two-step process of cladding followed by remelting is used to fine-tune the alloying, phase distribution, and microstructure. A powder mix of Al64Cu22.3Fe11.7Bi2 has been used to form the clads. The basic reason for choosing Bi lies in the fact that it is immiscible with each of the constituent elements. Therefore, it is expected that Bi will solidify in the form of dispersoids during the rapid solidification. A detailed microstructural analysis has been carried out by using the backscattered imaging mode in a scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructural features are described in terms of layers of different phases. Contrary to our expectation, the quasi-crystalline phase could not form on the Al-Si substrate. The bottom of the clad and remelted layers shows the regrowth of aluminum. The formation of phases such as blocky hexagonal Al-Fe-Si and a ternary eutectic (Al + CuAl2 + Si) have been found in this layer. The middle layer shows the formation of long plate-shaped Al13Fe4 along with hexagonal Al-Fe-Si phase growing at the periphery of the former. The formation of metastable Al-Al6Fe eutectic has also been found in this layer. The top layer, in the case of the as-clad track, shows the presence of plate-shaped Al13Fe4 along with a 1/1 cubic rational approximant of a quasi-crystal. The top layer of the remelted track shows the presence of a significant amount of a 1/1 cubic rational approximant. In addition, the as-clad and remelted microstructures show a fine-scale dispersion of Bi particles of different sizes formed during monotectic solidification. The remelting is found to have a strong effect on the size and distribution of Bi particles. The dry

  11. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery

    NASA Astrophysics Data System (ADS)

    Rohatgi, Aashish; Vecchio, Kenneth S.; Gray, George T.

    2001-01-01

    The role of stacking fault energy (SFE) in deformation twinning and work hardening was systematically studied in Cu (SFE ˜78 ergs/cm2) and a series of Cu-Al solid-solution alloys (0.2, 2, 4, and 6 wt pct Al with SFE ˜75, 25, 13, and 6 ergs/cm2, respectively). The materials were deformed under quasi-static compression and at strain rates of ˜1000/s in a Split-Hopkinson pressure bar (SHPB). The quasi-static flow curves of annealed 0.2 and 2 wt pct Al alloys were found to be representative of solid-solution strengthening and well described by the Hall-Petch relation. The quasi-static flow curves of annealed 4 and 6 wt pct Al alloys showed additional strengthening at strains greater than 0.10. This additional strengthening was attributed to deformation twins and the presence of twins was confirmed by optical microscopy. The strengthening contribution of deformation twins was incorporated in a modified Hall-Petch equation (using intertwin spacing as the “effective” grain size), and the calculated strength was in agreement with the observed quasi-static flow stresses. While the work-hardening rate of the low SFE Cu-Al alloys was found to be independent of the strain rate, the work-hardening rate of Cu and the high SFE Cu-Al alloys (low Al content) increased with increasing strain rate. The different trends in the dependence of work-hardening rate on strain rate was attributed to the difference in the ease of cross-slip (and, hence, the ease of dynamic recovery) in Cu and Cu-Al alloys.

  12. Optical properties of Bi 12TiO 20 doped with Al, P, Ag, Cu, Co and co-doped with Al+P single crystals

    NASA Astrophysics Data System (ADS)

    Marinova, V.

    2000-11-01

    Large optically homogeneous photorefractive Bi 12TiO 20 (BTO) single crystals doped with Al, P, Ag, Cu, Co and Al+P-co-doping were obtained by the Top Seeded Solution Growth Method (TSSG) in a Bi 2O 3 solution. A strong bleaching effect was observed for the Al, P, Ag and Al+P-doped crystals, whereas doping with Cu and Co induced a strong photochromic effect and increased the absorption coefficients in the red spectral region. Al, P, Al+P-doped crystals increased the values of optical rotator power, while Cu and Ag-doped crystals exhibited a strong decrease in optical activity in comparison with non-doped BTO. The influences of doping elements on the optical rotation power are discussed on the basis of two structural elementary cell units - MO 4 tetrahedra and BiO n polyhedra.

  13. Observations of the Minor Species Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report the first detections of Al and Fe, and strict upper limits for Ca(+) in the exosphere of Mercury, using the HIRES spectrometer at the Keck I telescope. We report observed 4-sigma tangent columns of 1.5x10(exp 7) Al atoms per square centimeter at an altitude of 1220 km (1.5 Mercury radii (R(sub M)) from planet center), and that for Fe of 1.6 x 10 per square centimeter at an altitude of 950 km (1.4 R(sub M)). The observed 3-sigma Ca(+) column was 3.9x10(exp 6) ions per square centimeter at an altitude of 1630 km (1.67 R(sub M). A simple model for zenith column abundances of the neutral species were 9.5 x 10(exp 7) Al per square centimeter, and 3.0 x 10(exp 8) Fe per square centimeter. The observations appear to be consistent with production of these species by impact vaporization with a large fraction of the ejecta in molecular form. The scale height of the Al gas is consistent with a kinetic temperature of 3000 - 9000 K while that of Fe is 10500 K. The apparent high temperature of the Fe gas would suggest that it may be produced by dissociation of molecules. A large traction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  14. Effect of Interfacial Microstructure Evolution on Mechanical Properties and Fracture Behavior of Friction Stir-Welded Al-Cu Joints

    NASA Astrophysics Data System (ADS)

    Xue, P.; Xiao, B. L.; Ma, Z. Y.

    2015-07-01

    The interfacial microstructure evolution of Al-Cu joints during friction stir welding and post-welding annealing and its influence on the tensile strength and the fracture behavior were investigated in detail. An obvious interface including three sub-layers of α-Al, Al2Cu, and Al4Cu9 intermetallic compound (IMC) layers is generated in the as-FSW joint. With the development of annealing process, the α-Al layer disappeared and a new IMC layer of AlCu formed between initial two IMC layers of Al2Cu and Al4Cu9. The growth rate of IMC layers was diffusion controlled before the formation of Kirkendall voids, with activation energy of 117 kJ/mol. When the total thickness of IMC layers was less than the critical value of 2.5 μm, the FSW joints fractured at the heat-affected zone of Al side with a high ultimate tensile strength (UTS) of ~100 MPa. When the thickness of IMC layers exceeded 2.5 μm, the joints fractured at the interface. For relatively thin IMC layer, the joints exhibited a slightly decreased UTS of ~90 MPa and an inter-granular fracture mode with crack propagating mainly between the Al2Cu and AlCu IMC layers. However, when the IMC layer was very thick, crack propagated in the whole IMC layers and the fracture exhibited trans-granular mode with a greatly decreased UTS of 50-60 MPa.

  15. Effect of ZrO2 Nanoparticles on the Microstructure of Al-Si-Cu Filler for Low-Temperature Al Brazing Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Roh, Myung-Hwan; Jung, Do-Hyun; Jung, Jae-Pil

    2016-01-01

    In this study, the effect of ZrO2 nanoparticles on Al-12Si-20Cu alloy has been studied as a filler metal for aluminum brazing. The microstructural and thermal characterizations are performed using X-ray diffraction (XRD), scanning electron microscope (SEM), and differential thermal analysis (DTA). The intermetallic compound (IMC) phases are identified by the energy-dispersive spectroscopy analysis coupled with the SEM. The filler spreading test is performed according to JIS-Z-3197 standard. XRD and SEM analyses confirm the presence of Si particles, the CuAl2 ( θ) intermetallic, and the eutectic structures of Al-Si, Al-Cu, and Al-Si-Cu in the Al matrix in the monolithic and composite samples. It is observed that when the ZrO2 is added in the alloy, the CuAl2 IMCs and Si particles are found to be dispersed uniformly in the Al matrix up to 0.05 wt pct ZrO2. DTA results show that the liquidus temperature of Al-12Si-20Cu filler metal is dropped from ~806.78 K to 804.6 K (533.78 °C to 531.6 °C) with a lowering of 2 K (2 °C) in liquidus temperature, when the amount of ZrO2 is increased up to 0.05 wt pct. It is also shown that the presence of ZrO2 nanoparticles in the filler metal has no deleterious effect on wettability up to 0.05 wt pct of ZrO2. The ultimate tensile strength and elongation percentage are also found to improve with the addition of ZrO2 nanoparticles in the Al-12Si-20Cu alloy.

  16. The mechanism of theta' precipitation on climbing dislocations in Al-Cu

    SciTech Connect

    Dahmen, U.; Westmacott, K.H.

    1983-10-01

    Many examples of repeated precipitation on climbing dislocations have been reported since the original observations of NbC formation on climbing Frank partials in stainless steel. Striking precipitate arrays were observed in Cu-Ag (5), Si-Cu (6) and Al-Cu (7,8) but again the precise formation mechanisms have not been identified. The configurations of theta' in Al-4w/o Cu first described by Guyot and Wintenberger and studied in detail by Headley and Hren (8,9) can be produced by a direct quench from the solution treatment temperature to a high final aging temperature (> about 160/sup 0/C) circumventing the precursory GP zone and theta'' formation. While the overall nature of the precipitate arrays is now understood, the basic processes giving rise to the various, often complex, precipitate structures is not. Guyot and Wintenberger proposed that repeated nucleation of theta' occurred on (100) plane segments of the climbing edge dislocation, and described the slip and climb processes required to produce observed configurations.

  17. Sr isotopic fractionation in Ca-Al inclusions from the Allende meteorite

    USGS Publications Warehouse

    Patchett, P.J.

    1980-01-01

    True relative Sr isotopic compositions, determined by double spiking on Ca-Al inclusions from the Allende meteorite show up to 1.5??? per mass unit mass fractionation relative to the Earth and bulk chondrites. All abnormal inclusions are light-isotope enriched. A lack of isotopically heavy Sr in inclusions would place constraints on the time, place and mechanism of origin of these objects. ?? 1980 Nature Publishing Group.

  18. Synthesis, characterization and physical properties of Al-Cu-Fe quasicrystalline plasma sprayed coatings

    SciTech Connect

    Daniel, S.

    1995-11-09

    Our lab has been working with plasma spraying of both high pressure gas atomized (HPGA) and cast and crushed quasicrystal powders. A major component of this research includes comparative studies of PAS coatings formed with starting powders prepared by both techniques. In addition, a thorough investigation of the effects of starting powder particle size on coating microstructure is included. During the course of the overall research, an interest developed in forming Al-Cu-Fe materials with finer grain sizes. Therefore, a brief study was performed to characterize the effect of adding boron to Al-Cu-Fe materials prepared by different techniques. In addition to characterizing the microstructural features of the above materials, oxidation and wear behavior was also examined.

  19. Glass forming ability and mechanical properties of Zr50Cu42Al8 bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Xia, L.; Chan, K. C.; Liu, L.; Wang, G.

    2008-11-01

    In this work, we report that Zr50Cu42Al8 bulk metallic glass (BMG) exhibits excellent glass forming ability and mechanical properties. Zr50Cu42Al8 glassy rods with a diameter of 3 mm were prepared using conventional copper mould suction casting. The glassy rod exhibits a modulus of about 115 GPa and a fracture strength of about 2 GPa, and, as compared with other large-scale BMGs, it has excellent room-temperature plasticity of up to 20% under compression. The fracture mechanism of the rod was investigated by microstructural investigations, and it was found that the large plasticity of the as-cast rod is closely related to the in situ formation of nano-crystalline particles embedded in the amorphous matrix.

  20. Unique properties of CuZrAl bulk metallic glasses induced by microalloying

    SciTech Connect

    Huang, B.; Bai, H. Y.; Wang, W. H.

    2011-12-15

    We studied the glass forming abilities (GFA), mechanical, and physical properties of (CuZr){sub 92.5}Al{sub 7}X{sub 0.5} (X = La, Sm, Ce, Gd, Ho, Y, and Co) bulk metallic glasses (BMGs). We find that the GFA, mechanical, and physical properties can be markedly changed and modulated by the minor rare earth addition. The Kondo screening effect is found to exist in (CuZr){sub 92.5}Al{sub 7}Ce{sub 0.5} BMG at low temperatures and the Schottky effect exists in all the rare earth element doped BMGs. Our results indicate that the minor addition is an effective way for modulating and getting desirable properties of the BMGs. The mechanisms of the effects of the addition are discussed. The results have implications for the exploration of metallic glasses and for improving the mechanical and low temperature physical properties of BMGs.

  1. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy

    SciTech Connect

    Osborne, M.G.

    1998-02-23

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100--1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.

  2. Aqueous sodium chloride induced intergranular corrosion of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Daeschner, D. L.

    1986-01-01

    Two methods have been explored to assess the susceptibility of Al-Li-Cu alloys to intergranular corrosion in aqueous sodium chloride solution. They are: (1) constant extension rate testing with and without alternate-immersion preexposure and (2) metallographic examination after exposure to a NaCl-H2O2 corrosive solution per Mil-H-6088F. Intergranular corrosion was found to occur in both powder and ingot metallurgy alloys of similar composition, using both methods. Underaging rendered the alloys most susceptible. The results correlate to stress-corrosion data generated in conventional time-to-failure and crack growth-rate tests. Alternate-immersion preexposure may be a reliable means to assess stress corrosion susceptibility of Al-Li-Cu alloys.

  3. Point defect-induced magnetic properties in CuAlO2 films without magnetic impurities

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Lin, Yow-Jon

    2016-03-01

    The magnetic properties of the undoped CuAlO2 thin films with different compositions are examined. In order to understand this phenomenon and to determine the correlation between the magnetic and electrical properties and point defects, the X-ray photoelectron spectroscopy and Hall effect measurements are performed. Combining with Hall effect, X-ray photoelectron spectroscopy and alternating gradient magnetometer measurements, a direct link between the hole concentration, magnetism, copper vacancy (VCu), oxygen vacancy, and interstitial oxygen (Oi) is established. It is shown that an increase in the number of acceptors (VCu and Oi) leads to an increase in the hole concentration. Based on theoretical and experimental investigations, the authors confirmed that both acceptors (VCu and Oi) in CuAlO2 could induce the ferromagnetic behavior at room temperature.

  4. Evaluation of Laser Braze-welded Dissimilar Al-Cu Joints

    NASA Astrophysics Data System (ADS)

    Schmalen, Pascal; Plapper, Peter

    The thermal joining of Aluminum and Copper is a promising technology towards automotive battery manufacturing. The dissimilar metals Al-Cu are difficult to weld due to their different physicochemical characteristics and the formation of intermetallic compounds (IMC), which have reduced mechanical and electric properties. There is a critical thickness of the IMCs where the favored mechanical properties of the base material can be preserved. The laser braze welding principle uses a position and power oscillated laser-beam to reduce the energy input and the intermixture of both materials and therefore achieves minimized IMCs thickness. The evaluation of the weld seam is important to improve the joint performance and enhance the welding process. This paper is focused on the characterization and quantification of the IMCs. Mechanical, electrical and metallurgical methods are presented and performed on Al1050 and SF-Cu joints and precise weld criteria are developed.

  5. Features in the ion emission of Cu, Al, and C plasmas produced by ultrafast laser ablation

    NASA Astrophysics Data System (ADS)

    Kelly, T. J.; Butler, T.; Walsh, N.; Hayden, P.; Costello, J. T.

    2015-12-01

    The bi-modal nature of charge integrated ion kinetic energy distributions, which result from ultrafast laser produced plasmas, is discussed in this paper. A negatively biased Faraday cup was used as a charge collector to measure ion distributions from three different solid targets that had been irradiated with an ultrafast laser in the fluence range 0.1 -1 J/cm 2 . A bi-modal time of flight distribution is found for all three targets (C, Al, and Cu). In the case of the metallic targets (Al and Cu), high- and low-kinetic energy peaks exhibit quite different dependencies on laser fluence, whereas for the semi-metallic target (C), both peaks scale similarly with ultrafast laser fluence. The results are discussed within the framework of a one dimensional capacitor model resulting in ion acceleration.

  6. Critical currents and magnetization in c -axis textured Bi-Pb-Sr-Ca-Cu-O superconductors

    SciTech Connect

    Jin, S.; van Dover, R.B.; Tiefel, T.H.; Graebner, J.E. ); Spencer, N.D. )

    1991-02-25

    Transport critical currents and magnetization behavior in {ital c}-axis textured Bi-Pb-Sr-Ca-Cu-O superconductor ribbons have been studied. The highly oriented layer structure was achieved by a combination processing of spray coating on silver foil, cold rolling, and partial melting. Transport {ital J}{sub {ital c}} values as high as 2.3{times}10{sup 5} A/cm{sup 2} at 4.2 K, {ital H}=8 T ({ital H}{perpendicular}{ital ab}) have been obtained. The high {ital J}{sub {ital c}} at {ital H}{ge}5 T is maintained to temperatures near 20 K but it vanishes completely at or above {similar to}30 K, thus showing the limitation in useful, high-field operating temperatures for the Bi-system superconductors. A comparison of {ital J}{sub {ital c}} (transport) and {ital J}{sub {ital c}} (magnetization) indicates that the size scale of the circulating supercurrent loop in the Bean model nearly corresponds to the whole sample dimension rather than the orders-of-magnitude-smaller grain size. This demonstrates that the {ital a}-{ital b} grain boundaries in the melt-processed ribbons are not weakly coupled. The time decay of magnetization has also been studied.

  7. Ion beam modification of Tl-Ba-Ca-Cu-O type high temperature superconductors during irradiation

    SciTech Connect

    Newcomer, P.P.; Morosin, B.; Wang, L.M.

    1994-12-31

    Microstructural modification of high temperature superconductor (HTS) single-crystal plates of Tl-1212 and Tl-2212 (numbers designate the Tl/Ba/Ca/Cu cation ratio) was studied during 1.5 MeV Kr{sup +} and Xe{sup +} ion irradiation with in-situ electron diffraction and after ion irradiation with high resolution TEM (HRTEM). Similar in-situ temperature dependence effects are seen for both phases. During irradiations from 22K to 673K, an amorphous halo develops after very low ion dose or fluence (1.7 {times} 10{sup 12} ions/cm{sup 2}). During irradiation at 100 and 300K, complete amorphization is obtained, while at 22 and {ge}533K, the halo fades slightly and a polycrystalline ring pattern develops, indicating ion irradiation induced crystallization occurred. After a low ion dose (8.5 {times} 10{sup 12} ions/cm{sup 2}) at 100 and 300K, HRTEM reveals amorphous regions 5-20 nm in size which are not columnar and do not all penetrate the entire sample thickness. At 22 and {ge}533K, Moire fringes and misoriented crystallites of cascade size are observed. The 4-6nm crystallites are thallium-rich.

  8. Synthesis and characterization of 110 K superconducting phase in Bi(Pb)-Sr-Ca-Cu-oxide

    NASA Astrophysics Data System (ADS)

    Chen, Y. L.; Stevens, R.; Lo, W.; Zhen, Y. S.

    1990-12-01

    The temperatures and sequence of formation of superconducting phases within the composition Bi(1.6)Pb(0.4)Sr2Ca2Cu4O(x) were determined using simultaneous DTA and TGA, XRD, and SEM. A single phase high-Tc ceramic was obtained by a solid state reaction using predetermined firing conditions, although a TEM study showed a small amount of glass phase in the grain boundary tripoint regions. The unit cell of the high-Tc phase was refined as a = 0.5413 nm, b = 0.5414 nm, c = 3.715 nm. The melting temperature of the high-Tc phase is in the region of 852-862 C. The effect of lead was believed to lower the temperature of formation of the high-Tc phase. Lead was also found to evaporate from the matrix during and after high-Tc phase formation, whereas bismuth was found to be stable in both the low-Tc phase and high-Tc phase compounds.

  9. Momentum-space Electronic Structures and Charge Orders of the High-temperature Superconductors Ca2−xNaxCuO2Cl2 and Bi2Sr2CaCu2O8+δ

    SciTech Connect

    Meng, J.Q.; Xu, Z.; Brunner, M.; Kim, K.-H.; Lee, H.-G.; Lee, S.-I.; Wen, J.S.; Gu, G.D.; Gweon, G.-H.

    2011-08-24

    We study the electronic structure of Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} samples in a wide range of doping, using angle-resolved photoemission spectroscopy, with emphasis on the Fermi surface (FS) in the near antinodal region. The 'nesting wave vector,' i.e., the wave vector that connects two nearly flat pieces of the FS in the antinodal region, reveals a universal monotonic decrease in magnitude as a function of doping. Comparing our results to the charge order recently observed by scanning tunneling spectroscopy (STS), we conclude that the FS nesting and the charge order pattern seen in STS do not have a direct relationship. Therefore, the charge order likely arises due to strong-correlation physics rather than FS nesting physics.

  10. Review of high-temperature superconductivity and the effect of chemical modifications on Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10. Technical report

    SciTech Connect

    Jones, T.E.; McGinnis, W.C.; Boss, R.D.

    1991-08-01

    Perform chemical modifications to existing materials that may enhance their superconducting properties and provide insight into the mechanisms responsible for high-temperature superconductivity. This report presented a review of high-temperature superconductivity. An overview of superconductivity from its original discovery to the present is also given. Synthesized two sets of samples. One set was based on the structure Bi2Sr2CaCu2O8 and the other on Bi2Sr2Ca2Cu3O10. In both cases, the copper was partially replaced with elements from the first transition row of elements. The replacement was at the level of 5 mol.-% of the transition element for copper. The transition elements used were vanadium (V), manganese (Mn), titanium (Ti), nickel (Ni), zinc (Zn), cobalt (Co), and iron (Fe) and determined the effect of the substitutions on the crystal structure.

  11. An intrinsic Cu-O-Cu bond-centered electronic glass with disperse 4a0-wide unidirectional domains in strongly underdoped Ca1.88Na0.12CuO2Cl2 and Bi2Sr2Dy0.2Ca0.8Cu2Oy

    NASA Astrophysics Data System (ADS)

    Kohsaka, Yuhki

    2007-03-01

    Hole doping into the CuO2 charge transfer insulator alters the electronic correlations, leading to the high-Tc superconductivity (HTS). The correlation alterations are accompanied by spectral weight transfers from the high energy states of the insulator to low energies. Recently, it has been proposed [1,2] that these effects might be observable as an asymmetry of electron tunneling currents with bias voltage across the chemical potential. Atomic-scale TA-phenomena would then be of crucial importance to understand the fundamental electronic structure of the CuO2 plane from whence the HTS emerges. In this talk, we will report the first application of atomic resolution TA-imaging by STM, detecting virtually identical phenomena in two different lightly hole-doped cuprates: Ca1.88Na0.12CuO2Cl2 and Bi2Sr2Dy0.2Ca0.8Cu2Oy. We find intense spatial variation primarily on planer oxygen sites. Their spatial arrangements appear to be a Cu-O-Cu bond-centered electronic glass, breaking translational symmetry of lattice and 90^o-rotational symmetry. 4a0-wide unidirectional domains (a0: Cu-O-Cu length) are embedded throughout this matrix and running along the both Cu-O bonds without preferred orientation. Relationship to the electronic cluster glass, the bond-centered stripe, and the high-Tc superconductivity will be discussed. This work is done in collaboration with C. Taylor, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, K. Fujita, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis. [1] P. W. Anderson, N. P. Ong, cond-mat/0405518 & J. Phys. Chem. Solid 67, 1 (2006). [2] M. Randeria, R. Sensarma, N. Trivedi, F. -C. Zhang, Phys. Rev. Lett. 95, 137001 (2005).

  12. Effect of lead on the structure and phase composition of an Al-5% Si-4% Cu casting alloy

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Stolyarova, O. O.; Yakovleva, A. O.

    2016-03-01

    The phase transformations in the Al-Cu-Si-Pb system have been studied using calculations. It is shown that the aluminum-based solid solution is in equilibrium only with the Al2Cu, (Si), and (Pb) phases, which correspond to the relevant binary systems. Reported polythermal and isothermal sections show that the Al-Cu-Si-Pb system is characterized by a significant liquid miscibility gap. The effect of lead on the structure and phase composition of an Al-5% Si-4% Cu alloy in the as-cast and annealed states is studied. Lead inclusions are located at the boundaries of dendritic (Al) cells and are globular in the as-cast alloy and after annealing at 500°C. The presence of lead phase does not affect the precipitation hardening upon quenching and aging.

  13. Crystal growth, polarized spectra, and laser performance of Yb:CaGdAlO4 crystal

    NASA Astrophysics Data System (ADS)

    Di, J. Q.; Xu, X. D.; Xia, C. T.; Zheng, L. H.; Aka, G.; Yu, H. H.; Sai, Q. L.; Guo, X. Y.; Zhu, L.

    2016-04-01

    In this paper, the crystal growth, polarized spectra, and laser performance of Yb:CaGdAlO4 crystal were reported. The segregation coefficient of Yb3+ ions was calculated to be 0.47. The cell parameters were determined to be a  =  b  =  0.3658 nm, c  =  1.1985 nm. The peak absorption cross-section was calculated to be 2.65  ×  10-20 cm2 at 979 nm and the peak stimulated emission cross-section was 2.23  ×  10-20 cm2 at 980 nm for the π polarization. The continuous-wave (CW) laser operations of uncoated Yb:CaGdAlO4 crystals with 5  ×  5  ×  3 mm3 in size were demonstrated. A maximum output power of 1.6 W at 1048 nm was obtained with a slope efficiency of 28%. The results show that Yb:CaGdAlO4 crystal is a promising laser medium.

  14. Hibonite, Ca2/Al, Ti/24O38, from the Leoville and Allende chondritic meteorites.

    NASA Technical Reports Server (NTRS)

    Keil, K.; Fuchs, L. H.

    1971-01-01

    Hibonite was discovered in light-colored, Ca-Al-Ti-rich and Si-Fe-poor, achondritic inclusions of the Leoville and Allende HL-group chondrites. Two varieties of hibonite occur: one emits a bright red-orange luminescence under electron bombardment and has high amounts of Al2O3 (87.7; 87.9) and low amounts of MgO (0.65; 0.8) and TiO2 (0.68; 0.8). The other emits a bright blue luminescence and is low in Al2O3 (78.7; 79.2) and high in MgO (3.3; 3.7) and TiO2 (6.5; 7.9) (in wt. %). The oxide CaO is about the same in both varieties. It is suggested that the change in the color of the visible luminescence results from changes in composition. The origin of hibonite which occurs in complex mineral assemblages together with anorthite, gelhenite, wollastonite, aluminous diopside, andradite, Ca-pyroxene, perovskite, spinel, taenite, chromite, and pentlandite, and in close proximity to nodules containing calcite, whewellite, forsterite and many of the aforementioned phases, is discussed. The proposition that hibonite and associated phases originated by contact metamorphism and metasomatism of calcite-dolomite bearing assemblages cannot, at this time, be completely ruled out.

  15. Polymer Coated CaAl-Layered Double Hydroxide Nanomaterials for Potential Calcium Supplement

    PubMed Central

    Kim, Tae-Hyun; Lee, Jeong-A; Choi, Soo-Jin; Oh, Jae-Min

    2014-01-01

    We have successfully prepared layered double hydroxide (LDH) nanomaterials containing calcium and aluminum ions in the framework (CaAl-LDH). The surface of CaAl-LDH was coated with enteric polymer, Eudragit®L 100 in order to protect nanomaterials from fast dissolution under gastric condition of pH 1.2. The X-ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron and transmission electron microscopy revealed that the pristine LDH was well prepared having hydrocalumite structure, and that the polymer effectively coated the surface of LDH without disturbing structure. From thermal analysis, it was determined that only a small amount (less than 1%) of polymer was coated on the LDH surface. Metal dissolution from LDH nanomaterials was significantly reduced upon Eudragit®L 100 coating at pH 1.2, 6.8 and 7.4, which simulates gastric, enteric and plasma conditions, respectively, and the dissolution effect was the most suppressed at pH 1.2. The LDH nanomaterials did not exhibit any significant cytotoxicity up to 1000 μg/mL and intracellular calcium concentration significantly increased in LDH-treated human intestinal cells. Pharmacokinetic study demonstrated absorption efficiency of Eudragit®L 100 coated LDH following oral administration to rats. Moreover, the LDH nanomaterials did not cause acute toxic effect in vivo. All the results suggest the great potential of CaAl-LDH nanomaterials as a calcium supplement. PMID:25490138

  16. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  17. Synchrotron radiation X-ray imaging of cavitation bubbles in Al-Cu alloy melt.

    PubMed

    Huang, Haijun; Shu, Da; Fu, Yanan; Wang, Jun; Sun, Baode

    2014-07-01

    Cavitation bubbles in Al-10 wt.%Cu melt has been investigated by adopting synchrotron radiation X-ray imaging technology. In-situ observation reveals that most of bubbles concentrate within an intense cavitation zone nearby the radiation face. The measured near-maximum bubble radii obey a similar truncated Gaussian distribution as in water but increase by nearly the magnitude of one order due to higher ultrasonic intensity applied in aluminum melt.

  18. Synthesis and Characterization of Bulk Al-Cu-Fe Based Quasicrystals and Composites by Spray Forming

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, N. K.; Uhlenwinkel, V.; Srivastava, V. C.

    2015-06-01

    The bulk quasicrystalline (QC) materials and their composites have attracted considerable interest due to their promising mechanical properties. In the present investigation, spray forming has been used to synthesize bulk single-phase icosahedral quasicrystals and composites in Al62.5Cu25Fe12.5 system as well as in quaternary system containing 10% Sn. The elemental materials were induction melted under nitrogen cover and a billet of 250 mm in diameter and 350 mm in height was spray formed. The phase constitution of the spray-formed materials showed a bulk single-phase icosahedral quasicrystal as a major phase along with other crystalline phases. A large number of annealing twins were observed in the microstructure in ternary AlCuFe alloys. It is interesting to note that due to addition of Sn, the volume fraction of β-Al(CuFe) phase was found to increase and annealing twins were almost absent. The hardness of the single-phase AlCuFe alloy and Sn-containing composites was found to be 8.6 and 6.0 GPa, respectively, at a load of 300 g. In general, the hardness decreases with heat treatment at high temperatures. However, in case of Sn-containing alloy, hardness increases with low-temperature heat treatment. Long and hair-like cracks (Palmqvist type) are observed to form from the corner of the indentations of the ternary alloys, whereas in Sn-containing composites, the cracks are not sharp and long suggesting the enhancement of fracture toughness in the composites. Attempts have been made to understand the effect of Sn on the evolution of icosahedral phase, other crystalline phases and their composite effects on the mechanical properties.

  19. Magnetic properties of Cu70.9Al18.1Mn11 alloy

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Majumdar, S.

    2013-02-01

    The ferromagnetic shape memory alloy of nominal composition Cu70.9Al18.1Mn11 has been investigated through dc and ac magnetization measurements. The studied alloy undergoes ferromagnetic to glassy transition below martensitic transition. Clear frequency shift in ac susceptibility measurement is observed, which actually indicates the spin glass freezing in the sample. The studied alloy also shows constricted hysteresis loop at 5 K.

  20. Bulk Properties of Ni3Al(gamma') With Cu and Au Additions

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1995-01-01

    The BFS method for alloys is applied to the study of 200 alloys obtained from adding Cu and Au impurities to a Ni3Al matrix. We analyze the trends in the bulk properties of these alloys (heat of formation, lattice parameter, and bulk modulus) and detect specific alloy compositions for which these quantities have particular values. A detailed analysis of the atomic interactions that lead to the preferred ordering patterns is presented.

  1. Structure and energetics of high index Fe, Al, Cu and Ni surfaces using equivalent crystal theory

    NASA Technical Reports Server (NTRS)

    Rodriguez, Agustin M.; Bozzolo, Guillermo; Ferrante, John

    1993-01-01

    Equivalent crystal theory (ECT) is applied to the study of multilayer relaxations and surface energies of high-index faces of Fe, Al, Ni, and Cu. Changes in interplanar spacing as well as registry of planes close to the surface and the ensuing surface energies changes are discussed in reference to available experimental data and other theoretical calculations. Since ECT is a semiempirical method, the dependence of the results on the variation of the input used was investigated.

  2. Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Li, Chun-mei; Cheng, Nan-pu; Chen, Zhi-qian; Guo, Ning; Zeng, Su-min

    2015-01-01

    An aluminum alloy (Al-Zn-Mg-Cu) subjected to deep cryogenic treatment (DCT) was systematically investigated. The results show that a DCT-induced phase transformation varies the microstructures and affects the mechanical properties of the Al alloy. Both Guinier-Preston (GP) zones and a metastable η' phase were observed by high-resolution transmission electron microscopy. The phenomenon of the second precipitation of the GP zones in samples subjected to DCT after being aged was observed. The viability of this phase transformation was also demonstrated by first-principles calculations.

  3. A surface analytical examination of Stringer particles in Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Larson, L. A.; Avalos-Borja, M.; Pizzo, P. P.

    1983-01-01

    A surface analytical examination of powder metallurgy processed Al-Li-Cu alloys was conducted. The oxide stringer particles often found in these alloys was characterized. Particle characterization is important to more fully understand their impact on the stress corrosion and fracture properties of the alloy. The techniques used were SIMS (Secondary Ion Mass Spectroscopy) and SAM (Scanning Auger Microscopy). The results indicate that the oxide stringer particles contain both Al and Li with relatively high Li content and the Li compounds may be associated with the stringer particles, thereby locally depleting the adjacent matrix of Li solute.

  4. Scanning tunneling microscopy of Cu, Ag, Au and Al adatoms, small clusters, and islands on graphite

    NASA Astrophysics Data System (ADS)

    Ganz, Eric; Sattler, Klaus; Clarke, John

    1989-09-01

    We have used a scanning tunneling microscope to study the static and dynamic behaviour of Cu, Ag, Au, and Al deposited in situ on highly oriented pyrolytic graphite in an ultra-high vacuum chamber. We have imaged static monomers of Ag, Au, and Al, dimers of Ag and Au, and clusters of 3 or more atoms of Ag, Al, and Au. From the lifetime of the monomers, we estimate the energy barrier against diffusion to be greater than 0.65 eV. We have studied two-dimensional islands of Ag and Au, containing up to 100 atoms, which are atomically resolved against the supporting graphite substrate. The interiors of the islands contain ordered rectangular lattices separated by grain boundaries, while the atoms at the periphery are disordered. We show a small three-dimensional Cu crystal, the decoration of a grain boundary by Cu particles with an average diameter of 44 Å, and two examples of granular films. Finally, we present examples of dynamic processes: the shrinking of a small Au island, the contraction of the lattice spacing of a rectangular two-dimensional Au lattice on a time scale of minutes, and the diffusion of a Ag cluster along a graphite step edge on a time scale of seconds.

  5. Bulk metallic glass formation in Zr-Cu-Fe-Al alloys

    SciTech Connect

    Jin Kaifeng; Loeffler, Joerg F.

    2005-06-13

    We have discovered a series of bulk metallic glass-forming alloys of composition (Zr{sub x}Cu{sub 100-x}){sub 80}(Fe{sub 40}Al{sub 60}){sub 20} with x=68-77 and have investigated them by x-ray diffraction, small-angle neutron scattering, and differential scanning calorimetry. All of these alloys exhibit a calorimetric glass transition temperature of 670 KCu{sub 22}Fe{sub 8}Al{sub 12}. In rod shape this alloy has a critical casting thickness of 13 mm, as verified by detailed casting experiments, while alloys with x=68 and 77 can still be cast to a thickness of 5 mm. Furthermore, the region where glassy samples with a thickness of 0.5 mm can be prepared extends from x=62-81. The best glass-former, Zr{sub 58}Cu{sub 22}Fe{sub 8}Al{sub 12}, has a tensile yield strength of 1.71 GPa and shows an elastic limit of 2.25%. This new class of Ni-free Zr-based alloys is potentially very interesting for biomedical applications.

  6. Age hardening characteristics and mechanical behavior of Al-Cu-Li-Zr-In alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.

    1989-01-01

    An investigation was conducted to determine the age-hardening response and cryogenic mechanical properties of superplastic Al-Cu-Li-Zr-In alloys. Two alloys with compositions Al-2.65Cu-2.17Li-O.13Zr (baseline) and Al-2.60Cu-2.34Li-0.16Zr-0.17In were scaled-up from 30 lb permanent mold ingots to 350 lb DC (direct chill) ingots and thermomechanically processed to 3.2 mm thick sheet. The microstructure of material which contained the indium addition was partially recrystallized compared to the baseline suggesting that indium may influence recrystallization behavior. The indium-modified alloy exhibited superior hardness and strength compared to the baseline alloy when solution-heat-treated at 555 C and aged at 160 C or 190 C. For each alloy, strength increased and toughness was unchanged or decreased when tested at - 185 C compared to ambient temperature. By using optimized heat treatments, the indium-modified alloy exhibited strength levels approaching those of the baseline alloy without deformation prior to aging. The increase in strength of these alloys in the T6 condition make them particularly attractive for superplastic forming applications where post-SPF parts cannot be cold deformed to increase strength.

  7. Microstructure control of Al-Cu films for improved electromigration resistance

    DOEpatents

    Frear, Darrel R.; Michael, Joseph R.; Romig, Jr., Alton D.

    1994-01-01

    A process for the forming of Al-Cu conductive thin films with reduced electromigration failures is useful, for example, in the metallization of integrated circuits. An improved formation process includes the heat treatment or annealing of the thin film conductor at a temperature within the range of from 200.degree. C. to 300.degree. C. for a time period between 10 minutes and 24 hours under a reducing atmosphere such as 15% H.sub.2 in N.sub.2 by volume. Al-Cu thin films annealed in the single phase region of a phase diagram, to temperatures between 200.degree. C. and 300.degree. C. have .theta.-phase Al.sub.2 Cu precipitates at the grain boundaries continuously become enriched in copper, due, it is theorized, to the formation of a thin coating of .theta.-phase precipitate at the grain boundary. Electromigration behavior of the aluminum is, thus, improved because the .theta.-phase precipitates with copper hinder aluminum diffusion along the grain boundaries. Electromigration, then, occurs mainly within the aluminum grains, a much slower process.

  8. Microstructure control of Al-Cu films for improved electromigration resistance

    DOEpatents

    Frear, D.R.; Michael, J.R.; Romig, A.D. Jr.

    1994-04-05

    A process for the forming of Al-Cu conductive thin films with reduced electromigration failures is useful, for example, in the metallization of integrated circuits. An improved formation process includes the heat treatment or annealing of the thin film conductor at a temperature within the range of from 200 C to 300 C for a time period between 10 minutes and 24 hours under a reducing atmosphere such as 15% H[sub 2] in N[sub 2] by volume. Al-Cu thin films annealed in the single phase region of a phase diagram, to temperatures between 200 C and 300 C have [theta]-phase Al[sub 2] Cu precipitates at the grain boundaries continuously become enriched in copper, due, it is theorized, to the formation of a thin coating of [theta]-phase precipitate at the grain boundary. Electromigration behavior of the aluminum is, thus, improved because the [theta]-phase precipitates with copper hinder aluminum diffusion along the grain boundaries. Electromigration, then, occurs mainly within the aluminum grains, a much slower process. 5 figures.

  9. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    NASA Technical Reports Server (NTRS)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  10. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses.

    PubMed

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C; Altman, Sidney; Schwarz, Udo D; Kyriakides, Themis R; Schroers, Jan

    2016-01-01

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.

  11. Microstructural Evolution and Fracture Behavior of Friction-Stir-Welded Al-Cu Laminated Composites

    NASA Astrophysics Data System (ADS)

    Beygi, R.; Kazeminezhad, Mohsen; Kokabi, A. H.

    2014-01-01

    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook formation in the retreating side determine the fracture behavior of the joint. In samples welded from the Al side, a defect is formed in the advancing side of the weld, which is attributed to insufficient material flow. It is concluded that the contact surface of the laminate (Al or Cu) with the shoulder of the FSW tool influences the material flow and microstructure of welds.

  12. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy

    SciTech Connect

    Song, R.G.; Dietzel, W.; Zhang, B.J.; Liu, W.J.; Tseng, M.K.; Atrens, A

    2004-09-20

    The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg-Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement.

  13. XRD and XAS structural study of CuAlO2 under high pressure

    NASA Astrophysics Data System (ADS)

    Pellicer-Porres, J.; Segura, A.; Ferrer-Roca, Ch; Polian, A.; Munsch, P.; Kim, D.

    2013-03-01

    We present the results of x-ray diffraction and x-ray absorption spectroscopy experiments in CuAlO2 under high pressure. We discuss the polarization dependence of the x-ray absorption near-edge structure at the Cu K-edge. XRD under high pressure evidences anisotropic compression, the a-axis being more compressible than the c-axis. EXAFS yields the copper-oxygen bond length, from which the only internal parameter of the delafossite structure is deduced. The combination of anisotropic compression and the internal parameter decrease results in a regularization of the AlO6 octahedra. The anisotropic compression is related to the chemical trends observed in the lattice parameters when Al is substituted by other trivalent cations. Both experiments evidence the existence of an irreversible phase transition that clearly manifests at 35 ± 2 GPa. The structure of the high-pressure polymorph could not be determined, but it implies a change of the Cu environment, which remains anisotropic. Precursor effects are observed from the lowest pressures, which are possibly related to crystal breaking at a submicroscopic scale with partial reorientation of the crystallites.

  14. XRD and XAS structural study of CuAlO2 under high pressure.

    PubMed

    Pellicer-Porres, J; Segura, A; Ferrer-Roca, Ch; Polian, A; Munsch, P; Kim, D

    2013-03-20

    We present the results of x-ray diffraction and x-ray absorption spectroscopy experiments in CuAlO(2) under high pressure. We discuss the polarization dependence of the x-ray absorption near-edge structure at the Cu K-edge. XRD under high pressure evidences anisotropic compression, the a-axis being more compressible than the c-axis. EXAFS yields the copper-oxygen bond length, from which the only internal parameter of the delafossite structure is deduced. The combination of anisotropic compression and the internal parameter decrease results in a regularization of the AlO(6) octahedra. The anisotropic compression is related to the chemical trends observed in the lattice parameters when Al is substituted by other trivalent cations. Both experiments evidence the existence of an irreversible phase transition that clearly manifests at 35 ± 2 GPa. The structure of the high-pressure polymorph could not be determined, but it implies a change of the Cu environment, which remains anisotropic. Precursor effects are observed from the lowest pressures, which are possibly related to crystal breaking at a submicroscopic scale with partial reorientation of the crystallites. PMID:23423689

  15. Auto-combustion synthesis and characterization of Mg doped CuAlO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Naqvi, A. H.

    2015-06-01

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO2nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO2 sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO2 has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  16. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses

    PubMed Central

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B. Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C.; Altman, Sidney; Schwarz, Udo D.; Kyriakides, Themis R.; Schroers, Jan

    2016-01-01

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design. PMID:27230692

  17. Atomic and magnetic ordering in bcc Cu-Al-Mn: computational study

    NASA Astrophysics Data System (ADS)

    Alés, Alejandro; Lanzini, Fernando

    2014-12-01

    The β phase of the ternary alloy Cu-Al-Mn, with bcc structure, displays an interesting variety of long-range atomic ordering and magnetic transitions. In this work, we present a model that allows an accurate reproduction of the measured critical temperatures for alloys with compositions along the pseudobinary line Cu3AlCu2AlMn. The method is based on the Monte Carlo technique, allowing simultaneous evolution of the atomic distribution and the magnetic state. The configurational part of the energy is represented with a three-state Hamiltonian; the six interchange energies that govern the chemical interactions between nearest and next-nearest neighbours atoms have been determined. The magnetic counterpart is modelled by means of an Ising model. The predicted Curie temperatures agree well with the experimental values when it is assumed that the crystal configuration remains fixed and with the maximum possible degree of atomic ordering. The effects of configurational disorder on the magnetic transition have been evaluated.

  18. Removal of alachlor from water by catalyzed ozonation on Cu/Al2O3 honeycomb

    PubMed Central

    2013-01-01

    Background The herbicide alachlor (2-chloro-2′6′-diethyl-N-methoxymethylacetanilide) has been known as a probable human carcinogen, and the MCL (minimum contamination level) for drinking water has been set at 2 μg L-1. Therefore, the advanced methods for effectively removing it from water are a matter of interest. Catalyzed ozonation is a promising method for refractory organics degradation. Cu/Al2O3 catalyzed ozonation for degrading an endocrine disruptor (alachlor) in water was investigated. Results Experimental results showed that the ozonation of alachlor can be effectively catalyzed and enhanced by Cu/Al2O3-honeycomb. The main intermediate products formed (aliphatic carboxylic acids) were mineralized to a large extent in the catalytic process. Conclusions This study has shown that Cu/Al2O3-honeycomb is a feasible and efficient catalyst in the ozonation of alachlor in water. Less intermediate oxidation product was produced in the catalytic process than in the uncatalytic one. Furthermore, the mineralization of alachlor could be enhanced by increasing the pH of the reaction solution. PMID:23977841

  19. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses

    NASA Astrophysics Data System (ADS)

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B. Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C.; Altman, Sidney; Schwarz, Udo D.; Kyriakides, Themis R.; Schroers, Jan

    2016-05-01

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.

  20. Energetic initiators with narrow firing thresholds using Al/CuO Schottky junctions

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Zhu, Peng; Li, Jie; Hu, Bo; Shen, Ruiqi; Ye, Yinghua

    2016-07-01

    We designed and prepared Schottky-junction-based Al/CuO energetic initiators with narrow firing thresholds according to Schottky barrier theory. Using various characterization methods, we preliminarily investigated the electrical breakdown property, withstand strike current ability, and multiple-firing performance of the energetic initiators. The breakdown voltage of the Al/CuO Schottky junction was ~8 V; and electrical breakdown in the initiators occurred one by one rather than simultaneously. The withstand strike current ability of the initiator mainly depended on the heat capacity of its ceramic plug when the electrical stimulus is more than ~8 V, its breakdown voltage. The ceramic plug can absorb heat from the initiator chip, letting the initiator withstand a constant current of 0.5 A for 20 s. More importantly, the initiators might be able to withstand hard electromagnetic interference by coupling the multiple-firing performance with an out-of-line slider in the explosive train. This knowledge of the characteristics of Schottky-junction-based Al/CuO energetic initiators will help in preparing highly insensitive, efficient initiating explosive devices for weapon systems.

  1. Auto-combustion synthesis and characterization of Mg doped CuAlO{sub 2} nanoparticles

    SciTech Connect

    Agrawal, Shraddha Parveen, Azra; Naqvi, A. H.

    2015-06-24

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO{sub 2}nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO{sub 2} sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO{sub 2} has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  2. Numerical Simulation of Residual Stress in an Al-Cu Alloy Block During Quenching and Aging

    NASA Astrophysics Data System (ADS)

    Dong, Ya-Bo; Shao, Wen-Zhu; Lu, Liang-Xing; Jiang, Jian-Tang; Zhen, Liang

    2015-12-01

    In this study, residual stresses after different quenching and aging processes of Al-Cu forged blocks were investigated by numerical simulation method and experimental measurements. An iterative zone-based heat transfer calculation was coupled with the hyperbolic sine-type constitutive model to simulate the residual stress during quenching process. The simulation results were compared with experiment data using both x-ray diffraction and crack compliance methods. The simulation results were in good agreement with the experimental measurements with around 9-13% deviation at the largest. Residual stress reduction can be achieved by decreasing the cooling rate during quenching. Quenching in water with different temperatures of 60, 80, and 100 °C resulted in the maximum compressive residual stress reduction of approximately 28.2, 75.7, and 88.9%, respectively, in Al-Cu alloy samples. When quenched in 10, 20, and 30% PAG solution, the reduction of maximum compressive residual stress in Al-Cu alloy samples was approximately 35.1, 47.8, and 53.2%, respectively. In addition, in order to study the amount of residual stress relief after aging treatments, aging treatments at 140 and 170 °C for different times were also studied. Aging treatment used to obtain the peak-aged (T6) and overaged (T7) condition produces only about 22.5 to 34.7% reduction in residual stresses.

  3. Microstructural evolution during aging of an Al-Cu-Li-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Pickens, Joseph R.

    1991-01-01

    Alloys in the Al-Cu-Li Ag-Mg subsystem were developed that exhibit desirable combinations of strength and ductility. These Weldalite (trademark) alloys, are unique for Al-Cu-Li alloys in that with or without a prior cold stretching operation, they obtain excellent strength-ductility combinations upon natural and artificial aging. This is significant because it enables complex, near-net shape products such as forgings and super plastically formed parts to be heat treated to ultra-high strengths. On the other hand, commercial extrusions, rolled plates and sheets of other Al-Cu-Li alloys are typically subjected to a cold stretching operation before artificial aging to the highest strength tempers to introduce dislocations that provide low-energy nucleation sites for strengthening precipitates such as the T(sub 1) phase. The variation in yield strength (YS) with Li content in the near-peak aged condition for these Weldalite (trademark) alloys and the associated microstructures were examined, and the results are discussed.

  4. Properties of Cu(In,Ga,Al)Se{sub 2} thin films fabricated by magnetron sputtering

    SciTech Connect

    Hameed, Talaat A.; Cao, Wei; Mansour, Bahiga A.; Elzawaway, Inas K.; Abdelrazek, El-Metwally M.; Elsayed-Ali, Hani E.

    2015-05-15

    Cu(In,Ga,Al)Se{sub 2} (CIGAS) thin films were studied as an alternative absorber layer material to Cu(In{sub x}Ga{sub 1−x})Se{sub 2}. CIGAS thin films with varying Al content were prepared by magnetron sputtering on Si(100) and soda-lime glass substrates at 350 °C, followed by postdeposition annealing at 520 °C for 5 h in vacuum. The film composition was measured by an electron probe microanalyzer while the elemental depth profiles were determined by secondary ion mass spectrometry. X-ray diffraction studies indicated that CIGAS films are single phase with chalcopyrite structure and that the (112) peak clearly shifts to higher 2θ values with increasing Al content. Scanning electron microscopy images revealed dense and well-defined grains, as well as sharp CIGAS/Si(100) interfaces for all films. Atomic force microscopy analysis indicated that the roughness of CIGAS films decreases with increasing Al content. The bandgap of CIGAS films was determined from the optical transmittance and reflectance spectra and was found to increase as Al content increased.

  5. First principles Study on Transparent High-Tc Superconductivity in hole-doped Delafossite CuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-02-01

    The CuAlO2 is the transparent p-type conductor without any intentional doping. Transparent superdoncutivity and high thermoelectric power are suggested in p-type CuAlO2 [1]. Katayama-Yoshida et al. proposed that it may cause a strong electron-phonon interaction and a superconductivity. But, the calculation of superconducting critical temperature Tc is not performed. We performed the first principles calculation about the Tc of hole-doped CuAlO2 by shifting the Fermi level rigidly. In lightly hole-doped CuAlO2, the Fermi level is located at Cu and O anti-bonding band. The electrons of this band strongly interact with the A1L1 phonon mode because the direction of O-Cu-O dumbbell is parallel to the oscillation direction of the A1L1 phonon mode. As a result, Tc of lightly hole-doped CuAlO2 is about 50 K. We also discuss the materials design to enhance the Tc based on the charge-excitation-induced negative effective U system.[4pt] [1] H. Katayama-Yoshida, T. Koyanagi, H. Funashima, H. Harima, A. Yanase: Solid State Communication 126 (2003) 135. [0pt] [2] A. Nakanishi and H. Katayama-Yoshida: Solid State Communication, in printing. (arXiv:1107.2477v3

  6. Effect of organic flux on the colossal dielectric constant of CaCu3Ti4O12 (CCTO)

    NASA Astrophysics Data System (ADS)

    Razdan, Vishnu; Singh, Abhishek; Arnold, Brad; Choa, Fow-Sen; Kelly, Lisa; Singh, N. B.

    2015-05-01

    We have used low temperature organics to achieve orientation of the grains of Ca2/3Cu3Ti4O12 (CCTO) compound to increase the resistivity. During the past fifteen years CCTO has been studied extensively for its performance as a dielectric capacitor. We have synthesized and grown large grains of pure Ca2/3Cu3Ti4O12 and doped compound, and studied the dielectric constant and resistivity. The grains were aligned by using a naphthalene-camphor eutectic. CCTO was mixed in the organic melt and oriented by the directional solidification method. This material has different characteristics than pure processed CCTO material. The effect of solidification conditions and its effect on the morphology and the dielectric constant, resistivity and loss tan delta of pure and doped CCTO are described in this article.

  7. Magnetic dependent proximity effects of superconductivity and ferromagnetism in Y BaCuO/LaCaMnO bilayers

    NASA Astrophysics Data System (ADS)

    Peng, Lin; Cai, Chuanbing; Chen, Changzhao; Gao, Bo; Ying, Liliang; Liu, Zhiyong

    2008-12-01

    The Y BaCuO/ La 0.88Ca 0.12MnO 3 (YBCO/LCMOi) and Y BaCuO/ La 0.33Ca 0.67MnO 3 (YBCO/LCMOj) bilayers are fabricated with the method of pulsed laser deposition, and the magnetic dependent proximity effects are investigated. The magnetic fields were applied parallel (in-plane) and perpendicular (out-of-plane) to the film plane. Magnetic properties curves in different temperature range and magnetic field along two crystal orientation show a complex behavior due to the interplay between Meissner currents in YBCO layer and the magnetic fields present in LCMOi (or LCMOj) layer. Ac susceptibility measurements show that the suppression of superconductivity in LCMOi and LCMOj bilayers. The obtained results are discussed in terms of the effect of hole charge transfer from YBCO to LCMOi (or LCMOj) on the proximity between superconductivity and ferromagnetism.

  8. Negative magnetodielectric effect in CaCu{sub 3}Ti{sub 4}O{sub 12}

    SciTech Connect

    Chen, Kai E-mail: jszhu@nju.edu.cn; Huang, Chenxi; Zhang, Xirui; Yu, Yuanlie; Lau, Kenny; Hu, Wanbiao; Li, Qian; Wang, Jian; Withers, Ray L. E-mail: jszhu@nju.edu.cn; Lin, Weiwei; Qiu, Li; Zhu, Jinsong E-mail: jszhu@nju.edu.cn; Liu, Junming

    2013-12-21

    Real part of complex relative dielectric value is relatively decreased as large as  ∼5 % from 50 K to 200 K in CaCu{sub 3}Ti{sub 4}O{sub 12}, by applying a 6-T static magnetic field. CaCu{sub 3}Ti{sub 4}O{sub 12} is thus implied primarily by the negative magnetodielectric effect, as a unified dielectric system in which 1-D finite dipole chains of B-site titanium ions, coexist with a collective of polaron-like 3d-electrons of A-site copper ions: the dipole chains are thermally activated for lattice ionic polarization above 50 K, and suppressed by the short-range hop of these quasi-particles, while their long-range movement are for bulk electronic polarization above 151 K.

  9. Highly oriented Tl2Ba2Ca2Cu3O10 thin films by pulsed laser evaporation

    NASA Technical Reports Server (NTRS)

    Liou, S. H.; Aylesworth, K. D.; Ianno, N. J.; Johs, B.; Thompson, D.

    1989-01-01

    Superconducting thin films on MgO (100) substrates with nearly pure Tl2Ba2Ca2Cu3O10 (2:2:2:3) phase using pulsed laser evaporation and postannealing have been fabricated. The films had c axes perpendicular to the substrates. Superconducting films with onset temperatures of 125 K and zero resistance at 110 K were obtained. X-ray microprobe fluorescence measurements indicate that a typical composition of films is Tl(0.66)Ba(1.77)Ca(1.46)Cu3O(x) which is low in Tl compared to that expected for the 2:2:2:3 phase. A typical grain size is greater than 10 microns revealed by scanning electron microscopy.

  10. Characterization of Bi sbnd Pb sbnd Sb sbnd Ca sbnd Sr sbnd Cu sbnd O superconductor sintered in controlled atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, W. N.; Koo, H. S.; Liu, R. S.; Wu, P. T.

    1989-12-01

    (Bi 1.6Pb 0.4-xSb xCa 2Sr 2Cu 3 superconductors were prepared by sintering under the reduced oxygen partial pressure. Tc,zero above 105 K can be achieved bu much shorter heat treatment compared with the conventional preparation under ambient atmosphere. DTA study indicated that a significant decrease of reation temperature in forming the superconducting phase was observed under reduced oxygen partial pressure. A densor material with better superconducting properties was obtained due to this effect. Tc,zero of 108 K in (Bi 1.6Pb 0.4-xSb x)Ca 2Sr 2Cu 3O y superconductors with x ≤ 0.1 can be prepared by sinterting for 24 hours under 1/13 O 2 and 12/13 Ar.

  11. Extrinsic mechanism for colossal dielectric constant in CaCu3Ti4O12 ceramics evidenced by nanodomain

    NASA Astrophysics Data System (ADS)

    Patel, Piyush Kumar; Yadav, K. L.

    2014-03-01

    We studied the effect of various sintering temperature and dwell time on phase formation, microstructure and dielectric properties of CaCu3Ti4O12 ceramic synthesized by sol-gel method. The dielectric property was greatly influenced by sintering temperature and dwell time. We found colossal dielectric constant (˜153 816) with low dielectric loss (˜0.20) for 1100 °C/4 h sintered sample at room temperature and 1 kHz frequency. Impedance spectroscopy results support the grain boundary barrier layer capacitor model. Observation of nanostripe structure domains inside the grains of CaCu3Ti4O12 confirms the extrinsic mechanism for colossal dielectric response of this material.

  12. Electronic Structure of HgBa2CaCu2O(6+delta) Epitaxial films measured by x-ray Photoemission

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Rupp, M.; Gupta, A.; Tsuei, C. C.

    1995-01-01

    The electronic structure and chemical states of HgBa2CaCu20(sub 6 + delta), epitaxial films have been studied with x-ray photelectron spectroscopy. Signals from the superconducting phase dominate all the core-level spectra, and a clear Fermi edge is observed in the valence-band region. The Ba, Ca, Cu, and O core levels are similar to those of Tl2Ba2CaCu208(+)O(sub 6 + delta), but distinct differences are observed in the valence bands which are consistent with differences in the calculated densities of states.

  13. Molecular dynamics simulations on the melting, crystallization, and energetic reaction behaviors of Al/Cu core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheng, Xin-Lu; Zhang, Jin-Ping; Zhang, Hong; Zhao, Feng

    2013-08-01

    Using molecular dynamics simulations combined with the embedded atom method potential, we investigate the heating, cooling, and energetic reacting of core-shell structured Al-Cu nanoparticles. The thermodynamic properties and structure evolution during continuous heating and cooling processes are also investigated through the characterization of the total potential energy distribution, mean-square-distance and radial distribution function. Some behaviors related to nanometer scale Cu/Al functional particles are derived that two-way diffusion of Al and Cu atoms, glass phase formation for the fast cooling rate, and the crystal phase formation for the low cooling rate. Two-way atomic diffusion occurs first and causes the melting and alloying. In the final alloying structure, Cu and Al atoms mixed very well except for the outmost shell which has more Al atoms. For the investigation of the thermal stability and energetic reaction properties, our study show that a localized alloying reaction between the Al core and Cu shell is very slow when the initial temperature is lower than 600 K. But a two-stage reaction may occur when the initial temperature is 700 K. The reaction rate is determined by the solid-state diffusion of Al atoms in the Cu shell at the first stage, yet the reaction rate is much faster at the second stage, due to the alloying reaction between the liquid Al core and the Cu shell. At higher temperatures such as 800 K and 900 K, the alloying reaction occurs directly between the liquid Al core and the Cu shell.

  14. Thermoelectromotive force in Bi2Sr2Ca2Cu4O11 bismuth-based high-temperature superconductor

    NASA Astrophysics Data System (ADS)

    Ragimov, S. S.; Askerzade, I. N.

    2010-10-01

    The temperature dependence of the thermoemf in Bi2Sr2Ca2Cu4O11 bismuth-based high-temperature superconductors is studied. The thermoemf is positive at high temperatures ( T > 300 K) and negative at low temperatures. As the temperature decreases, the thermoemf reaches a maximum slightly above T c and then sharply drops to zero. The results can be explained in the framework of the two-band theory with a linear temperature term.

  15. Incommensurate fluctuations in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}

    SciTech Connect

    Mook, H.A.; Chakoumakos, B.C.

    1996-12-31

    A special neutron scattering technique has been used to discover an incommensurate fluctuation in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} that appears below {Tc}. The fluctuation is identified as a dynamic charge density wave since its scattering intensity appears to increase with increasing momentum transfer. The fluctuation is found at a wavevector near 2k{sub F} and could be associated with a dynamic stripe phase.

  16. Temperature-dependent photoemission features for overdoped Bi2Sr2CaCu2O8 + x cuprates

    NASA Astrophysics Data System (ADS)

    Rast, S.; Frazer, B. H.; Onellion, M.; Schmauder, T.; Abrecht, M.; Touzelet, O.; Berger, H.; Margaritondo, G.; Pavuna, D.

    2000-07-01

    We report temperature-dependent angle-resolved photoemission spectra for overdoped Bi2Sr2CaCu2O8 + x single-crystal samples. The data indicate that there is a special temperature (T+) where the spectral function changes intensity, and where the energy difference between the peak and dip features changes. The data also demonstrate that immediately above the superconducting transition temperature, the system exhibits a non-Lorentzian lineshape. We discuss implications of the data.

  17. Temperature and wavevector dependence of overdoped Bi_2Sr_2CaCu_2O_8+x single crystal samples

    NASA Astrophysics Data System (ADS)

    Rast, S.; Klohs, A.; Frazer, B. H.; Hirai, Y.; Schmauder, T.; Gatt, R.; Abrecht, M.; Pavuna, D.; Margaritondo, G.; Onellion, M.

    2000-03-01

    We report on measuring the temperature and wavevector change of angle-resolved photoemission spectra for overdoped Bi_2Sr_2CaCu_2O_8+x single crystal samples. Spectra taken from close to <0, π > to close to <π , π > were analyzed. The changes of spectral lineshape with temperature and wave vector indicate qualitatively different behavior in different parts of the Brillouin zone and will be analyzed and presented.

  18. Effect of neutron irradiation on Tc of Pb-doped BiSrCaCuO superconductor

    NASA Astrophysics Data System (ADS)

    Herr, Young-Hoi; Lee, Kwang-Hee; Kim, Chan-Joong; Lee, Hee-Gyoun; Kim, Chun-Taik

    1989-09-01

    A Pb-doped BiSrCaCuO superconductor was irradiated in a TRIGA MARK III reactor up to a neutron fluence of 7.6 x 10 to the 17th n/sq cm. The measured superconducting transition temperature (Tc) after irradiation was decreased to 92.5 K from nonirradiated data of 102 K. The fractional decrease of the Tc was compared with results for other superconducting materials. Some recovery of irradiation-induced Tc decrease was observed.

  19. Effect of [Al] and [In] molar ratio in solutions on the growth and microstructure of electrodeposition Cu(In,Al)Se2 films

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Chan; Liu, Chien-Lin; Hung, Pin-Kun; Houng, Mau-Phon

    2013-05-01

    In this paper, the cyclic voltammetric studies were used to realize the element's reduction potential and chemical reaction mechanism for presuming the formation routes of quaternary Cu(In,Al)Se2 crystals. Thereafter, the prior adjustment of deposited potential from -0.6 V to -1.0 V can be identified a suitable potential as co-electrodeposition. The material characteristics of Cu(In,Al)Se2 films are dominated by the percentage of aluminum content. Thus, the influence of aluminum and indium concentrations in solutions on the percentage composition, surface morphology, structural and crystal properties, and optical energy band gap of Cu(In,Al)Se2 films were investigated. Energy dispersive X-ray spectroscopy (EDS) indicated that the ratio of Al to (Al + In) in Cu(In,Al)Se2 films varied from 0.21 to 0.42 when adjusting aluminum and indium concentrations in solutions. Scanning electron microscopy (SEM) shows that the surface morphology changed from round-like structures into cauliflower-like structures and became rough when the aluminum concentration increased and indium concentration decreased in solutions. X-ray diffraction (XRD) patterns revealed three preferred growth orientations along the (1 1 2), (2 0 4/2 2 0), and (1 1 6/3 1 2) planes for all species. The (αhυ)2 versus hυ plots (UV-Visible) shows that the optical energy band gap of the Cu(In,Al)Se2 films can be successfully controlled from 1.17 eV to 1.48 eV by adjusting the aluminum and indium concentrations. Furthermore, the shift of the (1 1 2) peak in the XRD patterns and variation of optical band gap are evidence that the incorporation of aluminum atoms into the crystallitic CuInSe2 forms Cu(In,Al)Se2 crystals.

  20. Self-Organized Al2Cu Nanocrystals at the Interface of Aluminum-Based Reactive Nanolaminates to Lower Reaction Onset Temperature.

    PubMed

    Marín, Lorena; Warot-Fonrose, Bénédicte; Estève, Alain; Chabal, Yves J; Alfredo Rodriguez, Luis; Rossi, Carole

    2016-05-25

    Nanoenergetic materials are beginning to play an important role in part because they are being considered as energetic components for materials, chemical, and biochemical communities (e.g., microthermal sources, microactuators, in situ welding and soldering, local enhancement of chemical reactions, nanosterilization, and controlled cell apoptosis) and because their fabrication/synthesis raises fundamental challenges that are pushing the engineering and scientific frontiers. One such challenge is the development of processes to control and enhance the reactivity of materials such as energetics of nanolaminates, and the understanding of associated mechanisms. We present here a new method to substantially decrease the reaction onset temperature and in consequence the reactivity of nanolaminates based on the incorporation of a Cu nanolayer at the interfaces of Al/CuO nanolaminates. We further demonstrate that control of its thickness allows accurate tuning of both the thermal transport and energetic properties of the system. Using high resolution transmission electron microscopy, X-ray diffraction, and differential scanning calorimetry to analyze the physical, chemical and thermal characteristics of the resulting Al/CuO + interfacial Cu nanolaminates, we find that the incorporation of 5 nm Cu at both Al/CuO and CuO/Al interfaces lowers the onset temperature from 550 to 475 °C because of the lower-temperature formation of Al-Cu intermetallic phases and alloying. Cu intermixing is different in the CuO/Cu/Al and Al/Cu/CuO interfaces and independent of total Cu thickness: Cu readily penetrates into Al grains upon annealing to 300 °C, leading to Al/Cu phase transformations, while Al does not penetrate into Cu. Importantly, θ-Al2Cu nanocrystals are created below 63% wt Cu/Al, and coexist with the Al solid solution phase. These well-defined θ-Al2Cu nanocrystals seem to act as embedded Al+CuO energetic reaction triggers that lower the onset temperature. We show that ∼10

  1. Self-Organized Al2Cu Nanocrystals at the Interface of Aluminum-Based Reactive Nanolaminates to Lower Reaction Onset Temperature.

    PubMed

    Marín, Lorena; Warot-Fonrose, Bénédicte; Estève, Alain; Chabal, Yves J; Alfredo Rodriguez, Luis; Rossi, Carole

    2016-05-25

    Nanoenergetic materials are beginning to play an important role in part because they are being considered as energetic components for materials, chemical, and biochemical communities (e.g., microthermal sources, microactuators, in situ welding and soldering, local enhancement of chemical reactions, nanosterilization, and controlled cell apoptosis) and because their fabrication/synthesis raises fundamental challenges that are pushing the engineering and scientific frontiers. One such challenge is the development of processes to control and enhance the reactivity of materials such as energetics of nanolaminates, and the understanding of associated mechanisms. We present here a new method to substantially decrease the reaction onset temperature and in consequence the reactivity of nanolaminates based on the incorporation of a Cu nanolayer at the interfaces of Al/CuO nanolaminates. We further demonstrate that control of its thickness allows accurate tuning of both the thermal transport and energetic properties of the system. Using high resolution transmission electron microscopy, X-ray diffraction, and differential scanning calorimetry to analyze the physical, chemical and thermal characteristics of the resulting Al/CuO + interfacial Cu nanolaminates, we find that the incorporation of 5 nm Cu at both Al/CuO and CuO/Al interfaces lowers the onset temperature from 550 to 475 °C because of the lower-temperature formation of Al-Cu intermetallic phases and alloying. Cu intermixing is different in the CuO/Cu/Al and Al/Cu/CuO interfaces and independent of total Cu thickness: Cu readily penetrates into Al grains upon annealing to 300 °C, leading to Al/Cu phase transformations, while Al does not penetrate into Cu. Importantly, θ-Al2Cu nanocrystals are created below 63% wt Cu/Al, and coexist with the Al solid solution phase. These well-defined θ-Al2Cu nanocrystals seem to act as embedded Al+CuO energetic reaction triggers that lower the onset temperature. We show that ∼10

  2. Effect of Al Doping on Performance of CuGaO2 p-Type Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Ursu, D.; Vaszilcsin, N.; Bănica, R.; Miclau, M.

    2016-01-01

    The p-type semiconductor Cu(I)-based delafossite transparent conducting oxides are good candidates to be used as hole collectors in dye-sensitized solar cells. The Al-doped CuGaO2 has been synthesized by hydrothermal method and its properties have been investigated as cathode elements in ruthenium dye N719-sensitized solar cells. The photocurrent density ( J sc) and the open-circuit voltage ( V oc) for 5% Al-doped CuGaO2 microparticles using N719 dye were approximately two times higher than undoped CuGaO2 microparticles. The integration of aluminum dopants in the delafossite structure improves the photovoltaic performance of CuGaO2 thin films, due to the excellent optical transparency of CuGaO2 in the visible range as well as the improved electrical conductivity caused by the apparition of the intrinsic acceptor defect associate (Al Cu •• 2O i ″ )″ with tetrahedrally coordinated Al on the Cu-site.

  3. Vibrational spectroscopic study of the copper silicate mineral kinoite Ca2Cu2Si3O10(OH)4

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei

    2012-04-01

    Kinoite Ca2Cu2Si3O10(OH)4 is a mineral named after a Jesuit missionary. Raman and infrared spectroscopy have been used to characterise the structure of the mineral. The Raman spectrum is characterised by an intense sharp band at 847 cm-1 assigned to the ν1 (A1g) symmetric stretching vibration. Intense sharp bands at 951, 994 and 1000 cm-1 are assigned to the ν3 (Eu, A2u, B1g) SiO4 antisymmetric stretching vibrations. Multiple ν2 SiO4 vibrational modes indicate strong distortion of the SiO4 tetrahedra. Multiple CaO and CuO stretching bands are observed. Raman spectroscopy confirmed by infrared spectroscopy clearly shows that hydroxyl units are involved in the kinoite structure. Based upon the infrared spectra, it is proposed that water is also involved in the kinoite structure. Based upon vibrational spectroscopy, the formula of kinoite is defined as Ca2Cu2Si3O10(OH)4·xH2O.

  4. Vibrational spectroscopic study of the copper silicate mineral kinoite Ca2Cu2Si3O10(OH)4.

    PubMed

    Frost, Ray L; Xi, Yunfei

    2012-04-01

    Kinoite Ca2Cu2Si3O10(OH)4 is a mineral named after a Jesuit missionary. Raman and infrared spectroscopy have been used to characterise the structure of the mineral. The Raman spectrum is characterised by an intense sharp band at 847 cm(-1) assigned to the ν1 (A1g) symmetric stretching vibration. Intense sharp bands at 951, 994 and 1000 cm(-1) are assigned to the ν3 (Eu, A2u, B1g) SiO4 antisymmetric stretching vibrations. Multiple ν2 SiO4 vibrational modes indicate strong distortion of the SiO4 tetrahedra. Multiple CaO and CuO stretching bands are observed. Raman spectroscopy confirmed by infrared spectroscopy clearly shows that hydroxyl units are involved in the kinoite structure. Based upon the infrared spectra, it is proposed that water is also involved in the kinoite structure. Based upon vibrational spectroscopy, the formula of kinoite is defined as Ca2Cu2Si3O10(OH)4·xH2O. PMID:22257713

  5. Sintering and hot isostatic pressing of Bi2Sr2CaCu2O(x)

    NASA Astrophysics Data System (ADS)

    Nash, A. S.; Nash, P.; Poeppel, R. B.; Goretta, K. C.

    1991-01-01

    The Bi2Sr2CaCu2O(x) phase was synthesized by solid-state reaction of oxides and carbonates. Initial compositions of Bi:Sr:Ca:Cu were 4:3:3:6 and 2:1.7:1:2. Pellets of the pure powder and powder containing 2.5, 5, or 15 wt percent Ag were cold-pressed and either sintered or hot isostatically pressed (HIPped). For HIPping, the pellets were encased in thin Ag sheets, canned in steel, and pressed at 105 MPa in argon at 800 or 850 C. HIPping produced dense specimens, but sintering did not. HIPping induced very little decomposition of the Bi2Sr2CaCu2O(x), but a post-HIP anneal was needed to raise the transition temperature above 80 K. The Ag additions appeared to minimize microcracking during HIPping at 800 C. Little microcracking was evident in any of the specimens HIPped at 850 C.

  6. Manufacture of (Bi,Pb)2Sr2Ca2Cu3O10-based tapes with a composite sheath

    NASA Astrophysics Data System (ADS)

    Grivel, J.-C.; Abrahamsen, A. B.; Andersen, N. H.; Saksl, K.

    2008-02-01

    (Bi,Pb)2Sr2Ca2Cu3O10-based single-filament tapes were prepared using a pure Ag protective sheath in contact with the ceramic core and an external sheath consisting of Ni. The influence of the composite sheath geometry on the (Bi,Pb)2Sr2Ca2Cu3O10 phase formation kinetics was studied by in-situ synchrotron x-ray diffraction in a 8.5% O2 - 91.5% N2 gas mixture and was found to depend strongly on the sheath architecture as a consequence of differences in the oxygen supply between the ceramic core and the outer atmosphere. Owing to the efficient protection of the pure Ag layer against Ni diffusion, the critical temperature of the (Bi,Pb)2Sr2Ca2Cu3O10 phase is unaffected. Critical current densities as high as 35 kA/cm2 (77K, self field) were obtained in a single heat treatment when a slow cooling rate was used. The ceramic density was significantly improved in comparison with that of tapes prepared using only pure Ag as sheath material and heat treated once. This effect can be attributed to the higher mechanical strength of the composite sheath at elevated temperatures, which prevents the development of an otherwise significant porosity during the growth of the superconducting crystallites.

  7. Precipitation of a new platelet phase during the quenching of an Al-Zn-Mg-Cu alloy

    PubMed Central

    Zhang, Yong; Weyland, Matthew; Milkereit, Benjamin; Reich, Michael; Rometsch, Paul A.

    2016-01-01

    A previously undescribed high aspect ratio strengthening platelet phase, herein named the Y-phase, has been identified in a commercial Al-Zn-Mg-Cu alloy. Differential scanning calorimetry indicates that this phase only precipitates at temperature and cooling rate of about 150–250 °C and 0.05–300 K/s, respectively. This precipitate is shown to be responsible for a noticeable improvement in mechanical properties. Aberration corrected scanning transmission electron microscopy demonstrates the minimal thickness (~1.4 nm) precipitate plates are isostructural to those of the T1 (Al2CuLi) phase observed in Al-Cu-Li alloys. Low voltage chemical analysis by energy dispersive X-ray spectroscopy and electron energy loss spectroscopy gives evidence of the spatial partitioning of the Al, Cu and Zn within the Y-phase, as well as demonstrating the incorporation of a small amount of Mg. PMID:26979123

  8. Thermodynamic calculation and interatomic potential to predict the favored composition region for the Cu-Zr-Al metallic glass formation.

    PubMed

    Cui, Y Y; Wang, T L; Li, J H; Dai, Y; Liu, B X

    2011-03-01

    For the Cu-Zr-Al system, the glass forming compositions were firstly calculated based on the extended Miedema's model, suggesting that the amorphous phase could be thermodynamically favored over a large composition region. An n-body potential was then constructed under the smoothed and long-range second-moment-approximation of tight-binding formulism. Applying the constructed Cu-Zr-Al potential, molecular dynamics simulations were conducted using solid solution models to compare relative stability of crystalline solid solution versus its disordered counterpart. Simulations reveal that the physical origin of metallic glass formation is crystalline lattice collapsing while solute concentration exceeding the critical value, thus predicting a hexagonal composition region, within which the Cu-Zr-Al ternary metallic glass formation is energetically favored. The molecular dynamics simulations predicted composition region is defined as the quantitative glass-forming-ability or glass-forming-region of the Cu-Zr-Al system. PMID:21229150

  9. Precipitation of a new platelet phase during the quenching of an Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Weyland, Matthew; Milkereit, Benjamin; Reich, Michael; Rometsch, Paul A.

    2016-03-01

    A previously undescribed high aspect ratio strengthening platelet phase, herein named the Y-phase, has been identified in a commercial Al-Zn-Mg-Cu alloy. Differential scanning calorimetry indicates that this phase only precipitates at temperature and cooling rate of about 150–250 °C and 0.05–300 K/s, respectively. This precipitate is shown to be responsible for a noticeable improvement in mechanical properties. Aberration corrected scanning transmission electron microscopy demonstrates the minimal thickness (~1.4 nm) precipitate plates are isostructural to those of the T1 (Al2CuLi) phase observed in Al-Cu-Li alloys. Low voltage chemical analysis by energy dispersive X-ray spectroscopy and electron energy loss spectroscopy gives evidence of the spatial partitioning of the Al, Cu and Zn within the Y-phase, as well as demonstrating the incorporation of a small amount of Mg.

  10. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.

    PubMed

    Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W

    2015-01-28

    X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range. PMID:25524926

  11. Density functional theory study of 3R- and 2H-CuAlO2 under pressure

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Liu, Zheng-Tang; Feng, Li-Ping; Tian, Hao; Liu, Wen-Ting; Yan, Feng

    2010-10-01

    We present a first-principles density-functional theory based study of the impact of pressure on the structural and elastic properties of bulk 3R- and 2H-CuAlO2. The ground state properties of 3R- and 2H-CuAlO2 are obtained, which are in good agreement with previous experimental and theoretical data. The analysis of enthalpy variation with pressure indicates the phase transition pressure between 3R and 2H is 15.4 GPa. The independent elastic constants of 3R- and 2H-CuAlO2 are calculated. As the applied pressure increases, the calculations show the presences of mechanical instability at 26.2 and 27.8 GPa for 3R- and 2H-CuAlO2, which are possibly related with the phase transitions.

  12. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.

    PubMed

    Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W

    2015-01-28

    X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range.

  13. Magnetic properties of CaCu5-type RNi3TSi (R=Gd and Tb, T=Mn, Fe, Co and Cu) compounds

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Yao, Jinlei; Yuan, Fang; Mozharivskyj, Y.; Nirmala, R.; Quezado, S.; Malik, S. K.

    2015-12-01

    Magnetic properties and magnetocaloric effect of CaCu5-type RNi3TSi (R=Gd and Tb, T=Mn, Fe, Co and Cu) compounds have been investigated. Magnetic measurements of RNi3TSi display the increasing of Curie temperature and the decreasing of magnetocaloric effect and saturated magnetic moment in the row of 'RNi3CuSi-RNi3NiSi-RNi3CoSi-RNi3MnSi-RNi3FeSi'. In contrast to GdNi3{Mn, Fe, Co}Si, TbNi3{Mn, Fe, Co}Si exhibit significant magnetic hysteresis. The coercive field increases from TbNi4Si ( 0.5 kOe) to TbNi3CoSi (4 kOe), TbNi3MnSi (13 kOe) and TbNi3FeSi (16 kOe) in field of 50 kOe at 5 K, whereas TbNi3CuSi exhibits a negligible coercive field.

  14. Utilizing various test methods to study the stress corrosion behavior of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1984-01-01

    Recently, much attention has been given to aluminum-lithium alloys because of rather substantial specific-strength and specific-stiffness advantages offered over commercial 2000and 7000-series aluminum alloys. An obstacle to Al-Li alloy development has been inherent limited ductility. In order to obtain a more refined microstructure, powder metallurgy (P/M) has been employed in alloy development programs. As stress corrosion (SC) of high-strength aluminum alloys has been a major problem in the aircraft industry, the possibility of an employment of Al-Li alloys has been considered, taking into account a use of Al-Li-Cu alloys. Attention is given to a research program concerned with the evaluation of the relative SC resistance of two P/M processed Al-Li-Cu alloys. The behavior of the alloys, with and without an addition of magnesium, was studied with the aid of three test methods. The susceptibility to SC was found to depend on the microstructure of the alloys.

  15. The solidification microstructure of Al-Cu-Si alloys metal matrix composites

    SciTech Connect

    Garbellini, O.; Palacio, H.; Biloni, H.

    1998-12-31

    The relationship between solidification microstructure and fluidity in MMC was studied. The composites were fabricated by infiltration of liquid metal into a alumina SAFFIL fibers preform under a gas pressure, using alloys of the AlCuSi system as matrices. The fluidity was measured in terms of classic foundry practice (i.e., the distance of flow liquid metal into the preform, while solidifying). The characterization of solidification microstructure in the cast composite was analyzed and correlated with the results of fluidity. The attention was particularly focused on such effects as the presence or absence of selective nucleation, the refinement of certain solidifying phases in the presence of fibers and their influence on microstructure formation and segregation of certain elements present in the liquid at the fiber matrix interface. By comparing reinforced and non reinforced zones, it was shown that the presence of fibers resulted in a refinement of the dendritic arm spacing of the {alpha}Al phase, with nucleation of Si on the fibers and without nucleation of primary Al dendrites. The results were discussed and compared with the microstructures and fluidity test of the unreinforced Al-Cu-Si alloys.

  16. Complex Formation Between Ca(II), Mg(II), Al(III) Ions and Salicylglycine

    PubMed Central

    Kilyén, Melinda; Labádi, lmre; Tombácz, Etelka; Kiss, Tamás

    2003-01-01

    For modelling the interactions of proteins/peptides with hard metal ions the complex formation of salicylglycine (SalGly) with Ca(II), Mg(ll) and AI(III) ions was studied in aqueous solution using pHpotentiometric and UV-vis spectroscopic techniques. Al(lll) ion was found to form more stable complexes with SalGiy than Ca(ll) or Mg(ll) ions. While AI(III) ion forms various 1:1 complexes of different protonation states in the pH range 2-7, Ca(ll), Mg(ll) ions seem to interact with SalGly only in the basic pH range and form mixed hydroxo species MLH-1 at pH ~ 8. According to the UV-vis spectroscopic measurements in the species MLH-1 the carboxylate-O- atom and the phenolate-O- coordinate to the metal ions. SaIGiy is able to keep Al(lll) in solution through inner and outer sphere coordination to metastable amorphous AI(OH)3 particles. Deprotonation of the peptide amide Nil does not occur in these systems. PMID:18365063

  17. Network topology for the formation of solvated electrons in binary CaO-Al2O3 composition glasses.

    PubMed

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J K Richard; Benmore, Chris J

    2013-06-18

    Glass formation in the CaO-Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO-Al2O3 glasses using combined density functional theory-reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O-Ca and O-Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al-O is stronger than that of Ca-O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71-74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass.

  18. Self-forming Al oxide barrier for nanoscale Cu interconnects created by hybrid atomic layer deposition of Cu–Al alloy

    SciTech Connect

    Park, Jae-Hyung; Han, Dong-Suk; Kang, You-Jin; Shin, So-Ra; Park, Jong-Wan

    2014-01-15

    The authors synthesized a Cu–Al alloy by employing alternating atomic layer deposition (ALD) surface reactions using Cu and Al precursors, respectively. By alternating between these two ALD surface chemistries, the authors fabricated ALD Cu–Al alloy. Cu was deposited using bis(1-dimethylamino-2-methyl-2-butoxy) copper as a precursor and H{sub 2} plasma, while Al was deposited using trimethylaluminum as the precursor and H{sub 2} plasma. The Al atomic percent in the Cu–Al alloy films varied from 0 to 15.6 at. %. Transmission electron microscopy revealed that a uniform Al-based interlayer self-formed at the interface after annealing. To evaluate the barrier properties of the Al-based interlayer and adhesion between the Cu–Al alloy film and SiO{sub 2} dielectric, thermal stability and peel-off adhesion tests were performed, respectively. The Al-based interlayer showed similar thermal stability and adhesion to the reference Mn-based interlayer. Our results indicate that Cu–Al alloys formed by alternating ALD are suitable seed layer materials for Cu interconnects.

  19. Invited paper: Dielectric properties of CaCu3Ti4O12 polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Lee, Sung Yun; Hong, Youn Woo; Yoo, Sang Im

    2011-12-01

    We investigated the relationship between the microstructures and dielectric properties of various CaCu3Ti4O12 (CCTO) polycrystalline ceramics sintered in air. An abrupt increase in the dielectric constant ( ɛ r) from ˜3,000 to ˜170,000 at 1 kHz occurred with increasing the sintering temperature from 980 to 1000°C for 12 h, respectively, which was accompanied by a very large increase in the average grain size from 5 to 300 µm, respectively, due to an abnormal grain growth. With further increasing the sintering temperature, the ɛ r value at 1 kHz was slightly decreased to ˜150,000 at 1020°C with no variation in the average grain size, significantly decreased to ˜77,000 at 1040°C with a large decrease in the average grain size (˜150 µm), and then maintained the values of ˜76,000 and ˜69,000 at 1060 and 1080°C, respectively, without noticeable variation in the average grain size. While no abnormal grain growth occurred in the CCTO samples sintered at 980°C for the holding time to 24 h and thus their ɛ r values showed relatively lower ɛ r values (< ˜4,000 at 1 kHz), the abnormal grain growth occurred in the samples after a certain holding time at a given sintering temperature of higher than 1000°C and thus their ɛ r values abruptly increased. Analyses by the complex impedance ( Z*) and modulus ( M*) spectroscopy revealed that the ɛ r values of the CCTO samples were dominantly affected by the electrical properties of grain boundary so that high ɛ r values over 10,000 at 1 kHz were attributable to the high capacitance ( C) of grain boundary, which is in good agreement with grain boundary internal barrier layer capacitor (IBLC) model.

  20. The infrared optical properties of CaCu_3Ti_4O_12

    NASA Astrophysics Data System (ADS)

    Homes, C. C.; Vogt, T.; Shapiro, S. M.; Wakimoto, S.

    2001-03-01

    The copper-titanate CaCu_3Ti_4O_12 exhibits an extremely large dielectric response (\\varepsilon_0 ~ 10^4 at RT) down to 100 K, where there is an abrupt 100-fold reduction of \\varepsilon_0.^1 The temperature-dependent reflectance of this material has been measured over a wide frequency range (≈ 20 to 15 000 cm-1). The optical properties have been determined from a Kramers-Kronig analysis of the reflectance. The conductivity is dominated by the 10 normally infrared-active lattice modes observed in the optical conductivity at room temperature. Above ≈ 300 cm-1 the modes harden and narrow, while below this frequency the modes soften with decreasing temperature. The low frequency mode at 122 cm-1 softens dramatically to 115 cm-1 and develops a shoulder at low temperature; it also increases dramatically in strength, violating the oscillator-strength sum rule. The origin of the increase in strength is attributed to the change in the formal charge on the oxygen atoms, ZO ≈ -1.3 at 295 K, which increases to ≈ -1.4 at low temperature. The change in oxygen valence and the softening of the low-frequency mode(s) may help to provide an understanding of the peculiar behaviour of \\varepsilon0 in this material. ^* This work supported by DOE contract DE-AC02-98CH10886. ^1 A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt and S.M. Shapiro, Solid State Commun. 115, 217 (2000).

  1. Oxygen desorption from YBa2Cu3O(7-x) and Bi2CaSr2Cu2O(8 + delta) superconductors

    NASA Technical Reports Server (NTRS)

    Mesarwi, A.; Levenson, L. L.; Ignatiev, A.

    1991-01-01

    Oxygen desorption experiments from YBa2Cu3O(7-x) (YBCO) and Bi2CaSr2Cu2O(8 + delta) (BSCCO) superconductors were carried out using a quadrupole mass spectrometer for monitoring the desorbing species and X-ray photoemission spectroscopy for surface characterization. Molecular oxygen was found to desorb from both superconductors following photoirradiation with ultraviolet/optical radiation and subsequent heating at over 150 C. Both YBCO and BSCCO were found to have similar oxygen desorption rates and similar activation energies. The desorption data as well as the X-ray photoemission data indicate that the oxygen desorption is not intrinsic to the superconductors but rather due to molecular oxygen entrapped in the material.

  2. Development of Sn-Ag-Cu-X Solders for Electronic Assembly by Micro-Alloying with Al

    SciTech Connect

    Boesenberg, Adam; Anderson, Iver; Harringa, Joel

    2012-03-10

    Of Pb-free solder choices, an array of solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic (T eut = 217°C) composition have emerged with potential for broad use, including ball grid array (BGA) joints that cool slowly. This work investigated minor substitutional additions of Al (<0.25 wt.%) to Sn-3.5Ag-0.95Cu (SAC3595) solders to promote more consistent solder joint microstructures and to avoid deleterious product phases, e.g., Ag3Sn “blades,” for BGA cooling rates, since such Al additions to SAC had already demonstrated excellent thermal aging stability. Consistent with past work, blade formation was suppressed for increased Al content (>0.05Al), but the suppression effect faded for >0.20Al. Undercooling suppression did not correlate specifically with blade suppression since it became significant at 0.10Al and increased continuously with greater Al to 0.25Al. Surprisingly, an intermediate range of Al content (0.10 wt.% to 0.20 wt.% Al) promoted formation of significant populations of 2-μm to 5-μm faceted Cu-Al particles, identified as Cu33Al17, that clustered at the top of the solder joint matrix and exhibited extraordinary hardness. Clustering of Cu33Al17 was attributed to its buoyancy, from a lower density than Sn liquid, and its early position in the nucleation sequence within the solder matrix, permitting unrestricted migration to the top interface. Joint microstructures and implications for the full nucleation sequence for these SAC + Al solder joints are discussed, along with possible benefits from the clustered particles for improved thermal cycling resistance.

  3. Strengthening TiN diffusion barriers for Cu metallization by lightly doping Al

    NASA Astrophysics Data System (ADS)

    Yang, L. C.; Hsu, C. S.; Chen, G. S.; Fu, C. C.; Zuo, J. M.; Lee, B. Q.

    2005-09-01

    Thin films of Ti1-xAlxN were deposited on (100) Si by ultrahigh-vacuum dual-target reactive sputtering, and the impact of lightly doping Al of x as small as 0.09 on altering the films's microstructure upon thermal annealing, and hence the performance of the films (40nm thick) as diffusion barriers for Cu metallization was evaluated. The results of transmission electron microscopy, Rutherford backscattering spectroscopy, and grazing-incidence x-ray diffraction show that the TiN barrier layer gives the commonly observed voided, columnar grains composed of 5nm sized subgrains. Upon annealing, the subgrains tend to coalesce into 20nm sized equiaxed grains full of crystalline defects, initiating an inward penetration of Cu and a partial dissociation of TiN, transforming themselves, respectively, into pyramidal (or columnar) Cu3Si precipitates and a dendritic Ti5Si3 layer just after 550°C, 10min annealing. However, the lightly doped Al not only overrides the tendency to form intercolumnar voids inherent in sputter deposition by self-shadowing and statistical roughening, but also substantially enhances the microstructural and thermochemical stability, hence significantly improving barrier property, as evidenced from an annealing test at an elevated temperature (600°C) for a prolonged period of 30min.

  4. Low-temperature heat capacities of CaAl2SiO6 glass and pyroxene and thermal expansion of CaAl2SiO6 pyroxene.

    USGS Publications Warehouse

    Haselton, H.T.; Hemingway, B.S.; Robie, R.A.

    1984-01-01

    Low-T heat capacities (5-380 K) have been measured by adiabatic calorimetry for synthetic CaAl2SiO6 glass and pyroxene. High-T unit cell parameters were measured for CaAl2SiO6 pyroxene by means of a Nonius Guinier-Lenne powder camera in order to determine the mean coefficient of thermal expansion in the T range 25-1200oC. -J.A.Z.

  5. Nqrs Data for AlCa2ClH10O8 [AlCa2ClO3·5(H2O)] (Subst. No. 0020)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for AlCa2ClH10O8 [AlCa2ClO3·5(H2O)] (Subst. No. 0020)

  6. Improvement of critical current density in thallium-based (Tl,Bi)Sr(1.6)Ba(0.4)Ca2Cu3O(x) superconductors

    NASA Technical Reports Server (NTRS)

    Ren, Z. F.; Wang, C. A.; Wang, J. H.; Miller, D. J.; Goretta, K. C.

    1995-01-01

    Epitaxial (Tl,Bi)Sr(1.6)Ba(0.4)Ca2Cu3O(x) ((Tl,Bi)-1223) thin films on (100) single crystal LaAlO3 substrates were synthesized by a two-step procedure. Phase development, microstructure, and relationships between film and substrate were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Resistance versus temperature, zero-field-cooled and field cooled magnetization, and transport critical current density (J(sub c)) were measured. The zero-resistance temperature was 105-111 K. J(sub c) at 77 K and zero field was greater than 2 x 10(exp 6) A/sq cm. The films exhibited good flux pinning properties.

  7. Closed and open-ended stacking fault tetrahedra formation along the interfaces of Cu-Al nanolayered metals

    NASA Astrophysics Data System (ADS)

    Li, Ruizhi; Beng Chew, Huck

    2015-09-01

    Stacking fault tetrahedra (SFTs) are volume defects that typically form by the clustering of vacancies in face-centred cubic (FCC) metals. Here, we report a dislocation-based mechanism of SFT formation initiated from the semi-coherent interfaces of Cu-Al nanoscale multilayered metals subjected to out-of-plane tension. Our molecular dynamics simulations show that Shockley partials are first emitted into the Cu interlayers from the dissociated misfit dislocations along the Cu-Al interface and interact to form SFTs above the triangular intrinsic stacking faults along the interface. Under further deformation, Shockley partials are also emitted into the Al interlayers and interact to form SFTs above the triangular FCC planes along the interface. The resulting dislocation structure comprises closed SFTs within the Cu interlayers which are tied across the Cu-Al interfaces to open-ended SFTs within the Al interlayers. This unique plastic deformation mechanism results in considerable strain hardening of the Cu-Al nanolayered metal, which achieves its highest tensile strength at a critical interlayer thickness of ~4 nm corresponding to the highest possible density of complete SFTs within the nanolayer structure.

  8. Surface micromorphology of dental composites [CE-TZP]-[Al2O3] with Ca(+2) modifier.

    PubMed

    Berezina, Sofia; Il'icheva, Alla Alexandrovna; Podzorova, Lyudmila Ivanovna; Ţălu, Ştefan

    2015-09-01

    The objective of this study was to characterize the three-dimensional (3D) surface micromorphology of the ceramics produced from nanoparticles of alumina and tetragonal zirconia (t-ZrO2) with addition of Ca(+2) for sintering improvement. The 3D surface roughness of samples was studied by atomic force microscopy (AFM), fractal analysis of the 3D AFM-images, and statistical analysis of surface roughness parameters. Cube counting method, based on the linear interpolation type, applied for AFM data was used for fractal analysis. The morphology of non-modified ceramic sample was characterized by the rather big (1-2 μm) grains of α-Al2O3 phase with a habit close to hexagonal drowned in solid solution of t-ZrO2 with smooth surface. The pattern surfaces of modified composite content a little amount of elongated prismatic grains with composition close to the phase of СаСеAl3О7 as well as hexahedral α-Al2O3-grains. Fractal dimension, D, as well as height values distribution have been determined for the surfaces of the samples with and without modifying. It can be concluded that the smoothest surface is of the modified samples with Ca(+2) modifier but the most regular one is of the non-modified samples. A connection was observed between the surface morphology and the physical properties as assessed in previous works. PMID:26190812

  9. CaMn2Al10: Itinerant Mn magnetism on the verge of magnetic order

    DOE PAGES

    Steinke, L.; Simonson, J. W.; Yin, W. -G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.

    2015-07-24

    We report the discovery of CaMn2Al10, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83μB/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010]/χ[001] ≈ 3.5. A strong power-lawmore » divergence χ(T) ~ T–1.2 below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature TC ~ 0. Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.« less

  10. Synthesis of high-T(c) superconducting Bi-Pb-Sr-Ca-Cu-O ceramics prepared by an ultrastructure processing via the oxalate route

    NASA Astrophysics Data System (ADS)

    Chen, F. H.; Tseng, T. Y.; Koo, H. S.

    1990-07-01

    Fourier-transform IR (FTIR) spectroscopy has been used to monitor sol-gel reaction mechanisms involved in the generation of the high-T(c) superconductor in the Pb-doped Bi-Sr-Ca-Cu-O system during the 840 C pyrolyzation and oxidation of an oxalate precursor. XRD and FTIR were then used to analyze the specimens after firing, in order to identify their various phases. The results obtained imply a Bi2Sr2CaCu2O(8+delta), or phase 2212, formation mechanism via the Bi2Sr2CuO(6+delta)-Ca2CuO3-CuO reaction at 800 C.

  11. Chemical zoning and diffusion of Ca, Al, Mn, and Cr in olivine of springwater pallasite

    NASA Technical Reports Server (NTRS)

    Zhou, Y.; Steele, Ian M.

    1993-01-01

    The pallasites, consisting mainly of Fe-Ni metal and olivine, are thought to represent the interior of a planetary body which slowly cooled from high temperature. Although the olivines are nearly homogeneous, ion microprobe studies revealed variations of Ca, Ti, Co, Cr, and Ni near grain edges. These variations were thought to represent diffusion in response to falling temperature of the parent body. Pallasite cooling rates have been estimated based on kamacite taenite textures but results differ by x100. In principle elemental profiles in olivine can allow estimates of cooling rate if diffusion coefficients are known; in addition, given a cooling rate, diffusion coefficients could be derived. Data are presented which show that apparent diffusion profiles can be measured for Al, Ca, Cr, and Mn which qualitatively agree with expected diffusion rates and have the potential of providing independent estimates of pallasite cooling rates.

  12. Structural phase transition in early growth of Bi2Sr2CaCu2O8+x films on SrTiO3 substrates

    NASA Astrophysics Data System (ADS)

    Abrecht, M.; Ariosa, D.; Onellion, M.; Margaritondo, G.; Pavuna, D.

    2002-02-01

    We used pulsed laser deposition, with a Bi2Sr2CaCu2O8+x target, to grow films ranging from (1/4) to 10 unit cells thick. We studied these films, and reference Bi2Sr2CaCu2O8+x single crystal samples, using angle-integrated photoemission, core level photoemission, and x-ray diffraction. The data indicate that all films exhibit a metallic-like Fermi edge in the photoemission data. More strikingly, a structural phase transition occurs at a nominal Bi2Sr2CaCu2O8+x thickness of approximately one unit cell, converting the precursor Bi2O2.33 highly coherent thin film into a Bi2Sr2CaCu2O8+x structure.

  13. Corrosion and protection of heterogeneous cast Al-Si (356) and Al-Si-Cu-Fe (380) alloys by chromate adn cerium inhibitors

    NASA Astrophysics Data System (ADS)

    Jain, Syadwad

    In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the

  14. Localized TiSi and TiN phases in Si/Ti/Al/Cu Ohmic contacts to AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Yoon, Seonno; Song, Yunwon; Lee, Seung Min; Lee, Hi-Deok; Oh, Jungwoo

    2016-05-01

    Microstructural changes in Si/Ti/Al/Cu (10/40/60/50 nm) Ohmic contacts to AlGaN/GaN heterostructure were investigated for complementary metal-oxide semiconductor compatible processes. Si/Ti/Al/Cu metallization exhibited a low specific contact resistance of 3.6 × 10-6 Ω-cm2 and contact resistance of 0.46 Ω-mm when a Si interfacial layer was used. Without a designated barrier metal, TiSix alloys that formed in the metallic region effectively suppressed Cu diffusion. The shallow TiN junction in AlGaN/GaN was attributed to TiSix in the metallic regions. Microstructural changes were detected by systematic physical characterization.

  15. Crystallization from high temperature solutions of Si in Cu/Al solvent

    DOEpatents

    Ciszek, Theodore F.; Wang, Tihu

    1996-01-01

    A liquid phase epitaxy method for forming thin crystalline layers of device quality silicon having less than 3.times.10.sup.16 Cu atoms/cc impurity, comprising: preparing a saturated liquid solution of Si in a Cu/Al solvent at about 20 to about 40 at. % Si at a temperature range of about 850.degree. to about 1100.degree. C. in an inert gas; immersing or partially immersing a substrate in the saturated liquid solution; super saturating the solution by lowering the temperature of the saturated solution; holding the substrate in the saturated solution for a period of time sufficient to cause Si to precipitate out of solution and form a crystalline layer of Si on the substrate; and withdrawing the substrate from the solution.

  16. Crystallization from high temperature solutions of Si in Cu/Al solvent

    DOEpatents

    Ciszek, T.F.; Wang, T.

    1996-08-13

    A liquid phase epitaxy method is disclosed for forming thin crystalline layers of device quality silicon having less than 3{times}10{sup 16} Cu atoms/cc impurity, comprising: preparing a saturated liquid solution of Si in a Cu/Al solvent at about 20 to about 40 at. % Si at a temperature range of about 850 to about 1100 C in an inert gas; immersing or partially immersing a substrate in the saturated liquid solution; super saturating the solution by lowering the temperature of the saturated solution; holding the substrate in the saturated solution for a period of time sufficient to cause Si to precipitate out of solution and form a crystalline layer of Si on the substrate; and withdrawing the substrate from the solution. 3 figs.

  17. Cooling-rate-dependent microstructure and mechanical properties of a CuZrAlAg alloy

    NASA Astrophysics Data System (ADS)

    Gu, Ji; Wang, Yihan; Zhang, Lixin; Ni, Song; Song, Min

    2014-11-01

    A Cu36Zr48Al8Ag8 alloy rod with a diameter of 10 mm was fabricated using a copper-mould suction casting method. Structural characterization revealed that the rod has different microstructures along the casting direction, including a complete amorphous structure and an amorphous/crystalline composite structure with different amount of B2 CuZr phase. Nanoindentation tests showed that the hardness and the elastic modulus of the crystalline phase are lower than those of the amorphous matrix. The hardness and the elastic modulus of the amorphous matrix decrease with decreasing crystalline proportion of the alloy, while the Vickers hardness of the alloy increases with a reduction in the crystalline proportion.

  18. Atomistic Modeling of Quaternary Alloys: Ti and Cu in NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Wilson, Allen W.; Noebe, Ronald D.; Garces, Jorge E.

    2002-01-01

    The change in site preference in NiAl(Ti,Cu) alloys with concentration is examined experimentally via ALCHEMI and theoretically using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Results for the site occupancy of Ti and Cu additions as a function of concentration are determined experimentally for five alloys. These results are reproduced with large-scale BFS-based Monte Carlo atomistic simulations. The original set of five alloys is extended to 25 concentrations, which are modeled by means of the BFS method for alloys, showing in more detail the compositional range over which major changes in behavior occur. A simple but powerful approach based on the definition of atomic local environments also is introduced to describe energetically the interactions between the various elements and therefore to explain the observed behavior.

  19. Study on the phase evolution of (Pb,Cu)Sr2(Y,Ca)Cu2Oz (z 7)

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Taniwaki, M.

    2006-09-01

    The formation process of (Pb(1+x )/2Cu(1-x )/2)Sr2(Y1-x Cax )Cu2Oz is investigated by means of X-ray diffractometory (XRD), thermal analysis and scanning electron microscopy for nominal compositions of x = 00.5. It is shown by XRD measurement that nearly single-phase samples are obtained at x = 00.4 by firing at 1000 °C in air for only 1 h. In the heating step, the existence of partial melting state slightly below the firing temperature is clearly observed in the results of differential thermal analysis. It is concluded that this causes the extremely rapid formation of this compound.

  20. Ion irradiation induced element-enriched and depleted nanostructures in Zr-Al-Cu-Ni metallic glass

    SciTech Connect

    Chen, H. C.; Liu, R. D.; Yan, L. E-mail: zhouxingtai@sinap.ac.cn; Zhou, X. T. E-mail: zhouxingtai@sinap.ac.cn; Cao, G. Q.; Wang, G.

    2015-07-21

    The microstructural evolution of a Zr-Al-Cu-Ni metallic glass induced by irradiation with Ar ions was investigated. Under ion irradiation, the Cu- and Ni-enriched nanostructures (diameter of 30–50 nm) consisted of crystalline and amorphous structures were formed. Further, Cu- and Ni-depleted nanostructures with diameters of 5–20 nm were also observed. The formation of these nanostructures can be ascribed to the migration of Cu and Ni atoms in the irradiated metallic glass.