Science.gov

Sample records for al ca mg

  1. Effect of reaction time and (Ca+Mg)/Al molar ratios on crystallinity of Ca-Mg-Al layered double Hydroxide

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Nugrahaningtyas, K. D.; Sanjaya, F. B.; Darojat, A. A.; Handayani, D. S.; Hidayat, Y.

    2016-02-01

    Ca-Mg-Al Layered Double Hydroxides (Ca-Mg-Al-LDH) compounds were successfully synthesized from brine water and AlCl3.6H2O as the starting materials by coprecipitation method. The product result was characterized by X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR). The effects of the reaction time and the molar ratios of the raw material on the crystallinity of Ca-Mg-Al-LDH were examining. Results show that increasing reaction time (30; 60 and 90 min.) could improve the crystallinity and monodispersity of layered double hydroxide compounds particles. The well-defined Ca-Mg- Al-LDH could be prepared with (Ca+Mg)/Al molar ratios 0.5.

  2. Structure, phase composition, and strengthening of cast Al-Ca-Mg-Sc alloys

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Naumova, E. A.; Bazlova, T. A.; Alekseeva, E. V.

    2016-02-01

    The structure and phase composition of Al-Ca-Mg-Sc alloys containing 0.3 wt % Sc, up to 10 wt % Ca, and up to 10 wt % Mg have been investigated in the cast state and state after heat treatment. It has been shown that only binary phases Al4Ca, Al3Sc, and Al3Mg2 can be in equilibrium with the aluminum solid solution. It has been found that the maximum strengthening effect caused by the precipitation of Al3Sc nanoparticles for all investigated alloys is attained after annealing at 300-350°C.

  3. P- T- X controls on Ca and Na distribution between Mg-Al tourmaline and fluid

    NASA Astrophysics Data System (ADS)

    Berryman, Eleanor J.; Wunder, Bernd; Rhede, Dieter; Schettler, Georg; Franz, Gerhard; Heinrich, Wilhelm

    2016-04-01

    Ca-Na partitioning between tourmaline and a coexisting fluid is investigated in the system CaO-Na2O-B2O3-Al2O3-MgO-SiO2-H2O-Cl between 0.2-4.0 GPa and 500-700 °C. The synthesis experiments produced a mineral assemblage of tourmaline, coesite/quartz, and in some cases additional phases, typically comprising <1 wt% of the solid product. The synthesized tourmalines are solid solutions of dravite [NaMg3Al6Si6O18(BO3)3(OH)3(OH)], "oxy-uvite" (i.e. "Ca-Mg-O root name") [CaMg3Al6Si6O18(BO3)3(OH)3O], and magnesio-foitite [☐(Mg2Al)Al6Si6O18(BO3)3(OH)3(OH)]. Starting materials comprised a fluid of constant ionic strength (2.00 m) and an oxide mixture with a constant Mg/Al ratio. As a result, the number of vacancies at the X site and the Mg/Al ratio of tourmaline crystals synthesized at the same temperature vary only slightly. The major solid solution is Ca-Na exchange at the X site via the exchange vector X Ca W O[ X Na W (OH)]-1, with the exchange vector X (Ca☐)[ X Na2]-1 serving as a secondary Ca-incorporation mechanism. Tourmaline's X-site composition reflects the fluid composition, whereby the Ca (or Na) concentration in the fluid corresponds with the Ca (or Na) content in tourmaline at each pressure and temperature. At 0.2 GPa, 700 °C, Ca preferentially partitions into tourmaline, producing the most Ca-rich tourmaline crystals synthesized here. At pressures >1.0 GPa, Ca partitions preferentially into the fluid, resulting in Na-dominant tourmaline compositions. Temperature has a secondary effect on Ca-Na partitioning, with higher temperatures correlating with increased Ca incorporation in tourmaline. Based on the experimental findings, tourmaline is expected to have Ca-rich compositions when it forms in low pressure, high-temperature Ca-rich rocks, consistent with the current record of tourmaline occurrence. The bulk Mg/Al ratio and the pH of the tourmaline-forming system may also affect Ca incorporation in tourmaline, but remain to be investigated experimentally.

  4. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Peng, Jian; Nyberg, Eric A.; Pan, Fu-sheng

    2016-04-01

    The microstructures and corrosion resistance of magnesium-5 wt% aluminum-0.3 wt% manganese alloys (Mg-Al-Mn) with different Ca additions (0.2-4 wt%) were investigated. Results showed that with increasing Ca addition, the grain of the alloys became more refined, whereas the corrosion resistant ability of the alloys initially increased and then decreased. The alloy with 2 wt% Ca addition exhibited the best corrosion resistance, attributed to the effect of the oxide film and (Mg,Al)2Ca phases which were discontinuously distributed on the grain boundaries. These phases acted as micro-victims, they preferentially corroded to protect the α-Mg matrix. The oxide film formed on the alloy surface can hinder the solution further to protect the α-Mg matrix.

  5. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  6. Temperature variation of the size effect in dilute AlMg and AlCa alloys: Measurement and theory

    NASA Astrophysics Data System (ADS)

    Gilder, H. M.; Asty, M.; Audit, Ph.

    1980-12-01

    Optical-interferometric-differential-length and x-ray lattice-parameter measurements performed at low temperatures in dilute AlMg and AlCa alloys indicate that the temperature variation of the size effect corresponds to a relatively large difference between the intrinsic coefficient of thermal expansion βi of the solute atom structure and that, β, of the solvent. This result is another example of the surprising expansive properties of point defects previously described by Gilder and co-workers (high-temperature vacancy diffusion) and more recently by Ganne (low-temperature dilatometry on irradiated specimens). Specifically, in the temperature range 0.2Mg)β~3 and βi(Ca)β~-4. This, as well as the fact that the sign of the change in the coefficient of thermal expansion Δβ of the host metal caused by the introduction of the solute atom is positive for Mg and negative for Ca, indicates that solute-solvent valence effects play a minor role in determining the coefficient of thermal expansion of the dilute alloy. It is also found, to within the experimental precision, that Δβ(Mg) and Δβ(Ca) are temperature independent, suggesting a type of Matthiessen's rule for thermal expansion. A model calculation of the size effect and its temperature variation in the infinitely dilute alloy is presented. The volume-dependent forces are treated by means of a term describing the elastic energy associated with the solute-solvent volume misfit, whereas the temperature-dependent potential of Dagens et al. is used to calculate the pairwise interaction between the solvent ions and the solute ion. Good agreement with the experimental data is obtained for the size effect in both AlMg and AlCa. The calculated values of Δβ(Mg)Ci, Ci being the solute concentration, and βi(Mg) fall between the measured values in the two AlMg alloys studied. The calculation of Δβ(Ca)Ci and βi(Ca) is not possible due to a lack of elastic-constants data for pure, metallic

  7. Complex Formation Between Ca(II), Mg(II), Al(III) Ions and Salicylglycine

    PubMed Central

    Kilyén, Melinda; Labádi, lmre; Tombácz, Etelka; Kiss, Tamás

    2003-01-01

    For modelling the interactions of proteins/peptides with hard metal ions the complex formation of salicylglycine (SalGly) with Ca(II), Mg(ll) and AI(III) ions was studied in aqueous solution using pHpotentiometric and UV-vis spectroscopic techniques. Al(lll) ion was found to form more stable complexes with SalGiy than Ca(ll) or Mg(ll) ions. While AI(III) ion forms various 1:1 complexes of different protonation states in the pH range 2-7, Ca(ll), Mg(ll) ions seem to interact with SalGly only in the basic pH range and form mixed hydroxo species MLH-1 at pH ~ 8. According to the UV-vis spectroscopic measurements in the species MLH-1 the carboxylate-O- atom and the phenolate-O- coordinate to the metal ions. SaIGiy is able to keep Al(lll) in solution through inner and outer sphere coordination to metastable amorphous AI(OH)3 particles. Deprotonation of the peptide amide Nil does not occur in these systems. PMID:18365063

  8. Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries

    NASA Astrophysics Data System (ADS)

    Yuasa, Motohiro; Huang, Xinsheng; Suzuki, Kazutaka; Mabuchi, Mamoru; Chino, Yasumasa

    2015-11-01

    The discharge behaviors of rolled Mg-6 mass%Al-0.3 mass%Mn-2 mass%Ca (AMX602) and Mg-6 mass%Al-0.3 mass%Mn (AM60) alloys used as anodes for Magnesium-air batteries were investigated. The AMX602 alloy exhibited superior discharge properties compared to the AM60 alloy, especially at low current density. The discharge products of the AMX602 alloy were dense and thin, and many cracks were observed at all current densities. In addition, the discharge products were detached at some sites. These sites often corresponded to the positions of Al2Ca particles. The comparison of the discharge and corrosion tests indicated that the dense and thin discharge products of AMX602 were easily cracked by dissolution of the Mg matrix around Al2Ca particles, and the cracks promoted the penetration of the electrolyte into the discharge products, retaining the discharge activity. In contrast, concerning the AM60 alloy, thick discharge products were formed on the surface during discharge, and cracking of the discharge products hardly occurred, degrading the discharge properties. Localized and deeply corroded pits that could result from the detachment of metal pieces from the anode during discharge were partly observed in the AM60 alloy. It is suggested that these detached metal pieces are another reason for the low discharge properties of the AM60 alloy.

  9. Major soil element (Ca, Mg, K, Na, Al, Fe) distribution along the Qinghai-Tibet Railway

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Zhang, Y.; Zhang, H.; Ding, M.; Lin, X.

    2011-12-01

    The Tibetan Plateau (TP), which has been called the third polar region, is the highest plateau in the world. There are a series of special soils present in the TP, which are extremely important in soil sciences for their particularities. Soil chemical composition is one of the necessary indices of soil characteristics. The major element content of the soil, such as Ca, Mg, K, Na, not only can affect the soil pH value and soil fertility but also are the main drivers of soil geochemical processes. It is helpful to understand the TP environmental characteristics, to study the major soil element content.The Qinghai-Tibet Railway (QTR) is the highest-elevation and the longest highland railway on earth. There are nearly all types of TP soil along the QTR. Most of the areas along the QTR are in fairly pristine condition. This offers a good platform to study the natural environmental characteristics of the soil. This study selected 240 soil samples from 28 sample areas along the Qinghai-Tibet Railway, and the aluminum, iron, calcium, sodium, potassium and magnesium content in the soil were measured with ICP-AES. The results indicated: (1) Compared with the national soil background values, the Ca content in soil was higher along the QTR and Al was lower; but the Fe, Mg, K and Na contents were similar. (2) Along the whole QTR, the soil Al, Fe and Mg content showed a decreasing trend from Xining to Lhasa, the changes in K and Na values were relatively complex, and the distribution of Ca could be divided three sections. (3) The soil element contents varied with different soil types and parent materials. Most of the six elements content was minimum in soil, which derived from debris materials for ice and water, and the elements content was maximum in soil, which evolved from debris for flood, and the content of soil Ca developed from debris for lake was maximum. The amount of each element present in the Hapli-Cryic Aridosols and Calci-Cryic Aridosols was relatively higher than

  10. Microstructure and Fatigue Behavior of Friction Stir-welded Noncombustive Mg-9Al-Zn-Ca Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Li, Z. Y.; Nakata, K.; Feng, J. C.; Huang, Y. X.; Liao, J. S.

    2016-06-01

    Microstructure and fatigue behavior of friction stir-welded noncombustive Mg-9Al-Zn-Ca magnesium alloy were investigated. The as-received hot-extruded material consisted of equiaxed α-Mg grains with β-Mg17Al12 and Al2Ca compounds distributed along the grain boundaries. Friction stir welding produced much refined α-Mg grains accompanied by the dissolution of the eutectic β-Mg17Al12 phase, while Al2Ca phase was dispersed homogenously into the Mg matrix. Friction stir welding produced slightly increased hardness and tensile strength in the defect-free welds compared with the base material due to microstructural refinement and uniform distribution of intermetallic compounds. The load-controlled uniaxial tensile high-cycle fatigue tests indicated that fatigue strength of 90 MPa was obtained for the friction stir-welded joint with fatigue crack initiated basically near the specimen's surface and at the retreating side of the joint. Crack propagation was characterized by cleavage and fatigue striations.

  11. Photoelectron velocity-map imaging and theoretical studies of heteronuclear metal carbonyls MNi(CO)3- (M = Mg, Ca, Al)

    NASA Astrophysics Data System (ADS)

    Xie, Hua; Zou, Jinghan; Yuan, Qinqin; Fan, Hongjun; Tang, Zichao; Jiang, Ling

    2016-03-01

    The heteronuclear metal carbonyl anions MNi(CO)3- (M = Mg, Ca, Al) have been investigated using photoelectron velocity-map imaging spectroscopy. Electron affinities of neutral MNi(CO)3 (M = Mg, Ca, Al) are measured from the photoelectron spectra to be 1.064 ± 0.063, 1.050 ± 0.064, and 1.541 ± 0.040 eV, respectively. The C-O stretching mode in these three clusters is observed and the vibrational frequency is determined to be 2049, 2000, and 2041 cm-1 for MgNi(CO)3, CaNi(CO)3, and AlNi(CO)3, respectively. Density functional theory calculations are carried out to elucidate the geometric and electronic structures and to aid the experimental assignments. It has been found that three terminal carbonyls are preferentially bonded to the nickel atom in these heterobinuclear nickel carbonyls MNi(CO)3-1/0, resulting in the formation of the Ni(CO)3 motif. Ni remains the 18-electron configuration for MgNi(CO)3 and CaNi(CO)3 neutrals, but not for AlNi(CO)3. This is different from the homobinuclear nickel carbonyl Ni-Ni(CO)3 with the involvement of three bridging ligands. Present findings would be helpful for understanding CO adsorption on alloy surfaces.

  12. Evaluation of thermochemical data on Fe-Mg olivine, orthopyroxene, spinel and Ca-Fe-Mg-Al garnet

    SciTech Connect

    Chatterjee, N.

    1987-09-01

    Thermochemical data on Fe-Mg olivine, orthopyroxene, spinel and Ca-Fe-Mg garnet have been tested and reevaluated in reproducing experimental equilibrium data. All data (except of spinel) adjusted in this process lie within the error limits of original calorimetric experiments. For spinel, an enthalpy of -2307.2 kJmol and an entropy of 81.5 Jmol-K has been recommended. Recommended interaction parameters for the spinel-hercynite and forsterite-fayalite solutions are as follows: Spinel: W/sub (spinel-hercynite)/= 9124.0 Jmol. W/sub (hercynite-spinel)/ = 0.0 Jmol. Olivine: W = 4500.0 Jmol for 1 cation. Excess entropies (on 1 cation basis) necessary to reproduce phase equilibria for the pyrope-almandine and almandine-grossular solutions are as follows: Mg-Fe garnet: Wsub(pyrope-almandine) = 11.760 - 0.0016T Jmol-K. Wsub(almandine-pyrope) = -10.146 + 0.0037T Jmol-K. Fe-Ca garnet: W/sup s/ = -16.07 + 0.0126T Jmol-K.

  13. Evaluating controlling factors to Al(i)/(Ca + Mg) molar ratio in acidic soil water, southern and southwestern China: multivariate approach.

    PubMed

    Guo, Jing-Heng; Zhang, Xiao-Shan; Vogt, Rolf D; Xiao, Jin-Song; Zhao, Da-Wei; Xiang, Ren-Jun; Luo, Jia-Hai

    2007-06-01

    Al(i)/(Ca + Mg) molar ratio in soil water has been used as an indicator to the effects of acid deposition on terrestrial ecosystems. However, the main factors controlling this ratio have not been well documented in southern and southwestern China. In this study, we presented the variation in inorganic aluminum (Al(i)) and Al(i)/(Ca + Mg) molar ratio in different sites and soil horizons based on two to three years monitoring data, and evaluated the main factors controlling Al(i)/(Ca + Mg) molar ratio using principle component analysis (PCA) and partial least square (PLS) regression. Monitoring data showed although Al(i)/(Ca + Mg) molar ratios in most soil water were lower than assumed critical 1.0, higher molar ratios were found in some soil water at TSP and LXH site. Besides acid loading, both soil properties and soil water chemistry affected the value of Al(i)/(Ca + Mg) molar ratio in soil water. Partial least square (PLS) indicated that they had different relative importance in different soil horizons. In A-horizon, soil aluminum saturation (AlS) had higher influence on Al(i)/(Ca + Mg) molar ratio than soil water chemistry did; higher soil aluminum saturation (AlS) led to higher Al(i)/(Ca + Mg) molar ratio in soil water. In the deeper horizons (i.e., B(1)-, B(2)- and BC-horizon), inorganic aluminum (Al(i)) in soil water had more and more important role in regulating Al(i)/(Ca + Mg) molar ratio. On regional scale, soil aluminum saturation (AlS) as well as cation exchange capacity (CEC) was the dominant factor controlling Al(i)/(Ca + Mg) molar ratio. This should be paid enough attention on when making regional acid rain control policy in China.

  14. Evaluating controlling factors to Al(i)/(Ca + Mg) molar ratio in acidic soil water, southern and southwestern China: multivariate approach.

    PubMed

    Guo, Jing-Heng; Zhang, Xiao-Shan; Vogt, Rolf D; Xiao, Jin-Song; Zhao, Da-Wei; Xiang, Ren-Jun; Luo, Jia-Hai

    2007-06-01

    Al(i)/(Ca + Mg) molar ratio in soil water has been used as an indicator to the effects of acid deposition on terrestrial ecosystems. However, the main factors controlling this ratio have not been well documented in southern and southwestern China. In this study, we presented the variation in inorganic aluminum (Al(i)) and Al(i)/(Ca + Mg) molar ratio in different sites and soil horizons based on two to three years monitoring data, and evaluated the main factors controlling Al(i)/(Ca + Mg) molar ratio using principle component analysis (PCA) and partial least square (PLS) regression. Monitoring data showed although Al(i)/(Ca + Mg) molar ratios in most soil water were lower than assumed critical 1.0, higher molar ratios were found in some soil water at TSP and LXH site. Besides acid loading, both soil properties and soil water chemistry affected the value of Al(i)/(Ca + Mg) molar ratio in soil water. Partial least square (PLS) indicated that they had different relative importance in different soil horizons. In A-horizon, soil aluminum saturation (AlS) had higher influence on Al(i)/(Ca + Mg) molar ratio than soil water chemistry did; higher soil aluminum saturation (AlS) led to higher Al(i)/(Ca + Mg) molar ratio in soil water. In the deeper horizons (i.e., B(1)-, B(2)- and BC-horizon), inorganic aluminum (Al(i)) in soil water had more and more important role in regulating Al(i)/(Ca + Mg) molar ratio. On regional scale, soil aluminum saturation (AlS) as well as cation exchange capacity (CEC) was the dominant factor controlling Al(i)/(Ca + Mg) molar ratio. This should be paid enough attention on when making regional acid rain control policy in China. PMID:17057971

  15. The influence of Ca-Mg-Al hydrotalcite synthesized from brine water on thermal and mechanical properties of HTlc-EVA composite

    NASA Astrophysics Data System (ADS)

    Karina, Wiwiek; Heraldy, Eddy; Pramono, Edi; Heriyanto, Astuti, Shanti

    2016-02-01

    Ca-Mg-Al hydrotalcite-like compound (Ca-Mg-Al HTlc) was prepared by co-precipitation method using brine water that is well known as the desalination process waste water. The structure of Ca-Mg-Al HTlc was determined by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis. Ca-Mg-Al HTlc was studied as a non-halogenated filler in ethylene vinyl acetate (EVA) matrix. Composites with different filler concentrations were prepared to evaluate the influence of Ca-Mg-Al HTlc on thermal and mechanical properties of EVA.The presence of Ca-Mg-Al HTlc in the composite has been confirmed by FTIR analysis. Thermal properties of composites show significant reduction of degradation temperature as well as the loading of HTlc in EVA. However, the total enthalpies combustion of composites with 1% and 5% HTlc loadings higher compared to neat EVA. Further, mechanical properties were determined by tensile test. The result shows that tensile strength and elongation at break of composites decrease relatively by Ca-Mg-Al HTlc addition.

  16. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound.

  17. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound. PMID:27433675

  18. Thermal equation of state of CaFe 2O 4-type MgAl 2O 4

    NASA Astrophysics Data System (ADS)

    Sueda, Yuichiro; Irifune, Tetsuo; Sanehira, Takeshi; Yagi, Takehiko; Nishiyama, Norimasa; Kikegawa, Takumi; Funakoshi, Ken-ichi

    2009-05-01

    In situ X-ray diffraction measurements of CaFe 2O 4-type MgAl 2O 4 have been conducted at pressures up to 42 GPa and temperatures to 2400 K using Kawai-type multianvil apparatus with sintered diamond anvils. Additional measurements have also been conducted at pressures to 12 GPa using diamond anvil cell with helium as a pressure medium at room temperature, and at temperatures to 836 K at the ambient pressure using a high-temperature X-ray diffractometer. The analysis of room-temperature data yielded V0 = 240.1(2) Å 3, K0 = 205(6) GPa, and K0=4.1(3). A fit of the present data to high-temperature Birch-Murnaghan equation of state (EOS) yielded (∂ K0/∂ T) P = -0.030(2) GPa/K and α0 = a0 + b0T with values of a0 = 1.96(13) × 10 -5 K -1 and b0 = 1.64(24) × 10 -8 K -2. The present data set was also fitted to Mie-Grüneisen-Debye (MGD) EOS and we obtained γ0 = 1.73(7), q = 2.03(37), and θ0 = 1546(104) K. Density changes of MORB have been estimated using the newly obtained thermoelastic parameters, assuming that the Al-rich phase in this composition possesses the CaFe 2O 4-type structure under the lower mantle P, T conditions. The calculated densities along geotherms for the normal mantle and subducting cold slabs are both significantly higher than those of typical seismological models, confirming the conclusion of some recent results on MORB by laser-heated diamond anvil cell experiments.

  19. New acoustic velocity measurements on CaO-MgO-Al2O3-SiO2 liquids: Reevaluation of the volume and compressibility of CaMgSi2O6-CaAl2Si2O8 liquids to 25 GPa

    NASA Astrophysics Data System (ADS)

    Ai, Yuhui; Lange, Rebecca A.

    2008-04-01

    Relaxed sound speed measurements on 12 liquids in the CaO-MgO-Al2O3-SiO2 (CMAS) system have been performed from 1410 to 1620°C at 1 bar with a frequency sweep acoustic interferometer. In all liquids, the sound speeds either decrease or remain constant with increasing temperature. These data are combined with those in the literature to calibrate models for βT and (∂V/∂P)T as a function of composition and temperature for CMAS liquids. CaO is the only oxide component that contributes to the temperature dependence of compressibility. The new compressibility models permit the bulk modulus (KT,0) of CaMgSi2O6 (Di), CaAl2Si2O8 (An), and the Di64-An36 eutectic liquid to be directly obtained. These results are used to uniquely constrain values for the pressure dependence of the bulk modulus (K0' = dK0/dP) in a third-order Birch-Murnaghan equation of state (EOS) for these three liquids from shock wave data in the literature. The revised K0' value is 6.8 (versus 6.9) for CaMgSi2O6 liquid, 4.7 (versus 5.3) for CaAl2Si2O8 liquid, and 5.6 (versus 4.85) for Di64-An36 liquid. Information on both KT,0 and K0' allows the density and compressibility for each of these three liquids to be calculated as a function of pressure to 25 GPa. Both the molar volume and isothermal compressibility of CaMgSi2O6-CaAl2Si2O8 liquids mix ideally between 0 and 25 GPa. The dominant mechanism of compression at low pressure (0-5 GPa) for all three liquids (CaMgSi2O6, CaAl2Si2O8, and the Di64-An36 eutectic) is topological, whereas gradual Al/Si coordination change plays an increasingly important role at higher pressure as topological mechanisms of compression are diminished.

  20. Aluminum resistance in wheat involves maintenance of leaf Ca(2+) and Mg(2+) content, decreased lipid peroxidation and Al accumulation, and low photosystem II excitation pressure.

    PubMed

    Moustaka, Julietta; Ouzounidou, Georgia; Bayçu, Gülriz; Moustakas, Michael

    2016-08-01

    The phytotoxic aluminum species (Al(3+)) is considered as the primary factor limiting crop productivity in over 40 % of world's arable land that is acidic. We evaluated the responses of two wheat cultivars (Triticum aestivum L.) with differential Al resistance, cv. Yecora E (Al-resistant) and cv. Dio (Al-sensitive), exposed to 0, 37, 74 and 148 μM Al for 14 days in hydroponic culture at pH 4.5. With increasing Al concentration, leaf Ca(2+) and Mg(2+) content decreased, as well as the effective quantum yield of photosystem II (PSII) photochemistry (Φ PSII ), while a gradual increase in leaf membrane lipid peroxidation, Al accumulation, photoinhibition (estimated as F v /F m ), and PSII excitation pressure (1 - q p ) occurred. However, the Al-resistant cultivar with lower Al accumulation, retained larger concentrations of Ca(2+) and Mg(2+) in the leaves and kept a larger fraction of the PSII reaction centres (RCs) in an open configuration, i.e. a higher ratio of oxidized to reduced quinone A (QA), than plants of the Al-sensitive cultivar. Four times higher Al concentration in the nutrient solution was required for Al-resistant plants (148 μM Al) than for Al-sensitive (37 μM Al), in order to establish the same closed RCs. Yet, the decline in photosynthetic efficiency in the cultivar Dio was not only due to closure of PSII RCs but also to a decrease in the quantum yield of the open RCs. We suggest that Al(3+) toxicity may be mediated by nutrient deficiency and oxidative stress, and that Al-resistance of the wheat cultivar Yecora E, may be due at least partially, from the decreased Al accumulation that resulted to decreased reactive oxygen species (ROS) formation. However, under equal internal Al accumulation (exposure Al concentration: Dio 74 μM, Yecora E 148 μM) that resulted to the same oxidative stress, the reduced PSII excitation pressure and the better PSII functioning of the Al-resistant cultivar was probably due to the larger concentrations of Ca

  1. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan

    NASA Astrophysics Data System (ADS)

    Khoury, Hani N.; Sokol, Ella V.; Kokh, Svetlana N.; Seryotkin, Yurii V.; Nigmatulina, Elena N.; Goryainov, Sergei V.; Belogub, Elena V.; Clark, Ian D.

    2016-02-01

    Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800-850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the "Mottled Zone" Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios ( 0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20-100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space

  2. Optimum Composition of CaO-SiO2-Al2O3-MgO Slag for Spring Steel Deoxidized by Si and Mn in Production

    NASA Astrophysics Data System (ADS)

    Yang, Hulin; Ye, Jiansong; Wu, Xiaoliang; Peng, Yongsheng; Fang, Yi; Zhao, Xinbing

    2016-04-01

    The relations between plasticity of inclusions and contents of oxygen, aluminum, and sulfur in molten steel were overall discussed by thermodynamics and FactSage software. Then, the optimum compositions of slag were obtained and the activities of components of refining slag system were analyzed. Finally, experiments were carried out based on the results of calculation. According to the relations, it could achieve better effect to improve basicity R ( R = CaO/SiO2 by mass pct) and C/ A ( C/ A = CaO/Al2O3 by mass pct) in the low melting temperature [≤1673 K (≤1400 °C)] region of refining slag as far as possible. For the CaO-SiO2-Al2O3-MgO slag, the optimum compositions are MgO: 5-9 pct, CaO: 47.4-50.2 pct, SiO2: 41.9-45.6 pct and Al2O3: ≤2.79 pct, respectively, in which the basicity is at the range of 1.0 to 1.19 and C/ A is above 9.0. It is proved by experiments that the plasticity of inclusions and the contents of [O], [Al], and [S] can be controlled effectively by the optimum composition of refining slag, and the high cleanness is achieved in spring wire rods.

  3. The effect of Al2O3, CaO, Cr2O3 and MgO on devitrification of silica

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1988-01-01

    The effect of doping on devitrification of vitreous silica was studied at 1100, 1200, and 1300 C. Dispersion of dopants on a molecular scale was accomplished via a sol-gel technique. All dopants accelerated the devitrification of silica but to different degrees. The most active was CaO followed by MgO, Al2O3, and Cr2O3. Pure silica and silica containing Cr2O3 and Al2O3 devitrified to alpha-cristobalite only, whereas silica doped with CaO and MgO produced alpha-quartz and alpha-cristobalite. It appears that prolonged heat treatment would cause alpha-quartz to transform to alpha-cristobalite.

  4. Properties of transparent (Gd,Lu)3(Al,Ga)5O12:Ce ceramic with Mg, Ca and Ce co-dopants

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Baldoni, Gary; Brecher, Charles; Rhodes, William H.; Shirwadkar, Urmila; Glodo, Jarek; Shah, Ishaan; Ji, Chuncheng

    2015-08-01

    Cerium activated mixed lutetium/gadolinium- and aluminum/gallium-based garnets have great potential as host scintillators for medical imaging applications. (Gd,Lu)3(Al,Ga)5O12:Ce and denoted as GLuGAG feature high effective atomic number and good light yield, which make it particularly attractive for Positron Emission Tomography (PET) and other γ-ray detection applications. For PET application, rapid decay and good timing resolution are extremely important. Most Ce-doped mixed garnet materials such as GLuGAG:Ce, have their main decay component at around 80 ns. However, it has been reported that the decays of some single crystal scintillators (e.g., LSO and GGAG) can be effectively accelerated by codoping with selected additives such as Ca, Mg and B. In this study, transparent polycrystalline (Gd,Lu)3(Al,Ga)5O12:Ce ceramics codoped with Ca or Mg or additional Ce, were fabricated by the sinter-HIP approach. It was found the transmission of the ceramics are closely related to the microstructure of the ceramics. As the co-dopant levels increase, 2nd phase occurs in the ceramic and thus transparency of the ceramic decreases. Ca and Mg co-doping in GLuGAG:Ce ceramic effectively accelerate decays of GLuGAG:Ce ceramics at a cost of light output. However, additional Ce doping in the GLuGAG:Ce has no benefit on improving decay time but, on the other hand, reduces transmission, light output. The mechanism under the different scintillation behaviors with Mg, Ca and Ce dopants are discussed. The results suggest that decay time of GLuGAG:Ce ceramics can be effectively tailored by co-doping GLuGAG:Ce ceramic with Mg and Ca for applications with optimal timing resolution.

  5. Synthesis of MgO-CaO-Al2O3-SiO2 nanocomposite powder by polymeric complex method as a novel sintering additive of AlN ceramics

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Jun; Cho, Woo-Seok; Kim, Hyeong Jun; Pan, Wei; Shahid, Mohammad; Ryu, Sung-Soo

    2016-09-01

    A MgO-CaO-Al2O3-SiO2 (MCAS) nanocomposite powder with a particle size of 50 nm and a specific surface area of 40.6 m2/g was successfully synthesized via heat-treatment of polymeric precursors containing Mg, Ca, Al and Si in air at 700 °C for 5 h. It was characterized as a novel sintering additive for the densification AlN ceramics at a low temperature below 1600 °C. It was found that the nanosized MCAS powder was suitable for the densification of AlN ceramics. In particular, full densification could be achieved when only 1.0 wt% MCAS additive-doped AlN powder compact was sintered for 1 h at 1600 °C, and a thermal conductivity of 84 W/m·K was attained.

  6. Directional solidification, thermo-mechanical and optical properties of (Mg(x)Ca(1-x))(3)Al(2)Si(3)O(12) glasses doped with Nd(3+) ions.

    PubMed

    Sola, D; Conejos, D; Martínez de Mendivil, J; Ortega-San-Martín, L; Lifante, G; Peña, J I

    2015-10-01

    In this work glass rods of (Mg(x)Ca(1-x))(3)Al(2)Si(3)O(12) (x = 0, 0.5 and 1) doped with 1 wt% Nd(2)O(3) were produced by the laser floating zone technique. Thermo-mechanical and spectroscopic properties have been evaluated. The three glass samples present good thermo-mechanical properties, with similar hardness, toughness and glass transition temperatures. The spectroscopic characterization shows spectral shifts in absorption and emission spectra. These spectral shifts together with Judd-Ofelt intensity parameters and ionic packing ratio have been used to investigate the local structure surrounding the Nd(3+) ions and the covalency of the Nd-O bond. All obtained results agree and confirm the higher covalency of the Nd-O bond in the Ca(3)Al(2)Si(3)O(12) glass.

  7. Directional solidification, thermo-mechanical and optical properties of (Mg(x)Ca(1-x))(3)Al(2)Si(3)O(12) glasses doped with Nd(3+) ions.

    PubMed

    Sola, D; Conejos, D; Martínez de Mendivil, J; Ortega-San-Martín, L; Lifante, G; Peña, J I

    2015-10-01

    In this work glass rods of (Mg(x)Ca(1-x))(3)Al(2)Si(3)O(12) (x = 0, 0.5 and 1) doped with 1 wt% Nd(2)O(3) were produced by the laser floating zone technique. Thermo-mechanical and spectroscopic properties have been evaluated. The three glass samples present good thermo-mechanical properties, with similar hardness, toughness and glass transition temperatures. The spectroscopic characterization shows spectral shifts in absorption and emission spectra. These spectral shifts together with Judd-Ofelt intensity parameters and ionic packing ratio have been used to investigate the local structure surrounding the Nd(3+) ions and the covalency of the Nd-O bond. All obtained results agree and confirm the higher covalency of the Nd-O bond in the Ca(3)Al(2)Si(3)O(12) glass. PMID:26480149

  8. Cross sections for He and Ne isotopes in natural Mg, Al, and Si, He isotopes in CaF2, Ar isotopes in natural Ca, and radionuclides in natural Al, Si, Ti, Cr, and stainless steel induced by 12- to 45-MeV protons

    NASA Technical Reports Server (NTRS)

    Walton, J. R.; Heymann, D.; Yaniv, A.; Edgerley, D.; Rowe, M. W.

    1976-01-01

    Stacks of thin Mg, Al, Si, Ca, CaF2, Ti, and stainless steel foils were bombarded in twelve irradiations by a variable energy cyclotron. Cross sections are reported for He and Ne in natural Mg, Al, and Si, and for He in CaF2, and for Ar in natural Ca, as determined from mass spectrometer analysis of the inert gases. In addition, cross sections of Na-22 in natural Al and Si, of V-48 in natural Ti, and of Cr-51, Mn-52, and Co-57 in stainless steel are reported. From these were deduced Cr-51 and Mn-52 cross sections in natural Cr.

  9. NOx uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported on γ-Al2O3

    SciTech Connect

    Verrier, Christelle LM; Kwak, Ja Hun; Kim, Do Heui; Peden, Charles HF; Szanyi, Janos

    2008-07-15

    NOx uptake experiments were performed on a series of alkaline earth oxide (AEO) (MgO, CaO, SrO, BaO) on γ-alumina materials. Temperature Programmed Desorption (TPD) conducted on He flow revealed the presence of two kinds of nitrate species: i.e. bulk and surface nitrates. The ratio of these two types of nitrate species strongly depends on the nature of the alkaline earth oxide. The amount of bulk nitrate species increases with the basicity of the alkaline earth oxide. This conclusion was supported by the results of infrared and 15N solid state NMR studies of NO2 adsorption. Due to the low melting point of the precursor used for the preparation of MgO/Al2O3 material (Mg(NO3)2), a significant amount of Mg was lost during sample activation (high temperature annealing) resulting in a material with properties were very similar to that of the γ-Al2O3 support. The effect of water on the NOx species formed in the exposure of the AEO-s to NO2 was also investigated. In agreement with our previous findings for the BaO/γ-Al2O3 system, an increase of the bulk nitrate species and the simultaneous decrease of the surface nitrate phase were observed for all of these materials.

  10. [Effect of temperature on the structure of CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramics studied by Raman spectroscopy].

    PubMed

    Li, Bao-Wei; Ouyang, Shun-Li; Zhang, Xue-Feng; Jia, Xiao-Lin; Deng, Lei-Bo; Liu, Fang

    2014-07-01

    In the present paper, nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system was produced by melting method. The CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramic was measured by Raman spectroscopy in the temperature range from -190 to 310 degrees C in order to study the effect of temperature on the structure of this system nanocrystalline glass-ceramics. The results showed that different non-bridge oxygen bond silicon-oxygen tetrahedron structural unit changes are not consistent with rising temperature. Further analyses indicated that: the SiO4 tetrahedron with 2 non-bridged oxygen (Q2), the SiO4 tetrahedron with 3 non-bridged oxygen (Q(1)), which are situated at the edge of the 3-D SiO4 tetrahedrons network, and the SiO4 tetrahedron with 4 non-bridged oxygen (Q(0)), which is situated outside the 3-D network all suffered a significant influence by the temperature change, which has been expressed as: shifts towards the high wave-number, increased bond force constants, and shortened bond lengths. This paper studied the influence of temperature on CMAS system nanocrystalline glass-ceramics using variable temperature Raman technology. It provides experiment basis to the research on external environment influence on CMAS system nanocrystalline glass-ceramics materials in terms of structure and performance. In addition, the research provides experimental basis for controlling the expansion coefficient of nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system.

  11. Thermochemistry of glasses and liquids in the systems CaMgSi 2O 6-CaAl 2Si 2O 8-NaAlSi 3O 8, SiO 2-CaAl 2Si 2O 8-NaAlSi 3O 8 and SiO 2-Al 2O 3-CaO-Na 2O

    NASA Astrophysics Data System (ADS)

    Navrotsky, A.; Hon, R.; Weill, D. F.; Henry, D. J.

    1980-10-01

    Enthalpies of solution in 2PbO· B 2O 3 at 712°C have been measured for glasses in the systems albite anorthite diopside, NaAlO 2-SiO 2, Ca 0.5AlO 2-SiO 2 and albite-anorthite-quartz. The systems albite-anorthite and diopside-anorthite show substantial negative enthalpies of mixing, albite-diopside shows significant positive heats of mixing. For compositions up to NaAlO2 = 0.42 (which includes the subsystem albite-silica) the system NaAlO 2-SiO 2 shows essentially zero heats of mixing. A negative ternary excess heat of mixing is found in the plagioclase-rich portion of the albite-anorthite-diopside system. The join Si 4O 8-CaAl 2Si 2O 8 shows small but significant heats of mixing. In albite-anorthite-quartz. ternary glasses, the ternary excess enthalpy of mixing is positive. Based on available heat capacity data and appropriate consideration of the glass transition, the enthalpy of the crystal-glass transition (vitrification) is a serious underestimate of the enthalpy of the crystal-liquid transition (fusion) especially when the melting point, Tf, is many hundreds of degrees higher than the glass transition temperature, Tg. On the other hand, the same heat capacity data suggest that the enthalpies of mixing in albite-anorthite-diopside liquids are calculated to be quite similar to those in the glasses. The enthalpies of mixing observed in general support the structural models proposed by TAYLOR and BROWN (1979a, b) and others for the structure of aluminosilicate glasses.

  12. Thermodynamic simulation on mineralogical composition of CaO-SiO2-Al2O3-MgO quaternary slag system.

    PubMed

    Liu, Chao; Zhang, Yu-Zhu; Li, Jie; Li, Jun-Guo; Kang, Yue

    2016-01-01

    It is necessary to elucidate the crystallization thermodynamic of mineralogical phases during the cooling process of the molten BFS with different chemical composition, because the high-melting point mineral phase maybe crystallized during the fiber forming and thereafter cooling process. Thermodynamic calculation software FactSage6.4 and the hot remelting experiments were performed to explore the influence of basicity, Al2O3 content and MgO content on the crystallization of mineralogical components and their transformation. The results showed that the main mineralography of the CaO-SiO2-Al2O3-MgO quaternary slag system was melilite, and a certain amount of anorthite and calcium metasilicate. The crystallographic temperature of melilite is increased with the increasing of basicity, MgO and Al2O3 content, which has a significant impact on the utilization performance of the mineral wool prepared with the hot blast furnace slag directly. With the increasing of basicity, there was a tendency that crystallographic amount of melilite increased to the summit and then declined, while the amount of anorthite and calcium metasilicate decreased consistently. Finally, these two mineralogical components could be replaced by magnesium rhodonite and spinel with the increasing of basicity. When the basicity and MgO content were 1.0 and 9 %, the crystallographic mass ratio of melilite and anorthite increased, while that of calcium silicate declined, and replaced by spinel finally with the increasing of Al2O3 content. When the basicity and Al2O3 content were 1.0 and 13 %, the crystallographic mass ratio of melilite increased, while that of anorthite and calcium silicate declined, and replaced by pyroxene and spinel with the increasing of MgO content. To decline fiberization temperature of the melt BFS, the basicity, MgO and Al2O3 content should be decreased during the modification process of chemical composition, because the crystallization temperature of the primary crystalline

  13. Observation of indium ion migration-induced resistive switching in Al/Mg0.5Ca0.5TiO3/ITO

    NASA Astrophysics Data System (ADS)

    Lin, Zong-Han; Wang, Yeong-Her

    2016-08-01

    Understanding switching mechanisms is very important for resistive random access memory (RRAM) applications. This letter reports an investigation of Al/Mg0.5Ca0.5TiO3 (MCTO)/ITO RRAM, which exhibits bipolar resistive switching behavior. The filaments that connect Al electrodes with indium tin oxide electrodes across the MCTO layer at a low-resistance state are identified. The filaments composed of In2O3 crystals are observed through energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, nanobeam diffraction, and comparisons of Joint Committee on Powder Diffraction Standards (JCPDS) cards. Finally, a switching mechanism resulting from an electrical field induced by In3+ ion migration is proposed. In3+ ion migration forms/ruptures the conductive filaments and sets/resets the RRAM device.

  14. Exotic fluoride molecules in IRC +10216: Confirmation of AlF and searches for MgF and CaF

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Apponi, A. J.; Phillips, T. G.

    1994-01-01

    Three new rotational transitions of aluminum fluoride (AlF) at 0.8 and 1.2 mm have been observed. The J = 10-9, J = 8-7, and J = 7-6 lines of AlF at 230, 263, and 329 GHz, respectively, were seen toward IRC +10216 using the Caltech Submillimter Observatory (CSO). Combined with the earlier data obtained for this species at IRAM at 2 and 3 mm, these measurements confirm the presence of the metal halide in this carbon-rich circumstellar shell. Analysis of the CSO and IRAM data suggests that AlF arises from a source with a diameter of theta(sub s) approximately = 5-10 sec and hence is present chiefly in the inner envelope of IRC +10216. In this region, the molecule has a column density of (0.3-1.1) x 10(exp 15)/sq cm, which indicates a fractional abundance of at least approximately 10(exp -9), relative to H2. Searches for the metal fluoride species CaF and MgF have also been conducted toward IRC +10216, but with negative results. The column density upper limits for MgF and CaF are N(sub tot) less than (1-4) x 10(exp 14)/sq cm. Relative abundances of these metal fluoride molecules can be understood in terms of chemical thermodynamic equilibrium. The presence of AlF in IRC +10216 also indicates that large quantities of fluorine must be present in the inner stellar envelope, suggesting that this element may be produced not primarily in explosive nucleosynthesis but rather in helium shell flashes, as indicated also by HF spectroscopy of red giant stars.

  15. Effects of inorganic acids and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process.

    PubMed

    Zhang, Jian; Xia, Yuguo; Zhang, Li; Chen, Dairong; Jiao, Xiuling

    2015-11-01

    In-depth understanding of the sol-gel process plays an essential role in guiding the preparation of new materials. Herein, the effects of different inorganic acids (HCl, HNO3 and H2SO4) and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process were studied based on experiments and density functional theory (DFT) calculations. In these experiments, the sol originating from the γ-AlOOH suspension was formed only with the addition of HCl and HNO3, but not with H2SO4. Furthermore, the DFT calculations showed that the strong adsorption of HSO4(-) on the surface of the γ-AlOOH particles, and the hydrogen in HSO4(-) pointing towards the solvent lead to an unstable configuration of electric double layer (EDL). In the experiment, the gelation time sequence of γ-AlOOH sol obtained by adding metal ions changed when the ionic strength was equal to or greater than 0.198 mol kg(-1). The DFT calculations demonstrated that the adsorption energy of hydrated metal ions on the γ-AlOOH surface can actually make a difference in the sol-gel process.

  16. Melts in the Deep Earth: Calculating the Densities of CaO-FeO-MgO-Al2O3-SiO2 Liquids

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Guo, X.; Agee, C. B.; Asimow, P. D.; Lange, R. A.

    2012-12-01

    We present new equation of state (EOS) measurements for hedenbergite (Hd, CaFeSi2O6) and forsterite (Fo, Mg2SiO4) liquids. These liquid EOS add to the basis set in the CaO-FeO-MgO-Al2O3-SiO2 (CMASF) oxide space at elevated temperatures and pressures; other liquids include: enstatite (En, MgSiO3), anorthite (An, CaAl2Si2O8), diopside (Di, CaMgSi2O6), and fayalite (Fa, Fe2SiO4). The Hd EOS measurement was a multi-technique collaboration using 1-atm double-bob Archimedean, ultrasonic, sink/float, and shock wave techniques. Un-weighted linear fitting of the shock data in shock velocity (US)-particle velocity (up) space defines a pre-heated (1400 °C) Hugoniot US = 2.628(0.024) + 1.54(0.01)up km/s. The slope corresponds to a K' of 5.16(0.04), consistent with piston-cylinder and multi-anvil sink/float experiments. The intercept is fixed at the ultrasonic sound speed (Co) since the unconstrained intercept is within the stated error. This behavior demonstrates consistency across methods and that the liquid is relaxed during shock compression. Shock compression of pre-heated (2000°C) single crystal Fo gives an un-weighted linear Hugoniot of US = 2.674(0.188) + 1.64(0.06)up km/s. The unconstrained Co falls below estimates based on extrapolation in both temperature and composition from two published partial molar sound speed models, 3.195m/s [1] and 3.126 m/s [2]. The shock-derived Co indicates that dC/dT is negative for Fo liquid, contrary to the positive [1] and zero [2] temperature dependences derived over relatively narrow temperature intervals. CMASF liquid isentropes were calculated using five end-members (En, Fo, Fa, An, Di). For modeling crystallization of a fictive magma ocean, we examined two liquids: peridotite [3] (P=.33En+.56Fo+.07Fa+.03An+.007Di) and simplified chondrite [4] (Ch=.62En+.24Fo+.08Fa+.04An+.02Di). Each end-member is defined by a 3rd or 4th order Birch-Murnaghan isentrope, Mie-Grüneisen thermal pressure and a constant heat capacity. The volumes are

  17. Formation Mechanism of CaO-SiO2-Al2O3-(MgO) Inclusions in Si-Mn-Killed Steel with Limited Aluminum Content During the Low Basicity Slag Refining

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Jiang, Min; Wang, Xinhua; Wang, Ying; Zhao, Haoqian; Cao, Zhanmin

    2016-02-01

    Pilot trails were carried out to study the formation mechanism of CaO-SiO2-Al2O3-(MgO) inclusions in tire cord steel. 48 samples were taken from 8 heats of liquid steel during secondary refining, which were subsequently examined by an automatic scanning electron microscope with energy dispersive spectrometer (SEM-EDS). Characteristics of thousands of oxide inclusions at different refining stages were obtained, including their compositions, sizes, morphologies, etc. Based on the obtained information of inclusions, details during formation of CaO-SiO2-Al2O3-(MgO) inclusions were revealed and a new mechanism was proposed, including their origin, formation, and evolution during the refining process. It was found that CaO-SiO2-Al2O3-(MgO) inclusions were initially originated from the CaO-SiO2-MnO-(MgO) inclusions, which were formed during BOF tapping by the coalescence between MnO-SiO2 deoxidation products and the emulsified slag particles because of violent flow of steel. This can be well confirmed by the evaluation of the formation thermodynamics of CaO-SiO2-MnO-(MgO) inclusions, which was proved very difficult to be produced by intrinsic reactions inside liquid steel. Because of chemical reactions between CaO-SiO2-MnO-(MgO) inclusions and molten steel, they were mainly changed into CaO-SiO2-MnO-Al2O3-(MgO) and partially into CaO-SiO2-Al2O3-(MgO), which may be detrimental to the cold drawing ability of coils. Based on this finding, improvements were made in industrial production during BOF tapping and secondary refining. The results indicated that such (CaO-SiO2)-based inclusions existed in conventional process were effectively decreased after the improvements.

  18. Solubilities of Chlorine in CaO-SiO2-Al2O3-MgO Slags: Correlation Between Sulfide and Chloride Capacities

    NASA Astrophysics Data System (ADS)

    Okeda, M.; Hasegawa, M.; Iwase, M.

    2011-04-01

    To derive a correlation between sulfide and chloride capacities through our own systematic experimental studies by using a gas equilibrium technique involving Ar-H2-H2O-HCl gas mixtures, the solubilities of chlorine were determined for CaO-SiO2-MgO-Al2O3 slags at temperatures between 1673 K and 1823 K (1400 °C and 1550 °C). As a formula to correlate sulfide and chloride capacities, the following equation that is the function of temperature only was obtainable; 2log C_{{Cl}} - log C_{{S}} = - 64.4 + {82,890/{T({{K})}}} ± 0.75 whereas chloride capacities were formulated as the function of temperature and optical basicity in the following equation: 2log C_{{Cl}} = ( {43.6 - {54,600/{T({{K})}}}} )Uplambda + ( { - 39.2 + {60,200/{T({{K})}}}} ) ± 0.5{.}

  19. High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg

    NASA Astrophysics Data System (ADS)

    Lamoreaux, R. H.; Hildenbrand, D. L.; Brewer, L.

    1987-07-01

    In order to assess the high-temperature vaporization behavior and equilibrium gas phase compositions over the condensed oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg, the relevant thermodynamic and molecular constant data have been compiled and critically evaluated. Selected values of the Gibbs energy functions of condensed and vapor phases are given in the form of equations valid over wide temperature ranges, along with the standard entropies and enthalpies of formation. These data were used to generate plots of equilibrium partial pressures of vapor species as functions of temperature for representative environmental conditions ranging from reducing to oxidizing. The calculated partial pressures and compositions agree, for the most part, with experimental results obtained under comparable conditions. Maximum vaporization rates have been calculated using the Hertz-Knudsen equation. Literature references are given.

  20. Sulfide Capacities of CaO-MgO-Al2O3-SiO2-CrO x Slags

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Wang, Yaxian; Chou, Kuo-chih; Seetharaman, Seshadri

    2016-08-01

    The sulfide capacities of CaO-MgO-Al2O3-SiO2-CrO x slags were measured by gas-slag equilibration method in the temperature range of 1823 K to 1898 K (1550 °C to 1625 °C) to reveal the effect of CrO x on the sulfide capacities of slags. Both higher basicity and temperature enhanced sulfide capacities. The CrO x additions in the range of 0 to 5 mass pct increased the sulfide capacity, but, further increase of CrO x contents to 7 pct was found to lower the sulfide capacity. Utilizing the relationship for estimating the ratio of Cr(II)/Cr(III) put forward by the present authors, the influence of Cr(II) on the sulfide capacities of the slags studied is discussed.

  1. Analysis of the Fe-Ce-O-C- M phase diagrams ( M = Ca, Mg, Al, Si) by constructing a component-solubility surface

    NASA Astrophysics Data System (ADS)

    Mikhailov, G. G.; Makrovets, L. A.; Smirnov, L. A.; Dresvyankina, L. E.

    2016-06-01

    Analysis of the ternary phase diagrams of Ce2O3- and CeO2-containing oxide systems allowed us to find the oxide compounds that form during steel deoxidizing with cerium and with cerium together with aluminum, calcium, magnesium, or silicon. The temperature dependences of the equilibrium constants of formation of Ce2O3 oxides and Ce2O3 · Al2O3, Ce2O3 · 11Al2O3, Ce2O3 · 2SiO2, 7Ce2O3 · 9SiO2 and Ce2O3 · SiO2 compounds are found. Surfaces for the component solubility in metallic melts Fe-Al-Ce-O-C, Fe- Ca-Ce-O-C, Fe-Mg-Ce-O-C, and Fe-Si-Ce-O-C are constructed. Nonmetallic inclusions that form in the course of experimental melts of St20 steel after its deoxidizing with silicocalcium and rare-earth metal (REM)-containing master alloys in a ladle furnace after degassing are studied. Phase inhomogeneity of the inclusions is found. As a rule, they consist of phases classified into the following three groups: oxide-sulfide, sulfide-oxide, and multiphase oxide-sulfide melt. Calcium aluminates are found to be components of complex sulfide-oxide noncorrosive inclusions.

  2. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-A review

    NASA Astrophysics Data System (ADS)

    Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.

    2016-10-01

    Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.

  3. A double substitution induced Ca(Mg0.8, Al0.2)(Si1.8, Al0.2)O6:Eu(2+) phosphor for w-LEDs: synthesis, structure, and luminescence properties.

    PubMed

    Li, Yang; Liu, Wenjing; Wang, Xicheng; Zhu, Ge; Wang, Chuang; Wang, Yuhua

    2015-08-01

    A double substitution induced blue-emitting phosphor Ca(Mg0.8, Al0.2)(Si1.8, Al0.2)O6:Eu(2+) (CMAS:Eu(2+)) was successfully synthesized by a solid-state reaction process, and its structure and luminescence properties were investigated in detail. The crystal structure and chemical composition of the CMAS matrix were analyzed and determined based on Rietveld refinements and Energy Dispersive Spectroscopy (EDS). The composition-optimized CMAS:Eu(2+) exhibited a strong blue light, centered at 446 nm upon excitation at 365 nm with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.144, 0.113). Under 380 nm excitation, the PL emission intensity area of the optimized phosphor was found to be 46.95% of that of the commercial BaMgAl10O17:Eu(2+) (BAM:Eu(2+)) phosphor and the quantum efficiency of the phosphor is 41.32%. The temperature-dependent PL studies have been investigated which show the thermal stability of the CMAS:Eu(2+) phosphor compared with that of the CaMgSi2O6:Eu(2+) (CMS:Eu(2+)) phosphor. PMID:26115078

  4. A double substitution induced Ca(Mg0.8, Al0.2)(Si1.8, Al0.2)O6:Eu(2+) phosphor for w-LEDs: synthesis, structure, and luminescence properties.

    PubMed

    Li, Yang; Liu, Wenjing; Wang, Xicheng; Zhu, Ge; Wang, Chuang; Wang, Yuhua

    2015-08-01

    A double substitution induced blue-emitting phosphor Ca(Mg0.8, Al0.2)(Si1.8, Al0.2)O6:Eu(2+) (CMAS:Eu(2+)) was successfully synthesized by a solid-state reaction process, and its structure and luminescence properties were investigated in detail. The crystal structure and chemical composition of the CMAS matrix were analyzed and determined based on Rietveld refinements and Energy Dispersive Spectroscopy (EDS). The composition-optimized CMAS:Eu(2+) exhibited a strong blue light, centered at 446 nm upon excitation at 365 nm with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.144, 0.113). Under 380 nm excitation, the PL emission intensity area of the optimized phosphor was found to be 46.95% of that of the commercial BaMgAl10O17:Eu(2+) (BAM:Eu(2+)) phosphor and the quantum efficiency of the phosphor is 41.32%. The temperature-dependent PL studies have been investigated which show the thermal stability of the CMAS:Eu(2+) phosphor compared with that of the CaMgSi2O6:Eu(2+) (CMS:Eu(2+)) phosphor.

  5. Wavelengths and transition rates for nl-n'l' transitions in Be-, B-, Mg-, Al-, Ca-, Zn-, Ag- and Yb-like tungsten ions

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Safronova, A. S.

    2010-04-01

    We present a comprehensive theoretical study of atomic characteristics of eight isoelectronic sequences of tungsten ions in a broad range of wavelengths and transitions. In particular, excitation energies, oscillator strengths and transition probabilities are calculated for nl-n'l' transitions in W70 +, W69 +, W62 +, W61 +, W54 +, W44 +, W27 + and W4 + ions. Atomic structure and radiative characteristics of Be-like ([He]2lnl', n = 2, 3), B-like ([He]2l2l'2l''), Mg-like ([Ne]3l3l'), Al-like ([Ne]3l3l'3l''), Ca-like ([Ar]3d4l), Zn-like ([Ni]4l4l'), Ag-like [Kr]4d10nl) and Yb-like ([Xe]4f145l6l') tungsten ions are computed by the relativistic many-body perturbation theory (RMBPT) method. The calculations start from a 1s2 Dirac-Fock potential for Be- and B-like W, from the 1s22s22p6 Dirac-Fock potential for Mg- and Al-like W; from the 1s22s22p63s23p6 and 1s22s22p63s23p63d10 Dirac-Fock potentials for Ca- and Zn-like W, respectively. Evaluation of properties of Ag-like and Yb-like ions starts from a Dirac-Fock potential with only partially filled n = 4 shell (1s22s22p63s23p63d104s24p64d10) and n = 5 shell (1s22s22p63s23p63d104s24p64d104f145s25p6), respectively. First-order perturbation theory is used to obtain intermediate coupling coefficients, and second-order RMBPT is used to determine the matrix elements. The contributions from negative-energy states are included in the second-order E1 matrix elements to achieve agreement between length-form and velocity-form amplitudes. Our calculations present benchmark data for many yet unmeasured properties of tungsten ions and are in particular important in diagnostics of tungsten plasma of a broad range of temperatures as well as for future ITER plasmas.

  6. Evaluation of Existing Viscosity Data and Models and Developments of New Viscosity Model for Fully Liquid Slag in the SiO2-Al2O3-CaO-MgO System

    NASA Astrophysics Data System (ADS)

    Han, Chen; Chen, Mao; Zhang, Weidong; Zhao, Zhixing; Evans, Tim; Zhao, Baojun

    2016-10-01

    Metallurgical properties of slag are determined to a great extent by its viscosity. High-temperature viscosity measurements are time-consuming and expensive. It is necessary to develop an accurate viscosity model for blast furnace slag in the SiO2-Al2O3-CaO-MgO system using reliable viscosity data. This paper describes a systemic evaluation procedure to determine the viscosity data to be used for model development. 1780 viscosity data from 10 to 65 wt pct SiO2, 3.5 to 40 wt pct Al2O3, 2 to 60 wt pct CaO, and 2 to 38 wt pct MgO in the SiO2-Al2O3-CaO-MgO system have been accepted for model evaluation after critical reviews. The existing 14 viscosity models in SiO2-Al2O3-CaO-MgO system is also reviewed and evaluated. Based on the structure of alumina-silicate slag and evaluated viscosity data, a new viscosity model has been proposed for the system SiO2-Al2O3-CaO-MgO. A new term "probability," based on the basic oxide and electronegativity, is introduced to calculate the integral activation energy of slag. The model has been evaluated and compared with existing viscosity models in three different composition ranges in SiO2-Al2O3-CaO-MgO system for different applications. The new model reports an outstanding agreement between predictions and experimental data. The industrial implications of the new model have also been discussed in ironmaking and steelmaking processes.

  7. Evaluation of Existing Viscosity Data and Models and Developments of New Viscosity Model for Fully Liquid Slag in the SiO2-Al2O3-CaO-MgO System

    NASA Astrophysics Data System (ADS)

    Han, Chen; Chen, Mao; Zhang, Weidong; Zhao, Zhixing; Evans, Tim; Zhao, Baojun

    2016-07-01

    Metallurgical properties of slag are determined to a great extent by its viscosity. High-temperature viscosity measurements are time-consuming and expensive. It is necessary to develop an accurate viscosity model for blast furnace slag in the SiO2-Al2O3-CaO-MgO system using reliable viscosity data. This paper describes a systemic evaluation procedure to determine the viscosity data to be used for model development. 1780 viscosity data from 10 to 65 wt pct SiO2, 3.5 to 40 wt pct Al2O3, 2 to 60 wt pct CaO, and 2 to 38 wt pct MgO in the SiO2-Al2O3-CaO-MgO system have been accepted for model evaluation after critical reviews. The existing 14 viscosity models in SiO2-Al2O3-CaO-MgO system is also reviewed and evaluated. Based on the structure of alumina-silicate slag and evaluated viscosity data, a new viscosity model has been proposed for the system SiO2-Al2O3-CaO-MgO. A new term "probability," based on the basic oxide and electronegativity, is introduced to calculate the integral activation energy of slag. The model has been evaluated and compared with existing viscosity models in three different composition ranges in SiO2-Al2O3-CaO-MgO system for different applications. The new model reports an outstanding agreement between predictions and experimental data. The industrial implications of the new model have also been discussed in ironmaking and steelmaking processes.

  8. Melting enthalpies of mantle peridotite: calorimetric determinations in the system CaO-MgO-Al 2O 3-SiO 2 and application to magma generation

    NASA Astrophysics Data System (ADS)

    Kojitani, Hiroshi; Akaogi, Masaki

    1997-12-01

    High-temperature drop calorimetry in the temperature range of 1398-1785 K was performed for the samples of mixtures of synthetic anorthite (An), diopside (Di), enstatite (En) and forsterite (Fo) with the same compositions as those of primary melts generated at 1.1, 3 and 4 GPa at most 10° above the solidus of anhydrous mantle peridotite in the CaO-MgO-Al 2O 3-SiO 2 system. From the differences between the heat contents ( H T-H 298) of liquid and that of crystal mixture at the liquidus temperature, melting enthalpies of the samples of 1.1, 3 and 4 GPa-primary melt compositions were determined at 1 atm to be 531 ± 39 J · g -1 at 1583 K, 604 ± 21 J · g -1 at 1703 K, 646 ± 21 J · g -1 at 1753 K, respectively. These heat of fusion values suggest that mixing enthalpy of the melt in the An-Di-En-Fo system is approximately zero within the experimental errors when we use the heat of fusion of Fo by Richet et al. (P. Richet, F. Leclerc, L. Benoist, Melting of forsterite and spinel, with implications for the glass transition of Mg 2SiO 4 liquid, Geophys. Res. Lett. 20 (1993) 1675-1678). The measured enthalpies of melting at 1 atm were converted into those for melting reactions which occur under high pressures by correcting enthalpy changes associated with solid-state mineral reactions. Correcting the effects of pressure, temperature and FeO and Na 2O components on the melting enthalpies at 1 atm, heat of fusion values of a representative mantle peridotite just above the solidus under high pressure were estimated to be 590 J at 1.1 GPa and 1523 K, 692 J at 3 GPa and 1773 K, and 807 J at 4 GPa and 1923 K for melting reactions producing liquid of 1 g, with uncertainties of 50 J. By applying these melting enthalpies to a mantle diapir model which generates present MORBs, a potential mantle temperature of 1533 K has been estimated, assuming an eruption temperature of magma of 1473 K.

  9. Diffusion of Ca and Mg in Calcite

    SciTech Connect

    Cygan, R.T.; Fisler, D.K.

    1999-02-10

    The self-diffusion of Ca and the tracer diffusion of Mg in calcite have been experimentally measured using isotopic tracers of {sup 25}Mg and {sup 44}Ca. Natural single crystals of calcite were coated with a thermally-sputtered oxide thin film and then annealed in a CO{sub 2} gas at one atmosphere total pressure and temperatures from 550 to 800 C. Diffusion coefficient values were derived from the depth profiles obtained by ion microprobe analysis. The resultant activation energies for Mg tracer diffusion and Ca self-diffusion are respectively: E{sub a}(Mg) = 284 {+-} 74 kJ/mol and E{sub a}(Ca) = 271 {+-} 80 kJ/mol. For the temperature ranges in these experiments, the diffusion of Mg is faster than Ca. The results are generally consistent in magnitude with divalent cation diffusion rates obtained in previous studies and provide a means of interpreting the thermal histories of carbonate minerals, the mechanism of dolomitization, and other diffusion-controlled processes. The results indicate that cation diffusion in calcite is relatively slow and cations are the rate-limiting diffusing species for the deformation of calcite and carbonate rocks. Application of the calcite-dolomite geothermometer to metamorphic assemblages will be constrained by cation diffusion and cooling rates. The direct measurement of Mg tracer diffusion in calcite indicates that dolomitization is unlikely to be accomplished by Mg diffusion in the solid state but by a recrystallization process.

  10. Mg/Ca of Continental Ostracode Shells

    NASA Astrophysics Data System (ADS)

    Ito, E.; Forester, R. M.; Marco-Barba, J.; Mezquita, F.

    2007-12-01

    Marine ionic chemistry is thought to remain constant. This, together with the belief that marine calcifiers partition Mg/Ca in a systematic manner as functions of temperature (and Mg/Ca) of water forms the basis of the Mg/Ca thermometer. In continental settings both of these assumptions are usually not true. Continental waters contain a wide variety of solutes in absolute and relative ion concentrations. Hence, waters with identical Mg/Ca may have very different concentrations of Mg and Ca and very different anions. Here we use two examples to focus on the effects of ion chemistry on Mg/Ca partitioning in continental ostracode shells and we ignore the complexities of solute evolution, which can change Mg/Ca over timescales of minutes to millennia. Palacios-Fest and Dettman (2001) conducted a monthly study of ,Cypridopsis vidua at El Yeso Lake in Sonora, Mexico. They established a relation between temperature and average shell Mg/Ca using regression analyses on averaged data. When their Mg/Ca-temperature relation is applied to monthly ,C. vidua data from Page Pond near Cleveland, Ohio, water temperatures of -8 to -1°C are obtained. The observed Mg/Ca ranges for El Yeso Lake (0.31 to 0.46) and Page Pond (0.33 to 0.46) are similar, as are their specific conductivities (700 to 850μS for El Yeso Lake; 400 to 600μS for Page Pond). However, [Ca] is 140-260 mg/L for El Yeso, but only 70-90 mg/L for Page Pond. Page Pond data, in fact, shows a good temperature shell Mg/Ca relation for .C. vidua, but the relation is different from that at El Yeso. Hence, shell Mg/Ca is a multi-valued, family of curves function of temperature and Mg/Ca of water that depends on the [Mg] and [Ca] values in water and perhaps other factors. Our second example comes from sites near Valencia, Spain and involves shell data for ,Cyprideis torosa, an estuarine ostracode that is tolerant of a wide range of salinity and can live in continental waters as long as the carbonate alkalinity to Ca ratio is

  11. Detailed structure of the carbonated peridotite solidus ledge in the system CaO-MgO- Al2O3-SiO2-CO2

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Keshav, S.; Gudfinnsson, G.; Presnall, D.

    2008-12-01

    The presence of carbonatitic melts in the sub-oceanic mantle has been inferred on the basis of geochemistry of ocean-island basalts and xenoliths, CO2-vesicles in voluminous mid-ocean ridge basalts, geophysical observations, and experimental petrology. The carbonate ledge somewhere between 2.0-3.0 GPa is a prominent feature of the solidus of carbonated peridotite. The ledge is formed by a precipitous temperature drop of the mantle solidus as the solubility of CO2 in the melt rapidly increases with increasing pressure, leading to a negative Clapeyron slope of the mantle solidus over some pressure interval. It is terminated by the appearance of crystalline carbonate, on the high-pressure side, at the expense of CO2 vapor that exists on the low pressure side. The solidus temperature of carbonated peridotite decreases by roughly 200 C at the ledge. The carbonate ledge was first noted at the solidus of carbonated peridotite in the system CaO- MgO-SiO2-CO2 [CMS-CO2], and it persists in the more complex model system CaO-MgO-Al2O3-SiO2-CO2 [CMAS-CO2]. In the system CMAS-CO2, the ledge appears to be bounded by two invariant points consisting of spinel-garnet peridotite+CO2+melt, on the low pressure side, and garnet peridotite+CO2+dolomite+melt, on the high pressure side. While the lower pressure invariant point is created by the intersection of the spinel-garnet (sp-gt) peridotite subsolidus boundary curve with the solidus of vapor-bearing peridotite, the higher pressure invariant point occurs where the CO2-bearing phase coexisting with the garnet peridotite phase assemblage changes from vapor to dolomite. The precise position and shape of the ledge and the position of the two invariant points is very significant because the temperatures at which the mantle melts and the melt compositions are dependent on the behavior of CO2, the depth interval in the Earth where carbon exists as CO2, and the onset of transformation of CO2 to crystalline carbonate in the Earth. Due to these

  12. Crystalline orientations of Tl2Ba2Ca2Cu3O(x) grains on MgO, SrTiO3, and LaAlO3 substrates

    NASA Technical Reports Server (NTRS)

    Liou, S. H.; Wu, C. Y.

    1992-01-01

    Crystalline orientations of Tl2Ba2Ca2Cu3O(x) grains in magnetron sputtered films on MgO (001), SrTiO3 (001), and LaAlO3 (001) substrates were investigated by scanning electron microscopy. In contrast to the nearly single crystalline films on the lattice matched substrates SrTiO3 and LaAlO3, films on the MgO (001) substrate, being polycrystalline in nature, exhibit several preferred in-plane grain orientations. These orientations agree well with a simplified theory of near-coincidence site lattices between Tl2Ba2Ca2Cu3O(x) and MgO.

  13. A vibrational spectroscopic study of the phosphate mineral zanazziite - Ca2(MgFe2+)(MgFe2+Al)4Be4(PO4)6ṡ6(H2O)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Belotti, Fernanda M.; Dias Menezes Filho, Luiz Alberto

    2013-03-01

    Zanazziite is the magnesium member of a complex beryllium calcium phosphate mineral group named roscherite. The studied samples were collected from the Ponte do Piauí mine, located in Itinga, Minas Gerais. The mineral was studied by electron microprobe, Raman and infrared spectroscopy. The chemical formula can be expressed as Ca2.00(Mg3.15,Fe0.78,Mn0.16,Zn0.01,Al0.26,Ca0.14)Be4.00(PO4)6.09(OH)4.00ṡ5.69(H2O) and shows an intermediate member of the zanazziite-greinfeinstenite series, with predominance of zanazziite member. The molecular structure of the mineral zanazziite has been determined using a combination of Raman and infrared spectroscopy. A very intense Raman band at 970 cm-1 is assigned to the phosphate symmetric stretching mode whilst the Raman bands at 1007, 1047, 1064 and 1096 cm-1 are attributed to the phosphate antisymmetric stretching mode. The infrared spectrum is broad and the antisymmetric stretching bands are prominent. Raman bands at 559, 568, 589 cm-1 are assigned to the ν4 out of plane bending modes of the PO4 and HPO4 units. The observation of multiple bands supports the concept that the symmetry of the phosphate unit in the zanazziite structure is reduced in symmetry. Raman bands at 3437 and 3447 cm-1 are attributed to the OH stretching vibrations; Raman bands at 3098 and 3256 are attributed to water stretching vibrations. The width and complexity of the infrared spectral profile in contrast to the well resolved Raman spectra, proves that the pegmatitic phosphates are better studied with Raman spectroscopy.

  14. Phase Equilibrium Studies of CaO-SiO2-MgO-Al2O3 System with Binary Basicity of 1.5 Related to Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Kou, Mingyin; Wu, Shengli; Ma, Xiaodong; Wang, Laixin; Chen, Mao; Cai, Qingwu; Zhao, Baojun

    2016-04-01

    Slags play an important role in blast furnace operation, and their compositions are based on the CaO-SiO2-MgO-Al2O3 quaternary system in many steel companies. The binary basicity (CaO/SiO2 weight ratio) of blast furnace slags, especially primary slag and bosh slag, can be as high as 1.5 or higher. Phase equilibria and liquidus temperatures in the CaO-SiO2-MgO-Al2O3 system with binary basicity of 1.50 are experimentally determined for temperatures in the range 1723 K to 1823 K (1450 °C to 1550 °C). High temperature equilibration, quenching, and electron probe X-ray microanalysis techniques have been used in the present study. The isotherms are obtained in the primary phase fields of Ca2SiO4, melilite, spinel, periclase, and merwinite related to blast furnace slags. Effects of Al2O3, MgO, and binary basicity on liquidus temperatures have been discussed. In addition, extensive solid solutions have been measured for different primary phases and will be used for development and optimization of the thermodynamic database.

  15. Experimental Determination of the Phase Diagram of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 System

    NASA Astrophysics Data System (ADS)

    Shi, Junjie; Sun, Lifeng; Zhang, Bo; Liu, Xuqiang; Qiu, Jiyu; Wang, Zhaoyun; Jiang, Maofa

    2016-02-01

    Ti-bearing CaO-SiO2-MgO-Al2O3-TiO2 slags are important for the smelting of vanadium-titanium bearing magnetite. In the current study, the pseudo-melting temperatures were determined by the single-hot thermocouple technique for the specified content of 5 to 25 pct TiO2 in the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 phase diagram system. The 1573 K to 1773 K (1300 °C to 1500 °C) liquidus lines were first calculated based on the pseudo-melting temperatures according to thermodynamic equations in the specific primary crystal field. The phase equilibria at 1573 K (1300 °C) were determined experimentally using the high-temperature equilibrium and quench method followed by X-ray fluorescence, X-ray diffraction, scanning electron microscope, and energy dispersive X-ray spectroscope analysis; the liquid phase, melilite solid solution phase (C2MS2,C2AS)ss, and perovskite phase of CaO·TiO2 were found. Therefore, the phase diagram was constructed for the specified region of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 system.

  16. Luminescence and energy-transfer properties of color-tunable Ca2Mg0.25Al1.5Si1.25O7:Ce(3+)/Eu(2+)/Tb(3+) phosphors for ultraviolet light-emitting diodes.

    PubMed

    Yuan, Bo; Song, Yanhua; Sheng, Ye; Zheng, Keyan; Huo, Qisheng; Xu, Xuechun; Zou, Haifeng

    2016-03-01

    A series of Ca2Mg0.25Al1.5Si1.25O7:Ce(3+)/Eu(2+)/Tb(3+) phosphors was been prepared via a conventional high temperature solid-state reaction and their luminescence properties were studied. The emission spectra of Ca2Mg0.25Al1.5Si1.25O7:Ce(3+),Eu(2+) and Ca2Mg0.25Al1.5Si1.25O7:Ce(3+),Tb(3+) phosphors show not only a band due to Ce(3+) ions (409 nm) but also as a band due to Eu(2+) (520 nm) and Tb(3+) (542 nm) ions. More importantly, the effective energy transfer from Ce(3+) to Eu(2+) and Tb(3+) ions was confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and energy transfer mechanism were investigated and were demonstrated to be of resonant type via dipole-dipole (Ce(3+) to Eu(2+)) and dipole-quadrupole (Ce(3+) to Tb(3+)) reactions, respectively. Under excitation at 350 nm, the emitting color could be changed from blue to green by adjusting the relative doping concentration of Ce(3+) and Eu(2+) ions as well as Ce(3+) and Tb(3+) ions. The above results indicate that Ca2Mg0.25Al1.5Si1.25O7:Ce(3+),Eu(2+)/Tb(3+) are promising single-phase blue-to-green phosphors for application in phosphor conversion white-light-emitting diodes. PMID:26249728

  17. Tunable color and energy transfer in single-phase white-emitting Ca20Al26Mg3Si3O68:Ce3+,Dy3+ phosphors for UV white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yuan, Bo; Song, Yanhua; Sheng, Ye; Zheng, Keyan; Zhou, Xiuqing; Ma, Pingchuan; Xu, Xuechun; Zou, Haifeng

    2015-12-01

    Ce3+ and/or Dy3+ activated Ca20Al26Mg3Si3O68 phosphors were synthesized by high temperature solid state reaction and their luminescent properties were studied. There are two emissions peaking at 407 and 577 nm in the emission spectra of Ca20Al26Mg3Si3O68:Ce3+, Dy3+, which are due to the transitions of Ce3+ and Dy3+ ions, respectively. More importantly, the effective energy transfer from Ce3+ to Dy3+ ions has been confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and mechanism of energy transfer were investigated and it was demonstrated to be resonant type via dipole-dipole reaction. Under the excitation of 345 nm, the emitting color can change from blue to white by adjusting the relative doping concentration of Ce3+ and Dy3+ ions, indicating that the phosphors Ca20Al26Mg3Si3O68:Ce3+, Dy3+ are promising single-phase white-emitting phosphors for application in pc-white LEDs.

  18. Microstructure and Microwave Dielectric Properties of (1- x)MgAl2O4- x(Ca0.8Sr0.2)TiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Huang, Yafei; Yu, Jun; Shen, Chunying; Tang, Mingliang

    2016-10-01

    The microwave dielectric properties of the (1- x)MgAl2O4- x(Ca0.8Sr0.2)TiO3 ( x = 0.02 to 0.10) ceramic system synthesized by the traditional solid-state reaction method have been investigated. Spinel-structured MgAl2O4 was present together with perovskite-structured (Ca0.8Sr0.2)TiO3, and this multiphase system was verified by x-ray diffraction (XRD) and energy spectrum analyses throughout the whole compositional range. With increasing x, the temperature coefficient of resonant frequency ( τ f) and permittivity ( ɛ r) gradually increased. Consequently, near-zero τ f could be obtained for samples with x = 0.08. Excellent microwave dielectric properties with relative permittivity ( ɛ r) of 10.92, quality factor ( Q × f) of 52,563 GHz (at 12.9 GHz), and temperature coefficient of resonant frequency ( τ f) of -5.6 ppm/°C were obtained for 0.92MgAl2O4-0.08(Ca0.8Sr0.2)TiO3 composite sintered at 1440°C for 3 h, making this material a promising candidate for use in global communication satellites and radar detectors.

  19. Hillesheimite, (K,Ca,□)2(Mg,Fe,Ca,□)2[(Si,Al)13O23(OH)6](OH) · 8H2O, a new phyllosilicate mineral of the Günterblassite group

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Zubkova, N. V.; Pekov, I. V.; Belakovskiy, D. I.; Schüller, W.; Ternes, B.; Blass, G.; Pushcharovsky, D. Yu.

    2013-12-01

    A new mineral, hillesheimite, has been found in the Graulai basaltic quarry, near the town of Hillesheim, the Eifel Mountains, Rhineland-Palatinate (Rheinland-Pfalz), Germany. It occurs in the late assemblage comprising nepheline, augite, fluorapatite, magnetite, perovskite, priderite, götzenite, lamprophyllite-group minerals, and åkermanite. Colorless flattened crystals of hillesheimite reaching 0.2 × 1 × 1.5 mm in size and aggregates of the crystals occur in miarolitic cavities in alkali basalt. The mineral is brittle, with Mohs' hard-ness 4. Cleavage is perfect parallel to (010) and distinct on (100) and (001). D calc = 2.174 g/cm3, D meas = 2.16(1) g/cm3. IR spectrum is given. Hillesheimite is biaxial (-), α = 1.496(2), β = 1.498(2), γ = 1.499(2), 2 V meas = 80°. The chemical composition (electron microprobe, mean of 4 point analyses, H2O determined from structural data, wt %) is as follows: 0.24 Na2O, 4.15 K2O, 2.14 MgO, 2.90 CaO, 2.20 BaO, 2.41 FeO, 15.54 Al2O3, 52.94 SiO2, 19.14 H2O, total is 101.65. The empirical formula is: K0.96Na0.08Ba0.16Ca0.56Mg0.58Fe{0.37/2+}[Si9.62Al3.32O23(OH)6][(OH)0.82(H2O)0.18] · 8H2O. The crystal structure has been determined from X-ray single-crystal diffraction data, R = 0.1735. Hillesheimite is orthorhombic, space group Pmmn, the unit-cell dimensions are: a = 6.979(11), b = 37.1815(18), c = 6.5296(15) Å; V=1694(3) Å3, Z = 2. The crystal structure is based on the block [(Si,Al)13O25(OH)4] consisting of three single tetrahedral layers linked via common vertices and is topologically identical to the triple layers in günterblassite and umbrianite. The strong reflections [ d Å ( I %)] in the X-ray powder diffraction pattern are: 6.857(58), 6.545(100), 6.284(53), 4.787(96), 4.499(59), 3.065(86), 2.958(62), 2.767(62). The mineral was named after its type locality. Type specimens are deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4174/1.

  20. Crystallization control for remediation of an FetO-rich CaO-SiO2-Al2O3-MgO EAF waste slag.

    PubMed

    Jung, Sung Suk; Sohn, Il

    2014-01-01

    In this work, the crystallization behavior of synthesized FetO-rich electric arc furnace (EAF) waste slags with a basicity range of 0.7 to 1.08 was investigated. Crystal growth in the melts was observed in situ using a confocal laser scanning microscope, and a delayed crystallization for higher-basicity samples was observed in the continuous cooling transformation and time temperature transformation diagrams. This result is likely due to the polymerization of the melt structure as a result of the increased number of network-forming FeO4 and AlO4 units, as suggested by Raman analysis. The complex incorporation of Al and Fe ions in the form of AlO4 and FeO4 tetrahedral units dominant in the melt structure at a higher basicity constrained the precipitation of a magnetic, nonstoichiometric, and Fe-rich MgAlFeO4 primary phase. The growth of this spinel phase caused a clear compositional separation from amorphous phase during isothermal cooling at 1473 K leading to a clear separation between the primary and amorphous phases, allowing an efficient magnetic separation of Fe compounds from the slag for effective remediation and recycling of synthesized EAF waste slags for use in higher value-added ordinary Portland cement.

  1. Crystallization control for remediation of an FetO-rich CaO-SiO2-Al2O3-MgO EAF waste slag.

    PubMed

    Jung, Sung Suk; Sohn, Il

    2014-01-01

    In this work, the crystallization behavior of synthesized FetO-rich electric arc furnace (EAF) waste slags with a basicity range of 0.7 to 1.08 was investigated. Crystal growth in the melts was observed in situ using a confocal laser scanning microscope, and a delayed crystallization for higher-basicity samples was observed in the continuous cooling transformation and time temperature transformation diagrams. This result is likely due to the polymerization of the melt structure as a result of the increased number of network-forming FeO4 and AlO4 units, as suggested by Raman analysis. The complex incorporation of Al and Fe ions in the form of AlO4 and FeO4 tetrahedral units dominant in the melt structure at a higher basicity constrained the precipitation of a magnetic, nonstoichiometric, and Fe-rich MgAlFeO4 primary phase. The growth of this spinel phase caused a clear compositional separation from amorphous phase during isothermal cooling at 1473 K leading to a clear separation between the primary and amorphous phases, allowing an efficient magnetic separation of Fe compounds from the slag for effective remediation and recycling of synthesized EAF waste slags for use in higher value-added ordinary Portland cement. PMID:24410350

  2. Calcioferrite with composition (Ca3.94Sr0.06)Mg1.01(Fe2.93Al1.07)(PO4)6(OH)4·12H2O

    PubMed Central

    Lafuente, Barbara; Downs, Robert T.; Yang, Hexiong; Jenkins, Robert A.

    2014-01-01

    Calcioferrite, ideally Ca4MgFe3+ 4(PO4)6(OH)4·12H2O (tetra­calcium magnesium tetrairon(III) hexakis-phosphate tetra­hydroxide dodeca­hydrate), is a member of the calcioferrite group of hydrated calcium phosphate minerals with the general formula Ca4 AB 4(PO4)6(OH)4·12H2O, where A = Mg, Fe2+, Mn2+ and B = Al, Fe3+. Calcioferrite and the other three known members of the group, montgomeryite (A = Mg, B = Al), kingsmountite (A = Fe2+, B = Al), and zodacite (A = Mn2+, B = Fe3+), usually occur as very small crystals, making their structure refinements by conventional single-crystal X-ray diffraction challenging. This study presents the first structure determination of calcioferrite with composition (Ca3.94Sr0.06)Mg1.01(Fe2.93Al1.07)(PO4)6(OH)4·12H2O based on single-crystal X-ray diffraction data collected from a natural sample from the Moculta quarry in Angaston, Australia. Calcioferrite is isostructural with montgomeryite, the only member of the group with a reported structure. The calcioferrite structure is characterized by (Fe/Al)O6 octa­hedra (site symmetries 2 and -1) sharing corners (OH) to form chains running parallel to [101]. These chains are linked together by PO4 tetra­hedra (site symmetries 2 and 1), forming [(Fe/Al)3(PO4)3(OH)2] layers stacking along [010], which are connected by (Ca/Sr)2+ cations (site symmetry 2) and Mg2+ cations (site symmetry 2; half-occupation). Hydrogen-bonding inter­actions involving the water mol­ecules (one of which is equally disordered over two positions) and OH function are also present between these layers. The relatively weaker bonds between the layers account for the cleavage of the mineral parallel to (010). PMID:24764934

  3. Effects of Al2O3 and MgO on Softening, Melting, and Permeation Properties of CaO-FeO-SiO2 on a Coke Bed

    NASA Astrophysics Data System (ADS)

    Ueda, Shigeru; Kon, Tatsuya; Miki, Takahiro; Kim, Sun-Joong; Nogami, Hiroshi

    2016-08-01

    In ironmaking, maintaining gas permeability in blast furnace with low coke rate operation is essential to reduce carbon emissions. The high pressure loss in the cohesive zone decreases the gas permeability and affects the productivity of blast furnace. In order to increase the gas permeability in the cohesive zone, the thickness of the cohesive layer should be decreased. For this purpose, increasing softening temperature and decreasing dripping temperature of the iron ore are desired. In this study, softening, melting, and permeation of SiO2-FeO-CaO-Al2O3-MgO on a coke bed were investigated. The oxide sample in a tablet form was heated under CO/CO2 atmosphere, and the shape of the tablet was observed. The softening and melting temperatures of the SiO2-FeO-CaO system changed with the addition of Al2O3 and MgO. Oxide tablets with and without Al2O3 softened below and above the solidus temperature, respectively. The melting temperatures varied with the ratio of CO/CO2 in the gas. The permeation temperature was independent of the melting temperature, but dependent on the wettability.

  4. Crystal structure of the mineral (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4}: a triclinic representative of the amphibole family

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.

    2012-05-15

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Angstrom-Sign , b = 18.0457(3) Angstrom-Sign ; c = 9.8684(2) Angstrom-Sign , {alpha} = 90.016(2) Degree-Sign , {beta} = 105.543(4) Degree-Sign , {gamma} = 89.985(2) Degree-Sign . The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with |F| > 3{sigma}(F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4} has some symmetry and structural features that distinguish it from other minerals of this family.

  5. Ehimeite, NaCa2Mg4CrSi6Al2O22(OH)2: The first Cr-dominant amphibole from the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Nishio-Hamane, Daisuke; Ohnishi, Masayuki; Minakawa, Tetsuo; Yamaura, Jun-Ichi; Saito, Shohei; Kadota, Ryo

    The first Cr-dominant amphibole, ehimeite, ideally NaCa2Mg4CrSi6Al2O22(OH)2, has been found in a chromitite deposit in the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan. Ehimeite occurs as prismatic crystals of up to 1.5 cm in length and 0.5 cm in width and is found in association with chromite, kämmererite (Cr-rich clinochlore), Cr-poor clinochlore, phlogopite, and uvarovite. It is transparent, emerald green to pale green in color with pale green streaks, and has a vitreous luster. Optically, it is biaxial positive with α = 1.644(2), β = 1.647(2), γ = 1.659(2), and 2Vcalc. = 53°. It has a Mohs’ hardness of 6 and densities of 3.08(3) g/cm3 (measured using heavy liquids) and 3.121 g/cm3 (calculated from powder diffraction data and the empirical formula). The empirical formula is (Na0.88K0.07)Σ0.95(Ca1.89Na0.02Mg0.09)Σ2.00(Mg4.03Cr0.62Al0.19Fe3+0.07Fe2+0.07Ti0.03)Σ5.00(Si6.14Al1.86)Σ8.00O22(OH)2 on the basis of O = 22 and OH = 2, and ehimeite mainly forms a solid solution, NaCa2Mg4(Cr, Al)Si6Al2O22(OH)2, with pargasite. It has a monoclinic unit cell with a = 9.9176(14) Å, b = 18.0009(12) Å, c = 5.2850(7) Å, β = 105.400(7)°, V = 909.6 (17) Å3, and Z = 2, and it belongs to the space group C2/m, as refined from powder XRD data. The eight strongest lines in the powder XRD pattern [d (Å), I/I0, hkl] are (3.370, 58, 150), (2.932, 43, 221), (2.697, 81, 151), (2.585, 50, 061), (2.546, 100, 202), (2.346, 42, 351), (2.156, 35, 261), and (1.514, 55, 263). The crystal structure has been refined to R1 = 0.0488 using single-crystal XRD data. It has been concluded that ehimeite in the Akaishi Mine was formed by the reaction of chromitite and the metamorphic fluid in the retrograde stage of serpentinization during the Sanbagawa metamorphism.

  6. Menzerite-(Y) a New Species {(Y REE)(Ca Fe2plus)2}[(Mg Fe2plus)(Fe3plus Al)](Si3)O12 from a Felsic Granulite Parry Sound Ontario and a New Garnet End-member (Y2Ca)Mg2(SiO4)3

    SciTech Connect

    E Grew; J Marsh; M Yates; B Lazic; T Armbruster; A Locock; S Bell; M Dyar; H Bernhardt; O Medenbach

    2011-12-31

    Menzerite-(Y), a new mineral species, forms reddish brown cores, n = 1.844 (20), up to 70 {micro}m across, rimmed successively by euhedral almandine containing up to 2.7 wt% Y{sub 2}O{sub 3} and by K-feldspar in a felsic granulite on Bonnet Island in the interior Parry Sound domain, Grenville Orogenic Province, Canada. It is named after Georg Menzer (1897-1989), the German crystallographer who solved the crystal structure of garnet. Single-crystal X-ray-diffraction results yielded space group Ia3d, a = 11.9947(6) {angstrom}. An electron-microprobe analysis of the grain richest in Y (16.93 wt% Y{sub 2}O{sub 3}) gave the following formula, normalized to eight cations and 12 oxygen atoms: {l_brace}Y{sub 0.83}Gd{sub 0.01}Dy{sub 0.05}Ho{sub 0.02}Er{sub 0.07}Tm{sub 0.01}Yb{sub 0.06}Lu{sub 0.02}Ca{sub 1.37}Fe{sub 0.49}{sup 2+}Mn{sub 0.07}{r_brace} [Mg{sub 0.55}Fe{sub 0.42}{sup 2+}Fe{sub 0.58}{sup 3+}Al{sub 0.35} V{sub 0.01}Sc{sub 0.01}Ti{sub 0.08}](Si{sub 2.82}Al{sub 0.18})O{sub 12}, or {l_brace}(Y,REE)(Ca,Fe{sup 2+}){sub 2}{r_brace}[(Mg,Fe{sup 2+})(Fe{sup 3+},Al)](Si{sub 3})O{sub 12}. Synchrotron micro-XANES data gave Fe{sup 3+}/{Sigma}Fe = 0.56(10) versus 0.39(2) calculated from stoichiometry. The scattering power refined at the octahedral Y site, 17.68 epfu, indicates that a relatively light element contributes to its occupancy. Magnesium, as determined by electron-microprobe analyses, would be a proper candidate. In addition, considering the complex occupancy of this site, the average Y-O bond length of 2.0244(16) {angstrom} is in accord with a partial occupancy by Mg. The dominance of divalent cations with Mg > Fe{sup 2+} and the absence of Si at the octahedral Y site (in square brackets) are the primary criteria for distinguishing menzerite-(Y) from other silicate garnet species; the menzerite-(Y) end-member is {l_brace}Y{sub 2}Ca{r_brace}[Mg{sub 2}](Si{sub 3})O{sub 12}. The contacts of menzerite-(Y) with almandine are generally sharp and, in places, cuspate. It is

  7. Electrophoretic deposition of porous CaO-MgO-SiO2 glass-ceramic coatings with B2O3 as additive on Ti-6Al-4V alloy.

    PubMed

    Zhang, Wei; Chen, Xianchun; Liao, Xiaoming; Huang, Zhongbing; Dan, Xiuli; Yin, Guangfu

    2011-10-01

    The sub-micron glass-ceramic powders in CaO-MgO-SiO(2) system with 10 wt% B(2)O(3) additive were synthesized by sol-gel process. Then bioactive porous CaO-MgO-SiO(2) glass-ceramic coatings on Ti-6Al-4V alloy substrates were fabricated using electrophoretic deposition (EPD) technique. After being calcined at 850°C, the above coatings with thickness of 10-150 μm were uniform and crack-free, possessing porous structure with sub-micron and micron size connected pores. Ethanol was employed as the most suitable solvent to prepare the suspension for EPD. The coating porous appearance and porosity distribution could be controlled by adjusting the suspension concentration, applied voltage and deposition time. The heat-treated coatings possessed high crystalline and was mainly composed of diopside, akermanite, merwinite, calcium silicate and calcium borate silicate. Bonelike apatite was formed on the coatings after 7 days of soaking in simulated body fluid (SBF). The bonding strength of the coatings was needed to be further improved.

  8. Shear viscosities of CaO-Al 2O 3-SiO 2 and MgO-Al 2O 3-SiO 2 liquids: Implications for the structural role of aluminium and the degree of polymerisation of synthetic and natural aluminosilicate melts

    NASA Astrophysics Data System (ADS)

    Toplis, Michael J.; Dingwell, Donald B.

    2004-12-01

    The shear viscosity of 66 liquids in the systems CaO-Al 2O 3-SiO 2 (CAS) and MgO-Al 2O 3-SiO 2 (MAS) have been measured in the ranges 1-10 4 Pa s and 10 8-10 12 Pa s. Liquids belong to series, nominally at 50, 67, and 75 mol.% SiO 2, with atomic M 2+/(M 2++ 2Al) typically in the range 0.60 to 0.40 for each isopleth. In the system CAS at 1600°C, viscosity passes through a maximum at all silica contents. The maxima are clearly centered in the peraluminous field, but the exact composition at which viscosity is a maximum is poorly defined. Similar features are observed at 900°C. In contrast, data for the system MAS at 1600°C show that viscosity decreases with decreasing Mg/(Mg + 2Al) at all silica contents, but that a maximum in viscosity must occur in the field where Mg/2Al >1. On the other hand, the viscosity at 850°C increases with decreasing Mg/(Mg + 2Al) and shows no sign of reaching a maximum, even for the most peraluminous composition studied. The data from both systems at 1600°C have been analysed assuming that shear viscosity is proportional to average bond strength and considering the equilibrium: Al-(⇔(-NBO+Al where Al [4]-(Mg,Ca) 0.5 represents a charge-balanced tetrahedrally coordinated Al; (Mg, Ca) 0.5-NBO represents a nonbridging oxygen (NBO) associated with Ca or Mg, and Al XS represents any structural role of Al that does not require a charge-balancing cation. The viscosity data were fitted using two adjustable variables: i) the equilibrium constant of the above reaction, and ii) the relative bond strength of Al XS. The values of these parameters in the system CAS suggest that Al XS remains in tetrahedral coordination, its charge deficit being satisfied by association with a three-coordinate oxygen in a structure called a tricluster. In contrast, fits to the MAS data at 1600°C infer the presence of high-coordinate Al. These interpretations are found to be consistent with independent spectroscopic and theoretical data. Furthermore, the fitted

  9. CaO-MgO-Al2O3-SiO2 (CMAS) corrosion of Gd2Zr2O7 and Sm2Zr2O7

    DOE PAGES

    Wang, Honglong; Bakal, Ahmet; Zhang, Xingxing; Tarwater, Emily; Sheng, Zhizhi; Fergus, Jeffrey W.

    2016-08-08

    Ceramic thermal barrier coatings are applied to superalloys used in gas turbine engineering to increase the operating temperature and the energy conversion efficiency. However, dust consisting of CaO-MgO-Al2O3-SiO2 (CMAS) from the air can be injected into the engines and corrode the thermal barrier coatings. Lanthanide zirconates are promising materials in thermal barrier coatings due to their low thermal conductivities, good phase stability and good corrosion resistance. However, the corrosion resistance mechanism of CMAS on lanthanide zirconates is still not clearly understood. In this work, the corrosion mechanism of Gd2Zr2O7 and Sm2Zr2O7 in CMAS is studied. Here, the results show thatmore » the CMAS can easily react with lanthanide zirconate thermal barrier coatings to form a dense layer, which can resist further corrosion« less

  10. Elucidating the mechanism behind the stabilization of multi-charged metal cations in water: A case study of the electronic states of microhydrated Mg2+, Ca2+ and Al3+”

    SciTech Connect

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2014-04-21

    Metal atoms typically have second and higher ionization potentials (IPs) that are larger than the IP of water, resulting in the Coulombic explosion of the first few [M(H2O)n]+q (q ≥ 2) clusters as the M+ + (H2O)n + or MOH+ + H3O+(H2O)n energy levels are energetically more stable than the M2+ + (H2O)n ones for small n. We present a theoretical analysis of the various electronic states correlating with the above channels that are involved in the sequential hydration of the Ca2+, Mg2+ and Al3+ cations with up to six water molecules that, for the first time, quantifies their relative shift with the degree of solvation accounting for the observed stabilization of those multi-charged metal cations in an aqueous solution. *

  11. A thermodynamic model for subsolidus equilibria in the system CaO-MgO-Al2O3-SiO2

    NASA Technical Reports Server (NTRS)

    Wood, B. J.; Holloway, J. R.

    1984-01-01

    It is shown that the high temperature enthalpy of solution data for pure phases and solid solutions in the CMAS system are, for 'gabbroic' and 'peridotitic' compositions, consistent with available phase equilibrium data for the MAS, CAS and CMAS systems. A refined set of values of thermodynamic properties for these phases and solid solutions is tabulated. The small differences between the new data set and that of Helgeson et al. (1978) arise from new data on heat capacity and enthalpy being incorporated. The important constraints applied and the major difficulties in fitting which arose are summarized.

  12. Crystallization, densification and dielectric properties of CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} glass with ZrO{sub 2} as nucleating agent

    SciTech Connect

    Hsiang, Hsing-I; Yung, Shi-Wen; Wang, Chung-Ching

    2014-12-15

    SEM micrographs for the pure CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} glass sintered at 850–1000 °C (a) 850 °C, (b) 900 °C, (c) 950 °C, (d) 1000 °C. - Highlights: • ZrO{sub 2} effects on the crystallization of LTCC glass system were investigated. • ZrO{sub 2} effects on the dielectric properties of LTCC glass system were investigated. • LTCC with a dielectric constant of 6.65 and a low dielectric loss can be obtained. - Abstract: The zirconium oxide effects on the crystallization and dielectric properties of CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} (CMAS) glass were investigated. The results showed that phyllosiloxide and anorthite crystallites were observed in sequence during sintering. For glass added with 8 wt% ZrO{sub 2}, homogeneously dispersed tetragonal ZrO{sub 2} crystallites were observed at 850 °C. The as-prepared CMAS glass–ceramics exhibited a dielectric constant of about 6–7 and a dielectric loss below 0.005 at 100 MHz. The dielectric properties of CMAS glass with 8 wt% ZrO{sub 2} sintered at 850 °C show a low dielectric constant of 6.65 and a dielectric loss tangent of about 2.5 × 10{sup −3}, which provides a promising candidate for LTCC applications.

  13. A Sulfide Capacity Prediction Model of CaO-SiO2-MgO-FeO-MnO-Al2O3 Slags during the LF Refining Process Based on the Ion and Molecule Coexistence Theory

    NASA Astrophysics Data System (ADS)

    Yang, Xue-Min; Zhang, Meng; Shi, Cheng-Bin; Chai, Guo-Ming; Zhang, Jian

    2012-04-01

    A sulfide capacity prediction model of CaO-SiO2-MgO-FeO-MnO-Al2O3 ladle furnace (LF) refining slags has been developed based on the ion and molecule coexistence theory (IMCT). The predicted sulfide capacity of the LF refining slags has better accuracy than the measured sulfide capacity of the slags at the middle and final stages during the LF refining process. Increasing slag binary basicity, optical basicity, and the Mannesmann index can lead to an increase of the predicted sulfide capacity for the LF refining slags as well as to an increase of the sulfur distribution ratio between the slags and molten steel at the middle and final stages during the LF refining process. The calculated equilibrium mole numbers, mass action concentrations of structural units or ion couples, rather than mass percentages of components, are recommended to represent the slag composition for correlating with the sulfide capacity of the slags. The developed sulfide capacity IMCT model can calculate not only the total sulfide capacity of the slags but also the respective sulfide capacity of free CaO, MgO, FeO, and MnO in the slags. The comprehensive contribution of the combined ion couples (Ca2+ + O2-) and (Mn2+ + O2-) on the desulfurization reactions accounts for 96.23 pct; meanwhile, the average contribution of the ion couple (Fe2+ + O2-) and (Mg2+ + O2-) only has a negligible contribution as 3.13 pct and 0.25 pct during the LF refining process, respectively. The oxygen activity of bulk molten steel in LF is controlled by the [Al]-[O] equilibrium, and the oxygen activity of molten steel at the slag-metal interface is controlled by the (FeO)-[O] equilibrium. The ratio of the oxygen activity of molten steel at the slag-metal interface to the oxygen activity of bulk molten steel will decrease from 37 to 5 at the initial stage, and further decrease from 28 to 4 at the middle stage, but will maintain at a reliable constant as 5 to 14 at the final stage during the LF refining process. The

  14. A vibrational spectroscopic study of the phosphate mineral whiteite CaMn(++)Mg2Al2(PO4)4(OH)2·8(H2O).

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Xi, Yunfei

    2014-04-24

    Vibrational spectroscopy enables subtle details of the molecular structure of whiteite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. The infrared and Raman spectroscopy were applied to compare the molecular structure of whiteite with that of other phosphate minerals. The Raman spectrum of whiteite shows an intense band at 972 cm(-1) assigned to the ν1PO4(3-) symmetric stretching vibrations. The low intensity Raman bands at 1076 and 1173 cm(-1) are assigned to the ν3PO4(3-) antisymmetric stretching modes. The Raman bands at 1266, 1334 and 1368 cm(-1) are assigned to AlOH deformation modes. The infrared band at 967 cm(-1) is ascribed to the PO4(3-)ν1 symmetric stretching vibrational mode. The infrared bands at 1024, 1072, 1089 and 1126 cm(-1) are attributed to the PO4(3-)ν3 antisymmetric stretching vibrations. Raman bands at 553, 571 and 586 cm(-1) are assigned to the ν4 out of plane bending modes of the PO4(3-) unit. Raman bands at 432, 457, 479 and 500 cm(-1) are attributed to the ν2 PO4 and H2PO4 bending modes. In the 2600 to 3800 cm(-1) spectral range, Raman bands for whiteite are found 3426, 3496 and 3552 cm(-1) are assigned to AlOH stretching vibrations. Broad infrared bands are also found at 3186 cm(-1). Raman bands at 2939 and 3220 cm(-1) are assigned to water stretching vibrations. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of whiteite to be ascertained and compared with that of other phosphate minerals.

  15. A vibrational spectroscopic study of the phosphate mineral whiteite CaMn(++)Mg2Al2(PO4)4(OH)2·8(H2O).

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Xi, Yunfei

    2014-04-24

    Vibrational spectroscopy enables subtle details of the molecular structure of whiteite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. The infrared and Raman spectroscopy were applied to compare the molecular structure of whiteite with that of other phosphate minerals. The Raman spectrum of whiteite shows an intense band at 972 cm(-1) assigned to the ν1PO4(3-) symmetric stretching vibrations. The low intensity Raman bands at 1076 and 1173 cm(-1) are assigned to the ν3PO4(3-) antisymmetric stretching modes. The Raman bands at 1266, 1334 and 1368 cm(-1) are assigned to AlOH deformation modes. The infrared band at 967 cm(-1) is ascribed to the PO4(3-)ν1 symmetric stretching vibrational mode. The infrared bands at 1024, 1072, 1089 and 1126 cm(-1) are attributed to the PO4(3-)ν3 antisymmetric stretching vibrations. Raman bands at 553, 571 and 586 cm(-1) are assigned to the ν4 out of plane bending modes of the PO4(3-) unit. Raman bands at 432, 457, 479 and 500 cm(-1) are attributed to the ν2 PO4 and H2PO4 bending modes. In the 2600 to 3800 cm(-1) spectral range, Raman bands for whiteite are found 3426, 3496 and 3552 cm(-1) are assigned to AlOH stretching vibrations. Broad infrared bands are also found at 3186 cm(-1). Raman bands at 2939 and 3220 cm(-1) are assigned to water stretching vibrations. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of whiteite to be ascertained and compared with that of other phosphate minerals. PMID:24491665

  16. Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply

    PubMed Central

    Rios, Juan Jose; Ó Lochlainn, Seosamh; Devonshire, Jean; Graham, Neil S.; Hammond, John P.; King, Graham J.; White, Philip J.; Kurup, Smita; Broadley, Martin R.

    2012-01-01

    Background and Aims Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Methods Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Key Results Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. Conclusions The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding. PMID:22362665

  17. Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au

    NASA Astrophysics Data System (ADS)

    Michel, R.; Bodemann, R.; Busemann, H.; Daunke, R.; Gloris, M.; Lange, H.-J.; Klug, B.; Krins, A.; Leya, I.; Lüpke, M.; Neumann, S.; Reinhardt, H.; Schnatz-Büttgen, M.; Herpers, U.; Schiekel, Th.; Sudbrock, F.; Holmqvist, B.; Condé, H.; Malmborg, P.; Suter, M.; Dittrich-Hannen, B.; Kubik, P.-W.; Synal, H.-A.; Filges, D.

    1997-07-01

    Cross sections for residual nuclide production by p-induced reactions were measured from thresholds up to 2.6 GeV using accelerators at CERN/Geneve, IPN/Orsay, KFA/Jülich, LANL/Los Alamos, LNS/Saclay, PSI/Villigen, TSL/Uppsala, LUC/Louvain La Neuve. The target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au were investigated. Residual nuclides were measured by X- and γ-spectrometry and by Accelerator Mass Spectrometry (AMS). The measured cross sections were corrected for interfering secondary particles in experiments with primary proton energies above 200 MeV. Our consistent database covers presently ca 550 nuclear reactions and contains nearly 15000 individual cross sections of which about 10000 are reported here for the first time. They provide a basis for model calculations of the production of cosmogenic nuclides in extraterrestrial matter by solar and galactic cosmic ray protons. They are of importance for many other applications in which medium energy nuclear reactions have to be considered ranging from astrophysics over space and environmental sciences to accelerator technology and accelerator-based nuclear waste transmutation and energy amplification. The experimental data are compared with theoretical ones based on calculations using an INC/E model in form of the HETC/KFA2 code and on the hybrid model of preequilibrium reactions in form of the AREL code.>

  18. Interdiffusion in the Mg-Al system and Intrinsic Diffusion in (Al3Mg2) Phase

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Kulkarni, Nagraj S; Sohn, Yong Ho

    2011-01-01

    Increasing use and development of lightweight Mg-alloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As a strengthening component, Al is one of the most important and common alloying elements for Mg-alloys. In this study, solid-to-solid diffusion couple techniques were employed to examine the interdiffusion between pure Mg and Al. Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopies (SEM) were employed to observe the formation of the intermetallics -Al12Mg17 and -Al3Mg2, but not -phase. Concentration profiles were determined using X-ray energy dispersive spectroscopy (XEDS). The growth constants and activation energies were determined for each intermetallic phase.

  19. An investigation of CaO-MgO-Al[sub 2]O[sub 3]-SiO[sub 2] liquids by nuclear magnetic resonance spectroscopy, vibrational spectroscopy, and ion dynamics simulation

    SciTech Connect

    Poe, B.T.

    1993-01-01

    A multi-directional approach has been taken in order to investigate the structural and dynamic properties associated with liquid phases in the system CaO-MgO-Al[sub 2]O[sub 3]-SiO[sub 2] (CMAS). Using a newly developed high temperature [sup 27]Al Nuclear Magnetic Resonance (NMR) spectroscopic technique, which involves simultaneously levitating and heating the sample with a CO[sub 2] laser, direct structural and dynamic information on refractory aluminate and aluminosilicate liquids has been obtained at temperature of 2000 K and above. From this technique, measured isotropic chemical shifts and NMR linewidths of the liquids exhibit systematic trends with variations in composition which can be associated with the static and relaxation behavior of the structural environment about aluminum. Structural information of the liquids is time-averaged due to the rapid motional averaging characteristic of these liquids at the timescale of the NMR experiment. Comparison of these results with those of corresponding glasses both from solid state NMR and vibrational spectroscopic experiments allows for a more detailed interpretation of the structural makeup of these liquids. Combined with results and next-nearest-neighbor environments allows for a more quantitative estimation of the melts investigated suggest greater proportions of high coordinate aluminum species (AlO[sub 5] and AlO[sub 6] units) compared to existing data compiled for corresponding glasses. Finally, in-situ high temperature Raman spectra have been obtained which show direct experimental evidence for the presence of distinct molecular species in these refractory liquids, and also indicate structural changes as a function to temperature.

  20. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Wagner, Thomas

    2008-01-01

    We present the results of thermodynamic modeling of fluid-rock interaction in the system Si-Al-Fe-Mg-Ca-Na-H-O-Cl using the GEM-Selektor Gibbs free energy minimization code. Combination of non-ideal mixing properties in solids with multicomponent aqueous fluids represents a substantial improvement and it provides increased accuracy over existing modeling strategies. Application to the 10-component system allows us to link fluid composition and speciation with whole-rock mineralogy, mass and volume changes. We have simulated granite-fluid interaction over a wide range of conditions (200-600 °C, 100 MPa, 0-5 m Cl and fluid/rock ratios of 10-2-104) in order to explore composition of magmatic fluids of variable salinity, temperature effects on fluid composition and speciation and to simulate several paths of alteration zoning. At low fluid/rock ratios (f/r) the fluid composition is buffered by the silicate-oxide assemblage and remains close to invariant. This behavior extends to a f/r of 0.1 which exceeds the amount of exsolved magmatic fluids controlled by water solubility in silicate melts. With increasing peraluminosity of the parental granite, the Na-, K- and Fe-bearing fluids become more acidic and the oxidation state increases as a consequence of hydrogen and ferrous iron transfer to the fluid. With decreasing temperature, saline fluids become more Ca- and Na-rich, change from weakly acidic to alkaline, and become significantly more oxidizing. Large variations in Ca/Fe and Ca/Mg ratios in the fluid are a potential geothermometer. The mineral assemblage changes from cordierite-biotite granites through two-mica granites to chlorite-, epidote- and zeolite-bearing rocks. We have carried out three rock-titration simulations: (1) reaction with the 2 m NaCl fluid leads to albitization, chloritization and desilication, reproducing essential features observed in episyenites, (2) infiltration of a high-temperature fluid into the granite at 400 °C leads to hydrolytic

  1. Phase Equilibria of ``Cu2O''-``FeO''-CaO-MgO-Al2O3 Slags at PO2 of 10-8.5 atm in Equilibrium with Metallic Copper for a Copper Slag Cleaning Production

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Pizarro, Claudio; Font, Jonkion; Moyano, Alex; Hayes, Peter C.; Jak, Evgueni

    2010-12-01

    Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.

  2. A SIMS Calibration of Benthic Foraminiferal Mg/Ca

    NASA Astrophysics Data System (ADS)

    Curry, W. B.; Marchitto, T. M.

    2005-12-01

    Using a suite of multi-core tops, we have produced a calibration of C. pachyderma Mg/Ca versus temperature spanning the temperature range of 5 to 18 °C. The core tops are located along the Florida margin south of Dry Tortugas (KNR166), along the Bahamas west of Andros Island and Great Bahama Bank (KNR166), and along the southeastern margin of Brazil (KNR159). Water depths range from about 200 to 800 m for the Florida Straits multi-cores and 400 to 800 m for the Brazil margin multi-cores. Five of the KNR166 core tops contain post-1950 bomb radiocarbon with Fmodern> 1; several others have bomb radiocarbon mixed in with pre-bomb sediments to give ages less than 0 BP. Core top ages are generally older for the KNR159 multi-cores, but each is from a location with a well documented Holocene section. Sedimentation rates for KNR166 multi-cores vary from 10 to 100 cm kyr-1; for KNR159 multi-cores, sedimentation rates vary from 5 to 10 cm kyr-1. Elemental ratios were determined by Secondary Ionization Mass Spectrometry (SIMS) using a Cameca IMS 3f ion probe calibrated for Mg/Ca and Sr/Ca using two standards which were independently measured using ICP-MS. Using SIMS, the external precision of the calibration standards averages ±3.5% (1σ RSD) for Mg/Ca and ± 1.7% (1σ RSD) for Sr/Ca. SIMS elemental measurements were performed on one to three individual C. pachyderma tests in each core top; more than 30 tests have been measured from 18 multi-core tops. Mg/Ca variability within C. pachyderma tests averages ± 20% (1σ RSD) with a small but significant trend toward higher variability at higher Mg/Ca. Higher Mg/Ca is observed in warmer waters, but the Mg/Ca values are generally lower (at comparable warm temperatures) than observed in previous calibration studies. At temperatures below 8 °C, C. pachyderma Mg/Ca values are less than 2 mmole/mole. At temperatures warmer than 15 °C, C. pachyderma Mg/Ca values exceed 3 mmole/mole. The slope of Mg/Ca versus temperature (~0.14 mmole

  3. Using benthic foraminiferal B/Ca to constrain the effect of dissolution on key Pliocene Mg/Ca temperature records

    NASA Astrophysics Data System (ADS)

    White, S. M.; Ravelo, A. C.

    2015-12-01

    The state of the Pliocene tropical Pacific is currently the subject of heated debate. The debate hinges on the veracity of planktic foraminiferal Mg/Ca temperatures from the west Pacific warm pool (WPWP) and the eastern equatorial Pacific (EEP) that show Pliocene WPWP temperatures similar to today but a warmer Pliocene EEP, resulting in a much reduced east-west gradient [Wara et al., 2005]. These findings form the basis of the "permanent El Niño-like state" paradigm of Pliocene climate. However, recent studies using organic biomarker proxies produce temperature records that indicate a WPWP cooling trend since the Pliocene that differs markedly from Mg/Ca-temperature records [O'Brien et al., 2014; Zhang et al., 2014]. Though much of the debate has focused on changes in seawater Mg/Ca, spatial variations in proxy agreement point to dissolution as a key factor. Dissolution, which imparts a cool bias to Mg/Ca temperatures, varies across ocean basins depending on Δ[CO32-], the difference from the carbonate ion concentration needed for calcite saturation. By necessity, dissolution corrections use the modern value of Δ[CO32-] for the entire record, so it is possible that Pliocene proxy discrepancies could stem from varying Δ[CO32-] over time. Here we present benthic foraminiferal B/Ca data (a proxy for Δ[CO32-]) from the EEP and WEP spanning the past 5 Myr, to constrain the effect of dissolution on Pliocene Mg/Ca records. To account for possible changes in seawater B/Ca, we present paired epifaunal-infaunal B/Ca data. Infaunal species are much less sensitive to Δ[CO32-] than epifaunal species, but would still record long-term changes in seawater B/Ca. The true Δ[CO32-] can thus be calculated from the epifaunal-infaunal B/Ca difference [Brown et al., 2011]. Our study is the first to apply this approach downcore; by accounting for long-term changes in seawater, it greatly expands use of the B/Ca proxy and enables a first attempt at correcting for time

  4. The effect of SiO2/Al2O3 ratio on the structure and microstructure of the glazes from SiO2-Al2O3-CaO-MgO-Na2O-K2O system

    NASA Astrophysics Data System (ADS)

    Partyka, Janusz; Sitarz, Maciej; Leśniak, Magdalena; Gasek, Katarzyna; Jeleń, Piotr

    2015-01-01

    Ceramic glazes are commonly used to covering of the facing surface of ceramics ware. A well-chosen oxide composition and firing conditions of glazes causes significant improvement of technical parameters of ceramic products. Modern glazes are classified as glass-ceramic composites with different crystalline phases arising during firing. The presence of crystals in the glass matrix is influenced by many factors, especially by oxides molar composition. A crucial role is played by the molar ratio of SiO2/Al2O3. In this work the six composition of glazes from SiO2-Al2O3-CaO-MgO-Na2O-K2O system were examined. The only variable is the ratio of the silicon oxideto alumina at a constant content of other components: MgO, CaO, K2O, Na2O, ZnO. In order to determine the real phase composition of the obtained glazes research on fluorescence spectrometer (XRF) were done. For structural studies X-ray diffraction (XRD) and spectroscopic in the middle infrared (MIR) were performed. In order to determine the state of the surface (microstructure) research on the scanning electron microscope (SEM) with EDX. The research allowed to determine the influence of SiO2/Al2O3 ratio on the structure and phase composition of glazes and the nature, and type of formed crystalline phases.

  5. Strengthening of Al and Al-Mg alloy wires by melt inoculation with Al/MgB2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Florián-Algarín, David; Marrero, Raúl; Padilla, Alexandra; Suárez, Oscar Marcelo

    2015-12-01

    This study hinges on the feasibility of strengthening Al and Al-Mg wires by adding Al nanocomposite pellets containing MgB2 nanoparticles into the melt upon fabrication. These MgB2 nanoparticles were obtained by fragmentation using a high-energy ball mill, and were, afterward, mechanically alloyed with pure aluminum. The resulting MgB2/Al nanocomposite pellets were sintered at 260°C to be subsequently added into molten aluminum and an Al-Mg alloy melt. Cold rolling intercalated with stepwise annealing allowed the fabrication of 1 mm diameter wires with a final area reduction of 96%. Mechanical and physical properties of the treated wire specimens were compared to those of similarly processed pure aluminum wire. The ultimate tensile strength of the treated wires increased approximately double fold with respect to untreated wires at the expense of some loss in electrical conductivity.

  6. Atomic data from the iron project. 3: Rate coefficients for electron impact excitation of boron-like ions: Ne VI, Mg VIII, Al IX, Si X, S XII, Ar XIV, Ca XVI and Fe XXII

    NASA Technical Reports Server (NTRS)

    Zhang, Hong Lin; Graziani, Mark; Pradhan, Anil K.

    1994-01-01

    Collison strengths and maxwellian averaged rate coefficients have been calculated for the 105 transitions among all 15 fine structure levels of the 8 LS terms 2s(sup 2) 2 P(P-2(sup 0 sub 1/, 3/2)), 2s2p(sup 2)(P-4(sub 1/2,3/2,5/2), D-2(sub 3/2, 5/2), S-2(sub 1/2), P-2(sub 1/2, 3/2)), 2p(sup 3)(S-4(sup 0)(sub 3/2), D-2(sup 0 sub 3/2, 5/2), P-2(sup 0 sub 1/2, 3/2)) in highly- charged B-like Ne, Mg, Al, Si, S, Ar, Ca and Fe. Rate coefficients have been tabulated at a wide range of temperatures, depending on the ion charge and abundance in plasma sources. Earlier work for O IV has also been extended to include the high temperature range. A brief discussion of the calculations, sample results, and comparison with earlier works is also given. While much of the new data should be applicable to UV spectral diagnostics, the new rates for the important ground state fine structure transition P-2(sup 0 sub 1/2)-P-2(sup 0 sub 3/2) should result in significant revision of the IR cooling rates in plasmas where B-like ions are prominent constituents, since the new rate coefficients are generally higher by several factors compared with the older data.

  7. Atomistically informed solute drag in Al Mg

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Curtin, W. A.

    2008-07-01

    Solute drag in solute-strengthened alloys, caused by diffusion of solute atoms around moving dislocations, controls the stress at deformation rates and temperatures useful for plastic forming processes. In the technologically important Al-Mg alloys, the solute drag stresses predicted by classical theories are much larger than experiments, which is resolved in general by eliminating the singularity of the dislocation core via Peierls-Nabarro-type models. Here, the drag stress versus dislocation velocity is computed numerically using a realistic dislocation core structure obtained from an atomistic model to investigate the role of the core and obtain quantitative stresses for comparison with experiment. The model solves a discrete diffusion equation in a reference frame moving with the dislocation, with input solute enthalpies and diffusion activation barriers in the core computed by or estimated from atomistic studies. At low dislocation velocities, the solute drag stress is controlled by bulk solute diffusion because the core diffusion occurs too quickly. In this regime, the drag stress can be obtained using a Peierls-Nabarro model with a core spreading parameter tuned to best match the atomistic models. At intermediate velocities, both bulk and core diffusion can contribute to the drag, leading to a complex stress-velocity relationship showing two peaks in stress. At high velocities, the drag stress is controlled solely by diffusion within and across the core. Like the continuum models, the drag stress is nearly linear in solute concentration. The Orowan relationship is used to connect dislocation velocity to deformation strain rate. Accounting for the dependence of mobile dislocation density on stress, the simulations are in good agreement with experiments on Al-Mg alloys over a range of concentrations and temperatures.

  8. Scleractinian corals cultured in low Mg/Ca seawater form aragonite skeleton

    NASA Astrophysics Data System (ADS)

    Stolarski, Jaroslaw; Reynaud, Stéphanie; Ferrier-Pages, Christine; Janiszewska, Katarzyna; Domart-Coulon, Isabelle; Beraud, Eric; Marrocchi, Yves; Mazur, Maciej; Szlachetko, Jakub; Meibom, Anders

    2010-05-01

    Scleractinian corals represent a testing ground for ideas regarding biologically vs. environmentally controlled calcification. The morphology of skeletal micro-structural units (arrangement of the skeletal fibers) and their biogeochemical composition have, for a long time, been interpreted from two opposite view points: (1) as a purely physico-chemical process involving simple supersaturation of a fluid close in composition to seawater, hypothesized to exist at the interface between the skeleton and the calicoblastic cell-layer, or (2) a complete physiological control of calcification by the organism by means of a presumed amorphous precursor phase and precisely utilized organic macromolecules that control mineralogy, crystal orientation etc. Paleontological data originally supported the second interpretation because the aragonitic skeletal mineralogy appeared to be stable through geological time despite of changes in seawater chemistry (e.g., the late Mesozoic decrease of Mg/Ca ratio), which was believed to promote inorganic precipitation of calcite. However, Ries et al. (Geology 2006, 34: 525-528) argued that scleractinians are so-called 'hyper-calcifiers' and limited in their mineralogical control. Accordingly, in modern seawater (Mg/Ca molar ratio = 5.2) such organisms form aragonite simply because the Mg/Ca ratio favors this mineralogy. However, if the Mg/Ca ratio drops below 3.5, the mineralogy of such 'hyper-calcifiers' are supposed to become calcitic. In low-Mg/Ca experiments, Ries et al. detected calcite by X-ray diffraction of the bulk skeleton of Acropora, Montipora, and Porites and also indicated, by electron microprobe analyses, the presence of calcite in the uppermost portion of coral skeleton, though the exact position of the mapped areas were not indicated. We have cultured Acropora, Porites, Pavona and Galaxea in low Mg/Ca (compared with normal seawater) artificial seawater (ASW). A low Mg/Ca ratio can be obtained either by lowering the Mg

  9. Melting in the system CaO-MgO-Al2O3-SiO2-FeO-Cr2O3 spanning the plagioclase-spinel lherzolite transition at 7 to 10 kbar: experiments versus thermodynamics

    NASA Astrophysics Data System (ADS)

    Keshav, S.; Tirone, M.; Gudfinnsson, G.; Presnall, D.

    2008-12-01

    Voluminous basaltic magmas erupt at mid-oceanic ridges (mid-ocean ridge basalts, MORB) as a consequence of mantle upwelling and melting beneath spreading plates. However, because the geochemistry of MORB is distinct from OIB (ocean-island basalts), both have great petrogenetic significance and carry important information about the chemical and physical properties/dynamics of the mantle. In the context of MORB, a critical yet unresolved question is how phase transitions within a polybaric melting zone affect melt productivity and thereby, possibly exert control on major and trace element composition of erupted magmas. Currently, the disagreements on these issues are fundamental, with great consequences that extend beyond petrology to global issues of potential temperatures, mantle melting, mantle heterogeneity, and mantle dynamics. Thermodynamics show that melt productivity depends critically on the transition reaction, and melting can in principle increase, decrease, or even stop at a transition. Phase equilibrium work from both systems CaO-MgO-Al2O3-SiO2-Na2O (CMASN) and CMAS-FeO (CMASF) have been used to argue that melt productivity may increase at the plagioclase-spinel (pl-sp) transition because the univariant solidus transition reaction has a positive dT/dP slope in these systems, moving to higher pressure relative to the CMAS system. However, melting models derived on the basis of MELTS and pMELTS show that the solidus has a negative slope on the pl-sp transition. If correct, this would cause suppression of melting as the mantle decompresses along a pertinent adiabat. Owing to these vast discrepancies between experiments and thermodynamics and to further clarify MORB genesis, in this work we present melting phase relations in the system CMASFCr at the plagioclase-spinel lherzolite transition from 7 to 10 kbar. Cr was chosen since recent work has shown that the addition of Cr to CMAS has an unusually large effect on Ca/Al of melt compositions at 1.1 GPa. With

  10. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Gaston, Lewis A; Lahori, Altaf Hussain; Mahar, Amanullah

    2016-07-15

    Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution. PMID:27058131

  11. Phosphate Capacities of CaF2-MgO and CaF2-CaO-MgO Slags

    NASA Astrophysics Data System (ADS)

    Akbari, F.; Pickles, C. A.

    2015-02-01

    Previously published sulphide capacity data and thermodynamic arguments have been employed to calculate the phosphate capacities and the phosphorus partition ratios between a molten carbon saturated iron alloy and binary CaF2-MgO slags and also ternary CaF2 -CaO-MgO slags at 1450 °C. For the CaF2-MgO binary system, a linear relationship was found between the phosphate and the sulphide capacities as follows: log ? = 1.2 log Cs + 25.2. For the ternary CaF2-CaO-MgO system at 1450 °C, the logarithm of the calculated phosphate capacities ranged from 19.47 to 20.15. With the addition of CaO, the phosphate capacities initially increased, reached a maximum and then decreased slightly. The addition of MgO to the CaF2-CaO system resulted in a decrease in the phosphate capacity. The calculated phosphorus partition ratios increased slightly with increasing mole fraction of CaO in the ternary system.

  12. Automated cleaning of foraminifera shells before Mg/Ca analysis using a pipette robot

    NASA Astrophysics Data System (ADS)

    Johnstone, Heather J. H.; Steinke, Stephan; Kuhnert, Henning; Bickert, Torsten; Pälike, Heiko; Mohtadi, Mahyar

    2016-08-01

    The molar ratio of magnesium to calcium (Mg/Ca) in foraminiferal calcite is a widely used proxy for reconstructing past seawater temperatures. Thorough cleaning of tests is required before analysis to remove contaminant phases such as clay and organic matter. We have adapted a commercial pipette robot to automate an established cleaning procedure, the "Mg-cleaning" protocol of Barker et al. (2003). Efficiency of the automated nine-step method was assessed through monitoring Al/Ca of trial samples (GeoB4420-2 core catcher). Planktonic foraminifera Globigerinoides ruber, Globigerinoides sacculifer, and Neogloboquadrina dutertrei from this sample gave Mg/Ca consistent with the habitat range of the three species, and 40-60% sample recovery after cleaning. Comparison between manually cleaned and robot-cleaned samples of G. ruber (white) from a sediment core (GeoB16602) showed good correspondence between the two methods for Mg/Ca (r = 0.93, p < 0001, n = 27). Average Al/Ca in robot-cleaned samples was 0.05 mmol/mol, showing that the samples are cleaned effectively by the robot. The robot offers increased sample throughput as batch sizes of up to 88 samples/blanks can be processed in ˜7 h with little intervention.

  13. Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models

    NASA Technical Reports Server (NTRS)

    Rammacher, W.; Cuntz, M.

    1991-01-01

    Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.

  14. Growth rate effects on Mg/Ca and Sr/Ca ratios constrained by belemnite calcite

    NASA Astrophysics Data System (ADS)

    Vinzenz Ullmann, Clemens

    2016-04-01

    Multiple temperature proxies from single species are important to achieve robust palaeotemperature estimates. Besides the commonly employed oxygen isotope thermometer, also Mg/Ca and Sr/Ca ratios perform well as proxies for calcification temperature in the shells of some species. While salinity changes affect the ratios of earth alkaline elements much less than the δ18O thermometer, metabolic effects may exert a strong control on the expression of element ratios. Such effects are hard to study because biomineralization experiments have to overcome large intraspecific variability and can hardly ever isolate the controls of a single parameter on shell geochemistry. The unique geometry of the belemnite rostrum constitutes an exception to this rule. Its shape, large size, and the visibility of growth increments as bands enable the analysis of multiple, correlatable, high resolution geochemical profiles in a single fossil. The effects of the growth rate variability amongst these profiles on Mg/Ca and Sr/Ca ratios has been tested here. Within a specimen of Passaloteuthis bisulcata (Early Toarcian, Cleveland Basin, UK), Mg/Ca and Sr/Ca data were obtained from four profiles. With respect to growth rate in the first profile, which was taken as a reference, the relative growth rates in the remaining three profiles varied by a factor of 0.9 to 2.7. Results suggest that relative growth rate is linearly correlated with Mg/Ca and Sr/Ca, with a decrease of Mg/Ca by 8 % and increase of Sr/Ca by 6 % per 100 % increase in relative growth rate. The observed trends are consistent with abiogenic precipitation experiments and suggest that crystal precipitation rate exerts a significant, predictable control on the element distribution in biogenic calcite.

  15. Mechanical Properties of High Strength Al-Mg Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Choi, Bong-Jae; Hong, Kyung-Eui; Kim, Young-Jig

    The aim of this research is to develop the high strength Al alloy sheet for the automotive body. For the fabrication Al-Mg alloy sheet, the composition of alloying elements was designed by the properties database and CALPHAD (Calculation Phase Diagram) approach which can predict the phases during solidification using thermodynamic database. Al-Mg alloys were designed using CALPHAD approach according to the high content of Mg with minor alloying elements. After phase predictions by CALPHAD, designed Al-Mg alloys were manufactured. Addition of Mg in Al melts were protected by dry air/Sulphur hexafluoride (SF6) mixture gas which can control the severe Mg ignition and oxidation. After rolling procedure of manufactured Al-Mg alloys, mechanical properties were examined with the variation of the heat treatment conditions.

  16. A Bayesian, multivariate calibration for Globigerinoides ruber Mg/Ca

    NASA Astrophysics Data System (ADS)

    Khider, D.; Huerta, G.; Jackson, C.; Stott, L. D.; Emile-Geay, J.

    2015-09-01

    The use of Mg/Ca in marine carbonates as a paleothermometer has been challenged by observations that implicate salinity as a contributing influence on Mg incorporation into biotic calcite and that dissolution at the sea-floor alters the original Mg/Ca. Yet, these factors have not yet been incorporated into a single calibration model. We introduce a new Bayesian calibration for Globigerinoides ruber Mg/Ca based on 186 globally distributed core top samples, which explicitly takes into account the effect of temperature, salinity, and dissolution on this proxy. Our reported temperature, salinity, and dissolution (here expressed as deep-water ΔCO32-) sensitivities are (±2σ) 8.7±0.9%/°C, 3.9±1.2%/psu, and 3.3±1.3%/μmol.kg-1 below a critical threshold of 21 μmol/kg in good agreement with previous culturing and core-top studies. We then perform a sensitivity experiment on a published record from the western tropical Pacific to investigate the bias introduced by these secondary influences on the interpretation of past temperature variability. This experiment highlights the potential for misinterpretations of past oceanographic changes when the secondary influences of salinity and dissolution are not accounted for. Multiproxy approaches could potentially help deconvolve the contributing influences but this awaits better characterization of the spatio-temporal relationship between salinity and δ18Osw over millennial and orbital timescales.

  17. Interdiffusion and Intrinsic Diffusion in the Mg-Al System

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho; Kulkarni, Nagraj S

    2012-01-01

    Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electron microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in the -Al

  18. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    SciTech Connect

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  19. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    DOE PAGES

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  20. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg-Ca and Mg-Ca-Zn alloys for biomedical applications.

    PubMed

    Pan, Yaokun; He, Siyu; Wang, Diangang; Huang, Danlan; Zheng, Tingting; Wang, Siqi; Dong, Pan; Chen, Chuanzhong

    2015-02-01

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg-0.6Ca, Mg-0.55Ca-1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl-aminomethane hydrochloric acid (Tris-HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg-0.55Ca-1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg-0.55Ca-1.74Zn alloy has the potential to be served as a biodegradable implant.

  1. Evaluation of foraminiferal trace element cleaning methods on the Mg/Ca of marine ostracoda Krithe

    NASA Astrophysics Data System (ADS)

    Gray, W. R.; Holmes, J. A.; Shevenell, A.

    2012-12-01

    Mg/Ca of marine ostracod Krithe calcite is a potentially important tool for reconstructing oceanic bottom water (150-4000m) temperatures, as core top studies show ostracod Mg uptake is unaffected by carbonate ion saturation. Rigorous cleaning procedures, routinely used to remove clays, organic matter and Fe-Mn-oxides in trace element studies of foraminifera are not regularly applied to marine ostracods. Here we assess the possibility of reducing the analytical uncertainty in Krithe Mg/Ca analyses by employing foraminiferal trace element cleaning procedures and determining the effects of these cleaning procedures on valve chemistry. Using coretop samples of adult and juvenile male Krithe pernoides valves from boxcore OCE205-50BC (26.23oN, 77.7oW, 817m water depth), we apply methanol sonication, hydrogen peroxide oxidation, and hydrazine reduction to single ostracod valves, and sequentially assess the impact of each cleaning step. We compare the results from each cleaning step to valves cleaned using the traditional ethanol/DI rinse method. Significant correlation between Al/Fe and Mn/Fe respectively indicate that clays and Fe-Mn-oxides are detectable in traditionally cleaned samples. Mn and Al covary with Mg in juvenile but not in adult valves, indicating that clays and Fe-Mn-oxides exert a significant control on the Mg/Ca of low valve weight juveniles. Results of our Krithe cleaning experiments confirm that the removal of clays by sonication in methanol results in a decrease in average Fe, Al and Mn values, as well as a reduction in Mg/Ca by 1 mmol/mol in juveniles and 0.5 mmol/mol in adults. Following hydrogen peroxide oxidation samples show a reduction in Fe, Al and Mn concentrations with no significant change in valve Mg/Ca (±0.15 mmol/mol). After reductive cleaning we observe a significant decrease in valve Mg (>1 mmol/mol in juveniles), however there is little effect on Mn and Fe. Examination of adult and juvenile Krithe valves using scanning electron

  2. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.

    PubMed

    Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L

    2015-01-01

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878

  3. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr

    PubMed Central

    Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.

    2015-01-01

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878

  4. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.

    PubMed

    Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L

    2015-05-29

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.

  5. The in vitro biocompatibility and macrophage phagocytosis of Mg17Al12 phase in Mg-Al-Zn alloys.

    PubMed

    Liu, Chen; He, Peng; Wan, Peng; Li, Mei; Wang, Kehong; Tan, Lili; Zhang, Yu; Yang, Ke

    2015-07-01

    Mg alloys are gaining interest for applications as biodegradable medical implant, including Mg-Al-Zn series alloys with good combination of mechanical properties and reasonable corrosion resistance. However, whether the existence of second phase particles in the alloys exerts influence on the biocompatibility is still not clear. A deeper understanding of how the particles regulate specific biological responses is becoming a crucial requirement for their subsequent biomedical application. In this work, the in vitro biocompatibility of Mg17Al12 as a common second phase in biodegradable Mg-Al-Zn alloys was investigated via hemolysis, cytotoxicity, cell proliferation, and cell adhesion tests. Moreover, osteogenic differentiation was evaluated by the extracellular matrix mineralization assay. The Mg17Al12 particles were also prepared to simulate the real situation of second phase in the in vivo environment in order to estimate the cellular response in macrophages to the Mg17Al12 particles. The experimental results indicated that no hemolysis was found and an excellent cytocompatibility was also proved for the Mg17Al12 second phase when co-cultured with L929 cells, MC3T3-E1 cells and BMSCs. Macrophage phagocytosis co-culture test revealed that Mg17Al12 particles exerted no harmful effect on RAW264.7 macrophages and could be phagocytized by the RAW264.7 cells. Furthermore, the possible inflammatory reaction and metabolic way for Mg17Al12 phase were also discussed in detail.

  6. Ca and Mg Incorporation in Siderite at Low Temperatures (< 50° C): Results from Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Sanchez-Roman, M.; Romanek, C. S.; Xu, H.; Coleman, M.

    2008-12-01

    Siderite (FeCO3) is a common mineral found in modern environments and in ancient rocks produce usually by microbia mediation [1,2]. It usually forms concretions with strongly varying chemical compositions which are governed by both pore-water origin and by microbial influence. In addition, siderite has also been identified in extraterrestrial material such as meteorites and dust particles [3,4]. The geochemical information stored in siderite provides valuable insights into the environmental conditions of mineral formation and the processes by which it is modified over time [5]. To unerstand the inorganic constraints on precipitation relative to natural compositions we undertook free drift experiments under anaerobic conditions at 25, 35 and 45°C with variable concentrations of Fe, Ca and Mg in solution. Samples of solution and solid were withdrawn at different time intervals (15, 21 and 30 days) during time course experiments to determine the composition of the solution and mineral precipitates, and the morphology and mineralogy of the precipitates. After 15 days of incubation a metastable phase was formed, whereas after 21 and 30 days of incubation siderite, Ca-siderite, Mg-siderite Ca-Mg siderite and/or Fe-pokrovskite (a hydrated magnesium hydroxy carbonate) were formed depending on the aqueous Fe, Ca and Mg concentrations in the solution. The Mg and Ca contents in the siderite increased with increasing Mg and Ca concentrations in the medium and with increasing temperature. Siderite precipitates ranged from 1.5 to 50.81 mol percent CaCO3 and from 0.54 to 41.38 mol percent MgCO3. Pokrovskite precipitates ranged from 48.8 to 57.7 mol percent MgCO3 and from 42.34 to 51.17 mol percent FeCO3. The Fe content in the pokrovskite increased with increasing temperature. These inorganic experiments will help to understand the mechanism of Ca-Mg-Fe carbonate formation in natural systems and they are of fundamental importance not only for understanding modern and

  7. Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial property

    PubMed Central

    He, Guanping; Wu, Yuanhao; Zhang, Yu; Zhu, Ye; Liu, Yang; Li, Nan; Li, Mei; Zheng, Guan; He, Baohua; Yin, Qingshui; Zheng, Yufeng; Mao, Chuanbin

    2015-01-01

    Most of the magnesium (Mg) alloys possess excellent biocompatibility, mechanical property and biodegradability in orthopedic applications. However, these alloys may suffer from bacterial infections due to their insufficient antibacterial capability. In order to reduce the post-surgical infections, a series of biocompatible Mg–1Ca-0.5Sr-xZn (x=0, 2, 4, 6) alloys were fabricated with the addition of antibacterial Zn with variable content and evaluated in terms of their biocompatibility and antibacterial property. The in vitro corrosion study showed that Mg-1Ca-0.5Sr-6Zn alloys exhibited a higher hydrogen evolution volume after 100 h immersion and resulted in a higher pH value of the immersion solution. Our work indicated that Zn-containing Mg alloys exhibited good biocompatibility with high cell viability. The antibacterial studies reveal that the number of bacteria adhered on all of these Mg alloy samples diminished remarkably compared to the Ti-6Al-4V control group. We also found that the proliferation of the bacteria was inhibited by these Mg alloys extracts. Among the prepared alloys, Mg-1Ca-0.5Sr-6Zn alloy not only exhibited a strong antibacterial effect, but also promoted the proliferation of MC3T3-E1 osteoblasts, suggesting that it is a promising alloy with both good antibacterial property and good biocompatibility for use as an orthopedic implant. PMID:26693010

  8. Vacuum ultraviolet thin films. I - Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films. II - Vacuum ultraviolet all-dielectric narrowband filters

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Spann, James F.; Torr, Marsha R.

    1990-01-01

    An iteration process matching calculated and measured reflectance and transmittance values in the 120-230 nm VUV region is presently used to ascertain the optical constants of bulk MgF2, as well as films of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 deposited on MgF2 substrates. In the second part of this work, a design concept is demonstrated for two filters, employing rapidly changing extinction coefficients, centered at 135 nm for BaF2 and 141 nm for SiO2. These filters are shown to yield excellent narrowband spectral performance in combination with narrowband reflection filters.

  9. Differential responses of the Mg/Ca Ratio in scleractinians to variations in Mg2+ and Ca2+ content of seawater

    NASA Astrophysics Data System (ADS)

    Swart, P. K.; Giri, S.; Adkins, J. F.

    2014-12-01

    Although it is well known that the Mg2+/Ca2+ ratio of seawater has varied throughout the Phanerozoic, there is little information on whether the concentration of Ca2+ has changed in conjunction with Mg2+ or whether these two elements have changed independently. In addition while it has been documented that the Mg/Ca has varied within scleractinian corals during certain time periods, there have been no studies which have verified that changing Mg/Ca ratio in corals corresponds with a similar variation in seawater. Here we report studies using Modern corals which have been grown for an extended period of time (10 weeks) in elevated Ca2+and Mg2+ concentrations. While these studies show that the Mg2+/Ca2+ of the seawater is related to the same ratio in the coral skeleton, the slope of the relationship is dependent upon which of the two cations is altered. When the Ca2+ is increased, thereby decreasing the Mg2+/Ca2+ ratio in seawater, then the ratio within the skeleton decreases by ~0.7 mM/M for every 1 M/M decrease in the Mg2+ / Ca2+ ratio in the external seawater. However, when the Mg2+/Ca2+ ratio is altered by adding Mg2+, then there is an increase is ~2 mM/M for every 1 M/M increase in Mg2+/Ca2+. Assuming that such changes can be replicated by the reverse experiment, i.e. reducing the concentration of Ca2+ and Mg2+, then such a finding offers a solution to resolving whether the Mg/Ca ratio in ancient unaltered corals is responding to a change in Mg2+ or a change in Ca2+ in seawater. For example, the Mg/Ca ratios of unaltered corals from a defined time period might only be possible if the Ca2+ of seawater was altered rather than Mg2+. The reverse might be case for other time periods. Further supporting evidence for this hypothesis will be presented by other elements which exhibited unexpected behavior in response to changing Ca2+ and Mg2+.

  10. Positron lifetime studies of decomposition in 2024 (Al-Cu-Mg) and 7010 (Al-Zn-Cu-Mg) alloys

    SciTech Connect

    Dlubek, G. |; Lademann, P.; Krause, H.; Krause, S.; Unger, R.

    1998-09-04

    In the current paper, the decomposition behavior of the engineering alloys 2024 (Al-Cu-Mg) and 7010 (Al-Zn-Cu-Mg) is studied using positron lifetime measurements. Positrons probe open volume defects such as vacancies and dislocations. However, they may also be used to investigate coherent zones and incoherent precipitates. In order to understand the rather complicated precipitation sequences and the response of positrons to different type of precipitates occurring in 2024 and 7010 alloys, binary and ternary laboratory alloys were also investigated under the same experimental conditions as the engineering alloys. The interpretations of the results are based on experiences of the group from extensive positron studies of laboratory alloys such as Al-Zn, Al-Zn-Mg, Al-Cu, and further Al alloys (see also the review (4)). Their collected results are shown as lifetimes and curve-shape parameters S of the electron-positron momentum distribution curves characteristic for different precipitates in Al alloys.

  11. A semi-empirical thermodynamic formalism for high-pressure aqueous silicate solutions in the model system K2O-Na2O-CaO-MgO-Al2O3-SiO2-H2O-CO2, a first approach

    NASA Astrophysics Data System (ADS)

    Schertl, H.; Burchard, M.; Hertwig, A.; Maresch, W. V.

    2012-12-01

    The results of experimental solubility determinations in aqueous solutions at high pressures up to 5 GPa are often difficult to gauge with respect to precision and accuracy, because of the potential uncertainties inherent in the available experimental approaches. Existing models of aqueous silicate solutions at low pressures are either unsuitable for extrapolation beyond 0.5 to 1.0 GPa or involve polynomial fits in which the fit parameters lack direct physical meaning. An approach described by Gerya et al. [1,2], based on statistical thermodynamics, allows aqueous silicate solutions to be described as mixtures of fictive oxide "components" together with water molecules in both clustered and "gas-like", i.e. unassociated, states. Burchard et al. [3] presented a first data set for fluids in the system CaO-SiO2-H2O, using the statistical thermodynamic formulation of Gerya et al [1,2] and extending it to include charged fluid species such as Ca2+, Ca(OH)+, Ca(OH)2, OH- and H+. We have now further developed the data set of Burchard et al. [3] by including carbonic fluid species and extending the model system to include MgO and Al2O3. In addition, initial progress has been made in including potassium and sodium model species. Solid phase data were obtained by mathematical conversion of existing thermodynamic mineral data into the semi-empirical form. With this semi-empirical data set calculations for simple, "wet" silicate rocks are now possible. We present applications to suites of jadeitites and jadeite-lawsonite-quartz rocks from the Rio San Juan serpentinite mélanges of the northern Dominican Republic. These rocks have crystallized from high-pressure aqueous fluids in a long-lived intra-oceanic subduction-zone environment at various times and at different P-T conditions (Schertl et al. [4]). The fluid-rock interactions leading to these spectacular rocks are still poorly understood. [1] Gerya et al. (2004) Phys. Chem. Minerals 31, 429-455; [2] Gerya et al. (2005) Eur

  12. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    NASA Astrophysics Data System (ADS)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  13. A comparison of mechanical properties between Al and Al3Mg

    NASA Astrophysics Data System (ADS)

    Yang, Rong; Tang, Bin; Gao, Tao

    2016-11-01

    On the basis of first principles calculations, we have calculated the elastic properties, stress-strain relations, ideal tensile strengths, ideal shear strengths, and the ideal compressed strengths of Al and Al3Mg. The stress-strain relations of Al3Mg are strikingly similar to those of Al, indicating that the crystal structure appears to be more important than the identity of the individual atoms during uniaxial deformation. Al3Mg is found to have larger moduli and higher strengths than Al but less ductile than Al. So Al3Mg is expected to be a harder material, consistent with its exploitation in Al precipitate-hardening mechanisms. The calculated elastic properties, tensile strengths and shear strengths of Al are consistent with experimental values or previous theoretical results. We also use another method (molecular dynamics (MD) simulations) to recalculate elastic constants, ideal tensile and compressed strength of Al3Mg for checking and comparing. We find that the results obtained by the two methods agree well with each other. The failure modes under uniaxial <100> tension are also explored for Al and Al3Mg. Our calculations confirm that Al fail by shear and predict that Al3Mg also fail by shear.

  14. Structural, Electronic and Elastic Properties of MgH2, CaH2 and Ca4Mg3H14 for Hydrogen Storage Materials

    NASA Astrophysics Data System (ADS)

    Djellab, Sihem; Bouhadda, Youcef; Bououdina, Mohamed; Fenineche, Noureddine; Boudouma, Youcef

    2016-08-01

    The structural, electronic and elastic properties of MgH2, CaH2 and Ca4Mg3H14 have been determined using first principles calculation based on density functional theory. The calculated lattice constants were in good agreement with the experimental values. The electronic density of states revealed that these hydrides are insulators. The calculated elastic constants of MgH2, CaH2 and Ca4Mg3H14 indicated that these hydrides are mechanically stable at zero pressure. The bulk modulus B, shear modulus G, Young's modulus E, and Poisson's ratio ν were derived, and the ductility was discussed.

  15. Uptake of Ca2+ mediated by the (Ca2+ + Mg2+)-ATPase in reconstituted vesicles.

    PubMed

    Gould, G W; McWhirter, J M; East, J M; Lee, A G

    1987-11-01

    The (Ca2+ + Mg2+)-ATPase was purified from skeletal muscle sarcoplasmic reticulum and reconstituted into sealed phospholipid vesicles by solution in cholate and deoxycholate followed by detergent removal on a column of Sephadex G-50. The level of Ca2+ accumulated by these vesicles, either in the presence or absence of phosphate within the vesicles, increased with increasing content of phosphatidylethanolamine in the phospholipid mixture used for the reconstitution. The levels of Ca2+ accumulated in the absence of phosphate were very low for vesicles reconstituted with egg yolk phosphatidylcholine alone at pH 7.4, but increased markedly with decreasing pH to 6.0. Uptake was also relatively low for vesicles reconstituted with dimyristoleoyl- or dinervonylphosphatidylcholine, and addition of cholesterol had little effect. The level of Ca2+ accumulated increased with increasing external K+ concentration, and was also increased by the ionophores FCCP and valinomycin. Vesicle sizes changed little with changing phosphatidylethanolamine content, and the sidedness of insertion of the ATPase was close to random at all phosphatidylethanolamine contents. It is suggested that the effect of phosphatidylethanolamine on the level of Ca2+ accumulation follows from an effect on the rate of Ca2+ efflux mediated by the ATPase.

  16. Laser-Ultrasonic Inspection of MG/AL Castings

    SciTech Connect

    Blouin, Alain; Levesque, Daniel; Monchalin, Jean-Pierre; Baril, Eric; Fischersworring-Bunk, Andreas

    2005-04-09

    Laser-ultrasonics is used to assess the metallurgical bond between Mg/Al materials in die-cast Magnesium/Aluminum composite. The acoustic impedances of Mg, Al and air are such that the amplitude of ultrasonic echoes reflected back from a void is many times larger than the amplitude of those reflected back from a well-bonded interface. In addition, the polarity of echoes from a void is inverted compared to that from a well-bonded interface. Laser-ultrasonic F-SAFT is also used for imaging tilted Mg/Al interfaces. Experimental setup, signal processing and results for detecting voids in the Mg/Al interface of cast parts are presented.

  17. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy.

    PubMed

    Zheng, Y F; Gu, X N; Xi, Y L; Chai, D L

    2010-05-01

    Mg/Ca (1 wt.%, 5 wt.%, 10 wt.% Ca) composites were prepared from pure magnesium and calcium powders using the powder metallurgy method, aiming to enlarge the addition of Ca content without the formation of Mg(2)Ca. The microstructures, mechanical properties and cytotoxicities of Mg/Ca composite samples were investigated. The corrosion of Mg/Ca composites in Dulbecco's modified Eagle's medium (DMEM) for various immersion intervals was studied by electrochemical impedance spectroscopy measurements and environmental scanning electron microscope, with the concentrations of released Mg and Ca ions in DMEM for various immersion time intervals being measured. It was shown that the main constitutional phases were Mg and Ca, which were uniformly distributed in the Mg matrix. The ultimate tensile strength (UTS) and elongation of experimental composites decreased with increasing Ca content, and the UTS of Mg/1Ca composite was comparable with that of as-extruded Mg-1Ca alloy. The corrosion potential increased with increasing Ca content, whereas the current density and the impedance decreased. It was found that the protective surface film formed quickly at the initial immersion stage. With increasing immersion time, the surface film became compact, and the corrosion rate of Mg/Ca composites slowed down. The surface film consisted mainly of CaCO(3), MgCO(3)x3H(2)O, HA and Mg(OH)(2) after 72 h immersion in DMEM. Mg/1Ca and Mg/5Ca composite extracts had no significant toxicity (p>0.05) to L-929 cells, whereas Mg/10Ca composite extract induced approximately 40% reduced cell viability.

  18. Controls on Sr/Ca and Mg/Ca in scleractinian corals: The effects of Ca-ATPase and transcellular Ca channels on skeletal chemistry

    NASA Astrophysics Data System (ADS)

    Emif Allison, Nicola; Cohen, Itay; Finch, Adrian A.; Erez, Jonathan

    2011-11-01

    The Sr/Ca of aragonitic coral skeletons is a commonly used palaeothermometer. However skeletal Sr/Ca is typically dominated by weekly-monthly oscillations which do not reflect temperature or seawater composition and the origins of which are currently unknown. To test the impact of transcellular Ca2+ transport processes on skeletal Sr/Ca, colonies of the branching coral, Pocillopora damicornis, were cultured in the presence of inhibitors of Ca-ATPase (ruthenium red) and Ca channels (verapamil hydrochloride). The photosynthesis, respiration and calcification rates of the colonies were monitored throughout the experiment. The skeleton deposited in the presence of the inhibitors was identified (by 42Ca spike) and analysed for Sr/Ca and Mg/Ca by secondary ion mass spectrometry. The Sr/Ca of the aragonite deposited in the presence of either of the inhibitors was not significantly different from that of the solvent (dimethyl sulfoxide) control, although the coral calcification rate was reduced by up to 66% and 73% in the ruthenium red and verapamil treatments, respectively. The typical precision (95% confidence limits) of mean Sr/Ca determinations within any treatment was <±1% and differences in skeletal Sr/Ca between treatments were correspondingly small. Either Ca-ATPase and Ca channels transport Sr2+ and Ca2+ in virtually the same ratio in which they are present in seawater or transcellular processes contribute little Ca2+ to the skeleton and most Ca is derived from seawater transported directly to the calcification site. Variations in the activities of Ca-ATPase and Ca-channels are not responsible for the weekly-monthly Sr/Ca oscillations observed in skeletal chronologies, assuming that the specificities of Ca transcellular transport processes are similar between coral genera.

  19. Controls on Sr/Ca and Mg/Ca in scleractinian corals: The effects of Ca-ATPase and transcellular Ca channels on skeletal chemistry

    NASA Astrophysics Data System (ADS)

    Allison, Nicola; Cohen, Itay; Finch, Adrian A.; Erez, Jonathan; EMIF

    2011-11-01

    The Sr/Ca of aragonitic coral skeletons is a commonly used palaeothermometer. However skeletal Sr/Ca is typically dominated by weekly-monthly oscillations which do not reflect temperature or seawater composition and the origins of which are currently unknown. To test the impact of transcellular Ca 2+ transport processes on skeletal Sr/Ca, colonies of the branching coral, Pocillopora damicornis, were cultured in the presence of inhibitors of Ca-ATPase (ruthenium red) and Ca channels (verapamil hydrochloride). The photosynthesis, respiration and calcification rates of the colonies were monitored throughout the experiment. The skeleton deposited in the presence of the inhibitors was identified (by 42Ca spike) and analysed for Sr/Ca and Mg/Ca by secondary ion mass spectrometry. The Sr/Ca of the aragonite deposited in the presence of either of the inhibitors was not significantly different from that of the solvent (dimethyl sulfoxide) control, although the coral calcification rate was reduced by up to 66% and 73% in the ruthenium red and verapamil treatments, respectively. The typical precision (95% confidence limits) of mean Sr/Ca determinations within any treatment was <±1% and differences in skeletal Sr/Ca between treatments were correspondingly small. Either Ca-ATPase and Ca channels transport Sr 2+ and Ca 2+ in virtually the same ratio in which they are present in seawater or transcellular processes contribute little Ca 2+ to the skeleton and most Ca is derived from seawater transported directly to the calcification site. Variations in the activities of Ca-ATPase and Ca-channels are not responsible for the weekly-monthly Sr/Ca oscillations observed in skeletal chronologies, assuming that the specificities of Ca transcellular transport processes are similar between coral genera.

  20. Crystal and electronic structures, luminescence properties of Eu{sup 2+}-doped Si{sub 6-z}Al{sub z}O{sub z}N{sub 8-z} and M{sub y}Si{sub 6-z}Al{sub z-y}O{sub z+y}N{sub 8-z-y} (M=2Li, Mg, Ca, Sr, Ba)

    SciTech Connect

    Li, Y.Q. Hirosaki, N.; Xie, R.J.; Takeda, T.; Mitomo, M.

    2008-12-15

    The crystal structure, electronic structure, and photoluminescence properties of Eu{sub x}Si{sub 6-z}Al{sub z-x}O{sub z+x}N{sub 8-z-x} (x=0-0.1, 0Al{sub z-x-y}O{sub z+x+y}N{sub 8-z-x-y} (M=2Li, Mg, Ca, Sr, Ba) have been studied. Single-phase Eu{sub x}Si{sub 6-z}Al{sub z-x}O{sub z+x}N{sub 8-z-x} can be obtained in very narrow ranges of x{<=}0.06 (z=0.15) and z<0.5 (x=0.3), indicating that limited Eu{sup 2+} ions can be incorporated into nitrogen-rich Si{sub 6-z}Al{sub z}O{sub z}N{sub 8-z}. The Eu{sup 2+} ion is found to occupy the 2b site in a hexagonal unit cell (P6{sub 3}/m) and directly connected by six adjacent nitrogen/oxygen atoms ranging 2.4850-2.5089 A. The calculated host band gaps by the relativistic DV-X{alpha} method are about 5.55 and 5.45 eV (without Eu{sup 2+} 4f5d levels) for x=0 and 0.013 in Eu{sub x}Si{sub 6-z}Al{sub z-x}O{sub z+x}N{sub 8-z-x} (z=0.15), in which the top of the 5d orbitals overlap with the Si-3s3p and N-2p orbitals within the bottom of the conduction band of the host. Eu{sub x}Si{sub 6-z}Al{sub z-x}O{sub z+x}N{sub 8-z-x} shows a strong green emission with a broad Eu{sup 2+} band centered at about 530 nm under UV to near-UV excitation range. The excitation and emission spectra are hardly modified by Eu concentration and dual-doping ions of Li and other alkaline-earth ions with Eu. Higher Eu concentrations can significantly quench the luminescence of Eu{sup 2+} and decrease the thermal quenching temperature. In addition, the emission spectrum can only be slightly tuned to the longer wavelengths ({approx}529-545 nm) by increasing z within the solid solution range of z<0.5. Furthermore, the luminescence intensity of Eu{sub x}Si{sub 6-z}Al{sub z-x}O{sub z+x}N{sub 8-z-x} can be improved by increasing z and the dual-doping of Li and Ba. - Graphical abstract: Excitation and emission spectra of Eu{sub x}Si{sub 6-z}Al{sub z-x}O{sub z+x}N{sub 8-z-x} with the project of a 2x2x2 supercell crystal structure

  1. Spontaneously intermixed Al-Mg barriers enable corrosion-resistant Mg/SiC multilayer coatings

    SciTech Connect

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; Robinson, Jeff C.; Alameda, Jennifer; Walton, Christopher C.

    2012-07-24

    Magnesium/silicon carbide (Mg/SiC) has the potential to be the best-performing reflective multilayercoating in the 25–80 nm wavelength region but suffers from Mg-related corrosion, an insidious problem which completely degrades reflectance. We have elucidated the origins and mechanisms of corrosion propagation within Mg/SiC multilayers. Based on our findings, we have demonstrated an efficient and simple-to-implement corrosion barrier for Mg/SiC multilayers. In conclusion, the barrier consists of nanometer-scale Mg and Al layers that intermix spontaneously to form a partially amorphous Al-Mg layer and is shown to prevent atmospheric corrosion while maintaining the unique combination of favorable Mg/SiC reflective properties.

  2. Li/Ca, B/Ca, and Mg/Ca content in sea urchin spines cultured at different temperatures and pCO2

    NASA Astrophysics Data System (ADS)

    Nguyen, T.; Eagle, R.; Courtney, T.; Ries, J. B.; Brillo, V.; Rollion-Bard, C.; Gabitov, R. I.; Tripati, A. K.

    2012-12-01

    Element/calcium ratios within biogenic calcium carbonate minerals have been used as tools to reconstruct seawater temperature and pH. Most recent studies have focused on examining systematics governing elemental incorporation in coral, foraminifera, and otoliths [1-3, etc.]. In this study we focus on examining Li/Ca, B/Ca, and Mg/Ca ratios in sea urchins cultured at different temperatures and pCO2. We conducted in situ secondary ion mass spectrometry (SIMS) analyses on two different species of sea urchins. A temperate species of sea urchin (Arbacia punctulata) was cultured at variable pCO2 (400, 600, 900, 2850 ppmv) and at a constant temperature (25°C) [4]. We also investigated a tropical species of sea urchins (Echinometra viridis) that was cultured at variable pCO2 (400 and 1000 ppmv) and variable temperature (20°C and 30°C). The highly porous spines were embedded in epoxy and polished with 3 μm diamond suspension. SIMS analyses were performed with an oxygen primary beam and a lateral spatial resolution of about 40 μm. The standard deviation for SIMS spot analysis of Li in the reference synthetic calcite, CAL-HTP, was 3.5 % (1σ). The standard deviation of SIMS spots analyses of coral reference material M93-TB-FC-1 was 9.5 % (1σ). The bulk B content in this reference coral was determined by LA-ICP-MS as 39.3 ppm [6]. The standard deviation for the SIMS spot analysis of Mg in the reference synthetic calcite, UCI, was 1% (1σ). For the temperate species, B/Ca ratios decrease from ~0.39 to 0.29 mmol/mol as pCO2 increase from 400 to 2850 ppmv. This suggests that B/Ca ratios in this species may be a viable proxy for paleo-seawater pH. Other elements such as Li/Ca showed an increase from .047 to .052 mmol/mol as pCO2 increased. However, Mg/Ca did not show any significant trend as pCO2 increased. The tropical species showed a general increase in Li/Ca, B/Ca, Mg/Ca with increasing temperature. When temperature was held constant, there was no significant effect of

  3. Tuning the Mg/Ca Paleothermometer for High-Latitude Species and Insights into Intraspecific and Intrashell Variability

    NASA Astrophysics Data System (ADS)

    Davis, C. V.; Fehrenbacher, J. S.; Russell, A. D.; Spero, H. J.; Hill, T. M.

    2015-12-01

    The Mg/Ca of planktic foraminifera shells has become a widely used paleothermometer. However, culture-based calibrations have been confined primarily to low-latitude species with limited data from species growing below 12°C. Some core-top calibrations on high-latitude Neogloboquadrinids raise questions about the influence of [CO3-2] and low Mg/Ca "crusts" on shell geochemistry (e.g. 1). This study seeks to extend the low temperature range of culture-based calibrations to temperatures relevant in high-latitudes and active upwelling areas, taking into account the wide range of [CO3-2] observed in these environments. We further examine whether intrashell geochemical variability in the form of "crusting" poses a limitation to Mg/Ca paleothermometry of crust-forming species. Here we present the results of laboratory experiments with living Neogloboquadrina incompta and Neogloboquadrina pachyderma collected and cultured at UC Davis Bodega Marine Laboratory at temperatures between 6° and 12°C and a range of [CO3-2]. We use a combination of Laser Ablation Inductively Coupled Mass Spectrometry and Electron Microprobe mapping, to analyze both intraspecific and intrashell variability in Mg/Ca. We extend existing culture-based temperature calibrations to 6°C, while accounting for the effect of environmental [CO3-2]. Single-shell analyses reveal a high degree of intraspecific variability in the Mg/Ca of calcite grown under stable laboratory conditions. Intrashell analyses identify characteristic low Mg/Ca "crusts" in N. incomptagrown at constant temperature, which record chamber average Mg/Ca within the range of uncrusted conspecifics grown at the same temperature. 1. R. Kozdon et al., Reassessing Mg/Ca temperature calibrations of Neogloboquadrina pachyderma (sinistral) using paired δ44/40Ca and Mg/Ca measurements. Geochem Geophys. 10, Q03005 (2009).

  4. Tracing high-pressure metamorphism in marbles: Phase relations in high-grade aluminous calcite-dolomite marbles from the Greek Rhodope massif in the system CaO-MgO-Al 2O 3-SiO 2-CO 2 and indications of prior aragonite

    NASA Astrophysics Data System (ADS)

    Proyer, A.; Mposkos, E.; Baziotis, I.; Hoinkes, G.

    2008-08-01

    Four different types of parageneses of the minerals calcite, dolomite, diopside, forsterite, spinel, amphibole (pargasite), (Ti-)clinohumite and phlogopite were observed in calcite-dolomite marbles collected in the Kimi-Complex of the Rhodope Metamorphic Province (RMP). The presence of former aragonite can be inferred from carbonate inclusions, which, in combination with an analysis of phase relations in the simplified system CaO-MgO-Al 2O 3-SiO 2-CO 2 (CMAS-CO 2) show that the mineral assemblages preserved in these marbles most likely equilibrated at the aragonite-calcite transition, slightly below the coesite stability field, at ca. 720 °C, 25 kbar and aCO 2 ~ 0.01. The thermodynamic model predicts that no matter what activity of CO 2, garnet has to be present in aluminous calcite-dolomite-marble at UHP conditions.

  5. Superplastic forming by decomposition of (CaCO3 + C) and MgCO3

    NASA Astrophysics Data System (ADS)

    Shyu, J. S.; Chuang, T. H.

    1996-06-01

    An innovative method has been developed that replaces argon as the pressure source for superplastic forming. In this new process, several solid materials are placed in a closed system to generate pressure and are capable of forming superplastic alloy plates at specific temperatures. In the present study, the total pressures for the decomposition of ( CaCO3+ C) and MgCO3 have been theoretically calculated from thermodynamics. The results show that a pressure range of 40 to 396 psi can be obtained for the ( CaCO3 + C) system between 850 and 1000 °, which is suitable for the superplastic forming of Ti-6Al-4V and Superdux 64 ( Nippon Yakin Kogy Co., Ltd., Sanei Bridge, Kyobasi 1-5-8, Chyuoku, Tokyo 104, Japan) stainless steel. The pressure for MgCO3 system between 480 and 515 ° ranges from 78 to 160 psi, which is suitable for the superplastic forming of 8090 Al-Li and 7475 Al-Zn-Mg alloys. The calculated temperature dependence of pressure is consistent with the experimentally measured results. Furthermore, the forming rates, wall thickness distributions, tensile properties, and microstructures of the four alloys after forming have been shown to be very similar to those of conventional superplastic forming by argon pressurization.

  6. Thermodynamics of O, N, and S in liquid Fe equilibrated with CaO-AI2O3-MgO slags

    NASA Astrophysics Data System (ADS)

    Inoue, Ryo; Suito, Hideaki

    1994-04-01

    Nitrogen and S distribution ratios between CaO-Al2O3-MgO slags and liquid Fe were measured at 1873 K as a function of Al (or Mg, Ca) content in metal, using CaO, MgO, and A12O3 crucibles. Based on the results for the solubility product of MgO, the equilibrium constant, K Mg , for the reaction MgO = Mg + O and the first-order interaction parameter, e {O/Mg} ( e {Mg/O}), were estimated to be log K Mg = -7.8 ± 0.2 and e {O/Mg} = -190 ± 60 ( e {Mg/O} = -290 ± 90), respectively. The activities of A12O3 at the slag compositions double-saturated with CaO/MgO, MgO/ MgO A12O3, and MgO Al2O3/CaO 2A12O3 components were obtained from the S distribution ratios between slag and metal, coupled with the reported values of sulfide capacities. Nitride capacities were also estimated from the N distribution ratios and the activities of A12O3.

  7. Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses

    PubMed Central

    Lou, H. B.; Fang, Y. K.; Zeng, Q. S.; Lu, Y. H.; Wang, X. D.; Cao, Q. P.; Yang, K.; Yu, X. H.; Zheng, L.; Zhao, Y. D.; Chu, W. S.; Hu, T. D.; Wu, Z. Y.; Ahuja, R.; Jiang, J. Z.

    2012-01-01

    Pressure-induced amorphous-to-amorphous configuration changes in Ca-Al metallic glasses (MGs) were studied by performing in-situ room-temperature high-pressure x-ray diffraction up to about 40 GPa. Changes in compressibility at about 18 GPa, 15.5 GPa and 7.5 GPa during compression are detected in Ca80Al20, Ca72.7Al27.3, and Ca66.4Al33.6 MGs, respectively, whereas no clear change has been detected in the Ca50Al50 MG. The transfer of s electrons into d orbitals under pressure, reported for the pressure-induced phase transformations in pure polycrystalline Ca, is suggested to explain the observation of an amorphous-to-amorphous configuration change in this Ca-Al MG system. Results presented here show that the pressure induced amorphous-to-amorphous configuration is not limited to f electron-containing MGs. PMID:22530094

  8. Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    NASA Astrophysics Data System (ADS)

    Yan, F.; McKay, B. J.; Fan, Z.; Chen, M. F.

    2012-01-01

    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg2Si particles evenly distributed throughout an α-Al matrix with a β-Al3Mg2 fully divorced eutectic phase observed in interdendritic regions. The Mg2Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg2Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al3Mg2 eutectic phase with no evidence of any effect on the primary Mg2Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS.

  9. Phosphorus recovery from biogas fermentation liquid by Ca-Mg loaded biochar.

    PubMed

    Fang, Ci; Zhang, Tao; Li, Ping; Jiang, Rongfeng; Wu, Shubiao; Nie, Haiyu; Wang, Yingcai

    2015-03-01

    Shortage in phosphorus (P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultural fertilizer is a preferred process. This work aims to develop a calcium and magnesium loaded biochar (Ca-Mg/biochar) application for P recovery from biogas fermentation liquid. The physico-chemical characterization, adsorption efficiency, adsorption selectivity, and postsorption availability of Ca-Mg/biochar were investigated. The synthesized Ca-Mg/biochar was rich in organic functional groups and in CaO and MgO nanoparticles. With the increase in synthesis temperature, the yield decreased, C content increased, H content decreased, N content remained the same basically, and BET surface area increased. The P adsorption of Ca-Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360min. The process was endothermic, spontaneous, and showed an increase in the disorder of the solid-liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63mg/g. The P adsorption selectivity of Ca-Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles of Ca-Mg/biochar could reduce the negative interaction effects of coexisting ions. The P releasing amounts of postsorption Ca-Mg/biochar were in the order of Ca-Mg/B600>Ca-Mg/B450>Ca-Mg/B300. Results revealed that postsorption Ca-Mg/biochar can continually release P and is more suitable for an acid environment.

  10. Microstructure Evolution and Mechanical Properties of Al/Al-Mg/Al composite sheet metals

    NASA Astrophysics Data System (ADS)

    Cho, Jaehyung; Kim, Su-Hyeon; Kim, Hyoung-Wook; Lim, Cha-Yong; Kim, Eun-Young; Choi, Shi-Hoon

    2011-08-01

    Two different types of aluminum alloys of AA1050 and AA5182 were used to manufacture Al/Al-Mg/Al composite sheet metals by roll bonding technology at room temperature. The composite sheet metals were annealed at 400 °C and carried out uniaxial tension tests to investigate mechanical properties. Macroscopic mechanical properties are strongly dependent on the volume (or thickness) fraction of two component layers. Microstructure and texture evolution were also investigated during roll bonding process. The AA1050 sheets located in the outer layer mainly consist of shear texture components and the AA5182 sheet located in the center layer consists of plane strain texture components. With differential speeds of the top and bottom rolls, roll bonding was also carried out. Elongation along the RD and TD was improved at a speed difference of approximately 10%-20%.

  11. Effect of sonotrode material on grain refining of Mg-3Al and Mg-9Al alloys by ultrasonic melt treatment

    NASA Astrophysics Data System (ADS)

    Youn, Jeong IL; Lee, Young Ki; Jig Kim, Young; Park, Jeong Wook

    2016-07-01

    The new process, nucleation enhanced ultrasonic melt treatment (NEUMT), was proposed to increase the refining efficiency through heterogeneous nucleation by using the sonotrode which has been only concerned with the medium to transfer the ultrasonic energy. In the processing, the metal atoms and/or clusters eroded from the sonotrode were supplied and were simultaneously mixed uniformly into the melt by the ultrasound. These particles act as potential nuclei and refine the structure. The process was applied to assess grain refinement of Mg alloys, especially Mg-3Al and Mg-9Al. The refining efficiency was affected by the sonotrode material, and Ti was very effective in this process by the formation of proper intermetallic compound in the Mg alloy melt. The intermetallic compound was searched by the calculation of plane disregistry of the crystallographic orientation, and Al3Ti was suggested to be the heterogeneous nuclei.

  12. Hydrothermal synthesis of Mg-Al hydrotalcites by urea hydrolysis

    SciTech Connect

    Rao, M. Mohan . E-mail: mandapati@iict.res.in; Reddy, B. Ramachandra; Jayalakshmi, M.; Jaya, V. Swarna; Sridhar, B.

    2005-02-15

    We report a simple method to prepare hydrotalcites involving both urea hydrolysis and hydrothermal synthetic conditions. Out of a series of Mg/Al ratios tried, pure hydrotalcite like phase was obtained for Mg/Al ratios of 1:1 and 2:1. Unlike in conventional co-precipitation method we succeeded in preparing Mg/Al ratio of 1:1 by this route. The high temperature (180 deg. C) applied and pressure developed in the autoclave during the synthesis might have altered the topochemical transformation. The materials were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, thermo gravimetric and differential thermal analysis and transmission electron microscopy.

  13. The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions.

    PubMed

    See, Kimberly A; Chapman, Karena W; Zhu, Lingyang; Wiaderek, Kamila M; Borkiewicz, Olaf J; Barile, Christopher J; Chupas, Peter J; Gewirth, Andrew A

    2016-01-13

    Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, (27)Al and (35)Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore the active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ-Cl)3·6THF](+) complex that is observed in the solid state structure. Additionally, conditioning creates free Cl(-) in the electrolyte solution, and we suggest the free Cl(-) adsorbs at the electrode surface to enhance Mg electrodeposition.

  14. Sr/Ca and Mg/Ca in Aragonitic Bivalves: Do They Record Temperature?

    NASA Astrophysics Data System (ADS)

    Gillikin, D. P.; Ulens, H.; Dehairs, F.; Baeyens, W.; Navez, J.; Andre, L.; Keppens, E.; Calmars Group,.

    2003-12-01

    The chemical or isotopic composition of calcareous skeletons have long been recognized as archives of past and present environmental conditions. Oxygen isotopes (d18O) of biogenic carbonates are a powerful proxy of SST, however, although usually dominated by SST, salinity (SSS) also significantly effects the oxygen isotopic signal recorded in the carbonate. This has led researchers to explore new proxies, which are independent of SSS. Generally, Sr/Ca and Mg/Ca of seawater remains unchanged above salinities of 10 and marine animals will commonly live in habitats that do not fluctuate below this salinity. To solve the issue of SSS complicating paleotemperature records, these "new" proxies must be at least as reliable as d18O. If an environmental control is dominant, the proxies should be reproducible between specimens growing under the same field conditions. Both Sr and Mg have been used as paleotemperature proxies in corals and foraminifera, whereas a fewer attempts have been made to use these proxies in bivalves. Some report a clear seasonal periodicity in Sr/Ca profiles of bivalves, which covaries with d18O (i.e., temperature), whereas others have found no clear periodicity. We test the robustness of these proxies by analyzing the shell material from three species of aragonitic clams from around the world using a LA-ICP-MS. Three individuals of M. mercenaria from North Carolina, USA, three individuals of Saxidomus giganteus from Washington, USA and one Arctica islandica from Norway have been analyzed. As expected, there is excellent reproducibility of d18O between specimens (both M. mercenaria and S. giganteus) indicating external environmental conditions control this proxy (i.e. SST and SSS). Preliminary data analysis show that Sr and Mg are not reproducible between specimens from the same site nor do they exhibit a clear seasonal cyclicity, indicating individual metabolic effects (i.e., vital effects) dominate the incorporation of these elements. A. islandica

  15. Possibility of Mg- and Ca-based intermetallic compounds as new biodegradable implant materials.

    PubMed

    Hagihara, Koji; Fujii, Kenta; Matsugaki, Aira; Nakano, Takayoshi

    2013-10-01

    Mg- or Ca-based intermetallic compounds of Mg2Ca, Mg2Si, Ca2Si and CaMgSi are investigated as possible new candidates for biodegradable implant materials, attempting to improve the degradation behavior compared to Mg and Ca alloys. The reactivity of Ca can be indeed reduced by the formation of compounds with Mg and Si, but its reactivity is still high for applications as an implant material. In contrast, Mg2Si shows a higher corrosion resistance than conventional Mg alloys while retaining biodegradability. In cytotoxicity tests under the severe condition conducted in this study, both pure Mg and Mg2Si showed relatively high cytotoxicity on preosteoblast MC3T3-E1. However, the cell viability cultured in the Mg2Si extract medium was confirmed to be better than that in a pure Mg extract medium in all the conditions investigated with the exception of the 10% extract medium, because of the lower corrosion rate of Mg2Si. The cytotoxicity derived from the Si ion was not significantly detected in the Mg2Si extract medium in the concentration level of ~70 mg/l measured in the present study. For aiming the practical application of Mg2Si as an implant material, however, its brittle nature must be improved.

  16. Model for nonprotective oxidation of Al-Mg alloys

    SciTech Connect

    Zayan, M.H. )

    1990-12-01

    The oxidation of Al-5Mg alloy has been studied at 550 C in dry air. Morphological details of the MgO layers which develop on this alloy during high-temperature oxidation have been studied by scanning electron microscopy (SEM). A localized detachment of the protective, adherent MgO layer was found, which is caused by voids formed by vacancy condensation at the metal-oxide interface. The source of these vacancies was the outward diffusion of Mg though the oxide layer. Continuing growth of these voids was responsible for cracking of oxide ridges and nodules, as well as the growth of new MgO having a cauliflower morphology. A model describing the process of the outward diffusion is given.

  17. The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Annur, Dhyah; Franciska P., L.; Erryani, Aprilia; Amal, M. Ikhlasul; Sitorus, Lyandra S.; Kartika, Ika

    2016-04-01

    Known for its biodegradation and biocompatible properties, magnesium alloys have gained many interests to be researched as implant material. In this study, Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in wt%) were synthesized by means of powder metallurgy method. The compression strength and corrosion resistance of magnesium alloy were thoroughly examined. The microstructures of the alloy were characterized using optical microscopy, Scanning Electron Microscope, and also X-ray diffraction analysis. The corrosion resistance were evaluated using electrochemical analysis. The result indicated that Mg- Zn- Ca alloy could be synthesized using powder metallurgy method. This study showed that Mg-29Zn-1Ca would make the highest mechanical strength up to 159.81 MPa. Strengthening mechanism can be explained by precipitation hardening and grain refinement mechanism. Phase analysis had shown the formation of α Mg, MgO, and intermetallic phases: Mg2Zn11 and also Ca2Mg6Zn3. However, when the composition of Zn reach 53% weight, the mechanical strength will be decreasing. In addition, all of Mg-Zn-Ca alloy studied here had better corrosion resistance (Ecorr around -1.4 VSCE) than previous study of Mg. This study indicated that Mg- 29Zn- 1Ca alloy can be further analyzed to be a biodegradable implant material.

  18. Accuracy, standardization, and interlaboratory calibration standards for foraminiferal Mg/Ca thermometry

    NASA Astrophysics Data System (ADS)

    Greaves, Mervyn; Barker, Stephen; Daunt, Caroline; Elderfield, Henry

    2005-02-01

    The use of liquid and solid standards for foraminiferal Mg/Ca and Sr/Ca determinations and interlaboratory calibration has been investigated. Preparation of single element standard solutions from primary solid standard material enables the preparation of mixed standard solutions with Mg/Ca and Sr/Ca ratios of known accuracy to better than 0.1%. We also investigated commercial reference materials to determine whether existing carbonate standards could be used as reference material for Mg/Ca determinations in foraminiferal calcite. We propose that, in the absence of a pure calcium carbonate standard certified for Mg/Ca, ECRM 752-1, a limestone CRM containing Mg/Ca within the range of typical foraminifera, is a suitable solid standard for interlaboratory calibration. Replicate Mg/Ca determinations showed that, provided silicate phases are removed by centrifugation, this material is homogenous within the precision of daily instrumental Mg/Ca determinations over a range of sample weights from 10 to 1000 mg, taken from two separate bottles of ECRM 752-1. Results gave an average value of Mg/Ca = 3.75 mmol/mol (0.015 s.d., 0.41% r.s.d.) on 118 determinations from the two bottles.

  19. Environmental versus biological controls on Mg/Ca variability in Globigerinoides ruber (white) from core top and plankton tow samples in the southwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Bolton, Annette; Baker, Joel A.; Dunbar, Gavin B.; Carter, Lionel; Smith, Euan G. C.; Neil, Helen L.

    2011-06-01

    Laser ablation inductively coupled plasma mass spectrometry was used to analyze the individual chambers from tests of foraminiferal fossil and plankton tow Globigerinoides ruber from the southwest Pacific Ocean, from latitudes 3°S to 42°S. The variability of Mg/Ca between chambers of an individual (intraindividual) and individuals of the same population (interindividual), is such that when converted to temperature, the extent of intra-individual and interindividual variability appears to exceed that attributable to either calcification or seasonal temperature variability. The pooled mean chamber Mg/Ca from each core top and plankton tow site demonstrates a significant (p < 0.05) positive correlation with temperature. We derive chamber-specific calibrations where Mg/CaCh_F-2 = 0.798 exp0.070 T, Mg/CaCh_F-1 = 0.891 exp0.067 T and Mg/CaCh_F = 0.590 exp0.072 T. We do not observe any bias between the two morphotypes Gs. ruber ruber and Gs. ruber pyramidalis. The chamber-specific calibrations potentially offset Mg/Ca-based temperature reconstructions if used on bulk (whole) test Mg/Ca or applied to misidentified chambers. Nevertheless, these calibrations can be used to reliably estimate sea surface temperature. Although there is a general overriding temperature control on Mg/Ca, we show that removal of the effect of temperature at each site reveals a lognormal Mg/Ca distribution. This suggests that Mg/Ca variability at each site is also affected by biological mechanism(s) that may control the distribution of interindividual Mg/Ca. In addition, other TE/Ca data (Al/Ca and Mn/Ca) from laser ablation trace element depth profiles can be used to identify detrital or diagenetic phases that may bias the trace element/Ca signal.

  20. Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry

    NASA Astrophysics Data System (ADS)

    Greaves, M.; Caillon, N.; Rebaubier, H.; Bartoli, G.; Bohaty, S.; Cacho, I.; Clarke, L.; Cooper, M.; Daunt, C.; Delaney, M.; Demenocal, P.; Dutton, A.; Eggins, S.; Elderfield, H.; Garbe-Schoenberg, D.; Goddard, E.; Green, D.; Groeneveld, J.; Hastings, D.; Hathorne, E.; Kimoto, K.; Klinkhammer, G.; Labeyrie, L.; Lea, D. W.; Marchitto, T.; MartíNez-Botí, M. A.; Mortyn, P. G.; Ni, Y.; Nuernberg, D.; Paradis, G.; Pena, L.; Quinn, T.; Rosenthal, Y.; Russell, A.; Sagawa, T.; Sosdian, S.; Stott, L.; Tachikawa, K.; Tappa, E.; Thunell, R.; Wilson, P. A.

    2008-08-01

    An interlaboratory study of Mg/Ca and Sr/Ca ratios in three commercially available carbonate reference materials (BAM RS3, CMSI 1767, and ECRM 752-1) was performed with the participation of 25 laboratories that determine foraminiferal Mg/Ca ratios worldwide. These reference materials containing Mg/Ca in the range of foraminiferal calcite (0.8 mmol/mol to 6 mmol/mol) were circulated with a dissolution protocol for analysis. Participants were asked to make replicate dissolutions of the powdered samples and to analyze them using the instruments and calibration standards routinely used in their laboratories. Statistical analysis was performed in accordance with the International Standardization Organization standard 5725, which is based on the analysis of variance (ANOVA) technique. Repeatability (RSDr%), an indicator of intralaboratory precision, for Mg/Ca determinations in solutions after centrifuging increased with decreasing Mg/Ca, ranging from 0.78% at Mg/Ca = 5.56 mmol/mol to 1.15% at Mg/Ca = 0.79 mmol/mol. Reproducibility (RSDR%), an indicator of the interlaboratory method precision, for Mg/Ca determinations in centrifuged solutions was noticeably worse than repeatability, ranging from 4.5% at Mg/Ca = 5.56 mmol/mol to 8.7% at Mg/Ca = 0.79 mmol/mol. Results of this study show that interlaboratory variability is dominated by inconsistencies among instrument calibrations and highlight the need to improve interlaboratory compatibility. Additionally, the study confirmed the suitability of these solid standards as reference materials for foraminiferal Mg/Ca (and Sr/Ca) determinations, provided that appropriate procedures are adopted to minimize and to monitor possible contamination from silicate mineral phases.

  1. Observations of Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.

  2. Production of Mg and Al Auger electrons by noble gas ion bombardment of Mg and Al surfaces

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Pepper, S. V.

    1976-01-01

    Relative production efficiencies of Mg and Al Auger electrons by He, Ne, Ar, Kr, and Xe ion bombardment are reported as a function of ion energy for energies not exceeding 3 keV. The experimental apparatus employed consisted of a LEED-Auger system equipped with an ion gun and a four-grid retarding-potential analyzer. It is found that: (1) the shape of the ion-excited Auger signal was independent of the rare gas and quite symmetric; (2) the Al signal was about an order of magnitude smaller than the Mg signal for a given bombarding species and ion-gun voltage; (3) no signal was observed for He(+) bombardment under any of the experimental conditions; (4) signal strengths were independent of temperature and ion dose; (5) the Auger production efficiencies differed by no more than a factor of two among the different gases - except for He(+) - on a given metal; (6) all the signal strengths increased with increasing ion-gun voltage, with no maximum exhibited; and (7) the apparent threshold energy for the Al signal was higher than that for the Mg signal. The differences between the results for the two metals are attributed to the fact that the Al 2p orbital lies deeper in energy and closer to the nucleus than the corresponding Mg orbital.

  3. The molar volume of cubic garnets in the system SiO2-Al2O3-TiO2-Fe2O3-Cr2O3-FeO-MnO-MgO-CaO-Na2O

    NASA Astrophysics Data System (ADS)

    Hamecher, E. A.; Antoshechkina, P. M.; Ghiorso, M. S.; Asimow, P. D.

    2012-12-01

    Garnet is a critical phase that controls major and trace element partitioning at pressures above ~3 GPa during partial melting of the Earth's upper mantle. A molar volume model is calibrated for cubic garnets (space group Ia3d) in the oxide system listed in the title. This model and a recent calibration of spinel molar volume (Hamecher et al., in press, CMP) will be used in calibration of thermodynamic activity-composition models of garnet and pyroxene solid solutions. The activity and molar volume models will be incorporated into the next generation MELTS (Ghiorso & Sack, 1995, CMP) model, xMELTS. A new garnet volume model calibrated with recent in situ high-P, T diffraction data is crucial for accurately modeling key mineralogical transitions in the mantle, e.g., the spinel-garnet transition and the mantle transition zone. Above 5 GPa a majorite component is an essential part of any thermodynamic model of mantle garnets, which to be useful must accurately predict garnet stability with respect to spinel, pyroxene, perovskites, and melt. Our model system contains nine independent end members: Ca3Al2Si3O12, Mg3Al2Si3O12, Fe2+3Al2Si3O12, Mg3Cr2Si3O12, Mg3Fe3+2Si3O12, Mn3Al2Si3O12, Na2(MgSi2)Si3O12, Mg3(TiMg)Si3O12, and cubic majorite component Mg3(MgSi)Si3O12. An inclusive set of end-member components is formed by linear combinations of these explicit end members. Approximately 950 published X-ray diffraction experiments performed on garnets at ambient and in situ high-P, T conditions are used to calibrate end-member equations of state and an excess volume model for this system. Optimal values of the bulk modulus and its pressure derivative are obtained by analyzing published compression and/or ultrasonic data for the end members for which such studies exist; for other end members, density functional theory results are used. For any cubic garnet in this chemical system, the model molar volume is obtained by adding excess volume terms to a linear combination of the

  4. Effect of secular variation in oceanic Mg/Ca on calcareous biomineralization

    NASA Astrophysics Data System (ADS)

    Ries, J. B.; Stanley, S. M.

    2006-12-01

    The polymorph mineralogy of simple, hypercalcifying marine organisms has generally varied in synchroneity with the polymorph mineralogy of abiotic CaCO3 precipitates (ooids, marine cements) throughout the Phanerozoic Eon. This synchroneity is caused by secular variation in the Mg/Ca ratio of seawater (SW; mMg/Ca > 2 = aragonite + high-Mg calcite; mMg/Ca < 2 = calcite), determined primarily by the mixing rate of mid-ocean-ridge/large-igneous-province hydrothermal brines and river water, driven by the global rate of ocean crust production. Here, we present experiments evaluating the effect of seawater Mg/Ca on the biomineralization and growth of extant representatives of hypercalcifying taxa that have been subjected to fluctuations in oceanic Mg/Ca in the past. Codiacean algae (arag), scleractinian corals (arag), coccolithophores (low-high Mg-calc), coralline algae (high Mg-calc), various reef-dwelling animals (echinoids, crabs, shrimp, calcareous serpulid worms; high Mg- calc), and calcifying microbial mats (arag + high-Mg calc) were grown in artificial SW formulated over the range of mMg/Ca (1.0 to 5.2) that occurred throughout each taxon's history. Codiacean algae and scleractinian corals exhibited higher rates of calcification and growth in artificial SW favoring their aragonite mineralogy and, significantly, produced a portion of their CaCO3 as calcite in the artificial calcite SW. Coccolithophores (low-high Mg calc.) showed higher calcification and growth rates and produced low-Mg calcite in the calcite SW. Likewise, coralline algae and the reef-dwelling animals (high-Mg calc) varied skeletal Mg/Ca with seawater Mg/Ca. The calcifying microbial mats grew equally well in the calcite and aragonite SW and varied their mineral polymorph commensurate with the SW (mMg/Ca<2 = low- Mg calc; mMg/Ca>2 = arag + high-Mg calc), suggesting a nearly abiotic mode of calcification. The precipitation of low-Mg calcite + aragonite by codiacean algae and scleractinian corals (arag

  5. Divorced Eutectic Solidification of Mg-Al Alloys

    NASA Astrophysics Data System (ADS)

    Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo

    2015-08-01

    We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

  6. Aluminum-Magnesium and Oxygen Isotope Study of Relict Ca-Al-rich Inclusions in Chondrules

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; McKeegan, Kevin D.; Huss, Gary R.; Liffman, Kurt; Sahijpal, Sandeep; Hutcheon, Ian D.; Srinivasan, Gopalan; Bischoff, Adolph; Keil, Klaus

    2006-03-01

    Relict Ca-Al-rich inclusions (CAIs) in chondrules crystallized before their host chondrules and were subsequently partly melted together with chondrule precursors during chondrule formation. Like most CAIs, relict CAIs are 16O enriched (Δ17O<-20‰) compared to their host chondrules (Δ17O>-9‰). Hibonite in a relict CAI from the ungrouped carbonaceous chondrite Adelaide has a large excess of radiogenic 26Mg (26Mg*) from the decay of 26Al, corresponding to an initial 26Al/27Al ratio [(26Al/27Al)I] of (3.7+/-0.5)×10-5 in contrast, melilite in this CAI and plagioclase in the host chondrule show no evidence for 26Mg* [(26Al/27Al)I of <5×10-6]. Grossite in a relict CAI from the CH carbonaceous chondrite PAT 91546 has little 26Mg*, corresponding to a (26Al/27Al)I of (1.7+/-1.3)×10-6. Three other relict CAIs and their host chondrules from the ungrouped carbonaceous chondrite Acfer 094, CH chondrite Acfer 182, and H3.4 ordinary chondrite Sharps do not have detectable 26Mg* [(26Al/27Al)I<1×10-5, <(4-6)×10-6, and <1.3×10-5, respectively]. Isotopic data combined with mineralogical observations suggest that relict CAIs formed in an 16O-rich gaseous reservoir before their host chondrules, which originated in an 16O-poor gas. The Adelaide CAI was incorporated into its host chondrule after 26Al had mostly decayed, at least 2 Myr after the CAI formed, and this event reset 26Al-26Mg systematics.

  7. Lattice instability in the AlMgB14 structure

    NASA Astrophysics Data System (ADS)

    Wan, L. F.; Beckman, S. P.

    2014-04-01

    The lattice dynamics of the AlMgB14 structure is characterized by phonon vibrational modes that are calculated from first-principles methods. The stoichiometric composition of AlMgB14 is found to have three soft phonon modes, which have displacements associated with metal atoms vibrating against the B lattice. This lattice instability is believed to be associated with the occupation of electronic states in the conduction bands. The off-stoichiometric occupation sweeps the Fermi level from the conduction band into the gap, and as a result the observed soft phonon modes are driven away. Based on a simple electron counting scheme, as also discussed by Mori [39], it is observed that stable XYB14 compounds have between 15 and 16 electrons contributed to the B-lattice from the metal species.

  8. Silver ions trigger Ca2+ release by interaction with the (Ca2+-Mg2+)-ATPase in reconstituted systems.

    PubMed

    Gould, G W; Colyer, J; East, J M; Lee, A G

    1987-06-01

    It has been suggested that vesicles derived from the sarcoplasmic reticulum of skeletal muscle contain Ca2+ channels which can be opened by interaction with sulfhydryl reagents such as Ag+ or Hg2+. We show that, in reconstituted vesicles containing the (Ca2+-Mg2+)-ATPase purified from sarcoplasmic reticulum as the only protein, the ATPase can act as a pathway for Ca2+ efflux and that Ag+ induces a rapid release of Ca2+ from such reconstituted vesicles. We also show that Ag+ has a marked inhibitory effect on the ATPase activity of the purified ATPase. We suggest that the (Ca2+-Mg2+)-ATPase can act as a pathway for rapid Ca2+ release from sarcoplasmic reticulum.

  9. Synthesis and characterization of Mn intercalated Mg-Al hydrotalcite.

    PubMed

    Yang, Chengxue; Liao, Libing; Lv, Guocheng; Wu, Limei; Mei, Lefu; Li, Zhaohui

    2016-10-01

    Mn intercalated hydrotalcite was prepared using a reconstruction method. And Mn intercalation was confirmed by XRD, FTIR, and thermal analyses. The different valences of Mn were present as determined by XPS. Calcination slightly promoted the isomorphic replacement of Mn(2+) and Mn(3+) for Mg(2+) and Al(3+), especially the replacement of Mn(2+) for Mg(2+) and Al(3+), and to some extent, reduced Mn intercalation. Ultrasonic treatment significantly increased Mn intercalation in permanganate form (Mn(7+)), and promoted the replacement of Mn(2+) for Mg(2+) and Al(3+). XRF analysis showed that ultrasonic treatment decreased the unbalanced layer charge of Mn intercalated hydrotalcite, while prolonged calcination increased it. These results may provide guidance on the preparation and application of Mn intercalated hydrotalcite. Extended calcination time and ultrasonic vibration increased the interlayer spacing of hydrotalcite, as a result of reduction in layer charge. As the layer charge was not completely balanced after Mn intercalation, a certain amount of CO3(2-) was re-adsorbed into the interlayer space. Mn-hydrotalcites with different layer charges, different contents of Mn with varying valences are expected to have different performances in the process of adsorption, degradation, and catalysis. PMID:27380016

  10. Synthesis and characterization of Mn intercalated Mg-Al hydrotalcite.

    PubMed

    Yang, Chengxue; Liao, Libing; Lv, Guocheng; Wu, Limei; Mei, Lefu; Li, Zhaohui

    2016-10-01

    Mn intercalated hydrotalcite was prepared using a reconstruction method. And Mn intercalation was confirmed by XRD, FTIR, and thermal analyses. The different valences of Mn were present as determined by XPS. Calcination slightly promoted the isomorphic replacement of Mn(2+) and Mn(3+) for Mg(2+) and Al(3+), especially the replacement of Mn(2+) for Mg(2+) and Al(3+), and to some extent, reduced Mn intercalation. Ultrasonic treatment significantly increased Mn intercalation in permanganate form (Mn(7+)), and promoted the replacement of Mn(2+) for Mg(2+) and Al(3+). XRF analysis showed that ultrasonic treatment decreased the unbalanced layer charge of Mn intercalated hydrotalcite, while prolonged calcination increased it. These results may provide guidance on the preparation and application of Mn intercalated hydrotalcite. Extended calcination time and ultrasonic vibration increased the interlayer spacing of hydrotalcite, as a result of reduction in layer charge. As the layer charge was not completely balanced after Mn intercalation, a certain amount of CO3(2-) was re-adsorbed into the interlayer space. Mn-hydrotalcites with different layer charges, different contents of Mn with varying valences are expected to have different performances in the process of adsorption, degradation, and catalysis.

  11. Microstructure evolution and properties of Al/Al-Mg-Si alloy clad wire during heat treatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Guan, Ren-guo; Zhang, Yang; Su, Ning; Ji, Lian-ze; Li, Yuan-dong; Chen, Ti-jun

    2016-06-01

    In this paper, heat treatment was carried out on Al/Al-Mg-Si alloy clad wire, and microstructure evolution and properties of Al/Al-Mg-Si alloy clad wire during heat treatment were investigated. During solution, contents of Mg and Si in inner matrix increased due to dissolution of primary Mg2Si, and they also increased in outer matrix because Mg and Si diffused across the interface. Tensile strength of the clad wire increased firstly and then decreased, and elongation continuously increased, while conductivity continuously decreased with the increase in solution time. In aging process, Mg2Si precipitated in both inner core and outer layer, and the content and average diameter of the precipitate increased with the increase in aging time. The content of precipitate was higher, and the average diameter was bigger in inner core. Tensile strength of the clad wire increased firstly and then decreased with the increase in aging time, and the elongation continuously decreased, while the conductivity continuously increased. The peak tensile strength of 202 MPa occurred at 8 h, when the corresponding elongation was 20 % and the conductivity reached 56.07 %IACS. Even tensile strength of the prepared clad wire approximately equaled to that of Al-0.5Mg-0.35Si alloy 203 MPa, the conductivity was obviously improved from 54.2 to 56.07 %IACS.

  12. Model study of ATP and ADP buffering, transport of Ca(2+) and Mg(2+), and regulation of ion pumps in ventricular myocyte

    NASA Technical Reports Server (NTRS)

    Michailova, A.; McCulloch, A.

    2001-01-01

    We extended the model of the ventricular myocyte by Winslow et al. (Circ. Res 1999, 84:571-586) by incorporating equations for Ca(2+) and Mg(2+) buffering and transport by ATP and ADP and equations for MgATP regulation of ion transporters (Na(+)-K(+) pump, sarcolemmal and sarcoplasmic Ca(2+) pumps). The results indicate that, under normal conditions, Ca(2+) binding by low-affinity ATP and diffusion of CaATP may affect the amplitude and time course of intracellular Ca(2+) signals. The model also suggests that a fall in ATP/ADP ratio significantly reduces sarcoplasmic Ca(2+) content, increases diastolic Ca(2+), lowers systolic Ca(2+), increases Ca(2+) influx through L-type channels, and decreases the efficiency of the Na(+)/Ca(2+) exchanger in extruding Ca(2+) during periodic voltage-clamp stimulation. The analysis suggests that the most important reason for these changes during metabolic inhibition is the down-regulation of the sarcoplasmic Ca(2+)-ATPase pump by reduced diastolic MgATP levels. High Ca(2+) concentrations developed near the membrane might have a greater influence on Mg(2+), ATP, and ADP concentrations than that of the lower Ca(2+) concentrations in the bulk myoplasm. The model predictions are in general agreement with experimental observations measured under normal and pathological conditions.

  13. Measuring past changes in ENSO variance using Mg/Ca measurements on individual planktic foraminifera

    NASA Astrophysics Data System (ADS)

    Marchitto, T. M.; Grist, H. R.; van Geen, A.

    2013-12-01

    Previous work in Soledad Basin, located off Baja California Sur in the eastern subtropical Pacific, supports a La Niña-like mean-state response to enhanced radiative forcing at both orbital and millennial (solar) timescales during the Holocene. Mg/Ca measurements on the planktic foraminifer Globigerina bulloides indicate cooling when insolation is higher, consistent with an ';ocean dynamical thermostat' response that shoals the thermocline and cools the surface in the eastern tropical Pacific. Some, but not all, numerical models simulate reduced ENSO variance (less frequent and/or less intense events) when the Pacific is driven into a La Niña-like mean state by radiative forcing. Hypothetically the question of ENSO variance can be examined by measuring individual planktic foraminiferal tests from within a sample interval. Koutavas et al. (2006) used d18O on single specimens of Globigerinoides ruber from the eastern equatorial Pacific to demonstrate a 50% reduction in variance at ~6 ka compared to ~2 ka, consistent with the sense of the model predictions at the orbital scale. Here we adapt this approach to Mg/Ca and apply it to the millennial-scale question. We present Mg/Ca measured on single specimens of G. bulloides (cold season) and G. ruber (warm season) from three time slices in Soledad Basin: the 20th century, the warm interval (and solar low) at 9.3 ka, and the cold interval (and solar high) at 9.8 ka. Each interval is uniformly sampled over a ~100-yr (~10-cm or more) window to ensure that our variance estimate is not biased by decadal-scale stochastic variability. Theoretically we can distinguish between changing ENSO variability and changing seasonality: a reduction in ENSO variance would result in narrowing of both the G. bulloides and G. ruber temperature distributions without necessarily changing the distance between their two medians; while a reduction in seasonality would cause the two species' distributions to move closer together.

  14. Damping Capacities of Mg-4 Pct Zn-(0-0.5) Pct Ca Biomedical Alloys

    NASA Astrophysics Data System (ADS)

    Jun, Joong-Hwan; Hwang, In-Je

    2016-07-01

    This study is intended to investigate the damping capacities of cast Mg-4 pct Zn-(0-0.5) pct Ca biomedical alloys. The Mg-4 pct Zn-(0-0.5) pct Ca alloys had similar damping levels regardless of Ca content in the strain-amplitude-independent region, but showed a decreasing tendency with an increase in Ca content in the strain-amplitude-dependent region. Almost identical concentration of solutes in the α-(Mg) matrix and the increased number density of the precipitate particles are responsible for the damping behaviors in the strain-amplitude-independent and strain-amplitude-dependent regions, respectively.

  15. Microstructural analysis of dehydrogenation products of the Ca(BH₄)₂-MgH₂ composite.

    PubMed

    Kim, Jong-Min; Kim, Yoonyoung; Shim, Jae-Hyeok; Lee, Young-Su; Suh, Jin-Yoo; Ahn, Jae-Pyoung; Kim, Gyeung-Ho; Cho, Young Whan

    2013-08-01

    The microstructural analysis of the dehydrogenation products of the Ca(BH₄)₂-MgH₂ composite was performed using transmission electron microscopy. It was found that nanocrystalline CaB₆ crystallites formed as a dehydrogenation product throughout the areas where the signals of Ca and Mg were simultaneously detected, in addition to relatively coarse Mg crystallites. The uniform distribution of the nanocrystalline CaB₆ crystallites appears to play a key role in the rehydrogenation of the dehydrogenation products, which implies that microstructure is a crucial factor determining the reversibility of reactive hydride composites. PMID:23920195

  16. Damping Capacities of Mg-4 Pct Zn-(0-0.5) Pct Ca Biomedical Alloys

    NASA Astrophysics Data System (ADS)

    Jun, Joong-Hwan; Hwang, In-Je

    2016-10-01

    This study is intended to investigate the damping capacities of cast Mg-4 pct Zn-(0-0.5) pct Ca biomedical alloys. The Mg-4 pct Zn-(0-0.5) pct Ca alloys had similar damping levels regardless of Ca content in the strain-amplitude-independent region, but showed a decreasing tendency with an increase in Ca content in the strain-amplitude-dependent region. Almost identical concentration of solutes in the α-(Mg) matrix and the increased number density of the precipitate particles are responsible for the damping behaviors in the strain-amplitude-independent and strain-amplitude-dependent regions, respectively.

  17. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white)

    NASA Astrophysics Data System (ADS)

    Kısakürek, B.; Eisenhauer, A.; Böhm, F.; Garbe-Schönberg, D.; Erez, J.

    2008-09-01

    Mg/Ca and Sr/Ca ratios were determined on a single species of planktonic foraminiferan, Globigerinoides ruber (white), collected from the Gulf of Eilat and cultured in seawater at five different salinities (32 to 44), five temperatures (18 to 30 °C) and four pH values (7.9 to 8.4). The Mg/Ca-temperature calibration of cultured G. ruber (with an exponential slope of 8 ± 3%/°C) agrees well with previously published calibrations from core-tops and sediment traps. However, the dependence of Mg/Ca on salinity (with an exponential slope of 5 ± 3%/psu) is also significant and should be included in the calibration equation. With this purpose, we calculated a calibration equation for G. ruber dependent on both temperature and salinity within the 95% confidence limits: Mg/Ca(mmol/mol)=exp[0.06(±0.02)∗S(psu)+0.08(±0.02)∗T(°C)-2.8(±1.0)],R=0.95 The influence of pH on Mg/Ca ratios is negligible at ambient seawater pH (8.1 to 8.3). However, we observe a dominating pH control on shell Mg/Ca when the pH of seawater is lower than 8.0. Sr/Ca in G. ruber shows a significant positive correlation with average growth rate. Presumably, part of the variability in shell Sr/Ca in the geological record is linked to changes in growth rates of foraminifera as a response to changing environmental conditions.

  18. Trace metal (Mg/Ca and Sr/Ca) analyses of single coccoliths by Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Prentice, Katy; Jones, Tom Dunkley; Lees, Jackie; Young, Jeremy; Bown, Paul; Langer, Gerald; Fearn, Sarah; EIMF

    2014-12-01

    Here we present the first multi-species comparison of modern and fossil coccolith trace metal data obtained from single liths. We present both trace metal analyses (Sr, Ca, Mg and Al) and distribution maps of individual Paleogene fossil coccoliths obtained by Secondary Ion Mass Spectrometry (SIMS). We use this data to determine the effects of variable coccolith preservation and diagenetic calcite overgrowths on the recorded concentrations of strontium and magnesium in coccolith calcite. The analysis of coccoliths from deep-ocean sediments spanning the Eocene/Oligocene transition demonstrates that primary coccolith calcite is resistant to the neomorphism that is common in planktonic foraminifera from similar depositional environments. Instead, where present, diagenetic calcite forms distinct overgrowths over primary coccolith calcite rather than replacing this calcite. Diagenetic overgrowths on coccoliths are easily distinguished in SIMS analyses on the basis of relatively higher Mg and lower Sr concentrations than co-occurring primary coccolith calcite. This interpretation is confirmed by the comparable SIMS analyses of modern cultured coccoliths of Coccolithus braarudii. Further, with diagenetic calcite overgrowth being the principle source of bias in coccolith-based geochemical records, we infer that lithologies with lower carbonate content, deposited below the palaeo-lysocline, are more likely to produce geochemical records dominated by primary coccolith calcite than carbonate-rich sediments where overgrowth is ubiquitous. The preservation of primary coccolith carbonate in low-carbonate lithologies thus provides a reliable geochemical archive where planktonic foraminifera are absent or have undergone neomorphism.

  19. Experimental 25Mg and 13C NMR and Computational Modeling Studies of Amorphous Mg-Ca Carbonates

    NASA Astrophysics Data System (ADS)

    Singer, J. W.; Yazaydin, A. O.; Kirkpatrick, R. J.; Saharay, M.; Bowers, G. M.

    2012-12-01

    Nuclear magnetic resonance (NMR) spectroscopy of synthetic Mg-Ca amorphous carbonates (AMC-ACC) provides direct, element specific structural information about these complicated phases. The 13C, 25Mg, and 43Ca resonances are typically broad and span the chemical shift ranges of all the crystalline polymorphs in the Ca-Mg-CO3-H2O system. In a fashion similar to our previous analysis of 43Ca NMR results for ACC,1 here we integrate new experimental 13C and 25Mg spectra obtained at 20T for samples with Mg/(Ca+Mg) ratios from x=0 to x=1 with quantum chemical calculations of the NMR parameters of the crystalline phases using CASTEP calculations, simulations of the spectra using the SIMPSON software, and classical molecular dynamics calculations. XRD and 13C NMR results are in general agreement with the one-phase/two-phase model of ACC-AMC derived from thermochemical work by others.2 13C-NMR spectra of amorphous materials having intermediate compositions can not be completely fit by mechanical mixing of ACC and AMC end members—requiring a degree of Ca/Mg solid solution. Amorphous samples in two-phase region crystallize to assemblages of dolomite-like (x~0.5) and hydromagnesite-like (x~1) defective structures, but we also observe aragonite co-nucleation in the presence of excess water, indicative of a more complex evolution. While 43Ca NMR of X-ray amorphous materials shows featureless, symmetric, Gaussian line shapes, the large quadrupole moment of 25Mg gives rise to superposition of several quadrupolar line shapes representing different local structural environments. Singularities of static Mg spectra are best explained by local environments similar to nequehonite, hydromagnesite, and landsfordite. The spectra can not exclude minor contributions from anhydrous phases dolomite, huntite, and magnesite. Additional sites having very large quadrupolar coupling and/or site asymmetry are not explained by any known reference phases. CITATIONS (1) Singer, J. W.; Yazaydin, A. O

  20. Chamber formation leads to Mg/Ca banding in the planktonic foraminifer Neogloboquadrina pachyderma

    NASA Astrophysics Data System (ADS)

    Jonkers, Lukas; Buse, Ben; Brummer, Geert-Jan A.; Hall, Ian R.

    2016-10-01

    Many species of planktonic foraminifera show distinct banding in the intratest distribution of Mg/Ca. This heterogeneity appears biologically controlled and thus poses a challenge to Mg/Ca paleothermometry. The cause of this banding and its relation with chamber formation are poorly constrained and most of what we know about intratest Mg/Ca variability stems from culture studies of tropical, symbiont-bearing foraminifera. Here we present data on the non-spinose, symbiont-barren Neogloboquadrina pachyderma from the subpolar North Atlantic where wintertime mixing removes vertical gradients in temperature and salinity. This allows investigation of biologically controlled Mg/Ca intratest variability under natural conditions. We find that intratest Mg/Ca varies between <0.1 and 7 mmol/mol, even in winter specimens. High Mg/Ca bands occur at the outer edge of the laminae, indicating reduced Mg removal at the end of chamber formation. Our data thus provide new constraints on the timing of the formation of such bands and indicate that their presence is intrinsic to the chamber formation process. Additionally, all specimens are covered with an outer crust consisting of large euhedral crystals. The composition of the crust is similar to the low Mg/Ca bands in the laminar calcite in winter and summer specimens, indicating a tight biological control on crust formation and composition. Nevertheless, despite high intratest variability, the median Mg/Ca of summertime tests is higher than that of wintertime tests. This provides support for Mg/Ca paleothermometry, but to improve the accuracy of paleotemperature estimates biological effects on Mg incorporation need to be better accounted for.

  1. Hyperpolarizabilities of alkaline-earth metal ions Be+, Mg+, and Ca+

    NASA Astrophysics Data System (ADS)

    Yin, Dong; Zhang, Yong-Hui; Li, Cheng-Bin; Gao, Ke-Lin; Shi, Ting-Yun

    2016-09-01

    The knowledge of the hyperpolarizabilities of atoms and ions is helpful for the analysis of the high order effects of the frequency shifts in precision spectroscopy experiments. Liu et al. [Phys. Rev. Lett. 114, 223001 (2015)] proposed to establish all-optical trapped ion clocks using laser at the magic wavelength for clock transition. To evaluate the high-order frequency shifts in this new scheme of optical clocks, hyperpolarizabilities are needed, but absent. Using the finite field method based on the B-spline basis set and model potentials, we calculated the electric-field-dependent energy shifts of the ground and low-lying excited states in Be+, Mg+, and Ca+ in the field strength range of 0.0-6×10-5 a.u.. The scalar and tensor polarizabilities ( α 0, α 2) and hyperpolarizabilities ( γ 0, γ 2, γ 4) were deduced. The results of the hyperpolarizabilities for Be+ showed good agreement with the values in literature, implying that the present method can be applied for the effective estimation of the atomic hyperpolarizabilities, which are rarely reported but needed in experiments. The feasibility of optical trapping of Ca+ is discussed, and the contributions of hyperpolarizabilities to the transition frequency shift for Ca+ in the optical dipole trap are estimated using quasi-electrostatic approximation.

  2. Dipole defects in Al2O3:Mg,Cr.

    PubMed

    Blak, A R; Gobbi, V; Ayres, F

    2002-01-01

    In this work, dipole defects are investigated applying the thermally stimulated depolarisation currents (TSDC) technique. The TSDC spectra of Al2O3 doped with Mg and Cr show two bands centred at 230 K and 250 K, respectively. The maximum intensity of the bands increases linearly with the polarisation field, a typical behaviour of defects with dipole origin. An increase of the band at 250 K with gamma irradiation has been observed and a thermal decrease of the bands for heat treatments between 1000 K and 1400 K. Above this temperature the bands are partially recovered. Impurity neutron activation analysis shows that magnesium. chromium and iron content varies from 15 to 60 ppm. Optical absorption (AO) measurements show a broad band centred in 2.6 eV (21000 cm(-1)) associated with trapped holes localised on an O- ion adjacent to a cation site which is deficient in positive charge. It has been assumed that a substitutional Mg2+ ion occupies the cation site near a trapped hole on one of the six oxygen ions surrounding the magnesium impurity giving rise to the dipole responsible for the observed TSDC bands. Calculations carried out through defect simulation methods confirm that the probability of Al3+ being replaced by Mg2+ is higher than Mn2+, Co2+, Fe2+ and Cr2+. PMID:12382829

  3. One-step production of biodiesel from oils with high acid value by activated Mg-Al hydrotalcite nanoparticles.

    PubMed

    Wang, Yi-Tong; Fang, Zhen; Zhang, Fan; Xue, Bao-Jin

    2015-10-01

    Activated Mg-Al hydrotalcite (HT-Ca) nanoparticles (<45 nm) were synthesized by co-precipitation and hydrothermal activation with aqueous Ca(OH)2 solution. They were characterized by various techniques including X-ray diffraction, inductively coupled plasma atomic-emission spectrometer, Brunauer-Emmett-Teller method, scanning electronic microscope-X-ray energy dispersive analysis and temperature programmed desorption method. HT-Ca presented both acidic and basic due to the formation of Mg4Al2(OH)14 · 3H2O, Mg2Al(OH)7 and AlO(OH) nanocrystals to esterify and transesterify oils with high acid value (AV). Under conditions of 5 wt% HT-Ca, 160 °C, 30/1 methanol/oil molar ratio and 4h, 93.4% Jatropha biodiesel yield was obtained at AV of 6.3 mg KOH/g with 4 cycles (biodiesel yield>86%). It was further found that it can resist free fatty acids, and biodiesel yield reached 92.9% from soybean oil with high AV of 12.1. HT-Ca catalyst showed a potential practical application for direct production of biodiesel from oils with high AV without pretreatment.

  4. One-step production of biodiesel from oils with high acid value by activated Mg-Al hydrotalcite nanoparticles.

    PubMed

    Wang, Yi-Tong; Fang, Zhen; Zhang, Fan; Xue, Bao-Jin

    2015-10-01

    Activated Mg-Al hydrotalcite (HT-Ca) nanoparticles (<45 nm) were synthesized by co-precipitation and hydrothermal activation with aqueous Ca(OH)2 solution. They were characterized by various techniques including X-ray diffraction, inductively coupled plasma atomic-emission spectrometer, Brunauer-Emmett-Teller method, scanning electronic microscope-X-ray energy dispersive analysis and temperature programmed desorption method. HT-Ca presented both acidic and basic due to the formation of Mg4Al2(OH)14 · 3H2O, Mg2Al(OH)7 and AlO(OH) nanocrystals to esterify and transesterify oils with high acid value (AV). Under conditions of 5 wt% HT-Ca, 160 °C, 30/1 methanol/oil molar ratio and 4h, 93.4% Jatropha biodiesel yield was obtained at AV of 6.3 mg KOH/g with 4 cycles (biodiesel yield>86%). It was further found that it can resist free fatty acids, and biodiesel yield reached 92.9% from soybean oil with high AV of 12.1. HT-Ca catalyst showed a potential practical application for direct production of biodiesel from oils with high AV without pretreatment. PMID:26117239

  5. Al-26-Mg-26 ages of iron meteorites

    NASA Technical Reports Server (NTRS)

    Herzog, G. F.; Souzis, A. E.; Xue, S.; Klein, J.; Juenemann, D.; Middleton, R.

    1993-01-01

    An exposure age for an iron meteorite can be calculated from measurements of a radioactive nuclide and a stable nuclide that are produced by similar sets of nuclear reactions, provided that the stable nuclide is present with low initial abundance. The standard methods rely on either K-40 (t(sub 1/2) = 1.26 Gy), K-39, and K-41 or on a shorter-lived radionuclide and a stable, noble gas isotope. Widely used pairs of this type include Cl-36/Ar-36 and Al-26/Ne-21. Other pairs that may serve the purpose for iron meteorites contain many stable isotopes besides those of K and the noble gases that are produced partly by cosmic rays. We consider here the calculation of exposure ages, t(sub 26), from measurements of Al-26 (t(sub 1/2) = 0.7 My) and (stable) Mg-26. Ages based on Al-26/Mg-26 ratios, like those based on Cl-36/Ar-36 ratios, are 'buffered' against changes in relative production rates due to shielding because decay of the radioactive nuclide accounts for a good part of the inventory of the stable nuclide.

  6. The effect of CaF2 on thermodynamics of CaO-CaF2-SiO2(-MgO) slags

    NASA Astrophysics Data System (ADS)

    Choi, Chul-Hwan; Jo, Sung-Koo; Kim, Seon-Hyo; Lee, Kwang-Ro; Kim, Jeong-Tae

    2004-02-01

    To address the role of CaF2 in the CaO-CaF2-SiO2(-MgO) slag system employed for the production of low-pressure rotor steels, the thermodynamic aspects of the slag were investigated by equilibrating it with liquid iron at 1873 K in CaO or MgO crucibles. Presaturation of slag with an oxide block piece of CaO or MgO in a Pt crucible and application of a carbon paste to the outside of an oxide crucible were designed to prevent crucible failure during the slag-metal experiments. The liquidus isotherm and phase boundary of the preceding slag system were investigated using the slag-metal equilibria. Also, the effect of CaF2 on the sulfide capacity and the activity coefficient of Fe t O were of particular interest in controlling the sulfur level and cleanliness of low-pressure rotor steels.

  7. Foram Farming in the Mid-Continent: Culturing Low-Mg Benthic Foraminifera to Calibrate the Mg/Ca Paleothermometer

    NASA Astrophysics Data System (ADS)

    Jennings, D.; Hasiuk, F.; Thomas, E.; Varekamp, J. C.

    2014-12-01

    The initiation of Cenozoic continental ice sheets and the history of their growth/decay is difficult to reconstruct because of the mixed effects of polar ice volume and temperature on benthic foraminiferal oxygen isotope values. Coupled measurements of foraminiferal δ18O and Mg/Ca are a promising tool to unlock the history of past continental glaciation by calculating the oxygen isotopic composition of paleo-seawater. This method has been applied on Quaternary timescales with success, but uncertainty about secular changes in seawater Mg/Ca and potential changes in carbonate saturation have produced varying results with deeper time data. Currently, no experimentally-calibrated model explains how the Mg/Ca of low-Mg calcite, such as secreted by benthic foraminifera, responds to variations in seawater temperature and Mg/Ca. Our "Foram Farm" is a culture system for low-Mg calcite benthic foraminifera, composed of a colony and an experimental line. Currently, the colony hosts several species of rotaliids, miliolids, and buliminids obtained from Qatar, the Dominican Republic, Scotland, and Long Island Sound, USA. In addition, two tanks contain "live sand," a mixture of sandy material and seawater obtained from tropical reefs, and commonly used to condition hobbyist saltwater aquaria. This sand contains foraminifera and numerous other microorganisms. "Live sand" could be a source for cheap and easy to obtain test subjects. The foram farm gives access to a constant supply and variety of test subjects for the experimental line, which consists of several analytical refrigerators with varying temperatures. Each refrigerator houses petri dishes where forams are grown in water with varying Mg/Ca compositions. Elphidium excavatum, a well-researched, eurytopic taxon, will be the first to be cultured in the experimental line. After growing under experimental conditions, specimens will be analyzed using LA-ICP-MS, in order to model effects of seawater T and Mg/Ca on foram Mg/Ca

  8. Metastability in the MgAl2O4-Al2O3 System

    DOE PAGES

    Wilkerson, Kelley R.; Smith, Jeffrey D.; Hemrick, James G.

    2014-07-22

    Aluminum oxide must take a spinel form ( γ-Al2O3) at elevated temperatures in order for extensive solid solution to form between MgAl2O4 and α-Al2O3. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al2O3 at 1500°C, 83.0 wt% Al2O3 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been defined at temperatures up to 1700°C which could have significant implications for material processing and properties. Additionally, initial processing could have major implications on final chemistry. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevatedmore » temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present, resulting in no eutectic crystal formation during solidification.« less

  9. Thermoelectric properties of Zintl compound Ca1-xNaxMg2Bi1.98

    NASA Astrophysics Data System (ADS)

    Shuai, Jing; Kim, Hee Seok; Liu, Zihang; He, Ran; Sui, Jiehe; Ren, Zhifeng

    2016-05-01

    Motivated by good thermoelectric performance of Bi-based Zintl compounds Ca1-xYbxMg2Biy, we further studied the thermoelectric properties of Zintl compound CaMg2Bi1.98 by doping Na into Ca as Ca1-xNaxMg2Bi1.98 via mechanical alloying and hot pressing. We found that the electrical conductivity, Seebeck coefficient, power factor, and carrier concentration can be effectively adjusted by tuning the Na concentration. Transport measurement and calculations revealed that an optimal doping of 0.5 at. % Na achieved better average ZT and efficiency. The enhancement in thermoelectric performance is attributed to the increased carrier concentration and power factor. The low cost and nontoxicity of Ca1-xNaxMg2Bi1.98 makes it a potentially promising thermoelectric material for power generation in the mid-temperature range.

  10. Microstructures, mechanical properties and corrosion resistances of extruded Mg-Zn-Ca-xCe/La alloys.

    PubMed

    Tong, L B; Zhang, Q X; Jiang, Z H; Zhang, J B; Meng, J; Cheng, L R; Zhang, H J

    2016-09-01

    Magnesium alloys are considered as good candidates for biomedical applications, the influence of Ce/La microalloying on the microstructure, mechanical property and corrosion performance of extruded Mg-5.3Zn-0.6Ca (wt%) alloy has been investigated in the current study. After Ce/La addition, the conventional Ca2Mg6Zn3 phases are gradually replaced by new Mg-Zn-Ce/La-(Ca) phases (T1'), which can effectively divide the Ca2Mg6Zn3 phase. The Ca2Mg6Zn3/T1' structure in Mg-Zn-Ca-0.5Ce/La alloy is favorably broken into small particles during the extrusion, resulting in an obvious refinement of secondary phase. The dynamic recrystallized grain size is dramatically decreased after 0.5Ce/La addition, and the tensile yield strength is improved, while further addition reverses the effect, due to the grain coarsening. However, the corrosion resistance of extruded Mg-Zn-Ca alloy deteriorates after Ce/La addition, because the diameter of secondary phase particle is remarkably decreased, which increases the amount of cathodic sites and accelerates the galvanic corrosion process. PMID:27179307

  11. Ostracode Mg/Ca Ratios from Quaternary Sediments of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Caverly, E. K.; Cronin, T. M.; Polyak, L. V.; DeNinno, L.; Rodriguez-Lazaro, J.

    2013-12-01

    We analyzed magnesium/calcium (Mg/Ca) ratios from adult, calcitic shells of the deep-sea ostracode Krithe from the Northwind and Mendeleev Ridges, Arctic Ocean, to reconstruct orbital-scale Quaternary bottom-water temperature history. Results show an early Pleistocene (~1.5 Ma to 500 ka) Mg/CaKrithe pattern with low-amplitude, possibly orbitally controlled, oscillations between 10.5 and 12.5 mmol/mol followed by a progressive trend towards higher ratios (> 17 mmol/mol) during the last 500 ka. This shift coincides with the mid-Pleistocene Transition and mid-Brunhes Event (~ 300-500 ka) recognized in microfaunal proxy records in the Arctic Ocean. Analyses of Mg/CaKrithe from intervals representing marine isotope stage 11 (MIS 11) in 5 cores from water depths from 700 to 1470 m show Mg/Ca ratios ranging from 10.5 to 14 mmol/mol. A 2 mmol/mol excursion in Mg/CaKrithe within MIS 11 seen in all cores likely corresponds to a brief stadial event recognized also in planktic and benthic microfaunas. We will discuss the implications of Mg/Ca paleothermometry for deep Arctic Ocean circulation and the evolution of Arctic sea ice during major Quaternary climatic transitions as well as possible factors other than water temperature that may influence Mg/Ca ratios in Krithe shells from Quaternary sediments from the Arctic Ocean.

  12. Microstructures, mechanical properties and corrosion resistances of extruded Mg-Zn-Ca-xCe/La alloys.

    PubMed

    Tong, L B; Zhang, Q X; Jiang, Z H; Zhang, J B; Meng, J; Cheng, L R; Zhang, H J

    2016-09-01

    Magnesium alloys are considered as good candidates for biomedical applications, the influence of Ce/La microalloying on the microstructure, mechanical property and corrosion performance of extruded Mg-5.3Zn-0.6Ca (wt%) alloy has been investigated in the current study. After Ce/La addition, the conventional Ca2Mg6Zn3 phases are gradually replaced by new Mg-Zn-Ce/La-(Ca) phases (T1'), which can effectively divide the Ca2Mg6Zn3 phase. The Ca2Mg6Zn3/T1' structure in Mg-Zn-Ca-0.5Ce/La alloy is favorably broken into small particles during the extrusion, resulting in an obvious refinement of secondary phase. The dynamic recrystallized grain size is dramatically decreased after 0.5Ce/La addition, and the tensile yield strength is improved, while further addition reverses the effect, due to the grain coarsening. However, the corrosion resistance of extruded Mg-Zn-Ca alloy deteriorates after Ce/La addition, because the diameter of secondary phase particle is remarkably decreased, which increases the amount of cathodic sites and accelerates the galvanic corrosion process.

  13. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Bhushan, Bharat

    2016-08-01

    Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  14. Solid Solution Effects on the MgAl2O4-MgGa2O4 System

    SciTech Connect

    O'Hara, Kelley; Smith, Jeffrey D; Hemrick, James Gordon

    2009-01-01

    Phase relations between two spinel compounds (MgAl2O4 and MgGa2O4) were studied. Stoichiometric MgAl2O4 was formed in the laboratory through a coprecipitation method. Complete solid solution formation int eh MgAl2O4-MgGa2O4 systems was confirmed through X-ray diffraction analysis. Solid solution between MgAl2O4-MgGa2O4 decreases thermal conductivity at all temperatures up to 900oC. At 200oC with 10 mol% additoin of MgGa2O4 thermal conductivity decreases approximately 25%, and at 900oC there was still an 8% decrease. Additionally, preliminary studies show that porosity between 5% and 10% does not have an appreciable effect on the thermal conductivity in this study.

  15. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan.

    PubMed

    Gu, X N; Zheng, Y F; Lan, Q X; Cheng, Y; Zhang, Z X; Xi, T F; Zhang, D Y

    2009-08-01

    The surface morphologies before and after immersion corrosion test of various chitosan-coated Mg-1Ca alloy samples were studied to investigate the effect of chitosan dip coating on the slowdown of biocorrosion. It showed that the corrosion resistance of the Mg-Ca alloy increased after coating with chitosan, and depended on both the chitosan molecular weight and layer numbers of coating. The Mg-Ca alloy coated by chitosan with a molecular weight of 2.7 x 10(5) for six layers has smooth and intact surface morphology, and exhibits the highest corrosion resistance in a simulated body fluid.

  16. A fast passive Ca2+ efflux mediated by the (Ca2+ + Mg2+)-ATPase in reconstituted vesicles.

    PubMed

    Gould, G W; McWhirter, J M; East, J M; Lee, A G

    1987-11-01

    The (Ca2+ + Mg2+)-ATPase from skeletal muscle sarcoplasmic reticulum was reconstituted into phospholipid bilayers. The permeability of lipid bilayers to Co2+ and glucose was increased slightly by incorporation of the ATPase, and the permeability of mixed bilayers of phosphatidylethanolamine and phosphatidylcholine increased with increasing content of phosphatidylethanolamine both in the presence and absence of the ATPase. The presence of the ATPase, however, resulted in a marked increase in permeability to Ca2+, the permeability decreasing with increasing phosphatidylethanolamine content. Permeability to Ca2+ was found to be dependent on pH and the external concentrations of Mg2+ and Ca2+, was stimulated by adenine nucleotides but was unaffected by inositol trisphosphate. A kinetic model is presented for Ca2+ efflux mediated by the ATPase. It is shown that the kinetic parameters that describe Ca2+ efflux from vesicles of sarcoplasmic reticulum also describe efflux from the vesicles reconstituted from the purified ATPase and phosphatidylcholine. It is shown that the effects of phosphatidylethanolamine on efflux can be simulated in terms of changes in the rates of the transitions linking conformations of the ATPase with inward- and outward-facing Ca2+-binding sites, and that effects of phosphatidylethanolamine on the ATPase activity of the ATPase can also be simulated in terms of effects on the corresponding conformational transitions. We conclude that the ATPase can act as a specific pathway for Ca2+ efflux from sarcoplasmic reticulum.

  17. Mg/Ca partitioning between aqueous solution and aragonite mineral: a molecular dynamics study.

    PubMed

    Ruiz-Hernandez, Sergio E; Grau-Crespo, Ricardo; Almora-Barrios, Neyvis; Wolthers, Mariëtte; Ruiz-Salvador, A Rabdel; Fernandez, Nestor; de Leeuw, Nora H

    2012-08-01

    We have calculated the concentrations of Mg in the bulk and surfaces of aragonite CaCO(3) in equilibrium with aqueous solution, based on molecular dynamics simulations and grand-canonical statistical mechanics. Mg is incorporated in the surfaces, in particular in the (001) terraces, rather than in the bulk of aragonite particles. However, the total Mg content in the bulk and surface of aragonite particles was found to be too small to account for the measured Mg/Ca ratios in corals. We therefore argue that most Mg in corals is either highly metastable in the aragonite lattice, or is located outside the aragonite phase of the coral skeleton, and we discuss the implications of this finding for Mg/Ca paleothermometry. PMID:22744724

  18. Stable isotopes, Sr/Ca, and Mg/Ca in biogenic carbonates from Petaluma Marsh, northern California, USA

    SciTech Connect

    Ingram, B.L.; De Deckker, P.; Chivas, A.R.; Conrad, M.E.; Byrne, A.R.

    2004-10-19

    Stable isotope ({sup 18}O/{sup 16}O and {sup 13}C/{sup 12}C) and minor-element compositions (Sr/Ca and Mg/Ca ratios) of ostracodes and gastropods separated from marsh sediments from San Francisco Bay, Northern California, were used to reconstruct paleoenvironmental changes in Petaluma Marsh over the past 700 yr. The value of {delta}{sup 18}O in the marsh carbonates reflects changes in freshwater inflow, evaporation, and temperature. Mg/Ca and Sr/Ca in ostracode calcite reflect changes in both freshwater inflow and temperature, although primarily reflect temperature changes in the salinity range of about 10-35 {per_thousand}. Ostracode {delta}{sup 18}O values show a gradual increase by 5 {per_thousand} between 500 yr BR and the present, probably reflecting rising sea level and increased evaporation in the marsh. Superimposed on this trend are higher frequency Mg/Ca and {delta}{sup 18}O variations (3-4 {per_thousand}), probably reflecting changes in freshwater inflow and evaporation. A period of low Mg/Ca occurred between about 100-300 cal yr BP, suggesting wetter and cooler conditions during the Little Ice Age. Higher Mg/Ca ratios occurred 600-700 cal yr BP, indicating drier and warmer conditions during the end of the Medieval Warm Period. Both ostracode and gastropod {delta}{sup 13}C values decrease up-core, reflecting decomposition of marsh vegetation, which changes from C{sub 4} ({delta}{sup 13}C {approx} -12{per_thousand}) to CAM ({delta}{sup 13}C = -26 {per_thousand})-type vegetation over time.

  19. Wettability of AlSi5Mg on Spodumene

    NASA Astrophysics Data System (ADS)

    Fankhänel, Beate; Stelter, Michael; Voigt, Claudia; Aneziris, Christos G.

    2015-02-01

    The development of new filters for the aluminum industry requires investigations on the wettability of aluminum and its alloys on novel filter materials. The requested filter effects require not only an adequate wetting but also information about the interaction between the filter material and the metal. In the present work the wettability of an AlSi5Mg alloy on spodumene (LiAl[Si2O6]) containing substrates is investigated using the sessile drop technique. These measurements were carried out at 1223 K (950 °C) under vacuum. The spodumene-based substrates showed a completely different wetting behavior compared with an alumina substrate. The contact angel reduced more quickly and leveled out at a lower value (75 ± 2 deg) than in case of a pure alumina substrate (90 ± 1 deg). The reason for this behavior is a reaction between the LiAl(Si2O6) and the alloy droplet which supported deoxidation and formed a silica-rich reaction layer at the droplet/substrate interface.

  20. Microstructural analysis of biodegradable Mg-0.9Ca-1.2Zr alloy

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Geanta, V.; Baltatu, S.; Focsaneanu, S.; Earar, K.

    2016-08-01

    Magnesium alloys have applications in aerospace and medical applications as biodegradable orthopedic implants. Alloying with biocompatible elements, such as calcium or zirconium contribute to refining the the microstructure and improves corrosion resistance with the formation of an eutectic compound - Mg2Ca at boundary alpha-Mg grains. The purpose of this paper is to present the microstructure throw optical and scanning electron methods and phase and constituents identification with X-ray analysis. The results showed the presence of alpha-Mg grains with formation of a mechanical compound - Mg2Ca and appearance of alpha- Zr phase relatively uniformly distributed in nests.

  1. The ternary system K2SO4MgSO4CaSO4

    USGS Publications Warehouse

    Rowe, J.J.; Morey, G.W.; Silber, C.C.

    1967-01-01

    Melting and subsolidus relations in the system K2SO4MgSO4CaSO4 were studied using heating-cooling curves, differential thermal analysis, optics, X-ray diffraction at room and high temperatures and by quenching techniques. Previous investigators were unable to study the binary MgSO4CaSO4 system and the adjacent area in the ternary system because of the decomposition of MgSO4 and CaSO4 at high temperatures. This problem was partly overcome by a novel sealed-tube quenching method, by hydrothermal synthesis, and by long-time heating in the solidus. As a result of this study, we found: (1) a new compound, CaSO4??3MgSO4 (m.p. 1201??C) with a field extending into the ternary system; (2) a high temperature form of MgSO4 with a sluggishly reversible inversion. An X-ray diffraction pattern for this polymorphic form is given; (3) the inversion of ??-CaSO4 (anhydrite) to ??-CaSO4 at 1195??C, in agreement with grahmann; (1) (4) the melting point of MgSO4 is 1136??C and that of CaSO4 is 1462??C (using sealed tube methods to prevent decomposition of the sulphates); (5) calcium langbeinite (K2SO4??2CaSO4) is the only compound in the K2SO4CaSO4 binary system. This resolved discrepancies in the results of previous investigators; (6) a continuous solid solution series between congruently melting K2SOP4??2MgSO4 (langbeinite) and incongruently melting K2SO4??2CaSO4 (calcium langbeinite); (7) the liquidus in the ternary system consists of primary phase fields of K2SO4, MgSO4, CaSO4, langbeinite-calcium langbeinite solid solution, and CaSO4??3MgSO4. The CaSO4 field extends over a large portion of the system. Previously reported fields for the compounds (K2SO4??MgSO4??nCaSO4), K2SO4??3CaSO4 and K2SO4??CaSO4 were not found; (8) a minimum in the ternary system at: 740??C, 25% MgSO4, 6% CaSO4, 69% K2SO4; and ternary eutectics at 882??C, 49% MgSO4, 19% CaSO4, 32% K2SO4; and 880??, 67??5% MgSO4, 5% CaSO4, 27??5% K2SO4. ?? 1967.

  2. Isotopic Fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with Carbonate Minerals

    SciTech Connect

    Rustad, James R.; Casey, William H.; Yin, Qing-Zhu; Bylaska, Eric J.; Felmy, Andrew R.; Bogatko, Stuart A.; Jackson, Virgil E.; Dixon, David A.

    2010-11-15

    Density functional electronic structure calculations are used to compute the equilibrium constant (the isotope fractionation factor) for 26Mg/24Mg and 44Ca/40Ca isotope exchange between carbonate minerals and uncomplexed divalent aquo ions. The most reliable calculations at the B3LYP/6-311++G(2d,2p) level predict equilibrium constants K, reported as 103ln(K) at 25 °C, of -5.3, -1.1, and +1.1 for 26Mg/24Mg exchange between calcite (CaCO3), magnesite (MgCO3), and dolomite (Ca0.5Mg0.5CO3), respectively, and Mg2+(aq), with positive values indicating enrichment in the mineral phase. For 44Ca/40Ca exchange between calcite and Ca2+(aq), the calculations predict values of +1.5 for Ca2+(aq) in six-fold coordination and +4.1 for Ca2+(aq) in seven-fold coordination. We find that the reduced partition function ratios can be reliably computed from systems as small as M(CO3)610- and M2+(H2O)6 embedded in a set of fixed atoms representing the 2nd shell (and greater) coordination environment. We find that the aqueous cluster representing the aquo ion is much more sensitive to improvements in the basis set than the calculations on the mineral systems, and that fractionation factors should be computed using 2 the best possible basis set for the aquo complex, even if the reduced partition function ratio calculated with the same basis set is not available for the mineral system. The new calculations show that the previous discrepancies between theory and experiment for Fe3+-hematite and Fe2+-siderite fractionations arise from an insufficiently accurate reduced partition function ratio for the Fe3+(aq) and Fe2+(aq) species.

  3. What is the Right Temperature Sensitivity for Foraminiferal Mg/ca Paleothermometry in Ancient Oceans?

    NASA Astrophysics Data System (ADS)

    Eggins, S.; Holland, K.; Hoenisch, B.; Spero, H. J.; Allen, K. A.

    2013-12-01

    Mg/Ca seawater thermometry has become a cornerstone of modern paleoceanography. Laboratory experiments, seafloor core-top samples, plankton trap and tow collected materials all indicate consistent temperature sensitivity (9-10% increase in Mg/Ca per °C) for a full range of modern planktic foraminifer species. While these results demonstrate the overall robustness of Mg/Ca paleothermometry for the modern ocean, it is an empirical tool for which there is limited understanding of its bio-physio-chemical basis and its applicability to ancient oceans. We have undertaken experimental cultures of Orbulina universa, Globigerinoides sacculifer and Globigerinoides ruber (pink) across a range of seawater compositions (temperature, carbonate chemistry and Mg/Casw) that encompass modern and ancient Paleogene and Cretaceous ocean compositions (Mg/Casw 0.25x to 2x modern and pCO2 = 200 to 1500 ppmv). Our results reveal that the sensitivity of the Mg/Ca-thermometer for planktic foraminifers reduces significantly with Mg/Casw, rather than remaining constant as has been widely assumed or, increasing at lower Mg/Casw as proposed recently by Evans and Müller (2012). These results indicate that the modern sensitivity of 9-10% increase in Mg/Ca per °C cannot yet be applied to obtain reliable relative temperature change estimates to ancient oceans. These results further suggest that variations in foraminiferal Mg/Ca compositions in ancient oceans with lower Mg/Casw may correspond to larger temperature variations than in the modern ocean. Evans D. and Müller W., Paleoceanography, vol. 27, PA4205, doi:10.1029/2012PA002315, 2012

  4. Acid precipitation and food quality: Effects of dietary Al, Ca and P on bone and liver characteristics in American black ducks and mallards

    USGS Publications Warehouse

    Sparling, D.W.

    1991-01-01

    American black ducks (Anas rubripes) and mallards (A. platyrhynchos) were fed diets varying in concentrations of aluminum (Al). calcium (Ca), and phosphorus (P) for 10 weeks to identify toxic effects of Al under conditions representative of areas with acid precipitation. Femur and liver tissues were analyzed for Al. Ca, and P concentrations and structural characteristics. At two weeks of age, both species demonstrated pronounced differences in femur Al and P concentrations and femur mass from dietary Al and interaction between Ca:P regimen and Al:Low Ca:Low P enhanced Al storage and decreased P and mass in femurs. Femur Ca was lowest in the Low Ca:Low P regimen but was not affected by dietary Al. At 10 weeks, femur and liver Al continued to vary with dietary Al. Elevated Al and reduced Ca lowered modulus of elasticity. Femur P increased with elevated dietary P in black ducks. Elevated dietary P negated some of the effects of dietary A! on femur mass in black ducks. Reduced Ca concentrations weakened bones of both species and lowered both Ca and P. An array of clinical signs including lameness, discoloration of the upper mandible, complete and greenstick fractures, and death were responses to elevated Al and Ca:P regimen. Black ducks seemed to display these signs over a wider range of diets than mallards. Diets of 1,000 mg/kg Al had toxic effects on both species, particularly when combined with diets low in Ca and P.

  5. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    NASA Astrophysics Data System (ADS)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  6. Characteristics of Ca2+- and Mg2+-induced tension development in chemically skinned smooth muscle fibers

    PubMed Central

    1978-01-01

    Chemically skinned fibers from guinea pig taenia caecum were prepared by saponin treatment to study the smooth muscle contractile system in a state as close to the living state as posible. The skinned fibers showed tension development with an increase of Ca2+ in the solution, the threshold tension occurring as 5 X 10(-7) M Ca2+. The maximal tension induced with 10(-4) M Ca2+ was as large and rapid as the potassium-induced contracture in the intact fibers. The slope of the pCa tension curve was less steep than that of skeletal muscle fibers and shifted in the direction of lower pCa with an increase of MgATP. The presence of greater than 1 mM Mg2+ was required for Ca2+-induced contraction in the skinned fibers as well as for the activation of ATPase and superprecipitation in smooth muscle myosin B. Mg2+ above 2 mM caused a slow tension development by itself in the absence of Ca2+. Such a Mg2+-induced tension showed a linear relation to concentrations up to 8 mM in the presence of MgATP. Increase of MgATP concentration revealed a monophasic response without inhibition of Ca2+-induced tension development, unlike the biphasic response in striated muscle. When MgATP was removed from the relaxing solution, the tension developed slowly and slightly, even though the Mg2+ concentrations was fixed at 2 mM. These results suggest a substantial difference in the mode of actin-myosin interaction between smooth and skeletal muscle. PMID:151731

  7. Investigation on microstructure characterization and property of rapidly solidified Mg-Zn-Ca-Ce-La alloys

    SciTech Connect

    Zhou Tao; Chen Zhenhua; Yang Mingbo; Hu Jianjun; Xia Hua

    2012-01-15

    Rapidly solidified (RS) Mg-Zn-Ca-Ce-La (wt.%) alloys have been produced via atomizing the alloy melt and subsequent splat-quenching on the water-cooled copper twin-rollers in the form of flakes. Microstructure characterization, phase compositions and thermal stability of the alloys have been systematically investigated. The results showed that with addition of RE (Ce and La) to the Mg-6Zn-5Ca alloy, the stable intermetallic compounds i.e. the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (about 3 at.%), shortened as the T Prime phase, were formed at the expense of the binary Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases, which was possibly beneficial to the enhanced thermal stability of the alloy. In the Mg-6Zn-5Ca-3Ce-0.5La alloy, the composition of the T Prime phase in the grain interior was different from that at the grain boundaries, in which the segregation of the La elements was found, and the atomic percentage ratio of Zn to Ce in the T Prime phase within the grains was close to 2. Moreover, the stable Mg{sub 2}Ca phases were detected around the T Prime phases at the grain boundaries in the alloy. - Research Highlights: Black-Right-Pointing-Pointer The phase constitution of RS Mg-6Zn-5Ca alloy can be improved by RE additions. Black-Right-Pointing-Pointer In the Mg-Zn-Ca-Ce-La alloys, the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (T Prime phase) is formed. Black-Right-Pointing-Pointer The formation of the T Prime phase leads to the loss of the Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases. Black-Right-Pointing-Pointer The composition of the T Prime phase differs from the grain interior to the grain boundary.

  8. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time.

    PubMed

    Ries, J B; Anderson, M A; Hill, R T

    2008-03-01

    A previously published hydrothermal brine-river water mixing model driven by ocean crust production suggests that the molar Mg/Ca ratio of seawater (mMg/Ca(sw)) has varied significantly (approximately 1.0-5.2) over Precambrian time, resulting in six intervals of aragonite-favouring seas (mMg/Ca(sw) > 2) and five intervals of calcite-favouring seas (mMg/Ca(sw) < 2) since the Late Archaean. To evaluate the viability of microbial carbonates as mineralogical proxy for Precambrian calcite-aragonite seas, calcifying microbial marine biofilms were cultured in experimental seawaters formulated over the range of Mg/Ca ratios believed to have characterized Precambrian seawater. Biofilms cultured in experimental aragonite seawater (mMg/Ca(sw) = 5.2) precipitated primarily aragonite with lesser amounts of high-Mg calcite (mMg/Ca(calcite) = 0.16), while biofilms cultured in experimental calcite seawater (mMg/Ca(sw) = 1.5) precipitated exclusively lower magnesian calcite (mMg/Ca(calcite) = 0.06). Furthermore, Mg/Ca(calcite )varied proportionally with Mg/Ca(sw). This nearly abiotic mineralogical response of the biofilm CaCO3 to altered Mg/Ca(sw) is consistent with the assertion that biofilm calcification proceeds more through the elevation of , via metabolic removal of CO2 and/or H+, than through the elevation of Ca2+, which would alter the Mg/Ca ratio of the biofilm's calcifying fluid causing its pattern of CaCO3 polymorph precipitation (aragonite vs. calcite; Mg-incorporation in calcite) to deviate from that of abiotic calcification. If previous assertions are correct that the physicochemical properties of Precambrian seawater were such that Mg/Ca(sw) was the primary variable influencing CaCO3 polymorph mineralogy, then the observed response of the biofilms' CaCO3 polymorph mineralogy to variations in Mg/Ca(sw), combined with the ubiquity of such microbial carbonates in Precambrian strata, suggests that the original polymorph mineralogy and Mg/Ca(calcite )of well

  9. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time.

    PubMed

    Ries, J B; Anderson, M A; Hill, R T

    2008-03-01

    A previously published hydrothermal brine-river water mixing model driven by ocean crust production suggests that the molar Mg/Ca ratio of seawater (mMg/Ca(sw)) has varied significantly (approximately 1.0-5.2) over Precambrian time, resulting in six intervals of aragonite-favouring seas (mMg/Ca(sw) > 2) and five intervals of calcite-favouring seas (mMg/Ca(sw) < 2) since the Late Archaean. To evaluate the viability of microbial carbonates as mineralogical proxy for Precambrian calcite-aragonite seas, calcifying microbial marine biofilms were cultured in experimental seawaters formulated over the range of Mg/Ca ratios believed to have characterized Precambrian seawater. Biofilms cultured in experimental aragonite seawater (mMg/Ca(sw) = 5.2) precipitated primarily aragonite with lesser amounts of high-Mg calcite (mMg/Ca(calcite) = 0.16), while biofilms cultured in experimental calcite seawater (mMg/Ca(sw) = 1.5) precipitated exclusively lower magnesian calcite (mMg/Ca(calcite) = 0.06). Furthermore, Mg/Ca(calcite )varied proportionally with Mg/Ca(sw). This nearly abiotic mineralogical response of the biofilm CaCO3 to altered Mg/Ca(sw) is consistent with the assertion that biofilm calcification proceeds more through the elevation of , via metabolic removal of CO2 and/or H+, than through the elevation of Ca2+, which would alter the Mg/Ca ratio of the biofilm's calcifying fluid causing its pattern of CaCO3 polymorph precipitation (aragonite vs. calcite; Mg-incorporation in calcite) to deviate from that of abiotic calcification. If previous assertions are correct that the physicochemical properties of Precambrian seawater were such that Mg/Ca(sw) was the primary variable influencing CaCO3 polymorph mineralogy, then the observed response of the biofilms' CaCO3 polymorph mineralogy to variations in Mg/Ca(sw), combined with the ubiquity of such microbial carbonates in Precambrian strata, suggests that the original polymorph mineralogy and Mg/Ca(calcite )of well

  10. Testing the cation-hydration effect on the crystallization of Ca-Mg-CO3 systems.

    PubMed

    Xu, Jie; Yan, Chao; Zhang, Fangfu; Konishi, Hiromi; Xu, Huifang; Teng, H Henry

    2013-10-29

    Dolomite and magnesite are simple anhydrous calcium and/or magnesium carbonate minerals occurring mostly at Earth surfaces. However, laboratory synthesis of neither species at ambient temperature and pressure conditions has been proven practically possible, and the lack of success was assumed to be related to the strong solvation shells of magnesium ions in aqueous media. Here, we report the synthesis of MgCO3 and MgxCa(1-x)CO3 (0 < x < 1) solid phases at ambient conditions in the absence of water. Experiments were carried out in dry organic solvent, and the results showed that, although anhydrous phases were readily precipitated in the water-free environment, the precipitates' crystallinity was highly dependent on the Mg molar percentage content in the solution. In specific, magnesian calcite dominated in low [Mg(2+)]/[Ca(2+)] solutions but gave way to exclusive formation of amorphous MgxCa(1-x)CO3 and MgCO3 in high-[Mg(2+)]/[Ca(2+)] and pure-Mg solutions. At conditions of [Mg(2+)]/[Ca(2+)] = 1, both nanocrystals of Ca-rich protodolomite and amorphous phase of Mg-rich MgxCa(1-x)CO3 were formed. These findings exposed a previously unrecognized intrinsic barrier for Mg(2+) and CO3(2-) to develop long-range orders at ambient conditions and suggested that the long-held belief of cation-hydration inhibition on dolomite and magnesite mineralization needed to be reevaluated. Our study provides significant insight into the long-standing "dolomite problem" in geochemistry and mineralogy and may promote a better understanding of the fundamental chemistry in biomineralization and mineral-carbonation processes.

  11. Ca-,Al-rich inclusions in the unique chondrite ALH85085 - Petrology, chemistry, and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Kimura, M.; El Goresy, A.; Palme, H.; Zinner, E.

    1993-05-01

    A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.

  12. Bismuth-doped Mg - Al silicate glasses and fibres

    SciTech Connect

    Bufetov, Igor' A; Vel'miskin, V V; Galagan, B I; Denker, B I; Sverchkov, S E; Semjonov, S L; Firstov, Sergei V; Shulman, I L; Dianov, Evgenii M

    2012-09-30

    This paper compares the optical properties of bulk bismuth-doped Mg - Al silicate glasses prepared in an iridium crucible to those of optical fibres prepared by the powder-in-tube method and having a core identical in composition to the glasses. The bulk glasses and fibres are shown to be similar in luminescence properties. The optical loss in the fibres in their IR luminescence band is about one order of magnitude lower than that in the crucible-melted glasses. The level of losses in the fibres and their luminescence properties suggest that such fibres can be made to lase near 1.15 {mu}m. (optical fibres, lasers and amplifiers. properties and applications)

  13. Pulse TIG Welding of Two Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Manti, Rajesh; Dwivedi, D. K.; Agarwal, A.

    2008-10-01

    This article reports the influence of pulse tungsten inert gas (TIG) welding parameters on the microstructure, hardness and tensile strength of weld joints of two Al-(0.5-0.8%)Si-(0.5-0.6%)Mg alloy (T4) produced by using three pulse frequencies (25, 33, and 50 Hz) and two duty cycles (40 and 50%). It has been observed that the mechanical properties (hardness and tensile strength) are sensitive to microstructure of weld metal, which is appreciably affected by the pulse parameters. Low frequency produced higher strength and hardness than high pulse frequency under identical welding conditions. Weld metal and HAZ were found stronger than the base metal. SEM study showed that the fracture of weldment was mostly brittle type.

  14. The effect of light on the Mg/Ca ratio in the planktic foraminifer Orbulina universa: implications for a light driven vital effect on Mg incorporation into foraminiferal calcite

    NASA Astrophysics Data System (ADS)

    Fehrenbacher, J. S.; Russell, A. D.; Gagnon, A. C.; Spero, H. J.; Holland, K.; Snyder, J.; Naumann, E.

    2014-12-01

    Many paleotemperature reconstructions rely heavily on the Mg/Ca ratio of planktic foraminifers. The incorporation of Mg is highly dependent on temperature and is also subtly affected by other water column parameters (e.g. pH and salinity), but the nature of the biological control over Mg uptake into foraminiferal calcite has not been fully determined. The distribution of Mg within a single foraminifer test is often organized in intercalated bands of high and low-Mg/Ca ratio calcite. Initial studies showed that low Mg/Ca calcite is added during the day light hours and high Mg/Ca calcite during the night (Spero et al., in press). Banding has been attributed to 1) modification of pH in the microenvironment around the shell via symbiont photosynthesis/respiration, 2) an unknown circadian mechanism, and/or 3) differential mitochondrial pumping of Mg away from the calcifying shell surface during day and night phases. We conducted several culture-based experiments to assess the affect of light on Mg/Ca variability in the planktic symbiont-bearing foraminifer Orbulina universa by culturing the foraminifers in different photoperiods including: 1) reversing the day/night cycle, 2) 24-hour constant light, and 3) 24-hour constant dark. With a reversed light/dark photoperiod, there is no 'lag' in the timing or amplitude of the Mg/Ca bands. In 24-hour constant light, the high Mg 'night' bands are reduced in amplitude and are no longer paced by a 24-hour cycle. This produces a mean shell Mg/Ca ratio that is lower than in shells growing on a normal light:dark cycle. Under 24-hour constant dark conditions, high Mg/Ca bands dominate the shell calcite. This produces a mean shell Mg/Ca ratio that is higher than shells grown on a normal light:dark cycle. These results suggest that a light cue, independent of photosymbiont activity, is responsible for controlling the presence/absence of high Mg/Ca banding and that ambient irradiance changes in the water column could influence overall Mg/Ca

  15. Late Pliocene Sea Surface Temperature contrast in the Benguela upwelling as recorded by foraminiferal Mg/Ca and alkenones

    NASA Astrophysics Data System (ADS)

    Leduc, G.; Garbe-Schoenberg, C.; Regenberg, M.; Schneider, R. R.

    2011-12-01

    Alkenone-based sea surface temperature (SST) in the Benguela region reveal quite warm and stable conditions between ~3.0 and 2.0 Ma, coinciding with a period of very high diatom production as revealed by mass accumulation rates (MAR) of biogenic opal (Marlow et al., 2000, Science; Etourneau et al., 2009, Geology). Such a pattern is difficult to believe with the general perception that high diatom productivity results from strong coastal upwelling associated with pronounced Surface Ocean cooling. Therefore we assessed whether different paleothermometers from the same sedimentary archive (i.e. ODP site 1082) provide different results for the Namibian upwelling system by performing a comparison between alkenone-derived temperatures and those from the planktonic foraminifera Globigerinoides bulloides, a species known to proliferate in upwelling regions. We used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for multiple in situ determination of Mg/Ca in single tests of G. bulloides. These measurements allow monitoring of contaminant phases linked to Mg-rich clays (monitored by Al/Ca) and Mn-rich foraminiferal tests, which contain substantial high Mg (monitored by Mn/Ca) (Pena et al., 2005, G-cubed). Moreover, using LA-ICP-MS measurements for Mg/Ca ratios on single specimens allows estimating the range of seasonal or vertical temperature variability by considering the intra-sample variance in the SST estimated from different specimens and/or different chambers within the same specimen. When compared to the Pliocene alkenone SST record, the Mg/Ca-ratios imply SSTs colder by ~10°C. A similar contrast in SST estimates between these two proxies was reported for the last 20 ka in the same region (Farmer et al., 2005, Paleoceanography). Such discrepancy can be reconciled by assuming that the two SST proxies are either strongly skewed towards warm (non-upwelling) and cold (upwelling) conditions for alkenones and Mg/Ca SST, respectively, or by the

  16. Assimilation Behavior of Calcium Ferrite and Calcium Diferrite with Sintered Al2O3 and MgO

    NASA Astrophysics Data System (ADS)

    Long, Hongming; Wu, Xuejian; Chun, Tiejun; Di, Zhanxia; Yu, Bin

    2016-10-01

    In this study, the assimilation behaviors between calcium ferrite (CF), calcium diferrite (CF2) and sintered Al2O3, and MgO were explored by an improved sessile drop technique, and the interfacial microstructure was discussed. The results indicated that the apparent contact angles of CF slag on Al2O3 and MgO substrate were 15.7 and 5.5 deg, and the apparent contact angles of CF2 slag on Al2O3 and MgO substrate were 17.9 and 7.2 deg, respectively. Namely, CF and CF2 slag were wetting well with Al2O3 and MgO substrate. The dissolution of Al2O3 substrate into the CF and CF2 slag was found to be the driving force of the wetting process. For the CF-MgO and CF2-MgO substrate systems, CaO contrarily distributed with MgO after wetting. For the CF-MgO system, after wetting, the slag was composed of CF and C2F, and most of the Fe2O3 permeated into substrate and formed two permeating layers.

  17. Texture and microstructure in co-sputtered Mg-M-O (M = Mg, Al, Cr, Ti, Zr, and Y) films

    NASA Astrophysics Data System (ADS)

    Saraiva, M.; Depla, D.

    2012-05-01

    Mg-M-O solid solution films (M = Mg, Al, Cr, Ti, Zr, and Y) with various M contents are grown employing reactive co-sputtering by varying the target-to-substrate distance. It is shown that all films are biaxially aligned. When the two cathodes are equipped with the same target material (Mg), the in-plane alignment is determined by the cathode closest to the substrate, i.e., by the largest material flux. In the case of nearly equal material fluxes from the two cathodes, double in-plane orientation is observed. This is also the case for the Mg-Al-O and Mg-Cr-O films, while the Mg-Ti-O, Mg-Zr-O and Mg-Y-O films exhibit single in-plane orientation. Pole figures indicate that the grains in Mg-M-O (M different than Mg) are titled; in the Mg-Al-O, Mg-Cr-O, and Mg-Ti-O films, the grains tilt towards the Al, Cr, and Ti metal flux, respectively, while the grain tilt of the Mg-Zr-O and Mg-Y-O films is found to be towards the Mg metal flux. Furthermore, SEM cross-sectional images of the Mg-M-O films reveal columnar microstructure with columns tilted to the same direction as the grains. A mechanism which is based on the cation radius change upon the incorporation of an M atom in the MgO lattice is proposed to explain the tilting.

  18. Anisotropic Responses of Mechanical and Thermal Processed Cast Al-Si-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Adeosun, S. O.; Akpan, E. I.; Balogun, S. A.; Onoyemi, O. K.

    2015-05-01

    The effects of ambient directional rolling and heat treatments on ultimate tensile strength (UTS), hardness (HD), percent elongation (PE), and impact energy (IE) on Al-Si-Mg-Cu alloy casting with reference to inclination to rolling direction are discussed in this article. The results show that rolled and quenched (CQ) sample possess superior UTS and HD to as-cast and those of rolled and aged samples (CA). Improved IE resistance with ductility is shown by both CQ and CA samples. However, these mechanical properties are enhanced as changes in the test sample direction moved away from rolling direction for all heat-treated samples. The CQ samples displayed highest tensile strength (108 MPa) and PE (19.8%) in the 90° direction.

  19. Towards a global calibration and validation of the G. ruber (white) Mg/Ca paleothermometer

    NASA Astrophysics Data System (ADS)

    Arbuszewski, J. A.; DeMenocal, P. B.

    2011-12-01

    Paired planktonic foraminiferal Mg/Ca and δ18O analyses are frequently applied to jointly estimate sea surface temperature and δ18Oseawater, a proxy for ocean salinity. Many previous studies found that temperature was the predominant factor influencing the incorporation of Mg2+ ions into foraminiferal calcite. However, recent results suggest that ocean salinity can also significantly influence shell Mg/Ca ratios. This influence was noted in our findings from an Atlantic meridional coretop sample transect, where we found that G. ruber (white) shell Mg/Ca values were significantly elevated in higher salinity gyre waters. This "excess Mg/Ca" (the residual between the observed and expected Mg/Ca composition at the δ18O calcification temperature) proved to be very highly correlated with surface salinity. Here, we will investigate the nature of this "excess Mg/Ca" signal for the planktonic species, G. ruber (white), globally using scanning electron microscope images, flow through ICP-MS data, and electron microprobe elemental mapping techniques. Additionally, using a database composed of a total of 230 cores (comprised of 42 cores new to this study and 188 previously published coretop values including 64 from our published Atlantic transect), we will present a global coretop calibration of surface ocean temperature and salinity using shell Mg/Ca, δ18O, and bottom water delta CO32- as predictors. Our calibration efforts yield accurate and precise estimations for modern coretops. We will discuss the validation of these new equations and their applicability to downcore paleoclimate reconstructions

  20. Evaluating Mg/Ca ratios as a temperature proxy in the estuarine oyster, Crassostrea virginica

    NASA Astrophysics Data System (ADS)

    Surge, Donna; Lohmann, Kyger C.

    2008-06-01

    We examined the potential utility of Mg/CaSHELL ratios recorded in shells of the estuarine oyster Crassostrea virginica as a temperature proxy because oxygen isotope ratios (δ18O) in estuaries are complicated by the simultaneous fluctuation in temperature and salinity, whereas Mg/CaWATER ratios are assumed to be constant above 10 practical salinity units (psu). We tested this assumption and observed a slight mixing effect between 10 psu and normal marine values emphasizing the need to test this assumption in estuarine settings. Microsamples of shell carbonate were analyzed for δ18O, δ13C, and Mg/Ca ratios. Measured δ18OSHELL and δ13CSHELL were compared to predicted values to assign dates to shell samples. Once samples and dates were aligned, corresponding temperature and salinity for a particular sample were known, enabling comparison of Mg/CaSHELL ratios and temperature. When all Mg/CaSHELL data were compared to temperature, a weak but statistically significant correlation was observed (r2 = 0.05, p < 0.01). Because date assignments may become increasingly uncertain further back in time and earlier studies identified ontogenetic effects in juvenile portions of shells from other bivalve species, we examined the relationship from only the last year of growth. When only data from the last year of growth were compared, a slightly stronger positive relationship between Mg/CaSHELL ratios andDMg (the partition coefficient) emerged (Mg/CaSHELL, r2 = 0.30, p < 0.01; DMg, r2 = 0.33, p < 0.01). The improved correlation may result from either ontogenetic effects influencing the incorporation of Mg into the younger portion of the shell and/or inaccurate date assignments. Regardless of the cause, our equations are similar to previously published equations for C. virginica and other taxa. Despite the low correlations, our improved relationship supports further study under controlled experimental conditions.

  1. Inter-species and Seasonal Variability in Mg / Ca in Larger Benthic Foraminifera: Implications for Paleo-proxy

    NASA Astrophysics Data System (ADS)

    Singh, A.; Saraswati, P. K.; Pande, K.; Sanyal, P.

    2015-12-01

    The reports of inter-species variability to intra-test heterogeneity in Mg/Ca in several species of foraminifera have raised question about its use in estimation of seawater temperatures and necessitate field and culture studies to verify it for species from different habitats. In this study, we attempt to investigate if Mg/Ca in larger benthic foraminifera (LBF) could be a potential proxy of seawater temperatures for shallow marine carbonates. The samples were collected in different seasons from coral reef at Akajima (Okinawa, Japan). The Ca and Mg of 13 species of LBF and small benthic foraminifera from the same season were determined to examine variation in Mg/Ca among the species calcified under presumably the same temperature and salinity conditions. We also analyzed Amphistegina lessoni from different seasons for Ca, Mg and δ18O to determine variation in Mg/Ca with temperature and see how the two proxies of temperatures, Mg/Ca and δ18O, correlate in the same species. The species cluster about two distinctly separated Mg/Ca values. The first group comprising species of Amphistegina, Gypsina, Ammonia and Elphidium have relatively lower Mg/Ca, varying from 30 to 45 mmol/mol. The second group, having average Mg/Ca ranging from ~110 to 170 mmol/mol, includes species of Schlumbergerella, Baculogypsinoides, Baculogypsina, Heterostegina, Operculina, Calcarina, Amphisorus, Alveolinella and Poroeponides. The result suggests large interspecies variability implying vital effect in foraminiferal Mg/Ca. There is no distinct difference in Mg/Ca values between porcelaneous and hyaline types or symbiont-bearing and symbiont-free types. In Amphistegina lessoni the variation in Mg/Ca between individuals of the same season is as large as variation across the seasons. There is no correlation between Mg/Ca and seawater temperature. Lack of correlation between Mg/Ca and δ18O further suggests that Mg/Ca in the species is not primarily controlled by temperature.

  2. The effect of Mg/2+/ and Ca/2+/ on urea-catalyzed phosphorylation reactions

    NASA Technical Reports Server (NTRS)

    Handschuk, G. J.; Lohrmann, R.; Orgel, L. E.

    1973-01-01

    The effect of Mg(2+) and Ca(2+) on phosphorylation reactions catalyzed by urea is investigated, showing that Mg(2+) improves markedly the yield of products containing pyrophosphate bonds. Yields of up to 25% of uridine diphosphate can be obtained with struvite at temperatures as low as 65 C.

  3. Recyclable Mg-Al layered double hydroxides for fluoride removal: Kinetic and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-12-30

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg-Al LDH) and Cl(-) (Cl · Mg-Al LDH) were found to adsorb fluoride from aqueous solutions. Fluoride is removed by anion exchange in solution with NO3(-) and Cl(-) intercalated in the LDH interlayer. In both cases, the residual F concentration is lower than the effluent standards for F in Japan (8 mg/L). The rate-determining step in the removal of F using NO3 · Mg-Al and Cl · Mg-Al LDH is chemical adsorption involving F(-) anion exchange with intercalated NO3(-) and Cl(-) ions. The removal of F is described by pseudo-second-order reaction kinetics, with Langmuir-type adsorption. The values obtained for the maximum adsorption and the equilibrium adsorption constant are respectively 3.3 mmol g(-1) and 2.8 with NO3 · Mg-Al LDH, and 3.2 mmol g(-1) and 1.5 with Cl · Mg-Al LDH. The F in the F · Mg-Al LDH produced in these reactions was found to exchange with NO3(-) and Cl(-) ions in solution. The regenerated NO3 · Mg-Al and Cl · Mg-Al LDHs thus obtained can be used once more to capture aqueous F. This suggests that NO3 · Mg-Al and Cl · Mg-Al LDHs can be recycled and used repeatedly for F removal.

  4. Reversible Hydrogen Storage Characteristics of Catalytically Enhanced Ca(Li)-nMg-B-N-H System

    NASA Astrophysics Data System (ADS)

    Srinivasan, Sesha; Emre Demircak, Dervis; Sharma, Prakash; Yogi, Goswami; Stefanakos, Elias

    2013-04-01

    The aim of the present investigation is to study the synergistic effects of multi-walled carbon nanotubes, Nb2O5 and other catalysts for reversible hydrogen storage characteristics of Ca(Li)-nMg-B-N-H systems. Multinary hydride using light weight, high capacity hydride compounds such as Ca(BH4)2, LiBH4, LiNH2, nanoMgH2 in 3:1:8:4 composition was synthesized using high energy planetary milling under Ar/H2 ambient. Various nano additives and bi-metallic catalysts were added in a very small concentration with the host hydride (Ca)Li-nMg-B-N-H. The TGA and DSC results demonstrated that the catalytically enhanced Ca(Li)-nMg-B-N-H with hydrogen release at lower temperatures when compared to the pristine systems such as either Ca-Li-B-H or Ca-Li-Mg-B-H. Analyses of metrological characterization using XRD, SEM and have revealed the effectiveness and the role of the catalytic nanoparticles and their enhanced reversible hydrogen storage behavior on the host hydride matrix. The mass spectrometric investigations employing RGA on these nanocrystalline, multi-component hydride systems exhibit the release of hydrogen in major proportion (˜80-90%) as compared to previously attributed ammonia.

  5. Electron microprobe analyses of Ca, S, Mg and P distribution in incisors of Spacelab-3 rats

    NASA Technical Reports Server (NTRS)

    Rosenberg, G. D.; Simmons, D. J.

    1985-01-01

    The distribution of Ca, S, Mg and P was mapped within the incisors of Spacelab-3 rats using an electron microprobe. The data indicate that Flight rats maintained in orbit for 7 days have significantly higher Ca/Mg ratios in dentin due to both higher Ca and lower Mg content than in dentin of ground-based Controls. There is no statistical difference in distribution of either P or S within Fligth animals and Controls, but there is clear indication that, for P at least, the reason is the greater variability of the Control data. These results are consistent with those obtained on a previous NASA/COSMOS flight of 18.5 days duration, although they are not pronounced. The results further suggest that continuously growing rat incisors provide useful records of the effects of weightlessness on Ca metabolism.

  6. Deep-sea ostracode shell chemistry (Mg:Ca ratios) and late Quaternary Arctic Ocean history

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Baker, P.A.; Rodriguez-Lazaro, J.; Briggs, W.M., Jr.

    1996-01-01

    The magnesium:calcium (Mg:Ca) and strontium:calcium (Sr:Ca) ratios were investigated in shells of the benthic ostracode genus Krithe obtained from 64 core-tops from water depths of 73 to 4411 m in the Arctic Ocean and Nordic seas to determine the potential of ostracode shell chemistry for paleoceanographic study. Shells from the abyssal plain and ridges of the Nansen, Amundsen and Makarov basins and the Norwegian and Greenland seas had a wide scatter of Mg:Ca ratios ranging from 0.007 to 0.012 that may signify post-mortem chemical alteration of the shells from Arctic deep-sea environments below about 1000 m water depth. There is a positive correlation (r2=0.59) between Mg:Ca ratios and bottom-water temperature in Krithe shells from water depths <900 m.

  7. Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications.

    PubMed

    Shi, Ling-Ling; Huang, Yuanding; Yang, Lei; Feyerabend, Frank; Mendis, Chamini; Willumeit, Regine; Ulrich Kainer, Karl; Hort, Norbert

    2015-07-01

    Magnesium alloys are promising candidates for biomedical applications. In this work, influences of composition and heat treatment on the microstructure, the mechanical properties and the corrosion behavior of Mg-Gd-Ca-Zr alloys as potential biomedical implant candidates were investigated. Mg5Gd phase was observed at the grain boundaries of Mg-10Gd-xCa-0.5Zr (x=0, 0.3, 1.2wt%) alloys. Increase in the Ca content led to the formation of additional Mg2Ca phase. The Ca additions increased both the compressive and the tensile yield strengths, but reduced the ductility and the corrosion resistance in cell culture medium. After solution heat treatment, the Mg5Gd particles dissolved in the Mg matrix. The compressive strength decreased, while the corrosion resistance improved in the solution treated alloys. After ageing at 200°C, metastable β' phase formed on prismatic planes and a new type of basal precipitates have been observed, which improved the compressive and tensile ultimate strength, but decreased the ductility. PMID:25837343

  8. Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications.

    PubMed

    Shi, Ling-Ling; Huang, Yuanding; Yang, Lei; Feyerabend, Frank; Mendis, Chamini; Willumeit, Regine; Ulrich Kainer, Karl; Hort, Norbert

    2015-07-01

    Magnesium alloys are promising candidates for biomedical applications. In this work, influences of composition and heat treatment on the microstructure, the mechanical properties and the corrosion behavior of Mg-Gd-Ca-Zr alloys as potential biomedical implant candidates were investigated. Mg5Gd phase was observed at the grain boundaries of Mg-10Gd-xCa-0.5Zr (x=0, 0.3, 1.2wt%) alloys. Increase in the Ca content led to the formation of additional Mg2Ca phase. The Ca additions increased both the compressive and the tensile yield strengths, but reduced the ductility and the corrosion resistance in cell culture medium. After solution heat treatment, the Mg5Gd particles dissolved in the Mg matrix. The compressive strength decreased, while the corrosion resistance improved in the solution treated alloys. After ageing at 200°C, metastable β' phase formed on prismatic planes and a new type of basal precipitates have been observed, which improved the compressive and tensile ultimate strength, but decreased the ductility.

  9. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg

    NASA Astrophysics Data System (ADS)

    Fantle, Matthew S.; Higgins, John

    2014-10-01

    The Ca, Mg, O, and C isotopic and trace elemental compositions of marine limestones and dolostones from ODP Site 1196A, which range in depth (∼58 to 627 mbsf) and in depositional age (∼5 and 23 Ma), are presented. The objectives of the study are to explore the potential for non-traditional isotope systems to fingerprint diagenesis, to quantify the extent to which geochemical proxies are altered during diagenesis, and to investigate the importance of diagenesis within the global Ca and Mg geochemical cycles. The data suggest that Ca, which has a relatively high solid to fluid mass ratio, can be isotopically altered during diagenesis. In addition, the alteration of Ca correlates with the alteration of Mg in such a way that both can serve as useful tools for deciphering diagenesis in ancient rocks. Bulk carbonate δ44Ca values vary between 0.60 and 1.31‰ (SRM-915a scale); the average limestone δ44Ca is 0.97 ± 0.24‰ (1SD), identical within error to the average dolostone (1.03 ± 0.15 1SD ‰). Magnesium isotopic compositions (δ26Mg, DSM-3 scale) range between -2.59‰ and -3.91‰, and limestones (-3.60 ± 0.25‰) and dolostones (-2.68 ± 0.07‰) are isotopically distinct. Carbon isotopic compositions (δ13C, PDB scale) vary between 0.86‰ and 2.47‰, with average limestone (1.96 ± 0.31‰) marginally offset relative to average dolostone (1.68 ± 0.57‰). The oxygen isotopic compositions (δ18O, PDB scale) of limestones (-1.22 ± 0.94‰) are substantially lower than the dolostones measured (2.72 ± 1.07‰). The isotopic data from 1196A suggest distinct and coherent trends in isotopic and elemental compositions that are interpreted in terms of diagenetic trajectories. Numerical modeling supports the contention that such trends can be interpreted as diagenetic, and suggests that the appropriate distribution coefficient (KMg) associated with limestone diagenesis is ∼1 to 5 × 10-3, distinctly lower than those values (>0.015) reported in laboratory

  10. Superplastic forming by decomposition of (CaCO{sub 3} + C) and MgCO{sub 3}

    SciTech Connect

    Shyu, J.S.; Chuang, T.H.

    1996-06-01

    An innovative method has been developed that replaces argon as the pressure source for superplastic forming. In this new process, several solid materials are placed in a closed system to generate pressure and are capable of forming superplastic alloy plates at specific temperatures. In the present study, the total pressures for the decomposition of (CaCO{sub 3} + C) and MgCO{sub 3} have been theoretically calculated from thermodynamics. The results show that a pressure range of 40 to 396 psi can be obtained for the (CaCO{sub 3} + C) system between 850 and 1000 C, which is suitable for the superplastic forming of Ti-6Al-4V and Superdux 64 (Nippon Yakin Kogy Co., Ltd., San-ei Bridge, Kyobasi 1-5-8, Chyuoku, Tokyo 104, Japan) stainless steel. The pressure for MgCO{sub 3} system between 480 and 515 C ranges from 78 to 160 psi, which is suitable for the superplastic forming of 8090 Al-Li and 7475 Al-Zn-Mg alloys. The calculated temperature dependence of pressure is consistent with the experimentally measured results. Furthermore, the forming rates, wall thickness distributions, tensile properties, and microstructures of the four alloys after forming have been shown to be very similar to those of conventional superplastic forming by argon pressurization.

  11. Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

    SciTech Connect

    Kim, Hyong June

    2011-01-01

    Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

  12. Effect of Ca addition on the microstructure and mechanical properties of as-cast Mg-Sm alloys.

    PubMed

    Luo, Xiaoping; Fang, Daqing; Chai, Yuesheng; Yang, Bin

    2016-08-01

    This study investigated the effect of Ca addition on the microstructure and mechanical properties of as-cast Mg-4Sm alloys. The addition of 1.0 wt% Ca led to a significant grain refinement of Mg-4.0Sm alloys owing to the formation of rod-like Mg2Ca phases that acted as active nucleates for the Mg matrix. The as-cast Mg-4.0Sm-1.0Ca alloy showed the smallest grain size at 45 μm. Furthermore, the Mg-4.0Sm-1.0Ca alloy exhibited greater hardness, higher tensile strength, and higher yield tensile strength and elongation than the other two alloys with different Ca contents. These results were attributed to the grain refinement and precipitation strengthening of the Mg2Ca and Mg41Sm5 phases. Microsc. Res. Tech. 79:707-711, 2016. © 2016 Wiley Periodicals, Inc.

  13. Mg/Ca composition of benthic foraminifera Miliolacea as a new tool of paleoceanography

    NASA Astrophysics Data System (ADS)

    Sadekov, Aleksey Yu.; Bush, Flora; Kerr, Joanna; Ganeshram, Raja; Elderfield, Henry

    2014-10-01

    The Mg/Ca compositions of benthic foraminifera from the superfamily Miliolacea have been studied to explore the use of these high-Mg foraminifera as a proxy for deep ocean conditions. Taxonomic analyses, relative abundance, and depth distributions of different Miliolacea species were carried out on a collection of core top samples, covering a depth range of 131 m to 2530 m, along the Australian coast of the Timor Sea. Pyrgo sp., composed of Pyrgo sarsi and Pyrgo murrhina, was found to be the most suitable for proxy studies. Mg/Ca values of this group of foraminifera show a strong correlation with bottom water temperatures and carbonate ion saturation described by the linear relationship: Mg/Ca = 2.53(±0.22) × BWT + 0.129(±0.023) × Δ[CO32-] + 4.63(±0.53), within the -1°C to 8°C temperature range. Absolute Mg/Ca values of Pyrgo sp. calcite and their temperature sensitivity are similar to those observed for inorganic calcite, suggesting that Mg composition of Pyrgo sp. calcite is mainly controlled by inorganic processes. The Mg/Ca composition of Pyrgo sp. calcite provides a new tool for reconstructing both water temperature and carbonate ion saturation when combined with other proxies for one of these parameters. A down core record from the Eastern Equatorial Pacific has been generated to illustrate how Mg/Ca values can be used for paleoclimate studies. This down core record shows large changes in Pacific bottom waters [CO32-] across glacial-interglacial transition, implying an increase in [CO32-] during the glacial period.

  14. Effect of Mg/Ca ratios on microbially induced carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Balci, Nurgul; Demirel, Cansu; Seref Sonmez, M.; Kurt, M. Ali

    2016-04-01

    Influence of Mg/Ca ratios on microbially induced carbonate mineralogy were investigated by series of experiments carried out under various environmental conditions (Mg/Ca ratio, temperature and salinity). Halophilic bacterial cultures used for biomineralization experiments were isolated from hypersaline Lake Acıgöl (Denizli, SW Turkey), displaying extreme water chemistry with an average pH around 8.6 (Balci eta l.,2015). Enriched bacterial culture used in the experiments consisted of Halomonas saccharevitans strain AJ275, Halomonas alimentaria strain L7B; Idiomarina sp. TBZ29, 98% Idiomarina seosensis strain CL-SP19. Biomineralization experiments were set up using above enriched culture with Mg/Ca ratios of 0.05, 1, 4 and 15 and salinity of 8% and 15% experiments at 30oC and 10oC. Additionally, long-term biomineralization experiments were set up to last for a year, for Mg/Ca=4 and Mg/Ca=15 experiments at 30oC. For each experimental condition abiotic experiments were also conducted. Solution chemistry throughout incubation was monitored for Na, K, Mg, Ca, bicarbonate, carbonate, ammonium and phosphate for a month. At the end of the experiments, precipitates were collected and morphology and mineralogy of the biominerals were investigated and results were evaluated using the software DIFFRAC.SUITE EVA. Overall the preliminary results showed chemical precipitation of calcite, halite, hydromagnesite and sylvite. Results obtained from biological experiments indicate that, low Mg/Ca ratios (0.05 and 1) favor chlorapatite precipitation, whereas higher Mg/Ca ratios favor struvite precipitation. Biomineralization of dolomite, huntite and magnesite is favorable at high Mg/Ca ratios (4 and 15), in the presence of halophilic bacteria. Moreover, results indicate that supersaturation with respect to Mg (Mg/Ca=15) combined with NaCl (15%) inhibits biomineralization and forms chemical precipitates. 15% salinity is shown to favor chemical precipitation of mineral phases more than

  15. Mechanochemical synthesis of MgF2 - MF2 composite systems (M = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Scholz, G.; Breitfeld, S.; Krahl, T.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2015-12-01

    The capability of mechanochemical synthesis for the formation of MgF2-MF2 (M: Ca, Sr, Ba) composites, solid solutions or well-defined compounds was tested applying a fluorination of different fluorine-free metal sources with NH4F directly at milling. No evidence was found for a substitution of Mg2+ with Ca2+ (Sr2+, Ba2+) ions, or vice versa, in rutile or fluorite structure. However, an equimolar ratio of Mg2+ to the second cation allows the mechanochemical synthesis of tetrafluoromagnesates, MMgF4, which is more and more hampered the smaller the radius of the cation M2+ is. BaMgF4 is formed even phase pure from the acetates, SrMgF4 can only be observed in a mixture accompanied by the binary fluorides. In addition, 19F MAS NMR spectra along with calculations of 19F isotropic chemical shift values according to the superposition model point to the formation of a metastable phase of CaMgF4, which disappears at thermal treatment and decomposes into the binary fluorides CaF2 and MgF2.

  16. Radiation damage in MgAl2O4

    NASA Astrophysics Data System (ADS)

    Summers, G. P.; White, G. S.; Lee, K. H.; Crawford, J. H., Jr.

    1980-03-01

    Exposure of single crystals of MgAl2O4 to fast neutrons and to Van de Graaff electrons with energies in excess of 0.35 MeV introduces an optical-absorption band at 5.3 eV with a 1-eV half-width. This band can be partially bleached at temperatures as low as 40 K and a shoulder at 4.75 eV develops concurrently. This bleaching treatment also partially destroys a previously reported V-type absorption centered at 3.2 eV. Subsequent exposure to ionizing radiation destroys the 4.75-eV band and restores both the 5.3- and 3.2-eV bands to their original intensities. Since this behavior is analogous to the interconversion of F to F+ centers in Al2O3, it is concluded that the 5.3-eV band is the principal optical transition of the F center (two electrons trapped at an oxide-ion vacancy) and the 4.75-eV band is attributed to absorption by the F+ center (one electron trapped at an oxide-ion vacancy). In electron-irradiated crystals the 5.3-eV absorption begins to anneal near 110°C and is about 90% destroyed upon isochronal annealing (10-min pulses) up to 355°C. Neutron-irradiated crystals behave similarly. Measurement of the threshold energy for damage by electrons at 77 K yields a displacement energy for the creation of O2- interstitial-vacancy pairs of 59 eV. The defect yield drops off substantially with increasing temperature, and at room temperature the apparent O2- displacement energy is 130 eV. Possible reasons for this strong temperature effect are discussed.

  17. Fluorescence signals from the Mg2+/Ca2+ indicator furaptra in frog skeletal muscle fibers.

    PubMed Central

    Konishi, M; Suda, N; Kurihara, S

    1993-01-01

    The fluorescent Mg2+/Ca2+ indicator, furaptra, was injected into single frog skeletal muscle fibers, and the indicator's fluorescence signals were measured and analyzed with particular interest in the free Mg2+ concentration ([Mg2+]) in resting muscle. Based on the fluorescence excitation spectrum of furaptra, the calibrated myoplasmic [Mg2+] level averaged 0.54 mM, if the value of dissociation constant (KD) for Mg2+ obtained in vitro (5.5 mM) was used. However, if the indicator reacts with Mg2+ with a two-fold larger KD in myoplasm, as previously suggested for the furaptra-Ca2+ reaction (M. Konishi, S. Hollingworth, A.B. Harkins, S.M. Baylor. 1991. J. Gen. Physiol. 97:271-301), the calculated [Mg2+] would average 1.1 mM. Thus, the value 1.1 mM probably represents the best estimate from furaptra of [Mg2+] in resting muscle fibers. Extracellular perfusion of muscle fibers with high Mg2+ concentration solution or low Na+ concentration solution did not cause any detectable changes in the [Mg2+]-related furaptra fluorescence within 4 min. The results suggest that the myoplasmic [Mg2+] is highly regulated near the resting level of 1 mM, and that changes only occur with a very slow time course. PMID:8431543

  18. The effect of Mg location on Co-Mg-Ru/γ-Al2O3 Fischer–Tropsch catalysts

    PubMed Central

    Combes, Gary B.; Ozkaya, Don; Enache, Dan I.; Ellis, Peter R.; Kelly, Gordon; Rosseinsky, Matthew J.

    2016-01-01

    The effectiveness of Mg as a promoter of Co-Ru/γ-Al2O3 Fischer–Tropsch catalysts depends on how and when the Mg is added. When the Mg is impregnated into the support before the Co and Ru addition, some Mg is incorporated into the support in the form of MgxAl2O3+x if the material is calcined at 550°C or 800°C after the impregnation, while the remainder is present as amorphous MgO/MgCO3 phases. After subsequent Co-Ru impregnation MgxCo3−xO4 is formed which decomposes on reduction, leading to Co(0) particles intimately mixed with Mg, as shown by high-resolution transmission electron microscopy. The process of impregnating Co into an Mg-modified support results in dissolution of the amorphous Mg, and it is this Mg which is then incorporated into MgxCo3−xO4. Acid washing or higher temperature calcination after Mg impregnation can remove most of this amorphous Mg, resulting in lower values of x in MgxCo3−xO4. Catalytic testing of these materials reveals that Mg incorporation into the Co oxide phase is severely detrimental to the site-time yield, while Mg incorporation into the support may provide some enhancement of activity at high temperature. PMID:26755760

  19. The Electrochemical Co-reduction of Mg-Al-Y Alloys in the LiCl-NaCl-MgCl2-AlF3-YCl3 Melts

    NASA Astrophysics Data System (ADS)

    Li, Mei; Liu, Yaochen; Han, Wei; Wang, Shanshan; Zhang, Milin; Yan, Yongde; Shi, Weiqun

    2015-04-01

    The electrochemical formation of Mg-Al-Y alloys was studied in the LiCl-NaCl-MgCl2 melts by the addition of AlF3 and YCl3 on a molybdenum electrode at 973 K (700 °C). In order to reduce the volatilization of salt solvent in the electrolysis process, the volatile loss of LiCl-NaCl-MgCl2 and LiCl-KCl-MgCl2 melts was first measured in the temperature range from 873 K to 1023 K (600 °C to 750 °C). Then, the electrochemical behaviors of Mg(II), Al(III), Y(III) ions and alloy formation processes were investigated by cyclic voltammetry, chronopotentiometry, and open circuit chronopotentiometry. The cyclic voltammograms indicate that the under-potential deposition of magnesium and yttrium on pre-deposited Al leads to formation of Mg-Al and Al-Y intermetallic compounds. The Mg-Al-Y alloys were prepared by galvanostatic electrolysis in the LiCl-NaCl-MgCl2-AlF3-YCl3 melts and characterized by X-ray diffraction and scanning electron microscopy with energy dispersive spectrometry. Composition of the alloys was analyzed by inductively coupled plasma-atomic emission spectrometer, and current efficiency was also determined by the alloy composition.

  20. Degradation behavior of Ca-Mg-Zn intermetallic compounds for use as biodegradable implant materials.

    PubMed

    Hagihara, Koji; Shakudo, Shuhei; Fujii, Kenta; Nakano, Takayoshi

    2014-11-01

    With the goal of developing new biodegradable implant materials, we have investigated the degradation behavior of (Ca, Mg)-based intermetallic compounds. The degradation behavior of the compounds within the Ca-Mg-Zn system was roughly classified into four groups, and their behaviors were strongly influenced by the compositions of the compounds. For example, the Ca3MgxZn(15-x) compound exhibited a large solubility region with varying the Mg/Zn ratio, and the Ca3Mg12Zn3 phase alloy with the lowest Zn content was rapidly broken apart within 6h of immersion. Alternatively, the Ca3Mg4.6Zn10.4 phase alloy with the highest Zn content retained the bulk shape even after 250 h of immersion. These varying degradation behaviors were ascribed to the difference in the formability of Zn oxide as a protective layer against corrosion on the specimen surfaces, depending on the Zn content. The gained results suggest that there is a feasibility on developing new biodegradable materials based on intermetallic compounds in which the degradation rate can be controlled by their compositions.

  1. Phase relations in the greenschist-blueschist-amphibolite-eclogite facies in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O (NCFMASH), with application to metamorphic rocks from Samos, Greece

    NASA Astrophysics Data System (ADS)

    Will, Thomas; Okrusch, Martin; Schmädicke, Esther; Chen, Guoli

    Calculated phase equilibria among the minerals sodic amphibole, calcic amphibole, garnet, chloritoid, talc, chlorite, paragonite, margarite, omphacite, plagioclase, carpholite, zoisite/clinozoisite, lawsonite, pyrophyllite, kyanite, sillimanite, quartz and H2O are presented for the model system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O (NCFMASH), which is relevant for many greenschist, blueschist, amphibolite and eclogite facies rocks. Using the activity-composition relationships for multicomponent amphiboles constrained by Will and Powell (1992), equilibria containing coexisting calcic and sodic amphiboles could be determined. The blueschist-greenschist transition reaction in the NCFMASH system, for example, is defined by the univariant reaction sodic amphibole + zoisite=calcic amphibole + chlorite + paragonite + plagioclase (+ quartz + H2O) occurring between approximately 420 and 450°C at 9.5 to 10kbar. The calculated petrogenetic grid is a valuable tool for reconstructing the PT-evolution of metabasic rocks. This is shown for rocks from the island of Samos, Greece. On the basis of mineral and whole rock analyses, PT-pseudosections were calculated and, together with the observed mineral assemblages and reaction textures, are used to reconstruct PT-paths. For rocks from northern Samos, pseudomorphs after lawsonite preserved in garnet, the assemblage sodic amphibole-garnet-paragonite-chlorite-zoisite-quartz and the retrograde appearance of albitic plagioclase and the formation of calcic amphibole around sodic amphibole constrain a clockwise PT-path that reaches its thermal maximum at some 520°C and 19kbar. The derived PT-trajectory indicates cooling during exhumation of the rocks and is similar to paths for rocks from the western part of the Attic-Cycladic crystalline complex. Rocks from eastern Samos indicate lower pressures and are probably related to high-pressure rocks from the Menderes Massif in western Turkey.

  2. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  3. Laser cladding of a Mg based Mg-Gd-Y-Zr alloy with Al-Si powders

    NASA Astrophysics Data System (ADS)

    Chen, Erlei; Zhang, Kemin; Zou, Jianxin

    2016-03-01

    In the present work, a Mg based Mg-Gd-Y-Zr alloy was subjected to laser cladding with Al-Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg2Si, Mg17Al12 and Al2(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg2Si, Mg17Al12 and Al2(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from -1.77 V for the untreated alloy to -1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10-5 A cm-2 to 1.64 × 10-6 A cm-2. The results show that laser cladding is an efficient method to improve surface properties of Mg-Rare earth alloys.

  4. Adaptation of a flow-through leaching procedure for Mg/Ca paleothermometry

    NASA Astrophysics Data System (ADS)

    Benway, H. M.; Haley, B. A.; Klinkhammer, G. P.; Mix, A. C.

    2003-02-01

    Mg/Ca ratios in planktonic foraminifera reflect calcification temperatures and are thus useful for sea surface temperature (SST) reconstructions. Despite the obvious utility of this paleoceanographic tracer, problems of dissolution, gametogenic calcification, and contaminant phases have thus far limited confidence in Mg/Ca-based reconstructions. Here we show strong evidence of Mg heterogeneity in foraminiferal calcite by sequentially measuring the composition of different forms of calcite (ontogenetic, gametogenic, diagenetic) in the same shells, while monitoring and removing contaminant phases. A new flow-through method combines chromatographic technology and inductively coupled plasma mass spectrometry (ICP-MS) in a series of cleaning and dissolution reactions monitored continuously with time-resolved analysis (TRA). This combination of slow, controlled dissolution and TRA provides a complete elemental description of contaminant phases and sorts the cleaned calcium carbonate based on dissolution sensitivity. Examination of partially dissolved shells with electron microscopy suggests that the flow-through method simulates the natural dissolution sequence and effectively separates the different calcite domains within a single foraminiferal shell. Heterogeneity of Mg/Ca in foraminiferal calcite is clearly demonstrated in flow-through analysis. Foraminiferal shells have initially high Mg levels that decrease steadily throughout dissolution. Later dissolution yields lower Mg/Ca, which is likely due to a combination of subsurface calcification and biomineralization effects. Mg/Ca ratios from the most dissolution-sensitive (high-Mg) portions of surface-dwelling species in core tops are used to calculate calcification temperatures. A comparison of late Holocene core top data with World Ocean Atlas SST data indicates that the flow-through method does yield viable SST estimates. Furthermore, a depth transect in the eastern tropical Pacific suggests that this approach

  5. Hibonite, Ca2/Al, Ti/24O38, from the Leoville and Allende chondritic meteorites.

    NASA Technical Reports Server (NTRS)

    Keil, K.; Fuchs, L. H.

    1971-01-01

    Hibonite was discovered in light-colored, Ca-Al-Ti-rich and Si-Fe-poor, achondritic inclusions of the Leoville and Allende HL-group chondrites. Two varieties of hibonite occur: one emits a bright red-orange luminescence under electron bombardment and has high amounts of Al2O3 (87.7; 87.9) and low amounts of MgO (0.65; 0.8) and TiO2 (0.68; 0.8). The other emits a bright blue luminescence and is low in Al2O3 (78.7; 79.2) and high in MgO (3.3; 3.7) and TiO2 (6.5; 7.9) (in wt. %). The oxide CaO is about the same in both varieties. It is suggested that the change in the color of the visible luminescence results from changes in composition. The origin of hibonite which occurs in complex mineral assemblages together with anorthite, gelhenite, wollastonite, aluminous diopside, andradite, Ca-pyroxene, perovskite, spinel, taenite, chromite, and pentlandite, and in close proximity to nodules containing calcite, whewellite, forsterite and many of the aforementioned phases, is discussed. The proposition that hibonite and associated phases originated by contact metamorphism and metasomatism of calcite-dolomite bearing assemblages cannot, at this time, be completely ruled out.

  6. Liquidus (Ca+Mg)-rich exsolution phases in low-sulfur fly ash

    SciTech Connect

    O'Connor, J.T.; Meeker, G.M.

    1999-07-01

    Ca- and Mg-rich fly ash samples from an electric power plant burning low-sulfur Powder River Coal were analyzed using optical petrographic microscope (OPM), scanning electron microscope (SEM), electron microprobe analyzer (EMPA), and Gandolfi and bulk-powder X-ray diffraction (XRD) techniques. Abundant Ca and Mg in the fly ash, probably originating from dispersed authigenic and residual minerals in the coal feed stock, flux the molten fly ash, effectively allowing many crystalline phases to achieve ordering, to separate from each other, and to grow to appreciable size (>10{micro}m) in the brief time (<20 sec) they spend at high temperature. Phases identified from the (Ca+Mg)-rich fly ash are listed in a table and shown in figures.

  7. H2O2: a Ca(2+) or Mg(2+)-sensing function in statin passive diffusion.

    PubMed

    Guillaume, Yves Claude; Lethier, Lydie; André, Claire

    2015-09-01

    In a previous paper Guillaume's group demonstrated that magnesium (Mg(2+) concentration range 0.00-2.60 mm) increased the passive diffusion of statins and thus played a role in their potential toxicity. In order to confirm an increase in this passive diffusion by divalent salt cations, the role of calcium chloride (CaCl2) on the statin-immobilized artificial membrane (IAM) association was studied. It was demonstrated that calcium supplementation (Ca(2+) concentration range 0.00-3.25 mm) increases the statin passive diffusion. In addition, it was shown that the Ca(2+) effect on the statin-IAM association is higher than that of Mg(2+). These results show that Ca(2+) enhances the passive diffusion of drugs into biological membranes and thus their potential toxicity. Also, addition of H2O2 to the medium showed a hyperbolic response for the statin passive diffusion and this effect was enhanced for the highest Ca(2+) or Mg(2+) concentrations in the medium. H2O2 is likely to interact with the polar head groups of the IAM through dipole-dipole interactions. The conformational changes in H2O2-IAM result in a higher degree of exposure of hydrophobic areas, thus explaining why the binding of pravastatin, which showed the lowest logP value, was less affected by H2O2. This result shows the significant contribution of H2O2 and thus the oxidative stress on the statin passive diffusion. Much of the sensitivity derives from the action of Ca(2+) or Mg(2+), in turn supported the idea that H2O2 may serve a Ca(2+) or Mg(2+) sensing function in statin passive diffusion.

  8. Comparison between Mg II k and Ca II H images recorded by SUNRISE/SuFI

    SciTech Connect

    Danilovic, S.; Hirzberger, J.; Riethmüller, T. L.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Berkefeld, T.; Schmidt, W.; Knölker, M.; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro

    2014-03-20

    We present a comparison of high-resolution images of the solar surface taken in the Mg II k and Ca II H channels of the Filter Imager on the balloon-borne solar observatory SUNRISE. The Mg and Ca lines are sampled with 0.48 nm and 0.11 nm wide filters, respectively. The two channels show remarkable qualitative and quantitative similarities in the quiet Sun, in an active region plage and during a small flare. However, the Mg filtergrams display 1.4-1.7 times higher intensity contrast and appear more smeared and smoothed in the quiet Sun. In addition, the fibrils in a plage are wider. Although the exposure time is 100 times longer for Mg images, the evidence suggests that these differences cannot be explained only with instrumental effects or the evolution of the solar scene. The differences at least partially arise because of different line-formation heights, the stronger response of Mg k emission peaks to the higher temperatures, and the larger height range sampled by the broad Mg filter used here. This is evidently manifested during the flare when a surge in Mg evolves differently than in Ca.

  9. Carboxylated biomolecules control Mg/Ca of amorphous calcium carbonate by predictable relationship: Implications for calcified biominerals

    NASA Astrophysics Data System (ADS)

    Dove, P. M.; Wang, D.; Wallace, A. F.

    2009-12-01

    A new paradigm for calcification is emerging with the realization that many calcified skeletons form by processes involving a transient precursor phase of amorphous calcium carbonate (ACC). This type of biomineralization is unlike classical crystal growth because the process begins by stabilizing ACC as a reactive intermediate that later transforms into one or more crystalline carbonate polymorphs. In vivo studies show that sites of calcification are rich in macromolecules and the ACC can be intimately associated with significant levels of proteins. While detailed chemistry and structure of these proteins and other macromolecules vary over the course of mineralization, their overall compositions are significantly enriched in acidic (carboxylated) side chains. There is evidence that the Mg content in biogenic ACC may be modulated by the presence of these acidic macromolecules, but the physical basis for such a regulatory process is unknown. Building on insights from our recent studies showing that biomolecules influence the formation and composition of calcite (Elhadj, et al., PNAS, 2006; Stephenson et al., Science, 2008), we test the hypothesis that the Mg content of ACC is modulated by the chemistry of carboxyl-rich biomolecules. First, a series of inorganic control experiments were conducted to establish the dependence of Mg/Ca signatures in ACC on solution composition. We then determine the influence of a suite of simple carboxylated organic acids on Mg content. Molecules with a strong affinity for binding Ca compared to Mg promote the formation of Mg-enriched ACC that is compositionally equivalent to high Mg-calcites and dolomite. Measurements show Mg/Ca signatures are controlled by a predictable and systematic dependence upon the binding properties of the organic molecules. The trend appears rooted in the conformation and electrostatic potential topology of each molecule but dynamic factors may also be involved. The relationship suggests a physical basis for

  10. Mg/Ca and δ18O in the calcite of benthic foraminifera: does size matter?

    NASA Astrophysics Data System (ADS)

    de Nooijer, Lennart; Bijma, Jelle; -Jan Reichart, Gert; Hathorne, Ed

    2010-05-01

    Mg/Ca and del-18O are popular proxies for past sea water temperatures, ice volume and, together, salinity. The biological control that foraminifera have over calcification results in precipitation of calcium carbonate that has an isotope and element composition that is very different from those of inorganically precipitated calcium carbonates. Indications for an effect of ontogeny (i.e. size of a specimen) on the fractionation of oxygen isotopes are contradictory, while for the incorporation of most (trace) elements, data are lacking. The causes of size-based variability in element incorporation and isotope fractionation need to be understood and quantified in order to reliably use them as paleoproxies. In this study, we present Mg/Ca and oxygen isotope data from cultured specimens of the benthic foraminifer Ammonia tepida. When asexual reproduction takes place in this species, 50-300 genetically identical juveniles (i.e. clones) are produced. These juveniles are cultured at constant temperature, carbonate chemistry, salinity, etc to determine inter- and intra-specimen variability in Mg/Ca, Ba/Ca and Sr/Ca. From the same groups of clones, del-18O was determined from specimens with different sizes. Results show that the variability differs greatly between the analysed elements (e.g. relatively constant for Sr and Ba, variable for Mg) and isotopes, underscoring the need for a biological understanding of foraminiferal calcification pathways.

  11. LiCaAl/sub 6/:Cr/sup 3+/

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Smith, L.K.; Krupke, W.F. )

    1988-11-01

    The authors report the discovery of a new laser, LiCaAIF/sub 6/:Cr/sup 3/ (Cr/sup 3+/ :LiCAF). The intrinsic (extrapolated maximum) slope efficiency was found to be 67 percent. For comparison, they also measured the intrinsic slope efficiencies of BeAl/sub 2/O/sub 4/:Cr/sup 3+/ (alexandrite), Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, and ScBO/sub 3/:Cr/sup 3+/, and obtained values of 65,28, and 26 percent, respectively. The tuning range of LiCaAIF/sub 6/:Cr/sup 3+/ was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well.

  12. Ca-Mg kutnahorite and struvite production by Idiomarina strains at modern seawater salinities.

    PubMed

    González-Muñoz, María Teresa; De Linares, Concepción; Martínez-Ruiz, Francisca; Morcillo, Fernando; Martín-Ramos, Daniel; Arias, José María

    2008-06-01

    The production of Mg-rich carbonates by Idiomarina bacteria at modern seawater salinities has been investigated. With this objective, four strains: Idiomarina abyssalis (strain ATCC BAA-312), Idiomarina baltica (strain DSM 15154), Idiomarina loihiensis (strains DSM 15497 and MAH1) were used. The strain I. loihiensis MAH1 is a new isolate, identified in the scope of this work. The four moderately halophilic strains precipitated struvite (NH4MgPO4 x 6H2O) crystals that appear encased by small Ca-Mg kutnahorite [CaMg(CO3)2] spheres and dumbbells, which are also regularly distributed in the bacterial colonies. The proportion of Ca-Mg kutnahorite produced by the bacteria assayed ranged from 50% to 20%, and I. abyssalis also produced monohydrocalcite. All precipitated minerals appeared to be related to the bacterial metabolism and, consequently, can be considered biologically induced. Amino acid metabolism resulted in a release of ammonia and CO2 that increase the pH and CO(3)(2-) concentration of the culture medium, creating an alkaline environment that favoured carbonate and struvite precipitation. This precipitation may be also related to heterogeneous nucleation on negatively charged points of biological structures. Because the nature of the organic matrix determines which ion is preferentially adsorbed and, consequently, which mineral phase is formed, the uniquely high content in odd-iso-branched fatty acids of the Idiomarina suggests that their particular membrane characteristics could induce Ca-Mg kutnahorite production. The Ca-Mg kutnahorite, a mineral with a dolomite-ordered structure, production at seawater salinities is noticeable. To date, such precipitation in laboratory cultures, has only been described in hypersaline conditions. It has also been the first time that biomineralization processes have been related to Idiomarina bacteria. PMID:18355891

  13. Magnesium doping on brownmillerite Ca{sub 2}FeAlO{sub 5}

    SciTech Connect

    Malveiro, J.; Ramos, T.; Ferreira, L.P.; Waerenborgh, J.C.

    2007-06-15

    Ca{sub 2}FeAl{sub 1-} {sub x} Mg {sub x} O{sub 5} (x=0, 0.05 and 0.1) compounds adopting the brownmillerite-type structure were prepared by a self-combustion route using two different fuels. Characterisation was performed using X-ray powder diffraction, Moessbauer spectroscopy, magnetisation measurements, chemical analysis, scanning electron microscopy and 4-point dc conductivity measurements. Global results indicate that the solubility limit was reached for x=0.1. An antiferromagnetic behaviour was detected for all studied compositions, with magnetic ordering temperatures of 340 and 290 K for x=0 and 0.05, respectively. Mg doping increases the number of iron cations in tetrahedral sites, which induces magnetisation enhancement at low temperatures through the coupling between octahedral iron cations in different octahedral planes. The compounds exhibit semiconductor behaviour and Mg{sup 2+} doping yields a significant enhancement of the total conductivity, which can be essentially attributed to the presence of Fe{sup 4+} ions. - Graphical abstract: Ca{sub 2}FeAl{sub 1-} {sub x} Mg {sub x} O{sub 5} (x=0, 0.05, 0.1) compounds with the brownmillerite structure were prepared and characterised. The paramagnetic Moessbauer spectra presented were obtained at T=363 K (x=0); T=297 K (x=0.05) and T=353 K (x=0.1)

  14. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Blättler, Clara L.; Miller, Nathaniel R.; Higgins, John A.

    2015-06-01

    Authigenic carbonates in marine sediments frequently have carbon isotope ratios that reflect local organic carbon processing rather than the δ13C of the global DIC (dissolved inorganic carbon) reservoir, but their contributions to ancient sedimentary sections are difficult to assess. In this study of authigenic dolomite from the Miocene-age Monterey Formation of offshore California, Mg and Ca isotopes are shown to vary with stratigraphic depth as a result of early diagenetic processes. The dolomite is a pre-compaction authigenic phase that occurs as beds and nodules with δ13C ranging from -16 to + 9 ‰. Light δ13C values were likely acquired from the sedimentary zone of microbial sulfate reduction, while heavy δ13C values were acquired from the zone of methanogenesis. Mg and Ca isotopes are roughly anti-correlated, with intervals of negative δ13C associated with low δ26Mg and higher δ 44/40Ca values. The variability is observed over a wide range of length-scales, from 10-2 meters within individual authigenic beds/nodules, to 102 meters over the entire stratigraphic column, and can be understood as the consequence of dolomite precipitation in pore fluids where Mg supply is limited by diffusive transport. The relationship of δ26Mg and δ 44/40Ca to the more common stable isotope measurements of δ13C and δ18O represents a new, diagenetically robust, geochemical fingerprint for identifying synsedimentary authigenic carbonates in the geological record.

  15. Quantum-mechanical calculation of the solid-state equilibrium MgO+α-Al2O3⇄MgAl2O4 (spinel) versus pressure

    NASA Astrophysics Data System (ADS)

    Catti, M.; Valerio, G.; Dovesi, R.; Causà, M.

    1994-05-01

    The ground-state crystal energies of cubic MgAl2O4 (spinel) and MgO (periclase) and of rhombohedral α-Al2O3 (corundum) have been calculated at different volumes, relaxing the corresponding structures, by all-electron periodic Hartree-Fock methods (crystal program). Basis sets of contracted Gaussian-type functions are employed for the 18 atomic (including d) orbitals representing each of the Mg, Al, and O atoms. Mulliken net atomic charges zMg=1.86||e|| (MgO), zAl=2.30||e|| (α-Al2O3), zMg=1.74||e||, and zAl=2.24||e|| (spinel) are obtained. The elastic bulk modulus, the Murnaghan equation of state p(V) at the athermal limit, the Mg-O and Al-O bond compressibilities, and the binding energy have been derived for each phase (and the elastic constants C11 and C12 for spinel only). Comparison with existing experimental data is discussed. The enthalpy change for spinel decomposition into the simple oxides has been computed as a function of pressure, including a correction for the electron correlation energy based on local-density-functional theory. A decomposition pressure of 11 GPa at T=0 K is predicted, against values of 8 and 13 GPa derived from experimental thermodynamic data and from direct compression experiments, respectively.

  16. Evaluation of automated flow-through time-resolved analysis of foraminifera for Mg/Ca paleothermometry

    NASA Astrophysics Data System (ADS)

    Klinkhammer, G. P.; Haley, B. A.; Mix, A. C.; Benway, H. M.; Cheseby, M.

    2004-12-01

    The primary Mg/Ca ratio of foraminiferal shells is a potentially valuable paleoproxy for sea surface temperature (SST) reconstructions. However, the reliable extraction of this ratio from sedimentary calcite assumes that we can overcome artifacts related to foraminiferal ecology and partial dissolution, as well as contamination by secondary calcite and clay. The standard batch method for Mg/Ca analysis involves cracking, sonicating, and rinsing the tests to remove clay, followed by chemical cleaning, and finally acid-digestion and single-point measurement. This laborious procedure often results in substantial loss of sample (typically 30-60%). We find that even the earliest steps of this procedure can fractionate Mg from Ca, thus biasing the result toward a more variable and often anomalously low Mg/Ca ratio. Moreover, the more rigorous the cleaning, the more calcite is lost, and the more likely it becomes that any residual clay that has not been removed by physical cleaning will increase the ratio. These potentially significant sources of error can be overcome with a flow-through (FT) sequential leaching method that makes time- and labor-intensive pretreatments unnecessary. When combined with time-resolved analysis (FT-TRA) flow-through, performed with a gradually increasing and highly regulated acid strength, produces continuous records of Mg, Sr, Al, and Ca concentrations in the leachate sorted by dissolution susceptibility of the reacting material. Flow-through separates secondary calcite from less susceptible biogenic calcite and clay, and further resolves the biogenic component into primary and more resistant fractions. FT-TRA reliably separates secondary calcite (which is not representative of original life habitats) from the more resistant biogenic calcite (the desired signal) and clay (a contaminant of high Mg/Ca, which also contains Al), and further resolves the biogenic component into primary and more resistant fractions that may reflect habitat or other

  17. Nucleosynthesis in AGB stars: Observation of Mg-25 and Mg-26 in IRC+10216 and possible detection of Al-26

    NASA Technical Reports Server (NTRS)

    Guelin, M.; Forestini, M.; Valiron, P.; Ziurys, L. M.; Anderson, M. A.; Cernicharo, J.; Kahane, C.

    1995-01-01

    We report the detection in the circumstellar envelope IRC+10216 of millimeter lines of the rare isotopomers (25)MgNC and (26)MgNC, as well as of a line at 234433 MHz, which could be the J= 7-6 transition of (26)AlF (an alternate, although less likely identified would be the J= 9-8 transition of NaF). The derived Mg-24:Mg-25:Mg-26 isotopic abundance ratios (78 : 11+/- 1 : 11 +/-1) are consistent with the solar system values (79.0:10.0:11.0), following Anders & Grevesse 1989). According to new calculations of evolutionary models of 3 solar mass and 5 solar mass asymptotic giant branch (AGB) stars, these ratios and the previously measured N, O and Si isotopic ratios imply that the central star had an initial mass 3 solar mass (less than or equal to M(sub *, ini) less than 5 solar mass and has already experienced many 3rd dredge-up events. From this, it can be predicted that the Al-26/Al-27 isotopics ratio lies between 0.01 and 0.08; in fact, the value derived in the case that U234433 arises from (26)AlF is Al-26/Al-27 = 0.04. The identification of the (25)MgNC and (26)MgNC lines was made possible by ab-initio quantum mechanical calculations of the molecule geometrical structure. It was confirmed through millimeter-wave laboratory measurements. The quantum mechanical calculations are briefly described and the laboratory results presented in some detail. The rotation constants B, D, H and the spin-rotation constant gamma of (25)MgNC and (26)MgNC are determined from a fit of laboratory and astronomical data.

  18. The Role of Ca and Mg in Controlling the Skeletal Composition of Scleractinian Corals

    NASA Astrophysics Data System (ADS)

    Swart, Peter; Giri, Sharmila; Devlin, Quinn; Adkins, Jess

    2015-04-01

    The concentrations of many trace and minor elements in aragonitic coral skeletons are widely used within the annual banding structure to provide information on a wide range of environmental factors. Such ratios are measured not only in recent corals, but also in well preserved corals collected from rocks as old as the Triassic where they have been interpreted as reflecting changes in the minor element and calcium concentrations of the oceans. In particular the changing Mg/Ca ratio of seawater throughout geological time. Most of these trace elements are believed to substitute for Ca within the skeleton and therefore a principal tenant of this approach is that the ratio of an element being measured relative to Ca responds directly the same ratio in seawater. In order to test the fundamental assumption in corals we have grown specimens of the coral Pocillopora damicornis in seawater spiked with combinations of elevated Ca and Mg for periods of ~ 10 weeks and measured the concentrations of a number of elements in the new skeletal growth. These elements include Ca, Sr, Mg, Ba, Mn, S, P, B, Li, and Fe. These experiments provide evidence that the minor and trace element incorporation is much more complicated than previously believed. For example, while the Sr/Ca ratio of coral skeletons is directly related to the same ratio in seawater over a wide range, is also influenced by the Mg content of the seawater. Hence raising the Mg content lowers the distribution coefficient for Sr in corals. The incorporation of other elements such as Ba, B, S, and P in the skeleton are influenced in other unexpected ways.

  19. Eutectic Morphology of Al-7Si-0.3Mg Alloys with Scandium Additions

    NASA Astrophysics Data System (ADS)

    Pandee, Phromphong; Gourlay, C. M.; Belyakov, S. A.; Ozaki, Ryota; Yasuda, Hideyuki; Limmaneevichitr, Chaowalit

    2014-09-01

    The mechanisms of Al-Si eutectic refinement due to scandium (Sc) additions have been studied in an Al-7Si-0.3Mg foundry alloy. The evolution of eutectic microstructure is studied by thermal analysis and interrupted solidification, and the distribution of Sc is studied by synchrotron micro-XRF mapping. Sc is shown to cause significant refinement of the eutectic silicon. The results show that Sc additions strongly suppress the nucleation of eutectic silicon due to the formation of ScP instead of AlP. Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction similar to past work with Na, Ca, and Y additions. It is found that Sc segregates to the eutectic aluminum and AlSi2Sc2 phases and not to eutectic silicon, suggesting that impurity-induced twinning does not operate. The results suggest that Sc refinement is mostly caused by the significantly reduced silicon nucleation frequency and the resulting increase in mean interface growth rate.

  20. Exploring Mg-Zn-Ca-Based Bulk Metallic Glasses for Biomedical Applications Based on Thermodynamic Approach

    NASA Astrophysics Data System (ADS)

    Ramya, M.; Sarwat, Syed Ghazi; Udhayabanu, V.; Raj, Baldev; Ravi, K. R.

    2015-12-01

    Magnesium (Mg)-based metallic glasses are considered as possible candidates in orthopedic implant applications. This paper aims to theoretically predict the glass-forming ability (GFA) in Mg-Zn-Ca alloy using a newly proposed thermodynamic model ( P HHS), and the consistency of this model is verified through experimental analysis. P HHS is based on thermodynamic parameters such as enthalpy of chemical mixing, elastic enthalpy, and configurational entropy, thus incorporating the pivotal effects, i.e., electron transfer effects, effect of atomic size mismatch, and effect of randomness, which aid to high GFA. In essence, P HHS can be visualized as the energy barrier that exists between the transformations of random atomic structure of glass to ordered crystalline structure. When the P HHS value is more negative, the energy barrier will be high, supporting easy glass formation. Various Mg-Zn-Ca metallic glass compositions displayed almost an expected and supporting trend, where the critical diameter of the metallic glass rod increased with a more negative P HHS value. Among the predicted Mg-Zn-Ca systems, the Mg60Zn35Ca5 composition shows deviation from the expected trend. This discrepancy has been clearly elucidated using a eutectic phase diagram. In addition to the consistency of the P HHS parameter to verifying the GFA of various compositions, the unique ability of this model is to predict unexplored Mg-Zn-Ca glass-forming compositions using contour development. Thus, proving P HHS parameter to be used as an efficient tool in predicting new glass-forming compositions.

  1. Simultaneous Modification of Alumina and MgO·Al2O3 Inclusions by Calcium Treatment During Electroslag Remelting of Stainless Tool Steel

    NASA Astrophysics Data System (ADS)

    Shi, Cheng-Bin; Yu, Wen-Tao; Wang, Hao; Li, Jing; Jiang, Min

    2016-08-01

    Calcium modification of both alumina and MgO·Al2O3 inclusions during protective gas electroslag remelting (P-ESR) of 8Cr17MoV stainless steel and its effect on nitrides and primary carbides were studied by analyzing the transient evolution of oxide and sulfide inclusions in the P-ESR process. The oxide inclusions that were not removed during P-ESR without calcium treatment were found to retain their original state until in as-cast ingot. Calcium treatment modified all MgO·Al2O3 and alumina inclusions that had not been removed in the P-ESR process to liquid/partially liquid CaO-Al2O3-(MgO) with uniformly distributed elements, in addition to a small proportion of partially modified inclusions of a CaO-MgO-Al2O3 core surrounded by a liquid CaO-Al2O3. The modification of low-MgO-containing MgO·Al2O3 inclusions involves the preferential reduction of MgO from the MgO·Al2O3 inclusion by calcium and the reaction of calcium with Al2O3 in the inclusion. It is the incomplete/complete reduction of MgO from the spinel by calcium that contributes to the modification of spinels. Alumina inclusions were liquefied by direct reaction with calcium. Calcium treatment during P-ESR refining also provided an effective approach to prevent the formation of nitrides and primary carbides in stainless steel through modifying their preferred nucleation sites (alumina and MgO·Al2O3 inclusions) to calcium aluminates, which made no contribution to improving the steel cleanliness.

  2. The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2015-09-01

    A simple and fast method of the analysis of green coffee infusions was developed to measure total concentrations of Ca, Cu, Fe, Mg and Mn by high resolution-continuum source flame atomic absorption spectrometry. The precision of the method was within 1-8%, while the accuracy was within -1% to 2%. The method was used to the analysis of infusions of twelve green coffees of different geographical origin. It was found that Ca and Mg were leached the easiest, i.e., on average 75% and 70%, respectively. As compared to the mug coffee preparation, the rate of the extraction of elements was increased when infusions were prepared using dripper or Turkish coffee preparation methods. Additionally, it was established that the antioxidant activity of green coffee infusions prepared using the mug coffee preparation was high, 75% on average, and positively correlated with the total content of phenolic compounds and the concentration of Ca in the brew.

  3. The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2015-09-01

    A simple and fast method of the analysis of green coffee infusions was developed to measure total concentrations of Ca, Cu, Fe, Mg and Mn by high resolution-continuum source flame atomic absorption spectrometry. The precision of the method was within 1-8%, while the accuracy was within -1% to 2%. The method was used to the analysis of infusions of twelve green coffees of different geographical origin. It was found that Ca and Mg were leached the easiest, i.e., on average 75% and 70%, respectively. As compared to the mug coffee preparation, the rate of the extraction of elements was increased when infusions were prepared using dripper or Turkish coffee preparation methods. Additionally, it was established that the antioxidant activity of green coffee infusions prepared using the mug coffee preparation was high, 75% on average, and positively correlated with the total content of phenolic compounds and the concentration of Ca in the brew. PMID:25842341

  4. IMPACT OF A REVISED {sup 25}Mg(p, {gamma}){sup 26}Al REACTION RATE ON THE OPERATION OF THE Mg-Al CYCLE

    SciTech Connect

    Straniero, O.; Cristallo, S.; Imbriani, G.; DiLeva, A.; Limata, B.; Strieder, F.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Corvisiero, P.; Costantini, H.; Lemut, A.; Formicola, A.; Gustavino, C.; Junker, M.; Elekes, Z.; Fueloep, Zs.; Gyuerky, Gy.; Gervino, G.; Guglielmetti, A.; and others

    2013-02-15

    Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the {sup 25}Mg(p, {gamma}){sup 26}Al reaction affect the production of radioactive {sup 26}Al{sup gs} as well as the resulting Mg/Al abundance ratio. Reliable estimations of these quantities require precise measurements of the strengths of low-energy resonances. Based on a new experimental study performed at the Laboratory for Underground Nuclear Astrophysics, we provide revised rates of the {sup 25}Mg(p, {gamma}){sup 26}Al{sup gs} and the {sup 25}Mg(p, {gamma}){sup 26}Al {sup m} reactions with corresponding uncertainties. In the temperature range 50-150 MK, the new recommended rate of {sup 26}Al {sup m} production is up to five times higher than previously assumed. In addition, at T = 100 MK, the revised total reaction rate is a factor of two higher. Note that this is the range of temperature at which the Mg-Al cycle operates in a H-burning zone. The effects of this revision are discussed. Due to the significantly larger {sup 25}Mg(p, {gamma}){sup 26}Al {sup m} rate, the estimated production of {sup 26}Al{sup gs} in H-burning regions is less efficient than previously obtained. As a result, the new rates should imply a smaller contribution from Wolf-Rayet stars to the galactic {sup 26}Al budget. Similarly, we show that the asymptotic giant branch (AGB) extra-mixing scenario does not appear able to explain the most extreme values of {sup 26}Al/{sup 27}Al, i.e., >10{sup -2}, found in some O-rich presolar grains. Finally, the substantial increase of the total reaction rate makes the hypothesis of self-pollution by massive AGBs a more robust explanation for the Mg-Al anticorrelation observed in globular-cluster stars.

  5. Corrosion and Discharge Behaviors of Al-Mg-Sn-Ga-In in Different Solutions

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yin, Xiang; Yan, Yang; Dai, Yilong; Fan, Sufeng; Qiao, Xueyan; Yu, Kun

    2016-08-01

    Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga-0.05 wt.%In and Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga alloys were prepared by melting, casting and cold rolling. Corrosion and discharge behaviors of the two experimental alloys were investigated by electrochemical measurement, self-corrosion rate measurement, air battery testing, and scanning electron microscopy. The results showed that Al-Mg-Sn-Ga-In alloy exhibited higher electrochemical activity than Al-Mg-Sn-Ga alloy in 2 M NaCl solution, while it showed lower electrochemical activity than Al-Mg-Sn-Ga alloy in 4 M NaOH solution. By comparison with the air battery based on Al-Mg-Sn-Ga alloy, the battery with Al-Mg-Sn-Ga-In alloy cannot exhibit better discharge performance in 4 M NaOH electrolyte. However, the performance of the air battery based on Al-Mg-Sn-Ga-In alloy was greatly improved due to the In-rich inclusions and the uniform corroded morphology in 2 M NaCl electrolyte. Thus, Al-Mg-Sn-Ga-In alloy was a good anode material for Al-air battery in 2 M NaCl electrolyte.

  6. Tribological Characteristics of Single-phase AlMgB14 and Nanocomposite AlMgB14-TiB2 Superhard Coatings

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Zhu, Dong; Cook, Bruce A; Elmoursi, Alaa A

    2008-01-01

    This study investigated the friction and wear characteristics of AlMgB14 and AlMgB14-TiB2 superhard coatings, produced by pulse laser deposition (PLD) and physical vapor deposition (PVD), respectively. Tests were conducted under unidirectional and reciprocating sliding against AISI 52100 bearing steel in both dry and oil-lubricated conditions. The AlMgB14 coating exhibited an encouraging but short-lived low friction stage (u = 0.2) in dry sliding. The AlMgB14-TiB2 coating reduced the wear rates by one order of magnitude for itself and three orders of magnitude for the counterface compared with the uncoated M2 tool steel in dry sliding. This nanocomposite coating also demonstrated significant extension (>2.5X) of the low friction (non-scuffing) stage in a lubricant starvation sliding.

  7. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys.

    PubMed

    Fazel Anvari-Yazdi, Abbas; Tahermanesh, Kobra; Hadavi, Seyed Mohammad Mehdi; Talaei-Khozani, Tahereh; Razmkhah, Mahboobeh; Abed, Seyedeh Mehr; Mohtasebi, Maryam Sadat

    2016-12-01

    Magnesium (Mg)-based alloys have been extensively considered as biodegradable implant materials for orthopedic surgery. Mg and its alloys are metallic biomaterials that can degrade in the body and promote new bone formation. In this study, the corrosion behavior and cytotoxicity of Mg-Zn-Ca alloys are evaluated with adipose-derived mesenchymal stem cells (ASCs). Mg-2Zn and Mg-2Zn-xCa (x=1, 2 and 3wt.%) alloys were designated. Mg alloys were analyzed with scanning electron microscopy and potentiodynamic polarization. To understand the in-vitro biocompatibility and cytotoxicity of Mg-2Zn and Mg-2Zn-xCa alloys, ASCs were cultured for 24 and 72h in contact with 10%, 50% and 100% extraction of all alloys prepared in DMEM. Cell cytotoxicity and viability of ASCs were examined by MTT assay. Alloying elements including Zn and Ca improved the corrosion resistance of alloys were compared with pure Mg. The cytotoxicity results showed that all alloys had no significant adverse effects on cell viability in 24h. After 72h, cell viability and proliferation increased in the cells exposed to pure Mg and Mg-2Zn-1Ca extracts. The release of Mg, Zn and Ca ions in culture media had no toxic impacts on ASCs viability and proliferation. Mg-2Zn-1Ca alloy can be suggested as a good candidate to be used in biomedical applications.

  8. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys.

    PubMed

    Fazel Anvari-Yazdi, Abbas; Tahermanesh, Kobra; Hadavi, Seyed Mohammad Mehdi; Talaei-Khozani, Tahereh; Razmkhah, Mahboobeh; Abed, Seyedeh Mehr; Mohtasebi, Maryam Sadat

    2016-12-01

    Magnesium (Mg)-based alloys have been extensively considered as biodegradable implant materials for orthopedic surgery. Mg and its alloys are metallic biomaterials that can degrade in the body and promote new bone formation. In this study, the corrosion behavior and cytotoxicity of Mg-Zn-Ca alloys are evaluated with adipose-derived mesenchymal stem cells (ASCs). Mg-2Zn and Mg-2Zn-xCa (x=1, 2 and 3wt.%) alloys were designated. Mg alloys were analyzed with scanning electron microscopy and potentiodynamic polarization. To understand the in-vitro biocompatibility and cytotoxicity of Mg-2Zn and Mg-2Zn-xCa alloys, ASCs were cultured for 24 and 72h in contact with 10%, 50% and 100% extraction of all alloys prepared in DMEM. Cell cytotoxicity and viability of ASCs were examined by MTT assay. Alloying elements including Zn and Ca improved the corrosion resistance of alloys were compared with pure Mg. The cytotoxicity results showed that all alloys had no significant adverse effects on cell viability in 24h. After 72h, cell viability and proliferation increased in the cells exposed to pure Mg and Mg-2Zn-1Ca extracts. The release of Mg, Zn and Ca ions in culture media had no toxic impacts on ASCs viability and proliferation. Mg-2Zn-1Ca alloy can be suggested as a good candidate to be used in biomedical applications. PMID:27612751

  9. Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn

    PubMed Central

    Wu, Yuanhao; He, Guanping; Zhang, Yu; Liu, Yang; Li, Mei; Wang, Xiaolan; Li, Nan; Li, Kang; Zheng, Guan; Zheng, Yufeng; Yin, Qingshui

    2016-01-01

    In clinical practice, tumor recurrence and metastasis after orthopedic prosthesis implantation is an intensely troublesome matter. Therefore, to develop implant materials with antitumor property is extremely necessary and meaningful. Magnesium (Mg) alloys possess superb biocompatibility, mechanical property and biodegradability in orthopedic applications. However, whether they possess antitumor property had seldom been reported. In recent years, it showed that zinc (Zn) not only promote the osteogenic activity but also exhibit good antitumor property. In our present study, Zn was selected as an alloying element for the Mg-1Ca-0.5Sr alloy to develop a multifunctional material with antitumor property. We investigated the influence of the Mg-1Ca-0.5Sr-xZn (x = 0, 2, 4, 6 wt%) alloys extracts on the proliferation rate, cell apoptosis, migration and invasion of the U2OS cell line. Our results show that Zn containing Mg alloys extracts inhibit the cell proliferation by alteration the cell cycle and inducing cell apoptosis via the activation of the mitochondria pathway. The cell migration and invasion property were also suppressed by the activation of MAPK (mitogen-activated protein kinase) pathway. Our work suggests that the Mg-1Ca-0.5Sr-6Zn alloy is expected to be a promising orthopedic implant in osteosarcoma limb-salvage surgery for avoiding tumor recurrence and metastasis. PMID:26907515

  10. Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn

    NASA Astrophysics Data System (ADS)

    Wu, Yuanhao; He, Guanping; Zhang, Yu; Liu, Yang; Li, Mei; Wang, Xiaolan; Li, Nan; Li, Kang; Zheng, Guan; Zheng, Yufeng; Yin, Qingshui

    2016-02-01

    In clinical practice, tumor recurrence and metastasis after orthopedic prosthesis implantation is an intensely troublesome matter. Therefore, to develop implant materials with antitumor property is extremely necessary and meaningful. Magnesium (Mg) alloys possess superb biocompatibility, mechanical property and biodegradability in orthopedic applications. However, whether they possess antitumor property had seldom been reported. In recent years, it showed that zinc (Zn) not only promote the osteogenic activity but also exhibit good antitumor property. In our present study, Zn was selected as an alloying element for the Mg-1Ca-0.5Sr alloy to develop a multifunctional material with antitumor property. We investigated the influence of the Mg-1Ca-0.5Sr-xZn (x = 0, 2, 4, 6 wt%) alloys extracts on the proliferation rate, cell apoptosis, migration and invasion of the U2OS cell line. Our results show that Zn containing Mg alloys extracts inhibit the cell proliferation by alteration the cell cycle and inducing cell apoptosis via the activation of the mitochondria pathway. The cell migration and invasion property were also suppressed by the activation of MAPK (mitogen-activated protein kinase) pathway. Our work suggests that the Mg-1Ca-0.5Sr-6Zn alloy is expected to be a promising orthopedic implant in osteosarcoma limb-salvage surgery for avoiding tumor recurrence and metastasis.

  11. What do we know about the evolution of Mg to Ca ratios in seawater?

    NASA Astrophysics Data System (ADS)

    Broecker, Wally; Yu, Jimin

    2011-09-01

    Although most reconstructions of the evolution of the Mg to Ca ratio in seawater conclude that it has increased during the course of the Cenozoic, they disagree widely regarding the magnitude of this change. On the basis of fluid inclusion and CaCO3 mineralogy observations, the increase was at least threefold. On the basis of Mg content of foraminifera shells it was only a factor of 1.7. A recently published reconstruction based on the Mg content of calcite fillings of voids in ridge flank basalts lends support to the conclusion that the change was severalfold. But as it is very difficult to come up with a plausible geologic scenario which could account for such a large change, we lean toward the smaller estimate based on the magnesium content of foraminifera shells.

  12. Ca and Mg isotope constraints on the origin of Earth's deepest δ13 C excursion

    NASA Astrophysics Data System (ADS)

    Husson, Jon M.; Higgins, John A.; Maloof, Adam C.; Schoene, Blair

    2015-07-01

    Understanding the extreme carbon isotope excursions found in carbonate rocks of the Ediacaran Period (635-541 Ma), where δ13 C of marine carbonates (δ13 Ccarb) reach their minimum (- 12 ‰) for Earth history, is one of the most vexing problems in Precambrian geology. Known colloquially as the 'Shuram' excursion, the event has been interpreted by many as a product of a profoundly different Ediacaran carbon cycle. More recently, diagenetic processes have been invoked, with the very negative δ13 C values of Ediacaran carbonates explained via meteoric alteration, late-stage burial diagenesis or growth of authigenic carbonates in the sediment column, thus challenging models which rely upon a dramatically changing redox state of the Ediacaran oceans. Here we present 257 δ 44 / 40 Ca and 131 δ26 Mg measurements, along with [Mg], [Mn] and [Sr] data, from carbonates of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia to bring new isotope systems to bear on understanding the 'Shuram' excursion. Data from four measured sections spanning the basin reveal stratigraphically coherent trends, with variability of ∼1.5‰ in δ26 Mg and ∼1.2‰ in δ 44 / 40 Ca. This Ca isotope variability dwarfs the 0.2-0.3 ‰ change seen coeval with the Permian-Triassic mass extinction, the largest recorded in the rock record, and is on par with putative changes in the δ 44 / 40 Ca value of seawater seen over the Phanerozoic Eon. Changes in both isotopic systems are too large to explain with changes in the isotopic composition of Ca and Mg in global seawater given modern budgets and residence times, and thus must be products of alternative processes. Relationships between δ 44 / 40 Ca and [Sr] and δ26 Mg and [Mg] are consistent with mineralogical control (e.g., aragonite vs. calcite, limestone vs. dolostone) on calcium and magnesium isotope variability. The most pristine samples in the Wonoka dataset, preserving Sr concentrations (in the 1000s of ppm range) and δ 44 / 40

  13. Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene-Pleistocene seawater Mg/Ca, temperature and sea level change

    NASA Astrophysics Data System (ADS)

    Evans, David; Brierley, Chris; Raymo, Maureen E.; Erez, Jonathan; Müller, Wolfgang

    2016-03-01

    Foraminifera Mg/Ca paleothermometry forms the basis of a substantial portion of ocean temperature reconstruction over the last 5 Ma. Furthermore, coupled Mg/Ca-oxygen isotope (δ18O) measurements of benthic foraminifera can constrain eustatic sea level (ESL) independent of paleo-shoreline derived approaches. However, this technique suffers from uncertainty regarding the secular variation of the Mg/Ca seawater ratio (Mg/Casw) on timescales of millions of years. Here we present coupled seawater-test Mg/Ca-temperature laboratory calibrations of Globigerinoides ruber in order to test the widely held assumptions that (1) seawater-test Mg/Ca co-vary linearly, and (2) the Mg/Ca-temperature sensitivity remains constant with changing Mg/Casw. We find a nonlinear Mg/Catest-Mg/Casw relationship and a lowering of the Mg/Ca-temperature sensitivity at lower than modern Mg/Casw from 9.0% °C-1 at Mg/Casw = 5.2 mol mol-1 to 7.5 ± 0.9% °C-1 at 3.4 mol mol-1. Using our calibrations to more accurately calculate the offset between Mg/Ca and biomarker-derived paleotemperatures for four sites, we derive a Pliocene Mg/Casw ratio of ∼4.3 mol mol-1. This Mg/Casw implies Pliocene ocean temperature 0.9-1.9 °C higher than previously reported and, by extension, ESL ∼30 m lower compared to when one assumes that Pliocene Mg/Casw is the same as at present. Correcting existing benthic foraminifera datasets for Mg/Casw indicates that deep water source composition must have changed through time, therefore seawater oxygen isotope reconstructions relative to present day cannot be used to directly reconstruct Pliocene ESL.

  14. Investigation on the Interface Characteristics of Al/Mg Bimetallic Castings Processed by Lost Foam Casting

    NASA Astrophysics Data System (ADS)

    Jiang, Wenming; Li, Guangyu; Fan, Zitian; Wang, Long; Liu, Fuchu

    2016-05-01

    The lost foam casting (LFC) process was used to prepare the A356 aluminum and AZ91D magnesium bimetallic castings, and the interface characteristics of the reaction layer between aluminum and magnesium obtained by the LFC process were investigated in the present work. The results indicate that a uniform and compact interface between the aluminum and magnesium was formed. The reaction layer of the interface with an average thickness of approximately 1000 μm was mainly composed of Al3Mg2 and Al12Mg17 intermetallic compounds, including the Al3Mg2 layer adjacent to the aluminum insert, the Al12Mg17 middle layer, and the Al12Mg17 + δ eutectic layer adjacent to the magnesium base. Meanwhile, the Mg2Si intermetallic compound was also detected in the reaction layer. An oxide film mainly containing C, O, and Mg elements generated at the interface between the aluminum and magnesium, due to the decomposed residue of the foam pattern, the oxidations of magnesium and aluminum alloys as well as the reaction between the magnesium melt and the aluminum insert. The microhardness tests show that the microhardnesses at the interface were obviously higher than those of the magnesium and aluminum base metals, and the Al3Mg2 layer at the interface had a high microhardness compared with the Al12Mg17 and Al12Mg17 + δ eutectic layers, especially the eutectic layer.

  15. A study on atomic diffusion behaviours in an Al-Mg compound casting process

    SciTech Connect

    Liu, Yongning; Chen, Yiqing; Yang, Chunhui

    2015-08-15

    Al and Mg alloys are main lightweight alloys of research interest and they both have superb material properties, i.e., low density and high specific strength, etc. Being different from Al alloys, the corrosion of Mg alloys is much more difficult to control. Therefore to combine merits of these two lightweight alloys as a composite-like structure is an ideal solution through using Al alloys as a protective layer for Mg alloys. Compound casting is a realistic technique to manufacture such a bi-metal structure. In this study, a compound casting technique is employed to fabricate bi-layered samples using Al and Mg and then the samples are analysed using electron probe micro-analyzer (EPMA) to determine diffusion behaviours between Al and Mg. The diffusion mechanism and behaviours between Al and Mg are studied numerically at atomic scale using molecular dynamics (MD) and parametric studies are conducted to find out influences of ambient temperature and pressure on the diffusion behaviours between Al and Mg. The results obtained clearly show the effectiveness of the compound casting process to increase the diffusion between Al and Mg and thus create the Al-base protection layer for Mg.

  16. Chelate titrations of Ca(2+) and Mg(2+) using microfluidic paper-based analytical devices.

    PubMed

    Karita, Shingo; Kaneta, Takashi

    2016-06-14

    We developed microfluidic paper-based analytical devices (μPADs) for the chelate titrations of Ca(2+) and Mg(2+) in natural water. The μPAD consisted of ten reaction zones and ten detection zones connected through narrow channels to a sample zone located at the center. Buffer solutions with a pH of 10 or 13 were applied to all surfaces of the channels and zones. Different amounts of ethylenediaminetetraacetic acid (EDTA) were added to the reaction zones and a consistent amount of a metal indicator (Eriochrome Black T or Calcon) was added to the detection zones. The total concentrations of Ca(2+) and Mg(2+) (total hardness) in the water were measured using a μPAD containing a buffer solution with a pH of 10, whereas only Ca(2+) was titrated using a μPAD prepared with a potassium hydroxide solution with a pH of 13. The μPADs permitted the determination of Ca(2+) and Mg(2+) in mineral water, river water, and seawater samples within only a few minutes using only the naked eye-no need of instruments. PMID:27181645

  17. Chelate titrations of Ca(2+) and Mg(2+) using microfluidic paper-based analytical devices.

    PubMed

    Karita, Shingo; Kaneta, Takashi

    2016-06-14

    We developed microfluidic paper-based analytical devices (μPADs) for the chelate titrations of Ca(2+) and Mg(2+) in natural water. The μPAD consisted of ten reaction zones and ten detection zones connected through narrow channels to a sample zone located at the center. Buffer solutions with a pH of 10 or 13 were applied to all surfaces of the channels and zones. Different amounts of ethylenediaminetetraacetic acid (EDTA) were added to the reaction zones and a consistent amount of a metal indicator (Eriochrome Black T or Calcon) was added to the detection zones. The total concentrations of Ca(2+) and Mg(2+) (total hardness) in the water were measured using a μPAD containing a buffer solution with a pH of 10, whereas only Ca(2+) was titrated using a μPAD prepared with a potassium hydroxide solution with a pH of 13. The μPADs permitted the determination of Ca(2+) and Mg(2+) in mineral water, river water, and seawater samples within only a few minutes using only the naked eye-no need of instruments.

  18. Effect of Mg or Ag addition on the evaporation field of Al.

    PubMed

    Aruga, Yasuhiro; Nako, Hidenori; Tsuneishi, Hidemasa; Hasegawa, Yuki; Tao, Hiroaki; Ichihara, Chikara; Serizawa, Ai

    2013-09-01

    It is known that the distribution of the charge-states as well as the evaporation field shift to higher values as the specimen temperature is decreased at a constant rate of evaporation. This study has explored the effect of Mg or Ag addition on the evaporation field of Al in terms of the charge state distribution of the field evaporated Al ions. The fractional abundance of Al(2+) ions with respect to the total Al ions in Al-Mg alloy is lower than that in pure Al, whereas it shows higher level in the Al-Ag alloy at lower temperatures. The temperature dependence of the fractional abundance of Al(2+) ions has been also confirmed, suggesting that Al atoms in the Al-Mg alloy need lower evaporation field, while higher field is necessary to evaporate Al atoms in the Al-Ag alloy, compared with pure Al. This tendency is in agreement with that of the evaporation fields estimated theoretically by means of measurements of the work function and calculations of the binding energy of the pure Al, Al-Mg and Al-Ag alloys.

  19. Intermonomer flexibility of Ca- and Mg-actin filaments at different pH values.

    PubMed

    Hild, Gábor; Nyitrai, Miklós; Somogyi, Béla

    2002-02-01

    The fluorescence resonance energy transfer parameter, f, is defined as the efficiency of the energy transfer normalized by the quantum yield of the donor in the presence of acceptor. It is possible to characterize the flexibility of the protein matrix between the appropriate fluorescent probes by monitoring the temperature dependence of f. The intermonomer flexibility of the Ca-actin and Mg-actin filaments was characterized by using this method at pH values of 6.5 and 7.4. The protomers were labeled on Cys374 with donor [N-(((iodoacetyl)amino)ethyl)-5-naphthylamine-1-sulfonate; IAEDANS] or acceptor [5-(iodoacetamido)fluorescein; IAF] molecules. The temperature profile of f suggested that the intermonomer flexibility of actin filaments was larger at pH 7.4 than pH 6.5 in the case of Mg-F-actin while this difference was absent in the case of Ca-F-actin. More rigid intermonomer connection was identified at both pH values between the protomers of Mg-F-actin compared to the Ca-F-actin. The results were further supported by time dependent fluorescence measurements made on IAEDANS and IAF labeled Mg- and Ca-actin filaments at pH 6.5 and 7.4. Our spectroscopic results may suggest that the altered function of muscle following the change of pH within the muscle cells under physiological or pathological conditions might be affected by the modified dynamic properties of the magnesium saturated actin filaments. The change of the intracellular pH does not have an effect on the intermonomer flexibility of the Ca-actin filaments.

  20. Estimation Model for Electrical Conductivity of CaF2-CaO-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Shi, Guan-yong; Zhang, Ting-an; Dou, Zhi-he; Niu, Li-ping

    2016-09-01

    Electrical conductivity is one of the most important properties of molten slags. It has an important influence on process parameter selection of the electroslag remelting process. In the present work, a new model for estimating electrical conductivity of high-temperature slags has been proposed via calculating the conductivity by electrical conductivity of pure substances and interaction parameters between the different components in the slag has been proposed. In this model, the Arrhenius law is used to describe the relationship between electrical conductivity and temperature of slags. This model has been successfully applied to the CaF2-Al2O3, CaF2-CaO, and CaO-Al2O3, as well as CaF2-CaO-Al2O3 systems, and the calculated results are in good agreement with the measured values.

  1. Phosphate recovery from anaerobic digester effluents using CaMg(OH)4.

    PubMed

    Liu, Xueyu; Xu, Zhonghou; Peng, Jianfeng; Song, Yonghui; Meng, Xiaoguang

    2016-06-01

    Dolomite lime (DL) (CaMg(OH)4) was used as an economical source of Mg(2+) for the removal and recovery of phosphate from an anaerobic digester effluent of a municipal wastewater treatment plant (MWWTP) wastewater. Batch precipitation results determined that phosphate was effectively reduced from 87 to less than 4mg-P/L when the effluent water was mixed with 0.3g/L of DL. The competitive precipitation mechanisms of different solids in the treatment system consisting of Ca(2+)-Mg(2+)-NH4(+)-PO4(3-)CO3(2-) were determined by comparing model predictions with experimental results. Thermodynamic model calculations indicated that hydroxyapatite (Ca10(PO4)6(OH)2), Ca4H(PO4)3∙3H2O, Ca3(PO4)2(beta), and Ca3(PO4)2(am2) were more stable than struvite (MgNH4PO3∙6H2O) and calcite (CaCO3). However, X-ray diffraction (XRD) analysis determined the formation of struvite and calcite minerals in the treated effluent. Kinetic experimental results showed that most of the phosphate was removed from synthetic effluent containing NH4(+) within 2hr, while only 20% of the PO4(3-) was removed in the absence of NH4(+) after 24hr of treatment. The formation of struvite in the DL-treated effluent was due to the rapid precipitation rate of the mineral. The final pH of the DL-treated effluent significantly influenced the mass ratio of struvite to calcite in the precipitates. Because more calcite was formed when the pH increased from 8.4 to 9.6, a pH range of 8.0-8.5 should be used to produce solid with high PO4(3-) content. This study demonstrated that DL could be used for effective removal of phosphate from the effluent and that resultant precipitates contained high content of phosphate and ammonium. PMID:27266323

  2. Mg/Ca in foraminifera from plankton tows: Evaluation of proxy controls and comparison with core tops

    NASA Astrophysics Data System (ADS)

    Martínez-Botí, M. A.; Mortyn, P. G.; Schmidt, D. N.; Vance, D.; Field, D. B.

    2011-07-01

    Calibrations and validations of the Mg/Ca paleothermometer in planktic foraminifera have traditionally been performed by means of core tops, sediment trap samples and culture experiments. In this study, Mg/Ca ratios have been measured in 8 species of planktic foraminifera (non-globorotaliids Globigerina bulloides, Neogloboquadrina incompta, Orbulina universa, Globigerinoides ruber (white) and G. sacculifer, and globorotaliids Globorotalia inflata, G. hirsuta and G. truncatulinoides), collected live from the North Atlantic, the Southeast Atlantic, the Northeast Pacific and the Norwegian Sea. Mg/Ca ratios for N. incompta, O. universa, G. ruber, G. sacculifer and G. truncatulinoides are similar to available North Atlantic core-top studies and consistent with previous calibration equations. In contrast, some G. bulloides, G. inflata and G. hirsuta Mg/Ca ratios are higher than predicted based on δ 18O values, and exhibit considerable scatter. This elevation may be in part related to the impact of potential isotopic disequilibrium effects on δ 18O-derived temperatures, which the Mg/Ca ratios are compared to. Another factor that may affect Mg/Ca ratios in some plankton samples is the lack of low-Mg test components (e.g., final chambers or gametogenic calcite), because of the incompleteness of the life cycle at the time of collection. N. incompta Mg/Ca ratios are correlated with salinity, with Mg/Ca changing about 16% per salinity unit, suggesting that salinity may have an important influence on Mg/Ca of some species even in non-extreme salinity environments. This is the first extensive multispecific plankton tow Mg/Ca data set from different oceanographic regions, which has been used to test the Mg/Ca temperature proxy in the context of published calibration data, highlighting the complex physiological/ecological controls on the acquisition of the proxy signal.

  3. Regional Failure of Intertidal Mussel Mg/Ca as an Independent Temperature Proxy: A Cautionary Tale

    NASA Astrophysics Data System (ADS)

    Ford, H. L.; Schellenberg, S. A.; Becker, B. J.; Deutschman, D.; Koch, P. L.

    2007-12-01

    Paleoceanographic reconstructions depend upon accurate estimations of mean annual temperature (MAT) and mean annual range in temperature (MART). Mollusk shells may offer an archive of seasonal to decadal data on environmental conditions. However, a suite of factors (e.g., biologic, metabolic, kinetic) may confound interpretations of mollusk records. Mytilus californianus shell chemistry was directly compared to in situ environmental data to inspect the influence of intertidal position and growth rate (ontogeny) on δ18O and Mg/Ca. M. californianus specimens from an ontogenetic spectrum were outplanted from 31 Aug 04 to 17 Sept 05 at low (-0.2 m MLLW) and high (1.1 m MLLW) intertidal positions within Cabrillo National Monument at San Diego, California. Ambient temperature was recorded in situ and water samples were collected at ~2-3 week intervals. After the outplant interval, the prismatic calcite layer of eight specimens spanning the ontogenetic spectrum at each intertidal position were serially microsampled and analyzed for stable-isotope and minor-elemental variations. Average intra-specimen Mg/Ca values for specimens show a strong and significant positive correlation with accretion rate (i.e., younger, faster-growing specimens have higher Mg/Ca). This ontogenetic effect weakens the potential of average intra-specimen Mg/Ca an accurate MAT proxy. In contrast, average intra-specimen. δ18O provided a relatively accurate temperature proxy regardless of ontogenetic stage. To assess the utility of intraskeletal δ18O and Mg/Ca variation as a MART proxy, the observed δ18O record from each specimen was ordinated in the time-domain of the outplant interval and compared to the predicted equilibrium δ18O inorganic calcite record calculated from ambient seawater temperature and δ18O. Observed specimen δ&&18O is well-correlated (r2 = 0.50, p<0.001) with predicted δ18O, but shows an ~+1.05‰ 18O-enrichment relative to inorganic calcite equilibrium precipitation. In

  4. Actinide chemistry in Allende Ca-Al-rich inclusions

    NASA Technical Reports Server (NTRS)

    Murrell, M. T.; Burnett, D. S.

    1987-01-01

    Fission track radiography is used to investigate the U and Th microscale distribution in a set of Allende-meteorite Ca-Al-rich inclusions. In the Type B inclusions, the major phases melilite and fassaite are important actinide host phases, and on the rims of Type B inclusions and throughout all other inclusions studied, perovskite is the dominant actinide host phase. Results suggest that neither alteration nor loss or gain of an actinide-rich phase appears to have been an important Th/U fractionation mechanism, and that volatility differences may be the dominant factor. Th/U and rare earth element abundance patterns for the spinel and perovskite rim suggest rim formation by volatilization of interior material, and within the constraints of the brief time scale required for this heating, several mechanisms for spinel-perovskite rim formation are possible.

  5. Native defects as sources of optical transitions in MgAl2O4 spinel

    NASA Astrophysics Data System (ADS)

    Borges, P. D.; Cott, J.; Pinto, F. G.; Tronto, J.; Scolfaro, L.

    2016-07-01

    The outstanding physical and chemical properties of the magnesium aluminate (MgAl2O4) spinel makes it an important material for novel technological applications. Considering that a presence of native defects can promote important changes in those properties, in this work we present a study of the structural, electronic and thermodynamic properties of the MgAl2O4 spinel. The calculated formation energy for isolated defects, such as the vacancies of magnesium (V Mg), aluminum (V Al) and oxygen (V O), oxygen interstitial (Oi), magnesium and aluminum antisites (MgAl, AlMg), as well as some complex defects (V O + Oi, V O + AlMg, V O + MgAl, MgAl + AlMg) in the most stable charge states are shown. Through experimental data, we obtained that complex defects centers, such as V O , V O + Oi, V O + AlMg and VO + MgAl at different charge states are good candidates for the observed optical transitions at 4.75, 5.3, and 6.4 eV. Our findings were obtained from ab initio electronic structure calculations performed by using density functional theory. The Perdew–Burke–Ernzerhof generalized gradient approximation was used for the exchange-correlation potential. Furthermore, a modified Becke-Johnson exchange potential (GGA-mBJ) correction to the exchange potential were used to obtain a suitable value for the band gap energy, 7.40 eV, in accordance with the experimental one of 7.8 eV.

  6. Native defects as sources of optical transitions in MgAl2O4 spinel

    NASA Astrophysics Data System (ADS)

    Borges, P. D.; Cott, J.; Pinto, F. G.; Tronto, J.; Scolfaro, L.

    2016-07-01

    The outstanding physical and chemical properties of the magnesium aluminate (MgAl2O4) spinel makes it an important material for novel technological applications. Considering that a presence of native defects can promote important changes in those properties, in this work we present a study of the structural, electronic and thermodynamic properties of the MgAl2O4 spinel. The calculated formation energy for isolated defects, such as the vacancies of magnesium (V Mg), aluminum (V Al) and oxygen (V O), oxygen interstitial (Oi), magnesium and aluminum antisites (MgAl, AlMg), as well as some complex defects (V O + Oi, V O + AlMg, V O + MgAl, MgAl + AlMg) in the most stable charge states are shown. Through experimental data, we obtained that complex defects centers, such as V O , V O + Oi, V O + AlMg and VO + MgAl at different charge states are good candidates for the observed optical transitions at 4.75, 5.3, and 6.4 eV. Our findings were obtained from ab initio electronic structure calculations performed by using density functional theory. The Perdew-Burke-Ernzerhof generalized gradient approximation was used for the exchange-correlation potential. Furthermore, a modified Becke-Johnson exchange potential (GGA-mBJ) correction to the exchange potential were used to obtain a suitable value for the band gap energy, 7.40 eV, in accordance with the experimental one of 7.8 eV.

  7. Al-Cu-Li and Al-Mg-Li alloys: Phase composition, texture, and anisotropy of mechanical properties (Review)

    NASA Astrophysics Data System (ADS)

    Betsofen, S. Ya.; Antipov, V. V.; Knyazev, M. I.

    2016-04-01

    The results of studying the phase transformations, the texture formation, and the anisotropy of the mechanical properties in Al-Cu-Li and Al-Mg-Li alloys are generalized. A technique and equations are developed to calculate the amounts of the S1 (Al2MgLi), T1 (Al2CuLi), and δ' (Al3Li) phases. The fraction of the δ' phase in Al-Cu-Li alloys is shown to be significantly higher than in Al-Mg-Li alloys. Therefore, the role of the T1 phase in the hardening of Al-Cu-Li alloys is thought to be overestimated, especially in alloys with more than 1.5% Li. A new model is proposed to describe the hardening of Al-Cu-Li alloys upon aging, and the results obtained with this model agree well with the experimental data. A texture, which is analogous to that in aluminum alloys, is shown to form in sheets semiproducts made of Al-Cu-Li and Al-Mg-Li alloys. The more pronounced anisotropy of the properties of lithium-containing aluminum alloys is caused by a significant fraction of the ordered coherent δ' phase, the deformation mechanism in which differs radically from that in the solid solution.

  8. Correlated study of initial Sr-87/Sr-86 and Al-Mg isotopic systematics and petrologic properties in a suite of refractory inclusions from the Allende meteorite

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.; Zinner, E. K.; MacPherson, G. J.; Lundberg, L. L.; Brannon, J. C.; Fahey, A. J.

    1991-04-01

    The abundance and the distribution of Al-26, and the initial Sr-87/Sr-86 ratios were determined in a suite of six coarse-grained Ca-Al-rich inclusions from the Allende meteorite, using, respectively, petrographic and chemical characterizations and ion-probe mass spectrometric analyses of the Al-Mg isotopic system, and thermal emission spectrometric analyses of the Rb-Sr system. Results establish a firm association between primitive Al-26/Al-27 and primitive Sr-87/Sr-86 found in each of these inclusions. None of the results required interpretation in terms of heterogeneously distributed Al-26.

  9. Identification and separation of Mn-rich contaminating phases of planktonic foraminifer for Mg/Ca analysis

    NASA Astrophysics Data System (ADS)

    Tachikawa, K.; Toyofuku, T.; Robin, E.

    2009-12-01

    Planktonic foraminiferal Mg/Ca has successfully applied to reconstruction of past seawater temperature although it is still difficult to identify all the Mg contaminant phases and the efficiency of cleanings. We studied in detail Globigerinoides ruber (white) from the sediment intervals characterized by normal and exceptionally high Mn/Ca ratios (0.1 to 2 mmol/mol corresponding to Terminations I and II, respectively) of core MD02-2529 from the Panama Basin. We applied a combination of microanalysis techniques and flow-through time resolved analysis (FT-TRA) coupled with ICP-OES. Electron microprobe mapping of Mn, Mg and Fe as well as scanning electron microscope images of test wall transects demonstrate that 1) Mg distribution is heterogeneous with Mg-rich bands and 2) thin Fe-Mn oxide coating formed on inner chamber wall and spherical framboids pyrite formed inside of chambers do not contain high Mg content. The Mn distribution of the test wall transect is homogeneous for the lower Mn/Ca samples whereas it is very similar to that of Mg for the higher Mn/Ca samples. The Mn-rich parts are characterized by a lower Ca content. FT-TRA reveals that Mg/Ca and Mn/Ca are positively correlated and the elution of minimal Mg/Ca and Mn/Ca appears just after Ca concentration maximum for the higher Mn/Ca samples. We tentatively propose that the Mn-rich phases were formed by diagenetically dissolved Mn penetration into porous test structure followed by in situ precipitation of Mn-bearing carbonates. Based on different solubility between this phase and test calcite, initial Mg/Ca value of G. ruber could be extracted by FT-TRA.

  10. Study of cesium sorption on Na and Ca-Mg bentonites using batch and diffusion experiments

    NASA Astrophysics Data System (ADS)

    Vejsada, J.; Vokál, A.; Vopálka, D.; Filipská, H.

    2006-01-01

    In this study the cesium sorption on two different bentonites (Ca-Mg bentonite Rokle and Na bentonite Volclay KWK 20 80) has been compared using two different experimental approaches — batch and diffusion methods. The distribution coefficients (Kds) calculated for variable liquid-to-solid ratio (batch) and dry density (diffusion) were evaluated with respect to the main uncertainties affecting both approaches. It has been concluded that there are significant differences between selected bentonites in mineral composition, cation exchange capacity (CEC) and sorption characteristics. The Kd values calculated from batch sorption and diffusion data were found comparable only for Na bentonite Volclay KWK 20 80. The considerably higher sorption of Cs on Ca-Mg bentonite Rokle was explained by its higher content of cesium-selective sorbents (illite, vermiculite).

  11. Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration.

    PubMed

    Blomeyer, Christoph A; Bazil, Jason N; Stowe, David F; Dash, Ranjan K; Camara, Amadou K S

    2016-06-01

    The manner in which mitochondria take up and store Ca(2+) remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca(2+) uptake and a complex Ca(2+) sequestration mechanism in mitochondria. But how Mg(2+) regulates these different modes of Ca(2+) uptake as well as mitochondrial Ca(2+) sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca(2+) by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca(2+) uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca(2+) uptake modes were differentially modulated by extra-matrix Mg(2+). That is, Mg(2+) markedly inhibited the slow mode of Ca(2+) uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg(2+) also inhibited Na(+)-dependent Ca(2+) extrusion. The general Ca(2+) binding properties of the mitochondrial Ca(2+) sequestration system were reaffirmed and shown to be independent of the mode of Ca(2+) uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg(2+) hindered Ca(2+) sequestration. Our results indicate that mitochondria exhibit different modes of Ca(2+) uptake depending on the nature of exposure to extra-matrix Ca(2+), which are differentially sensitive to Mg(2+). The implications of these findings in cardiomyocytes are discussed.

  12. TL and OSL studies of carbon doped magnesium aluminate (MgAl2O4:C)

    NASA Astrophysics Data System (ADS)

    Raj, Sanu S.; Mishra, D. R.; Soni, Anuj; Grover, V.; Polymeris, G. S.; Muthe, K. P.; Jha, S. K.; Tyagi, A. K.

    2016-10-01

    The MgAl2O4:C has been synthesized by using two different methods by electron gun and vacuum assisted melting of MgAl2O4 in presence of graphite. The MgAl2O4:C phosphor thus developed by these two different methods have similar types of the TL/OSL defects with multiple overlapping TL glow peaks from 100 °C to 400 °C. The Computerized Curve De-convolution Analysis (CCDA) has been used to measure TL parameters such as thermal trap depth, frequency factor and order of kinetic associated with charge transfer process in TL phenomenon. The investigated TL/OSL results show that these two methods of incorporating carbon in MgAl2O4 have generated closely resemble the defects of similar types in MgAl2O4:C lattice. However, the MgAl2O4:C synthesized by electron gun shows relatively larger concentration of the TL/OSL defects as compared to MgAl2O4:C synthesized using vacuum assisted melting method. The photo-ionization cross-section (PIC) associated with fastest OSL component of MgAl2O4: C is found to be ∼ 0.5 times than that of fastest OSL component of commercially available dosimetric grade α-Al2O3:C. The MgAl2O4:C thus developed shows good dynamic OSL dose linearity from few mGy to 1 Gy. This work reveals that MgAl2O4:C could be developed as potential tissue equivalent OSL / TL material.

  13. Mg/Ca ratios in freshwater microbial carbonates: Thermodynamic, kinetic and vital effects

    NASA Astrophysics Data System (ADS)

    Saunders, P.; Rogerson, M.; Wadhawan, J. D.; Greenway, G.; Pedley, H. M.

    2014-12-01

    The ratio of magnesium to calcium (Mg/Ca) in carbonate minerals in an abiotic setting is conventionally assumed to be predominantly controlled by (Mg/Ca)solution and a temperature dependant partition coefficient. This temperature dependence suggests that both marine (e.g. foraminiferal calcite and corals) and freshwater (e.g. speleothems and surface freshwater deposits, “tufas”) carbonate deposits may be important archives of palaeotemperature data. However, there is considerable uncertainty in all these settings. In surface freshwater deposits this uncertainty is focussed on the influence of microbial biofilms. Biogenic or “vital” effects may arise from microbial metabolic activity and/or the presence of extracellular polymeric substances (EPS). This study addresses this key question for the first time, via a series of unique through-flow microcosm and agitated flask experiments where freshwater calcite was precipitated under controlled conditions. These experiments reveal there is no strong relationship between (Mg/Ca)calcite and temperature, so the assumption of thermodynamic fractionation is not viable. However, there is a pronounced influence on (Mg/Ca)calcite from precipitation rate, so that rapidly forming precipitates develop with very low magnesium content indicating kinetic control on fractionation. Calcite precipitation rate in these experiments (where the solution is only moderately supersaturated) is controlled by biofilm growth rate, but occurs even when light is excluded indicating that photosynthetic influences are not critical. Our results thus suggest the apparent kinetic fractionation arises from the electrochemical activity of EPS molecules, and are therefore likely to occur wherever these molecules occur, including stromatolites, soil and lake carbonates and (via colloidal EPS) speleothems.

  14. Mg/Ca Ratios in Coralline Red Algae as Temperature Proxies for Reconstructing Labrador Current Variability

    NASA Astrophysics Data System (ADS)

    Gamboa, G.; Hetzinger, S.; Halfar, J.; Zack, T.; Kunz, B.; Adey, W.

    2009-05-01

    Marine ecosystems and fishery productivity in the Northwestern Atlantic have been considerably affected by regional climate and oceanographic changes. Fluctuations of North Atlantic marine climate have been linked in part to a dominant pattern of atmospheric circulation known as the North Atlantic Oscillation, which has a strong influence on transport variability of the Labrador Current (LC). The cold LC originates in the Labrador Sea and flows southbound along the Eastern Canadian coastline causing an important cooling effect on marine waters off the Canadian Atlantic provinces. Although interdecadal and interannual variability of sea surface temperatures (SST) in the LC system have been documented, a long-term pattern has not been identified. In order to better understand the observed ecosystem changes and their relationship with climate variability in the Northwestern Atlantic, a century-scale reconstruction of spatial and temporal variations of the LC is needed. This, however, requires reliable long-term and high-resolution SST records, which are not available from short instrumental observations. Here we present the first century-scale SST reconstructions from the Northwest Atlantic using long-lived coralline red algae. Coralline red algae have a high-Mg calcite skeleton, live in shallow water worldwide and develop annual growth bands. It has previously been demonstrated that subannual resolution SSTs can be obtained from coralline red algal Mg/Ca ratios, a commonly used paleotemperature proxy. Specimens of the long-lived coralline red algae Clathromorphum compactum were collected alive in August 2008 along a latitudinal transect spanning the southern extent of LC flow in Nova Scotia and Newfoundland. This collection is supplemented with specimens from the same region collected in the 1960's. In order to reconstruct spatial and temporal patterns of the LC, selected samples of C. compactum were analyzed for Mg/Ca using Laser Ablation Inductively-Coupled Plasma

  15. Enthalpies of formation of CaAl4O7 and CaAl12O19 (hibonite) by high temperature, alkali borate solution calorimetry

    NASA Technical Reports Server (NTRS)

    Geiger, C. A.; Kleppa, O. J.; Grossman, L.; Mysen, B. O.; Lattimer, J. M.

    1988-01-01

    Enthalpies of formation were determined for two calcium aluminate phases, CaAl4O7 and CaAl12O19, using high-temperature alkali borate solution calorimetry. The aluminates were synthesized by multiple-cycle heating and grinding stoichiometric mixtures of CaCO3 and Al2O3, and the products were characteized by X-ray diffraction and SEM microbeam analysis. The data on impurities (CaAl4O7 was found to be about 89.00 percent pure by weight and the CaAl12O19 samples about 91.48 percent pure) were used to correct the heat of solution values of the synthetic products. The enthalpies of formation, at 1063 K, from oxides, were found to be equal to -(25.6 + or - 4.7) kJ/g.f.w. for CaAl4O7 and -(33.0 + or - 9.7) kJ/g.f.w. for CaAl12O19; the respective standard enthalpies of formation from elements, at 298 K, were estimated to be -4007 + or - 5.2 kJ/g.f.w. and -10,722 + or - 12 kJ/g.f.w.

  16. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    PubMed Central

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  17. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  18. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  19. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  20. Synthesis of Mg-Al and Zn-Al-layered double hydroxide nanocrystals using laser ablation in water

    SciTech Connect

    Hur, Tae-Bong; Phuoc, Tran X.; Chyu, Minking K.

    2009-06-01

    In this paper, we report our results on the synthesis of Mg-Al and Zn-Al-layered double hydroxides using the laser ablation in the liquid technique. To prepare these layered double hydroxides (LDH) we first began with the laser generation of a Mg (or zinc) target submerged in deionized water and then ablated an aluminum target submerged in the previously prepared Mg-deionized water suspensions (Mg-dw) to produce Mg-Al LDH and in Zn-dw to prepare Zn-Al LDH. In these ablation tests, the Mg ablation duration was selected to vary from 5 to 60 min, while the Al ablation duration was kept constant at 30 min for all samples. The generated Mg-Al LDH was a gel-like and well crystallized nanoparticles of a rod-like shape and were arranged in a well-organized pattern. When the Mg ablation duration between 25 and 35 min, the synthesized nanocrystals were stoichiometric with a formula of Mg6Al2(OH)(18)4.5 (H2O), the interlayer distance (d((0 0 3))-spacing) was 7.8 angstrom and the average grain size was 8.0 nm. The synthesized Zn-Al LDH revealed various lamellar thin plate-like nanostructures of hexagonal morphologies. The average diameters of these structures was about 500 nm and the thickness of a single layer was approximately about 6.0 nm. The XRD diffraction peaks were indexed in hexagonal lattice with a(o) = 3.07 angstrom and c(o) = 15.12 angstrom. These indexes were (002), (004), and (008) and the corresponding interlayer distances, d-spacing (angstrom), were 7.56 (002), 3.782 (004), and 1.891 (008), respectively.

  1. Thermoelectric properties of Al-doped Mg2Si thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-jian; Zhou, Bai-yang; Li, Jian-xin; Wen, Cui-lian

    2016-11-01

    The Al-doped Mg2Si thin films were fabricated by two-target alternative magnetron sputtering technique, and the influences of different Al doping contents on the thermoelectric properties of Al-doped Mg2Si thin films were investigated. The compositions, crystal structures, electronic transport properties and thermoelectric properties of the thin films were examined using energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Hall coefficient measurement and Seebeck coefficient measurement system, respectively. The EDS results show that the thin films doped with Al target sputtering power of 30 W, 60 W and 90 W have the Al content of 0.68 at.%, 1.56 at.% and 2.85 at.%, respectively. XRD results indicate that the diffraction peaks of Mg2Si become stronger with increasing Al dopant. The results of Hall coefficient measurement and Seebeck coefficient measurement system reveal that all the samples are n-type. The conductivities of Al-doped Mg2Si thin films are significantly greater than that of undoped Mg2Si thin film, and increase with increasing Al doping content. With the increase of temperature, the absolute value of the Seebeck coefficients of Mg2Si base thin films increase firstly and then decrease. The maximum power factor obtained is 3.8 mW m-1 k-2 for 1.56 at.% Al-doped Mg2Si thin film at 573 K.

  2. Microwave plasma atomic emission spectrometric determination of Ca, K and Mg in various cheese varieties.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-02-01

    Microwave plasma-atomic emission spectrometry (MP-AES) was used to determine calcium, magnesium and potassium in various Turkish cheese samples. Cheese samples were dried at 100 °C for 2 days and then digested in a mixture of nitric acid/hydrogen peroxide (3:1). Good linearities (R(2) > 0.999) were obtained up to 10 μg mL(-1) of Ca, Mg and K at 445.478 nm, 285.213 nm and 766.491 nm, respectively. The analytes in a certified reference milk powder sample were determined within the uncertainty limits. Moreover, the analytes added to the cheese samples were recovered quantitatively (>90%). All determinations were performed using aqueous standards for calibration. The LOD values for Ca, Mg and K were 0.036 μg mL(-1), 0.012 μg mL(-1) and 0.190 μg mL(-1), respectively. Concentrations of Ca, K and Mg in various types of cheese samples produced in different regions of Turkey were found between 1.03-3.70, 0.242-0.784 and 0.081-0.303 g kg(-1), respectively.

  3. Microwave plasma atomic emission spectrometric determination of Ca, K and Mg in various cheese varieties.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-02-01

    Microwave plasma-atomic emission spectrometry (MP-AES) was used to determine calcium, magnesium and potassium in various Turkish cheese samples. Cheese samples were dried at 100 °C for 2 days and then digested in a mixture of nitric acid/hydrogen peroxide (3:1). Good linearities (R(2) > 0.999) were obtained up to 10 μg mL(-1) of Ca, Mg and K at 445.478 nm, 285.213 nm and 766.491 nm, respectively. The analytes in a certified reference milk powder sample were determined within the uncertainty limits. Moreover, the analytes added to the cheese samples were recovered quantitatively (>90%). All determinations were performed using aqueous standards for calibration. The LOD values for Ca, Mg and K were 0.036 μg mL(-1), 0.012 μg mL(-1) and 0.190 μg mL(-1), respectively. Concentrations of Ca, K and Mg in various types of cheese samples produced in different regions of Turkey were found between 1.03-3.70, 0.242-0.784 and 0.081-0.303 g kg(-1), respectively. PMID:26304350

  4. Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization

    NASA Astrophysics Data System (ADS)

    Wang, Linzhi; Liu, Ying; Chang, Sen

    2016-05-01

    Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.

  5. Effect of delayed aging on mechanical properties of an Al-Cu-Mg alloy

    SciTech Connect

    Ravindranathan, S.P.; Kashyap, K.T.; Kumar, S.R.; Ramachandra, C.; Chatterji, B.

    2000-02-01

    The effect of delayed aging on mechanical properties is characteristically found in Al-Mg-Si alloys. Delayed aging refers to the time elapsed between solutionizing and artificial aging. Delayed aging leads to inferior properties. This effect was investigated in an Al-Cu-Mg alloy (AU2GN) of nominal composition Al-2Cu-1.5Mg-1Fe-1Ni as a function of delay. This alloy also showed a drop in mechanical properties with delay. The results are explained on the basis of Pashley's kinetic model to qualitatively explain the evolution of a coarse precipitate structure with delay. It is found that all the results of delayed aging in the Al-Cu-Mg alloys are similar to those found in Al-Mg-Si alloys.

  6. Reactive wetting of amorphous silica by molten Al-Mg alloys and their interfacial structures

    NASA Astrophysics Data System (ADS)

    Shi, Laixin; Shen, Ping; Zhang, Dan; Jiang, Qichuan

    2016-07-01

    The reactive wetting of amorphous silica substrates by molten Al-Mg alloys over a wide composition range was studied using a dispensed sessile drop method in a flowing Ar atmosphere. The effects of the nominal Mg concentration and temperature on the wetting and interfacial microstructures were discussed. The initial contact angle for pure Al on the SiO2 surface was 115° while that for pure Mg was 35° at 1073 K. For the Al-Mg alloy drop, it decreased with increasing nominal Mg concentration. The reaction zone was characterized by layered structures, whose formation was primarily controlled by the variation in the alloy concentration due to the evaporation of Mg and the interfacial reaction from the viewpoint of thermodynamics as well as by the penetration or diffusion of Mg, Al and Si from the viewpoint of kinetics. In addition, the effects of the reaction and the evaporation of Mg on the movement of the triple line were examined. The spreading of the Al-Mg alloy on the SiO2 surface was mainly attributed to the formation of Mg2Si at the interface and the recession of the triple line to the diminishing Mg concentration in the alloy.

  7. Geometric and Chemical Composition Effects on Healing Kinetics of Voids in Mg-bearing Al Alloys

    NASA Astrophysics Data System (ADS)

    Song, Miao; Du, Kui; Wang, Chunyang; Wen, Shengping; Huang, Hui; Nie, Zuoren; Ye, Hengqiang

    2016-05-01

    The healing kinetics of nanometer-scale voids in Al-Mg-Er and Al-Mg-Zn-Er alloy systems were investigated with a combination of in situ transmission electron microscopy and electron tomography at different temperatures. Mg was observed completely healing the voids, which were then rejuvenated to the alloy composition with further aging, in the Al-Mg-Er alloy. On the contrary, Mg51Zn20 intermetallic compound was formed in voids in the Al-Mg-Zn-Er alloy, which leads to complete filling of the voids but not rejuvenation for the material. For voids with different geometrical aspects, different evolution processes were observed, which are related to the competition between bulk and surface diffusion of the alloys. For voids with a large size difference in their two ends, a viscous flow of surface atoms can be directly observed with in situ electron microscopy, when the size of one end becomes less than tens of nanometers.

  8. Starch Biocatalyst Based on α-Amylase-Mg/Al-Layered Double Hydroxide Nanohybrids.

    PubMed

    Bruna, Felipe; Pereira, Marita G; Polizeli, Maria de Lourdes T M; Valim, João B

    2015-08-26

    The design of new biocatalysts through the immobilization of enzymes, improving their stability and reuse, plays a major role in the development of sustainable methodologies toward the so-called green chemistry. In this work, α-amylase (AAM) biocatalyst based on Mg3Al-layered double-hydroxide (LDH) matrix was successfully developed with the adsorption method. The adsorption process was studied and optimized as a function of time and enzyme concentration. The biocatalyst was characterized, and the mechanism of interaction between AAM and LDH, as well as the immobilization effects on the catalytic activity, was elucidated. The adsorption process was fast and irreversible, thus yielding a stable biohybrid material. The immobilized AAM partially retained its enzymatic activity, and the biocatalyst rapidly hydrolyzed starch in an aqueous solution with enhanced efficiency at intermediate loading values of ca. 50 mg/g of AAM/LDH. Multiple attachments through electrostatic interactions affected the conformation of the immobilized enzyme on the LDH surface. The biocatalyst was successfully stored in its dry form, retaining 100% of its catalytic activity. The results reveal the potential usefulness of a LDH compound as a support of α-amylase for the hydrolysis of starch that may be applied in industrial and pharmaceutical processes as a simple, environmentally friendly, and low-cost biocatalyst.

  9. Plasma electrolytic oxidation coating of synthetic Al-Mg binary alloys

    SciTech Connect

    Tarakci, Mehmet

    2011-12-15

    The binary Al-Mg synthetic alloys were prepared in a vacuum/atmosphere controlled furnace with the addition of 0.5, 1, 2, 4, 7, and 15 wt.% pure Mg into pure aluminum as substrate material. The surfaces of the Al-Mg alloys and pure aluminum were coated for 120 min by plasma electrolytic oxidation in the same electrolyte of 12 g/L sodium silicate and 2 g/L KOH in distilled water. The coating was characterized by X-ray diffraction, scanning electron microscopy, profilometry and Vickers microhardness measurements. There regions of loose outer layer, dense inner layer with precipitate like particles of {alpha}-Al{sub 2}O{sub 3} and a thin transition layer were identified for the coated samples. The coating thickness increases from 85 to 150 {mu}m with Mg contents in the alloys. The surface morphology becomes more porous and consequently surface roughness tends to increase with plasma electrolytic oxidation treatment and further with Mg content. The increase in magnesium content reduces the formation of {alpha}-Al{sub 2}O{sub 3} and crystalline mullite phases in the coating and decreases microhardness of coating. The Mg concentration is constant throughout the other loose and dense regions of coating though it gradually decreases in the thin inner region. - Research Highlights: Black-Right-Pointing-Pointer The average thickness of PEO coating of Al-Mg alloys increases with Mg content. Black-Right-Pointing-Pointer The addition of Mg reduces and prevents the formation of {alpha}-Al{sub 2}O{sub 3} and mullite. Black-Right-Pointing-Pointer The surface roughness increases with Mg content in the Al-Mg alloys. Black-Right-Pointing-Pointer The hardness values of the coating decreases with the Mg amount in the substrate. Black-Right-Pointing-Pointer The Mg concentration is constant throughout the main regions of coating.

  10. On the infiltration behavior of Al, Al-Li, and Mg melts through SiC{sub p} bed

    SciTech Connect

    Murty, B.S.; Thakur, S.K.; Dhindaw, B.K.

    2000-01-01

    Aluminum, Al-Li(8090), and Mg matrix composites with uniform distributions of SiC{sub p} reinforcement have been prepared by the vacuum infiltration technique. The infiltration kinetics have been found to increase in the order of Al, Al-Li, and Mg. The Al-Li alloy and Mg as matrix materials have shown improved wettability with SiC{sub p} in comparison to Al, leading to enhanced infiltration kinetics and reduced reinforcement degradation in the former cases. The infiltration kinetics are insensitive to preheat temperature beyond a critical temperature, which is close to the melting point of the matrix. A marginal improvement in infiltration kinetics could be obtained with Cu and Ni coating on SiC. The Vickers hardness, measured on the SiC p articles, has been shown to be an index of the strength of the interface between the matrix and reinforcement in the composite.

  11. Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of Rayleigh fractionation

    NASA Astrophysics Data System (ADS)

    Gagnon, Alexander C.; Adkins, Jess F.; Fernandez, Diego P.; Robinson, Laura F.

    2007-09-01

    Deep-sea corals are a new tool in paleoceanography with the potential to provide century long records of deep ocean change at sub-decadal resolution. Complicating the reconstruction of past deep-sea temperatures, Mg/Ca and Sr/Ca paleothermometers in corals are also influenced by non-environmental factors, termed vital effects. To determine the magnitude, pattern and mechanism of vital effects we measure detailed collocated Sr/Ca and Mg/Ca ratios, using a combination of micromilling and isotope-dilution ICP-MS across skeletal features in recent samples of Desmophyllum dianthus, a scleractinian coral that grows in the near constant environment of the deep-sea. Sr/Ca variability across skeletal features is less than 5% (2σ relative standard deviation) and variability of Sr/Ca within the optically dense central band, composed of small and irregular aragonite crystals, is significantly less than the surrounding skeleton. The mean Sr/Ca of the central band, 10.6 ± 0.1 mmol/mol (2σ standard error), and that of the surrounding skeleton, 10.58±0.09 mmol/mol, are statistically similar, and agree well with the inorganic aragonite Sr/Ca-temperature relationship at the temperature of coral growth. In the central band, Mg/Ca is greater than 3 mmol/mol, more than twice that of the surrounding skeleton, a general result observed in the relative Mg/Ca ratios of D. dianthus collected from separate oceanographic locations. This large vital effect corresponds to a ˜ 10 °C signal, when calibrated via surface coral Mg/Ca-temperature relationships, and has the potential to complicate paleoreconstructions. Outside the central band, Mg/Ca ratios increase with decreasing Sr/Ca. We explain the correlated behavior of Mg/Ca and Sr/Ca outside the central band by Rayleigh fractionation from a closed pool, an explanation that has been proposed elsewhere, but which is tested in this study by a simple and general relationship. We constrain the initial solution and effective partition

  12. Dissolution of Precipitates During Solution Treatment of Al-Mg-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xukai; Guo, Mingxing; Zhang, Jishan; Zhuang, Linzhong

    2016-02-01

    A model combining classical diffusion-controlled dissolution equation for a single spherical particle and Johnson-Mehl-Avrami-like equation is used to deal with dissolution process for different kinds of precipitations (Si, Mg2Si, Q(Al1.9Mg4.1Si3.3Cu)) in Al-Mg-Si-Cu alloys. The results reveal that the dissolution time of precipitates increases with increasing their sizes and solute concentrations in the alloy matrix; for the same size and concentration, their dissolution times follow Si > Q(Al1.9Mg4.1Si3.3Cu) > Mg2Si. Two precipitates (Mg2Si and Al1.9Mg4.1Si3.3Cu) with a size of about 700 nm were obtained in a cold rolled Al-Mg-Si-Cu-Zn alloy, and the complete dissolution time is about 15 seconds, which is basically the same as the calculated time by the developed model. The theoretical prediction of dissolution time can be greatly used to design solution treatment and thermomechanical processing parameters of Al-Mg-Si-Cu alloys.

  13. On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72 Zn23 Ca5 and crystalline Mg70 Zn23 Ca5 Pd2 alloys as temporary implant materials.

    PubMed

    Pellicer, E; González, S; Blanquer, A; Suriñach, S; Baró, M D; Barrios, L; Ibáñez, E; Nogués, C; Sort, J

    2013-02-01

    The evolution of microstructure and mechanical properties of almost fully amorphous Mg(72) Zn(23) Ca(5) and crystalline Mg(70) Zn(23) Ca(5) Pd(2) alloys during immersion in Hank's balanced salt solution (HBSS), as well as their cytocompatibility, are investigated in order to assess the feasibility of both materials as biodegradable implants. Though the crystalline Mg(70) Zn(23) Ca(5) Pd(2) sample shows lower wettability and more positive corrosion potential, this sample degrades much faster upon incubation in HBSS as a consequence of the formation of micro-galvanic couples between the nobler Pd-rich dendrites and the surrounding phases. After 22-h immersion, the concentration of Mg ions in the HBSS medium containing the Mg(70) Zn(23) Ca(5) Pd(2) sample is six times larger than for Mg(72) Zn(23) Ca(5) . Due to the Zn enrichment and the incipient porosity, the mechanical properties of the Mg(72) Zn(23) Ca(5) sample improve within the first stages of biodegradation (i.e., hardness increases while the Young's modulus decreases, thus rendering an enhanced wear resistance). Cytocompatibility studies reveal that neither Mg(72) Zn(23) Ca(5) nor Mg(70) Zn(23) Ca(5) Pd(2) are cytotoxic, although preosteoblast cell adhesion is to some extent precluded, particularly onto the surface of Mg(70) Zn(23) Ca(5) Pd(2) , because of the relatively high hydrophobicity. Because of their outstanding properties and their time-evolution, the use of the Pd-free alloy in temporary implants such as screws, stents, and sutures is envisioned.

  14. First stage of reaction of molten Al with MgO substrate

    SciTech Connect

    Morgiel, J.; Sobczak, N.; Pomorska, M.; Nowak, R.

    2015-05-15

    The Al/MgO couple was produced in vacuum (~ 5 × 10{sup −} {sup 4} Pa) by contact heating from RT up to 1000 °C and holding at that temperature for 1 h of a small 4 × 4 × 4 mm aluminium (5 N) sample placed on the [100] MgO single crystal substrate. TEM observations backed with electron diffraction analysis indicated that the interaction between liquid aluminium and MgO starts from a redox reaction producing a continuous layer of MgAl{sub 2}O{sub 4} spinel on the substrate surface. Its growth is controlled by solid state out-diffusion of magnesium and oxygen towards the surface being in contact with liquid metal. The thickening of spinel layer is accompanied by its cracking and infiltration with aluminium. The above process enables local dissolution of the MgO substrate and formation in it of a thin region of interpenetrating metallic channels walled with spinel. The removal of dissolved magnesium through open aluminium channels towards the drop and to vacuum locally produces areas of aluminium enriched with dissolved oxygen, which results in the nucleation of α-Al{sub 2}O{sub 3} at spinel clad walls. The growth of α-Al{sub 2}O{sub 3} is controlled only by the dissolution rate of MgO by aluminium, liquid state diffusion of Mg to drop/vacuum and oxygen to the front of the of α-Al{sub 2}O{sub 3} crystallites growing into MgO substrate. - Highlights: • New unique evidence of first stages of interaction of liquid Al with MgO substrates • Interaction of liquid Al with MgO starts with the formation of a layer MgAl{sub 2}O{sub 4}. • Growth of MgAl{sub 2}O{sub 4} is slow as controlled by solid state out-diffusion of Mg and O. • MgAl{sub 2}O{sub 4} serves as a nucleation site for Al{sub 2}O{sub 3} and consumed by it soon after. • Growth of Al{sub 2}O{sub 3} is fast as controlled by diffusion in liquid state.

  15. Al-Mg Isotope Study of Allende 5241

    NASA Technical Reports Server (NTRS)

    Kerekgyarto, A. G.; Jeffcoat, C. R.; Lapen, T. J.; Andreasen, R.; Righter, M.; Ross, D. K.; Simon, J. I.

    2016-01-01

    The defining characteristic of type B1 CAIs is a large (.5- 3mm) concentric melilite mantle [1]. In [2] we presented two isochrons from separate traverses across the melilite mantle of Allende EK 459-5-1. The primary petrographic differences between the traverses was the preservation of strong oscillatory zoning. The traverse that crossed the distinctive oscillatory zone produced a pristine internal isochron, while the other that did not have a strongly preserved oscillatory zone produced a disturbed isochron indicated by more scatter (higher MSWD) and a positive (delta)26Mg* intercept. The implication simply being that the oscillatory zone may represent varying conditions during the mantle formation event. We targeted a similar texture in Allende 5241 using the same methodology in an attempt to achieve similar results.

  16. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys.

    PubMed

    Gu, X N; Zheng, Y F; Chen, L J

    2009-12-01

    The electrochemical behavior of potential orthopedic Mg-Ca, AZ31 and AZ91 alloys was studied in Hank's solution, Dulbecco's Modified Eagle's Medium (DMEM) and serum-containing medium (DMEM adding 10% fetal bovine serum (DMEM+FBS)) over a 7 day immersion period. The biocorrosion of the above three alloys for various immersion time intervals was investigated by linear polarization and electrochemical impedance spectroscopy (EIS). After 7 day immersion, potentiodynamic polarization tests were carried out and the surface morphologies of experimental samples were examined by scanning electron microscopy (SEM) observation complemented by energy-disperse spectrometer (EDS) analysis. It was shown that the corrosion of magnesium alloys was influenced by the composition of the solution. The results indicated that chloride ion could reduce the corrosion resistance and the hydrocarbonate ions could induce rapid surface passivation. The adsorbed amino acid on the experimental magnesium alloys' surface increased their polarization resistance and reduced current densities. The influence of the serum protein on corrosion was found to be associated with the magnesium alloy compositions. A Mg-Ca alloy exhibited an increased corrosion rate in the presence of serum protein. An AZ31 alloy showed an increased corrosion rate in DMEM+FBS in the initial 3 day immersion and the corrosion rate decreased thereafter. An AZ91 alloy, with high Al content, showed a reduced corrosion rate with the addition of FBS into DMEM.

  17. Relations among nonbridging oxygen, optical properties, optical basicity, and color center formation in CaO-MgO aluminosilicate glasses

    SciTech Connect

    Novatski, A.; Steimacher, A.; Medina, A. N.; Bento, A. C.; Baesso, M. L.; Andrade, L. H. C.; Lima, S. M.; Guyot, Y.; Boulon, G.

    2008-11-01

    In this study the relations among nonbridging oxygen (NBO), optical properties, optical basicity, and color center formation in CaO-MgO aluminosilicate glasses were studied. Samples containing (in mol %) 35.9-57.5 of CaO, 16-27.7 of Al{sub 2}O{sub 3}, 7.9-41.6 of SiO{sub 2}, and 6.5-6.9 of MgO were measured by optical absorption and excitation, luminescence, and Raman spectroscopy. The results showed that when the SiO{sub 2} content was increased, the absorption edge shifted toward lower wavelengths and the bonds between O{sup 2-} ions and cations became more covalent. These observations were confirmed by Raman results that showed a decrease in the number of NBO per silicon tetrahedron as a function of SiO{sub 2} content. The results indicate that the effects of higher NBO concentration are the narrowing of the band gap energy and the delocalization of O{sup 2-} electrons, which facilitates the O{sup 2-} electrons to be trapped by anion vacancies and, consequently, forming color centers. The relationship between color center formation and SiO{sub 2} content was confirmed by optical spectroscopic measurements under UV radiation.

  18. Mg/Ca-temperature and seawater-test chemistry relationships in the shallow-dwelling large benthic foraminifera Operculina ammonoides

    NASA Astrophysics Data System (ADS)

    Evans, David; Erez, Jonathan; Oron, Shai; Müller, Wolfgang

    2015-01-01

    The foraminifera Mg/Ca palaeothermometer contributes significantly to our understanding of palaeoceanic temperature variation. However, since seawater Mg/Ca has undergone large secular variation and the relationship between seawater and test Mg/Ca has not been calibrated in detail for any species with a substantial fossil record, it is only possible to assess relative temperature changes in pre-Pleistocene fossil samples. In order to establish the basis of accurate quantitative Mg/Ca-derived deep-time temperature reconstructions, we have calibrated the relationship between test Mg/Ca, seawater chemistry and temperature in laboratory cultures of the shallow-dwelling large benthic species Operculina ammonoides. Operculina has a fossil range extending back to the early Paleogene and is the nearest living relative of the abundant genus Nummulites. We find a temperature sensitivity of 1.7% °C-1 and a linear relationship between the Mg distribution coefficient and seawater Mg/Ca (Mg /Casw) with m = -1.9 × 10-3 , within error of the equivalent slope for inorganic calcite. The higher test Mg/Ca of O. ammonoides compared to inorganic calcite may be explained by an elevated pH of the calcifying fluid, implying that these foraminifera do not modify the Mg/Ca ratio of the seawater from which they calcify, differentiating them in this respect from most other perforate foraminifera. Applying these calibrations to previously published fossil data results in palaeo-Mg /Casw reconstruction consistent with independent proxy evidence. Furthermore, our data enable accurate absolute palaeotemperature reconstructions if Mg /Casw is constrained by another technique (e.g. ridge flank vein carbonate; fluid inclusions). Finally, we examine Li, Na, Sr and Ba incorporation into the test of O. ammonoides and discuss the control exerted by temperature, seawater chemistry, saturation state and growth rate on these emerging proxies.

  19. Solid Solution Effects on the MgAl2O4 System

    SciTech Connect

    O'Hara, Kelley; Smith, Jeffrey D; Hemrick, James Gordon

    2009-01-01

    Phase relations between the binaries MgAl2O4-ZnAl2O4 and MgAl2O4-MgGa2O4 were studied. Stoichiometric MgAl2O4 spinel can be formed in the laboratory through a coprecipitation method. Complete solid solution formation in the MgAl2O4-MgGa2O4 system was confirmed through X-ray diffraction (XRD) analysis. XRD analysis of the MgAl2O4-ZnAl2O4 system did not confirm solid solution due to the similar lattice parameters of the two end points, however, previous studies have shown that complete solid solution does form. Thermal conductivity data is pending and will be included in the presentation. Based on previous experimentation and open literature, it is suspected that thermal conductivity will be decreased with the addition of solid solution. With increased amounts of disruption to the lattice from solid solution it is also theorized that the temperature at which the mean free path still impacts thermal conductivity could be increased.

  20. Interdiffusion and impurity diffusion in polycrystalline Mg solid solution with Al or Zn

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Sohn, Yong Ho

    2014-01-01

    Interdiffusion and impurity diffusion in Mg binary solid solutions, Mg(Al) and Mg(Zn) were investigated at temperatures ranging from 623 to 723 K. Interdiffusion coef cients were determined via the Boltzmann Matano Method using solid-to-solid diffusion couples assembled with polycrystalline Mg and Mg(Al) or Mg(Zn) solid solutions. In addition, the Hall method was employed to extrapolate the impurity diffusion coef cients of Al and Zn in pure polycrystalline Mg. For all diffusion couples, electron micro-probe analysis was utilized for the measurement of concentration pro les. The interdiffusion coef cient in Mg(Zn) was higher than that of Mg(Al) by an order of magnitude. Additionally, the interdiffusion coef cient increased signi cantly as a function of Al content in Mg(Al) solid solution, but very little with Zn content in Mg(Zn) solid solution. The activation energy and pre-exponential factor for the average effective interdiffusion coef cient in Mg(Al) solid solution were determined to be 186.8 ( 0.9) kJ/mol and 7.69 x 10-1 ( 1.80 x 10-1) m2/s, respectively, while those determined for Mg(Zn) solid solution were 139.5 ( 4.0) kJ/mol and 1.48 x 10-3 ( 1.13 x 10-3) m2/s. In Mg, the Zn impurity diffusion coef cient was an order of magnitude higher than the Al impurity diffusion coef cient. The activation energy and pre-exponential factor for diffusion of Al impurity in Mg were determined to be 139.3 ( 14.8) kJ/mol and 6.25 x 10-5 ( 5.37 x 10-4) m2/s, respectively, while those for diffusion of Zn impurity in Mg were determined to be 118.6 ( 6.3) kJ/mol and 2.90 x 10-5 ( 4.41 x 10-5) m2/s.

  1. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-08-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  2. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-10-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  3. Pressure-induced structural phase transition in AlN:Mg and AlN:Co nanowires

    SciTech Connect

    Xu, Yongsheng; Zhu, Hongyang; Ma, Chunli; Zhu, Pinwen; Cong, Ridong; Wu, Xiaoxin; Gao, Wei; Cui, Qiliang

    2013-06-15

    High-pressure behaviors of AlN:Mg and AlN:Co nanowires have been investigated by in situ angle dispersive synchrotron X-ray diffraction up to 41.5 GPa and 38.2 GPa, respectively. Their corresponding pressure-induced wurtzite-to-rocksalt phase transitions start at 17.7 GPa and 15.0 GPa and complete at 33.2 GPa and 31.0 GPa, respectively. The phase-transition routes are not affected by the doped ions, while the phase transition pressures are lower than that of pure AlN nanowires. The distinct high-pressure behaviors are ascribed to the doped ions, which reduce the formation energy of cation vacancies and induce Al vacancies defects together with substitution defects, resulting in lattice distortion and affecting structural stability and phase transition pressure. - Graphical abstract: The high-pressure behaviors of AlN:Mg and AlN:Co nanowires have been investigated by in situ angle dispersive synchrotron X-ray diffraction. - Highlights: • The high-pressure behaviors of AlN:Mg and AlN:Co nanowires have been investigated. • The pressure-induced wurtzite-to-rocksalt phase transitions have been observed. • The phase transition pressures are lower than that of pure AlN nanowires. • The distinct high-pressure behaviors are ascribed to the dopants. • The vacancy defects and substitution defects influence structural stability.

  4. Effect of Melt-to-Solid Insert Volume Ratio on Mg/Al Dissimilar Metals Bonding

    NASA Astrophysics Data System (ADS)

    Emami, S. M.; Divandari, M.; Arabi, H.; Hajjari, E.

    2013-01-01

    Compound casting is used as a process to join various similar and dissimilar metallic couples. The ratio of melt-to-solid volume is one of the main factors that can affect the contact time between melt and the solid insert. In this investigation, magnesium and aluminum metals (magnesium as the cast metal and aluminum as the solid insert) having melt-to-solid volume ratios ( V m/ V s) of 1.25, 3, and 5.25 were successfully bonded via compound casting. Results demonstrated that by increasing the ratio of V m/ V s from 1.25 to 5.25, the thickness of the reaction interface between Al and Mg varies within the range of 200 to 1800 μm. X-ray diffraction, scanning electron microscopy, and Vickers microhardness study of the bonding of these two metals showed that the interface consisted of three separate sub-layers within reaction layer. These sub-layers had higher hardness than those of the Al and Mg bulk metals. In all specimens, composition of the sub-layer adjacent to Al (layer I) was Al3Mg2 and that adjacent to Mg (layer III) was Al12Mg17/(Mg) eutectic structure. The intermediate layer composition (layer II) in specimens with volume ratio of 1.25 and 3 was a single-phase Al12Mg17, while for the case of volume ratio 5.25 this sub-layer consisted of Al12Mg17/(Mg) eutectic dispersed in Al12Mg17 intermetallic. The results of this research showed that in low melt/solid volume ratios, diffusion-reaction was the dominant mechanism for formation of Al-Mg intermetallic. However, when V m/ V s and the melt/solid insert contact time increased, the dominant mechanism of Al-Mg intermetallics changed to fusion-solidification due to increase in surface melting of the solid insert. Also the results of push-out tests showed that shear strengths of the interface decrease from 27.1 to 15.1 and 8.3 MPa for the Al/Mg couples prepared at 1.25, 3, and 5.25 V m/ V s respectively.

  5. Understanding the Origins of Intergranular Corrosion in Copper-Containing Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Kairy, Shravan K.; Alam, Talukder; Rometsch, Paul A.; Davies, Chris H. J.; Banerjee, Raj; Birbilis, Nick

    2016-03-01

    A definitive understanding of the mechanism of intergranular corrosion (IGC) in under-aged (UA) Cu-containing Al-Mg-Si alloys has not been clear to date. The grain boundary microstructure and chemistry in an UA Cu-containing Al-Mg-Si alloy were characterized by coupling atom probe tomography and scanning transmission electron microscopy. The rapid formation of an ultra-thin wetting Cu layer and discrete Q-phase (Al4Cu2Mg8Si7) precipitates along the grain boundaries, and a precipitate-free zone adjacent to the grain boundaries in the UA condition contribute to IGC.

  6. Mercury'S Dark Plains West Of Caloris Basin--high Ca Clinopyroxene, Na-rich Plagioclase, Mg-rich Olivine, Tio2: Caloris Basin--k-spar, High Ca Clinopyroxene, Tio2, Na-rich Plagioclase, Hornblende And Mg- And Ca-rich Garnets

    NASA Astrophysics Data System (ADS)

    Sprague, Ann L.; Donaldson Hanna, K. L.; Kozlowski, R. W. H.; Helbert, J.; Maturilli, A.

    2008-09-01

    We identify mineral phases and approximate abundances on Mercury's surface for spectral measurements made over Caloris Basin and the dark plains to the west. Our results are obtained by fitting spectra obtained with the Mid-Infrared Spectrometer and Imager (MIRSI) at the Infrared Telescope Facility (IRTF) using an established spectral deconvolution algorithm (Ramsey 1996, Ph.D. Dissertation, ASU; Ramsey and Christiansen 1998, JGR). We have assembled several laboratory mineral spectral libraries (JHU, Salisbury et al. 1987, Open-File Report 87-263, USGS; JPL, http://speclib.jpl.nasa.gov; RELAB, http://www.planetary.brown.edu/relab; ASU, Christensen et al. 2000, JGR; BED, Helbert et al. 2007, Adv. Space Res.; USGS, Clark et al. 2007, USGS digital spectral library) with a wide range of known mineral compositions with grain sizes ranging from the finest separates, 0 - 45 µm, incrementally increasing to 250 - 400 µm. Head et al. and Murchie et al. (Science, 2008) show ample evidence for one or more episodes of extrusive volcanism in around Caloris Basin. Our spectral fitting suggests similarities and differences between Caloris infill and the dark plains to the west. Both contain high-Ca clinopyroxene, Mg-rich orthopyroxene (Sprague et al. 1998, Icarus), Na-rich to intermediate plagioclase (Sprague et al. 1994, Icarus), and TiO2 likely in the form of rutile. Sanidine appears to be the dominate K-spar in Caloris Basin, but not in the dark plains (Donaldson Hanna et al. 2008, EGU Abs). A slight improvement in spectral fitting was made to one spectrum from Caloris by including a Na- and K-rich hornblende. In addition small abundances of pyrope and grossular (Ca- and Mg-rich garnets) are apparently present in Caloris Basin infill. This indicates extrusive volcanic episodes moved lava to the surface quickly before entrained garnets from the upper mantle could dissolve and equilibrate with the source magma. This work was funded by NSF AST0406796.

  7. Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): The effect of Eudragit S 100 covering

    SciTech Connect

    Arco, M. del; Fernandez, A.; Martin, C.; Rives, V.

    2010-12-15

    Following different preparation routes, fenbufen has been intercalated in the interlayer space of layered double hydroxides with Mg{sup 2+} and Al{sup 3+} or Mg{sup 2+}, Al{sup 3+} and Fe{sup 3+} in the layers. Well crystallized samples were obtained in most of the cases (intercalation was not observed by reconstruction of the MgAlFe matrix), with layer heights ranging between 16.1 and 18.8 A. The presence of the LDH increases the solubility of fenbufen, especially when used as a matrix. The dissolution rate of the drug decreases when the drug is intercalated, and is even lower in those systems containing iron; release takes place through ionic exchange with phosphate anions from the solution. Preparation of microspheres with Eudragit S 100 leads to solids with an homogeneous, smooth surface with efficient covering of the LDH surface, as drug release was not observed at pH lower than 7. - Graphical abstract: LDHs containing Mg, Al, Fe increase fenbufen solubility, release takes place through ionic exchange with phosphate anions from the medium. Spherical solids with homogeneous, smooth surface are formed when using Eudragit S 100, efficiently covering the LDH surface. Display Omitted

  8. Competitive Al3+ Inhibition of Net Mg2+ Uptake by Intact Lolium multiflorum Roots 1

    PubMed Central

    Rengel, Zdenko

    1990-01-01

    Rhizotoxicity of Al is more pronounced in younger plants. Effects of Al on nutrient uptake by plants of different age are poorly understood. The depletion technique was used to monitor net Mg2+ uptake from nutrient solutions by intact 15- and 35-day-old plants of two ryegrass (Lolium multiflorum Lam.) cultivars. Lowering the pH from 6.0 to 4.2 decreased the maximum net ion influx without affecting Km. Aluminum at 6.6 micromolar Al3+ activity increased Km indicating competitive inhibition. The effects of pH and 6.6 micromolar Al3+ on net Mg2+ uptake were much larger in 15- than in 35-day-old plants. Aluminum at 26 micromolar Al3+ activity competitively inhibited net Mg2+ uptake by 35-day-old plants, while causing time- and external Mg2+ activity-dependent net Mg2+ efflux from 15-day-old plants. The equilibrium constant (Ki) of a reversible combination of postulated plasmalemma Mg2+ transporter and Al3+ was calculated to be 2 and 5 micromolar Al3+ activity for 15-day-old plants of Wilo and Gulf ryegrass, respectively, and 21 micromolar Al3+ activity for 35-day-old plants of both cultivars. The Al3+-mediated increase in Km was larger for 15-day-old plants of the Al-sensitive cultivar `Wilo' than of the more Al-tolerant cultivar `Gulf,' while Al3+ affected 35-day-old plants of both cultivars to the same extent. PMID:16667588

  9. Influence of Cu content on the mechanical properties and corrosion resistance of Mg-Zn-Ca bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Zhao, Yan-feng; Zhu, Jian; Chang, Li; Song, Jing-guo; Chen, Xiao-hua; Hui, Xi-dong

    2014-05-01

    (Mg66.2Zn28.8Ca5)100- x Cu x (at%, x = 0, 1, 3, and 5) bulk metallic glasses (BMGs) of 2 mm in diameter were prepared by the conventional copper mold injection casting method. Besides, the influence of Cu content on the microstructure, thermal stability, mechanical properties, and corrosion behavior of Mg-Zn-Ca BMGs was investigated. It is found that the addition of Cu decreases the glass-forming ability of Mg-Zn-Ca BMGs. Crystalline phases are precipitated at a higher Cu content, larger than 3at%. The compressive fracture strength of Mg-Zn-Ca BMGs is enhanced by the addition of Cu. With the formation of in-situ composites, the compressive strength of the Mg-Zn-Ca alloy with 3at% Cu reaches 979 MPa, which is the highest strength among the Mg-Zn-Ca alloys. Furthermore, the addition of Cu also results in the increase of corrosion potential and the decrease of corrosion current density in Mg-Zn-Ca BMGs, thereby delaying their biodegradability.

  10. Investigation of structure in Al23 via resonant proton scattering of Mg22+p and the 22Mg(p,γ) Al23 astrophysical reaction rate

    NASA Astrophysics Data System (ADS)

    He, J. J.; Kubono, S.; Teranishi, T.; Notani, M.; Baba, H.; Nishimura, S.; Moon, J. Y.; Nishimura, M.; Iwasaki, H.; Yanagisawa, Y.; Hokoiwa, N.; Kibe, M.; Lee, J. H.; Kato, S.; Gono, Y.; Lee, C. S.

    2007-11-01

    Proton resonant states in Al23 have been investigated for the first time by the resonant elastic and inelastic scattering of Mg22+p with a Mg22 beam at 4.38 MeV/nucleon bombarding a thick (CH2)n target. The low-energy Mg22 beam was separated by the CNS radioactive ion beam separator (CRIB). The energy spectra of recoiled protons were measured at average scattering angles of θlab≈4°,17° and 23°. A new state has been observed at Ex=3.00 MeV with a spin-parity assignment of (3/2+). In addition, resonant inelastic scattering has populated three more states at excitation energies of 3.14, 3.26, and 3.95 MeV, with proton decay to the first excited state in Mg22 being observed. The new state at 3.95 MeV has been assigned a spin-parity of Jπ=(7/2+). The resonant parameters were determined by an R-matrix analysis of the excitation functions with a SAMMY-M6-BETA code. The core-excited structure of Al23 is discussed within a shell-model picture. The stellar reaction rate of the Mg22(p,γ)Al23 reaction has been reevaluated, and the revised total reaction rate is about 40% greater than the previous result for temperatures beyond T9=0.3.

  11. Interactions of Na+, K+, Mg2+, and Ca2+ with benzene self-assembled monolayers.

    PubMed

    Rimmen, M; Matthiesen, J; Bovet, N; Hassenkam, T; Pedersen, C S; Stipp, S L S

    2014-08-01

    Interactions between cations and organic molecules are found throughout nature, from the functionality and structure of proteins in humans and animals to the exchange of ions in minerals in soil and oil reservoirs with the fluid phases. We have explored the behavior of the s-block elements that are most common in the natural world, namely, Na(+), K(+), Mg(2+), and Ca(2+). Specifically, we investigated how these ions affect the interactions between surfaces covered by self-assembled monolayers (SAMs) terminated with benzene molecules. We used a flat oxidized silicon substrate and an atomic force microscopy (AFM) tip that were both functionalized with 11-phenoxyundecane-1-thiol and measured the adhesion force between them in solutions of each of the four chloride salts. We observed that the adhesion increased in the order of the Hofmeister series: K(+) < Na(+) ≈ Mg(2+) < Ca(2+). Supplementary evidence from X-ray photoelectron spectroscopy (XPS) allowed us to conclude that K(+) binds in the benzene layers, creating a positive surface charge on the benzene-covered surfaces, thus leading to lower adhesion in KCl solutions than in pure water. Evidence suggested that Ca(2+) does not bind to the surfaces but forms bridges between the layers, leading to higher adhesion than in pure water. In Na(+) and Mg(2+) solutions, adhesion is quite similar to that in pure water, indicating a lack of interaction between these two ions and the surfaces, or at least that the interaction is too weak to be detected by our measurements. The results of our studies clearly show that even a nonpolar, hydrophobic molecule, such as benzene, has a role to play in the behavior of aqueous solutions and that it interacts differently depending on which ions are present. Even ions from the same column in the periodic table behave differently. PMID:25003588

  12. Ultrafiltration behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters.

    PubMed

    Guo, L; Hunt, B J; Santschi, P H

    2001-04-01

    Aquatic colloids, including macromolecules and microparticles, with sizes ranging between 1 nm to 1 micron, play important roles in the mobility and bioavailability of heavy metals and other contaminants in natural waters. Cross-flow ultrafiltration has become one of the most commonly used techniques for isolating aquatic colloids. However, the ultrafiltration behavior of chemical species remains poorly understood. We report here the permeation behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters during ultrafiltration using an Amicon 1 kDa ultrafiltration membrane (S10N1). Water samples across a salinity gradient of 0-20@1000 were collected from the Trinity River and Galveston Bay. The permeation behavior of major ions was well predicted by a permeation model, resulting in a constant permeation coefficient for each ion. The value of the model-derived permeation coefficient (Pc) was 0.99 for Na, 0.97 for Cl, and 0.95 for F, respectively, in Trinity River waters. Values of Pc close to 1 indicate that retention of Na, Cl, and F by the 1 kDa membrane during ultrafiltration was indeed minimal (< 1-5%). In contrast, significant (14-36%) retention was observed for SO4, Ca, and Mg in Trinity River waters, with a Pc value of 0.64, 0.82, and 0.86 for SO4, Ca and Mg, respectively. However, these retained major ions can further permeate through the 1 kDa membrane during diafiltration with ultrapure water. The selective retention of major ions during ultrafiltration may have important implications for the measurement of chemical and physical speciation of trace elements when using cross-flow ultrafiltration membranes to separate colloidal species from natural waters. Our results also demonstrate that the percent retention of major ions during ultrafiltration decreases with increasing salinity or ionic strength. This retention is largely attributed to electrostatic repulsion by the negatively charged cartridge membrane.

  13. Ultrafiltration behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters.

    PubMed

    Guo, L; Hunt, B J; Santschi, P H

    2001-04-01

    Aquatic colloids, including macromolecules and microparticles, with sizes ranging between 1 nm to 1 micron, play important roles in the mobility and bioavailability of heavy metals and other contaminants in natural waters. Cross-flow ultrafiltration has become one of the most commonly used techniques for isolating aquatic colloids. However, the ultrafiltration behavior of chemical species remains poorly understood. We report here the permeation behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters during ultrafiltration using an Amicon 1 kDa ultrafiltration membrane (S10N1). Water samples across a salinity gradient of 0-20@1000 were collected from the Trinity River and Galveston Bay. The permeation behavior of major ions was well predicted by a permeation model, resulting in a constant permeation coefficient for each ion. The value of the model-derived permeation coefficient (Pc) was 0.99 for Na, 0.97 for Cl, and 0.95 for F, respectively, in Trinity River waters. Values of Pc close to 1 indicate that retention of Na, Cl, and F by the 1 kDa membrane during ultrafiltration was indeed minimal (< 1-5%). In contrast, significant (14-36%) retention was observed for SO4, Ca, and Mg in Trinity River waters, with a Pc value of 0.64, 0.82, and 0.86 for SO4, Ca and Mg, respectively. However, these retained major ions can further permeate through the 1 kDa membrane during diafiltration with ultrapure water. The selective retention of major ions during ultrafiltration may have important implications for the measurement of chemical and physical speciation of trace elements when using cross-flow ultrafiltration membranes to separate colloidal species from natural waters. Our results also demonstrate that the percent retention of major ions during ultrafiltration decreases with increasing salinity or ionic strength. This retention is largely attributed to electrostatic repulsion by the negatively charged cartridge membrane. PMID:11317897

  14. Mg/Ca temperature calibration for the benthic foraminifers Bulimina inflata and Bulimina mexicana

    NASA Astrophysics Data System (ADS)

    Grunert, Patrick; Rosenthal, Yair; Jorissen, Frans; Holbourn, Ann

    2016-04-01

    Bulimina inflata Seguenza 1862 and Bulimina mexicana Cushman 1922 are cosmopolitan, shallow infaunal benthic foraminifers which are common in the fossil record throughout the Neogene and Quaternary. The closely related species share a similar costate shell morphology that differs in the presence or absence of an apical spine. In the present study, we evaluate the temperature dependency of Mg/Ca ratios of these species from an extensive set of core-top samples from the Atlantic and Pacific oceans. The results show no significant offset in Mg/Ca values between B. inflata, B. mexicana, and two other costate morphospecies when present in the same sample. The apparent lack of significant inter-specific/inter-morphotype differences amongst the analysed costate buliminds allows for the combined use of their data-sets for our core-top calibration. Over a bottom-water temperature range of 3-14°C, the Bulimina inflata/mexicana group shows a sensitivity of ˜0.12 mmol/mol/°C which is comparable to the epifaunal Cibicidoides pachyderma and higher than for the shallow infaunal Uvigerina spp., the most commonly used taxa in Mg/Ca-based palaeotemperature reconstruction. B. inflata and B. mexicana might thus be a valuable alternative in mesotrophic settings where many of the commonly used species are diminished or absent, and particularly useful in hypoxic settings where costate buliminds may dominate foraminiferal assemblages. This study was financially supported by the Max-Kade-Foundation and contributes to project P25831-N29 of the Austrian Science Fund (FWF).

  15. Interfacial reactions and wetting in Al-Mg sintered by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Faisal, Heny; Darminto, Triwikantoro, Zainuri, M.

    2016-04-01

    Was conducted to analyze the effect of temperature variation on the bonding interface sintered composite Al-Mg and analyze the effect of variations of the density and hardness sinter. Research carried out by the base material powders of Al, Mg powder and solvent n-butanol. The method used in this study is a powder metallurgy, with a composition of 60% volume fraction of Al - 40% Mg. Al-Mg mixing with n-butanol for 1 hour at 500 rpm. Then the emphasis (cold comression) with a size of 1.4 cm in diameter dies and height of 2.8 cm, is pressed with a force of 20 MPa and held for 15 minutes. After the sample into pellets, then sintered at various temperatures 300 °C, 350 °C, 400 °C and 450 °C. Characterization is done by using the testing green density, sintered density, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), vickers microhardness, and press test. XRD data analysis done by using X'Pert High Score Plus (HSP) to determine whether there is a new phase is formed. Test results show that the sintered density increasing sintering temperature, the resulting density is also increasing (shrinkage). However, at a temperature of 450 °C decreased (swelling). With the increased sinter density, interfacial bonding getting Kuta and more compact so that its hardness is also increased. From the test results of SEM / EDX, there Mg into Al in the border area. At temperatures of 300 °C, 350 °C, 400 °C, the phase formed is Al, Mg and MgO. While phase is formed at a temperature of 450 °C is aluminum magnesium (Al3Mg2), Aluminum Magnesium Zinc (AlMg2Zn).

  16. Effect of Ca content percentage and sintering temperature on corrosion rate in Mg-Ca composite fabricated using powder metallurgy technique

    NASA Astrophysics Data System (ADS)

    Syaza Nabilla, M. S.; Zuraidawani, C. D.; Nazree, D. M.

    2016-07-01

    Magnesium (Mg) is a good element with high potential to be used in various field of work. It has the benefit of lightweight and low density its application is limited for Mg is relatively low in term of strength. Hence, calcium (Ca) is chosen to be mixed with Mg as additional element for it is lightweight and non-toxic. In this research, Mg is prepared with different weight percentage (0, 0.5, 1, 1.5 and 2 wt. %) of Cavia powder metallurgy (PM) method. The samples were sintered at 500 and 550°Cin argon atmosphere and electrochemically using SBF solution as the electrolyte medium. The effect of Ca content on corrosion rateis investigated by focusing on the microstructure and properties of sintered sample. Increase of Ca content causes reduction in grain structure due to increase Mg2Ca phase at grain boundaries. Subsequently, reduce corrosion resistance. Hence, the amount of Ca content and sintering temperature of Mg-Ca composite is controlled to acquire optimum corrosion rate.

  17. Global dissolution effects on planktonic foraminiferal Mg/Ca ratios controlled by the calcite-saturation state of bottom waters

    NASA Astrophysics Data System (ADS)

    Regenberg, Marcus; Regenberg, Anke; Garbe-Schönberg, Dieter; Lea, David W.

    2014-03-01

    Mg/Ca ratios of planktonic foraminiferal tests are important tools for reconstructing past ocean temperatures at different levels of the upper water column. Yet numerous studies suggest a significant influence of calcite dissolution on Mg/Ca ratios lowering their initial signal recorded within a planktonic foraminiferal habitat. To determine the effect of dissolution, this study presents Mg/Ca ratios of eight planktonic foraminiferal species from the South China Sea sediment surface. Continuously decreasing with increasing water depth, the Mg/Ca ratios also decrease with calcite-saturation states close to and below saturation (bottom water Δ[CO3 2-]<30 μmol kg-1) but are stable in well calcite-supersaturated bottom waters (>40 μmol kg-1). This preservation pattern compares well with examples of Mg/Ca dissolution from the tropical Atlantic Ocean and is independent of the foraminiferal species. Merging a global data set by separate normalization of 79 Mg/Ca data sets from the Pacific, Atlantic, and Indian Oceans, which removes thermal differences between the ocean regions and foraminiferal species, enabled us to quantify a global decrease in planktonic foraminiferal Mg/Ca ratios of 0.054 ±0.019 μmol mol-1 per μmol kg-1 below a critical threshold for dissolution of 21.3 ±6.6 μmol kg-1. The absolute decline in Mg/Ca ratios, which is similar for all species, affects temperature estimates from (sub-)thermocline species more strongly than those from shallow dwellers. The water depth of this critical threshold in the global oceans shoals from >3.5 km in the North Atlantic to <0.5 km in the North Pacific based on calculations of the global calcite-saturation state from 6321 hydrographic stations. Above this critical threshold Mg/Ca ratios are well preserved, and paleotemperature estimates are broadly unaffected by dissolution.

  18. Chemical ordering and large tunnel magnetoresistance in Co2FeAl/MgAl2O4/Co2FeAl(001) junctions

    NASA Astrophysics Data System (ADS)

    Scheike, Thomas; Sukegawa, Hiroaki; Inomata, Koichiro; Ohkubo, Tadakatsu; Hono, Kazuhiro; Mitani, Seiji

    2016-05-01

    Epitaxial magnetic tunnel junctions (MTJs) with a Co2FeAl/CoFe (0.5 nm)/MgAl2O4/Co2FeAl(001) structure were fabricated by magnetron sputtering. High-temperature in situ annealing led to a high degree of B2-order in the Co2FeAl layers and cation order of the MgAl2O4 barrier. Large tunnel magnetoresistance (TMR) of up to 342% was obtained at room temperature (616% at 4 K), in contrast to the TMR ratio ( ≲ 160%) suppressed by the band-folding effect in Fe/cation-ordered MgAl2O4/Fe MTJs. The present study reveals that the high degree of B2-order and the resulting high spin polarization in the Co2FeAl electrodes enable us to bypass the band-folding problem in spinel barriers.

  19. Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records

    USGS Publications Warehouse

    Wong, C.I.; Banner, J.L.; Musgrove, M.

    2011-01-01

    A 4-year study in a central Texas cave quantifies multiple mechanisms that control dripwater composition and how these mechanisms vary at different drip sites. We monitored cave-air compositions, in situ calcite growth, dripwater composition and drip rate every 4-6weeks. Three groups of drip sites are delineated (Groups 1-3) based on geochemical variations in dripwater composition. Quantitative modeling of mineral-solution reactions within the host carbonate rock and cave environments is used to identify mechanisms that can account for variations in dripwater compositions. The covariation of Mg/Ca (and Sr/Ca) and Sr isotopes is key in delineating whether Mg/Ca and Sr/Ca variations are dictated by water-rock interaction (i.e., calcite or dolomite recrystallization) or prior calcite precipitation (PCP). Group 1 dripwater compositions reflects a narrow range of the extent of water-rock interaction followed by varying amounts of prior calcite precipitation (PCP). Group 2 dripwater compositions are controlled by varying amounts of water-rock interaction with little to no PCP influence. Group 3 dripwater compositions are dictated by variable extents of both water-rock interaction and PCP. Group 1 drip sites show seasonal variations in dripwater Mg/Ca and Sr/Ca, whereas the other drip sites do not. In contrast to the findings of most previous dripwater Mg/Ca-Sr/Ca studies, these seasonal variations (at Group 1 drip sites) are independent of changes in water flux (i.e., rainfall and/or drip rate), and instead significantly correlate with changes in cave-air CO2 concentrations. These results are consistent with lower cave-air CO2, related to cool season ventilation of the cave atmosphere, enhancing calcite precipitation and leading to dripwater geochemical evolution via PCP. Group 1 dripwater Mg/Ca and Sr/Ca seasonality and evidence for PCP as a mechanism that can account for that seasonality, have two implications for many other regions where seasonal ventilation of caves

  20. Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records

    NASA Astrophysics Data System (ADS)

    Wong, Corinne I.; Banner, Jay L.; Musgrove, MaryLynn

    2011-06-01

    A 4-year study in a central Texas cave quantifies multiple mechanisms that control dripwater composition and how these mechanisms vary at different drip sites. We monitored cave-air compositions, in situ calcite growth, dripwater composition and drip rate every 4-6 weeks. Three groups of drip sites are delineated (Groups 1-3) based on geochemical variations in dripwater composition. Quantitative modeling of mineral-solution reactions within the host carbonate rock and cave environments is used to identify mechanisms that can account for variations in dripwater compositions. The covariation of Mg/Ca (and Sr/Ca) and Sr isotopes is key in delineating whether Mg/Ca and Sr/Ca variations are dictated by water-rock interaction (i.e., calcite or dolomite recrystallization) or prior calcite precipitation (PCP). Group 1 dripwater compositions reflects a narrow range of the extent of water-rock interaction followed by varying amounts of prior calcite precipitation (PCP). Group 2 dripwater compositions are controlled by varying amounts of water-rock interaction with little to no PCP influence. Group 3 dripwater compositions are dictated by variable extents of both water-rock interaction and PCP. Group 1 drip sites show seasonal variations in dripwater Mg/Ca and Sr/Ca, whereas the other drip sites do not. In contrast to the findings of most previous dripwater Mg/Ca-Sr/Ca studies, these seasonal variations (at Group 1 drip sites) are independent of changes in water flux (i.e., rainfall and/or drip rate), and instead significantly correlate with changes in cave-air CO 2 concentrations. These results are consistent with lower cave-air CO 2, related to cool season ventilation of the cave atmosphere, enhancing calcite precipitation and leading to dripwater geochemical evolution via PCP. Group 1 dripwater Mg/Ca and Sr/Ca seasonality and evidence for PCP as a mechanism that can account for that seasonality, have two implications for many other regions where seasonal ventilation of

  1. Diagenesis of echinoderm skeletons: Constraints on paleoseawater Mg/Ca reconstructions

    NASA Astrophysics Data System (ADS)

    Gorzelak, Przemysław; Krzykawski, Tomasz; Stolarski, Jarosław

    2016-09-01

    One of the most profound environmental changes thought to be reflected in chemical composition of numerous geological archives is Mg/Ca ratio of the seawater, which has varied dramatically throughout the Phanerozoic. Echinoderms that today typically form high magnesium calcite skeletons are increasingly being utilized as a proxy for interpreting secular changes in seawater chemistry. However, accurate characterization of the diagenetic changes of their metastable high magnesium calcite skeletons is a prerequisite for assessing their original, major-element geochemical composition. Here we expand the existing models of diagenesis of echinoderm skeleton by integration of various analytical methods that up to now rarely have been used to assess the diagenetic changes of fossil echinoderms. We validated the preservation of a suite of differently preserved echinoderm ossicles, mostly crinoids, ranging in age from the Cambrian through Recent. In 13 of 99 fossil echinoderm ossicles we found well-preserved porous microstructure (stereom), non-luminescent behaviour or blotchy dark color in cathodoluminescence, and distinct nanostructural features (layered and nanocomposite structure). Moreover, in representatives of such preserved samples, distribution of sulphates associated with organic matter is identical to those in Recent echinoderms. Only such ossicles, despite of local micrometer-scale diagenetic changes, were herein considered well-preserved, retaining their original major-element skeletal composition. By contrast, majority of samples show transformation to the stable low magnesium calcite that leads to obliteration of the primary geochemical and micro/nanostructural features and is accompanied with increase in cathodoluminescence emission intensity. Using only well-preserved fossil echinoderm samples, we found purely random variation in Mg/Ca in echinoderm skeletons through the observed time series; any periodicities in echinoderm skeletal Mg/Ca ratio which might

  2. Assessing the influence of seawater sulfate, pH, and Mg/Ca on the sulfate concentration of foraminiferal calcite.

    NASA Astrophysics Data System (ADS)

    Paris, G.; Fehrenbacher, J. S.; Russell, A. D.; Bonnin, E. A.; Sessions, A. L.; Spero, H. J.; Adkins, J. F.

    2014-12-01

    The sulfur cycle is linked to the carbon and oxygen cycles by the anoxygenic respiration of organic carbon during bacterial sulfate reduction and the oxidative weathering of reduced sulfur on land. Understanding carbon and oxygen cycles over geological time requires an understanding of the evolution of the sulfur cycle, which can be accomplished by reconstructing the concentration and isotopic composition of sulfate in seawater. Sulfate concentration records are problematic because they are predominantly based on the composition of fluid inclusions found in evaporites, which cannot provide a continuous record through time [1]. Carbonate Associated Sulfate (CAS) and barite are routinely used to reconstruct the isotopic composition of seawater sulfate. The sulfate content of the foraminifer Orbulina universa grown in culture has previously been shown to correlate with the concentration of sulfate in seawater [2]. CAS in foraminifera could potentially be used to build a continuous record of seawater sulfate concentrations that could be directly correlated to the sulfur isotopic record. To understand the influence of seawater chemistry variation on the CAS content of foraminifers during the Cenozoic, we have conducted experiments to quantify the influence of seawater sulfate concentration, pH and Mg/Ca ratios on the CAS in Orbulina universa grown in the laboratory. Juvenile specimens were collected from the San Pedro Basin off Santa Catalina Island Southern California and grown through gametogenesis in artificial seawater at constant temperature (22°C) in a controlled 12h:12h light:dark cycle. We changed the sulfate concentration or the Mg/Ca ratio of seawater by mixing in different proportions ambient seawater with either a sulfate free artificial seawater or a seawater with Mg/Ca ~0.5. The pH was changed by adding HCl or NaOH to ambient seawater, covering a range from 7.85 to 8.6. Additionally, we compare these experimental results to data from shells collected in

  3. Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted fluoride accumulation in tea plants (Camellia sinesis L.).

    PubMed

    Zhang, Xian-Chen; Gao, Hong-Jian; Wu, Hong-Hong; Yang, Tian-Yuan; Zhang, Zheng-Zhu; Mao, Jing-Dong; Wan, Xiao-Chun

    2015-11-01

    Tea plant (Camellia sinensis (L.) O. kuntze) is known to be a fluoride (F) and aluminum (Al(3+)) hyper-accumulator. Previous study showed that pre-treatment of Al(3+) caused a significant increase of F accumulation in tea plants. However, less is known about the intricate network of Al(3+) promoted F accumulation in tea plants. In this study, the involvement of endogenous Ca(2+) and CaM in Al(3+) pretreatment-promoted F accumulation in tea plants was investigated. Our results showed that Al(3+) induced the inverse change of intracellular Ca(2+) fluorescence intensity and stimulated Ca(2+) trans-membrane transport in the mature zone of tea root. Also, a link between internal Ca(2+) and CaM was found in tea roots under the presence of Al(3+). In order to investigate whether Ca(2+) and CaM were related to F accumulation promoted by Al(3+) pretreatment, Ca(2+) chelator EGTA and CaM antagonists CPZ and TFP were used. EGTA, CPZ, and TFP pretreatment inhibited Al(3+)-induced increase of Ca(2+) fluorescence intensity and CaM content in tea roots, and also significantly reduced Al(3+)-promoted F accumulation in tea plants. Taken together, our results suggested that the endogenous Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted F accumulation in tea roots. PMID:26318146

  4. Extrinsic Proton NMR Studies of Mg(OH)2 and Ca(OH)2

    NASA Astrophysics Data System (ADS)

    Itoh, Yutaka; Isobe, Masahiko

    2016-03-01

    We studied narrow 1H NMR spectra of Mg(OH)2 and Ca(OH)2 powders at 100-355 K and 42-59 MHz using pulsed NMR techniques. The Fourier transformed NMR spectra of the proton free-induction signals show the superposition of broad and narrow components, which can be assigned to immobile protons and extrinsic mobile protons, respectively. We found that a narrow spectrum develops on heating above about Tc = 260 K and widens above a Larmor frequency of about νc = 50 MHz for Mg(OH)2. The temperature-induced NMR spectrum and the characteristic frequency νc of 50 MHz are the noteworthy features of the nuclear spin fluctuation spectra of the extrinsic protons.

  5. Mercury'S Radar Bright Region C: Mg-rich Orthopyroxene And Olivine, K-spar, Iron-free Tio2, Ca- And Mg-garnet Indicate Possible Deep Crust Or Mantle Rock Exposures

    NASA Astrophysics Data System (ADS)

    Kozlowski, Richard W.; Donaldson Hanna, K. L.; Sprague, A. L.; Helbert, J.; Maturilli, A.

    2008-09-01

    We identify mineral phases and approximate abundances on Mercury's surface for a large (600 by 600 km) region at and around radar bright region C (Harmon, 1997, Adv. Space Res.). Our results are obtained by fitting spectra obtained with the Mid-Infrared Spectrometer and Imager (MIRSI) at the Infrared Telescope Facility (IRTF) using an established spectral deconvolution algorithm (Ramsey 1996, Ph.D. Dissertation, ASU; Ramsey and Christiansen 1998, JGR). We have assembled several laboratory mineral spectral libraries (JHU, Salisbury et al. 1987, Open-File Report 87-263, USGS; JPL, http://speclib.jpl.nasa.gov; RELAB, http://www.planetary.brown.edu/relab; ASU, Christensen et al. 2000, JGR; BED, Helbert et al. 2007, Adv. Space Res.; USGS, Clark et al. 2007, USGS digital spectral library) with a wide range of known mineral compositions with grain sizes ranging from the finest separates, 0 - 45 µm, incrementally increasing to 250 - 400 µm. For the region 110° to 130° E longitude and 0° to 20° N latitude we find enstatite and Mg-rich hypersthene, K-spar (either sanidine or orthoclase), intermediate plagioclase compositions, Mg-rich olivine, an iron-free opaque phase of either (TiO2) or perovskite (CaTiO3). Small abundances of Mg- and Ca- rich garnet are also apparently present. These minerals are indicative of possible excavated upper mantle material that may be causing the high radar backscatter at this location. This work was funded by NSF AST0406796.

  6. Mapping wildfire effects on Ca2+ and Mg2+ released from ash. A microplot analisis.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Úbeda, Xavier; Martin, Deborah

    2010-05-01

    Wildland fires have important implications in ecosystems dynamic. Their effects depends on many biophysical components, mainly burned specie, ecosystem affected, amount and spatial distribution of the fuel, relative humidity, slope, aspect and time of residence. These parameters are heterogenic across the landscape, producing a complex mosaic of severities. Wildland fires have a heterogenic impact on ecosystems due their diverse biophysical features. It is widely known that fire impacts can change rapidly even in short distances, producing at microplot scale highly spatial variation. Also after a fire, the most visible thing is ash and his physical and chemical properties are of main importance because here reside the majority of the available nutrients available to the plants. Considering this idea, is of major importance, study their characteristics in order to observe the type and amount of elements available to plants. This study is focused on the study of the spatial variability of two nutrients essential to plant growth, Ca2+ and Mg2+, released from ash after a wildfire at microplot scale. The impacts of fire are highly variable even small distances. This creates many problems at the hour of map the effects of fire in the release of the studied elements. Hence is of major priority identify the less biased interpolation method in order to predict with great accuracy the variable in study. The aim of this study is map the effects of wildfire on the referred elements released from ash at microplot scale, testing several interpolation methods. 16 interpolation techniques were tested, Inverse Distance to a Weight (IDW), with the with the weights of 1,2, 3, 4 and 5, Local Polynomial, with the power of 1 (LP1) and 2 (LP2), Polynomial Regression (PR), Radial Basis Functions, especially, Spline With Tension (SPT), Completely Regularized Spline (CRS), Multiquadratic (MTQ), Inverse Multiquadratic (MTQ), and Thin Plate Spline (TPS). Also geostatistical methods were

  7. Effect of scandium on the microstructure and ageing behaviour of cast Al-6Mg alloy

    SciTech Connect

    Kaiser, M.S.; Datta, S.; Roychowdhury, A. Banerjee, M.K.

    2008-11-15

    Microstructural modification and grain refinement due to addition of scandium in Al-6Mg alloy has been studied. Transmission electron microscopy is used to understand the microstructure and precipitation behaviour in Al-6Mg alloy doped with scandium. It is seen from the microstructure that the dendrites of the cast Al-6Mg alloy have been refined significantly due to addition of scandium. Increasing amount of scandium leads to a greater dendrite refinement. The age hardening effect in scandium added Al-6Mg alloys has been studied by subjecting the alloys containing varying amount of scandium ranging from 0.2 wt.% to 0.6 wt.% to isochronal and isothermal ageing at various temperatures for different times. It is observed that significant hardening takes place in the aged alloys due to the precipitation of scandium aluminides.

  8. Post-mesozoic rapid increase of seawater Mg/Ca due to enhanced mantle-seawater interaction.

    PubMed

    Ligi, Marco; Bonatti, Enrico; Cuffaro, Marco; Brunelli, Daniele

    2013-01-01

    The seawater Mg/Ca ratio increased significantly from ~ 80 Ma to present, as suggested by studies of carbonate veins in oceanic basalts and of fluid inclusions in halite. We show here that reactions of mantle-derived peridotites with seawater along slow spreading mid-ocean ridges contributed to the post-Cretaceous Mg/Ca increase. These reactions can release to modern seawater up to 20% of the yearly Mg river input. However, no significant peridotite-seawater interaction and Mg-release to the ocean occur in fast spreading, East Pacific Rise-type ridges. The Mesozoic Pangean superocean implies a hot fast spreading ridge system. This prevented peridotite-seawater interaction and Mg release to the Mesozoic ocean, but favored hydrothermal Mg capture and Ca release by the basaltic crust, resulting in a low seawater Mg/Ca ratio. Continent dispersal and development of slow spreading ridges allowed Mg release to the ocean by peridotite-seawater reactions, contributing to the increase of the Mg/Ca ratio of post-Mesozoic seawater. PMID:24067442

  9. Post-Mesozoic Rapid Increase of Seawater Mg/Ca due to Enhanced Mantle-Seawater Interaction

    PubMed Central

    Ligi, Marco; Bonatti, Enrico; Cuffaro, Marco; Brunelli, Daniele

    2013-01-01

    The seawater Mg/Ca ratio increased significantly from ~ 80 Ma to present, as suggested by studies of carbonate veins in oceanic basalts and of fluid inclusions in halite. We show here that reactions of mantle-derived peridotites with seawater along slow spreading mid-ocean ridges contributed to the post-Cretaceous Mg/Ca increase. These reactions can release to modern seawater up to 20% of the yearly Mg river input. However, no significant peridotite-seawater interaction and Mg-release to the ocean occur in fast spreading, East Pacific Rise-type ridges. The Mesozoic Pangean superocean implies a hot fast spreading ridge system. This prevented peridotite-seawater interaction and Mg release to the Mesozoic ocean, but favored hydrothermal Mg capture and Ca release by the basaltic crust, resulting in a low seawater Mg/Ca ratio. Continent dispersal and development of slow spreading ridges allowed Mg release to the ocean by peridotite-seawater reactions, contributing to the increase of the Mg/Ca ratio of post-Mesozoic seawater. PMID:24067442

  10. Post-mesozoic rapid increase of seawater Mg/Ca due to enhanced mantle-seawater interaction.

    PubMed

    Ligi, Marco; Bonatti, Enrico; Cuffaro, Marco; Brunelli, Daniele

    2013-09-25

    The seawater Mg/Ca ratio increased significantly from ~ 80 Ma to present, as suggested by studies of carbonate veins in oceanic basalts and of fluid inclusions in halite. We show here that reactions of mantle-derived peridotites with seawater along slow spreading mid-ocean ridges contributed to the post-Cretaceous Mg/Ca increase. These reactions can release to modern seawater up to 20% of the yearly Mg river input. However, no significant peridotite-seawater interaction and Mg-release to the ocean occur in fast spreading, East Pacific Rise-type ridges. The Mesozoic Pangean superocean implies a hot fast spreading ridge system. This prevented peridotite-seawater interaction and Mg release to the Mesozoic ocean, but favored hydrothermal Mg capture and Ca release by the basaltic crust, resulting in a low seawater Mg/Ca ratio. Continent dispersal and development of slow spreading ridges allowed Mg release to the ocean by peridotite-seawater reactions, contributing to the increase of the Mg/Ca ratio of post-Mesozoic seawater.

  11. On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Gillet, P.; Reynard, B.

    1991-01-01

    The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the Cp0data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S2980-S00was calculated to be 541.2??3.0 J??mol-1??K-1. Our value for S2980-S00is 12.0 J??mol-1??K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2??3.0, is within 6.2 J??mol-1??K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J??mol-1??K-1. ?? 1991 Springer-Verlag.

  12. Simultaneous desorption behavior of M borohydrides and Mg2FeH6 reactive hydride composites (M = Mg, then Li, Na, K, Ca)

    NASA Astrophysics Data System (ADS)

    Chaudhary, Anna-Lisa; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Deledda, Stefano; Sørby, Magnus H.; Hauback, Bjørn C.; Pistidda, Claudio; Klassen, Thomas; Dornheim, Martin

    2015-08-01

    Combinations of complex metal borohydrides ball milled with the transition metal complex hydride, Mg2FeH6, are analysed and compared. Initially, the Reactive Hydride Composite (RHC) of Mg2+ cation mixtures of Mg2FeH6 and γ-Mg(BH4)2 is combined in a range of molar ratios and heated to a maximum of 450 °C. For the molar ratio of 6 Mg2FeH6 + Mg(BH4)2, simultaneous desorption of the two hydrides occurred, which resulted in a single event of hydrogen release. This single step desorption occurred at temperatures between those of Mg2FeH6 and γ-Mg(BH4)2. Keeping this anionic ratio constant, the desorption behavior of four other borohydrides, Li-, Na-, K-, and Ca-borohydrides was studied by using materials ball milled with Mg2FeH6 applying the same milling parameters. The mixtures containing Mg-, Li-, and Ca-borohydrides also released hydrogen in a single event. The Mass Spectrometry (MS) results show a double step reaction within a narrow temperature range for both the Na- and K-borohydride mixtures. This phenomenon, observed for the RHC systems at the same anionic ratio with all five light metal borohydride mixtures, can be described as simultaneous hydrogen desorption within a narrow temperature range centered around 300 °C.

  13. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy

    SciTech Connect

    Song, R.G.; Dietzel, W.; Zhang, B.J.; Liu, W.J.; Tseng, M.K.; Atrens, A

    2004-09-20

    The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg-Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement.

  14. The roles of Zr and Mn in processing and superplasticity of Al-Mg alloys

    NASA Technical Reports Server (NTRS)

    Mcnelley, Terry R.; Hales, S. J.

    1990-01-01

    Processing studies have been conducted on two alloys, of nominal compositions Al-10Mg-0.1Zr or Al-10Mg-0.5Mn, in order to clarify the role of the dispersoid forming Zr or Mn additions. Mechanical property data reveal that the Mn-containing alloy has a lower maximum elongation but exhibits superplastic response over a broader range of temperature. Microstructural investigations and texture analyses were utilized to assess the effect of the presence of Al8Mg5 precipitates in combination with either Al3Zr or Al6Mn dispersoid particles during isothermal rolling at 300 C and subsequent tensile deformation at temperatures from 200-425 C.

  15. Mg/Ca thermometry in planktic foraminifera: Improving paleotemperature estimations for G. bulloides and N. pachyderma left

    NASA Astrophysics Data System (ADS)

    Vázquez Riveiros, Natalia; Govin, Aline; Waelbroeck, Claire; Mackensen, Andreas; Michel, Elisabeth; Moreira, Santiago; Bouinot, Thomas; Caillon, Nicolas; Orgun, Ayche; Brandon, Margaux

    2016-04-01

    Planktic foraminiferal Mg/Ca ratios have become a fundamental seawater temperature proxy in past climate reconstructions, due to the temperature dependence of Mg uptake into foraminiferal calcite. However, empirical calibrations for single species from methodologically consistent data are still lacking. Here we present species-specific calibrations of Mg/Ca versus calcification temperature for two commonly used species of planktic foraminifera: Globigerina bulloides and Neogloboquadrina pachyderma left, based on a series of Southern Ocean and North Atlantic core tops. Combining these new data with previously published data, we derive an integrated G. bulloides Mg/Ca-temperature calibration for mid and high latitudes of both hemispheres between 2 and 18°C, where Mg/Ca = 1.006 ± 0.032 * e0.065 ± 0.003*Tiso (R2 = 0.82). G. bulloides is found to calcify deeper in the Southern Ocean (˜ 200 m) than in the North Atlantic (top 50 m). We also propose a Mg/Ca temperature calibration to describe the temperature response in N. pachyderma left that calcified away from the influence of sea ice in the Southern Ocean, valid between ˜ -1 and 9°C, of the form Mg/Ca = 0.580 ± 0.016 * e0.084 ± 0.006*Tiso (R2 = 0.70). These calibrations account for uncertainties on Mg/Ca measurements and calcification temperature that were carefully estimated and propagated using Monte Carlo iterations. The 1σ propagated error in Mg/Ca-derived temperatures is 1.1°C for G. bulloides and 0.9°C for N. pachyderma left for the presented data sets. Geographical extension of genotypes must be assessed when choosing to develop regional or global calibrations.

  16. Nanostructured Mg-Al hydrotalcite as catalyst for fine chemical synthesis.

    PubMed

    Basahel, Sulaiman N; Al-Thabaiti, Shaeel A; Narasimharao, Katabathini; Ahmed, Nesreen S; Mokhtar, Mohamed

    2014-02-01

    This paper reviews the recent research of nanostructured Mg-Al hydrotalcite (Mg-Al HT) and its application as an efficient solid base catalyst for the synthesis of fine chemicals. Mg-Al HT has many beneficial features, such as low cost, selectivity, catalytic properties, and wide range of preparation and modification methods. They hold promise for providing sought-after, environmentally friendly technologies for the 21st century. Replacement of currently used homogeneous alkaline bases for the synthesis of fine chemicals by a solid catalyst can result in catalyst re-use and waste stream reduction. We introduce briefly the structure, properties and characterization of the nanostructured Mg-Al HT. The efficacy and benign applications of Mg-Al HT as an alternative solid base to homogenous catalysts in the synthesis of fine chemicals are then reviewed. The challenges for the future applications of Mg-Al HT in the synthesis of fine chemicals in terms of green protocol processes are discussed. PMID:24749466

  17. Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Grant, P. S.; O'Reilly, K. A. Q.

    2016-06-01

    The evolution of iron (Fe) bearing intermetallics (Fe-IMCs) during direct chill casting and homogenization of a grain-refined 6063 aluminum-magnesium-silicon (Al-Mg-Si) alloy has been studied. The as-cast and homogenized microstructure contained Fe-IMCs at the grain boundaries and within Al grains. The primary α-Al grain size, α-Al dendritic arm spacing, IMC particle size, and IMC three-dimensional (3D) inter-connectivity increased from the edge to the center of the as-cast billet; both α c-AlFeSi and β-AlFeSi Fe-IMCs were identified, and overall α c-AlFeSi was predominant. For the first time in industrial billets, the different Fe-rich IMCs have been characterized into types based on their 3D chemistry and morphology. Additionally, the role of β-AlFeSi in nucleating Mg2Si particles has been identified. After homogenization, α c-AlFeSi predominated across the entire billet cross section, with marked changes in the 3D morphology and strong reductions in inter-connectivity, both supporting a recovery in alloy ductility.

  18. Intrinsic Proton NMR Studies of Mg(OH)2 and Ca(OH)2

    NASA Astrophysics Data System (ADS)

    Itoh, Yutaka; Isobe, Masahiko

    2016-09-01

    We studied the short proton free induction decay signals and the broad 1H NMR spectra of Mg(OH)2 and Ca(OH)2 powders at 77-355 K and 42 MHz using pulsed NMR techniques. Using a Gaussian-type back extrapolation procedure for the obscured data of the proton free induction decay signals, we obtained more precise values of the second moments of the Fourier-transformed broad NMR spectra than those in a previous report [Y. Itoh and M. Isobe, J. Phys. Soc. Jpn. 84, 113601 (2015)] and compared with the theoretical second moments. The decrease in the second moment could not account for the large decrease in the magnitude of the intrinsic proton spin-lattice relaxation rate 1/T1 from Mg(OH)2 to Ca(OH)2. The analysis of 1/T1 ∝ exp(-Eg/kBT) with Eg ˜ 0.01 eV points to a local hopping mechanism, and that of 1/T1 ∝ Tn with n ˜ 0.5 points to an anharmonic rattling mechanism.

  19. Intrinsic Proton NMR Studies of Mg(OH)2 and Ca(OH)2

    NASA Astrophysics Data System (ADS)

    Itoh, Yutaka; Isobe, Masahiko

    2016-09-01

    We studied the short proton free induction decay signals and the broad 1H NMR spectra of Mg(OH)2 and Ca(OH)2 powders at 77-355 K and 42 MHz using pulsed NMR techniques. Using a Gaussian-type back extrapolation procedure for the obscured data of the proton free induction decay signals, we obtained more precise values of the second moments of the Fourier-transformed broad NMR spectra than those in a previous report [Y. Itoh and M. Isobe, http://doi.org/10.7566/JPSJ.84.113601, J. Phys. Soc. Jpn. 84, 113601 (2015)] and compared with the theoretical second moments. The decrease in the second moment could not account for the large decrease in the magnitude of the intrinsic proton spin-lattice relaxation rate 1/T1 from Mg(OH)2 to Ca(OH)2. The analysis of 1/T1 ∝ exp(-Eg/kBT) with Eg ˜ 0.01 eV points to a local hopping mechanism, and that of 1/T1 ∝ Tn with n ˜ 0.5 points to an anharmonic rattling mechanism.

  20. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications.

    PubMed

    Rau, J V; Antoniac, I; Fosca, M; De Bonis, A; Blajan, A I; Cotrut, C; Graziani, V; Curcio, M; Cricenti, A; Niculescu, M; Ortenzi, M; Teghil, R

    2016-07-01

    Biodegradable metals and alloys are promising candidates for biomedical bone implant applications. However, due to the high rate of their biodegradation in human body environment, they should be coated with less reactive materials, such, for example, as bioactive glasses or glass-ceramics. Fort this scope, RKKP composition glass-ceramic coatings have been deposited on Mg-Ca(1.4wt%) alloy substrates by Pulsed Laser Deposition method, and their properties have been characterized by a number of techniques. The prepared coatings consist of hydroxyapatite and wollastonite phases, having composition close to that of the bulk target material used for depositions. The 100μm thick films are characterized by dense, compact and rough morphology. They are composed of a glassy matrix with various size (from micro- to nano-) granular inclusions. The average surface roughness is about 295±30nm due to the contribution of micrometric aggregates, while the roughness of the fine-texture particulates is approximately 47±4nm. The results of the electrochemical corrosion evaluation tests evidence that the RKKP coating improves the corrosion resistance of the Mg-Ca (1.4wt%) alloy in Simulated Body Fluid.

  1. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications.

    PubMed

    Rau, J V; Antoniac, I; Fosca, M; De Bonis, A; Blajan, A I; Cotrut, C; Graziani, V; Curcio, M; Cricenti, A; Niculescu, M; Ortenzi, M; Teghil, R

    2016-07-01

    Biodegradable metals and alloys are promising candidates for biomedical bone implant applications. However, due to the high rate of their biodegradation in human body environment, they should be coated with less reactive materials, such, for example, as bioactive glasses or glass-ceramics. Fort this scope, RKKP composition glass-ceramic coatings have been deposited on Mg-Ca(1.4wt%) alloy substrates by Pulsed Laser Deposition method, and their properties have been characterized by a number of techniques. The prepared coatings consist of hydroxyapatite and wollastonite phases, having composition close to that of the bulk target material used for depositions. The 100μm thick films are characterized by dense, compact and rough morphology. They are composed of a glassy matrix with various size (from micro- to nano-) granular inclusions. The average surface roughness is about 295±30nm due to the contribution of micrometric aggregates, while the roughness of the fine-texture particulates is approximately 47±4nm. The results of the electrochemical corrosion evaluation tests evidence that the RKKP coating improves the corrosion resistance of the Mg-Ca (1.4wt%) alloy in Simulated Body Fluid. PMID:27127065

  2. The Effects of Temperature and Salinity on Mg Incorporation in Planktonic Foraminifera Globigerinoides ruber (white): Results from a Global Sediment Trap Mg/Ca Database

    NASA Astrophysics Data System (ADS)

    Gray, W. R.; Weldeab, S.; Lea, D. W.

    2015-12-01

    Mg/Ca in Globigerinoides ruber is arguably the most important proxy for sea surface temperature (SST) in tropical and sub tropical regions, and as such guides our understanding of past climatic change in these regions. However, the sensitivity of Mg/Ca to salinity is debated; while analysis of foraminifera grown in cultures generally indicates a sensitivity of 3 - 6% per salinity unit, core-top studies have suggested a much higher sensitivity of between 15 - 27% per salinity unit, bringing the utility of Mg/Ca as a SST proxy into dispute. Sediment traps circumvent the issues of dissolution and post-depositional calcite precipitation that hamper core-top calibration studies, whilst allowing the analysis of foraminifera that have calcified under natural conditions within a well constrained period of time. We collated previously published sediment trap/plankton tow G. ruber (white) Mg/Ca data, and generated new Mg/Ca data from a sediment trap located in the highly-saline tropical North Atlantic, close to West Africa. Calcification temperature and salinity were calculated for the time interval represented by each trap/tow sample using World Ocean Atlas 2013 data. The resulting dataset comprises >240 Mg/Ca measurements (in the size fraction 150 - 350 µm), that span a temperature range of 18 - 28 °C and 33.6 - 36.7 PSU. Multiple regression of the dataset reveals a temperature sensitivity of 7 ± 0.4% per °C (p < 2.2*10-16) and a salinity sensitivity of 4 ± 1% per salinity unit (p = 2*10-5). Application of this calibration has significant implications for both the magnitude and timing of glacial-interglacial temperature changes when variations in salinity are accounted for.

  3. Microstructure, mechanical and bio-corrosion properties of Mn-doped Mg-Zn-Ca bulk metallic glass composites.

    PubMed

    Wang, Jingfeng; Huang, Song; Li, Yang; Wei, Yiyun; Xi, Xingfeng; Cai, Kaiyong

    2013-10-01

    The effects of Mn substitution for Mg on the microstructure, mechanical properties, and corrosion behavior of Mg69-xZn27Ca4Mnx (x=0, 0.5 and 1at.%) alloys were investigated using X-ray diffraction, compressive tests, electrochemical treatments, and immersion tests, respectively. Microstructural observations showed that the Mg69Zn27Ca4 alloy was mainly amorphous. The addition of Mn decreases the glass-forming ability, which results in a decreased strength from 545 MPa to 364 MPa. However, this strength is still suitable for implant application. Polarization and immersion tests in the simulated body fluid at 37 °C revealed that the Mn-doped Mg-Zn-Ca alloys have significantly higher corrosion resistance than traditional ZK60 and pure Mg alloys. Cytotoxicity test showed that cell viabilities of osteoblasts cultured with Mn-doped Mg-Zn-Ca alloys extracts were higher than that of pure Mg. Mg68.5Zn27Ca4Mn0.5 exhibits the highest bio-corrosion resistance, biocompatibility and has desirable mechanical properties, which could suggest to be used as biomedical materials in the future.

  4. Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg.

    PubMed

    Nandipati, Giridhar; Govind, Niranjan; Andersen, Amity; Rohatgi, Aashish

    2016-04-20

    Vacancy-mediated diffusion of an Al atom in the pure Mg matrix is studied using the atomistic, on-lattice self-learning kinetic Monte Carlo (SLKMC) method. Activation barriers for vacancy-Mg and vacancy-Al atom exchange processes are calculated on the fly using the climbing image nudged-elastic-band method and binary Mg-Al modified embedded-atom method interatomic potential. Diffusivities of an Al atom obtained from SLKMC simulations show the same behavior as observed in experimental and theoretical studies available in the literature; that is, an Al atom diffuses faster within the basal plane than along the c-axis. Although the effective activation barriers for an Al atom diffusion from SLKMC simulations are close to experimental and theoretical values, the effective prefactors are lower than those obtained from experiments. We present all the possible vacancy-Mg and vacancy-Al atom exchange processes and their activation barriers identified in SLKMC simulations. A simple mapping scheme to map an HCP lattice onto a simple cubic lattice is described, which enables simulation of the HCP lattice using the on-lattice framework. We also present the pattern recognition scheme which is used in SLKMC simulations to identify the local Al atom configuration around a vacancy.

  5. Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg

    NASA Astrophysics Data System (ADS)

    Nandipati, Giridhar; Govind, Niranjan; Andersen, Amity; Rohatgi, Aashish

    2016-04-01

    Vacancy-mediated diffusion of an Al atom in the pure Mg matrix is studied using the atomistic, on-lattice self-learning kinetic Monte Carlo (SLKMC) method. Activation barriers for vacancy-Mg and vacancy-Al atom exchange processes are calculated on the fly using the climbing image nudged-elastic-band method and binary Mg-Al modified embedded-atom method interatomic potential. Diffusivities of an Al atom obtained from SLKMC simulations show the same behavior as observed in experimental and theoretical studies available in the literature; that is, an Al atom diffuses faster within the basal plane than along the c-axis. Although the effective activation barriers for an Al atom diffusion from SLKMC simulations are close to experimental and theoretical values, the effective prefactors are lower than those obtained from experiments. We present all the possible vacancy-Mg and vacancy-Al atom exchange processes and their activation barriers identified in SLKMC simulations. A simple mapping scheme to map an HCP lattice onto a simple cubic lattice is described, which enables simulation of the HCP lattice using the on-lattice framework. We also present the pattern recognition scheme which is used in SLKMC simulations to identify the local Al atom configuration around a vacancy.

  6. Phase Compositions of Self Reinforcement Al2O3/CaAl12O19 Composite using X-ray Diffraction Data and Rietveld Technique

    NASA Astrophysics Data System (ADS)

    Asmi, D.; Low, I. M.; O'Connor, B.

    2008-03-01

    The analysis of x-ray diffraction (XRD) patterns by the Rietveld technique was tested to the quantitatively phase compositions of self reinforcement Al2O3/CaAl12O19 composite. Room-temperature XRD patterns revealed that α-Al2O3 was the only phase presence in the CA0 sample, whereas the α-Al2O3 and CaAl12O19 phases were found for CA5, CA15, CA30, and CA50 samples. The peak intensity of CA6 in the self reinforcement Al2O3/CaAl12O19 composites increased in proportion with increase in CaAl12O19 content in contrast to α-Al2O3. The diffraction patterns for CA100 sample shows minor traces of α-Al2O3 even in relatively low peak intensity. It is suggesting that the in-situ reaction sintering of raw materials were not react completely to form 100 wt% CaAl12O19 at temperature 1650 °C. Quantitative phase compositions of self reinforcement Al2O3/CaAl12O19 composites by Rietveld analysis with XRD data has been well demonstrated. The results showed that the GOF values are relatively low and the fluctuation in the difference plots shows a reasonable fit between the observed and the calculated plot.

  7. A new post-treatment process for attaining Ca2+, Mg2+, SO42- and alkalinity criteria in desalinated water.

    PubMed

    Birnhack, Liat; Lahav, Ori

    2007-09-01

    A novel post-treatment approach for desalinated water, aimed at supplying a balanced concentration of alkalinity, Ca(2+), Mg(2+) and SO(4)(2-), is introduced. The process is based on replacing excess Ca(2+) ions generated in the common H(2)SO(4)-based calcite dissolution post-treatment process with Mg(2+) ions originating from seawater. In the first step, Mg(2+) ions are separated from seawater by means of a specific ion exchange resin that has high affinity toward divalent cations (Mg(2+) and Ca(2+)) and an extremely low affinity toward monovalent cations (namely Na(+) and K(+)). In the second step, the Mg(2+)-loaded resin is contacted with the effluent of the calcite dissolution reactor and Mg(2+) and Ca(2+) are exchanged. Consequently, the excess Ca(2+) concentration in the water decreases while the Mg(2+) concentration increases. The process is stopped at a predetermined Ca(2+) to Mg(2+) ratio. All water streams used in the process are internal and form a part of the desalination plant sequence, regardless of the additional ion exchange component. The proposed process allows for the supply of cheap Mg(2+) ions, while at the same time enables the application of the cheap H(2)SO(4)-based calcite dissolution process, thus resulting in higher quality water at a cost-effective price. A case study is presented in which additional cost of supplying a Mg(2+) concentration of 12mg/L using the process is estimated at $0.004/m(3) product water.

  8. Thermoelectric properties of Al doped Mg{sub 2}Si material

    SciTech Connect

    Kaur, Kulwinder Kumar, Ranjan; Rani, Anita

    2015-08-28

    In the present paper we have calculated thermoelectric properties of Al doped Mg{sub 2}Si material (Mg{sub 2−x}Al{sub x}Si, x=0.06) using Pseudo potential plane wave method based on DFT and Semi classical Boltzmann theory. The calculations showed n-type conduction, indicating that the electrical conduction are due to electron. The electrical conductivity increasing with increasing temperature and the negative value of Seebeck Coefficient also show that the conduction is due to electron. The thermal conductivity was increased slightly by Al doping with increasing temperature due to the much larger contribution of lattice thermal conductivity over electronic thermal conductivity.

  9. Using Mg/Ca on oyster shells as paleoclimatic proxy, example from the Paleogene of Central Asia.

    NASA Astrophysics Data System (ADS)

    Bougeois, Laurie; de Rafélis, Marc; Reichart, Gert-Jan; de Nooijer, Lennart; Dupont-Nivet, Guillaume

    2015-04-01

    Due to their large occurrence in sedimentary records from Triassic to Quaternary, their strong resistance to post-mortem alteration, and the incremental nature of their shell growth, oysters are recognized to be a highly powerful tool to infer infra-annual paleoclimate variations. However, the common use of δ18O in biomineralisation to infer paleotemperatures is hindered by the difficulties in valuating δ18O of sea water (δ18Osw). If the δ18Osw values can be fairly well estimated when orking at the million-year time scale, the estimation of the infra-annual variation of the δ18Osw constitutes a considerable barrier for high-resolution paleo-reconstitutions. This issue can be resolved using the Mg/Ca ratio as a suitable and valuable independent high-resolution paleothermometer in oyster shells. However, if numerous studies provided new paleothermometer using Mg/Ca ratio in calcitic bivalve shells, their application to paleo-studies remains to be established. In this study, we combine incremental δ18O analyses with Mg/Ca ratio on Paleogene oyster shells from the Proto-Paratethys (Central Asia) that is characterized by high seasonal variability. We analysed various species growing in different depositional environments throughout late Paleocene to late Eocene times. Results from both proxies show consistent values from oysters of the same age and of the same species, attesting for the consistent Mg incorporation into shells. However, the Mg/Ca-T calibrations tested in this study reveals the importance of specie-specific effect for the incorporation of Mg, as well as the environment. This enables discarding results inappropriate for existing Mg/Ca calibrations and identifying those yielding meaningful paleo-temperatures. In particular, the consistency of the Mg/Ca temperature proxies yielded by the species Ostrea (T.) strictiplicata and Sokolowia buhsii shows that, with careful data selection, Mg/Ca provides a reliable infra-annual paleotemperature proxy.

  10. Improvement of CaFe/sub 2/O/sub 4/ photocathode by doping with Na and Mg

    SciTech Connect

    Matsumoto, Y.; Sugiyama, K.; Sato, E.

    1988-05-01

    The low conductivity of CaFe/sub 2/O/sub 4/ and the nonohmic contact in the CaFe/sub 2/O/sub 4//metal interface, which lead to only a small photocurrent, were improved by doping with Na and Mg. The oxides of the Ca/sub 1-x/Na/sub x/Fe/sub 2-y/Mg/sub y/O/sub 4/ system gave the high conductivity and the ohmic contact of the oxide/Pt-Pd interface, but very small photocurrent. It was judged from the measurement of the Seebeck coefficient that the hopping mechanism is dominant for the conduction of the oxides containing Na. The hopping level is presumed to bring about the ohmic contact and the very small photocurrent because of the small band bending. The CaFe/sub 2/O/sub 4//Na,Mg electrode, where one side of the surfaces was doped with Na and Mg and the interface of CaFe/sub 2/O/sub 4//Na,Mg/Pt-Pd was ohmic contact, gave a large photocurrent. Photoelectrochemical dissolution was observed for the CaFe/sub 2/O/sub 4//Na,Mg electrode in acidic solution but not in neutral solution. The mechanism of the dissolution is also discussed.

  11. Localized Corrosion Behavior of Al-Si-Mg Alloys Used for Fabrication of Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Pech-Canul, M. A.; Giridharagopal, R.; Pech-Canul, M. I.; Coral-Escobar, E. E.

    2013-12-01

    The relationship between microstructure and localized corrosion behavior in neutral aerated chloride solutions was investigated with SEM/EDAX, conventional electrochemical techniques, and with scanning Kelvin probe force microscopy (SKPFM) for two custom-made alloys with Si/Mg molar ratios of 0.12 and 0.49. In this order, Al3Fe, Al3Mg2, and Mg2Si intermetallics were identified in the first alloy and Al(FeMn)Si and Mg2Si particles in the second one. Anodic polarization curves and corrosion morphology showed that the alloy with higher Si/Mg molar ratio exhibited a better corrosion performance and evidence was shown that it had a more corrosion-resistant passive film. The corrosion process for both alloys in aerated 0.1 M NaCl solutions was localized around the Fe-rich intermetallics. They acted as local cathodes and produced dissolution of the aluminum matrix surrounding such particles. Mg2Si and Al3Mg2 exhibited anodic behavior. SKPFM was successfully used to map the Volta potential distribution of main intermetallics. The localized corrosion behavior was correlated with a large Volta potential difference between the Fe-rich intermetallics and the matrix. After immersion in the chloride solution, such Volta potential difference decreased.

  12. Microstructural evolution in Al-Zn-Mg-Cu-Sc-Zr alloys during short-time homogenization

    NASA Astrophysics Data System (ADS)

    Liu, Tao; He, Chun-nian; Li, Gen; Meng, Xin; Shi, Chun-sheng; Zhao, Nai-qin

    2015-05-01

    Microstructural evolution in a new kind of aluminum (Al) alloy with the chemical composition of Al-8.82Zn-2.08Mg-0.80Cu-0.31Sc-0.3Zr was investigated. It is found that the secondary phase MgZn2 is completely dissolved into the matrix during a short homogenization treatment (470°C, 1 h), while the primary phase Al3(Sc,Zr) remains stable. This is due to Sc and Zr additions into the Al alloy, high Zn/Mg mass ratio, and low Cu content. The experimental findings fit well with the results calculated by the homogenization diffusion kinetics equation. The alloy shows an excellent mechanical performance after the short homogenization process followed by hot-extrusion and T6 treatment. Consequently, a good combination of low energy consumption and favorable mechanical properties is obtained.

  13. Spin Polarization of Mg-23 in Mg-24 + Au, Cu and Al Collisions at 91 A MeV

    NASA Technical Reports Server (NTRS)

    Matsuta, K.; Fukuda, S.; Izumikawa, T.; Tanigaki, M.; Fukuda, M.; Nakazato, M.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Miyake, T.

    1994-01-01

    Spin polarization of beta-emitting fragment Mg-23(I(sup pi) = 3/2(sup +), T(sub 1/2 = l1.3 s) produced through the projectile fragmentation process in Mg-24 + Au, Cu and Al collisions has been observed at 91 AMeV. General trend in the observed momentum dependence of polarization is reproduced well qualitatively by a simple fragmentation model based on the participant-spectator picture, for heavy and light targets. However the polarization behavior differs from this model in tern of zero crossing momentum, which become prominent in the case of Cu target, where the polarization is not monotone function of the fragment momentum.

  14. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis.

  15. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis. PMID:25740001

  16. Dual-scale phase-field simulation of Mg-Al alloy solidification

    NASA Astrophysics Data System (ADS)

    Monas, A.; Shchyglo, O.; Höche, D.; Tegeler, M.; Steinbach, I.

    2015-06-01

    Phase-field simulations of the nucleation and growth of primary α-Mg phase as well as secondary, β-phase of a Mg-Al alloy are presented. The nucleation model for α- and β-Mg phases is based on the “free growth model” by Greer et al.. After the α-Mg phase solidification we study a divorced eutectic growth of α- and β-Mg phases in a zoomed in melt channel between α-phase dendrites. The simulated cooling curves and final microstructures of α-grains are compared with experiments. In order to further enhance the resolution of the interdendritic region a high-performance computing approach has been used allowing significant simulation speed gain when using supercomputing facilities.

  17. Effect of Ca:Mg ratio on precipitated P species identified using 31P solid state NMR

    NASA Astrophysics Data System (ADS)

    Manimel Wadu, M.

    2009-04-01

    M.C.W. Manimel Wadu1, O.O Akinremi1, S. Kroeker2 1Department of Soil Science, University of Manitoba, Winnipeg, R3T 2N2, Canada 2Department of Chemistry, University of Manitoba, Winnipeg, R3T 2N2, Canada Agronomic efficiency of added P fertilizer is reduced by the precipitation reactions with the exchangeable Ca and Mg in calcareous soils. We hypothesized that the ratio of Ca to Mg on the soil exchange complex will affect the species of P that is precipitated and its solubility in the soil. A laboratory experiment was conducted using a model calcareous soil system which was composed of resin (Amberlite IRP69) and sand coated with CaCO3 packed into a column. The resin was pre saturated with Ca and Mg in order to achieve five different saturation ratios of Ca:Mg approximately as 100:0, 70:30, 50:50, 30:70 and 0:100. Monoammonium Phosphate was applied to the soil surface to simulate one-dimensional diffusive transport. The column was then incubated for 2 weeks. Chemical analysis for water and acid soluble P, pH, NH4, Ca and Mg was performed on 2mm sections of the soil to a depth of 10 cm. This paper will present and discuss the distribution of P along the soil column. Unlike similar studies that have speculated on the precipitation of P, this study will identify and quantify the P species that is formed using 31P solid state NMR technique. Such knowledge will be helpful in understanding the effect of Ca and Mg on P availability in calcareous system and the role of each cation on P precipitation. Key words: P fertilizers, Ca, Mg, model system, solid state NMR

  18. Studies of Mg2+/Ca2+ complexes of naturally occurring dinucleotides: potentiometric titrations, NMR, and molecular dynamics.

    PubMed

    Stern, Noa; Major, Dan Thomas; Gottlieb, Hugo Emilio; Weizman, Daniel; Sayer, Alon Haim; Blum, Eliav; Fischer, Bilha

    2012-08-01

    Dinucleotides (Np(n)N'; N and N' are A, U, G, or C, n = 2-7) are naturally occurring physiologically active compounds. Despite the interest in dinucleotides, the composition of their complexes with metal ions as well as their conformations and species distribution in living systems are understudied. Therefore, we investigated a series of Mg(2+) and Ca(2+) complexes of Np(n)N's. Potentiometric titrations indicated that a longer dinucleotide polyphosphate (N is A or G, n = 3-5) linker yields more stable complexes (e.g., log K of 2.70, 3.27, and 3.73 for Ap(n)A-Mg(2+), n = 3, 4, 5, respectively). The base (A or G) or ion (Mg(2+) or Ca(2+)) has a minor effect on K(M)(ML) values. In a physiological medium, the longer Ap(n)As (n = 4, 5) are predicted to occur mostly as the Mg(2+)/Ca(2+) complexes. (31)P NMR monitored titrations of Np(n)N's with Mg(2+)/Ca(2+) ions showed that the middle phosphates of the dinucleotides coordinate with Mg(2+)/Ca(2+). Multidimensional potential of mean force (PMF) molecular dynamics (MD) simulations suggest that Ap(2)A and Ap(4)A coordinate Mg(2+) and Ca(2+) ions in both inner-sphere and outer-sphere modes. The PMF MD simulations additionally provide a detailed picture of the possible coordination sites, as well as the cation binding process. Moreover, both NMR and MD simulations showed that the conformation of the nucleoside moieties in Np(n)N'-Mg(2+)/Ca(2+) complexes remains the same as that of free mononucleotides.

  19. Evaluation of the microstructure of Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 4

    NASA Technical Reports Server (NTRS)

    Pickens, Joseph R.; Kumar, K. S.; Brown, S. A.; Gayle, Frank W.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy designed to have ultrahigh strength and to serve in aerospace applications. The alloy displays significantly higher strength than competitive alloys in both naturally aged and artificially aged tempers. The strengthening phases in such tempers have been identified to, in part, explain the mechanical properties attained. In general, the alloy is strengthened by delta prime Al3Li and Guinier-Preston (GP) zones in the naturally aged tempers. In artificially aged tempers in slightly underaged conditions, strengthening is provided by several phases including GP zones, theta prime Al2Cu, S prime Al2CuMg, T(sub 1) Al2CuLi, and possibly a new phase. In the peak strength artificially aged tempers, T(sub 1) is the predominant strengthening phase.

  20. Postperovskite phase equilibria in the MgSiO3-Al2O3 system.

    PubMed

    Tsuchiya, Jun; Tsuchiya, Taku

    2008-12-01

    We investigate high-P,T phase equilibria of the MgSiO(3)-Al(2)O(3) system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh(2)O(3)(II) phase, present calculations demonstrate that (i) dissolving Al(2)O(3) tends to decrease the postperovskite transition pressure of MgSiO(3) but the effect is not significant ( approximately -0.2 GPa/mol% Al(2)O(3)); (ii) Al(2)O(3) produces the narrow perovskite+postperovskite coexisting P,T area (approximately 1 GPa) for the pyrolitic concentration (x(Al2O3) approximately 6 mol%), which is sufficiently responsible to the deep-mantle D'' seismic discontinuity; (iii) the transition would be smeared (approximately 4 GPa) for the basaltic Al-rich composition (x(Al2O3) approximately 20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh(2)O(3)(II) with increasing the Al concentration involving small displacements of the Mg-site cations.

  1. Use of Mg-Al oxide for boron removal from an aqueous solution in rotation: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2016-01-01

    Mg-Al oxide prepared through the thermal treatment of [Formula: see text] intercalated Mg-Al layered double hydroxides (CO3·Mg-Al LDH) was found to remove boron (B) from an aqueous solution. B was removed by the rehydration of Mg-Al oxide accompanied by combination with [Formula: see text] . When using twice the stoichiometric quantity of Mg-Al oxide for Mg/Al = 4, the residual concentration of B dropped from 100 to 2.8 mg/L in 480 min, and for Mg/Al = 2, it decreased from 100 to 2.5 mg/L in 240 min. In both cases, the residual concentration of B was highlighted to be lower than the current Japanese effluent standards (10 mg/L). The removal of B can be explained by way of pseudo-first-order reaction kinetics. The apparent activation energy of 63.5 kJ mol(-1), calculated from the Arrhenius plot indicating that a chemical reaction dominates the removal of B by Mg-Al oxide (Mg/Al = 2). The adsorption of B acts upon a Langmuir-type phenomena. The maximum adsorption (qm) and equilibrium adsorption constants (KL) were 7.4 mmol g(-1) and 1.9 × 10(3), respectively, for Mg-Al oxide (Mg/Al = 2). [Formula: see text] in B(OH)4·Mg-Al LDH produced by the removal of B was observed to undergo anion exchange with [Formula: see text] in solution. Following regeneration, the Mg-Al oxide maintained the ability to remove B from an aqueous solution. This study has clarified the possibility of recycling Mg-Al oxide for B removal.

  2. Use of Mg-Al oxide for boron removal from an aqueous solution in rotation: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2016-01-01

    Mg-Al oxide prepared through the thermal treatment of [Formula: see text] intercalated Mg-Al layered double hydroxides (CO3·Mg-Al LDH) was found to remove boron (B) from an aqueous solution. B was removed by the rehydration of Mg-Al oxide accompanied by combination with [Formula: see text] . When using twice the stoichiometric quantity of Mg-Al oxide for Mg/Al = 4, the residual concentration of B dropped from 100 to 2.8 mg/L in 480 min, and for Mg/Al = 2, it decreased from 100 to 2.5 mg/L in 240 min. In both cases, the residual concentration of B was highlighted to be lower than the current Japanese effluent standards (10 mg/L). The removal of B can be explained by way of pseudo-first-order reaction kinetics. The apparent activation energy of 63.5 kJ mol(-1), calculated from the Arrhenius plot indicating that a chemical reaction dominates the removal of B by Mg-Al oxide (Mg/Al = 2). The adsorption of B acts upon a Langmuir-type phenomena. The maximum adsorption (qm) and equilibrium adsorption constants (KL) were 7.4 mmol g(-1) and 1.9 × 10(3), respectively, for Mg-Al oxide (Mg/Al = 2). [Formula: see text] in B(OH)4·Mg-Al LDH produced by the removal of B was observed to undergo anion exchange with [Formula: see text] in solution. Following regeneration, the Mg-Al oxide maintained the ability to remove B from an aqueous solution. This study has clarified the possibility of recycling Mg-Al oxide for B removal. PMID:26454072

  3. Simultaneous observations of Ca II K and Mg II k in T Tauri stars

    NASA Technical Reports Server (NTRS)

    Calvet, N.; Basri, G.; Imhoff, C. L.; Giampapa, M. S.

    1985-01-01

    The first simultaneous, calibrated observations of the Ca II K and Mg II k resonance lines in T Tauri stars are presented. It is found that for T Tauri stars with mass greater than 1.5 solar mass, which have radiative cores and tend to be fast rotators, the k line seems to arise in an extended region (probably also responsible for the H-alpha emission), whereas the K line apparently originates closer to the highly inhomogeneous stellar surface. The lower mass stars, which are fully convective and tend to be slow rotators, are more easily described by a largely chromospheric model, consistent with main-sequence activity structures but at greater values of the nonradiative flux. The strongest emission-line stars in the low-mass group, however, are also likely to have extended k line regions.

  4. K-SHELL PHOTOIONIZATION AND PHOTOABSORPTION OF Ne, Mg, Si, S, Ar, AND Ca

    SciTech Connect

    Witthoeft, M. C.; Kallman, T. R.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2009-05-15

    We present extensive computations of photoabsorption and photoionization cross sections across the K-edge of Ne, Mg, Si, S, Ar, and Ca ions with less than 11 electrons. The calculations are performed using the Breit-Pauli R-matrix method and include the effects of radiative and Auger damping by means of an optical potential. The wave functions are constructed from single-electron orbital bases obtained using a Thomas-Fermi-Dirac statistical model potential. Configuration interaction is considered among all fine-structure levels within the n = 2 complex. The damping processes affect the resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization thresholds.

  5. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices

    PubMed Central

    Zheng, T. C.; Lin, W.; Liu, R.; Cai, D. J.; Li, J. C.; Li, S. P.; Kang, J. Y.

    2016-01-01

    A novel multidimensional Mg-doped superlattice (SL) is proposed to enhance vertical hole conductivity in conventional Mg-doped AlGaN SL which generally suffers from large potential barrier for holes. Electronic structure calculations within the first-principle theoretical framework indicate that the densities of states (DOS) of the valence band nearby the Fermi level are more delocalized along the c-axis than that in conventional SL, and the potential barrier significantly decreases. Hole concentration is greatly enhanced in the barrier of multidimensional SL. Detailed comparisons of partial charges and decomposed DOS reveal that the improvement of vertical conductance may be ascribed to the stronger pz hybridization between Mg and N. Based on the theoretical analysis, highly conductive p-type multidimensional Al0.63Ga0.37N/Al0.51Ga0.49N SLs are grown with identified steps via metalorganic vapor-phase epitaxy. The hole concentration reaches up to 3.5 × 1018 cm−3, while the corresponding resistivity reduces to 0.7 Ω cm at room temperature, which is tens times improvement in conductivity compared with that of conventional SLs. High hole concentration can be maintained even at 100 K. High p-type conductivity in Al-rich structural material is an important step for the future design of superior AlGaN-based deep ultraviolet devices. PMID:26906334

  6. First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H system.

    PubMed

    Ozolins, V; Majzoub, E H; Wolverton, C

    2009-01-14

    Introduction of economically viable hydrogen cars is hindered by the need to store large amounts of hydrogen. Metal borohydrides [LiBH(4), Mg(BH(4))(2), Ca(BH(4))(2)] are attractive candidates for onboard storage because they contain high densities of hydrogen by weight and by volume. Using a set of recently developed theoretical first-principles methods, we predict currently unknown crystal structures and hydrogen storage reactions in the Li-Mg-Ca-B-H system. Hydrogen release from LiBH(4) and Mg(BH(4))(2) is predicted to proceed via intermediate Li(2)B(12)H(12) and MgB(12)H(12) phases, while for Ca borohydride two competing reaction pathways (into CaB(6) and CaH(2), and into CaB(12)H(12) and CaH(2)) are found to have nearly equal free energies. We predict two new hydrogen storage reactions that are some of the most attractive among the presently known ones. They combine high gravimetric densities (8.4 and 7.7 wt % H(2)) with low enthalpies [approximately 25 kJ/(mol H(2))] and are thermodynamically reversible at low pressures due to low vibrational entropies of the product phases containing the [B(12)H(12)](2-) anion.

  7. Tuning Acid-Base Properties Using Mg-Al Oxide Atomic Layer Deposition.

    PubMed

    Jackson, David H K; O'Neill, Brandon J; Lee, Jechan; Huber, George W; Dumesic, James A; Kuech, Thomas F

    2015-08-01

    Atomic layer deposition (ALD) was used to coat γ-Al2O3 particles with oxide films of varying Mg/Al atomic ratios, which resulted in systematic variation of the acid and base site areal densities. Variation of Mg/Al also affected morphological features such as crystalline phase, pore size distribution, and base site proximity. Areal base site density increased with increasing Mg content, while acid site density went through a maximum with a similar number of Mg and Al atoms in the coating. This behavior leads to nonlinearity in the relationship between Mg/Al and acid/base site ratio. The physical and chemical properties were elucidated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 physisorption, and CO2 and NH3 temperature-programmed desorption (TPD). Fluorescence emission spectroscopy of samples grafted with 1-pyrenebutyric acid (PBA) was used for analysis of base site proximity. The degree of base site clustering was correlated to acid site density. Catalytic activity in the self-condensation of acetone was dependent on sample base site density and independent of acid site density. PMID:26168188

  8. Tuning Acid-Base Properties Using Mg-Al Oxide Atomic Layer Deposition.

    PubMed

    Jackson, David H K; O'Neill, Brandon J; Lee, Jechan; Huber, George W; Dumesic, James A; Kuech, Thomas F

    2015-08-01

    Atomic layer deposition (ALD) was used to coat γ-Al2O3 particles with oxide films of varying Mg/Al atomic ratios, which resulted in systematic variation of the acid and base site areal densities. Variation of Mg/Al also affected morphological features such as crystalline phase, pore size distribution, and base site proximity. Areal base site density increased with increasing Mg content, while acid site density went through a maximum with a similar number of Mg and Al atoms in the coating. This behavior leads to nonlinearity in the relationship between Mg/Al and acid/base site ratio. The physical and chemical properties were elucidated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 physisorption, and CO2 and NH3 temperature-programmed desorption (TPD). Fluorescence emission spectroscopy of samples grafted with 1-pyrenebutyric acid (PBA) was used for analysis of base site proximity. The degree of base site clustering was correlated to acid site density. Catalytic activity in the self-condensation of acetone was dependent on sample base site density and independent of acid site density.

  9. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries.

    PubMed

    Yan, Jianfeng; Heckman, Nathan M; Velasco, Leonardo; Hodge, Andrea M

    2016-01-01

    The sensitization and subsequent intergranular corrosion of Al-5.3 wt.% Mg alloy has been shown to be an important factor in stress corrosion cracking of Al-Mg alloys. Understanding sensitization requires the review of grain boundary character on the precipitation process which can assist in developing and designing alloys with improved corrosion resistance. This study shows that the degree of precipitation in Al-Mg alloy is dependent on grain boundary misorientation angle, adjacent grain boundary planes and grain boundary types. The results show that the misorientation angle is the most important factor influencing precipitation in grain boundaries of the Al-Mg alloy. Low angle grain boundaries (≤15°) have better immunity to precipitation and grain boundary acid attack. High angle grain boundaries (>15°) are vulnerable to grain boundary acid attack. Grain boundaries with adjacent plane orientations near to {100} have potential for immunity to precipitation and grain boundary acid attack. This work shows that low Σ (Σ ≤ 29) coincident site lattice (CSL) grain boundaries have thinner β precipitates. Modified nitric acid mass loss test and polarization test demonstrated that the global corrosion resistance of sputtered Al-Mg alloy is enhanced. This may be attributed to the increased fractions of low Σ (Σ ≤ 29) CSL grain boundaries after sputtering. PMID:27230299

  10. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries

    PubMed Central

    Yan, Jianfeng; Heckman, Nathan M.; Velasco, Leonardo; Hodge, Andrea M.

    2016-01-01

    The sensitization and subsequent intergranular corrosion of Al-5.3 wt.% Mg alloy has been shown to be an important factor in stress corrosion cracking of Al-Mg alloys. Understanding sensitization requires the review of grain boundary character on the precipitation process which can assist in developing and designing alloys with improved corrosion resistance. This study shows that the degree of precipitation in Al-Mg alloy is dependent on grain boundary misorientation angle, adjacent grain boundary planes and grain boundary types. The results show that the misorientation angle is the most important factor influencing precipitation in grain boundaries of the Al-Mg alloy. Low angle grain boundaries (≤15°) have better immunity to precipitation and grain boundary acid attack. High angle grain boundaries (>15°) are vulnerable to grain boundary acid attack. Grain boundaries with adjacent plane orientations near to {100} have potential for immunity to precipitation and grain boundary acid attack. This work shows that low Σ (Σ ≤ 29) coincident site lattice (CSL) grain boundaries have thinner β precipitates. Modified nitric acid mass loss test and polarization test demonstrated that the global corrosion resistance of sputtered Al-Mg alloy is enhanced. This may be attributed to the increased fractions of low Σ (Σ ≤ 29) CSL grain boundaries after sputtering. PMID:27230299

  11. Tuneable ultra high specific surface area Mg/Al-CO3 layered double hydroxides.

    PubMed

    Chen, Chunping; Wangriya, Aunchana; Buffet, Jean-Charles; O'Hare, Dermot

    2015-10-01

    We report the synthesis of tuneable ultra high specific surface area Aqueous Miscible Organic solvent-Layered Double Hydroxides (AMO-LDHs). We have investigated the effects of different solvent dispersion volumes, dispersion times and the number of re-dispersion cycles specific surface area of AMO-LDHs. In particular, the effects of acetone dispersion on two different morphology AMO-LDHs (Mg3Al-CO3 AMO-LDH flowers and Mg3Al-CO3 AMO-LDH plates) was investigated. It was found that the amount of acetone used in the dispersion step process can significantly affect the specific surface area of Mg3Al-CO3 AMO-LDH flowers while the dispersion time in acetone is critical factor to obtain high specific surface area Mg3Al-CO3 AMO-LDH plates. Optimisation of the acetone washing steps enables Mg3Al-CO3 AMO-LDH to have high specific surface area up to 365 m(2) g(-1) for LDH flowers and 263 m(2) g(-1) for LDH plates. In addition, spray drying was found to be an effective and practical drying method to increase the specific surface area by a factor of 1.75. Our findings now form the basis of an effective general strategy to obtain ultrahigh specific surface area LDHs.

  12. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate.

    PubMed

    Gu, X N; Zheng, W; Cheng, Y; Zheng, Y F

    2009-09-01

    To reduce the biocorrosion rate by surface modification, Mg-Ca alloy (1.4wt.% Ca content) was soaked in three alkaline solutions (Na(2)HPO(4), Na(2)CO(3) and NaHCO(3)) for 24h, respectively, and subsequently heat treated at 773K for 12h. Scanning electron microscopy and energy-dispersive spectroscopy results revealed that magnesium oxide layers with the thickness of about 13, 9 and 26microm were formed on the surfaces of Mg-Ca alloy after the above different alkaline heat treatments. Atomic force microscopy showed that the surfaces of Mg-Ca alloy samples became rough after three alkaline heat treatments. The in vitro corrosion tests in simulated body fluid indicated that the corrosion rates of Mg-Ca alloy were effectively decreased after alkaline heat treatments, with the following sequence: NaHCO(3) heatedMg-Ca alloy samples induced toxicity to L-929 cells during 7days culture.

  13. Calmodulin antagonists have differential effects on Ca/sup 2 +/ uptake, (Ca/sup 2 +/ + Mg/sup 2 +/)-ATPase and Ca/sup 2 +/ release in hepatic endoplasmic reticulum

    SciTech Connect

    Delfert, D.M.; Koepnick, S.; McDonald, J.M.; Chan, K.M.

    1986-05-01

    The effect of calmodulin (CaM) antagonists on Ca/sup 2 +/ handling by hepatic endoplasmic reticulum (ER) was studied. Ca/sup 2 +/ uptake by saponin-permeabilized hepatocytes or isolated ER was measured using /sup 45/Ca/sup 2 +/ in a filtration assay in the presence of 0.09 ..mu..M free (Ca/sup 2 +/) and inhibitors of mitochondrial Ca/sup 2 +/ transport. Each CaM-antagonist (chlorpromazine, CPZ; trifluoperazine, TFP; calmidazolium, W7 and 48/80) showed a dose-dependent inhibition of Ca/sup 2 +/ accumulation in permeabilized hepatocytes. Both the initial rate and steady state values for Ca/sup 2 +/ uptake were reduced by 50% with 40 ..mu..M calmidazolium, 100 ..mu..M TFP, 150..mu..M W7, 150 ..mu..M CPZ and 300 ..mu..M 48/80. Using isolated ER both calmidazolium (20 ..mu..M) and W7 (150 ..mu..M) inhibited the initial rate and steady state level of Ca/sup 2 +/ accumulation. At this concentration calmidazolium inhibited the initial rate of (Ca/sup 2 +/ + Mg/sup 2 +/)-ATPase activity, and enhanced Ca/sup 2 +/ release. In contrast, W7 had no effect on these parameters. These results suggest that the reduced level of Ca/sup 2 +/ uptake into ER vesicles in the presence of calmidazolium may result from inhibition of the (Ca/sup 2 +/ + Mg/sup 2 +/)-ATPase as well as induction of Ca/sup 2 +/ release, while W7 may act to uncouple Ca/sup 2 +/ transport from its (Ca/sup 2 +/ + Mg/sup 2 +/)-ATPase counterpart.

  14. A new class of ultra-hard materials based on AlMgB{sub 14}

    SciTech Connect

    Cook, B.A.; Harringa, J.L.; Lewis, T.L.; Russell, A.M.

    2000-02-01

    In this study, aluminum magnesium boride combined with 5 to 30 mol.% additives (AlMgB{sub 14}:X where X = Si, P, C, AlN, TiB{sub 2}, or BN), were prepared by mechanical alloying and consolidated by vacuum hot pressing. Matkovich and Economy first reported the orthorhombic AlMgB{sub 14} intermetallic compound (oI64, space group Imam, a - 0.5848 nm, b = 0.8112 nm, c = 1.0312 nm), and the structure determination was later refined by Higashi and Ito. The unit cell is based on four B{sub 12} icosahedral units centered at (0, 0, 0), (0, 0.5, 0.5), (0.5, 0, 0), and (0.5, 0.5, 0.5) within the unit cell. The remaining eight B atoms lie outside the icosahedra, bonding to the icosahedral B atoms and to the Al and Mg atoms. The Al atoms occupy a four-fold position at (0.250, 0.750, 0.250), and the Mg atoms occupy a four-fold position at (0.250, 0.359, 0). The icosahedra are arranged in distorted, close-packed layers. The unique electronic, optical, and mechanical properties of this material are due to a complex icosahedra (intericosahedral bonding). The highest hardness was observed in the AlMgB{sub 14} + 30%TiB{sub 2} material, which possesses a multi-phase microstructure. Here again, an increase in hardness accompanying the introduction of additional phases is somewhat surprising and difficult to explain. The possible compounds that may form at the AlMgB{sub 14}-TiB{sub 2} interface during hot pressing are numerous.

  15. Conformation of cyclo(-L-Pro-Gly-)(3) and its Ca and Mg complexes.

    PubMed

    Kartha, G; Varughese, K I; Aimoto, S

    1982-07-01

    The synthetic hexapeptide cyclo(-L-Pro-Gly-)(3) is an ionophore that shows interesting conformational changes upon binding metal ions. X-ray crystallographic studies of this peptide show that when it is crystallized from an ethanol/ethyl acetate mixture the ring takes up an asymmetric conformation containing one cis peptide bond. In crystals of a Ca(2+) complex, the cation is sandwiched between two peptide molecules that differ markedly in conformation. However, both exhibit threefold symmetric forms, with all six peptide bonds in the molecule occurring in the usual trans conformation. The Ca(2+) is octahedrally surrounded by six glycyl carbonyl oxygens from the two peptides at an average distance of 2.26 A and can easily be released by the disruption of the peptide sandwich. In the magnesium complex, the peptide forms a 1:1 complex with the ion. The Mg(2+) is octahedrally coordinated to three glycyl carbonyls and three water oxygens. The average coordination distance between magnesium and the peptide oxygens is 2.03 A and that between magnesium and water oxygen is 2.11 A. The two peptide molecules in the asymmetric unit have similar conformations and have approximate threefold symmetry.

  16. Conduction electron spin resonance in Mg 1 - x Al x B2

    NASA Astrophysics Data System (ADS)

    Likodimos, V.; Koutandos, S.; Pissas, M.; Papavassiliou, G.; Prassides, K.

    2003-01-01

    Conduction electron spin resonance is employed to study the interplay of the electronic and structural properties in the normal state of Mg 1 - x Al x B2 alloys as a function of Al-doping for 0 <= x <= 1. The x-dependence of the spin susceptibility reveals considerable reduction of the total density of states N(EF) with increasing Al concentration, complying with theoretical predictions for a predominant filling effect of the hole σ bands by electron doping. The CESR linewidth exhibits significant broadening, especially prominent in the high-Al-content region, indicative of the presence of enhanced structural disorder, consistent with the presence of compositional fluctuations.

  17. A comparative study on biodegradation and mechanical properties of pressureless infiltrated Ti/Ti6Al4V-Mg composites.

    PubMed

    Esen, Ziya; Bütev, Ezgi; Karakaş, M Serdar

    2016-10-01

    The mechanical response and biodegradation behavior of pressureless Mg-infiltrated Ti-Mg and Ti6Al4V-Mg composites were investigated by compression and simulated body fluid immersion tests, respectively. Prior porous preforms were surrounded uniformly with magnesium as a result of infiltration and the resultant composites were free of secondary phases and intermetallics. Although the composites' compressive strengths were superior compared to bone, both displayed elastic moduli similar to that of cortical bone and had higher ductility with respect to their starting porous forms. However, Ti-Mg composites were unable to preserve their mechanical stabilities during in-vitro tests such that they fractured in multiple locations within 15 days of immersion. The pressure generated by H2 due to rapid corrosion of magnesium caused failure of the Ti-Mg composites through sintering necks. On the other hand, the galvanic effect seen in Ti6Al4V-Mg was less severe compared to that of Ti-Mg. The degradation rate of magnesium in Ti6Al4V-Mg was slower, and the composites were observed to be mechanically stable and preserved their integrities over the entire 25-day immersion test. Both composites showed bioinert and biodegradable characteristics during immersion tests and magnesium preferentially corroded leaving porosity behind while Ti/Ti6Al4V remained as a permanent scaffold. The porosity created by degradation of magnesium was refilled by new globular agglomerates. Mg(OH)2 and CaHPO4 phases were encountered during immersion tests while MgCl2 was detected during only the first 5 days. Both composites were classified as bioactive since the precipitation of CaHPO4 phase is known to be precursor of hydroxyapatite formation, an essential requirement for an artificial material to bond to living bone. PMID:27442919

  18. A comparative study on biodegradation and mechanical properties of pressureless infiltrated Ti/Ti6Al4V-Mg composites.

    PubMed

    Esen, Ziya; Bütev, Ezgi; Karakaş, M Serdar

    2016-10-01

    The mechanical response and biodegradation behavior of pressureless Mg-infiltrated Ti-Mg and Ti6Al4V-Mg composites were investigated by compression and simulated body fluid immersion tests, respectively. Prior porous preforms were surrounded uniformly with magnesium as a result of infiltration and the resultant composites were free of secondary phases and intermetallics. Although the composites' compressive strengths were superior compared to bone, both displayed elastic moduli similar to that of cortical bone and had higher ductility with respect to their starting porous forms. However, Ti-Mg composites were unable to preserve their mechanical stabilities during in-vitro tests such that they fractured in multiple locations within 15 days of immersion. The pressure generated by H2 due to rapid corrosion of magnesium caused failure of the Ti-Mg composites through sintering necks. On the other hand, the galvanic effect seen in Ti6Al4V-Mg was less severe compared to that of Ti-Mg. The degradation rate of magnesium in Ti6Al4V-Mg was slower, and the composites were observed to be mechanically stable and preserved their integrities over the entire 25-day immersion test. Both composites showed bioinert and biodegradable characteristics during immersion tests and magnesium preferentially corroded leaving porosity behind while Ti/Ti6Al4V remained as a permanent scaffold. The porosity created by degradation of magnesium was refilled by new globular agglomerates. Mg(OH)2 and CaHPO4 phases were encountered during immersion tests while MgCl2 was detected during only the first 5 days. Both composites were classified as bioactive since the precipitation of CaHPO4 phase is known to be precursor of hydroxyapatite formation, an essential requirement for an artificial material to bond to living bone.

  19. Effects of an Al3+- and Mg2+-containing antacid, ferrous sulfate, and calcium carbonate on the absorption of nemonoxacin (TG-873870) in healthy Chinese volunteers

    PubMed Central

    Zhang, Yi-fan; Dai, Xiao-jian; Wang, Ting; Chen, Xiao-yan; Liang, Li; Qiao, Hua; Tsai, Cheng-yuan; Chang, Li-wen; Huang, Ping-ting; Hsu, Chiung-yuan; Chang, Yu-ting; Tsai, Chen-en; Zhong, Da-fang

    2014-01-01

    Aim: To evaluate the effects of an Al3+- and Mg2+-containing antacid, ferrous sulfate, and calcium carbonate on the absorption of nemonoxacin in healthy humans. Methods: Two single-dose, open-label, randomized, crossover studies were conducted in 24 healthy male Chinese volunteers (12 per study). In Study 1, the subjects orally received nemonoxacin (500 mg) alone, or an antacid (containing 318 mg of Al3+ and 496 mg of Mg2+) plus nemonoxacin administered 2 h before, concomitantly or 4 h after the antacid. In Study 2, the subjects orally received nemonoxacin (500 mg) alone, or nemonoxacin concomitantly with ferrous sulfate (containing 60 mg of Fe2+) or calcium carbonate (containing 600 mg of Ca2+). Results: Concomitant administration of nemonoxacin with the antacid significantly decreased the area under the concentration-time curve from time 0 to infinity (AUC0–∞) for nemonoxacin by 80.5%, the maximum concentration (Cmax) by 77.8%, and urine recovery (Ae) by 76.3%. Administration of nemonoxacin 4 h after the antacid decreased the AUC0–∞ for nemonoxacin by 58.0%, Cmax by 52.7%, and Ae by 57.7%. Administration of nemonoxacin 2 h before the antacid did not affect the absorption of nemonoxacin. Administration of nemonoxacin concomitantly with ferrous sulfate markedly decreased AUC0–∞ by 63.7%, Cmax by 57.0%, and Ae by 59.7%, while concomitant administration of nemonoxacin with calcium carbonate mildly decreased AUC0–∞ by 17.8%, Cmax by 14.3%, and Ae by 18.4%. Conclusion: Metal ions, Al3+, Mg2+, and Fe2+ markedly decreased the absorption of nemonoxacin in healthy Chinese males, whereas Ca2+ had much weaker effects. To avoid the effects of Al3+ and Mg2+-containing drugs, nemonoxacin should be administered ≥2 h before them. PMID:25327812

  20. Study of Different Al/Mg Powders in Hydroreactive Fuel Propellant Used for Water Ramjet

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Tao; Zou, Mei-Shuai; Guo, Xiao-Yan; Yang, Rong-Jie; Li, Yun-Kai; Jiang, En-Zhou; Li, Zhong-Shan

    2014-05-01

    Experiments were conducted to study the effect of magnesium-aluminum alloy on the combustion performance of hydroreactive fuel propellants. The raw metal powders added to the propellants were ball-milled magnesium-50% aluminum alloy (m-AM), magnesium-50% aluminum alloy (AM), and Al and magnesium (Mg) powders, which were characterized using scanning electron microscopy, X-ray diffraction (XRD), and simultaneous thermogravimetric analysis (TGA). A high-pressure combustor and a metal/steam reactor were used to simulate the two-stage combustion of hydroreactive propellants used for a water ramjet. The combustion performance of the metal powders in propellant was studied experimentally, and the efficiency of the Al reaction in the propellants during the two-stage combustion was calculated. TGA traces in air indicated that the oxidation onset temperature of AM powders is much lower than for both Mg and Al powders. The XRD patterns for the AM and m-AM alloys exhibited Al12Mg17 diffraction peaks. The hydroreactive fuel propellant systems with added m-AM powder exhibited good performance in terms of burning rate, combustion heat, and the Al reaction efficiency, which was better than that for the propellants containing AM, Mg, and Al powders. At the pressure studied (3.0 MPa), the burning rate of the m-AM-containing propellant was found to be 15 mm s-1, and the heat of primary combustion was 6,878.1 kJ kg-1.

  1. Blood compatibility of zinc-calcium phosphate conversion coating on Mg-1.33Li-0.6Ca alloy

    NASA Astrophysics Data System (ADS)

    Zou, Yu-Hong; Zeng, Rong-Chang; Wang, Qing-Zhao; Liu, Li-Jun; Xu, Qian-Qian; Wang, Chuang; Liu, Zhi-Wei

    2016-09-01

    Magnesium alloys as a new class of biomaterials possess biodegradability and biocompatibility in comparison with currently used metal implants. However, their rapid corrosion rates are necessary to be manipulated by appropriate coatings. In this paper, a new attempt was used to develop a zinc-calcium phosphate (Zn-Ca-P) conversion coating on Mg-1.33Li-0.6Ca alloys to increase the biocompatibility and improve the corrosion resistance. In vitro blood biocompatibility of the alloy with and without the Zn-Ca-P coating was investigated to determine its suitability as a degradable medical biomaterial. Blood biocompatibility was assessed from the hemolysis test, the dynamic cruor time test, blood cell count and SEM observation of the platelet adhesion to membrane surface. The results showed that the Zn-Ca-P coating on Mg-1.33Li-0.6Ca alloys had good blood compatibility, which is in accordance with the requirements for medical biomaterials.

  2. Microstructure and characteristics of the metal-ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration.

    PubMed

    Gu, X N; Wang, X; Li, N; Li, L; Zheng, Y F; Miao, Xigeng

    2011-10-01

    In this article, a novel MgCa alloy-hydroxyapatite-tricalcium phosphate (HA/TCP) composite was fabricated using the liquid alloy infiltration technique. The feasibility of the composite for biomedical applications was studied through mechanical testing, electrochemical testing, immersion testing, and cell culture evaluation. It was shown that the composite had a strength about 200-fold higher than that of the original porous HA/TCP scaffold but retained half of the strength of the bulk MgCa alloy. The corrosion test indicated that the resulting composite exhibited an average corrosion rate of 0.029 mL cm⁻² h⁻¹ in the Hank's solution at 37°C, which was slower than that of the bulk MgCa alloy alone. The indirect cytotoxicity evaluation revealed that 100% concentrated (i.e., undiluted or as-collected) extract of the MgCa-HA/TCP composite showed significant toxicity to L-929 and MG63 cells (p < 0.05). In contrast, the diluted extracts with 50 and 10% concentrations of the MgCa-HA/TCP composite exhibited a similar degree of cell viability (p > 0.05), equivalent to the grade I cytotoxicity of the standard ISO 10993-5: 1999.

  3. Tunable p-type conductivity and transport properties of AlN nanowires via Mg doping.

    PubMed

    Tang, Yong-Bing; Bo, Xiang-Hui; Xu, Jun; Cao, Yu-Lin; Chen, Zhen-Hua; Song, Hai-Sheng; Liu, Chao-Ping; Hung, Tak-Fu; Zhang, Wen-Jun; Cheng, Hui-Ming; Bello, Igor; Lee, Shuit-Tong; Lee, Chun-Sing

    2011-05-24

    Arrays of well-aligned AlN nanowires (NWs) with tunable p-type conductivity were synthesized on Si(111) substrates using bis(cyclopentadienyl)magnesium (Cp(2)Mg) vapor as a doping source by chemical vapor deposition. The Mg-doped AlN NWs are single-crystalline and grow along the [001] direction. Gate-voltage-dependent transport measurements on field-effect transistors constructed from individual NWs revealed the transition from n-type conductivity in the undoped AlN NWs to p-type conductivity in the Mg-doped NWs. By adjusting the doping gas flow rate (0-10 sccm), the conductivity of AlN NWs can be tuned over 7 orders of magnitude from (3.8-8.5) × 10(-6) Ω(-1) cm(-1) for the undoped sample to 15.6-24.4 Ω(-1) cm(-1) for the Mg-doped AlN NWs. Hole concentration as high as 4.7 × 10(19) cm(-3) was achieved for the heaviest doping. In addition, the maximum hole mobility (∼6.4 cm(2)/V s) in p-type AlN NWs is much higher than that of Mg-doped AlN films (∼1.0 cm(2)/V s). (2) The realization of p-type AlN NWs with tunable electrical transport properties may open great potential in developing practical nanodevices such as deep-UV light-emitting diodes and photodetectors. PMID:21480640

  4. Elastic and Thermodynamic Properties of Complex Mg-Al Intermetallic Compounds via Orbital-Free Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong; Chen, Mohan; Carter, Emily A.

    2016-06-01

    Magnesium-aluminum (Mg-Al) alloys are important metal alloys with a wide range of engineering applications. We investigate the elastic and thermodynamic properties of Mg, Al, and four stoichiometric Mg-Al compounds including Mg17Al12 , Mg13Al14 , and Mg23Al30 , and MgAl2 with orbital-free density-functional theory (OFDFT). We first calculate the lattice constants, zero-temperature formation energy, and independent elastic constants of these six materials and compare the results to those computed via Kohn-Sham DFT (KSDFT) benchmarks. We obtain excellent agreement between these two methods. Our calculated elastic constants of hexagonal close-packed Mg and face-centered-cubic Al are also consistent with available experimental data. We next compute their phonon spectra using the force constants extracted from the very fast OFDFT calculations, because such calculations are computationally challenging using KSDFT. This is especially the case for the Mg23Al30 compound, whose 3 ×3 ×3 supercell consists of 1431 atoms. We finally employ the quasiharmonic approximation to investigate temperature-dependent thermodynamic properties, including formation energies, heat capacities, and thermal expansion of the four Mg-Al intermetallic compounds. The calculated heat capacity and thermal expansion of both Mg and Al agree well with experimental data. We additionally find that Mg13Al14 and MgAl2 are both unstable, consistent with their absence from the equilibrium Mg-Al phase diagram. Our work demonstrates that OFDFT is an efficient and accurate quantum-mechanical computational tool for predicting elastic and thermodynamic properties of complicated Mg-Al alloys and also should be applicable to many other engineering alloys.

  5. Mg/Ca, Sr/Ca, and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region

    USGS Publications Warehouse

    Takesue, R.K.; VanGeen, A.

    2004-01-01

    This study explores the potential of intertidal Protothaca staminea shells as high-resolution geochemical archives of environmental change in a coastal upwelling region. Mg/Ca and Sr/Ca ratios were analyzed by excimer laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) at sub-weekly temporal resolution in shells growing ???1 mm per month. Growth patterns of a modern P. staminea shell from Humboldt Bay, California, collected in December 1999 made it possible to infer a lifespan from 1993 to 1998. Growth hiatuses in the shell may have excluded records of extreme events. Mg/Ca ratios appeared to be partly controlled by water temperature; the correlation coefficient between temperature and Mg/Ca was r = 0.71 in one of four growth increments. Significant year-to-year differences in the sensitivity of Mg/Ca to temperature in P. staminea could not be explained, however. Sr/Ca ratios appeared to be more closely related to shell growth rate. Oxygen isotopes, measured at 2-week temporal resolution in the same shell, did not show a clear relation to local temperature in summer, possibly because temperatures were higher and less variable at the King Salmon mudflat, where the shell was collected, than in the main channel of Humboldt Bay, where water properties were monitored. Negative shell ??13C values (<-0.5???) marked spring and summer coastal upwelling events. The Mg contents of P. staminea midden shells dated to ???3 ka and ???9 ka were significantly lower than in the modern shell. This may have resulted from degradation of a Mg-rich shell organic matrix and precluded quantitative interpretation of the older high-resolution records. Elevated ??13C values in the ???3 ka shell suggested that the individual grew in highly productive or stratified environment, such as a shallow coastal embayment or lagoon. Copyright ?? 2004 Elsevier Ltd.

  6. Effect of the composition of Al-Li alloys on the quantitative relation between the δ'(Al3Li), S1(Al2MgLi), and T1(Al2CuLi) phases

    NASA Astrophysics Data System (ADS)

    Betsofen, S. Ya.; Antipov, V. V.; Grushin, I. A.; Knyazev, M. I.; Khokhlatova, L. B.; Alekseev, A. A.

    2015-01-01

    Al-Li alloys are considered. A quantitative approach to the determination of the ratio of the fractions of the binary and ternary intermetallic phases in Al-Mg(Cu)-Li alloys is developed on the basis of chemical and phase composition balance equations and the experimentally measured lattice parameter of the α solid solution. The ratio of the fractions of the δ'(Al3Li) and S1(T1) phases in Al-Mg(Cu)-Li alloys is shown to be determined by the ratio of the mole fractions of Li and Mg(Cu). Equations are proposed for calculating the weight fractions of the S1(Al2MgLi), T1(Al2CuLi) and δ'(Al3Li) phases in domestic and foreign Al-Mg-Li alloys 1420, 1424, 5090 and Al-Cu-Li alloys 1440, 1460, 1461, 1441, 1469, 2090, 2095, 8090, and Weldalite 049.

  7. Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply.

    PubMed

    Blasco, Begoña; Graham, Neil S; Broadley, Martin R

    2015-03-15

    Zinc (Zn), calcium (Ca), and magnesium (Mg) malnutrition are common deficiencies in many developed and developing countries, resulting in a widespread health problem. Biofortification of food crops is an agricultural strategy that can be used to increase the levels of these elements in the edible portions of crops. Deficiency or toxicity of these cations in soils reduces plant growth, crop yield, and the quality of plant foodstuff. The aim of this study was to investigate the effect of external Zn, Ca, and Mg supply on accumulation and distribution of this elements as well as antioxidant response and organic acid composition of Brassica rapa ssp. trilocularis line R-o-18. Plants were grown at low Zn (0.05 μM Zn) and high Zn (500 μM Zn), low Ca (0.4 mM) and high Ca (40 mM), and low Mg (0.2 mM), and high Mg (20 mM) to simulate deficiency and toxicity conditions. Larger shoot biomass reductions were observed under high Zn, Ca and Mg treatments, and superoxide dismutase (SOD), ascorbate peroxidase (APX), H2O2, malondialdehyde (MDA), and total ascorbate (AA) showed a marked increase in these treatments. Therefore, Brassica plants might be more sensitive to excess of these elements in the nutrient solution. The translocation factor (TF) and distribution coefficient (DC) values of Zn, Ca, and Mg indicated higher translocation and accumulation in deficient conditions. High biosynthesis and citrate content in Brassica plants may be associated mainly with a high-nutrient solution extraction ability of these plants. These results provide background data, which will be used to characterize TILLING mutants to study the effects of mutations in genes involved in regulating Zn, Ca, and Mg distribution and accumulation in plants. PMID:25544655

  8. Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply.

    PubMed

    Blasco, Begoña; Graham, Neil S; Broadley, Martin R

    2015-03-15

    Zinc (Zn), calcium (Ca), and magnesium (Mg) malnutrition are common deficiencies in many developed and developing countries, resulting in a widespread health problem. Biofortification of food crops is an agricultural strategy that can be used to increase the levels of these elements in the edible portions of crops. Deficiency or toxicity of these cations in soils reduces plant growth, crop yield, and the quality of plant foodstuff. The aim of this study was to investigate the effect of external Zn, Ca, and Mg supply on accumulation and distribution of this elements as well as antioxidant response and organic acid composition of Brassica rapa ssp. trilocularis line R-o-18. Plants were grown at low Zn (0.05 μM Zn) and high Zn (500 μM Zn), low Ca (0.4 mM) and high Ca (40 mM), and low Mg (0.2 mM), and high Mg (20 mM) to simulate deficiency and toxicity conditions. Larger shoot biomass reductions were observed under high Zn, Ca and Mg treatments, and superoxide dismutase (SOD), ascorbate peroxidase (APX), H2O2, malondialdehyde (MDA), and total ascorbate (AA) showed a marked increase in these treatments. Therefore, Brassica plants might be more sensitive to excess of these elements in the nutrient solution. The translocation factor (TF) and distribution coefficient (DC) values of Zn, Ca, and Mg indicated higher translocation and accumulation in deficient conditions. High biosynthesis and citrate content in Brassica plants may be associated mainly with a high-nutrient solution extraction ability of these plants. These results provide background data, which will be used to characterize TILLING mutants to study the effects of mutations in genes involved in regulating Zn, Ca, and Mg distribution and accumulation in plants.

  9. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy

    NASA Astrophysics Data System (ADS)

    Cai, Yuan-hua; Wang, Cong; Zhang, Ji-shan

    2013-07-01

    Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like β/δ-AlFeSi white intermetallics, and Chinese script-like α-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like β-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like δ-phase does not show any morphological and size changes. Phase transitions from β-AlFeSi to α-AlFeSi and from δ-AlFeSi to β-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.

  10. Hardness and microstructural variation of Al-Mg-Mn-Sc-Zr alloy.

    PubMed

    Ikeshita, Sumiha; Strodahs, Ansis; Saghi, Zineb; Yamada, Kazuhiro; Burdet, Pierre; Hata, Satoshi; Ikeda, Ken-Ichi; Midgley, Paul A; Kaneko, Kenji

    2016-03-01

    Variations of Vickers hardness were observed in Al-Mg-Mn alloy and Al-Mg-Mn-Sc-Zr alloy at different ageing times, ranging from a peak value of 81.2 HV at 54 ks down to 67.4 HV at 360 ks, below the initial hardness value, 71.8 HV at 0 ks for the case of Al-Mg-Mn-Sc-Zr alloy. Microstructures of samples at each ageing stage were examined carefully by transmission electron microscopes (TEMs) both in two-dimensions and three-dimensions. The presence of different types, densities, and sizes of particles were observed dispersed spherical Al3Sc1-xZrx and also block-shaped Al3Sc precipitates growing along <100>Al with facets {100} and {110} of the precipitates. TEM analysis both in two-dimensions and three-dimensions, performed on various samples, confirmed the direct correlation between the hardness and the density of Al3Sc.

  11. Hardness and microstructural variation of Al-Mg-Mn-Sc-Zr alloy.

    PubMed

    Ikeshita, Sumiha; Strodahs, Ansis; Saghi, Zineb; Yamada, Kazuhiro; Burdet, Pierre; Hata, Satoshi; Ikeda, Ken-Ichi; Midgley, Paul A; Kaneko, Kenji

    2016-03-01

    Variations of Vickers hardness were observed in Al-Mg-Mn alloy and Al-Mg-Mn-Sc-Zr alloy at different ageing times, ranging from a peak value of 81.2 HV at 54 ks down to 67.4 HV at 360 ks, below the initial hardness value, 71.8 HV at 0 ks for the case of Al-Mg-Mn-Sc-Zr alloy. Microstructures of samples at each ageing stage were examined carefully by transmission electron microscopes (TEMs) both in two-dimensions and three-dimensions. The presence of different types, densities, and sizes of particles were observed dispersed spherical Al3Sc1-xZrx and also block-shaped Al3Sc precipitates growing along <100>Al with facets {100} and {110} of the precipitates. TEM analysis both in two-dimensions and three-dimensions, performed on various samples, confirmed the direct correlation between the hardness and the density of Al3Sc. PMID:26748212

  12. Removal of perchlorate in water by calcined MgAl-CO3 layered double hydroxides.

    PubMed

    Yang, Yiqiong; Gao, Naiyun; Deng, Yang; Yu, Guoping

    2013-04-01

    Perchlorate is widely known as an inorganic endocrine disruptor. In this study, MgAl-CO3 layered double hydroxides with different Mg/Al molar ratios were prepared using a coprecipitation method and followed by a calcination process at a temperature range of 300 to 700 degrees C. Results showed that the best synthesis conditions were a calcination temperature of 550 degrees C and Mg/Al molar ratio of 3. Further, the adsorbent and its adsorption product were characterized by x-ray diffraction, Fourier transform-infrared spectroscopy, and thermogravimetric-differential thermal analysis. The layered double hydroxides structures in the adsorbent were lost during calcination at 550 degrees C but were reconstructed subsequent to adsorption of perchlorate, indicating that the "memory effect" appeared to play an important role in perchlorate adsorption. The perchlorate adsorption pattern was best described by the pseudo-second-order kinetics model, while the Freundlich isotherms appropriately explained perchlorate adsorption data.

  13. Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Chen, Hongliang; Du, Jun; Tao, Changyuan

    2016-11-01

    In this study, P-LGMgO (low-grade MgO and NaH2PO4·2H2O), P-CaO (CaO and NaH2PO4·2H2O), and P-MgCa (low-grade MgO, CaO and NaH2PO4·2H2O) were used for the solidification/stabilization (S/S) of electrolytic manganese residue (EMR). Relevant characteristics such as ammonia nitrogen and manganese stabilization behavior, unconfined compressive strength (UCS), probable S/S mechanisms, and EMR leaching test were investigated. The results demonstrate that using P-LGMgO had higher stabilization efficiency than P-CaO and P-MgCa for the S/S of EMR at the same stabilization agent dose. The stabilization efficiency of ammonia nitrogen and manganese in the EMR were 84.0% and 99.9%, respectively, and the UCS of EMR was 5.1MPa using P-LGMgO process after curing for 28 days when the molar ratio of Mg:P was 5:1 and dose of stabilization agent was 12wt%. In this process, ammonia nitrogen was stabilized by struvite (NH4MgPO4·6H2O), and manganese by bermanite (Mn3(PO4)2(OH)2·4H2O) and pyrochroite (Mn(OH)2). The leaching test results show that the values of all the measured metals on the 28th day were within the permitted level for the GB8978-1996 test suggested by China's environmental protection law and the concentration of ammonia nitrogen can be reduced from 504.0mgL(-1) to 76.6mgL(-1).

  14. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+

    NASA Technical Reports Server (NTRS)

    Michailova, Anushka; Saucerman, Jeffrey; Belik, Mary Ellen; McCulloch, Andrew D.

    2005-01-01

    Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.

  15. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+.

    PubMed

    Michailova, Anushka; Saucerman, Jeffrey; Belik, Mary Ellen; McCulloch, Andrew D

    2005-03-01

    Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions. PMID:15738467

  16. The microstructure-strength relationship in a deformation processed Al-Ca composite

    SciTech Connect

    Tian, Liang; Kim, Hyongjune; Anderson, Iver; Russell, Alan

    2013-02-07

    An Al-9 vol% Ca composite was produced by powder metallurgy and deformation processing. The Al–Ca composite was extruded, swaged and wire drawn to a deformation true strain of 13.8. Both Al and Ca are face-centered cubic, so the Ca second phase deformed into continuous, nearly cylindrical filaments in the Al matrix. The formation of intermetallic compounds, filament coarsening, and spheriodization at elevated temperature was observed by scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. Both the thickness and spacing of the Ca filaments decreased exponentially with increasing deformation. The ultimate tensile strength of the composite increased rapidly with increased deformation, especially at high deformation processing strains. The relation between deformation true strain and ultimate tensile strength is underestimated by the rule of mixtures; a modified Hall–Petch barrier strengthening model was found to fit the data better.

  17. Intruder Configurations in the A=33 Isobars: {sup 33}Mg and {sup 33}Al

    SciTech Connect

    Tripathi, Vandana; Tabor, S. L.; Bender, P.; Hoffman, C. R.; Lee, Sangjin; Perry, M.; Pepper, K.; Volya, A.; Mantica, P. F.; Utsuno, Y.; Cook, J.; Pereira, J.; Weisshaar, D.; Otsuka, T.; Pinter, J. S.; Stoker, J.

    2008-10-03

    The {beta} decay of {sup 33}Mg (N=21) presented in this Letter reveals intruder configurations in both the parent and the daughter nucleus. The lowest excited states in the N=20 daughter nucleus, {sup 33}Al, are found to have nearly 2p-2h intruder configuration, thus extending the 'island of inversion' beyond Mg. The allowed direct {beta}-decay branch to the 5/2{sup +} ground state of the daughter nucleus {sup 33}Al implies positive parity for the ground state of the parent {sup 33}Mg, contrary to an earlier suggestion of negative parity from a g-factor measurement. An admixture of 1p-1h and 3p-3h configurations is proposed for the ground state of {sup 33}Mg to explain all of the experimental observables.

  18. Spin-orbit torque in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO epitaxial magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Kim, Junyeon; Sukegawa, Hiroaki; Hayashi, Masamitsu; Mitani, Seiji

    2016-05-01

    We study the spin-orbit torque (SOT) effective fields in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO magnetic heterostructures using the adiabatic harmonic Hall measurement. High-quality perpendicular-magnetic-anisotropy CoFeAl layers were grown on Cr and Ru layers. The magnitudes of the SOT effective fields were found to significantly depend on the underlayer material (Cr or Ru) as well as their thicknesses. The damping-like longitudinal effective field (ΔHL) increases with increasing underlayer thickness for all heterostructures. In contrast, the field-like transverse effective field (ΔHT) increases with increasing Ru thickness while it is almost constant or slightly decreases with increasing Cr thickness. The sign of ΔHL observed in the Cr-underlayer devices is opposite from that in the Ru-underlayer devices while ΔHT shows the same sign with a small magnitude. The opposite directions of ΔHL indicate that the signs of spin Hall angle in Cr and Ru are opposite, which are in good agreement with theoretical predictions. These results show sizable contribution from SOT even for elements with small spin orbit coupling such as 3d Cr and 4d Ru.

  19. Characteristics of Pt-K/MgAl2O4 lean NOx trap catalysts

    SciTech Connect

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos; Zhu, Haiyang; Kwak, Ja Hun; Peden, Charles HF

    2012-04-30

    We report the various characteristics of Pt-K/MgAl{sub 2}O{sub 4} lean NOx trap (LNT) catalysts including the effect of K loading on nitrate formation/decomposition, NOx storage activity and durability. Upon the adsorption of NO{sub 2} on K/MgAl{sub 2}O{sub 4} samples, potassium nitrates formed on Mg-related sites in MgAl{sub 2}O{sub 4} support are observed, in addition to the typical two potassium nitrates (ionic and bidentate) formed also on Al{sub 2}O{sub 3} supported sample. Based on NO{sub 2} TPD and FTIR results, the Mg-bound KNO{sub 3} thermally decompose at higher temperature than Al-bound KNO{sub 3}, implying its superior thermal stability. At a potassium loading of 5wt%, the temperature of maximum NOx uptake (T{sub max}) is 300 C. Increasing the potassium loading from 5wt% to 10 wt%, the T{sub max} gradually shifted from 300 C to 450 C, indicating the dependence of T{sub max} on the potassium loading. However, increase in potassium loading above 10 wt% only gives rise to the reduction in the overall NOx storage capacity. This work also underlines the obstacles these materials have prior to their practical application (e.g., durability and sulfur poisoning/ removal). This work provides fundamental understanding of Pt-K/MgAl{sub 2}O{sub 4}-based lean NOx trap catalysts, which could be good candidates for high temperature LNT applications.

  20. Temporal variation of aqueous-extractable Ca, Mg and K in acidified forest mountainous soils under different vegetation cover

    NASA Astrophysics Data System (ADS)

    Tejnecky, V.; Bradová, M.; Boruvka, L.; Vasat, R.; Nemecek, K.; Ash, C.; Sebek, O.; Rejzek, J.; Drabek, O.

    2012-12-01

    Acidification of forest soils is a natural degradation process which can be significantly enhanced by anthropogenic activities. Inputs of basic cations (BC - Ca, Mg and K) via precipitation, litter and soil organic matter decomposition and also via inter-soil weathering may partially mitigate the consequences of this degradation process. The aim of this study is to assess the temporal variation of aqueous-extractable Ca, Mg and K in acidified forest mountainous soils under different vegetation cover. The Jizera Mountains region (Czech Republic, northern Bohemia) was chosen as a representative soil mountainous ecosystem strongly affected by acidification. Soil and precipitation samples were collected at monthly basis from April till October/ November during the years 2009-2011. Study spots were delimited under two contrasting vegetation covers - beech and spruce monoculture. Prevailing soil types were classified as Alumic Cambisols under beech and Entic Podzols under spruce stands (according to FAO classification). Soil samples were collected from surface fermentation (F) and humified (H) organic horizons and subsurface B horizons (cambic or spodic). The collected soil samples were analyzed immediately under laboratory condition in a "fresh" state. Unsieved fresh samples were extracted by deionised water. The content of main elements (Ca, Mg, K, Al and Fe) was determined by ICP-OES. The content of major anions (SO42-, NO3-, Cl- and F-) was determined by ion-exchange chromatography (IC). Content of major anions and main elements were determined in the precipitation samples (throughfall, stemflow and bulk) as well. Besides computing the basic statistical parameters (mean, median, variance, maximum, minimum, etc.) we also employed other statistical methods such as T-test and ANOVA to assess the differences between beech and spruce vegetation spots. To carry out the temporal variability in the data we used the time series analysis and short-term forecasting by Holt

  1. Electrical transport in amorphous semiconducting AlMgB14 films

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Li, G.; Shinar, J.; Wang, N. L.; Cook, B. A.; Anderegg, J. W.; Constant, A. P.; Russell, A. M.; Snyder, J. E.

    2004-08-01

    The electrical transport properties of semiconducting AlMgB14 films deposited at room temperature and 573K are reported in this letter. The as-deposited films are amorphous, and they exhibit high n-type electrical conductivity, which is believed to stem from the conduction electrons donated by Al, Mg, and/or Fe impurities in these films. The film deposited at 573K is less conductive than the room-temperature-deposited film. This is attributed to the nature of donor or trap states in the band gap related to the different deposition temperatures.

  2. Testing LaMgAl11O19 crystal for X-ray spectroscopy

    SciTech Connect

    Chen, H; Beiersdorfer, P; Baronova, E; Kalashnikova, I; Stepanenko, M

    2004-03-31

    We investigated the properties of the rare earth crystal LaMgAl{sub 11}O{sub 19} and its application to soft X-ray spectroscopy. Its relative reflectivity and half width rocking curve were measured to up to the reflection order of 28. In addition, a comparative measurement of the iron L-shell soft X-ray line emission was made on the EBIT-I Livermore electron beam ion trap by fielding the LaMgAl{sub 11}O{sub 19} crystal side by side with a rubidium hydrogen phthalate crystal in a flat crystal spectrometer. From these measurements, reflectivity and spectral resolving power were determined.

  3. Production of Ne Auger electrons by Ne/+/ bombardment of Mg and Al surfaces

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Pepper, S. V.

    1976-01-01

    A description is given of experiments which provide evidence for the production of an inner shell vacancy in the Ne by the asymmetric Ne-Mg and Ne-Al collision. In addition, autoionization states of neutral Ne have been observed. These states are to be distinguished from the more usual case in Auger electron spectroscopy of de-excitation of an ion with a core vacancy. The experiments involved the bombardment of Mg and Al surfaces with Ne(+) ions. A LEED-Auger system equipped with an ion gun and a four-grid retarding potential analyzer operated in the usual dN(E)/dE mode was used.

  4. Melting and thermodynamic properties of pyrope (Mg3Al2Si3O12)

    USGS Publications Warehouse

    Tequi, C.; Robie, R.A.; Hemingway, B.S.; Neuville, D.R.; Richet, P.

    1991-01-01

    The heat capacity of Mg3Al2Si3O12 glass has been measured from 10 to 1000 K by adiabatic and differential scanning calorimetry. The heat capacity of crystalline pyrope has been determined from drop-calorimetry measurements between 820 and 1300 K. From these and previously published results a consistent set of thermodynamic data is presented for pyrope and Mg3Al2Si3O12 glass and liquid for the interval 0-2000 K. The enthalpy of fusion at 1570 ?? 30 K, the metastable congruent 1-bar melting point, is 241 ?? 12 kJ/mol. ?? 1991.

  5. Pressure-induced structural phase transition in AlN:Mg and AlN:Co nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Yongsheng; Zhu, Hongyang; Ma, Chunli; Zhu, Pinwen; Cong, Ridong; Wu, Xiaoxin; Gao, Wei; Cui, Qiliang

    2013-06-01

    High-pressure behaviors of AlN:Mg and AlN:Co nanowires have been investigated by in situ angle dispersive synchrotron X-ray diffraction up to 41.5 GPa and 38.2 GPa, respectively. Their corresponding pressure-induced wurtzite-to-rocksalt phase transitions start at 17.7 GPa and 15.0 GPa and complete at 33.2 GPa and 31.0 GPa, respectively. The phase-transition routes are not affected by the doped ions, while the phase transition pressures are lower than that of pure AlN nanowires. The distinct high-pressure behaviors are ascribed to the doped ions, which reduce the formation energy of cation vacancies and induce Al vacancies defects together with substitution defects, resulting in lattice distortion and affecting structural stability and phase transition pressure.

  6. Assessing the salinity effect on planktonic foraminiferal Mg/Ca: Evidence from Aegean Sea core-top samples (Eastern Mediterranean).

    NASA Astrophysics Data System (ADS)

    Kontakiotis, G.; Antonarakou, A.; Mortyn, P. G.; Triantaphyllou, M. V.; Martínez-Botí, M. À.; Dermitzakis, M. D.

    2009-04-01

    Recent work across the Mediterranean Sea has illustrated a salinity (S) effect on planktonic foraminiferal Mg/Ca, which potentially confounds the use of this as a temperature (T) proxy for paleoceanographic reconstructions. As a likely illustration of this, recent downcore work revealed Mg/Ca values that were unreasonably high to be explained by T variations alone over the last deglaciation and throughout the Holocene. Modern biochemical and oceanographic studies highlight the Aegean Sea as an especially sensitive part of the Mediterranean that is closely connected to global climatic variability. Especially focused on T and S variations in the upper hundred meters of the water column, where energy storage and heat transport occur, we analyse planktonic foraminiferal Mg/Ca from a series of Aegean core tops, spanning a strong S gradient and little T range along a N-S transect. The aim is to isolate and quantify the S influence on the Mg/Ca tracer as well as possible in a field study from the region. We have specifically targeted the tropical spinose species Globigerinoides ruber, since it is the most ubiquitous species in the eastern Mediterranean and generally occurs in a wide range of T and S conditions. From our initially high core-top Mg/Ca measurements, we estimated how much of this was "excess", defined by amount of Mg/Ca exceeding that predicted using modern observed average summer T and a G. ruber calibration equation from the Western Equatorial Pacific (WEP). We then determined excess S values by subtracting WEP salinity values from those observed in our core-top locations. We observed that our results were in close agreement with those previously found for the Mediterranean as a whole, such that excess Mg/Ca is positively correlated with excess S. In the present study we expand on previous core-top results for the Aegean Sea in order to confirm and better quantify the S effect on G. ruber Mg/Ca signatures, such that paleo-records from this region will be

  7. In situ corrosion analysis of Al-Zn-In-Mg-Ti-Ce sacrificial anode alloy

    SciTech Connect

    Ma Jingling Wen Jiuba; Zhai Wenxia; Li Quanan

    2012-03-15

    The corrosion behaviour of Al-5Zn-0.02In-1Mg-0.05Ti-0.5Ce (wt.%) alloy has been investigated by immersion test, scanning electron microscopy, energy dispersive X-ray detector, electrochemical impedance spectroscopy and electrochemical noise. The results show that there exist different corrosion types of the alloy in 3.5% NaCl solution with the immersion time. At the initial stage of immersion, pitting due to the precipitates predominates the corrosion with a typical inductive loop at low frequencies in electrochemical impedance spectroscopy. The major precipitates of the alloy are MgZn{sub 2} and Al{sub 2}CeZn{sub 2} particles. The corrosion potentials of the bulk MgZn{sub 2} and Al{sub 2}CeZn{sub 2} alloys are negative with respect to that of {alpha}-Al, so the MgZn{sub 2} and Al{sub 2}CeZn{sub 2} precipitates can act as activation centre and cause the pitting. In the late corrosion, a relative uniform corrosion predominates the corrosion process controlled by the dissolution/precipitation of the In ions and characterized by a capacitive loop at medium-high frequencies in electrochemical impedance spectroscopy. The potential noise of the pitting shows larger amplitude fluctuation and lower frequency, but the potential noise of the uniform corrosion occurs with smaller amplitude fluctuation and higher frequency.

  8. Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy)acetic acid (MCPA): systems Mg-Al, Mg-Fe and Mg-Al-Fe.

    PubMed

    Bruna, F; Celis, R; Pavlovic, I; Barriga, C; Cornejo, J; Ulibarri, M A

    2009-09-15

    Hydrotalcite-like compounds [Mg(3)Al(OH)(8)]Cl x 4H(2)O; [Mg(3)Fe(OH)(8)]Cl x 4H(2)O; [Mg(3)Al(0.5)Fe(0.5)(OH)(8)]Cl x 4H(2)O (LDHs) and calcined product of [Mg(3)Al(OH)(8)]Cl x 4H(2)O, Mg(3)AlO(4.5) (HT500), were studied as potential adsorbents of the herbicide MCPA [(4-chloro-2-methylphenoxy)acetic acid] as a function of pH, contact time and pesticide concentration, and also as support for the slow release of this pesticide, with the aim to reduce the hazardous effects that it can pose to the environment. The information obtained in the adsorption study was used for the preparation of LDH-MCPA complexes. The results showed high and rapid adsorption of MCPA on the adsorbents as well as that MCPA formulations based on LDHs and HT500 as pesticide supports displayed controlled release properties and reduced herbicide leaching in soil columns compared to a standard commercial MCPA formulation. Thereby, we conclude that the LDHs employed in this study can be used not only as adsorbents to remove MCPA from aqueous solutions, but also as supports for the slow release of this highly mobile herbicide, thus controlling its immediate availability and leaching. PMID:19380194

  9. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity.

    PubMed

    Chang, Po-Hsueh; Chang, Yen-Po; Chen, San-Yuan; Yu, Ching-Tsung; Chyou, Yau-Pin

    2011-12-16

    We present the design and synthesis of Ca-rich Ca-Al-O oxides, with Ca(2+)/Al(3+) ratios of 1:1, 3:1, 5:1, and 7:1, which were prepared by hydrothermal decomposition of coprecipitated hydrotalcite-like Ca-Al-CO(3) precursors, for high-temperature CO(2) adsorption at 500-700 °C. In situ X-ray diffraction measurements indicate that the coprecipitated, Ca-rich, hydrotalcite-like powders with Ca(2+)/Al(3+) ratios of 5:1 and 7:1 contained Ca(OH)(2) and layered double hydroxide (LDH) phases. Upon annealing, LDH was first destroyed at approximately 200 °C to form an amorphous matrix, and then at 450-550 °C, the Ca(OH)(2) phase was converted into a CaO matrix with incorporated Al(3+) to form a homogeneous solid solution without a disrupted lattice structure. CaO nanocrystals were grown by thermal treatment of the weakly crystalline Ca-Al-O oxide matrix. Thermogravimetric analysis indicates that a CO(2) adsorption capacity of approximately 51 wt. % can be obtained from Ca-rich Ca-Al-O oxides prepared by calcination of 7:1 Ca-Al-CO(3) LDH phases at 600-700 °C. Furthermore, a relatively high CO(2) capture capability can be achieved, even with gas flows containing very low CO(2) concentrations (CO(2)/N(2) = 10 %). Approximately 95.6 % of the initial CO(2) adsorption capacity of the adsorbent is retained after 30 cycles of carbonation-calcination. TEM analysis indicates that carbonation-promoted CaCO(3) formation in the Ca-Al-O oxide matrix at 600 °C, but a subsequent desorption in N(2) at 700 °C, caused the formation CaO nanocrystals of approximately 10 nm. The CaO nanocrystals are widely distributed in the weakly crystalline Ca-Al-O oxide matrix and are present during the carbonation-calcination cycles. This demonstrates that Ca-Al-O sorbents that developed through the synthesis and calcination of Ca-rich Ca-Al LDH phases are suitable for long-term cyclic operation in severe temperature environments.

  10. Hydrogen release from dialkylamine-boranes promoted by Mg and Ca complexes: a DFT analysis of the reaction mechanism.

    PubMed

    Butera, Valeria; Russo, Nino; Sicilia, Emilia

    2014-05-12

    Mg and Ca β-diketiminato silylamides [HC{(Me)CN(2,6-iPr2C6H3)}2M(THF)n{N(SiMe3)2}] (M = Mg, n = 0; M = Ca, n = 1) were studied as precatalysts for the dehydrogenation/dehydrocoupling of secondary amine-boranes R2HNBH3 . By reaction with equimolar quantities of amine-boranes, the corresponding amidoborane derivatives are formed, which further react to yield dehydrogenation products such as the cyclic dimer [BH2-NMe2]2. DFT was used here to explore the mechanistic alternatives proposed on the basis of the experimental findings for both Mg and Ca amidoboranes. The influence of the steric demand of amine-boranes on the course of the reaction was examined by performing calculations on the dehydrogenation of dimethylamine-borane (DMAB), pyrrolidine-borane (PB), and diisopropylamine-borane. In spite of the analogies in the catalytic activity of Mg- and Ca-based complexes in the dehydrocoupling of amine-boranes, our theoretical analysis confirmed the experimentally observed lower reactivity of Ca complexes. Differences in catalytic activity of Mg- and Ca-based complexes were examined and rationalized. As a consequence of the increase in ionic radius on going from Mg(2+) to Ca(2+), the dehydrogenation mechanism changes and formation of a key metal hydride intermediate becomes inaccessible. Dimerization is likely to occur off-metal in solution for DMAB and PB, whereas steric hindrance of iPr2NHBH3 hampers formation of the cyclic dimer. The reported results are of particular interest because, although amine-borane dehydrogenation is now well established, mechanistic insight is still lacking for many systems. PMID:24700384

  11. Signatures in magnetites formed by (Ca,Mg,Fe)CO3 thermal decomposition: Terrestrial and extraterrestrial implications

    NASA Astrophysics Data System (ADS)

    Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Carlos; Rodriguez-Navarro, Alejandro; Perez-Gonzalez, Teresa; Bazylinski, Dennis A.; Lauer, Howard V.; Romanek, Christopher S.

    2012-06-01

    It has never been demonstrated whether magnetite synthesized through the heat-dependent decomposition of carbonate precursors retains the chemical and structural features of the carbonates. In this study, synthetic (Ca,Mg,Fe)CO3 was thermally decomposed by heating from 25 to 700 °C under 1 atm CO2, and by in situ exposure under vacuum to the electron beam of a transmission electron microscope. In both cases, the decomposition of the carbonate was topotactic and resulted in porous pseudomorphs composed of oriented aggregates of magnetite nanocrystals. Both calcium and magnesium were incorporated into nanophase magnetite, forming (Ca,Mg)-magnetites and (Ca,Mg)-ferrites when these elements were present in the parent material, thus preserving the chemical signature of the precursor. These results show that magnetites synthesized in this way acquire a chemical and structural inheritance from their carbonate precursor that indicates how they were produced. These results are not only important in the determination of the origin of chemically-impure, oriented nanophase magnetite crystals in general, but they also provide important insights into the origin of the large, euhedral, chemically-pure, [111]-elongated magnetites found within Ca-, Mg- and Fe-rich carbonates of the Martian meteorite ALH84001. Based on our experimental results, the chemically-pure magnetites within ALH84001 cannot be genetically related to the Ca-, Mg- and Fe-rich carbonate matrix within which they are embedded, and an alternative explanation for their occurrence is warranted.

  12. Three-Dimensional Phase-Field Simulation and Experimental Validation of β-Mg17Al12 Phase Precipitation in Mg-Al-Based Alloys

    NASA Astrophysics Data System (ADS)

    Han, Guomin; Han, Zhiqiang; Luo, Alan A.; Liu, Baicheng

    2015-02-01

    A three-dimensional (3D) phase-field model has been developed to simulate the formation of lath-shaped β-Mg17Al12 phase during hcp→bcc transformation in Mg-Al-based alloys. The model considers the synergistic effects of the elastic strain energy associated with the lattice rearrangements that accompany the phase transformation, and the interface anisotropy (both in interfacial energy and interface mobility coefficient). By using the proposed model, the essential features of 3D morphology of the β phase precipitate have been successfully predicted and experimentally validated using high-resolution transmission electron microscopy and atomic force microscopy. Furthermore, the spatial distribution of anisotropic elastic interaction field around a pre-existing β precipitate has been quantitatively determined using 3D phase-field simulation, and the effects of the anisotropic elastic interaction energy on subsequent nucleation of β phase near a pre-existing precipitate have been revealed. The results suggest that the anisotropic elastic interaction energy can promote the formation of new nucleus near the lozenge ends of the pre-existing precipitate, as explicitly substantiated by the experimental observations. The influence of different combinations of interface anisotropy and elastic strain energy on the thickness of β phase precipitate has been elucidated. The correlation between microstructural design during precipitation and the alloy-strengthening mechanisms has also been discussed in terms of dislocation motion. Based on these results, possible strategies for strengthening Mg-Al-based alloys are proposed for magnesium alloy development and microstructural design.

  13. Phosphate adsorption ability of biochar/Mg-Al assembled nanocomposites prepared by aluminum-electrode based electro-assisted modification method with MgCl₂ as electrolyte.

    PubMed

    Jung, Kyung-Won; Jeong, Tae-Un; Hwang, Min-Jin; Kim, Kipal; Ahn, Kyu-Hong

    2015-12-01

    In this work, the textural properties and phosphate adsorption capability of modified-biochar containing Mg-Al assembled nanocomposites prepared by an effective electro-assisted modification method with MgCl2 as an electrolyte have been determined. Structure and chemical analyses of the modified-biochar showed that nano-sized stonelike or flowerlike Mg-Al assembled composites, MgO, spinel MgAl2O4, AlOOH, and Al2O3, were densely grown and uniformly dispersed on the biochar surface. The adsorption isotherm and kinetics data suggested that the biochar/Mg-Al assembled nanocomposites have an energetically heterogeneous surface and that phosphate adsorption could be controlled by multiple processes. The maximum phosphate adsorption capacity was as high as 887 mg g(-1), as fitted by the Langmuir-Freundlich model, and is the highest value ever reported. It was concluded that this novel electro-assisted modification is a very attractive method and the biochar/Mg-Al assembled nanocomposites provide an excellent adsorbent that can effectively remove phosphate from aqueous solutions. PMID:26433157

  14. Microstructure evolution of Al-Mg-B thin films by thermal annealing

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Constant, A.; Lo, C. C. H.; Anderegg, J. W.; Russell, A. M.; Snyder, J. E.; Molian, P.

    2003-07-01

    The growth of Al-Mg-B thin films on SiO2/Si(100) substrates was performed by nanosecond pulsed laser deposition at three different substrate temperatures (300 K, 573 K, and 873 K). The as-deposited films were then annealed at 1173 K or 1273 K for 2 h. X-ray photoelectron spectroscopy, x-ray diffraction (XRD), and atomic force microscope were employed to investigate the effects of processing conditions on the composition, microstructure evolution, and surface morphology of the Al-Mg-B films. The substrate temperatures were found to affect the composition of as-deposited films in that the Mg content decreases and C content increases at higher substrate temperatures, in particular for the 873 K-deposited film. XRD results show that the as-deposited films were amorphous, and this structure may be stable up to 1173 K. Annealing at 1273 K was found to fully crystallize the room temperature and 573 K-deposited Al-Mg-B films with the formation of the polycrystalline orthorhombic AlMgB14 phase, accompanied by the development of a pronounced (011) preferred orientation. Nevertheless, high C incorporation in the 873 K-deposited Al-Mg-B film inhibits the crystallization and the amorphous structure remains stable even during 1273 K annealing. The presence of Si in the room-temperature-deposited 1273 K-annealed film due to the interdiffusion between the substrate and film leads to the formation of an additional tetragonal α-FeSi2 phase, which is thought to cause the surface cracking and microstructural instability observed in this film.

  15. Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides

    SciTech Connect

    Shimamura, Akihiro; Kanezaki, Eiji; Jones, Mark I.; Metson, James B.

    2012-02-15

    The grafting of interlayer phosphate in synthetic Mg/Al layered double hydroxides with interlayer hydrogen phosphate (LDH-HPO{sub 4}) has been studied by XRD, TG/DTA, FT-IR, XPS and XANES. The basal spacing of crystalline LDH-HPO{sub 4} decreases in two stages with increasing temperature, from 1.06 nm to 0.82 nm at 333 K in the first transition, and to 0.722 nm at 453 K in the second. The first stage occurs due to the loss of interlayer water and rearrangement of the interlayer HPO{sub 4}{sup 2-}. In the second transition, the interlayer phosphate is grafted to the layer by the formation of direct bonding to metal cations in the layer, accompanied by a change in polytype of the crystalline structure. The grafted phosphate becomes immobilized and cannot be removed by anion-exchange with 1-octanesulfonate. The LDH is amorphous at 743 K but decomposes to Mg{sub 3}(PO{sub 4}){sub 2}, AlPO{sub 4}, MgO and MgAl{sub 2}O{sub 4} after heated to 1273 K. - Graphical abstract: The cross section of the synthetic Mg, Al layered double hydroxides in Phase 1, with interlayer hydrogen phosphate Phase 2, and with grafted phosphate, Phase 3. Highlights: Black-Right-Pointing-Pointer The grafting of hydrogen phosphate intercalated Mg/Al-LDH has been studied. Black-Right-Pointing-Pointer The basal spacing of crystalline LDH-HPO{sub 4} decreases in two stages with increasing temperature. Black-Right-Pointing-Pointer The first decrease is due to loss of interlayer water, the second is attributed to phosphate grafting. Black-Right-Pointing-Pointer The grafted interlayer phosphate becomes immobilized and cannot be removed by anion-exchange.

  16. Solidification Paths and Phase Components at High Temperatures of High-Zn Al-Zn-Mg-Cu Alloys with Different Mg and Cu Contents

    NASA Astrophysics Data System (ADS)

    Shu, W. X.; Hou, L. G.; Liu, J. C.; Zhang, C.; Zhang, F.; Liu, J. T.; Zhuang, L. Z.; Zhang, J. S.

    2015-11-01

    Studies were carried out systematically on a series of Al-8.5 wt pct Zn- xMg- yCu alloys ( x is about 1.5, 2.0, and 2.5 wt pct, and y is about 1.5, 2.0, 2.5, and 2.9 wt pct). The effects of alloying elements Mg and Cu on the microstructures of as-cast and homogenized alloys were investigated using the computational/experimental approach. It shows that Mg(Zn,Al,Cu)2 ( σ) phase can exist in all the as-cast alloys without any observable Mg32(Al,Zn)49/Al2Mg3Zn3 ( T) or Al2CuMg ( S) phase, whereas Al2Cu ( θ) phase is prone to exist in the alloys with low Mg and high Cu contents. Thermodynamic calculation shows that the real solidification paths of the designed alloys fall in between the Scheil and the equilibrium conditions, and close to the former. After the long-time homogenization [733 K (460 °C)/168 hours] and the two-step homogenization [733 K (460 °C)/24 hours + 748 K (475 °C)/24 hours], the phase components of the designed alloys are generally consistent with the calculated phase diagrams. At 733 K (460 °C), the phase components in the thermodynamic equilibrium state are greatly influenced by Mg content, and the alloys with low Mg content are more likely to be in single-Al phase field even if the alloys contain high Cu content. At 748 K (475 °C), the dissolution of the second phases is more effective, and the phase components in the thermodynamic equilibrium state are dominated primarily by (Mg + Cu) content, except the alloys with (Mg + Cu) ≳ 4.35 wt pct, all designed alloys are in single-Al phase field.

  17. Effect of thermally stable Cu- and Mg-rich aluminides on the high temperature strength of an AlSi12CuMgNi alloy

    SciTech Connect

    Asghar, Z.

    2014-02-15

    The internal architecture of an AlSi12CuMgNi piston alloy, revealed by synchrotron tomography, consists of three dimensional interconnected hybrid networks of Cu-rich aluminides, Mg-rich aluminides and eutectic/primary Si embedded in an α-Al matrix. The strength at room temperature and at 300°C is studied as a function of solution treatment time at 490°C and compared with results previously reported for an AlSi12Ni alloy. The addition of 1 wt% Cu and 1 wt% Mg to AlSi12CuMgNi increases the room temperature strength by precipitation hardening while the strength at 300°C is similar for both alloys in as-cast condition. The strength of AlSi12CuMgNi decreases with solution treatment time and stabilizes at 4 h solution treatment. The effect of solution treatment time on the strength of the AlSi12CuMgNi alloy is less pronounced than for the AlSi12Ni alloy both at room temperature and at 300°C. - Highlights: • The 3D microstructure of AlSi12CuMgNi is revealed by synchrotron tomography. • An imaging analysis procedure to segment phases with similar contrasts is presented. • 1 wt% Cu and Mg results in the formation of 3D networks of rigid phases. • AlSi12CuMgNi is stronger than AlSi12Ni owing to the stability of the 3D networks.

  18. Superplastics properties of an Al-2. 4Mg-1. 8Li-0. 5Sc alloy

    SciTech Connect

    Bradley, E.L. III; Emigh, R.A.; Morris, J.W. Jr. . Dept. of Materials Science and Engineering Lawrence Berkeley Lab., CA . Center for Advanced Materials)

    1991-01-01

    There is a need in the aerospace industry for structural, superplastic aluminum alloys that are formable at strain-rates greater than 10[sup [minus]3] s[sup [minus]1] in order for the economic benefits of superplastic forming to be realized. The standard, structural, superplastic aluminum alloy in the aerospace industry is 7475, which has an optimum forming strain-rate near 10[sup [minus]4] s[sup [minus]1]. Thus, research has been focused on modifying the microstructures of wrought Al-Li alloys such as 2090 and 8090 into superplastically formable (SPF) microstructures with improved properties, but the results have not been completely successful. Superplastic alloys with high strengths have been produced from the Al-Mg-Sc system. These alloys are strengthened by thermomechanical processing which (1) precipitates small, coherent Al[sub 3]Sc particles and (2) increases the dislocation density of the material. The Mg is in solid solution and improves the work hardening capability of these alloys. Because superplastic forming is carried out at relatively high temperatures, recovery processes eliminate the dislocation strengthening resulting from the rolling and overage the precipitates. Thus, additional precipitation strengthening is required to make these alloys attractive for use in aerospace applications. Lithium provides the most promising choice since it forms the ordered coherent precipitate [delta][prime] (Al[sub 3]Li), lowers the density, and increases the stiffness of aluminum alloys. In addition, at low concentrations, Li should be in solution at the SPF temperatures and should have little effect on the superplastic formability of the alloys. This led to research on alloys from the Al-Mg-Li-Sc system. This paper describes the preliminary high-temperature tensile results of an Al-Mg-Li-Sc alloy and relates them to other superplastic Al alloys.

  19. Atomic simulation of mechanical behavior of Mg in a super-lattice of nanocrystalline Mg and amorphous Mg-Al alloy

    SciTech Connect

    Song, H. Y.; An, M. R.; Li, Y. L. Deng, Q.

    2014-12-07

    The mechanical properties of a super-lattice architecture composed of nanocrystalline Mg and Mg-Al amorphous alloy are investigated using molecular dynamics simulation. The results indicate that deformation mechanism of nanocrystalline Mg is obviously affected by the amorphous boundary spacing and temperature. The strength of the material increases with the decrease of amorphous boundary spacing, presenting a Hall-Petch effect at both 10 K and 300 K. A stress platform and following stiffness softening, as well as a linear strengthening in the plastic stage, are observed when the amorphous boundary spacing below 8.792 nm at 10 K. The implying reason may be that the amorphous boundary acts as the dislocations emission and absorption source. However, the second stress peak is not observed for the models at 300 K. Instead, the flow stress in plastic stage is a nearly constant value. The simulation demonstrates the emergence of the new grain, accompanied by the deformation twins and stacking faults associated with the plastic behaviors at 300 K. The general conclusions derived from this work may provide a guideline for the design of high-performance hexagonal close-packed metals.

  20. Microstructural analysis and mechanical properties of biodegradable Mg-1.3Ca-5.5Zr alloy

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Matei, MN; Oprisan, B.; Moisei, M.; Earar, K.

    2016-08-01

    Magnesium based alloys begin to be known as biodegradable materials used in medical field. Zirconium and Calcium as alloying elements, improve mechanical strength, creep resistance and refine microstructure. Also, Ca is the most spread mineral in the human body, which contributes to the osteosynthesis phenomenon. The aim of this paper is developing two original Mg-Zr-Ca biodegradable alloys, characterizing from the point of view of the microstructure, X-ray diffraction, Young modulus and scratch test. Results show evenly distributed clusters of zirconium and Mg2Ca arranged at Mg grains boundary. Also, values of Young modulus are between 25-27 GPa similar to bones Young modulus, thus avoiding the formation of “stress shield effect”.

  1. Characterization of Al-Cu-Mg-Ag Alloy RX226-T8 Plate

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Domack, Marcia S.

    2003-01-01

    Aluminum-copper-magnesium-silver (Al-Cu-Mg-Ag) alloys that were developed for thermal stability also offer attractive ambient temperature strength-toughness combinations, and therefore, can be considered for a broad range of airframe structural applications. The current study evaluated Al-Cu-Mg-Ag alloy RX226-T8 in plate gages and compared performance with sheet gage alloys of similar composition. Uniaxial tensile properties, plane strain initiation fracture toughness, and plane stress tearing resistance of RX226-T8 were examined at ambient temperature as a function of orientation and thickness location in the plate. Properties were measured near the surface and at the mid-plane of the plate. Tensile strengths were essentially isotropic, with variations in yield and ultimate tensile strengths of less than 2% as a function of orientation and through-thickness location. However, ductility varied by more than 15% with orientation. Fracture toughness was generally higher at the mid-plane and greater for the L-T orientation, although the differences were small near the surface of the plate. Metallurgical analysis indicated that the microstructure was primarily recrystallized with weak texture and was uniform through the plate with the exception of a fine-grained layer near the surface of the plate. Scanning electron microscope analysis revealed Al-Cu-Mg second phase particles which varied in composition and were primarily located on grain boundaries parallel to the rolling direction. Fractography of toughness specimens for both plate locations and orientations revealed that fracture occurred predominantly by transgranular microvoid coalescence. Introduction High-strength, low-density Al-Cu-Mg-Ag alloys were initially developed to replace conventional 2000 (Al-Cu-Mg) and 7000 (Al-Zn-Cu-Mg) series aluminum alloys for aircraft structural applications [1]. During the High Speed Civil Transport (HSCT) program, improvements in thermal stability were demonstrated for candidate

  2. Interfacial Characterization of Dissimilar Joints Between Al/Mg/Al-Trilayered Clad Sheet to High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Macwan, A.; Jiang, X. Q.; Chen, D. L.

    2015-07-01

    Magnesium (Mg) alloys are increasingly used in the automotive and aerospace sectors to reduce vehicle weight. Al/Mg/Al tri-layered clad sheets are deemed as a promising alternative to improve the corrosion resistance and formability of Mg alloys. The structural application of Al/Mg/Al tri-layered clad sheets inevitably involves welding and joining in the multi-material vehicle body manufacturing. This study aimed to characterize the bonding interface microstructure of the Al/Mg/Al-clad sheet to high-strength low-alloy steel with and without Zn coating using ultrasonic spot welding at different levels of welding energy. It was observed that the presence of Zn coating improved the bonding at the interface due to the formation of Al-Zn eutectic structure via enhanced diffusion. At a higher level of welding energy, characteristic flow patterns of Zn into Al-clad layer were observed with an extensive penetration mainly along some high angle grain boundaries. The dissimilar joints without Zn coating made at a high welding energy of 800 J failed partially from the Al/Fe weld interface and partially from the Al/Mg clad interface, while the joints with Zn coating failed from the Al/Mg clad interface due to the presence of brittle Al12Mg17 phase.

  3. Oxidation behavior of AlMgB14-TiB2 composite at elevated temperature

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Meng, Qing-sen; Zhuang, Lei; Chen, Shao-ping; Dai, Jing-jie

    2015-08-01

    The isothermal oxidation behavior of AlMgB14-TiB2 composite was investigated at the temperature range from 600 °C to 1000 °C in air for 10 h. The results showed that the oxidation kinetics of this composite obeyed the parabolic law with an activation energy of 176 ± 20 kJ mol-1 from 700 °C to 1000 °C, the corresponding parabolic rate constant increased from 0.0069 × 10-8 kg2 m-4 s-1 to 138.75 × 10-8 kg2 m-4 s-1. The SEM micrograph of the oxidized surface at 700 °C for 10 h indicated that only the TiB2 phase was changed. The AlMgB14 phase changed at 800 °C in air, and the oxide scale consisting of TiO2 and borate glass dissolved with MgO and Al2O3. Meanwhile, a number of pores also existed in the oxide scales. The oxide scales at 1000 °C were divided into three layers: an outer glassy B2O3 layer, a middle oxide layer with small size pores, and a reaction layer with large size pores formed as the oxidation of the AlMgB14 phase. The formation mechanism of the oxidized layers was analyzed.

  4. Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.

    2015-01-01

    The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.

  5. Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Battiston, S.; Fiameni, S.; Saleemi, M.; Boldrini, S.; Famengo, A.; Agresti, F.; Stingaciu, M.; Toprak, M. S.; Fabrizio, M.; Barison, S.

    2013-07-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1: x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density >95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600°C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600°C.

  6. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway

    NASA Astrophysics Data System (ADS)

    Li, Mei; He, Peng; Wu, Yuanhao; Zhang, Yu; Xia, Hong; Zheng, Yufeng; Han, Yong

    2016-09-01

    The influence of Mg-1Ca-xwt.% Sr (x = 0.2, 0.5, 1.0, 2.0) alloys on the osteogenic differentiation and mineralization of pre-osteoblast MC3T3-E1 were studied through typical differentiation markers, such as intracellular alkaline phosphatase (ALP) activity, extracellular collagen secretion and calcium nodule formation. It was shown that Mg-1Ca alloys with different content of Sr promoted cell viability and enhanced the differentiation and mineralization levels of osteoblasts, and Mg-1Ca-2.0Sr alloy had the most remarkable and significant effect among all. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the mRNA expression level of osteogenesis-related genes and intracellular signaling pathways involved in osteogenesis, respectively. RT-PCR results showed that Mg-1Ca-2.0Sr alloy significantly up-regulated the expressions of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), Integrin subunits, as well as alkaline phosphatase (ALP), Bone sialoprotein (BSP), Collagen I (COL I), Osteocalcin (OCN) and Osteopontin (OPN). Western Blotting results suggested that Mg-1Ca-2.0Sr alloy rapidly induced extracellular signal-regulated kinase (ERK) activation but showed no obvious effects on c-Jun N terminal kinase (JNK) and p38 kinase of MAPK. Taken together, our results demonstrated that Mg-1Ca-2.0Sr alloy had excellent biocompatibility and osteogenesis via the ERK pathway and is expected to be promising as orthopedic implants and bone repair materials.

  7. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway.

    PubMed

    Li, Mei; He, Peng; Wu, Yuanhao; Zhang, Yu; Xia, Hong; Zheng, Yufeng; Han, Yong

    2016-01-01

    The influence of Mg-1Ca-xwt.% Sr (x = 0.2, 0.5, 1.0, 2.0) alloys on the osteogenic differentiation and mineralization of pre-osteoblast MC3T3-E1 were studied through typical differentiation markers, such as intracellular alkaline phosphatase (ALP) activity, extracellular collagen secretion and calcium nodule formation. It was shown that Mg-1Ca alloys with different content of Sr promoted cell viability and enhanced the differentiation and mineralization levels of osteoblasts, and Mg-1Ca-2.0Sr alloy had the most remarkable and significant effect among all. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the mRNA expression level of osteogenesis-related genes and intracellular signaling pathways involved in osteogenesis, respectively. RT-PCR results showed that Mg-1Ca-2.0Sr alloy significantly up-regulated the expressions of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), Integrin subunits, as well as alkaline phosphatase (ALP), Bone sialoprotein (BSP), Collagen I (COL I), Osteocalcin (OCN) and Osteopontin (OPN). Western Blotting results suggested that Mg-1Ca-2.0Sr alloy rapidly induced extracellular signal-regulated kinase (ERK) activation but showed no obvious effects on c-Jun N terminal kinase (JNK) and p38 kinase of MAPK. Taken together, our results demonstrated that Mg-1Ca-2.0Sr alloy had excellent biocompatibility and osteogenesis via the ERK pathway and is expected to be promising as orthopedic implants and bone repair materials. PMID:27580744

  8. [Seasonal release characteristics of Ca, Mg and Mn of foliar litter of six tree species in subtropical evergreen broadleaved forest].

    PubMed

    Ma, Zhi-liang; Gao, Shun; Yang, Wan-qin; Wu, Fu-zhong

    2015-10-01

    Seasonal release dynamics of Ca, Mg and Mn during decomposition of foliar litter of Pinus massoniana, Cryptomeria fortunei, Cunninghamia lanceolata, Cinnamomum camphora, Toona ciliate, and Quercus acutissima were investigated in subtropical evergreen broad-leaved forest employing the method of litterbag. After one-year decomposition, the release rates of Ca, Mg and Mn in foliar litter of the studied tree species ranged from -13.8% to 92.3%, from 4.0% to 64.8%, and from 41.6% to 81.1%, respectively. Ca dynamics in foliar litter of P. massoniana, C. camphora exhibited the pattern of accumulating early and releasing later, while that of the other four tree species showed direct release. Similarly, the dynamics of Mg released from foliar litter of C. camphora showed the pattern of accumulating early and then releasing, while that of the other five tree species exhibited continuous release. Meanwhile, the dynamics of Mn released from foliar litter of C. fortunei and T. ciliate exhibited early accumulation, and subsequent release, while that of the other four tree species showed continuous release. The releases of Ca, Mg and Mn in foliar litter were greatly influenced by seasonal rainfall, and varied with tree species. Furthermore, the rates and amounts of Ca, Mg and Mn released from foliar litter were higher in rainy season than in dry season. In conclusion, the initial nutrient concentrations and precipitation were two key factors influencing the release dynamics of Ca, Mg and Mn during decomposition of foliar litter in the subtropical evergreen broad-leaved forest. PMID:26995897

  9. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway

    PubMed Central

    Li, Mei; He, Peng; Wu, Yuanhao; Zhang, Yu; Xia, Hong; Zheng, Yufeng; Han, Yong

    2016-01-01

    The influence of Mg-1Ca-xwt.% Sr (x = 0.2, 0.5, 1.0, 2.0) alloys on the osteogenic differentiation and mineralization of pre-osteoblast MC3T3-E1 were studied through typical differentiation markers, such as intracellular alkaline phosphatase (ALP) activity, extracellular collagen secretion and calcium nodule formation. It was shown that Mg-1Ca alloys with different content of Sr promoted cell viability and enhanced the differentiation and mineralization levels of osteoblasts, and Mg-1Ca-2.0Sr alloy had the most remarkable and significant effect among all. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the mRNA expression level of osteogenesis-related genes and intracellular signaling pathways involved in osteogenesis, respectively. RT-PCR results showed that Mg-1Ca-2.0Sr alloy significantly up-regulated the expressions of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), Integrin subunits, as well as alkaline phosphatase (ALP), Bone sialoprotein (BSP), Collagen I (COL I), Osteocalcin (OCN) and Osteopontin (OPN). Western Blotting results suggested that Mg-1Ca-2.0Sr alloy rapidly induced extracellular signal-regulated kinase (ERK) activation but showed no obvious effects on c-Jun N terminal kinase (JNK) and p38 kinase of MAPK. Taken together, our results demonstrated that Mg-1Ca-2.0Sr alloy had excellent biocompatibility and osteogenesis via the ERK pathway and is expected to be promising as orthopedic implants and bone repair materials. PMID:27580744

  10. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway.

    PubMed

    Li, Mei; He, Peng; Wu, Yuanhao; Zhang, Yu; Xia, Hong; Zheng, Yufeng; Han, Yong

    2016-09-01

    The influence of Mg-1Ca-xwt.% Sr (x = 0.2, 0.5, 1.0, 2.0) alloys on the osteogenic differentiation and mineralization of pre-osteoblast MC3T3-E1 were studied through typical differentiation markers, such as intracellular alkaline phosphatase (ALP) activity, extracellular collagen secretion and calcium nodule formation. It was shown that Mg-1Ca alloys with different content of Sr promoted cell viability and enhanced the differentiation and mineralization levels of osteoblasts, and Mg-1Ca-2.0Sr alloy had the most remarkable and significant effect among all. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the mRNA expression level of osteogenesis-related genes and intracellular signaling pathways involved in osteogenesis, respectively. RT-PCR results showed that Mg-1Ca-2.0Sr alloy significantly up-regulated the expressions of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), Integrin subunits, as well as alkaline phosphatase (ALP), Bone sialoprotein (BSP), Collagen I (COL I), Osteocalcin (OCN) and Osteopontin (OPN). Western Blotting results suggested that Mg-1Ca-2.0Sr alloy rapidly induced extracellular signal-regulated kinase (ERK) activation but showed no obvious effects on c-Jun N terminal kinase (JNK) and p38 kinase of MAPK. Taken together, our results demonstrated that Mg-1Ca-2.0Sr alloy had excellent biocompatibility and osteogenesis via the ERK pathway and is expected to be promising as orthopedic implants and bone repair materials.

  11. The influence of prebiotic-type organic molecules on the crystallization of Al and Mg hydroxides.

    PubMed

    Costanzo, P M; Laszlo, P

    1988-01-01

    It is now well accepted that clays could have concentrated prebiotic organic molecules, protected them from UV radiation and served as templates and catalysts in their prebiotic evolution. A complementary question is: How did prebiotic organics in the oceans, in ground water, or in hydrothermal solutions affect the formation and inorganic evolution of oxides, hydroxides, and clay minerals? In this study predominantly amorphous Al oxyhydroxides (Al gels) and crystalline Mg hydroxyoxides were synthesized, and then crystallized and recrystallized respectively, to Al and Mg hydroxides via wet and dry (w/d) cycling using both water and organic solutions. The products that resulted were examined using IR spectroscopy and X-ray diffraction (XRD). XRD scans of the products formed by w/d cycling of the Al gels with either water or 0.1 M aqueous solutions of methanol or formaldehyde showed that bayerite (alpha Al2O3) was the major phase formed. The acetonitrile treated sample exhibited the most defined XRD peaks, and no crystalline phase could be observed by XRD of the 0.1 M formamide solution treated sample. Cycling the Mg hydroxyoxide with water, or 0.1 M solutions of methanol, formamide, formaldehyde, or acetonitrile resulted in the formation of brucite (Mg(OH)2) (in varying amounts) and of three unidentified phases. One unidentified phase, 'phase II', was observed in the formaldehyde cycled sample (and tentatively identified in the methanol and formamide cycled samples), 'phase III' in the formamide and formaldehyde cycled sample, and 'phase IV' in only the formaldehyde. XRD peaks with a spacing of approximately 11.5 Angstrom (assigned to phase III) suggest intercalation of formamide and formaldehyde into the interlayer spaces of the brucite. Phosphate treatment, prior to w/d cycling with water, and also with the above mentioned organics, while totally preventing subsequent formation of any crystalline Al hydroxide, enhanced the formation of Mg phases, shown by XRD data

  12. ß-Adrenergic stimulation increases RyR2 activity via intracellular Ca2+ and Mg2+ regulation.

    PubMed

    Li, Jiao; Imtiaz, Mohammad S; Beard, Nicole A; Dulhunty, Angela F; Thorne, Rick; vanHelden, Dirk F; Laver, Derek R

    2013-01-01

    Here we investigate how ß-adrenergic stimulation of the heart alters regulation of ryanodine receptors (RyRs) by intracellular Ca(2+) and Mg(2+) and the role of these changes in SR Ca(2+) release. RyRs were isolated from rat hearts, perfused in a Langendorff apparatus for 5 min and subject to 1 min perfusion with 1 µM isoproterenol or without (control) and snap frozen in liquid N2 to capture their phosphorylation state. Western Blots show that RyR2 phosphorylation was increased by isoproterenol, confirming that RyR2 were subject to normal ß-adrenergic signaling. Under basal conditions, S2808 and S2814 had phosphorylation levels of 69% and 15%, respectively. These levels were increased to 83% and 60%, respectively, after 60 s of ß-adrenergic stimulation consistent with other reports that ß-adrenergic stimulation of the heart can phosphorylate RyRs at specific residues including S2808 and S2814 causing an increase in RyR activity. At cytoplasmic [Ca(2+)] <1 µM, ß-adrenergic stimulation increased luminal Ca(2+) activation of single RyR channels, decreased luminal Mg(2+) inhibition and decreased inhibition of RyRs by mM cytoplasmic Mg(2+). At cytoplasmic [Ca(2+)] >1 µM, ß-adrenergic stimulation only decreased cytoplasmic Mg(2+) and Ca(2+) inhibition of RyRs. The Ka and maximum levels of cytoplasmic Ca(2+) activation site were not affected by ß-adrenergic stimulation. Our RyR2 gating model was fitted to the single channel data. It predicted that in diastole, ß-adrenergic stimulation is mediated by 1) increasing the activating potency of Ca(2+) binding to the luminal Ca(2+) site and decreasing its affinity for luminal Mg(2+) and 2) decreasing affinity of the low-affinity Ca(2+)/Mg(2+) cytoplasmic inhibition site. However in systole, ß-adrenergic stimulation is mediated mainly by the latter.

  13. Relaxation, [Ca2+]i and [Mg2+]i during prolonged tetanic stimulation of intact, single fibres from mouse skeletal muscle.

    PubMed Central

    Westerblad, H; Allen, D G

    1994-01-01

    1. In skeletal muscle there is generally a slowing of relaxation with increasing tetanus duration and it has been suggested that this is due to Ca2+ loading of parvalbumin (PA). To study this we have produced prolonged tetani in intact, single fibres from a mouse foot muscle which contain a high concentration of PA. We measured the rate of tension relaxation and also various aspects of Ca2+ handling. 2. During 'interrupted' tetani (15 repeated cycles of 100 ms with stimulation and 50 ms without) we observed a marked slowing of the relaxation both under control conditions and in acidosis (obtained by increasing the bath CO2 content). This slowing was not accompanied by any reduction of the initial rate of decline of the free myoplasmic Ca2+ concentration ([Ca2+]i), which was measured with indo-1. 3. The functioning of the sarcoplasmic reticulum (SR) pump after tetani of various durations was analysed by plotting d[Ca2+]i/dt vs. [Ca2+]i during the final slow decline of [Ca2+]i after tetani. This analysis showed that the rate of SR Ca2+ pumping after a 1 s tetanus is less than half of that after a 100 ms tetanus. 4. The amplitude of the tail of [Ca2+]i 250 ms into relaxation was measured after tetani of various durations. This amplitude increased with tetanus duration and could be fitted to the sum of one exponential and one linear function. The exponential component increased with a time constant of 0.17 s and probably reflects Ca2+ loading of PA. 5. Ca2+ binding to PA will displace Mg2+ and hence the free myoplasmic concentration of Mg2+ ([Mg2+]i) will increase. To study this we used the fluorescent Mg2+ indicator furaptra. The results showed an increase of [Mg2+]i during prolonged tetani which, after removing the Ca2+ component of the fluorescent signal, amounted to about 0.5 mM. 6. A model of Ca2+ movements and tension production in skeletal muscle was used. The model showed that the increase of the amplitude of [Ca2+]i tails after tetani of various durations can

  14. Removal of exhausted oils by adsorption on mixed Ca and Mg oxides.

    PubMed

    Solisio, Carlo; Lodi, Alessandra; Converti, Attilio; Del, Borghi Marco

    2002-02-01

    Adsorption tests were performed on two different exhausted oils to reduce their polluting and health hazard potential: a "water-insoluble oil", utilised for automotive engine lubrication, and an "emulsified" oil, used as coolant for metal-cutting tools. Dolomite, a low-cost recovery material, was used to prepare two effective adsorbents: (a) a mixed Ca and Mg oxide obtained by thermal decomposition of dolomite at 1800 degrees C, and (b) an activated material obtained by submitting this product to chemical treatment with HCl. Preliminary tests carried out with an excess of the former material showed that the insoluble oil was adsorbed with lower yield (Y = 0.40) than the soluble (emulsified) oil (Y = 0.60). The material activation with HCl remarkably improved the adsorption of soluble oil organic fraction (Y > 0.90), while only a little increase in the removal yield was observed for the insoluble oil (Y = 0.44). The results presented and discussed in this work pointed out that the products of dolomite calcination can successfully replace the conventional adsorbing materials in the removal of organic pollutants, with particular concern to exhausted soluble oils, which cannot usually be recycled, thus reducing the operational costs of their treatment.

  15. Phosphate-sulfide assemblages and Al/Ca ratios in type-3 chondrites

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Grossman, J. N.

    1985-09-01

    Electron microscopic examinations were carried out on various chondrites to re-examine previously reported anomalously high Al/Ca ratios. Polished thin sections of the three CV3, two CO3 and the Krymka LL3 chondrites were scanned to characterize the phosphate-sulfide inclusions. The formation of the assemblages was interpreted as proceeding in five steps, starting with the formation of metal grains with early nebular material and finishing with a reaction between schreibersite with Ca, O and Cl to form merrillite and chloropatite. The abundances of the observed assemblages were not high enough to imply Al/Ca ratios similar to whole-rocks. It is concluded that the specimens were originally examined with a broader electron beam than used to examine standard samples, and resulted in the anomalously high Al/Ca ratios.

  16. Phosphate-sulfide assemblages and Al/Ca ratios in type-3 chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, A. E.; Grossman, J. N.

    1985-01-01

    Electron microscopic examinations were carried out on various chondrites to re-examine previously reported anomalously high Al/Ca ratios. Polished thin sections of the three CV3, two CO3 and the Krymka LL3 chondrites were scanned to characterize the phosphate-sulfide inclusions. The formation of the assemblages was interpreted as proceeding in five steps, starting with the formation of metal grains with early nebular material and finishing with a reaction between schreibersite with Ca, O and Cl to form merrillite and chloropatite. The abundances of the observed assemblages were not high enough to imply Al/Ca ratios similar to whole-rocks. It is concluded that the specimens were originally examined with a broader electron beam than used to examine standard samples, and resulted in the anomalously high Al/Ca ratios.

  17. The oxidation of rolled and heat treated Al-Mg alloys

    NASA Astrophysics Data System (ADS)

    Lea, C.; Ball, J.

    The formation of oxide films on two production grade Al-Mg alloys (0.8wt% and 2.5 wt% Mg) during heat treatment after cold rolling, in the range 350-600°C, in either dry or moist flowing air has been studied. Quantitative Auger electron spectroscopy, in conjunction with argon ion sputtering, has been used to obtain composition-depth profiles through the oxide layers, with concomitant weight gain measurements. The effects on the kinetics and thermodynamics of the oxidation process by changing the bulk magnesium content, the heat treatment and the humidity of the environment have been ascertained. The measurements are consistent with the following oxide growth mechanism. In the cold rolled state a very thin self-healing amorphous film of A1 2O 3 exists. During heat treatment oxide crystallites nucleate and the thickness increases by grain boundary diffusion of aluminium and magnesium to the free surface. The difference in diffusivity of the species ensures that the surface becomes magnesium-rich. An island MgO film forms on the surface while Al 2O 3 in the film is reduced by the outwardly diffusing magnesium to form the spinel MgAl 2O 4. Eventually free aluminium can exist within the oxide. The MgO islands join to form an aluminium-free surface. The kinetics of oxidation and the morphology and composition of the oxide can be controlled by the humidity during heat treatment, probably because of the incorporation of hydroxyl ions. During dry storage at 60°C no significant changes occur in the oxide film but samples stored in moist conditions exhibit a marked reduction in the magnesium atom fraction of the surface, and magnesium-free surfaces can be produced. The implications of the surface layer composition of Al-Mg alloys to joining technology are discussed.

  18. New treatment method for boron in aqueous solutions using Mg-Al layered double hydroxide: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-08-15

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg - Al LDHs) and with Cl(-) (Cl · Mg - Al LDHs) were found to take up boron from aqueous solutions. Boron was removed by anion exchange of B(OH)4(-) in solution with NO3(-) and Cl(-) intercalated in the interlayer of the LDH. Using three times the stoichiometric quantity of NO3 · Mg-Al LDH, the residual concentration of B decreased from 100 to 1.9 mg L(-1) in 120 min. Using five times the stoichiometric quantity of Cl · Mg - Al LDH, the residual concentration of B decreased from 100 to 5.6 mg L(-1) in 120 min. It must be emphasized that, in both cases, the residual concentration of B was less than the effluent standards in Japan (10 mg L(-1)). The rate-determining step of B removal by the NO3 · Mg - Al and Cl · Mg - Al LDHs was found to be chemical adsorption involving anion exchange of B(OH)4(-) with intercalated NO3(-) and Cl(-). The removal of B was well described by a pseudo second-order kinetic equation. The adsorption of B by NO3 · Mg - Al LDH and Cl · Mg - Al LDH followed a Langmuir-type adsorption. The values of the maximum adsorption and the equilibrium adsorption constant were 3.6 mmol g(-1) and 1.7, respectively, for NO3 · Mg - Al LDH, and 3.8 mmol g(-1) and 0.7, respectively, for Cl · Mg-Al LDH. The B(OH)4(-) in B(OH)4 · Mg - Al LDH produced by removal of B was found to undergo anion exchange with NO3(-) and Cl(-) in solution. The NO3 · Mg - Al and Cl · Mg - Al LDHs obtained after this regeneration treatment were able to remove B from aqueous solutions, indicating the possibility of recycling NO3 · Mg - Al and Cl · Mg - Al LDHs for B removal. PMID:25827268

  19. New treatment method for boron in aqueous solutions using Mg-Al layered double hydroxide: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-08-15

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg - Al LDHs) and with Cl(-) (Cl · Mg - Al LDHs) were found to take up boron from aqueous solutions. Boron was removed by anion exchange of B(OH)4(-) in solution with NO3(-) and Cl(-) intercalated in the interlayer of the LDH. Using three times the stoichiometric quantity of NO3 · Mg-Al LDH, the residual concentration of B decreased from 100 to 1.9 mg L(-1) in 120 min. Using five times the stoichiometric quantity of Cl · Mg - Al LDH, the residual concentration of B decreased from 100 to 5.6 mg L(-1) in 120 min. It must be emphasized that, in both cases, the residual concentration of B was less than the effluent standards in Japan (10 mg L(-1)). The rate-determining step of B removal by the NO3 · Mg - Al and Cl · Mg - Al LDHs was found to be chemical adsorption involving anion exchange of B(OH)4(-) with intercalated NO3(-) and Cl(-). The removal of B was well described by a pseudo second-order kinetic equation. The adsorption of B by NO3 · Mg - Al LDH and Cl · Mg - Al LDH followed a Langmuir-type adsorption. The values of the maximum adsorption and the equilibrium adsorption constant were 3.6 mmol g(-1) and 1.7, respectively, for NO3 · Mg - Al LDH, and 3.8 mmol g(-1) and 0.7, respectively, for Cl · Mg-Al LDH. The B(OH)4(-) in B(OH)4 · Mg - Al LDH produced by removal of B was found to undergo anion exchange with NO3(-) and Cl(-) in solution. The NO3 · Mg - Al and Cl · Mg - Al LDHs obtained after this regeneration treatment were able to remove B from aqueous solutions, indicating the possibility of recycling NO3 · Mg - Al and Cl · Mg - Al LDHs for B removal.

  20. A monoclonal antibody (PL/IM 430) to human platelet intracellular membranes which inhibits the uptake of Ca2+ without affecting the Ca2+ +Mg2+-ATPase.

    PubMed

    Hack, N; Wilkinson, J M; Crawford, N

    1988-03-01

    To probe the structure-function relationships of proteins present in the endoplasmic reticulum-like intracellular membranes of human blood platelets a panel of monoclonal antibodies have been raised, using as immunogen highly purified platelet intracellular membrane vesicles isolated by continuous flow electrophoresis [Menashi, Weintroub & Crawford (1981) J. Biol. Chem. 256, 4095-4101]. Four of these antibodies recognize a single 100 kDa polypeptide in the platelet membrane by immunoblotting. One antibody PL/IM 430 (of IgG1 subclass) inhibited (approximately 70%) the energy-dependent uptake of Ca2+ into the vesicles without affecting the Ca2+ +Mg2+-ATPase activity or the protein phosphorylation previously shown to proceed concomitantly with Ca2+ sequestration [Hack, Croset & Crawford (1986) Biochem. J. 233, 661-668]. The inhibition is independent of ATP concentration over a range 0-2 mM-ATP but shows dose-dependency for external [Ca2+] with maximum inhibition of Ca2+ translocation at concentrations of Ca2+ greater than 500 nM. This capacity of the antibody PL/IM 430 functionally to dislocate components of the intracellular membrane Ca2+ pump complex may have value in structural studies.

  1. [delta] precipitation in an Al-Li-Cu-Mg-Zr alloy

    SciTech Connect

    Prasad, K.S.; Mukhopadhyay, A.K.; Gokhale, A.A.; Banerjee, D. ); Goel, D.B. Univ. of Roorkee . Dept. of Metallurgical Engineering)

    1994-05-15

    AlLi based [delta] phase has an NaTl structure (i.e., a diamond cubic) with a = 0.637nm and is an equilibrium phase in the binary Al-Li system. In heat treated binary Al-Li alloys of appropriate compositions, [delta] phase can format grain boundaries as well as within the grains. In commercially heat treated Al-Li-Cu alloys of 2090 specification, the grain boundary precipitate [delta] of the binary Al-Li system is replaced by a combination of T[sub 2](Al[sub 6]CuLi[sub 3]), R(Al[sub 5]CuLi[sub 3]) and T[sub 1](Al[sub 2]CuLi) phases. In similarly treated Al-Li-Cu-Mg alloys of 8090 specification, the copper rich T[sub 2] phase, present in the form of Al[sub 6]CuLi[sub 3[minus]x]Mg[sub x], is known to be the major coarse g.b. precipitate. The presence of an Al-Li-Cu-Mg based C phase at the grain boundaries of the commercially heat treated 8090 alloys has also been documented. No detailed study has yet been carried out to verify whether the [delta] phase can be present at the grain boundaries of the commercially heat treated 8090 alloys. Given the correlations between the g.b. phase morphology, g.b. phase chemistry, and the stress corrosion cracking resistance of these alloys, it is important that the g.b. precipitates be examined and identified. In this paper results using TEM are presented to show that the [delta] phase can be present in varying amounts at the grain boundaries in an 8090 alloy when heat treated in the temperature range of 170--350 C. An examination is also made of the [delta] precipitation within the grain to establish that the T[sub 2]/[alpha]-Al interface is the dominant nucleation site for the noncoherent [delta] phase.

  2. Formation Mechanism of CaS-Bearing Inclusions and the Rolling Deformation in Al-Killed, Low-Alloy Steel with Ca Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Guang; Jiang, Zhouhua; Li, Yang

    2016-08-01

    The existing form of CaS inclusion in Ca-treated, Al-killed steel during secondary refining process was investigated with scanning electron microscopy and an energy-dispersive spectrometer (EDS). The results of 12 heats industrial tests showed that CaS has two kinds of precipitation forms. One form takes place by the direct reaction of Ca and S, and the other takes place by the reaction of CaO in calcium aluminates with dissolved Al and S in liquid steel. Thermodynamic research for different precipitation modes of CaS under different temperature was carried out. In particular, CaO-Al2O3-CaS isothermal section diagrams and component activities of calcium aluminates were calculated by the thermodynamic software FactSage. By thermodynamic calculation, a precipitation-area diagram of oxide-sulfide duplex inclusion was established by fixing the sulfur content. The quantity of CaS, which was precipitated in a reaction between [Al], [S] and (CaO), can be calculated and predicted based on the precipitation-area diagram of oxide-sulfide duplex inclusion. Electron probe microanalysis and EDS were used for observing rolling deformation of different types of CaS-bearing inclusions during the rolling process. Low modification of calcium aluminates wrapped by CaS has different degrees of harm to steel in the rolling process. A thick CaS layer can prevent some fragile calcium aluminates from being crushed during the rolling process. Some oxide-sulfide duplex inclusion contains little CaS performed better deformation during the rolling process, but when CaS in oxide-sulfide duplex inclusion becomes more, it will cause the whole inclusion to lose plastic yielding ability. The plastic deformation region of CaS-bearing inclusion in a CaO-Al2O3-CaS isothermal section diagram is confirmed.

  3. The optically stimulated luminescence (OSL) properties of LiF:Mg,TI, Li2B4O7:CU, CaSO4:Tm, and CaF2:MN thermoluminescent (TL) materials.

    PubMed

    Kearfott, Kimberlee J; Geoffrey West, William; Rafique, Muhammad

    2015-05-01

    This paper reports on an investigation into the optically stimulated luminescence (OSL) properties of several known thermoluminescent materials, namely LiF:Mg,Ti, Li2B4O7:Cu, CaSO4:Tm, and CaF2:Mn. Samples were irradiated to air doses of 15mGy, 150mGy and 1.5Gy and analyzed using a commercially available OSL reader system to determine their luminescence response to continuous blue and infrared light (IR) excitation, centered at 470nm and 830nm wavelengths, respectively. CaF2:Mn did not show an OSL response with either IR or blue light stimulation. Li2B4O7:Cu and LiF:Mg,Ti demonstrated relatively weak OSL signals only under blue light excitation. CaSO4:Tm exhibited OSL under both IR and blue light stimulation at sensitivities roughly one order of magnitude less than the OSL response of α-Al2O3:C under the same conditions. PMID:25769010

  4. Holocene and Last Glacial Maximum TEX86 and Globigerinoides ruber Mg/Ca Sea Surface Temperatures from the Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Hertzberg, J. E.; Bianchi, T. S.; Smith, R. W.; Shields, M. R.

    2012-12-01

    Although the eastern equatorial Pacific (EEP) exerts a major influence on tropical climate dynamics, there is considerable disagreement among various proxy reconstructions on the evolution of sea surface temperatures (SST) in this region since the Last Glacial Maximum (LGM). For example, foraminiferal Mg/Ca and alkenone UK'37 based SST reconstructions disagree on both the timing and magnitude of deglacial SST change in the EEP (Kienast et al., 2006; Lea et al., 2006), and it remains unclear how the SST gradient between the cold tongue and the warm pool to the north differed during the LGM (Koutavas and Lynch-Stieglitz, 2003). In order to better quantify regional SST change in the EEP, we will present companion reconstructions of Holocene SST change using both the molecular organic geochemical TEX86 index and Mg/Ca ratios in Globigerinoides ruber (white) from newly-acquired multicores on the Coco Ridge (MV1014-01-07MC; 6o14.0' N, 86o2.6' W; 1.2 - 3.5 kyr BP; 2.0 km depth) and Carnegie Ridge (MV1014-02-09MC; 0o41.6' S, 85o20.0' W; 2.3 - 6.9 kyr BP; 2.45 km depth). Reconstructed core-top values based on both proxies are in excellent agreement with modern average SSTs at each site. Furthermore, reconstructed Holocene TEX86 and Mg/Ca-SSTs are nearly identical within analytical error. To determine the relationship between TEX86 and Mg/Ca-SSTs in the past, we will also use both proxies to reconstruct LGM SSTs using radiocarbon-dated piston cores from the Cocos Ridge (MV1014-01-08JC; 6o14.0' N, 86o2.6' W; 2.0 km depth) and Carnegie Ridge (MV1014-02-17JC; 0o10.8' S, 85o52.0' W; 2.87 km depth). Kienast et al. (2006) Nature 443, 846-849. Koutavas and Lynch-Stieglitz (2003) Paleoceanography 18(4), 1089. Lea et al. (2006) Quat. Sci. Rev. 25, 1152-1167.

  5. U-Pb and Al-Mg systematics of the ungrouped achondrite Northwest Africa 7325

    NASA Astrophysics Data System (ADS)

    Koefoed, Piers; Amelin, Yuri; Yin, Qing-Zhu; Wimpenny, Josh; Sanborn, Matthew E.; Iizuka, Tsuyoshi; Irving, Anthony J.

    2016-06-01

    Northwest Africa (NWA) 7325 is a unique ungrouped gabbroic achondrite which has characteristics consistent with a possible link to the planet Mercury. In order to understand the origin of this meteorite and the nature of its parent body, we have determined its crystallisation age using the long-lived U-Pb and short-lived Al-Mg chronometers. An internal Pb-Pb isochron defined by six acid leached pyroxene fractions yields an age of 4563.4 ± 2.6 Ma, assuming that the 238U/235U ratio for NWA 7325 is identical to the bulk Earth and Solar System value of 137.794. The Al-Mg isotope analyses of seven fractions (four plagioclase, one pyroxene, one olivine and one whole rock) define a regression line corresponding to 26Al/27Al0 = (3.03 ± 0.14) × 10-7 and an initial δ26Mg∗ of 0.093 ± 0.004‰. When anchored to the D'Orbigny angrite, this initial 26Al/27Al yields an age of 4563.09 ± 0.26 Ma. The Pb-Pb age of 4563.4 ± 2.6 Ma and Al-Mg age of 4563.09 ± 0.26 Ma are in complete agreement, but the low U concentrations of NWA 7325 resulted in a relatively low precision Pb-Pb age. The observed excess in initial δ26Mg∗ can be explained by 27Al/24Mg fractionation and subsequent Mg isotopic evolution after planetary differentiation. Furthermore, the parental magma of NWA 7325 most likely formed within 1.72 Ma after calcium-aluminium rich inclusion (CAI) formation. NWA 7325 formed near simultaneously with quenched angrites and a number of ungrouped achondrites at ∼4563 Ma, suggesting that a multitude of planetary bodies had formed and differentiated by ∼4-5 Myr after CAI formation. This ancient age may be interpreted as an argument against NWA 7325 originating from Mercury, however it does not completely rule it out.

  6. Investigation of fluorine adsorption on nitrogen doped MgAl2O4 surface by first-principles

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-07-01

    The nature of fluorine adsorption on pure and N doped MgAl2O4 surface has been investigated by first-principles calculations based on the density functional theory. Calculated results indicate that MgAl2O4 surface is fluorine-loving, not hydrophilic. Nitrogen doped MgAl2O4 (100) surface shows the highest fluorine adsorption performance and fluorine atom preferentially adsorbs on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: Nitrogen doped MgAl2O4 (100) > Al2O3 (0001) > MgAl2O4 (100) > MgO (100). In-depth PDOS analysis suggested that 2p orbitals of F atom strongly hybridized with 3s- and 3p-orbitals of Al atom contribute to its high adsorption intensity. According to the analysis of Hirshfeld charge, the excellent fluorine adsorption performance of nitrogen doped MgAl2O4 attributes to the electron compensation effect of nitrogen atom and strong electrostatic interactions. All these evidences demonstrate a fact nitrogen doped MgAl2O4 is a promising candidate for fluorine removal.

  7. Inositol phosphates influence the membrane bound Ca/sup 2 +//Mg/sup 2 +/ stimulated ATPase from human erythrocyte membranes

    SciTech Connect

    Kester, M.; Ekholm, J.; Kumar, R.; Hanahan, D.J.

    1986-03-01

    The modulation by exogenous inositol phosphates of the membrane Ca/sup 2 +//Mg/sup 2 +/ ATPase from saponin/EGTA lysed human erythrocytes was determined in a buffer (pH 7.6) containing histidine, 80 mM, MgCl/sub 2/, 3.3 mM, NaCl, 74 mM, KCl, 30 mM, Na/sub 2/ATP, 2.3 mM, ouabain, 0.83 mM, with variable amounts of CaCl/sub 2/ and EGTA. The ATPase assay was linear with time at 44/sup 0/C. The inositol phosphates were commercially obtained and were also prepared from /sup 32/P labeled rabbit platelet inositol phospholipids. Inositol triphosphate (IP/sub 3/) elevated the Ca/sup 2 +//Mg/sup 2 +/ ATPase activity over basal levels in a dose, time, and calcium dependent manner and were increased up to 85% of control values. Activities for the Na/sup +//K/sup +/-ATPase and a Mg/sup 2 +/ ATPase were not effected by IP/sub 3/. Ca/sup 2 +//Mg/sup 2 +/APTase activity with IP/sub 2/ or IP/sub 3/ could be synergistically elevated with calmodulin addition. The activation of the ATPase with IP/sub 3/ was calcium dependent in a range from .001 to .02 mM. The apparent Km and Vmax values were determined for IP/sub 3/ stimulated Ca/sup 2 +//Mg/sup 2 +/ ATPase.

  8. Formation of three types of quasi-crystals in Al-Pd-Mg system

    NASA Astrophysics Data System (ADS)

    Koshikawa, Naokiyo; Edagawa, Keiichi; Honda, Yuko; Takeuchi, Shin

    1993-04-01

    In the Al-Pd-Mg system, a Mackay-Icosahedron (MI) type Icosahedral (I) phase with the F-type superlattice order and a Decagonal (D) phase were found to form in a melt-quenched state, in addition to the Frank-Kasper (FK) type stable I-phase reported previously. This is the first example in which the three types of quasi-crystalline phases are formed in the same alloy system. The formation range of the FK-type I-phase in melt-quenched state is rather wide: 5 - 20 at percent Pd and 20 - 45 at percent Mg. In contrast, the MI-type, I-phase and D-phase are formed in small composition ranges around Al52Pd31Mg17 and Al74Pd21Mg5, respectively. Electron diffraction studies showed that the period along the tenfold axis of the D-phase is about 1.6 nm. The formation and stability of the MI-type and FK-type I-phases were discussed in terms of a Hume-Rothery rule.

  9. Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Perry, Kelly A; Belova, Irina; Murch, Prof. Graeme; Sohn, Yong Ho

    2013-08-01

    Increasing use and development of lightweight Mgalloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As property enhancing components, Al and Zn are two of the most important and common alloying elements for Mg-alloys. We have investigated the concentration dependent interdiffusion of Al and Zn in Mg using diffusion couples of pure polycrystalline Mg mated to Mg solid solutions containing either <9 at.% Al or <3 at.% Zn. Concentration profiles were determined by electron micro-probe microanalysis of the diffusion zone. The interdiffusion coefficients were determined by the classical Boltzmann-Matano method within the Mg solid solution. As the concentration of Al or Zn approaches the dilute ends, we employ an analytical approach based on the Hall method to estimate the impurity diffusion coefficients. Results of Al and Zn impurity diffusion in Mg are reported and compared to published impurity diffusion coefficients typically determined by thin film techniques.

  10. 26Al- 26Mg and 207Pb- 206Pb systematics of Allende CAIs: Canonical solar initial 26Al/ 27Al ratio reinstated

    NASA Astrophysics Data System (ADS)

    Jacobsen, Benjamin; Yin, Qing-zhu; Moynier, Frederic; Amelin, Yuri; Krot, Alexander N.; Nagashima, Kazuhide; Hutcheon, Ian D.; Palme, Herbert

    2008-07-01

    The precise knowledge of the initial 26Al/ 27Al ratio [( 26Al/ 27Al) 0] is crucial if we are to use the very first solid objects formed in our Solar System, calcium-aluminum-rich inclusions (CAIs) as the "time zero" age-anchor and guide future work with other short-lived radio-chronometers in the early Solar System, as well as determining the inventory of heat budgets from radioactivities for early planetary differentiation. New high-precision multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) measurements of 27Al/ 24Mg ratios and Mg-isotopic compositions of nine whole-rock CAIs (six mineralogically characterized fragments and three micro-drilled inclusions) from the CV carbonaceous chondrite, Allende yield a well-defined 26Al- 26Mg fossil isochron with an ( 26Al/ 27Al) 0 of (5.23 ± 0.13) × 10 - 5 . Internal mineral isochrons obtained for three of these CAIs ( A44A, AJEF, and A43) are consistent with the whole-rock CAI isochron. The mineral isochron of AJEF with ( 26Al/ 27Al) 0 = (4.96 ± 0.25) × 10 - 5 , anchored to our precisely determined absolute 207Pb- 206Pb age of 4567.60 ± 0.36 Ma for the same mineral separates, reinstate the "canonical" ( 26Al/ 27Al) 0 of 5 × 10 - 5 for the early Solar System. The uncertainty in ( 26Al/ 27Al) 0 corresponds to a maximum time span of ± 20 Ka (thousand years), suggesting that the Allende CAI formation events were culminated within this time span. Although all Allende CAIs studied experienced multistage formation history, including melting and evaporation in the solar nebula and post-crystallization alteration likely on the asteroidal parent body, the 26Al- 26Mg and U-Pb-isotopic systematics of the mineral separates and bulk CAIs behaved largely as closed-system since their formation. Our data do not support the "supra-canonical" 26Al/ 27Al ratio of individual minerals or their mixtures in CV CAIs, suggesting that the supra-canonical 26Al/ 27Al ratio in the CV CAIs may have resulted from post

  11. Pulsed laser deposition of Mg-Al layered double hydroxide with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Matei, A.; Birjega, R.; Vlad, A.; Luculescu, C.; Epurescu, G.; Stokker-Cheregi, F.; Dinescu, M.; Zavoianu, R.; Pavel, O. D.

    2013-03-01

    Powdered layered double hydroxides (LDHs)—also known as hydrotalcite-like (HT)—compounds have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic or organic molecules. Assembling thin films of nano-sized LDHs onto flat solid substrates is an expanding area of research, with promising applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. The exploitation of LDHs as vehicles to carry dispersed metal nanoparticles onto a substrate is a new approach to obtain composite thin films with prospects for biomedical and optical applications. We report the deposition of thin films of Ag nanoparticles embedded in a Mg-Al layered double hydroxide matrix by pulsed laser deposition (PLD). The Ag-LDH powder was prepared by co-precipitation at supersaturation and pH = 10 using aqueous solutions of Mg and Al nitrates, Na hydroxide and carbonate, and AgNO3, having atomic ratios of Mg/Al = 3 and Ag/Al = 0.55. The target to be used in laser ablation experiments was a dry pressed pellet obtained from the prepared Ag-LDH powder. Three different wavelengths of a Nd:YAG laser (266, 532 and 1064 nm) working at a repetition rate of 10 Hz were used. X-Ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and secondary ions mass spectrometry (SIMS) were used to investigate the structure, surface morphology and composition of the deposited films.

  12. The fracture resistance of 1420 and 1421 Al-Mg-Li alloys

    NASA Technical Reports Server (NTRS)

    Birt, M. J.; Hafley, R. A.; Wagner, J. A.; Lisagor, W. B.

    1993-01-01

    The resistance to stable crack growth in 1420-T6 (Al-5Mg-2.1Li-0.1Zr-0.01Sc, less than 0.06Fe, in wt pct) and 1421-T6 (Al-4.7Mg-1.9Li-0.09Zr-0.2Sc, less than 0.06Fe) Al-Mg-Li alloys was investigated, based on the R curves generated in accordance with ASTM E561-86 and fractography analyses. The crack resistance of 1420 and 1421 alloys was found to be comparable to that of the conventional Space Shuttle External Tank Al alloy, 2219-T87. The main differences in the fracture behaviors arose from differences in the alloys' microstructures. In the case of 1420 alloy, a slightly enhanced toughness behavior was observed, due to the T-phase precipitates, which may have promoted more homogeneous deformation and enhanced microvoid coalescence. In the case of 1421 alloy, the addition of Sc led to a refined grain size and resulted in slightly reduced toughness.

  13. MgB2; Al and C doping, σ-band filling and anisotropy reduction

    NASA Astrophysics Data System (ADS)

    Ruiz-Chavarria, Sabina; de La Mora, Pablo; Tavizon, Gustavo

    2006-03-01

    Al and C-MgB2 doping adds an electron to the system for each atom. This extra electron fills up the σ-bands thus diminishing the number of σ-carriers; this has been the usual explanation for the Tc reduction. Nevertheless in this work we show that there is also a large reduction of anisotropy in the electrical conductivity due to the σ-carriers which should also have an effect on the Tc reduction. Al and C doping produce a different Tc pattern; this difference can be largely explained by the relative shift between the σ-bands and π-bands. After adjusting to this shift there is a small but visible difference, at low doping Tc in the Al compounds drops faster than in the C compounds, this can be directly related to the faster loss of conductivity anisotropy in the Al compounds.

  14. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning

    NASA Astrophysics Data System (ADS)

    Molina, J. F.; Moreno, J. A.; Castro, A.; Rodríguez, C.; Fershtater, G. B.

    2015-09-01

    Dependencies of plagioclase/amphibole Al-Si partitioning, DAl/Siplg/amp, and amphibole/liquid Mg partitioning, DMgamp/liq, on temperature, pressure and phase compositions are investigated employing robust regression methods based on MM-estimators. A database with 92 amphibole-plagioclase pairs - temperature range: 650-1050 °C; amphibole compositional limits: > 0.02 apfu (23O) Ti and > 0.05 apfu Al - and 148 amphibole-glass pairs - temperature range: 800-1100 °C; amphibole compositional limit: CaM4/(CaM4 + NaM4) > 0.75 - compiled from experiments in the literature was used for the calculations (amphibole normalization scheme: 13-CNK method). Statistical analysis reveals a significant dependence of DAl/Siplg/amp on pressure, temperature, Al fraction in amphibole T1-site, XAlT1, and albite fraction in plagioclase, XAb, leading to the barometric expression:

  15. Formation process of micro arc oxidation coatings obtained in a sodium phytate containing solution with and without CaCO3 on binary Mg-1.0Ca alloy

    NASA Astrophysics Data System (ADS)

    Zhang, R. F.; Zhang, Y. Q.; Zhang, S. F.; B. Qu; Guo, S. B.; Xiang, J. H.

    2015-01-01

    Micro arc oxidation (MAO) is an effective method to improve the corrosion resistance of magnesium alloys. In order to reveal the influence of alloying element Ca and CaCO3 electrolyte on the formation process and chemical compositions of MAO coatings on binary Mg-1.0Ca alloy, anodic coatings after different anodizing times were prepared on binary Mg-1.0Ca alloy in a base solution containing 3 g/L sodium hydroxide and 15 g/L sodium phytate with and without addition of CaCO3. The coating formation was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that Mg-1.0Ca alloy is composed of two phases, the Mg phase and Mg2Ca phase. After treating for 5 s, the coating began to develop and was preferentially formed on the area nearby Mg2Ca phase, which may be resulted from the intrinsic electronegative potential of the Mg phase than that of Mg2Ca phase. Anodic coatings unevenly covered the total surface after 20 s. After 80 s, the coatings were uniformly developed on Mg-1.0Ca alloy with micro pores. During MAO process, some sodium phytate molecules are hydrolyzed into inorganic phosphate. CaCO3 has minor influence on the calcium content of the obtained MAO coatings.

  16. Tracing Environmental Variation Over The Past 130 Years In The Barents Sea: Mineral Ratio (Mg/Ca, Sr/Ca, Ba/Ca, And Mn/Ca) Evidence In Shells Of The Circumpolar Greenland Cockle, Serripes groenlandicus

    NASA Astrophysics Data System (ADS)

    Henkes, G. A.; Ambrose, W. G.; Johnson, B. J.; Carroll, M. L.; McMahon, K. W.; Denisenko, S. G.; Thorrold, S. R.

    2007-12-01

    In order to quantify the impacts of human induced climate change on Arctic marine ecosystems it is crucial to establish high-resolution proxies to record regional environmental variability. The Barents Sea region is highly influenced by the annual recession and precession of Arctic sea ice and, as an ecosystem is extremely sensitive to seasonal to decadal climatic changes. Long-lived, sessile, marine bivalves have the potential to provide detailed oceanographic and biological proxy information from the Barents Sea in locations where historic, long- term data logging does not exist. Here, we present preliminary mineral ratio evidence (Mg, Sr, Ba, Mn) for Barents Sea environmental variation from shells of the circumpolar Greenland cockle, Serripes groenlandicus, over the past 130 years from 4 different locations in Norwegian and Russian waters. For all mineral ratios there are clear seasonal trends corresponding with dark winter growth checks on the external surface of each individual. The seasonal patterns of Mg and Sr show progressive change. On average for 9 individuals, Mg/Ca was 10.6 percent greater and Sr/Ca was 5.5 percent lower on the winter checks compared to other values, while Ba/Ca and Mn/Ca ratios show peaks during the middle of the summer growth period. Mineral patterns from the Pechora Sea region are particularly pronounced, which may be related to the influence freshwater from summer river discharge. While the mineral data are initially compelling enough to demonstrate clear seasonal periodicity and inter-annual variation, we believe that a multi-proxy approach to interpreting the information obtained from these bivalves is critical. Therefore, parallel to this study, we are examining external, incremental growth and organic carbon isotopes of shell material from the same collection of bivalves.

  17. Tailoring acidity of HZSM-5 nanoparticles for methyl bromide dehydrobromination by Al and Mg i