Science.gov

Sample records for al chromium cr

  1. Solid state reduction of chromium (VI) pollution for Al2O3-Cr metal ceramics application

    NASA Astrophysics Data System (ADS)

    Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yangai; Tang, Hao; Min, Xin; Wu, Xiaowen

    2016-04-01

    Reduction of chromium (VI) from Na2CrO4 through aluminothermic reaction and fabrication of metal-ceramic materials from the reduction products have been investigated in this study. Na2CrO4 could be successfully reduced into micrometer-sized Cr particles in a flowing Ar atmosphere in presence of Al powder. The conversion ratio of Na2CrO4 to metallic Cr attained 96.16% efficiency. Al2O3-Cr metal-ceramic with different Cr content (5 wt%, 10 wt%, 15 wt%, 20 wt%) were further prepared from the reduction product Al2O3-Cr composite powder, and aluminum oxide nanopowder via pressure-less sintering. The phase composition, microstructure and mechanical properties of metal-ceramic composites were characterized to ensure the potential of the Al2O3-Cr composite powder to form ceramic materials. The highest relative density and bending strength can reach 93.4% and 205 MP, respectively. The results indicated that aluminothermic reduction of chromium (VI) for metal-ceramics application is a potential approach to remove chromium (VI) pollutant from the environment.

  2. Electrochemical investigation of chromium oxide-coated Ti-6Al-4V and Co-Cr-Mo alloy substrates.

    PubMed

    Swaminathan, Viswanathan; Zeng, Haitong; Lawrynowicz, Daniel; Zhang, Zongtao; Gilbert, Jeremy L

    2011-08-01

    Hard coatings for articulating surfaces of total joint replacements may improve the overall wear resistance. However, any coating approach must take account of changes in corrosion behavior. This preliminary assessment analyzes the corrosion kinetics, impedance and mechanical-electrochemical stability of 100 μm thick plasma sprayed chromium oxide (Cr₂O₃) coatings on bearing surfaces in comparison to the native alloy oxide films on Co-Cr-Mo and Ti-6Al-6V. Cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, and mechanical abrasion under potentiostatic conditions were performed on coated and substrate surfaces in physiological saline. SEM analysis characterized the coating morphology. The results showed that the corrosion current density values of chromium oxide coatings (0.4-1.2 μA/cm²) were of the same order of magnitude as Ti-6Al-4V alloy. Mechanical abrasion did not increase corrosion rates of chromium oxide coatings but did for uncoated Co-Cr-Mo and Ti-6Al-4V. The impedance response of chromium oxide coatings was very different than Co-Cr-Mo and Ti-6Al-4V native oxides characterized by a defected coating model. More of a frequency-independent purely resistive response was seen in mid-frequency range for the coatings (CPE(coat) : 40-280 nF/cm² (rad/s)(1-α) , α: 0.67-0.83) whereas a more capacitive character is seen for Co-Cr-Mo and Ti-6Al-4V (CPE(ox) around 20 μF/cm² (rad/s)(1-α) , α around 0.9). Pores, interparticle gaps and incomplete fusion typical for thermal spray coatings were present in these oxides which could have influenced corrosion resistance. The coating microstructure could have allowed some fluid penetration. Overall, these coatings appear to have suitable corrosion properties for wear surfaces.

  3. Effects of MgO and Al2O3 Addition on Redox State of Chromium in CaO-SiO2-CrO x Slag System by XPS Method

    NASA Astrophysics Data System (ADS)

    Wang, Li-jun; Yu, Ji-peng; Chou, Kuo-chih; Seetharaman, Seshadri

    2015-08-01

    The effects of MgO and Al2O3 on the redox state of chromium in CaO-SiO2-CrO x system have been investigated at 1873 K (1600 °C) under Ar-CO-CO2 atmosphere and analyzed by means of X-ray photoelectron spectroscopy. From the analysis of the Cr 2p core level spectra, it was found that both Cr(II) and Cr(III) exist simultaneously in CaO-MgO/Al2O3-SiO2-CrO x , and the quantitative ratio Cr(II)/Cr(III) has been obtained by deducing from the area under the computer-resolved peaks. Substitutions of CaO by MgO, SiO2 by Al2O3 favored the Cr(II) state existing in the system in the composition ranges of 3 to 10 wt pct MgO and 5 to 20 pct Al2O3. Meanwhile, from the analysis of the O1s spectra in CaO-MgO-SiO2-CrO x , it was found that the ratio of the non-bridging oxygen content increased first due to the CrO contribution to the electron distribution uniformly as O- at MgO low content. Afterward, it went to decreasing with continuing addition of MgO because ionic contribution of MgO is less than that of CaO and the influence of the CrO clustering on the non-Bridging oxygen is limited due to only 5 wt pct CrO x . In CaO-Al2O3-SiO2-CrO x system, Cr(II) acts as a network modifier to compensate Al3+ charge balance to make the structure stable, so the non-bridge oxygen in this system continues decreasing.

  4. Chromium substitution in mullite type bismuth aluminate: Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with 0≤x≤2.0

    SciTech Connect

    Debnath, Tapas; Ullah, Ahamed; Rüscher, Claus H.; Hussain, Altaf

    2014-12-15

    Nominal compositions Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with 0.0≤x≤2.0 (Δx=0.2) were prepared using appropriate amounts of nitrates dissolved in glycerine and heated at 800 °C for 24 h as we previously used for the preparation of solid solution series Bi{sub 2}M{sub x}/M′{sub 4−x}O{sub 9} (M/M′=Fe/Al, Ga/Al and Fe/Ga). The samples were characterized using XRD, FTIR and optical microscopic techniques. Analyses of XRD data show mullite type single phase can be prepared up to x=1.2. The lattice parameters (a, b and c) increases with increasing Cr content. Further increase in x (i.e., x≥1.4) show the presence of some additional phases indicating a limiting value for Cr doping is in the range of 1.2≤x<1.4. The effect of Cr incorporation could also be observed in the infrared absorption spectra via systematic hard mode shifts of certain lattice modes, e.g. the Bi–O related vibration changes from 96 cm{sup −1} to 93 cm{sup −1} with increasing x up to 1.2 and certain intensity changes together with shift in peak positions. Interestingly, the absence of any splitting and shift of the high energy IR absorption peak at 821 cm{sup −1} as assigned to the characteristic tetrahedral type dimer, Al{sub 2}O{sub 7}, indicate that the Cr thus partially substitutes only the octahedrally coordinated Al. This is confirmed by Rietveld structure refinements, too. - Graphical abstract: Structural model of Cr doped bismuth aluminate, Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9}. - Highlights: • Chromium doped bismuth aluminate, Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with mullite type structure are synthesized. • The samples are characterized by XRD and FTIR techniques. • Cr can replace only certain amount of octahedrally coordinated Al in Bi{sub 2}Al{sub 4}O{sub 9} under present experimental conditions.

  5. AlGaAs diode pumped tunable chromium lasers

    DOEpatents

    Krupke, William F.; Payne, Stephen A.

    1992-01-01

    An all-solid-state laser system is disclosed wherein the laser is pumped in the longwave wing of the pump absorption band. By utilizing a laser material that will accept unusually high dopant concentrations without deleterious effects on the crystal lattice one is able to compensate for the decreased cross section in the wing of the absorption band, and the number of pump sources which can be used with such a material increases correspondingly. In a particular embodiment a chromium doped colquiriite-structure crystal such as Cr:LiSrAlF.sub.6 is the laser material. The invention avoids the problems associated with using AlGaInP diodes by doping the Cr:LiSrAlF.sub.6 heavily to enable efficient pumping in the longwave wing of the absorption band with more practical AlGaAs diodes.

  6. A chromium precursor for the Phillips ethylene trimerization catalyst: (2-ethylhexanoate)2CrOH.

    PubMed

    Jeon, Jong Yeob; Park, Dong Sik; Lee, Dong Hwan; Eo, Seong Chan; Park, Seong Yeon; Jeong, Myoung Sun; Kang, Yi Young; Lee, Junseong; Lee, Bun Yeoul

    2015-06-28

    The conventional Phillips ethylene trimerization catalyst prepared by reacting Cr(EH)3 (EH = 2-ethylhexanoate), 2,5-dimethylpyrrole (Me2C4H2NH), Et3Al, and Et2AlCl in an aromatic hydrocarbon solvent was improved to obtain a congener composed of a new chromium precursor (EH)2CrOH, (Me2C4H2N)AlEt2, and Et3Al·ClAlEt2. Reaction of CrCl3 with 3 equiv. Na(EH) in water did not generate Cr(EH)3, but unexpectedly produced (EH)2CrOH. In comparison with the erratic catalytic performance of the original Phillips system, due to the ill-defined nature of the Cr(EH)3 source (16 or 6.8 × 10(6) g per mol-Cr h depending on the source), the improved system exhibited consistently high activity (54 × 10(6) g per mol-Cr h). Reaction of (EH)2CrOH with (Me2C4H2N)AlMe2·OEt2 afforded the dimeric Cr(II)-complex (6) coordinated by (η(5)-Me2C4H2N)AlMe2(NC4H2Me2) and μ2-κ(1):η(2)-Me2C4H2N ligands. 6 provided highly active species when activated with Et3Al·ClAlEt2.

  7. Order and disorder around Cr(3+) in chromium doped persistent luminescent AB2O4 spinels.

    PubMed

    Basavaraju, Neelima; Priolkar, Kaustubh R; Gourier, Didier; Bessière, Aurélie; Viana, Bruno

    2015-04-28

    The X-ray absorption near edge structure (XANES) spectroscopy technique is used to better understand the charging and decharging processes of the persistent luminescence in the Cr(3+)doped AB2O4 spinels (A = Zn, Mg and B = Ga and Al) with low photon energy excitation by visible light. Cr K edge XANES spectra have been simulated for different near neighbour environments around the Cr(3+) recombination centres and compared with the experimental curve. In the Cr(3+):ZnGa2O4 compound, the Cr(3+) local structure corresponds mostly to that of a normal spinel (∼70%), while the rest comprises of a distorted octahedral environment arising from cationic site inversion and a contribution from chromium clustering. This local structure is considerably different in Cr(3+):MgGa2O4 and Cr(3+):ZnAl2O4, where, for both cases, chromium clustering represents the main contribution. The strong correlation between the intensity of persistent luminescence and the percentage of Cr in clusters leads us to infer that the presence of Cr clusters is responsible for the decrease of the intensity of the visible light induced persistent luminescence in the Cr(3+) doped AB2O4 spinels.

  8. Chromium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of chromium (Cr) on glucose and insulin metabolism are well documented. Normal dietary intake of Cr appears to be suboptimal because several studies have reported beneficial effects of Cr in people with elevated blood glucose or type 2 diabetes eating conventional diets. Stresses that ...

  9. Effect of chromium on the formation of intermetallic phases in hot-dipped aluminide Cr-Mo steels

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Jen; Wang, Chaur-Jeng

    2013-07-01

    Cr-Mo steels with different chromium contents were coated by hot-dipping into molten baths containing pure aluminum and Al-10 wt.% Si for 180 s. The effect of chromium content in the steels on the formation of the intermetallic phases in the aluminide coatings was studied. The results show that all the aluminide coatings can be distinguished into an outer pure aluminum or Al-Si topcoat and an inner intermetallic layer. The intermetallic layers, resulting from the steels hot-dipped in pure aluminum, have the same phase constitution, an outer minor FeAl3 and an inner major Fe2Al5. In the aluminide coatings on the steels with 0 and 2.25 wt.% chromium after hot-dipping in Al-10 wt.% Si, the intermetallic layers were composed of an outer layer of τ5(H)-Al7(Fe,Cr)2Si and an inner one of FeAl3/τ1-(Al,Si)5Fe3/Fe2Al5, while a small amount of polyhedral τ5(H)-Al7(Fe,Cr)2Si and plate-shaped τ6-Al4FeSi were observed in the Al-Si topcoats. In the aluminide coatings on the steels with 5 and 9 wt.% chromium after hot-dipping in Al-10 wt.% Si, the intermetallic layers were composed of only a τ5(H)-Al7(Fe,Cr)2Si phase. A large amount of scattered granular τ5(C)-Al7(Fe,Cr)2Si and a small amount of plate-shaped τ4-Al3FeSi2 and τ6-Al4FeSi were also found in the Al-Si topcoats. When the chromium content reached 5 wt.%, the amount of steel, which dissolved when samples were hot-dipped in Al-10 wt.% Si, increased. Also, the rate of dissolving went up as chromium content went up. The increase of dissolution is because the interdiffusion between steels and Al-10 wt.% Si bath was enhanced by the formation of scattered granular τ5(C)-Al7(Fe,Cr)2Si, which was stabilized by chromium.

  10. Tissue accumulation and urinary excretion of Cr in chromium picolinate (CrPic)-supplemented lambs.

    PubMed

    Dallago, Bruno Stéfano Lima; Lima, Bárbara Alcântara Ferreira; Braz, Shélida Vasconcelos; Mustafa, Vanessa da Silva; McManus, Concepta; Paim, Tiago do Prado; Campeche, Aline; Gomes, Edgard Franco; Louvandini, Helder

    2016-05-01

    Chromium (Cr) concentrations in liver, kidney, spleen, heart, lymph node, skeletal muscle, bone, testis and urine of lambs were measured to trace the biodistribution and bioaccumulation of Cr after oral supplementation with chromium picolinate (CrPic). Twenty-four Santa Inês lambs were treated with four different concentrations of CrPic: placebo, 0.250, 0.375 and 0.500 mg of CrPic/animal/day for 84 days. The basal diet consisted of Panicum maximum cv Massai hay and concentrate. Cr concentrations were measured by ICP-MS measuring (52)Cr as collected mass. There was a positive linear relationship between dose administered and the accumulation of Cr in the heart, lungs and testis. Urinary excretion of Cr occurred in a time and dose-dependent manner, so the longer or more dietary Cr provided, the greater excretion of the element. As some non-carcass components (such as lungs or heart) are added to bone and visceral meal to feed animals, there is a risk of bioaccumulation and biomagnification due to Cr offered as CrPic in the diet.

  11. Using chromium stable isotope ratios to quantify Cr(VI) reduction: Lack of sorption effects

    USGS Publications Warehouse

    Ellis, A.S.; Johnson, T.M.; Bullen, T.D.

    2004-01-01

    Chromium stable isotope values can be effectively used to monitor reduction of Cr(VI) in natural waters. We investigate effects of sorption during transport of Cr(VI) which may also shift Cr isotopes values, complicating efforts to quantify reduction. This study shows that Cr stable isotope fractionation caused by sorption is negligible. Equilibrium fractionation of Cr stable isotopes between dissolved Cr-(VI) and Cr(VI) adsorbed onto ??-Al2O3 and goethite is less than 0.04???. (53Cr/52Cr) under environmentally relevant pH conditions. Batch experiments at pH 4.0 and pH 6.0 were conducted in series to sequentially magnify small isotope fractionations. A simple transport model suggests that adsorption may cause amplification of a small isotope fractionation along extreme fringes of a plume, leading to shifts in 53Cr/52Cr values. We therefore suggest that isotope values at extreme fringes of Cr plumes be critically evaluated for sorption effects. A kinetic effect was observed in experiments with goethite at pH 4 where apparently lighter isotopes diffuse into goethite clumps at a faster rate before eventually reaching equilibrium. This observed kinetic effect may be important in a natural system that has not attained equilibrium and is in need of further study. Cr isotope fractionation caused by speciation of Cr(VI) between HCrO4- and CrO42- was also examined, and we conclude that it is not measurable. In the absence of isotope fractionation caused by equilibrium speciation and sorption, most of the variation in ??53 Cr values may be attributed to reduction, and reliable estimates of Cr reduction can be made.

  12. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be...

  13. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be...

  14. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be...

  15. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be...

  16. Two-Phase (TiAl+TiCrAl) Coating Alloys for Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialek, James L. (Inventor); Brindley, William J. (Inventor)

    1998-01-01

    A coating for protecting titanium aluminide alloys, including the TiAl gamma + Ti3Al (alpha(sub 2)) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C. is disclosed. This protective coating consists essentially of titanium, aluminum. and chromium in the following approximate atomic ratio: Ti(41.5-34.5)Al(49-53)Cr(9.5-12.5)

  17. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  18. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Chromium (Cr III) complex of N-ethyl-N... Substances for Use Only as Components of Paper and Paperboard § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium (Cr III) complex of N-ethyl -...

  19. Bioadsorption and bioaccumulation of chromium trivalent in Cr(III)-tolerant microalgae: a mechanisms for chromium resistance.

    PubMed

    Pereira, M; Bartolomé, M C; Sánchez-Fortún, S

    2013-10-01

    Anthropogenic activity constantly releases heavy metals into the environment. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. While hexavalent chromium uptake in plant cells has been reported that an active process by carrying essential anions, the cation Cr(III) appears to be taken up inactively. Dictyosphaerium chlorelloides (Dc1M), an unicellular green alga is a well-studied cell biological model organism. The present study was carried out to investigate the toxic effect of chromium exposures on wild-type Cr(III)-sensitive (Dc1M(wt)) and Cr(III)-tolerant (Dc1M(Cr(III)R30)) strains of these green algae, and to determine the potential mechanism of chromium resistance. Using cell growth as endpoint to determine Cr(III)-sensitivity, the IC₅₀(₇₂) values obtained show significant differences of sensitivity between wild type and Cr(III)-tolerant cells. Scanning electron microscopy (SEM) showed significant morphological differences between both strains, such as decrease in cell size or reducing the coefficient of form; and transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization and cell wall thickening in the Cr(III)-tolerant strain with respect to the wild-type strain. Energy dispersive X-ray analysis (SEM/XEDS) revealed that Cr(III)-tolerant D. chlorelloides cells are able to accumulate considerable amounts of chromium distributed in cell wall (bioadsorption) as well as in cytoplasm, vacuoles, and chloroplast (bio-accumulation). Morphological changes of Cr(III)-tolerant D. chlorelloides cells and the presence of these electron-dense bodies in their cell structures can be understood as a Cr(III) detoxification mechanism.

  20. Reduction of Health Risks Due to Chromium(VI)Using Mesquite: A Potential Cr Phytoremediator

    SciTech Connect

    Gardea-Torresdey, Jorge L.; Aldrich, Mary V.; Peralta-Videa, Jose R.; Parsons, Jason G.

    2004-03-29

    Chromium is a transition metal extensively used in industry. Cr mining and industrial operations account for chromium wastes at Superfund sites in the United States. A study was performed to investigate the possibility of using mesquite (Prosopis spp.), which is an indigenous desert plant species, to remove Cr from contaminated sites. In this study, mesquite plants were grown in an agar-based medium containing 75 mg L-1 and 125 mg L-1 of Cr(VI). The Cr content of leaf tissue (992 mg kg-1 of dry weight, from 125 mg L-1 of Cr(VI)) indicated that mesquite could be classified as a chromium hyperaccumulator. X-ray absorption spectroscopy (XAS) studies performed to experimental samples showed that mesquite roots absorbed some of the supplied Cr(VI). However, the data analyses of plant tissues demonstrated that the absorbed Cr(VI) was fully reduced to Cr(III) in the leaf tissue.

  1. Cr3+ NMR for Multiferroic Chromium spinel ZnCr2Se4

    NASA Astrophysics Data System (ADS)

    Park, Sejun; Kwon, Sangil; Lee, Soonchil; Khim, Seunghyun; Bhoi, Dilip Kumar; Kim, Kee Hoon

    Multiferroic systems including ZnCr2Se4, the chromium spinel with helical spin structure, have been in huge interest for decades due to its physical variety and applicability. In the temperature range between 21K and 80K, this material shows negative thermal expansion. Due to the bond frustration, the spins of the chromium ions order helically below the transition temperature, 21K, though the exchange constant tends to make a ferro-order. The anomalous 1storder-like magnetic transition is yet clarified and still an interesting topic. To probe microscopic origin of these features, we measured zero-field NMR of Cr3+ ions having nuclear spin 3/2. Six peaks were observed revealing Nuclear Quadrupole Resonance(NQR) and anisotropic hyperfine field at chromium sites. The NQR spectrum reveals that the structure is highly distorted below the magnetic transition temperature where the normal Jahn-Teller distortion is absent. Temperature dependence of the spectrum is also measured to obtain the magnetization as a function of temperature.

  2. Chromium isotope variation along a contaminated groundwater plume: a coupled Cr(VI)- reduction, advective mixing perspective

    NASA Astrophysics Data System (ADS)

    Bullen, T.; Izbicki, J.

    2007-12-01

    Chromium (Cr) is a common contaminant in groundwater, used in electroplating, leather tanning, wood preservation, and as an anti-corrosion agent. Cr occurs in two oxidation states in groundwater: Cr(VI) is highly soluble and mobile, and is a carcinogen; Cr(III) is generally insoluble, immobile and less toxic than Cr(VI). Reduction of Cr(VI) to Cr(III) is thus a central issue in approaches to Cr(VI) contaminant remediation in aquifers. Aqueous Cr(VI) occurs mainly as the chromate (CrO22-) and bichromate (HCrO2-) oxyanions, while Cr(III) is mainly "hexaquo" Cr(H2O)63+. Cr has four naturally-occurring stable isotopes: 50Cr, 52Cr, 53Cr and 54Cr. When Cr(VI) is reduced to Cr(III), the strong Cr-O bond must be broken, resulting in isotopic selection. Ellis et al. (2002) demonstrated that for reduction of Cr(VI) on magnetite and in natural sediment slurries, the change of isotopic composition of the remnant Cr(VI) pool was described by a Rayleigh fractionation model having fractionation factor ɛCr(VI)-Cr(III) = 3.4‰. We attempted to use Cr isotopes as a monitor of Cr(VI) reduction at a field site in Hinkley, California (USA) where groundwater contaminated with Cr(VI) has been under assessment for remediation. Groundwater containing up to 5 ppm Cr(VI) has migrated down-gradient from the contamination source through the fluvial to alluvial sediments to form a well-defined plume. Uncontaminated groundwater in the aquifer immediately adjacent to the plume has naturally-occurring Cr(VI) of 4 ppb or less (CH2M-Hill). In early 2006, colleagues from CH2M-Hill collected 17 samples of groundwater from within and adjacent to the plume. On a plot of δ53Cr vs. log Cr(VI), the data array is strikingly linear and differs markedly from the trend predicted for reduction of Cr(VI) in the contaminated water. There appear to be two groups of data: four samples with δ53Cr >+2‰ and Cr(VI) <4 ppb, and 13 samples with δ53Cr <+2‰ and Cr(VI) >15 ppb. Simple mixing lines between the

  3. New mixed-valence chromium structure type: NH{sub 4}Cr(CrO{sub 4}){sub 2}

    SciTech Connect

    Casari, Barbara M. . E-mail: casari@chem.gu.se; Wingstrand, Erica; Langer, Vratislav

    2006-01-15

    Synthesis and crystal structure of a new structure type of mixed Cr(III)/Cr(VI) chromates is reported. NH{sub 4}Cr(CrO{sub 4}){sub 2} was prepared from CrO{sub 3} in the presence of (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6}. Since this is the first preparation of mixed valence ternary chromium oxides from aqueous solution, a reaction pathway for this synthesis is suggested. The crystal structure of NH{sub 4}Cr(CrO{sub 4}){sub 2} has been determined from three-dimensional X-ray data collected at low temperature, 173K. The structure belongs to the orthorhombic space group Pnma, with a=14.5206(10), b=5.4826(4), c=8.7041(7)A and Z=4. The title compound consists of corner-sharing chromium(III) octahedra and chromium(VI) tetrahedra forming a three-dimensional network with the composition [Cr(CrO{sub 4}){sub 2}]{sub n}{sup n-}, containing channels in which zigzag rows of ammonium ions balance the net charge.

  4. Chromium uptake and adsorption in cultured marine phytoplankton - implications for the marine Cr cycle

    NASA Astrophysics Data System (ADS)

    Semeniuk, D.; Maldonado, M. T.; Jaccard, S.

    2015-12-01

    While chromium (Cr) is a known carcinogen and pervasive industrial contaminant, little is known about the processes that affect the distribution and speciation of Cr in uncontaminated seawater. Given the recent development and application of the stable Cr isotope system in the marine environment, a full account of the sources, sinks, and internal processes affecting the modern marine Cr cycle is prudent. Using the radioisotope 51Cr, we investigated the controls of cellular Cr accumulation in an array of marine phytoplankton grown in environmentally relevant Cr concentrations (1-10 nM). Given the affinity of Cr(III) for amorphous Fe-hydroxide mineral surfaces, and the formation of these mineral phases on the outside of phytoplankton cells, extracellular Cr was monitored in a model diatom species (Thalassiosira weissflogii) as extracellular Fe concentrations varied. Extracellular Cr in T. weissflogii increased with increasing extracellular Fe, demonstrating that Cr may be removed from seawater via extracellular adsorption to phytoplankton. Short-term Cr(VI) and Cr(III) uptake experiments performed with T. weissflogii demonstrated that Cr(III) both adsorbed to and was internalized by the cells ~20x faster than Cr(VI). This suggests that Cr(III) is the dominant oxidation state associated with phytoplankton cells. Cellular Cr:C ratios (<0.5 µmol Cr mol C-1) of the nine phytoplankton species surveyed were significantly lower than previously reported Cr:C ratios of sinking particulate organic matter (~500 µmol Cr mol C-1). Thus, Cr accumulates in sinking particles- likely as Cr(III) - as it travels to the seafloor. Given the large fractionation of stable Cr isotopes during Cr(VI) reduction, Cr associated with exported phytoplankton may be enriched in lighter Cr isotopes. These data will assist investigators using stable Cr isotopes to examine past and present Cr biogeochemical cycles.

  5. Remediation of chromium-slag leakage with electricity cogeneration via a urea-Cr(VI) cell

    PubMed Central

    Yu, Binbin; Zhang, Huimin; Xu, Wei; Li, Gang; Wu, Zucheng

    2014-01-01

    Chromium pollution has been historically widespread throughout the world. Most available remediation technologies often require energy consumption. This study is aimed to develop electrochemical remediation for Cr(VI) in chromium-slag leakage with self-generated electricity. Dynamic leaching experiments of chromium-slag samples were conducted to survey the release and leaching behavior of Cr(VI). Based on previous work, a unique urea-Cr(VI) was designed, in which urea was employed as the fuel and Cr(VI) from the leakage of the dichromate slag served as the oxidant. Furthermore, the electrochemical results showed that the removal percent of Cr(VI) was more than 96% after 18 h with the leakage Cr(VI) concentration of 2.69 mM. The open circuit potential (OCP) varied in the range of 1.56 ~ 1.59 V under different initial Cr(VI) leakage concentrations. The approach explores the feasibility of the promising technique without the need of energy input for simultaneous chromium-slag remediation and generation of electricity. PMID:25168513

  6. Remediation of chromium-slag leakage with electricity cogeneration via a urea-Cr(VI) cell.

    PubMed

    Yu, Binbin; Zhang, Huimin; Xu, Wei; Li, Gang; Wu, Zucheng

    2014-08-29

    Chromium pollution has been historically widespread throughout the world. Most available remediation technologies often require energy consumption. This study is aimed to develop electrochemical remediation for Cr(VI) in chromium-slag leakage with self-generated electricity. Dynamic leaching experiments of chromium-slag samples were conducted to survey the release and leaching behavior of Cr(VI). Based on previous work, a unique urea-Cr(VI) was designed, in which urea was employed as the fuel and Cr(VI) from the leakage of the dichromate slag served as the oxidant. Furthermore, the electrochemical results showed that the removal percent of Cr(VI) was more than 96% after 18 h with the leakage Cr(VI) concentration of 2.69 mM. The open circuit potential (OCP) varied in the range of 1.56 ~ 1.59 V under different initial Cr(VI) leakage concentrations. The approach explores the feasibility of the promising technique without the need of energy input for simultaneous chromium-slag remediation and generation of electricity.

  7. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    DOE PAGES

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; ...

    2015-07-14

    The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition.more » Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.« less

  8. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    SciTech Connect

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; Yamamoto, Yukinori; Snead, Lance Lewis

    2015-07-14

    The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition. Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.

  9. The 1200 C cyclic oxidation behavior of two nickel-aluminum alloys (Ni3AL and NiAl) with additions of chromium, silicon, and titanium

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Santoro, G. J.

    1972-01-01

    The alloys Ni3Al and NiAl with and without 1 and 3 atomic percent chromium, silicon, and titanium replacing the aluminum were cyclically oxidized at 1200 C for times to 200 hours, and the results were compared with those obtained with the alloy B-1900 subjected to the same oxidation process. The evaluation was based on metal recession, specific weight change, metallography, electron microprobe analysis, and X-ray diffraction. The oxidation resistance of Ni3Al was improved by Si, unaffected by Ti, and degraded by Cr. The oxidation resistance of NiAl was slightly improved by Ti, unaffected by Si, and degraded by Cr. The oxidation resistance of Ni3Al with 1 atomic percent Si was nearly equal to that of NiAl. Alloy B-1900 exhibited oxidation resistance comparable to that of Ni3Al + Cr compositions.

  10. Bioremediation of chromium by the yeast Pichia guilliermondii: toxicity and accumulation of Cr (III) and Cr (VI) and the influence of riboflavin on Cr tolerance.

    PubMed

    Ksheminska, Helena; Jaglarz, Anita; Fedorovych, Daria; Babyak, Lyubov; Yanovych, Dmytro; Kaszycki, Pawel; Koloczek, Henryk

    2003-01-01

    A comparative study has been made on the sensitivity of the yeast Pichia guilliermondii to Cr (III) and Cr (VI) as well as on the Cr uptake potential at growth-inhibitory concentrations of chromium. The strains used in the study were either isolated from natural sources or obtained from a laboratory strain collection. The results show that most of the natural strains were more tolerant to chromium and were able to grow in the presence of 5 mM Cr (III) or 0.5 mM Cr (VI), that is at concentrations which substantially inhibited the growth of laboratory strains. The cellular Cr content after treatment was similar for both strain types and ranged from 1.2-4.0 mg/g d.w. and 0.4-0.9 mg/g d.w., for Cr (III) and Cr (VI) forms, respectively, however, in one case of a natural strain it reached the value of 10 mg Cr (III)/g dry mass. Natural-source strains were grouped into four groups based on the yeasts' differential response to Cr (III) and Cr (VI). Hexavalent Cr-resistant mutants of a P. giuilliermondii laboratory strain, which revealed markedly changed capabilities of chromium accumulation, were obtained by means of UV-induced mutagenesis. Cr (VI) treatment triggered oversynthesis of riboflavin and the addition of exogenous riboflavin increased P. guilliermondii resistance to both Cr (III) and Cr (VI). Electrophoretic protein profiles revealed the induction and/or suppression of several proteins in response to toxic Cr (VI) levels.

  11. Surface decoration through electrostatic interaction leading to enhanced reactivity: Low temperature synthesis of nanostructured chromium borides (CrB and CrB{sub 2})

    SciTech Connect

    Menaka,; Kumar, Bharat; Kumar, Sandeep; Ganguli, A.K.

    2013-04-15

    The present study describes a novel low temperature route at ambient pressure for the synthesis of nanocrystalline chromium borides (CrB and CrB{sub 2}) without using any flux or additives. The favorable and intimate mixing of nanoparticles of chromium acetate (Cr source) and boron forms an active chromium–boron precursor which decomposes at much lower temperature (400 °C) to form CrB (which is ∼1000 °C less than the known ambient pressure synthesis). The chromium acetate nanoparticles (∼5 nm) decorate the larger boron particles (150–200 nm) due to electrostatic interactions resulting from opposing surface charges of boron (zeta potential:+48.101 mV) and chromium acetate (zeta potential:−4.021 mV) in ethanolic medium and is evident in the TEM micrographs. The above method leads to the formation of pure CrB film like structure at 400 °C and nanospheres (40–60 nm) at 600 °C. Also, chromium diboride (CrB{sub 2}) nanoparticles (25 nm) could be obtained at 1000 °C. - Graphical abstract: Variation of surface charge of reactants, precursor and the products, chromium borides (CrB and CrB{sub 2}). Highlights: ► Novel borothermal reduction process for synthesis of chromium boride. ► Significant lowering of reaction temperature to obtain nanocrystalline chromium boride. ► Enhanced reactivity due to appropriate surface interactions.

  12. Evolution of exchange interaction constants across magnetic phase transitions in the chromium spinel oxide CdCr2O4

    NASA Astrophysics Data System (ADS)

    Kimura, Shojiro; Sawada, Yuya; Narumi, Yasuo; Watanabe, Kazuo; Hagiwara, Masayuki; Kindo, Koichi; Ueda, Hiroaki

    2015-10-01

    High field electron spin resonance (ESR) and magnetization measurements reveal the crucial role of the strong spin-lattice coupling to generate the peculiar phase transitions in the chromium spinel oxide CdCr2O4 , which possesses a spin-driven Jahn-Teller transition and a field-induced 1/2-magnetization plateau state. From our analysis of the ESR modes and the spin wave dispersion, which was observed from the previous neutron scattering studies, these magnetic properties are shown to originate from the modifications of the exchange interactions due to the lattice distortions. The evaluated exchange constants are examined by the magnetoelastic theory proposed by Penc et al .

  13. Luminescence Spectra of ZnAl 2 O 4 {:}Cr 3+ Spinel Nanopowders

    NASA Astrophysics Data System (ADS)

    Luc, H. H.; Nguyen, T. K.; Nguyen, V. M.; Suchocki, A.; Kamiñska, A.; Le, V. K.; Nguyen, V. H.; Luong, T. T.

    2002-12-01

    The synthetic ZnAl 2 O 4 spinels doped with Cr 3+ ions are prepared from ZnSO,dwi{4}>, Al 2 (SO 4 ) 3 , and Cr 2 (SO 4 ) 3 . The spinel single phase is detected from X-ray diffraction. Luminescence properties of Cr 3+ in ZnAl 2 O 4 were studied by low temperature luminescence and decay measurements. Four luminescence lines at 14570, 14520, 14460, and 14330 cm -1 were found to originate from structure distortion and the line at 14175 cm -1 - from chromium pairs. The broad emission band at about 13540 cm -1 is considered to arise from a new Cr 3+ center in ZnCr 2 O 4 .

  14. Chromium Extraction via Chemical Processing of Fe-Cr Alloys Fine Powder with High Carbon Content

    NASA Astrophysics Data System (ADS)

    Torres, D. M.; Navarro, R. C. S.; Souza, R. F. M.; Brocchi, E. A.

    2017-03-01

    Ferrous alloys are important raw materials for special steel production. In this context, alloys from the Fe-Cr system, with typical Cr weight fraction ranging from 0.45 to 0.95, are prominent, particularly for the stainless steel industry. During the process in which these alloys are obtained, there is considerable production of fine powder, which could be reused after suitable chemical treatment, for example, through coupling pyrometallurgical and hydrometallurgical processes. In the present study, the extraction of chromium from fine powder generated during the production of a Fe-Cr alloy with high C content was investigated. Roasting reactions were performed at 1073 K, 1173 K, and 1273 K (800 °C, 900 °C, and 1000 °C) with 300 pct (w/w) excess NaOH in an oxidizing atmosphere (air), followed by solubilization in deionized water, selective precipitation, and subsequent calcination at 1173 K (900 °C) in order to convert the obtained chromium hydroxide to Cr2O3. The maximum achieved Cr recovery was around 86 pct, suggesting that the proposed chemical route was satisfactory regarding the extraction of the chromium initially present. Moreover, after X-ray diffraction analysis, the final produced oxide has proven to be pure Cr2O3 with a mean crystallite size of 200 nm.

  15. Cr(VI) resistance and removal by indigenous bacteria isolated from chromium-contaminated soil.

    PubMed

    Long, Dongyan; Tang, Xianjin; Cai, Kuan; Chen, Guangcun; Shen, Chaofeng; Shi, Jiyan; Chen, Linggui; Chen, Yingxu

    2013-08-01

    The removal of toxic Cr(VI) by microorganisms is a promising approach for Cr(VI) pollution remediation. In the present study, four indigenous bacteria, named LY1, LY2, LY6, and LY7, were isolated from Cr(VI)-contaminated soil. Among the four Cr(VI)-resistant isolates, strain LY6 displayed the highest Cr(VI)-removing ability, with 100 mg/l Cr(VI) being completely removed within 144 h. It could effectively remove Cr(VI) over a wide pH range from 5.5 to 9.5, with the optimal pH of 8.5. The amount of Cr(VI) removed increased with initial Cr(VI) concentration. Data from the time-course analysis of Cr(VI) removal by strain LY6 followed first-order kinetics. Based on the 16S rRNA gene sequence, strain LY6 was identified as Pseudochrobactrum asaccharolyticum, a species that had never been reported for Cr(VI) removal before. Transmission electron microscopy and energy dispersive X-ray spectroscopy analysis further confirmed that strain LY6 could accumulate chromium within the cell while conducting Cr(VI) removal. The results suggested that the indigenous bacterial strain LY6 would be a new candidate for potential application in Cr(VI) pollution bioremediation.

  16. Enhanced oxidative vaporization of Cr2O3 and chromium by oxygen atoms

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1974-01-01

    Rates of oxidative vaporization of Cr2O3 have been found to be markedly enhanced in the presence of oxygen atoms. Investigations were conducted over the temperature range 200-1250 C. For Cr2O3 the enhancement was about 10 to the 9th power at 550 C in oxygen containing 2.5% atoms. Rapid oxidative vaporization of bare chromium was observed below 800 C, the rate being about one-half that of Cr2O3. Results are interpreted in terms of thermochemical analysis.

  17. Chromium.

    PubMed

    Barceloux, D G

    1999-01-01

    Chromium occurs primarily in the trivalent state (III), which is the most stable form, or in the hexavalent state (VI), which is a strong oxidizing agent. Elemental chromium (0) does not occur naturally on earth. Trivalent chromium (III) is an essential trace metal necessary for the formation of glucose tolerance factor and for the metabolism of insulin. Commercial applications of chromium compounds include tanning (III), corrosion inhibition, plating, glassware-cleaning solutions, wood preservatives (VI), manufacture of safety matches, metal finishing (VI), and the production of pigments (III, VI). Hexavalent chromium (VI) contaminated local soil when chromium waste slag was part of the fill material present in residential, public, and industrial areas. In some urban areas, about two-thirds of the chromium in air results from the emission of hexavalent chromium from fossil fuel combustion and steel production. The remaining chromium in air is the trivalent form. The residence time of chromium in air is < 10 days, depending on the particle size. Trivalent compounds generally have low toxicity and the gastrointestinal tract poorly absorbs these compounds. Hexavalent chromium is a skin and mucous membrane irritant and some of these hexavalent compounds are strong corrosive agents. Hexavalent chromium compounds also produce an allergic contact dermatitis characterized by eczema. Sensitivity to trivalent compounds is much less frequent, but some workers may react to high concentrations of these compounds. Hexavalent chromium is recognized by the International Agency for Research on Cancer and by the US Toxicology Program as a pulmonary carcinogen. The increased risk of lung cancer occurs primarily in workers exposed to hexavalent chromium dust during the refining of chromite ore and the production of chromate pigments. Although individual studies suggest the possibility of an excess incidence of cancer at sites outside the lung, the results from these studies are

  18. Simultaneous analysis of Cr(III), Cr(VI), and chromium picolinate in foods using capillary electrophoresis-inductively coupled plasma mass spectrometry.

    PubMed

    Chen, YiQuan; Chen, JinFa; Xi, Zhiming; Yang, Guidi; Wu, Zujian; Li, JianRong; Fu, FengFu

    2015-05-01

    We herein reported a method for the simultaneous detection of trace Cr(VI), Cr(III), and chromium(III) picolinate (CrPic) in foods using CE-ICP-MS together with ultrasonic-assisted extraction. The Cr(III) (Cr(3+) ) was chelated with trans-1,2-diaminocyclohexane-N,N,N´,N´-tetraacetic acid (DCTA) to form a single charged Cr-DCTA(-) complex. Then, Cr(VI) (CrO4 (2-) ), Cr-DCTA(-) , and CrPic were separated by CE within 8 min under a separation voltage of -13 KV followed by their monitoring with ICP mass spectrometer (ICP-MS). The proposed method is simple, effective, and sensitive. It has an instrument detection limit of 0.10, 0.18, and 0.20 ngCr/mL for Cr(VI), Cr(III), and CrPic, respectively. With the help of the methods, we have successfully determined Cr(VI), Cr(III), and CrPic in nutritional supplement (CrPic yeast tablet) with an RSD (n = 5) <6% and a recovery of 93-103%. The experimental results showed that CrPic was the main speciation of chromium in the nutritional supplement, with a concentration of 1514.6 μg Cr/g.

  19. The chromium accumulation and its physiological effects in juvenile rockfish, Sebastes schlegelii, exposed to different levels of dietary chromium (Cr(6+)) concentrations.

    PubMed

    Kim, Jun-Hwan; Kang, Ju-Chan

    2016-01-01

    Juvenile rockfish (mean length 13.7±1.7 cm, and mean weight 55.6±4.8 g) were exposed for 4 weeks with the different levels of dietary chromium (Cr(6+)) at 0, 30, 60, 120 and 240 mg/kg. The profile of chromium in the tissues of rockfish is dependent on the exposure periods and chromium concentration. After 4 weeks, the order of chromium accumulation in tissues was liver>kidney>spleen>intestine>gill>muscle. The dietary chromium exposure decreased the growth rate and hepatosomatic index of rockfish. The major hematological findings were significant decrease in the red blood cell (RBC) count, hematocrit (Ht) value, and hemoglobin (Hb) concentration exposed to ≥120 mg/kg chromium concentrations. The dietary chromium exposure (≥120 mg/kg) led to notable increase in glucose, cholesterol, glutamic oxalate transaminase (GOT), and glutamic pyruvate transaminase (GPT) in plasma, whereas there was no considerable change in calcium, magnesium, total protein, and alkaline phosphatase (ALP). The results indicated that the dietary chromium exposure to rockfish can induce significant chromium accumulation in the specific tissues, inhibition of growth, and hematological alterations.

  20. The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance

    NASA Astrophysics Data System (ADS)

    Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini

    2012-06-01

    Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.

  1. Surface precipitation of chromium in rapidly solidified Cu-Cr alloys

    NASA Astrophysics Data System (ADS)

    Bizjak, Milan; Karpe, Blaž; Jakša, Gregor; Kovač, Janez

    2013-07-01

    Rapidly solidified ribbons of Cu-Cr alloys with 2.27 and 4.20 at.% of chromium were produced using the melt-spinning method. Alloys were analyzed by electron microscopy for complete solubility of Cr in copper matrix. To avoid disturbing effects of Cr phase particles, the kinetics and the sequence of microstructural transformations during heating were analyzed only the sample with 2.27 at.% of chromium with complete Cr solubility in the copper matrix. We then investigated the precipitation process for this alloy that was subsequently heated at a constant rate. The increased solid solubility obtained allowed the extensive precipitation of a Cr-rich phase. The kinetics and the sequence of microstructural changes that occurred during the heating were analyzed using an in situ measurement of the electrical resistance. The quenched microstructure was analyzed at transition points using scanning and transmission electron microscopy. X-ray photoelectron spectroscopy, as a very surface-sensitive method, was applied to study the changes in the chemical composition of the surface for the Cu-Cr alloy ribbons in the temperature range 400-700 °C during an in situ heat treatment in an ultra-high vacuum. The results show a relatively rapid precipitation of chromium to the surface, which starts at 400 °C and is correlated with a change in the microstructure and the electrical resistance. The Cr-precipitation is faster at higher temperatures and follows the parabolic law. The resistivity results for the supersaturated binary alloy were analyzed using the Ozawa method to give an activation energy for the precipitation of 196 ± 10 kJ mol-1.

  2. Chromium isotope inventory of Cr(VI)-polluted groundwaters at four industrial sites in Central Europe

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Martinkova, Eva; Chrastny, Vladislav; Stepanova, Marketa; Curik, Jan; Szurmanova, Zdenka; Cron, Marcel; Tylcer, Jiri; Sebek, Ondrej

    2016-04-01

    Chromium is one of the most toxic elements, especially in its dissolved Cr(VI) form. In the Czech Republic (Central Europe), massive contamination of groundwater has been reported at more than 200 industrial operations. Under suitable conditions, i.e., low Eh, and high availability of reductive agents, Cr(VI) in groundwater may be spontaneously reduced to solid, largely non-toxic Cr(III). This process is associated with a Cr isotope fractionation, with the residual liquid Cr(VI) becoming enriched in the heavier isotope 53Cr. At industrial operations that have been closed and/or where no further leakage of Cr(VI) occurs, the contaminated groundwater plume may be viewed as a closed system. At such sites, an increasing degree of Cr(VI) reduction should result in an increasing del53/52Cr value of the residual liquid. Here we present del53/52Cr systematics at four contaminated Czech sites, focusing on groundwaters. At two of the four sites (Zlate Hory, Loucna) we were also able to analyze the source of contamination. Chromium in the electroplating solutes was isotopically relatively light, with del53/52Cr values <1 per mil. At the remaining two sites (Letnany and Velesin), the Cr isotope signature of the source of contamination was not known. At all four sites, most del53/52Cr values were positive, with means higer than 1 per mil: At Zlate Hory, del53/52Cr ranged between -2.2 and +3.0 per mil (mean of +1.5 per mil); at Loucna, del53/52Cr ranged between 0 and +4.0 per mil (mean of +1.7 per mil); at Letnany, del53/52Cr ranged between +2.0 and +4.5 per mil (mean of +3.2 per mil); and at Velesin, del53/52Cr ranged between +0.5 and +4.5 per mil (mean of +2.7 per mil). Cr(VI) reduction may proceed at Zlate Hory and Loucna, where del53/52Cr(VI) values in groundwater were on average higher than those of the contamination source. At these two sites, our Cr isotope data are not consistent with the existing estimates of the amount of dissolved and precipitated Cr: The pool size of

  3. Study of Chromium Activity in the Cr-Fe-N System by Galvanic Cell Method

    NASA Astrophysics Data System (ADS)

    Xie, Jiaying; Teng, Lidong; Chen, Nanxian; Seetharaman, Seshadri

    2010-01-01

    In the present work, the Cr-Fe-N alloys with different compositions were synthesized by nitriding the Cr-Fe powder mixtures in the purified nitrogen gas (101,325 Pa) at 1473 K for 2 weeks. The phase relationships in the synthesized alloys and the alloys equilibrated at 1173 K were carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The nitrogen content in the alloys equilibrated in the nitrogen gas (101,325 Pa) at 1173 K was analyzed using the inert-gas fusion thermal conductivity (IGFTC) method. The thermodynamic activities of Cr in Fe-Cr-N alloys were measured in the temperature range 973 to 1123 K using the solid-state galvanic cell technique with CaF2 single crystal as the solid electrolyte. Based on the measured EMF values, the chromium activities in the alloys were calculated with respect to pure Cr with bcc structure as the standard state. The effect of nitrogen on Cr activities in the Cr-Fe-N system was examined by comparing the experimental results of the Cr activities in the Cr-Fe and Cr-Fe-C systems.

  4. Microstructure and Sliding Wear Performance of Cr7C3-(Ni,Cr)3(Al,Cr) Coating Deposited from Cr7C3 In Situ Formed Atomized Powder

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Bin; Shen, Jie; Gao, Feng; Yu, Yueguang; Li, Changhai

    2017-01-01

    This work is aimed at developing a new type of Cr7C3-(Ni,Cr)3(Al,Cr) coating for parts used in heavy-duty diesel engines. The feedstock, in which the stripe-shaped Cr7C3 was in situ formed, was firstly prepared by vacuum melting and gas atomization and then subjected by high-velocity oxy-fuel spraying to form the coatings. The carbon content, microstructure and phase constitution of the powders, as well as the sprayed coatings, were analyzed by chemical analysis, SEM and XRD. The hardness and sliding wear performance of the sprayed coatings were also tested and compared to a commercial Cr3C2-NiCr coating used on piston rings. The results showed that the content of carbon in feedstock was almost the same as designed, and that the volume content of in situ formed Cr7C3 was increased with carbon and chromium added. The major phases of the powders and sprayed coatings are Cr7C3 and Cr-alloyed Ni3Al. Only a small amount of carbon lost during the spraying process. As Cr7C3 content increased in the coatings, the microhardness at room temperature was firstly increased to about 1000Hv0.3. The microhardness of the coatings stayed almost constant, while the testing temperature was raised up to 700 °C for 0.5 h, which illustrates the potential application of the investigated coatings under high temperature conditions. The coatings containing 70 and 77 vol.% Cr7C3 showed the most promising wear resistance, lower friction coefficient and better tribological compatibility to gray cast iron counterpart than other tested Cr7C3-(Ni,Cr)3(Al,Cr) coatings and the reference Cr3C2-NiCr coating.

  5. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain

    PubMed Central

    Mishra, Susmita

    2010-01-01

    Background: Hexavalent chromium [Cr(VI)], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI) compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter). Materials and Methods: Our investigation involved microbial remediation of Cr(VI) without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI) were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30°C. At about 50 mg/L initial Cr(VI) concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI). PMID:20976016

  6. Thoria stability in TD-NiCr at high temperatures in the presence of chromium in solution.

    NASA Technical Reports Server (NTRS)

    Dalal, H.; Grant, N. J.

    1973-01-01

    Study of the influence of chromium in solid solution on the coarsening of ThO2 in TD-NiCr. Comparisons were made of ThO2 coarsening in chromium-free TD-Ni and in TD-NiCr, which is known to be low in Cr2O3 as a contaminant. The results of these comparisons indicate that the presence of 20% Cr in solid solution in a nickel-base alloy does not lead to a more rapid coarsening of ThO2 at temperatures of at least 2462 deg F (1350 deg C).

  7. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    SciTech Connect

    He, Y.R.; Zheng, M.H.; Rapp, R.A.

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  8. Phase transformations in rapidly quenched Al-Cr-Zr alloys during heat treatment

    NASA Astrophysics Data System (ADS)

    Zvereva, N. L.; Kazakova, E. F.; Dmitrieva, N. E.

    2017-02-01

    Results from studying the effect zirconium has on solid-phase processes in aluminum-chromium alloys are presented. Rapidly quenched alloys are prepared via melt spinning. The quenching rate is 106 K/s. By means of physicochemical analysis, it is shown that doping Al-Cr alloys with zirconium improves the thermal stability of supersaturated solid solutions and stabilizes their microcrystalline structure; this hinders the coagulation of intermetallic phases and thus improves the hardness of the alloys. It is found that supersaturated solid solutions of Cr and Zr in aluminum undergo stepwise decomposition; the temperature and time parameters of each step are shown in TTT diagrams.

  9. Terahertz Spectroscopy of CrH (X 6Σ+) and AlH (X 1Σ+)

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Ziurys, L. M.

    2016-12-01

    New laboratory measurements of hydrides have been carried out using terahertz direct absorption spectroscopy. Spin components of the N=2≤ftarrow 1 transition of the free radical CrH (X 6Σ+) have been recorded in the range 730-734 GHz, as well as a new measurement of the J=2≤ftarrow 1 line of AlH (X 1Σ+) near 755 GHz. Both species were created in an AC discharge of H2, argon, and metal vapor. For CrH, the chromium source was Cr(CO)6, while AlH was produced from Al(CH3)3. The J=4.5≤ftarrow 3.5 and 3.5≤ftarrow 2.5 fine-structure components were recorded for CrH, each which consists of resolved proton hyperfine doublets. For AlH, the two main quadrupole components, F=4.5≤ftarrow 3.5 and 3.5≤ftarrow 2.5, of the J=2≤ftarrow 1 transition were observed as blended features. These data were analyzed with previous 1≤ftarrow 0 millimeter/submillimeter measurements with 6Σ and 1Σ Hamiltonians for chromium and aluminum hydrides, respectively, and rotational, fine-structure (CrH only), and hyperfine constants were derived. The new measurements have resulted in refined spectroscopic parameters for both species, as well as direct measurement of the respective 2≤ftarrow 1 rotational transitions. This work also resolves a 10 MHz discrepancy in the frequency of the AlH line. CrH and AlH have already been observed in the photospheres of stars via their electronic transitions. These data will facilitate their discovery at submillimeter/terahertz wavelengths in circumstellar envelopes and perhaps in diffuse clouds.

  10. Chromium isotopic fractionation during Cr(VI) reduction by Bacillus sp. under aerobic conditions.

    PubMed

    Xu, Fen; Ma, Teng; Zhou, Lian; Hu, Zhifang; Shi, Liu

    2015-07-01

    This study investigated the fractionation of chromium isotopes during chromium reduction by Bacillus sp. under aerobic condition, variable carbon source (glucose) concentration (0, 0.1, 1, 2.5 and 10mM), and incubation temperatures (4, 15, 25 and 37°C). The results revealed that the δ(53)Cr values in the residual Cr(VI) increased with the degree of Cr reduction, and followed a Rayleigh fractionation model. The addition of glucose only slightly affected cell-specific Cr(VI) reduction rates (cSRR). However, the value of ε (2.00±0.21‰) in the experiments with different concentrations of glucose (0.1, 1, 2.5 and 10mM) was smaller than that from the experiment without glucose (3.74±0.16‰). The results indicated that the cell-specific reduction rate is not the sole control on the degree of isotopic fractionation, and different metabolic pathways would result in differing degrees of Cr isotopic fractionation. The cSRR decreased with decreasing temperature, showing that the values of ε were 7.62±0.36‰, 4.59±0.28‰, 3.09±0.16‰ and 1.99±0.23‰ at temperatures of 4, 15, 25 and 37°C, respectively. It shown that increasing cSRR linked to decreasing fractionations has been associated with increasing temperatures. Overall, our results revealed that temperature is a primary factor affecting Cr isotopic fractionation under microbial actions.

  11. Increase of chromium tolerance in Scenedesmus acutus after sulfur starvation: Chromium uptake and compartmentalization in two strains with different sensitivities to Cr(VI).

    PubMed

    Marieschi, M; Gorbi, G; Zanni, C; Sardella, A; Torelli, A

    2015-10-01

    In photosynthetic organisms sulfate constitutes the main sulfur source for the biosynthesis of GSH and its precursor Cys. Hence, sulfur availability can modulate the capacity to cope with environmental stresses, a phenomenon known as SIR/SED (Sulfur Induced Resistance or Sulfur Enhanced Defence). Since chromate may compete for sulfate transport into the cells, in this study chromium accumulation and tolerance were investigated in relation to sulfur availability in two strains of the unicellular green alga Scenedesmus acutus with different Cr-sensitivities. Paradoxically, sulfur deprivation has been demonstrated to induce a transient increase of Cr-tolerance in both strains. Sulfur deprivation is known to enhance the sulfate uptake/assimilation pathway leading to important consequences on Cr-tolerance: (i) reduced chromate uptake due to the induction of high affinity sulfate transporters (ii) higher production of cysteine and GSH which can play a role both through the formation of unsoluble complexes and their sequestration in inert compartments. To investigate the role of the above mentioned mechanisms, Cr accumulation in total cells and in different cell compartments (cell wall, membranes, soluble and miscellaneous fractions) was analyzed in both sulfur-starved and unstarved cells. Both strains mainly accumulated chromium in the soluble fraction, but the uptake was higher in the wild-type. In this type a short period of sulfur starvation before Cr(VI) treatment lowered chromium accumulation to the level observed in the unstarved Cr-tolerant strain, in which Cr uptake seems instead less influenced by S-starvation, since no significant decrease was observed. The increase in Cr-tolerance following S-starvation seems thus to rely on different mechanisms in the two strains, suggesting the induction of a mechanism constitutively active in the Cr-tolerant strain, maybe a high affinity sulfate transporter also in the wild-type. Changes observed in the cell wall and

  12. Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater.

    PubMed

    Kazakis, N; Kantiranis, N; Voudouris, K S; Mitrakas, M; Kaprara, E; Pavlou, A

    2015-05-01

    This study aims to specify the source minerals of geogenic chromium in soils and sediments and groundwater and to determine the favorable hydrogeological environment for high concentrations of Cr(VI) in groundwaters. For this reason, chromium origin and the relevant minerals were identified, the groundwater velocity was calculated and the concentrations of Cr(VI) in different aquifer types were determined. Geochemical and mineralogical analyses showed that chromium concentrations in soils and sediments range from 115 to 959 mg/kg and that serpentine prevails among the phyllosilicates. The high correlation between chromium and serpentine, amphibole and pyroxene minerals verifies the geogenic origin of chromium in soils and sediments and, therefore, in groundwater. Manganese also originates from serpentine, amphibole and pyroxene, and is strongly correlated with chromium, indicating that the oxidation of Cr(III) to Cr(VI) is performed by manganese-iron oxides located on the surface of Cr-Mn-rich minerals. Backscattered SEM images of the soils revealed the unweathered form of chromite grains and the presence of Fe-Mn-rich oxide on the outer surface of serpentine grains. Chemical analyses revealed that the highest Cr(VI) concentrations were found in shallow porous aquifers with low water velocities and their values vary from 5 to 70 μg/L. Cr(VI) concentrations in ophiolitic complex aquifers ranged between 3 and 17 μg/L, while in surface water, karst and deeper porous aquifers, Cr(VI) concentrations were lower than the detection limit of 1.4 μg/L.

  13. Utilization of modified corn silk as a biosorbent for solid-phase extraction of Cr(III) and chromium speciation.

    PubMed

    Yu, Hongmei; Pang, Jing; Wu, Mei; Wu, Qiaoli; Huo, Cuixiu

    2014-01-01

    The ues of corn silk modified with diluted nitric acid (HNO3-MCS) as a novel biosorbent has been established for solid-phase extraction of Cr(III) and chromium speciation in water samples. The functional groups of the HNO3-MCS surface are favorable for the adsorption of Cr(III). Effective extraction conditions were optimized in both batch and column methods. At pH 3.0 - 6.0, a discrimination of Cr(III) and Cr(VI) is achieved on the HNO3-MCS surface. Cr(III) ions are retained onto the HNO3-MCS surface, however, the adsorption of Cr(VI) is negligible under the same conditions. The adsorption isotherm of HNO3-MCS for Cr(III) has been demonstrated in accordance with a linear form of the Langmuir equation, and the maximum adsorption capacity is 35.21 mg g(-1). The well fitted linear regression of the pseudo-second order model showed the indication of a chemisorption mechanism for the entire concentration range. Thermodynamic studies have shown that the adsorption process is spontaneous and endothermic. The adsorbed Cr(III) was quantitatively eluted by a nitric acid solution with detection by flame atomic absorption spectrometry (FAAS). With a sample volume of 30 mL, a detection limit (3σ) of 0.85 μg L(-1) and a precision of 2.0% RSD at the 40 μg L(-1) level were achieved. The concentration of Cr(III) could be accurately quantified within a linear range of 3 - 200 μg L(-1). After Cr(VI) has been reduced to Cr(III) with hydroxylamine hydrochloride, the total amount of chromium was obtained, and the content of Cr(VI) was given by subtraction. The procedure was validated by analyzing chromium in a certified reference material (GBW (E) 080039). It was also successfully applied for the speciation of chromium in wastewater samples.

  14. Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, Robert R.

    1992-01-01

    Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite (Cr(4+):Mg2SiO4) laser has been accomplished. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured.

  15. COMPREHENSIVE OBSERVATIONS OF THE ULTRAVIOLET SPECTRUM AND IMPROVED ENERGY LEVELS FOR SINGLY IONIZED CHROMIUM (Cr II)

    SciTech Connect

    Sansonetti, Craig J.; Nave, Gillian; Reader, Joseph; Kerber, Florian

    2012-10-15

    We report new observations of the spectrum of singly ionized chromium (Cr II) in the region 1142-3954 A. The spectra were recorded with the National Institute of Standards and Technology 10.7 m normal-incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer. More than 3600 lines are classified as transitions among 283 even and 368 odd levels. The new spectral data are used to re-optimize the energy levels, reducing their uncertainties by a typical factor of 20.

  16. Comprehensive Observations of the Ultraviolet Spectrum and Improved Energy Levels for Singly Ionized Chromium (Cr II)

    NASA Astrophysics Data System (ADS)

    Sansonetti, Craig J.; Nave, Gillian; Reader, Joseph; Kerber, Florian

    2012-10-01

    We report new observations of the spectrum of singly ionized chromium (Cr II) in the region 1142-3954 Å. The spectra were recorded with the National Institute of Standards and Technology 10.7 m normal-incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer. More than 3600 lines are classified as transitions among 283 even and 368 odd levels. The new spectral data are used to re-optimize the energy levels, reducing their uncertainties by a typical factor of 20.

  17. Creep and Toughness of Cryomilled NiAl Containing Cr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Aikin, Beverly; Salem, Jon

    2000-01-01

    NiAl-AlN + Cr composites were produced by blending cryomilled NiAl powder with approx. 10 vol % Cr flakes. In comparison to the as-consolidated matrices, hot isostatically pressed Cr-modified materials did not demonstrate any significant improvement in toughness. Hot extruded NiAl-AlN+10.5Cr, however, possessed a toughness twice that determine for the base NiAl-AlN alloy. Measurement of the 1200 to 1400 K plastic flow properties revealed that the strength of the composites was completely controlled by the properties of the NiAl-AlN matrices. This behavior could be successfully modeled by the Rule-of-Mixtures, where load is shed from the weak Cr to the strong matrix.

  18. Magnetic properties of Al/57Fe/Cr multilayers

    NASA Astrophysics Data System (ADS)

    Jani, Snehal; Lakshmi, N.; Jain, Vishal; Reddy, V. R.; Gupta, Ajay; Venugopalan, K.

    2013-06-01

    Conversion Electron Mössbauer Spectroscopy (CEMS) and DC magnetization are used to compare magnetic properties of as-deposited multilayer (MLS) and Fe2CrAl thin film made from Al/57Fe/Cr MLS deposited by ion beam sputtering and then annealed in UHV. Interdiffusion of elements on annealing sample-1 at 500°C leads to formation of a single, disordered film of Fe2CrAl as evidenced by hyperfine field values obtained by CEMS in the film which compares well with that in bulk Fe2CrAl. CEMS also shows contributions from Fe, Fe/Cr and Fe/Al interfaces in the MLS. Saturation magnetization of as-deposited sample-1 is much less than pure Fe due to reduced Fe thickness because of interface formation and also reduction in Fe-Fe interaction due to intervening Al and Cr layers.

  19. EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II)

    SciTech Connect

    Sansonetti, Craig J.; Nave, Gillian

    2014-08-01

    We have made new observations of the spectrum of singly ionized chromium (Cr II) in the region 2850-37900 Å with the National Institute of Standards and Technology 2 m Fourier transform spectrometer. These data extend our previously reported observations in the near-ultra-violet region. We present a comprehensive list of more than 5300 Cr II lines classified as transitions among 456 even and 457 odd levels, 179 of which are newly located in this work. Using highly excited levels of the 3d {sup 4}({sup 5} D)5g, 3d {sup 4}({sup 5} D)6g, and 3d {sup 4}({sup 5}D)6h configurations, we derive an improved ionization energy of 132971.02 ± 0.12 cm{sup –1} (16.486305 ± 0.000015 eV)

  20. Extended Analysis of the Spectrum of Singly Ionized Chromium (Cr II)

    NASA Astrophysics Data System (ADS)

    Sansonetti, Craig J.; Nave, Gillian

    2014-08-01

    We have made new observations of the spectrum of singly ionized chromium (Cr II) in the region 2850-37900 Å with the National Institute of Standards and Technology 2 m Fourier transform spectrometer. These data extend our previously reported observations in the near-ultra-violet region. We present a comprehensive list of more than 5300 Cr II lines classified as transitions among 456 even and 457 odd levels, 179 of which are newly located in this work. Using highly excited levels of the 3d 4(5 D)5g, 3d 4(5 D)6g, and 3d 4(5D)6h configurations, we derive an improved ionization energy of 132971.02 ± 0.12 cm-1 (16.486305 ± 0.000015 eV).

  1. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  2. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    SciTech Connect

    Zheng, M.; He, Y.R.; Rapp, R.A.

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  3. Chemical and electrochemical behavior of the Cr(III)/Cr(II) half-cell in the iron-chromium redox energy storage system

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Reid, M. A.

    1985-01-01

    The Cr(III) complexes present in the acidified chromium solutions used in the iron-chromium redox energy storage system have been isolated and identified as Cr(H2O)6(3+) and Cr(H2O)5Cl(2+) by ion-exchange chromatography and visible spectrophotometry. The cell reactions during charge-discharge cycles have been followed by means of visible spectrophotometry. The spectral bands were resolved into component peaks and concentrations of the Cr(III) species calculated using Beer's law. During the charge mode, Cr(H2O)5Cl(2+) is reduced to Cr(H2O)5Cl(+), and during the discharge mode Cr(H2O)5Cl(+) is oxidized back to Cr(H2O)5Cl(2+). Electrode potential measurements also support this interpretation. Hysteresis effects in the charge-discharge curves can be explained by the slow attainment of equilibrium between Cr(H2O)6(3+) and Cr(H2O)5Cl(2+).

  4. Pleiotropic effects of hexavalent chromium (CrVI) in Mytilus galloprovincialis digestive gland.

    PubMed

    Barmo, Cristina; Ciacci, Caterina; Fabbri, Rita; Olivieri, Silvia; Bianchi, Nicola; Gallo, Gabriella; Canesi, Laura

    2011-05-01

    Hexavalent Chromium Cr(VI) is an important contaminant considered as a model oxidative toxicant released from both domestic and industrial effluents, and represents the predominant chemical form of the metal in aquatic ecosystems. On the other hand, in mammals the reduced form Cr(III) is considered an essential microelement, involved in regulation of lipid and carbohydrate metabolism; moreover, recent evidence suggests that Cr may have endocrine effects. In this work, the effects of Cr(VI) were investigated in the digestive gland of the marine bivalve Mytilus galloprovincialis. Mussels were exposed to 0.1-1-10-100 μg Cr(VI) L(-1) animal(-1) for 96 h. At 100 μg L(-1), a large increase in total Cr tissue content was observed; in these conditions, the lysosomal membranes were completely destabilized, whereas other lysosomal biomarkers (neutral lipids-NL and lipofuscin-LF), as well as different enzyme activities and gene expression were unaffected, this indicating severe stress conditions in the tissue. On the other hand, at lower concentrations, changes in other histochemical, biochemical and molecular endpoints were observed. In particular, at both 1 and 10 μg L(-1), lysosomal destabilization was associated with significant NL and LF accumulation; however, no changes in catalase and GSH transferase (GST) activities were observed. At the same concentrations, GSSG reductase (GSR) activity was significantly increased, this probably reflecting the recycling of GSSG produced in the GSH-mediated intracellular reduction of Cr(VI). Increased activities of the key glycolytic enzymes PFK (phosphofructokinase) and PK (pyruvate kinase) were also observed, indicating that Cr(VI) could affect carbohydrate metabolism. Cr(VI) induced downregulation or no effects on the expression of metallothioneins MT10 and MT20, except for an increase in MT20 transcription in males. Moreover, significant up-regulation of the Mytilus estrogen receptor MeER2 and serotonin receptor (5-HTR) were

  5. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations.

    PubMed

    Gheju, M; Balcu, I

    2011-11-30

    This work presents investigations on the total removal of chromium from Cr(VI) aqueous solutions by reduction with scrap iron and subsequent precipitation of the resulted cations with NaOH. The process was detrimentally affected by a compactly passivation film occurred at scrap iron surface, mainly composed of Cr(III) and Fe(III). Maximum removal efficiency of the Cr(total) and Fe(total) achieved in the clarifier under circumneutral and alkaline (pH 9.1) conditions was 98.5% and 100%, respectively. The optimum precipitation pH range which resulted from this study is 7.6-8.0. Fe(total) and Cr(total) were almost entirely removed in the clarifier as Fe(III) and Cr(III) species; however, after Cr(VI) breakthrough in column effluent, chromium was partially removed in the clarifier also as Cr(VI), by coprecipitation with cationic species. As long the column effluent was free of Cr(VI), the average Cr(total) removal efficiency of the packed column and clarifier was 10.8% and 78.8%, respectively. Our results clearly indicated that Cr(VI) contaminated wastewater can be successfully treated by combining reduction with scrap iron and chemical precipitation with NaOH.

  6. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Pint, B. A.; Terrani, K. A.; Field, K. G.; Yang, Y.; Snead, L. L.

    2015-12-01

    Development of nuclear grade, iron-based wrought FeCrAl alloys has been initiated for light water reactor (LWR) fuel cladding to serve as a substitute for zirconium-based alloys with enhanced accident tolerance. Ferritic alloys with sufficient chromium and aluminum additions can exhibit significantly improved oxidation kinetics in high-temperature steam environments when compared to zirconium-based alloys. In the first phase, a set of model FeCrAl alloys containing 10-20Cr, 3-5Al, and 0-0.12Y in weight percent, were prepared by conventional arc-melting and hot-working processes to explore the effect of composition on the properties of FeCrAlY alloys. It was found that the tensile properties were insensitive to the alloy compositions studied; however, the steam oxidation resistance strongly depended on both the chromium and the aluminum contents. The second phase development focused on strengthening Fe-13Cr-5Al with minor alloying additions of molybdenum, niobium, and silicon. Combined with an optimized thermo-mechanical treatment, a thermally stable microstructure was produced with improved tensile properties at temperatures up to 741 °C.

  7. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors

    DOE PAGES

    Yamamoto, Yukinori; Pint, Bruce A.; Terrani, Kurt A.; ...

    2015-10-19

    Development of nuclear grade, iron-based wrought FeCrAl alloys has been initiated for light water reactor (LWR) fuel cladding to serve as a substitute for zirconium-based alloys with enhanced accident tolerance. Ferritic alloys with sufficient chromium and aluminum additions can exhibit significantly improved oxidation kinetics in high-temperature steam environments when compared to zirconium-based alloys. In the first phase, a set of model FeCrAl alloys containing 10–20Cr, 3–5Al, and 0–0.12Y in weight percent, were prepared by conventional arc-melting and hot-working processes to explore the effect of composition on the properties of FeCrAlY alloys. It was found that the tensile properties were insensitivemore » to the alloy compositions studied; however, the steam oxidation resistance strongly depended on both the chromium and the aluminum contents. The second phase development focused on strengthening Fe-13Cr-5Al with minor alloying additions of molybdenum, niobium, and silicon. Combined with an optimized thermo-mechanical treatment, a thermally stable microstructure was produced with improved tensile properties at temperatures up to 741°C.« less

  8. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors

    SciTech Connect

    Yamamoto, Yukinori; Pint, Bruce A.; Terrani, Kurt A.; Field, Kevin G.; Yang, Ying; Snead, Lance Lewis

    2015-10-19

    Development of nuclear grade, iron-based wrought FeCrAl alloys has been initiated for light water reactor (LWR) fuel cladding to serve as a substitute for zirconium-based alloys with enhanced accident tolerance. Ferritic alloys with sufficient chromium and aluminum additions can exhibit significantly improved oxidation kinetics in high-temperature steam environments when compared to zirconium-based alloys. In the first phase, a set of model FeCrAl alloys containing 10–20Cr, 3–5Al, and 0–0.12Y in weight percent, were prepared by conventional arc-melting and hot-working processes to explore the effect of composition on the properties of FeCrAlY alloys. It was found that the tensile properties were insensitive to the alloy compositions studied; however, the steam oxidation resistance strongly depended on both the chromium and the aluminum contents. The second phase development focused on strengthening Fe-13Cr-5Al with minor alloying additions of molybdenum, niobium, and silicon. Combined with an optimized thermo-mechanical treatment, a thermally stable microstructure was produced with improved tensile properties at temperatures up to 741°C.

  9. Weldability of Fe-Al-Cr Overlay Coatings for CorrosionProtection in Oxidizing/Sulfidizing Environments

    SciTech Connect

    Regina, JR

    2003-03-04

    The effect of chromium additions to the weldability of Fe-Al based overlay claddings are currently being investigated for the corrosion protection of boiler tubes in Low NOx furnaces. The primary objective of this research is to identify weldable (crack-free) Fe-Al-Cr weld overlay coating compositions that provide corrosion resistance over long exposure times. During the current project phase, preliminary corrosion testing was conducted on several ternary Fe-Al-Cr alloys in two types of gaseous corrosion environments. These long-term corrosion tests were used to develop a target weld composition matrix and serve as a base line for future corrosion tests. Preliminary Fe-Al based welds with various aluminum concentrations and one ternary Fe-Al-Cr weld overlay were successfully deposited using a Gas Tungsten Arc Welding (GTAW) process and cracking susceptibility was evaluated on these coatings.

  10. Chromium Isotopic Fractionation During Biogeochemical Cr (IV) Reduction in Hanford Sediment Column Experiments with Native Aquifer Microbial Communities

    NASA Astrophysics Data System (ADS)

    Qin, L.; Christensen, J. N.; Brown, S. T.; Yang, L.; Conrad, M. E.; Sonnenthal, E. L.; Beller, H. R.

    2010-12-01

    Hexavalent Chromium contamination in groundwater within the DOE complex, including the Hanford 100D and 100H sites has been a long-standing issue. It has been established that certain bacteria (including denitrifying and sulfate-reducing bacteria) harbor enzymes that catalyze Cr(VI) reduction to relatively nontoxic Cr(III). Microbial reduction of Cr(VI) also occurs indirectly by products of microbial respiration, such as sulfide and Fe(II). Chromium isotopes can be fractionated during Cr(VI) reduction and provides a potential basis for characterizing and discriminating between different microbial metabolic and geochemical pathways associated with Cr(VI) reductive immobilization. Addition of electron donor to contaminated groundwater systems to create conditions favorable for reductive metal immobilization has become a widely utilized remediation practice. We conducted a series of small-scale column experiments with homogenized material from the Hanford 100H aquifer to examine the effects of differing electron acceptors on local microbial communities. All columns have a continuous inflow of solutions with constant concentrations of Cr(VI), lactate (electron donor), and the appropriate electron acceptor (e.g. nitrate or sulfate). The Cr isotopic composition in the effluent was measured using a 50-54 double-spike technique and a Triton TIMS. Cr concentration measurements showed that the greatest Cr(VI) reduction occurred in the sulfate columns. Our preliminary Cr isotopic data show that under these conditions the delta 53Cr value increased from close to 0 to 4 per mil while the Cr concentration decreased from 260 ppb to 30 ppb in the effluent. This yields an apparent fractionation factor of 0.9979 (2.1 per mil). A decrease in Cr concentration from 260 ppb to 190 ppb in a nitrate-reducing column was accompanied by an increase of 1 per mil in delta 53Cr. Further Cr isotopic data will be presented and the effects of differing flow rates and electron acceptors will be

  11. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    SciTech Connect

    Robb, Kevin R

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.

  12. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    NASA Astrophysics Data System (ADS)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation.

  13. Observation of ferromagnetism above 900 K in Cr-GaN and Cr-AlN

    NASA Astrophysics Data System (ADS)

    Liu, H. X.; Wu, Stephen Y.; Singh, R. K.; Gu, Lin; Smith, David J.; Newman, N.; Dilley, N. R.; Montes, L.; Simmonds, M. B.

    2004-11-01

    We report ferromagnetism at over 900K in Cr-GaN and Cr-AlN thin films. The magnetic properties vary as a function of Cr concentration with 60%, and 20%, of the Cr being magnetically active at 3% doping in GaN, and 7% in AlN, respectively. In the GaN sample with the highest magnetically active Cr (60%), channeling Rutherford backscattering indicates that over 70% of Cr impurities are located on substitutional sites. These results give indisputable evidence that substitutional Cr defects are involved in the magnetic behavior. While Cr-AlN is highly resistive, Cr-GaN exhibits properties characteristic of hopping conduction including T-1/2 resistivity dependence and small Hall mobility (0.06cm2/Vs). A large negative magnetoresistance is attributed to the influence of the magnetic field on the quantum interference between the many paths linking two hopping sites. The results strongly suggest that ferromagnetism in Cr-GaN and Cr-AlN can be attributed to the double exchange mechanism as a result of hopping between near-midgap substitutional Cr impurity bands.

  14. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies

    PubMed Central

    Netzahuatl-Muñoz, Alma Rosa; Cristiani-Urbina, María del Carmen; Cristiani-Urbina, Eliseo

    2015-01-01

    The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g-1. Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater. PMID:26352933

  15. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies.

    PubMed

    Netzahuatl-Muñoz, Alma Rosa; Cristiani-Urbina, María del Carmen; Cristiani-Urbina, Eliseo

    2015-01-01

    The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g(-1). Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater.

  16. Cr-Free Metallic-Ceramic Coatings

    DTIC Science & Technology

    2014-11-01

    PT6-, etc. Nov. 2014 ASM/TSS Aerospace Ctgs. Conf. & Expo. 4 • Al-Chromate/Phosphate Slurries Contain Hexavalent Chromium PEL = 5...Aluminum Metallic-Ceramics Al-Cr2O7/PO4 • Zero VOC’s. • 13.0 wt. % inorganic phosphates • 3.3 wt. % Cr+6 (hexavalent chromium ) before curing

  17. Cyclic creep and fatigue of TD-NiCr (thoria-dispersion-strengthened nickel-chromium), TD-Ni, and NiCr sheet at 1200 C

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Spera, D. A.; Klima, S. J.

    1972-01-01

    The resistance of thin TD-NiCr sheet to cyclic deformation was compared with that of TD-Ni and a conventional nickel-chromium alloy. Strains were determined by a calibration technique which combines room-temperature strain gage and deflection measurements with high-temperature deflection measurements. Analyses of the cyclic tests using measured tensile and creep-rupture data indicated that the TD-NiCr and NiCr alloy specimens failed by a cyclic creep mechanism. The TD-Ni specimens, on the other hand, failed by a fatigue mechanism.

  18. Hot Corrosion Performance of AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa Coatings Deposited by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Tao, Chong; Wang, Lei; Cheng, Nailiang; Hu, Hengfa; Liu, Yang; Song, Xiu

    2016-04-01

    AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa coatings were deposited on 316L stainless steel substrate using atmospheric plasma spraying, respectively, in order to improve the oxidation and corrosion resistance. The hot corrosion performance of the coatings at 700 and 900 °C were studied, and the detailed microstructures and phase composition of the coatings were analyzed using x-ray diffraction, scanning electron microscope with energy dispersive spectrometer, and transmission electron microscope. The results show that both coatings are structurally featured by slatted layers, consisting of amorphous phase, Cr2O3, Ni3Al, and Al2O3. The hot corrosion resistance of AlO-CrO/NiCoCrAlYTa coating is better than that of AlO/NiCoCrAlYTa coating. This improvement is attributed to lower porosity and more compact Cr2O3 in AlO-CrO/NiCoCrAlYTa coating which performs better than Al2O3 in blocking further inward progress of corrosion and oxidization.

  19. Millimeter-wave spectroscopy of CrC (X3Σ-) and CrCCH (X ˜ 6Σ+): Examining the chromium-carbon bond

    NASA Astrophysics Data System (ADS)

    Min, J.; Ziurys, L. M.

    2016-05-01

    Pure rotational spectroscopy of the CrC (X3Σ-) and CrCCH (X ˜ 6Σ+) radicals has been conducted using millimeter/sub-millimeter direct absorption methods in the frequency range 225-585 GHz. These species were created in an AC discharge of Cr(CO)6 and either methane or acetylene, diluted in argon. Spectra of the CrCCD were also recorded for the first time using deuterated acetylene as the carbon precursor. Seven rotational transitions of CrC were measured, each consisting of three widely spaced, fine structure components, arising from spin-spin and spin-rotation interactions. Eleven rotational transitions were recorded for CrCCH and five for CrCCD; each transition in these cases was composed of a distinct fine structure sextet. These measurements confirm the respective 3Σ- and 6Σ+ ground electronic states of these radicals, as indicated from optical studies. The data were analyzed using a Hund's case (b) Hamiltonian, and rotational, spin-spin, and spin-rotation constants have been accurately determined for all three species. The spectroscopic parameters for CrC were significantly revised from previous optical work, while those for CrCCH are in excellent agreement; completely new constants were established for CrCCD. The chromium-carbon bond length for CrC was calculated to be 1.631 Å, while that in CrCCH was found to be rCr—C = 1.993 Å — significantly longer. This result suggests that a single Cr—C bond is present in CrCCH, preserving the acetylenic structure of the ligand, while a triple bond exists in CrC. Analysis of the spin constants suggests that CrC has a nearby excited 1Σ+ state lying ˜16 900 cm-1 higher in energy, and CrCCH has a 6Π excited state with E ˜ 4800 cm-1.

  20. Magnetic Properties of Cr-based Ternary Compound CrAlGe

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Soshi; Mitsui, Yoshifuru; Umetsu, Rie Y.; Koyama, Keiichi

    Structural and magnetic properties of Cr-based compound CrAlGe were investigated. The crystal structure was found to be an orthorhombic TiSi2-type with lattice parameters a = 0.4770 nm, b = 0.8254 nm and c = 0.8725 nm at room temperature. Magnetization curve of CrAlGe showed the ferromagnetic behavior. The saturation magnetic moment, spontaneous magnetic moment and Curie temperature of CrAlGe were determined to be 0.45 μB/f.u., 0.41 μB/f.u. and TC = 80 K, respectively. For the temperature T below 30 K, the decrease in the square of the spontaneous magnetization M0(T)2 was proportional to T2. However, for 30 CrAlGe is a weak itinerant electron ferromagnet.

  1. Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Tiwari, R.; Tewari, S. N.

    1995-01-01

    Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.

  2. Phytoremediation of chromium using Salix species: cloning ESTs and candidate genes involved in the Cr response.

    PubMed

    Quaggiotti, Silvia; Barcaccia, Gianni; Schiavon, Michela; Nicolé, Silvia; Galla, Giulio; Rossignolo, Virginia; Soattin, Marica; Malagoli, Mario

    2007-11-01

    In this research a differential display based on the detection of cDNA-AFLP markers was used to identify candidate genes potentially involved in the regulation of the response to chromium in four different willow species (Salix alba, Salix eleagnos, Salix fragilis and Salix matsudana) chosen on the basis of their suitability in phytoremediation techniques. Our approach enabled the assay of a large set of mRNA-related fragments and increased the reliability of amplification-based transcriptome analysis. The vast majority of transcript-derived fragments were shared among samples within species and thus attributable to constitutively expressed genes. However, a number of differentially expressed mRNAs were scored in each species and a total of 68 transcripts displaying an altered expression in response to Cr were isolated and sequenced. Public database querying revealed that 44.1% and 4.4% of the cloned ESTs score significant similarity with genes encoding proteins having known or putative function, or with genes coding for unknown proteins, respectively, whereas the remaining 51.5% did not retrieve any homology. Semi-quantitative RT-PCR analysis of seven candidate genes fully confirmed the expression patterns obtained by cDNA-AFLP. Our results indicate the existence of common mechanisms of gene regulation in response to Cr, pathogen attack and senescence-mediated programmed cell death, and suggest a role for the genes isolated in the cross-talk of the signaling pathways governing the adaptation to biotic and abiotic stresses.

  3. Effects of Cr methionine on glucose metabolism, plasma metabolites, meat lipid peroxidation, and tissue chromium in Mahabadi goat kids.

    PubMed

    Emami, A; Ganjkhanlou, M; Zali, A

    2015-03-01

    This study was designed to investigate the effects of chromium methionine (Cr-Met) on glucose metabolism, blood metabolites, meat lipid peroxidation, and tissue chromium (Cr) in Mahabadi goat kids. Thirty-two male kids (16.5 ± 2.8 kg BW, 4-5 months of age) were fed for 90 days in a completely randomized design with four treatments. Treatments were supplemented with 0 (control), 0.5, 1, and 1.5 mg Cr as Cr-Met/animal/daily. Blood samples were collected via heparin tubes from the jugular vein on 0, 21, 42, 63, and 90 days of experiment. On day 70, an intravenous glucose tolerance test (IVGTT) was conducted. At the end of the feeding trial, the kids were slaughtered, and the liver, kidney, and longissimus dorsi (LD) muscle samples were collected. Plasma glucose, insulin, and triglyceride concentrations were decreased by Cr supplementation (P < 0.05). LD muscle malondialdehyde (MDA) decreased, and plasma and tissue Cr contents increased with increasing supplemental Cr levels (P < 0.05). Plasma glucose concentrations at 30 and 60 min after glucose infusion were lower in the kids fed 1.5 mg Cr diet than the kids fed control diet (P < 0.05). The IVGTT indicated that the kids supplemented with 1.5 mg Cr had higher glucose clearance rate (K) and lower glucose half-life (T½; P < 0.05). Glucose area under the response curve (AUC) from 0 to 180 min after glucose infusion was decreased linearly (P < 0.01) by supplemental Cr. The results suggested that supplemental Cr may improve glucose utilization and lipid oxidation of meat in fattening kid.

  4. Thermodynamic Modeling of the Al-Cr-Mn Ternary System

    NASA Astrophysics Data System (ADS)

    Cui, Senlin; Jung, In-Ho

    2017-03-01

    The phase diagram information available in the literature on the Al-Cr-Mn system was comprehensively evaluated and optimized for the first time to obtain a set of Gibbs energies of all the solid and liquid phases in the Al-Cr-Mn system. The Modified Quasi-chemical Model (MQM) was utilized to describe the Gibbs energy of the liquid phase of the Al-Cr-Mn system. The Compound Energy Formalism (CEF) was used to model the solid solution phases. A revision of the Al-Mn system was simultaneously conducted to consider the γ_H (Al8Mn5) phase. The liquid Cr-Mn phase was also remodeled using the Modified Quasi-chemical Model (MQM) to obtain a consistent description of the ternary Al-Cr-Mn liquid phase. Accurate description of the phase diagram of the entire Al-Cr-Mn system was obtained from the thermodynamic models with optimized parameters in the present study, and the model parameters can be used to predict the thermodynamic properties of the ternary system.

  5. TI--CR--AL--O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  6. The Effect of Manganese Additions on the Reactive Evaporation of Chromium in Ni-Cr Alloys

    SciTech Connect

    Holcomb, Gordon R.; Alman, David E.

    2004-10-20

    Chromium is used as an alloy addition in stainless steels and nickel-chromium alloys to form protective chromium oxide scales. Chromium oxide undergoes reactive evaporation in high temperature exposures in the presence of oxygen and/or water vapor. The deposition of gaseous chromium species onto solid oxide fuel cell electrodes can reduce the efficiency of the fuel cell. Manganese additions to the alloy can reduce the activity of chromium in the oxide, either from solid solution replacement of chromium with manganese (at low levels of manganese) or from the formation of manganese-chromium spinels (at high levels of manganese). This reduction in chromium activity leads to a predicted reduction in chromium evaporation by as much as a factor of 35 at 800 C and 55 at 700 C. The results of evaporation loss measurements on nickel-chromium-manganese alloys are compared with the predicted reduction. Quantifying the effects of manganese additions on chromium evaporation should aid alloy development of metallic interconnects and balance-of-plant alloys.

  7. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  8. Simultaneously photocatalytic treatment of hexavalent chromium (Cr(VI)) and endocrine disrupting compounds (EDCs) using rotating reactor under solar irradiation.

    PubMed

    Kim, Youngji; Joo, Hyunku; Her, Namguk; Yoon, Yeomin; Sohn, Jinsik; Kim, Sungpyo; Yoon, Jaekyung

    2015-05-15

    In this study, simultaneous treatments, reduction of hexavalent chromium (Cr(VI)) and oxidation of endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and 17β-estradiol (E2), were investigated with a rotating photocatalytic reactor including TiO₂ nanotubes formed on titanium mesh substrates under solar UV irradiation. In the laboratory tests with a rotating type I reactor, synergy effects of the simultaneous photocatalytic reduction and oxidation of inorganic (Cr(VI)) and organic (BPA) pollutants were achieved. Particularly, the concurrent photocatalytic reduction of Cr(VI) and oxidation of BPA was higher under acidic conditions. The enhanced reaction efficiency of both pollutants was attributed to a stronger charge interaction between TiO₂ nanotubes (positive charge) and the anionic form of Cr(VI) (negative charge), which are prevented recombination (electron-hole pair) by the hole scavenging effect of BPA. In the extended outdoor tests with a rotating type II reactor under solar irradiation, the experiment was extended to examine the simultaneous reduction of Cr(VI) in the presence of additional EDCs, such as EE2 and E2 as well as BPA. The findings showed that synergic effect of both photocatalytic reduction and oxidation was confirmed with single-component (Cr(VI) only), two-components (Cr(VI)/BPA, Cr(VI)/EE2, and Cr(VI)/E2), and four-components (Cr(VI)/BPA/EE2/E2) under various solar irradiation conditions.

  9. LiCaAl/sub 6/:Cr/sup 3+/

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Smith, L.K.; Krupke, W.F. )

    1988-11-01

    The authors report the discovery of a new laser, LiCaAIF/sub 6/:Cr/sup 3/ (Cr/sup 3+/ :LiCAF). The intrinsic (extrapolated maximum) slope efficiency was found to be 67 percent. For comparison, they also measured the intrinsic slope efficiencies of BeAl/sub 2/O/sub 4/:Cr/sup 3+/ (alexandrite), Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, and ScBO/sub 3/:Cr/sup 3+/, and obtained values of 65,28, and 26 percent, respectively. The tuning range of LiCaAIF/sub 6/:Cr/sup 3+/ was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well.

  10. Site partitioning of Cr3+ in the trichroic alexandrite BeAl2O4:Cr3+ crystal: contribution from x-ray absorption spectroscopy.

    PubMed

    Bordage, Amélie; Rossano, Stéphanie; Horn, Adolf Heinrich; Fuchs, Yves

    2012-06-06

    X-ray absorption spectroscopy measurements at the Cr K-edge of a trichroic crystal of alexandrite BeAl(2)O(4):Cr(3+) for different orientations of the crystal with respect to the polarization and direction of the x-ray incident beam have been performed. Analysis of the experimental spectra with the help of first-principles calculations of x-ray absorption spectra allowed us to estimate the proportion of chromium Cr(3+) cations among the two different octahedral sites of the alexandrite structure (70% in the C(s) site-30% in the C(i) site). The methodology presented in this work opens up new possibilities in the field of mineralogy for the study of complex minerals containing several sites potentially occupied by several transition elements or for solid solutions.

  11. Site partitioning of Cr3+ in the trichroic alexandrite BeAl2O4:Cr3+ crystal: contribution from x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bordage, Amélie; Rossano, Stéphanie; Horn, Adolf Heinrich; Fuchs, Yves

    2012-06-01

    X-ray absorption spectroscopy measurements at the Cr K-edge of a trichroic crystal of alexandrite BeAl2O4:Cr3+ for different orientations of the crystal with respect to the polarization and direction of the x-ray incident beam have been performed. Analysis of the experimental spectra with the help of first-principles calculations of x-ray absorption spectra allowed us to estimate the proportion of chromium Cr3+ cations among the two different octahedral sites of the alexandrite structure (70% in the Cs site-30% in the Ci site). The methodology presented in this work opens up new possibilities in the field of mineralogy for the study of complex minerals containing several sites potentially occupied by several transition elements or for solid solutions.

  12. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    SciTech Connect

    Sweet, Ryan; George, Nathan M.; Terrani, Kurt A.; Wirth, Brian

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  13. Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni spheroidal carbide cast irons

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Kozarevskaya, T. V.; Kusumoto, K.; Yamamoto, K.

    2014-11-01

    The objective of this investigation is to study the influence of vanadium (5.0wt%-10.0wt%) and chromium (0-9.0wt%) on the microstructure and hardness of Cr-V-Mn-Ni white cast irons with spheroidal vanadium carbides. The alloys' microstructural features are presented and discussed with regard to the distribution of phase elements. The structural constituents of the alloys are spheroidal VC, proeutectoid cementite, ledeburite eutectic, rosette-shaped carbide eutectic (based on M7C3), pearlite, martensite, and austenite. Their combinations and area fraction (AF) ratios are reported to be influenced by the alloys' chemical composition. Spheroidized VC particles are found to be sites for the nucleation of carbide eutectics. Cr and V are shown to substitute each other in the VC and M7C3 carbides, respectively. Chromium alloying leads to the formation of a eutectic (γ-Fe + M7C3), preventing the appearance of proeutectoid cementite in the structure. Vanadium and chromium are revealed to increase the total carbide fraction and the amount of austenite in the matrix. Cr is observed to play a key role in controlling the metallic matrix microstructure.

  14. Chromium Grain-boundary Segregation and Effect of Ion Beam Cleaning on Fe-Ni-Cr Alloys

    SciTech Connect

    Saraf, Laxmikant V.

    2011-04-01

    The grain boundaries play important role to control the mechanical strength of ternary alloys. From spacecrafts to naval vessels to nuclear reactors, stress corrosion cracking, brittleness, oxidation mostly originates at the grain boundaries and cause long term structural stability problems in most of the metallic structures [1]. Fe-Ni-Cr based ternary metal alloys have been widely studied for more than fifty years [2, 3]. Despite of vast amount of research, chromium diffusion in stainless steel or other Ni-Fe-Cr based ternary alloys is still an open scientific problem with challenges in structural stability and corrosion resistance [4]. Particularly, austenite Fe-Ni-Cr is looked upon favorably in space and jet engine industry for their improved resistance to stress corrosion cracking [5]. In solid oxide fuel cells (SOFC), Ni-alloys are frequently used as interconnects and seals [6]. In this communication, simultaneous energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) mapping is utilized to study chemical and structural aspects of chromium segregation in Fe-Ni-Cr alloy. A focused Ga-ion beam is also utilized to study the effect of ion beam cleaning on EBSD image quality (IQ) and inverse pole figure (IPF) maps of Fe-Ni-Cr alloy.

  15. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions.

    PubMed

    Yuan, Peng; Fan, Mingde; Yang, Dan; He, Hongping; Liu, Dong; Yuan, Aihua; Zhu, JianXi; Chen, TianHu

    2009-07-30

    Montmorillonite-supported magnetite nanoparticles were prepared by co-precipitation and hydrosol method. The obtained materials were characterized by X-ray diffraction, nitrogen adsorption, elemental analysis, differential scanning calorimetry, transmission electron microscopy and X-ray photoelectron spectroscopy. The average sizes of the magnetite nanoparticles without and with montmorillonite support are around 25 and 15 nm, respectively. The montmorillonite-supported magnetite nanoparticles exist on the surface or inside the interparticle pores of clays, with better dispersing and less coaggregation than the ones without montmorillonite support. Batch tests were carried out to investigate the removal mechanism of hexavalent chromium [Cr(VI)] by these synthesized magnetite nanoparticles. The Cr(VI) uptake was mainly governed by a physico-chemical process, which included an electrostatic attraction followed by a redox process in which Cr(VI) was reduced into trivalent chromium. The adsorption of Cr(VI) was highly pH-dependent and the kinetics of the adsorption followed the Pseudo-second-order model. The adsorption data of unsupported and clay-supported magnetite nanoparticles fit well with the Langmuir and Freundlich isotherm equations. The montmorillonite-supported magnetite nanoparticles showed a much better adsorption capacity per unit mass of magnetite (15.3mg/g) than unsupported magnetite (10.6 mg/g), and were more thermally stable than their unsupported counterparts. These fundamental results demonstrate that the montmorillonite-supported magnetite nanoparticles are readily prepared, enabling promising applications for the removal of Cr(VI) from aqueous solution.

  16. Stress Intensity Effect on Solid State Oxidation of Ni-Cr Alloy with Different Chromium Concentrates

    NASA Astrophysics Data System (ADS)

    Tirtom, Ismail; Das, Nishith Kumar; Shoji, Tetsuo

    Ni-base alloy is widely used in light water reactor component and the recent study has shown stress corrosion cracking (SCC). Over the years various attempts have been made to obtain mechanism of SCC but it still require more fundamental study to understand clearly. This study presents an approach based on the multiscale modeling, to assess the influence of alloy composition and stress intensity on the initial stage of solid state oxidation of the Ni-Cr alloy. The multiscale modeling considers different length scales such as finite element method (FEM) / quasi-continuum (QC) / quantum chemical molecular dynamics (QCMD), for analyzing crack tip molecular domain. The compact tension (CT) specimen of alloy 600 has been loaded for stress intensity, after that the micro region has chosen for the QC model which is a combination of continuum and atomic method. Finally, the deformed atomic position has picked for the QCMD simulation with some water molecules. The simulated results show that the chromium segregates faster than nickel atoms from the surface and make preferential bonding with oxygen. The preferential bonding forms a passive film. Applied stress intensity deformed the structure which may increase the atomic distance. As distance increases the absorption of water molecule or OH or oxygen into lattice increases. The stress intensity raises the crack tip solid state oxidation that may enhance SCC initiation.

  17. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils.

    PubMed

    Wu, Song-Lin; Chen, Bao-Dong; Sun, Yu-Qing; Ren, Bai-Hui; Zhang, Xin; Wang, You-Shan

    2014-09-01

    In a greenhouse pot experiment, dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon[Linn.] Pers.), inoculated with and without arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, were grown in chromium (Cr)-amended soils (0 mg/kg, 5 mg/kg, 10 mg/kg, and 20 mg/kg Cr[VI]) to test whether arbuscular mycorrhizal (AM) symbiosis can improve Cr tolerance in different plant species. The experimental results indicated that the dry weights of both plant species were dramatically increased by AM symbiosis. Mycorrhizal colonization increased plant P concentrations and decreased Cr concentrations and Cr translocation from roots to shoots for dandelion; in contrast, mycorrhizal colonization decreased plant Cr concentrations without improvement of P nutrition in bermudagrass. Chromium speciation analysis revealed that AM symbiosis potentially altered Cr species and bioavailability in the rhizosphere. The study confirmed the protective effects of AMF on host plants under Cr contaminations.

  18. [Reduction of chromium (VI) by nanoscale zero-valent iron supported on Al-pillared bentonite].

    PubMed

    Yin, Li-Jing; Li, Yi-Min; Zhang, Lu-Ji; Peng, Yuan-Fei; Ying, Zhe-Lan

    2009-04-15

    In the presence of Al-pillared bentonite with good sorption capacity, nanoscale zero-valent iron supported on Al-pillared bentonite (NZVI/Al-PILC) was prepared with NaBH4 and FeSO4 aqueous solution. The structure of NZVI/Al-PILC was characterized by X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET). The effects of pH values and initial chromium (VI) concentrations on its removal rate by NZVI/Al-PILC were investigated, and were compared with those of unsupported nanoscale zero-valent iron (NZVI) containing the same iron mount of NZVI/Al-PILC. The results indicate that in the same experimental condition, the chromium (VI) removal by NZVI/Al-PILC reached 100% after 120 min. The removal is not only much higher than that (63.0%) of the NZVI containing same iron mount, but also superior to the sum of removal (75.4%) by NZVI containing the same iron amount and the Al-pillared bentonite containing the same clay amount with NZVI/Al-PILC.

  19. Low temperature synthesis and enhanced electrical properties by substitution of Al3+ and Cr3+ in Co-Ni nanoferrites

    NASA Astrophysics Data System (ADS)

    Pervaiz, Erum; Gul, I. H.

    2013-10-01

    Aluminum and chromium substituted Co-Ni spinel nanoferrites were prepared by sol-gel auto combustion method. Structural parameters along with electrical and magnetic properties have been investigated in the present work. Crystallite sizes of nano ferrite estimated from the peak (311) lies in the range of 13-21 nm ±2 nm and compared with crystallite sizes calculated from Williamsons-Hall plots. DC electrical resistivity variations due to the concentration of aluminum and chromium in the host ferrite have been measured from 368 K to 573 K. Increase in the room temperature DC electrical resistivity was observed up to a concentration x=0.2 and then decreases for x >0.2. Dielectric parameters (real and imaginary part of complex permittivity, dielectric loss tangent) were studied as a function of frequency (20 Hz-5 MHz) and a decrease in the dielectric parameters was observed due to substitution of nickel, aluminum and chromium ions in cobalt nanoferrites. AC conductivity, complex impedance and complex electrical modulus were studied as a function of frequency for the conduction and relaxation mechanisms in the present ferrite system. Saturation magnetization, coercivity, canting angles and magneto crystalline anisotropy variations with composition were observed and presented for the present ferrites under an applied magnetic field of 10 kOe at room temperature. It was found that both magnetization and coercivity decreases with increase in the concentration of aluminum and chromium along with a decrease in the anisotropy parameters. High DC resistivity with low dielectric parameters of the present nanoferrites make them suitable for high frequency and electromagnetic wave absorbing devices. High purity mixed Co-Ni-Al-Cr nanoferrites have been prepared by sol-gel auto combustion method. DC electrical resistivity increases due to substitution of Al3+ and Cr3+. Complex permittivity decrease for Co-Ni-Al-Cr nanoferrites. Detailed AC response analysis has been presented for

  20. Effects of compound carboxylate-urea system on nano Ni-Cr/SiC composite coatings from trivalent chromium baths.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Wu, Luye

    2013-03-01

    The effects of compound carboxylate-urea system on the nano Ni-Cr/SiC composite coatings from trivalent chromium baths have been investigated in ultrasonic field. These results indicated that the SiC and Cr contents and the thickness of the Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that both of the Cr(III) and Ni(II) cathodic polarization could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction. XRD data showed that the as-posited coating was Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the Ni-Cr/SiC composite coatings with 3.8 wt.% SiC and 24.68 wt.% Cr were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Ni-Cr/SiC composite coatings.

  1. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.

    PubMed

    Sun, Yuanyuan; Yue, Qinyan; Mao, Yanpeng; Gao, Baoyu; Gao, Yuan; Huang, Lihui

    2014-01-30

    FeCl3, AlCl3 and MnCl2 were used as the assisted activation agent in activated carbon preparation by H3PO4 activation using microwave heating method. The physico-chemical properties of activated carbons were investigated by scanning electron microscope (SEM), N2 adsorption/desorption, Boehm's titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). To investigate the adsorption performances of chromium onto these newly developed activated carbons, a batch of experiments were performed under different adsorption conditions: solution pH, initial Cr(VI) ion concentration, contact time and co-existing ions. The results suggested that carbon with MnCl2 as assisted activation agent displayed the highest BET surface area (1332m(2)/g) and the highest pore volume (1.060cm(3)/g). FeCl3, AlCl3 and MnCl2 had successfully improved Cr(VI) adsorption and activated carbon with FeCl3 as assisted activation agent exhibited the best uptake capacity. To study the transformation of Cr(VI) in adsorption process, total chromium in the aqueous solution was also recorded. The ratio of the amount of Cr(VI) to Cr(III) on each adsorbent was explained by XPS analysis results. Both the co-existing salts (Na2SO4 and NaNO3) demonstrated promoted effects on Cr(VI) removal by four carbons. The pseudo-second-order model and Freundlich equation displayed a good correlation with adsorption data.

  2. Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark.

    PubMed

    Fiol, Núria; Escudero, Carlos; Villaescusa, Isabel

    2008-07-01

    In this work, two low cost sorbents, grape stalks and yohimbe bark wastes were used to remove Cr(VI) and Cr(III) from aqueous solutions. Batch experiments were designed to obtain Cr(VI) and Cr(III) sorption data. The mechanism of Cr(III) and Cr(VI) removal and Cr(VI) reduction to Cr(III) by the two vegetable wastes, has been investigated. Fourier transform infrared rays (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis on solid phase were performed to determine the main functional groups that might be involved in metal uptake and to confirm the presence of Cr(III) on the sorbent, respectively. Results put into evidence that both sorbents are able to reduce Cr(VI) to its trivalent form.

  3. Distribution of chromium species in a Cr-polluted soil: presence of Cr(III) in glomalin related protein fraction.

    PubMed

    Gil-Cardeza, María L; Ferri, Alejandro; Cornejo, Pablo; Gomez, Elena

    2014-09-15

    The accumulation of Cr in soil could be highly toxic to human health; therefore Cr soil distribution was studied in rhizosphere soils from Ricinus communis and Conium maculatum and bare soil (BS) from an industrial and urban area in Argentina. Total Cr, Cr(VI) and Cr(III) concentrations were determined in 3 soil fractions: total, extractable and associated to total-glomalin-related protein (T-GRSP). BS had the highest total Cr and total Cr(VI) concentrations. Total Cr(VI) concentration from both rhizosphere soils did not differ from the allowed value for residential area in Argentina (8 μg Cr(VI) g(-1) soil), while total Cr(VI) in BS was 1.8 times higher. Total Cr concentration in all the soils was higher than the allowed value (250 μg Cr g(-1) soil). Extractable and associated to T-GRSP Cr(VI) concentrations were below the detection limit. Cr(III) bound to T-GRSP was the highest in the BS. These findings are in agreement with a long term effect of glomalin in sequestrating Cr. In both plant species, total Cr was higher in root than in shoot and both species presented arbuscular mycorrhizal fungi (AMF). As far as we know, this is the first study that reports the presence of Cr in T-GRSP fraction of soil organic matter. These findings suggest that Cr mycorrhizostabilization could be a predominant mechanism used by R. communis and C. maculatum to diminish Cr soil concentration. Nevertheless, further research is needed to clarify the contribution of native AMF isolated from R. communis and C. maculatum rhizosphere to the Cr phytoremediation process.

  4. Can Cr( iii ) substitute for Al( iii ) in the structure of boehmite?

    SciTech Connect

    Chatterjee, Sayandev; Conroy, Michele A.; Smith, Frances N.; Jung, Hee-Joon; Wang, Zheming; Peterson, Reid A.; Huq, Ashfia; Burtt, David G.; Ilton, Eugene S.; Buck, Edgar C.

    2016-01-01

    The dissolution of boehmite is a technical issue for the Al industry because of its recalcitrant nature. In fact, a similar problem exists with boehmite in nuclear waste sludge at the Hanford site in eastern Washington State, USA. Dissolution of Al phases is required to reduce the waste loadings in the final borosilicate glass waste form. Although not the most common Al-bearing species in the sludge, boehmite may become a rate limiting step in the processing of the wastes. Hanford boehmite is an order of magnitude more resistant to dissolution in hot caustic solutions than expected from surface-normalized rates. We are exploring potential intrinsic and extrinsic effects that may limit boehmite reactivity; one clue comes from microstructural analyses that indicate an association of Cr with Al in the Hanford nuclear waste. Hence, in this first paper, we investigated the potential role of chromium on the reactivity of boehmite in caustic solution. An important finding was that irrespective of the synthesis pathway, amount of Cr(III), or the resultant morphology, there was no evidence for Cr incorporation in the bulk structure, in agreement with QM calculations. In fact, electron microscopic (EM) and spectroscopic analyses showed that Cr was enriched at the (101) edges of the boehmite. However, Cr had no measurable effect on the morphology during the synthesis step. In contrast, comparison of the morphologies of the synthetic Cr-doped and pure boehmite samples after exposure to caustic solutions provided evidence that Cr inhibited the corrosion. TEM showed that Cr was not homogeneously distributed at the surface. Consequently, Cr may have partially passivated the surface by blocking discrete energetic sites on the lateral surfaces of boehmite.

  5. Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, Robert R.

    1993-01-01

    Major accomplishments under NASA grant NAG-1-1346 are summarized. (1) numerical modeling of the four mirror astigmatically compensated, Z-fold cavity was performed and several design parameters to be used for the construction of a femtosecond forsterite laser were revealed by simulation. (2) femtosecond pulses from a continuous wave mode-locked chromium doped forsterite laser were generated. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured. (3) Self-mode-locked operation of the Cr:forsterite laser was achieved. Synchronous pumping was used to mode lock the forsterite laser resulting in picosecond pulses, which in turn provided the starting mechanism for self-mode-locking. The pulses generated had an FWHM of 105 fs and were tunable between 1230-1270 nm. (4) Numerical calculations indicated that the pair of SF 14 prisms used in the cavity compensated for quadratic phase but introduced a large cubic phase term. Further calculations of other optical glasses indicated that a pair of SFN 64 prisms can introduce the same amount of quadratic phase as SF 14 prisms but introduce a smaller cubic phase. When the SF 14 prisms were replaced by SFN 64 prisms the pulsewidth was reduced to 50 fs. Great improvement was observed in the stability of the self mode-locked forsterite laser and in the ease of achieving mode locking. Using the same experimental arrangement and a new forsterite crystal with improved FOM the pulse width was reduced to 36 fs.

  6. Rare-earth chromium gallides RE{sub 4}CrGa{sub 12} (RE=Tb-Tm)

    SciTech Connect

    Slater, Brianna R.; Bie, Haiying; Stoyko, Stanislav S.; Bauer, Eric D.; Thompson, Joe D.; Mar, Arthur

    2012-12-15

    The ternary rare-earth-metal chromium gallides RE{sub 4}CrGa{sub 12} (RE=Tb-Tm) have been prepared by reactions of the elements at 1000 Degree-Sign C in the presence of excess gallium used as a self-flux. Their structures are derived by inserting Cr atoms into a quarter of the empty Ga{sub 6} octahedral clusters found in the parent binary gallides REGa{sub 3} (AuCu{sub 3}-type), although single-crystal X-ray diffraction studies suggest that complex superstructures may be adopted. An ideal ordered Y{sub 4}PdGa{sub 12}-type structure was successfully refined for a crystal of Dy{sub 4}CrGa{sub 12} (Pearson symbol cI34, space group Im3{sup Macron }m, Z=2, a=8.572(1) A). Magnetic measurements on single-crystal samples reveal ferromagnetic or possibly ferrimagnetic ordering for the Tb, Dy, and Er members (T{sub C}=22, 15, and 2.8 K, respectively) and antiferromagnetic ordering for the Ho member (T{sub N}=7.5 K). Band structure calculations on a hypothetical 'Y{sub 4}CrGa{sub 12}' model suggest that the Cr atoms carry no local magnetic moment. - Graphical abstract: RE{sub 4}CrGa{sub 12} is derived by inserting Cr atoms into empty Ga{sub 6} octahedral clusters present in the parent binary gallides REGa{sub 3}. Highlights: Black-Right-Pointing-Pointer RE{sub 4}MGa{sub 12} (previously known for M=Fe, Ni, Pd, Pt, Ag) has been extended to M=Cr. Black-Right-Pointing-Pointer RE{sub 4}CrGa{sub 12} compounds show predominantly ferromagnetic ordering. Black-Right-Pointing-Pointer Band structure calculations suggest that Cr atoms carry no local magnetic moment.

  7. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Shenoy, R. N.

    1991-01-01

    The present study evaluates the effect of the systematic variation of copper, chromium, and zirconium contents on the microstructure and mechanical properties of a 7000-type aluminum alloy. Fracture toughness and tensile properties are evaluated for each alloy in both the peak aging, T8, and the overaging, T73, conditions. Results show that dimpled rupture essentially characterize the fracture process in these alloys. In the T8 condition, a significant loss of toughness is observed for alloys containing 2.5 pct Cu due to the increase in the quantity of Al-Cu-Mg-rich S-phase particles. An examination of T8 alloys at constant Cu levels shows that Zr-bearing alloys exhibit higher strength and toughness than the Cr-bearing alloys. In the T73 condition, Cr-bearing alloys are inherently tougher than Zr-bearing alloys. A void nucleation and growth mechanism accounts for the loss of toughness in these alloys with increasing copper content.

  8. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge.

  9. Rapid leaching of Cr(VI) in soil with Na3PO4 in the determination of hexavalent chromium by electrothermal atomic absorption spectrometry.

    PubMed

    Mandiwana, Khakhathi L

    2008-01-15

    A method has been developed that leaches Cr(VI) selectively from soil samples. Hexavalent chromium was leached completely from soil with 0.01molL(-1) Na(3)PO(4). This was achieved by boiling the soil-reagent solution mixture for a period of 5min. The leached Cr(VI) was then quantified by electrothermal atomic absorption spectrometry (ET-AAS) after filtration of the sample solutions through Hydrophilic Millipore PVDF 0.45microm filter. Statistical evaluations indicated that the new developed method is reliable since neither its comparison with the established method nor the comparison of the sum of the concentrations of chromium species to that of the total concentration of chromium show any difference at 95% level of confidence. The spiking of soil samples with Cr(III) standards before pretreatment show that Cr(III) was not oxidized to Cr(VI) during leaching as the Cr(VI) content never increased. The detection limit established was 0.07microg g(-1), which is an improvement to that of the US EPA method 3060A by a factor of more than 500. The maximum concentrations of Cr(VI) found in soil samples collected around the new chromium mine was 8.0microg g(-1) and falls within acceptable level of 15microg g(-1) in accordance with the Italian Guidelines.

  10. Chromium in exhaled breath condensate (EBC), erythrocytes, plasma and urine in the biomonitoring of chrome-plating workers exposed to soluble Cr(VI).

    PubMed

    Goldoni, Matteo; Caglieri, Andrea; De Palma, Giuseppe; Acampa, Olga; Gergelova, Petra; Corradi, Massimo; Apostoli, Pietro; Mutti, Antonio

    2010-02-01

    Chromium (Cr) levels measured in exhaled breath condensate (EBC-Cr) and urine (Cr-U) at the beginning and end of working shifts were related to those measured in erythrocytes (Cr-RBC) and plasma in 14 non-smoking male chrome-plating workers exposed to Cr(VI) in soluble aerosol form who did not report any significant current or past respiratory disease. Cr-U mainly correlated with Cr-P (Cr in plasma) at the end of the working shift (r(2) = 0.59, p < 0.01), whereas Cr-RBC correlated with EBC-Cr (r(2) = 0.32, p < 0.05); at the beginning of the shift, the only significant correlation was between Cr-U and Cr-RBC (r(2) = 0.74, p < 0.01). The clearance of Cr(iii) arising from Cr(VI) reduction was rapid, thus making Cr-U and Cr-P ideal biomarkers of the most recent exposure, whereas Cr-RBC may represent the fraction of Cr(VI) that reaches the bloodstream in non-reduced form and therefore depends on the airway inhaled dose represented by EBC-Cr. Cr-RBC clearance is slower and not only involves the free diffusion of Cr(iii) from RBC to plasma, but probably also involves more complicated kinetic phenomena involving other tissues and organs, which may explain the correlation between Cr-RBC and Cr-U and the lack of correlation Cr-RBC and Cr-P at least 36 h after the last exposure. In conclusion, our findings reinforce the idea that measuring Cr in EBC can significantly contribute to traditional biomonitoring by providing specific information at the target organ level and integrating our knowledge of Cr toxicokinetics.

  11. Effect of Rhenium Addition on Wear Behavior of Cr-Al2O3 Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Chmielewski, Marcin; Piątkowska, Anna

    2015-05-01

    Materials for applications in the automotive industry are required to be strong, stiff, hard, light weight, and wear resistant, which is very difficult to achieve in the case of conventional materials. To meet all these diverse requirements, it is necessary to combine various types of materials (such as metals and ceramics). In the present study, the chromium and chromium-rhenium matrices were reinforced with aluminum oxide to obtain composite materials with improved wear resistance. The composites were fabricated by a powder metallurgy method. The effects of the rhenium addition and volume fraction of aluminum oxide on the wear rate and the friction coefficient of the composites at room temperature were examined in a ball-on-surface apparatus under dry conditions. The worn surfaces and debris were studied by scanning electron microscopy. The final values of the friction coefficient were 0.9 and 0.8 for the Cr-25%Al2O3 and Cr-40%Al2O3 composites, respectively. Alloying Cr matrix with Re improved wear resistance of composite but, at the same time, it caused an increase in its coefficient of friction.

  12. Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating

    NASA Astrophysics Data System (ADS)

    Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong

    2017-03-01

    The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating < the stainless steel with Al-Si coating < the stainless steel without any coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.

  13. Observation of higher-harmonic helical spin-resonance modes in the chromium spinel CdCr2O4.

    PubMed

    Kimura, S; Hagiwara, M; Ueda, H; Narumi, Y; Kindo, K; Yashiro, H; Kashiwagi, T; Takagi, H

    2006-12-22

    High frequency ESR measurements on the chromium spinel compound CdCr2O4 have been performed. The observed ESR modes below Hc' approximately 5.7 T can be explained well by the calculated resonance modes based on a molecular field theory assuming a helical spin structure. Other than the fundamental ones, we have succeeded in observing the higher-harmonic modes for the first time. A large change of the ESR modes above Hc' indicate that a variation of the spin structure from the helical to the four-sublattice canted one takes place around Hc'.

  14. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  15. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids have been observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. It was postulated that the voids resulted from an excess number of oxygen vacancies near the oxide-metal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidations of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al,Cr)2O3 and Ni(Al,Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationships between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  16. Differential impact of ionic and coordinate covalent chromium (Cr)-DNA binding on DNA replication.

    PubMed

    Fornsaglio, Jamie L; O'Brien, Travis J; Patierno, Steven R

    2005-11-01

    The reactive species produced by the reduction of Cr(VI), particularly Cr(III), can form both ionic and coordinate covalent complexes with DNA. These Cr(III)-DNA interactions consist of Cr-DNA monoadducts, Cr-DNA ternary adducts, and Cr-DNA interstrand cross-links (Cr-ICLs), the latter of which are DNA polymerase arresting lesions (PALs). We sought to determine the impact of Cr-DNA interactions on the formation of replication blocking lesions in S. cerevisiae using a PCR-based method. We found that target sequence (TS) amplification using DNA isolated from Cr(VI)-treated yeast actually increased as a function of Cr(VI) concentration. Moreover, the enhanced TS amplification was reproduced in vitro using Cr(III)-treated DNA. In contrast, PCR amplification of TS from DNA isolated from yeast exposed to equitoxic doses of the inorganic DNA cross-linking agent cisplatin (CDDP), was decreased in a concentration-dependent manner. This paradox suggested that a specific Cr-DNA interaction, such as an ionic Cr-DNA complex, was responsible for the enhanced TS amplification, thereby masking the replication-blocking effect of certain ternary Cr-DNA adducts (i.e. interstrand cross-links). To test this possibility, we removed ionically associated Cr from the DNA using salt extraction prior to PCR analysis. This procedure obviated the increased amplification and revealed a dose-dependent decrease in TS amplification and an increase in Cr-PALs. These data from DNA analyzed ex vivo after treatment of intact cells indicate that ionic interactions of Cr with DNA result in increased DNA amplification whereas coordinate-covalent Cr-DNA complexes lead to formation of Cr-PALs. Thus, these results suggest that treatment of living cells with Cr(VI) leads to two modes of Cr-binding, which may have conflicting effects on DNA replication.

  17. Chromium and Tantalum Site Substitution Patterns in Ni3Al (L1(sub 2))gamma(prime)- Precipitates

    NASA Technical Reports Server (NTRS)

    Booth-Morrison, Christopher; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.

    2008-01-01

    The site substitution behavior of Cr and Ta in the Ni3Al (Ll2)-type gamma'-precipitates of a Ni-Al-Cr-Ta alloy is investigated by atom-probe tomography (APT) and first-principles calculations. Measurements of the gamma'-phase composition by APT suggest that Al, Cr, and Ta share the Al sublattice sites of the gamma'-precipitates. The calculated substitutional energies of the solute atoms at the Ni and Al sublattice sites indicate that Ta has a strong preference for the Al sites, while Cr has a weak Al site preference. Furthermore, Ta is shown to replace Cr at the Al sublattice sites of the gamma'-precipitates, altering the elemental phase partitioning behavior of the Ni-Al-Cr-Ta alloy.

  18. Chromium behavior during cement-production processes: a clinkerization, hydration, and leaching study.

    PubMed

    Sinyoung, Suthatip; Songsiriritthigul, Prayoon; Asavapisit, Suwimol; Kajitvichyanukul, Puangrat

    2011-07-15

    The behavior of chromium during the production of cement clinker, during the hydration of cement and during the leaching of cement mortars was investigated. The microstructures of clinker and mortar properties were investigated using free lime, XRD, SEM/EDS, and TG/DTA techniques. Chromium was found to be incorporated in the clinker phase. The formation of new chromium compounds such as Ca(6)Al(4)Cr(2)O(15), Ca(5)Cr(3)O(12), Ca(5)Cr(2)SiO(12), and CaCr(2)O(7), with chromium oxidation states of +3, +4.6, +5, and +6, respectively, was detected. After the hydration process, additional chromium compounds were identified in the mortar matrix, including Ca(5)(CrO(4))(3)OH, CaCrO(4)·2H(2)O, and Al(2)(OH)(4)CrO(4), with chromium oxidation states of +4.6, +6, and +6, respectively. Additionally, some species of chromium, such as Cr(3+) from Ca(6)Al(4)Cr(2)O(15) and Cr(6+) from CaCr(2)O(7), CaCrO(4)·2H(2)O, and Al(2)(OH)(4)CrO(4), were leached during leaching tests, whereas other species remained in the mortar. The concentrations of chromium that leached from the mortar following U.S. EPA Method 1311 and EA NEN 7375:2004 leaching tests were higher than limits set by the U.S. EPA and the Environment Agency of England and Wales related to hazardous waste disposal in landfills. Thus, waste containing chromium should not be allowed to mix with raw materials in the cement manufacturing process.

  19. Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-ThO2) sheet for space shuttle vehicles, part 2

    NASA Technical Reports Server (NTRS)

    Klingler, L. J.; Weinberger, W. R.; Bailey, P. G.; Baranow, S.

    1972-01-01

    Two dispersion strengthened nickel base alloy systems were developed for use at temperatures up to 1204 C(2200 F); TD nickel chromium (TDNiCr) and TD nickel chromium aluminum (TDNiCrA1). They are considered candidate materials for use on the thermal protection systems of the space shuttle and for long term use in aircraft gas turbine engine applications. Improved manufacturing processes were developed for the fabrication of TDNiCr sheet and foil to specifications. Sheet rolling process studies and extrusion studies were made on two aluminum containing alloys: Ni-16%Cr-3.5%A1-2%ThO2 and Ni-16%Cr-5.0%A12%ThO2. Over 1600 kg.(3500 lb.) of plate, sheet, foil, bar and extrusion products were supplied to NASA Centers for technology studies.

  20. Phase Separation kinetics in an Fe-Cr-Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Chao, J.

    2012-01-01

    The {alpha}-{alpha}{prime} phase separation kinetics in a commercial Fe-20 wt.% Cr-6 wt.% Al oxide dispersion-strengthened PM 2000{trademark} steel have been characterized with the complementary techniques atom probe tomography and thermoelectric power measurements during isothermal aging at 673, 708, and 748 K for times up to 3600 h. A progressive decrease in the Al content of the Cr-rich {alpha}{prime} phase was observed at 708 and 748 K with increasing time, but no partitioning was observed at 673 K. The variation in the volume fraction of the {alpha}{prime} phase well inside the coarsening regime, along with the Avrami exponent 1.2 and activation energy 264 kJ mol{sup -1}, obtained after fitting the experimental results to an Austin-Rickett type equation, indicates that phase separation in PM 2000{trademark} is a transient coarsening process with overlapping nucleation, growth, and coarsening stages.

  1. Hot corrosion of CoCrAlY alloys

    SciTech Connect

    Hwang, S.Y.

    1989-01-01

    The kinetics and mechanisms of the hot corrosion of CoCrAlY alloys over wide ranges of temperature (600-1000{degree}C) and Pso{sub 3} (10{sup {minus}6}-10{sup {minus}3} atm) were studied. Isothermal and cyclic experiments were performed to study the kinetics, and microstructures were examined by scanning electron microscopy. After interpreting these results, the hot corrosion mechanisms of the CoCrAlY alloys were proposed to explain the observed behavior. The reaction mechanism governing hot corrosion is thought to be as follows. At low temperature (600-800{degree}C), SO{sub 3} and CoO react and form a molten Na{sub 2}SO{sub 4}-CoSO{sub 4} salt mixture. Aluminum diffuses through the alloy, is oxidized, and the alumina which is formed becomes subject to basic fluxing. While alumina is subject to the Rapp-Goto mechanism, chromia may not be subject to this mechanism. Since Co is left behind in the alloy, the basic fluxing of alumina seems to be the cause for formation of nonprotective scales. Sulfides can form during low temperature hot corrosion and considerable sulfide formation is observed at 900-850{degree}C, but the sulfidation process is less likely to be the major cause of LTHC. Also, the sulfite formation mechanism is evaluated, and the activity of aluminum sulfite is found to be too low for this compound to exist. At high temperature (900-1000{degree}C), the CoCrAlY alloy was in the initiation stage due to the formation of protective alumina during isothermal tests. The mode of degradation of the CoCrAlY alloy at 1000{degree}C in pure oxygen during the cyclic tests was basic fluxing of alumina and chromia accompanied by spalling and cracking of oxides.

  2. Magnetic properties of EuCr2Al20

    NASA Astrophysics Data System (ADS)

    Swatek, Przemysław; Kaczorowski, Dariusz

    2016-10-01

    Polycrystalline sample of EuCr2Al20 was studied by means of x-ray powder diffraction, magnetization, electrical resistivity and heat capacity measurements. The compound was found to order antiferromagnetically at TN = 4.8 K due to the magnetic moments carried on divalent of Eu ions. The experimental findings are supported by the results of ab-initio band structure calculations.

  3. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  4. A plan for study of hexavalent chromium, CR(VI) in groundwater near a mapped plume, Hinkley, California, 2016

    USGS Publications Warehouse

    Izbicki, John A.; Groover, Krishangi D.

    2016-01-22

    The Pacific Gas and Electric Company (PG&E) Hinkley compressor station, in the Mojave Desert 80 miles northeast of Los Angeles, is used to compress natural gas as it is transported through a pipeline from Texas to California. Between 1952 and 1964, cooling water used at the compressor station was treated with a compound containing chromium to prevent corrosion. After cooling, the wastewater was discharged to unlined ponds, resulting in contamination of soil and groundwater in the underlying alluvial aquifer (Lahontan Regional Water Quality Control Board, 2013). Since 1964, cooling-water management practices have been used that do not contribute chromium to groundwater.In 2007, a PG&E study of the natural background concentrations of hexavalent chromium, Cr(VI), in groundwater estimated average concentrations in the Hinkley area to be 1.2 micrograms per liter (μg/L), with a 95-percent upper-confidence limit of 3.1 μg/L (CH2M-Hill, 2007). The 3.1 μg/L upper-confidence limit was adopted by the Lahontan Regional Water Quality Control Board (RWQCB) as the maximum background concentration used to map the plume extent. In response to criticism of the study’s methodology, and an increase in the mapped extent of the plume between 2008 and 2011, the Lahontan RWQCB (Lahontan Regional Water Quality Control Board, 2012) agreed that the 2007 PG&E background-concentration study be updated.The purpose of the updated background study is to evaluate the presence of natural and man-made Cr(VI) near Hinkley, Calif. The study also is to estimate natural background Cr(VI) concentrations in the aquifer upgradient and downgradient from the mapped Cr(VI) contamination plume, as well as in the plume and near its margins. The study was developed by the U.S. Geological Survey (USGS) in collaboration with a technical working group (TWG) composed of community members, the Independent Review Panel (IRP) Manager (Project Navigator, Ltd.), the Lahontan RWQCB, PG&E, and consultants for PG&E.&E.

  5. The role of temperature on Cr(VI) formation and reduction during heating of chromium-containing sludge in the presence of CaO.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Zhai, Jianping; Zhao, Yongbin; Li, Qin; Cui, Hao

    2015-11-01

    In this study, the temperature dependence of Cr(VI) formation and reduction in the presence of CaO was examined during the thermal treatment of sludge that contains chromium. thermogravimetry-differential scanning calorimetry and X-ray diffractometry were used to characterize the thermal behavior and phase transformation, respectively. Na2CO3 leaching procedure was employed to determine the amount of Cr(VI). The result showed that CaO promoted Cr(III) oxidation, however, its influence is very dependent on heating temperature, with the extent of the effect varying with temperature. From 200-400 °C, the presence of CaO facilitated formation of intermediate product Cr2O3+x containing Cr(VI) during dehydration of chromium hydrate, while Cr2O3+x would decompose as temperature over 400 °C, accompanied by part of Cr(VI) being reduced to Cr(III). From 500 to 900 °C, Cr(III) reacted with CaO to form a leachable CaCrO4 product. This product was stable and a prolonged heating time did not reduce the amount of Cr(VI) significantly. At 1000-1200 °C, part of CaCrO4 was reduced to Ca(CrO2)2 in 1h. While extended heating time above 1h resulted in the Ca(CrO2)2 being oxidized reversibly to CaCrO4 at 1200 °C. Since CaCrO4 is thermodynamically less stable over 1000 °C, MgO could induce CaCrO4 to be reduced into MgCr2O4 at around 900 °C, lower than that for the reduction from CaCrO4 into Ca(CrO2)2. It suggested that adding MgO might be a potential approach for inhibiting Cr(VI) formation during heating sludge containing chromium.

  6. Deformation and annealing study of NiCrAlY

    NASA Technical Reports Server (NTRS)

    Ebert, L. J.; Trela, D. M.

    1978-01-01

    The elevated temperature properties (tensile and creep) of NiCrALY, a nickel base alloy containing nominally 16% chromium, 4% aluminum, and 2 to 3% yttria (Y2O3) were evaluated and the optimal combination of thermomechanical treatments for maximum creep resistance was determined. Stored strain energy in as-extruded bars (14:1 extrusion ratio) permitted the development of a large grain size in the material when it was annealed at the maximum safe temperature 2450 F (1343 C). With a one-hour anneal at this temperature, the relatively fine grain size of the as-extruded material was changed to one in which the average grain diameter approached 1 mm, and the aspect ratio was about 10. The material was capable of being cold worked (by rolling) in amounts greater than 30% reduction in area. When the cold worked material was given a relaxation treatment, consisting of heating one hour at 1600 F(871 C), and then a high temperature anneal at 2450 F (1343 C) for one hour, both the high temperature strength and the high temperature creep resistance of the material was further enhanced.

  7. Structure and wear behavior of AlCrSiN-based coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Du, Hao; Chen, Ming; Yang, Jun; Xiong, Ji; Zhao, Haibo

    2016-05-01

    AlCrN, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings have been deposited on high-polished WC-Co cemented carbide substrate and tools by mid-frequency magnetron sputtering in Ar/N2 mixtures. Al0.6Cr0.4, Al0.6Cr0.3Si0.1, and C/Mo/Nb targets were used during the deposition. The microstructure and mechanical properties of as-deposited coatings were investigated. Investigations of the wear behaviors of coated tools were also performed. The results showed that cubic structure was formed in the coatings. Broader CrAlN (1 1 1) and (2 0 0) peaks without SiNx peak were formed in the AlCrSiN/MexN coatings, which showed a nanocomposited structure. Meanwhile, according to SEM micrographs, AlCrN exhibited a columnar structure, while, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings showed nanocrystalline morphology. The nano-multilayered coatings performed higher hardness, H/E, and H3/E2 ratios compared with AlCrN coating. Through the Rockwell adhesion test, all the coatings exhibited adhesion strength quality HF1. After turning Inconel 718 under dry condition, the nano-multilyered coatings showed better wear resistance than AlCrN coating. Due to the molybdenum and niobium in the coating, AlCrSiN/MoN and AlCrSiN/NbN coatings showed the best wear resistance.

  8. DFT functional benchmarking on the energy splitting of chromium spin states and mechanistic study of acetylene cyclotrimerization over the Phillips Cr(II)/silica catalyst.

    PubMed

    Liu, Zhen; Cheng, Ruihua; He, Xuelian; Wu, Xiaojun; Liu, Boping

    2012-07-19

    In this work, a two-state reaction mechanism for the acetylene cyclotrimerization over a cluster model for the Phillips Cr(II)/silica catalyst were systematically investigated using density functional theory (DFT). Since spin crossover phenomenon was confirmed in the catalytic cycle, an accurate prediction of the energy gap between low- and high-spin states is crucial for the description of a reaction involving a two-state reactivity. Therefore, a massive DFT functional benchmarking test has been conducted on the cluster model by taking a CASPT2 energy gap as a reference. Consequently, B3PW91* with 28% Hartree-Fock exchange energy was selected for the following mechanistic investigation. Each of the possible potential energy surface including singlet, triplet, and quintet surfaces was explored. On the quintet surface, the reaction begins with a coordination of an acetylene on the chromium center to generate a π-coordinated complex. The following oxidative coupling through further coordination with a second acetylene was predicted to be a two-step reaction to generate a chromacyclopentadiene species. This transformation was found to be energetically prohibitive by the presence of the transition state (5)TS[C-E] (ΔG(‡) = 31.1 kcal/mol). On the triplet surface, however, the coordination of an acetylene generates a chromacyclopropene species without showing any activation barrier. The second acetylene incorporation proceeding via a coordination on the chromium center followed by an insertion into a Cr-C σ-bond of the chromacyclopropene was predicted to be a facile reaction pathway (ΔG(‡) = 10.2 kcal/mol). The third acetylene was captured by the cluster model through the formation of a hydrogen bond. The later transformation on the triplet surface was found to be an intermolecular [4 + 2] cycloaddition to finish the cyclization. The lack of the aromaticity of the benzene ring in (3)L results in an uncompleted reaction pathway on a single triplet surface

  9. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: involvement of Cr(V) species.

    PubMed

    Testa, Juan J; Grela, María A; Litter, Marta I

    2004-03-01

    Cr(VI) photocatalytic reduction experiments over TiO2 particles under near UV irradiation in the presence of excess oxalate were performed at acid pH (2 and 3) and under air and N2 bubbling. Initial photonic efficiencies for Cr(VI) reduction are nearly the same under aerobic and anaerobic conditions, but show a significant increase at the lowest pH. At pH 2, the addition of oxalate facilitates Cr(VI) reduction, hindering the electron-shuttle mechanism taking place in pure water. The oxalate synergistic effect at pH 2 is lower than that previously found for EDTA and negligible at pH 3. Chromium(V) oxalate concentration profiles were obtained by EPR spectroscopy in the presence of excess oxalate at pH 1.5. Coordinated Cr(V) complexes [Cr(V)(O)(Ox)2]-, [Cr(V)(OH2)(Ox)2]-, and [Cr(V)(O)(OH)2(Ox)]- were identified, on the basis of the comparison of their corresponding g values with recent literature data. The kinetic analysis of the temporal evolution of the paramagnetic Cr(V) species indicates also an effective photocatalytic degradation of chromium(V) oxalate complexes. This new evidence reinforces previous findings regarding sequential one-electron-transfer processes in Cr(VI) photocatalytic reduction, suggesting that this route may represent a general behavior for the Cr(VI) reduction over UV-irradiated TiO2 particles.

  10. Determination of Chromium Valence Over the Range Cr(0)-Cr(VI) by Electron Energy Loss Spectroscopy

    DTIC Science & Technology

    2006-01-01

    Cr species are strong oxidants which act as coupled plasma (ICP)- atomic emission spectrometry (AES); carcinogens, mutagens and teratogens in...technique analyzed immediately following preparation. All air - to study microbial reduction of Cr(VI) [46,73,74]. However, sensitive specimens were...we apply the two- air -sensitive, hydrophilic specimens, desiccant beads were parameterization valence-correlation technique on a greatly placed in the

  11. Al/sub 2/O/sub 3/ adherence on CoCrAl alloys

    SciTech Connect

    Kingsley, L.M.

    1980-04-01

    Adherence of protective oxides on NiCrAl and CoCrAl superalloys has been promoted by a dispersion of a highly oxygen reactive element or its oxide being produced within the protection system. Two aspects of this subject are investigated here: the use of Al/sub 2/O/sub 3/ as both the dispersion and protective oxide; and the production of an HfO/sub 2/ dispersion while simultaneously aluminizing the alloy. It was found that an Al/sub 2/O/sub 3/ dispersion will act to promote the adherence of an external scale of Al/sub 2/O/sub 3/ to a degree comparable to previously tested dispersions and an HfO/sub 2/ dispersion comparable to that produced by a Rhines pack treatment is produced during aluminization.

  12. Processing and Properties of Mechanical Alloyed Al93Fe3Cr2Ti2 Alloys

    DTIC Science & Technology

    2004-10-01

    Nanomaterials, Aluminum Alloys ABSTRACT Nanostructured A193Fe3Ti2Cr2 alloys were prepared via mechanical alloying (MA) starting from elemental powders...2Cr2 . The aluminum powder had a purity of 99.5 wt% with a mean particle size of 70 ^rn, while the corresponding values for iron, chromium and...increases. 2) All aluminum reflections exhibit broadening even after only 2-hours of milling, indicating the grain size reduction and possibly the

  13. Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-Th-O2) sheet for space shuttle vehicles, part 1

    NASA Technical Reports Server (NTRS)

    Klingler, L. J.; Weinberger, W. R.; Bailey, P. G.; Baranow, S.

    1971-01-01

    A dispersion-strengthened alloy, TD nickel chromium (TDNiCr) is being developed for use on the thermal protection system of the space shuttle at temperatures up to 1204 C(2200 F). Manufacturing processes were developed for the fabrication of sheet and foil to specifications. The addition of aluminum to the basic TDNiCr composition provides outstanding oxidation resistance up to 1260 C(2300 F); aluminum levels of 2 to 4% are considered optimum for space shuttle application.

  14. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  15. Accurate quantification of total chromium and its speciation form Cr(VI) in water by ICP-DRC-IDMS and HPLC/ICP-DRC-IDMS.

    PubMed

    Markiewicz, Barbara; Komorowicz, Izabela; Barałkiewicz, Danuta

    2016-05-15

    Two analytical procedures have been developed for the determination of total chromium (TCr) and its highly toxic species, i.e. Cr(VI) in water samples using the following methods: inductively coupled plasma dynamic reaction cell isotope dilution mass spectrometry (ICP-DRC-IDMS) and high performance liquid chromatography inductively coupled plasma dynamic reaction cell isotope dilution mass spectrometry (HPLC/ICP-DRC-IDMS). Spectral interferences, predominantly occurring in chromium determination, were removed using a dynamic reaction cell (DRC). The presented procedures facilitate the quantification of trace amounts - below 1 µg L(-1) of TCr and individual Cr species - in various water matrices including drinking water and still bottled water with different mineral composition. Special attention has been paid to the adequate preparation of isotopically enriched (53)Cr(VI) standard solution in order to avoid artifacts in chromium speciation. Both procedures were fully validated as well as establishing the traceability and estimation of the uncertainty of measurement were carried out. Application of all of the above mentioned elements and of the isotope dilution technique, which provides the highest quality of metrological traceability, allowed to obtain reliable and high quality results of chromium determination in water samples. Additionally, the comparison of two methods: HPLC/ICP-DRC-MS and HPLC/ICP-DRC-IDMS for Cr(VI) determination, was submitted basing on the validation parameters. As a result, the lower values for these parameters were obtained using the second method.

  16. Groundwater Contaminated with Hexavalent Chromium [Cr (VI)]: A Health Survey and Clinical Examination of Community Inhabitants (Kanpur, India)

    PubMed Central

    Sharma, Priti; Bihari, Vipin; Agarwal, Sudhir K.; Verma, Vipin; Kesavachandran, Chandrasekharan N.; Pangtey, Balram S.; Mathur, Neeraj; Singh, Kunwar Pal; Srivastava, Mithlesh; Goel, Sudhir K.

    2012-01-01

    Background We assessed the health effects of hexavalent chromium groundwater contamination (from tanneries and chrome sulfate manufacturing) in Kanpur, India. Methods The health status of residents living in areas with high Cr (VI) groundwater contamination (N = 186) were compared to residents with similar social and demographic features living in communities having no elevated Cr (VI) levels (N = 230). Subjects were recruited at health camps in both the areas. Health status was evaluated with health questionnaires, spirometry and blood hematology measures. Cr (VI) was measured in groundwater samples by diphenylcarbazide reagent method. Results Residents from communities with known Cr (VI) contamination had more self-reports of digestive and dermatological disorders and hematological abnormalities. GI distress was reported in 39.2% vs. 17.2% males (AOR = 3.1) and 39.3% vs. 21% females (AOR = 2.44); skin abnormalities in 24.5% vs. 9.2% males (AOR = 3.48) and 25% vs. 4.9% females (AOR = 6.57). Residents from affected communities had greater RBCs (among 30.7% males and 46.1% females), lower MCVs (among 62.8% males) and less platelets (among 68% males and 72% females) than matched controls. There were no differences in leucocytes count and spirometry parameters. Conclusions Living in communities with Cr (VI) groundwater is associated with gastrointestinal and dermatological complaints and abnormal hematological function. Limitations of this study include small sample size and the lack of long term follow-up. PMID:23112863

  17. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells.

    PubMed

    Wang, Gang; Huang, Liping; Zhang, Yifeng

    2008-11-01

    A novel approach to Cr(VI)-contaminated wastewater treatment was investigated using microbial fuel cell technologies in fed-batch mode. By using synthetic Cr(VI)-containing wastewater as catholyte and anaerobic microorganisms as anodic biocatalyst, Cr(VI) at 100 mg/l was completely removed during 150 h (initial pH 2). The maximum power density of 150 mW/m(2) (0.04 mA/cm(2)) and the maximum open circuit voltage of 0.91 V were generated with Cr(VI) at 200 mg/l as electron acceptor. This work verifies the possibility of simultaneous electricity production and cathodic Cr(VI) reduction.

  18. Synchrotron-based imaging of chromium and  γ-H2AX immunostaining in the duodenum following repeated exposure to Cr(VI) in drinking water

    DOE PAGES

    Thompson, Chad M.; Seiter, Jennifer; Chappell, Mark A.; ...

    2014-10-28

    Current drinking water standards for chromium are for the combined total of both hexavalent and trivalent chromium (Cr(VI) and Cr(III)). However, recent studies have shown that Cr(III) is not carcinogenic to rodents, whereas mice chronically exposed to high levels of Cr(VI) developed duodenal tumors. These findings may suggest the need for environmental standards specific for Cr(VI). Whether the intestinal tumors arose through a mutagenic or non-mutagenic mode of action (MOA) greatly impacts how drinking water standards for Cr(VI) are derived. Herein, X-ray fluorescence (spectro)microscopy (µ-XRF) was used to image the Cr content in the villus and crypt regions of duodenamore » from B6C3F1 mice exposed to 180 mg/l Cr(VI) in drinking water for 13 weeks. DNA damage was also assessed by γ-H2AX immunostaining. Exposure to Cr(VI) induced villus blunting and crypt hyperplasia in the duodenum—the latter evidenced by lengthening of the crypt compartment by ~2-fold with a concomitant 1.5-fold increase in the number of crypt enterocytes. γ-H2AX immunostaining was elevated in villi, but not in the crypt compartment. µ-XRF maps revealed mean Cr levels >30 times higher in duodenal villi than crypt regions; mean Cr levels in crypt regions were only slightly above background signal. Despite the presence of Cr and elevated γ-H2AX immunoreactivity in villi, no aberrant foci indicative of transformation were evident. Lastly, these findings do not support a MOA for intestinal carcinogenesis involving direct Cr-DNA interaction in intestinal stem cells, but rather support a non-mutagenic MOA involving chronic wounding of intestinal villi and crypt cell hyperplasia.« less

  19. Synchrotron-based imaging of chromium and  γ-H2AX immunostaining in the duodenum following repeated exposure to Cr(VI) in drinking water

    SciTech Connect

    Thompson, Chad M.; Seiter, Jennifer; Chappell, Mark A.; Tappero, Ryan V.; Proctor, Deborah M.; Suh, Mina; Wolf, Jeffrey C.; Haws, Laurie C.; Vitale, Rock; Mittal, Liz; Kirman, Christopher R.; Hays, Sean M.; Harris, Mark A.

    2014-10-28

    Current drinking water standards for chromium are for the combined total of both hexavalent and trivalent chromium (Cr(VI) and Cr(III)). However, recent studies have shown that Cr(III) is not carcinogenic to rodents, whereas mice chronically exposed to high levels of Cr(VI) developed duodenal tumors. These findings may suggest the need for environmental standards specific for Cr(VI). Whether the intestinal tumors arose through a mutagenic or non-mutagenic mode of action (MOA) greatly impacts how drinking water standards for Cr(VI) are derived. Herein, X-ray fluorescence (spectro)microscopy (µ-XRF) was used to image the Cr content in the villus and crypt regions of duodena from B6C3F1 mice exposed to 180 mg/l Cr(VI) in drinking water for 13 weeks. DNA damage was also assessed by γ-H2AX immunostaining. Exposure to Cr(VI) induced villus blunting and crypt hyperplasia in the duodenum—the latter evidenced by lengthening of the crypt compartment by ~2-fold with a concomitant 1.5-fold increase in the number of crypt enterocytes. γ-H2AX immunostaining was elevated in villi, but not in the crypt compartment. µ-XRF maps revealed mean Cr levels >30 times higher in duodenal villi than crypt regions; mean Cr levels in crypt regions were only slightly above background signal. Despite the presence of Cr and elevated γ-H2AX immunoreactivity in villi, no aberrant foci indicative of transformation were evident. Lastly, these findings do not support a MOA for intestinal carcinogenesis involving direct Cr-DNA interaction in intestinal stem cells, but rather support a non-mutagenic MOA involving chronic wounding of intestinal villi and crypt cell hyperplasia.

  20. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres.

    PubMed

    Franz, Robert; Polcik, Peter; Anders, André

    2015-06-25

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al(+) regardless of the background gas species, whereas Cr(2+) ions were dominating in Ar and N2 and Cr(+) in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.

  1. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    PubMed Central

    Franz, Robert; Polcik, Peter; Anders, André

    2015-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings. PMID:26120236

  2. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    NASA Astrophysics Data System (ADS)

    Kim, Sun Kyu; Pham, Vuong-Hung; Kim, Chong-Hyun

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  3. Development and High Temperature Property Evaluation of Ni-Co-Cr-Al Composite Electroforms

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Siju; Balaraju, J. N.; Ravisankar, B.

    2015-05-01

    Ni-Co-Cr-Al composite electroforms were developed with cobalt content of 10 and 40 wt.%. Cr and Al nano-particles were suspended in sulphamate electrolyte and co-deposited in the Ni-Co matrices. The surface morphology was investigated using field emission scanning electron microscope and the composition analyzed by energy-dispersive x-ray analysis. The oxidation resistance of the electroforms was studied from 600 to 1000 °C. The weight gain of Ni-10 wt.%Co-Cr-Al was less (better oxidation resistance) compared to Ni-Cr-Al and Ni-40 wt.%Co-Cr-Al. The x-ray diffraction studies revealed that the oxidation product formed on the surface of Ni-Cr-Al and Ni-10 wt.%Co-Cr-Al consisted of NiO and Al2O3, while Ni-40 wt.%Co-Cr-Al comprised oxides such as NiCo2O4, CrO3, CoO, NiO, and Al2O3. The hot corrosion behavior was investigated in 75%Na2SO4 + 25%NaCl environment at 800 °C. It was found that the hot corrosion resistance of the composite coating improved with increase in cobalt content. The probable composition suitable for high-temperature applications was found to be Ni-10 wt.%Co-Cr-Al.

  4. Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys in the temperature range of 700-750 deg C

    NASA Technical Reports Server (NTRS)

    Chiang, K. T.; Meier, G. H.

    1980-01-01

    The effect of SO3 pressure in the gas phase on the Na2SO4 induced hot corrosion of Co-Cr, Ni-Cr, and Co-Cr-Al alloys was studied in the temperature range 700 to 750 C. The degradation of the Co-Cr and Ni-Cr alloys was found to be associated with the formation of liquid mixed sulfates (CoSO4-Na2SO4 or NiSO4-Na2SO4) which provided a selective dissolution of the Co or Ni and a subsequent sulfidation oxidation mode of attack which prevented the maintenance of a protective Cr2O3 film. A clear mechanism was not developed for the degradation of Co-Cr-Al alloys. A pitting corrosion morphology was induced by a number of different mechanisms.

  5. Heavy Metal Resistances and Chromium Removal of a Novel Cr(VI)-Reducing Pseudomonad Strain Isolated from Circulating Cooling Water of Iron and Steel Plant.

    PubMed

    Zhang, Jian-Kun; Wang, Zhen-Hua; Ye, Yun

    2016-12-01

    Three bacterial isolates, GT2, GT3, and GT7, were isolated from the sludge and water of a circulating cooling system of iron and steel plant by screening on Cr(VI)-containing plates. Three isolates were characterized as the members of the genus Pseudomonas on the basis of phenotypic characteristics and 16S rRNA sequence analysis. All isolates were capable of resisting multiple antibiotics and heavy metals. GT7 was most resistant to Cr(VI), with a minimum inhibitory concentration (MIC) of 6.5 mmol L(-1). GT7 displayed varied rates of Cr(VI) reduction in M2 broth, which was dependent on pH, initial Cr(VI) concentration, and inoculating dose. Total chromium analysis revealed that GT7 could remove a part of chromium from the media, and the maximum rate of chromium removal was up to 40.8 %. The Cr(VI) reductase activity of GT7 was mainly associated with the soluble fraction of cell-free extracts and reached optimum at pH 6.0∼8.0. The reductase activity was apparently enhanced by external electron donors and Cu(II), whereas it was seriously inhibited by Hg(II), Cd(II), and Zn(II). The reductase showed a K m of 74 μmol L(-1) of Cr(VI) and a V max of 0.86 μmol of Cr(VI) min(-1) mg(-1) of protein. The results suggested that GT7 could be a promising candidate for in situ bioremediation of Cr(VI).

  6. Cyclic Oxidation of FeCrAlY/Al2O3 Composites

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.

    1999-01-01

    Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.

  7. A sulfur segregation study of PWA 1480, NiCrAl, and NiAl alloys

    NASA Technical Reports Server (NTRS)

    Jayne, D. T.; Smialek, J. L.

    1993-01-01

    Some nickel based superalloys show reduced oxidation resistance from the lack of an adherent oxide layer during high temperature cyclic oxidation. The segregation of sulfur to the oxide-metal interface is believed to effect oxide adhesion, since low sulfur alloys exhibit enhanced adhesion. X ray Photoelectron Spectroscopy (XPS) was combined with an in situ sample heater to measure sulfur segregation in NiCrAl, PWA 1480, and NiAl alloys. The polished samples with a 1.5 to 2.5 nm (native) oxide were heated from 650 to 1100 C with hold times up to 6 hr. The sulfur concentration was plotted as a function of temperature versus time at temperature. One NiCrAl sulfur study was performed on the same casting used by Browning to establish a base line between previous Auger Electron Spectroscopy (AES) results and the XPS results of this study. Sulfur surface segregation was similar for PWA 1480 and NiCrAl and reached a maximum of 30 at% at 800 to 850 C. Above 900 C the sulfur surface concentration decreased to about 3 at% at 1100 C. These results are contrasted to the minimal segregation observed for low sulfur hydrogen annealed materials which exhibit improved scale adhesion.

  8. An investigation on corrosion protection of chromium nitride coated Fe-Cr alloy as a bipolar plate material for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Pan, T. J.; Zhang, B.; Li, J.; He, Y. X.; Lin, F.

    2014-12-01

    The corrosion properties of chromium nitride (CrN) coating are investigated to assess the potential use of this material as a bipolar plate for proton exchange membrane fuel cells (PEMFCs). Conductive metallic ceramic CrN layers are firstly deposited onto Fe-Cr alloy using a multi-arc ion plating technique to increase the corrosion resistance of the base alloy. Electrochemical measurements indicate that the corrosion resistance of the substrate alloy is greatly enhanced by the CrN coating. The free corrosion potential of the substrate is increased by more than 50 mV. Furthermore, a decrease in three orders of magnitude of corrosive current density for the CrN-coated alloy is observed compared to the as-received Fe-Cr alloy. Long-term immersion tests show that the CrN layer is highly stable and effectively acts as a barrier to inhibit permeation of corrosive species. On the contrary, corrosion of the Fe-Cr alloy is rather severe without the protection of CrN coating due to the active dissolution. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion process of the CrN/Fe-Cr alloy submerged in a simulated PEMFCs environment.

  9. Microstructure and properties of the Ti/Al2O3/NiCr composites fabricated by explosive compaction/cladding.

    PubMed

    Wang, Bingfeng; Xie, Fangyu; Wang, Bin; Luo, Xiaozhou

    2015-05-01

    Titanium/aluminum oxide/nickel chromium (Ti/Al2O3/NiCr) composite bar prepared by explosive compaction/cladding technique represents a new kind of sandwich-structural composites for medical application. Formation of the interfaces of Ti/Al2O3 and Al2O3/NiCr govern the properties of the composite material. The electrical resistivity and microstructure of the intermediate layer and the interfaces of the Ti/Al2O3/NiCr explosive compaction/cladding bar are investigated by means of four-point probe analysis, optical microscopy, scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The Ti/Al2O3/NiCr composite bar is characterized by the consolidated ceramic intermediate layer and the metallurgical bonding interfaces. The intermediate ceramic layer plays a role of insulation and thermal conductance in this composite. The average shear strength of the composite bar is about 9.36 MPa. The heat affected zone characterized by relatively larger sizes of grains is distinguished from the other part of the Ti tube. The intermetallics AlTi3 and Al0.9Ni4.22 are generated at the intermediate ceramic layer. Formation mechanism of the interfaces of the explosive compaction/cladding bar are described.

  10. Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States

    USGS Publications Warehouse

    Wilshire, H.G.; Shervais, J.W.

    1975-01-01

    Ultramafic xenoliths in basalts from the western United States are divided into Al-augite and Cr-diopside groups. The Al-augite group is characterized by Al, Ti-rich augites, comparatively Fe-rich olivine and orthopyroxene, and Al-rich spinel, the Cr-diopside group by Cr-rich clinopyroxene and spinel and by Mg-rich olivine and pyroxenes. Both groups have a wide range of subtypes, but the Al-augite group is dominated by augite-rich varieties, and the Cr-diopside group by olivine-rich lherzolites. ?? 1975.

  11. In situ evolution of trivalent chromium process passive film on Al in a corrosive aqueous environment.

    PubMed

    Dong, Xuecheng; Argekar, Sandip; Wang, Peng; Schaefer, Dale W

    2011-11-01

    In situ neutron reflectivity (NR) is used to observe the structure and evolution of a Trivalent Chromium Process (TCP) passive film on Al in a NaCl-D(2)O solution. Using a split liquid reflectivity cell we mimicked the corrosion process on the anodic sites in alloy AA 2024-T3 in a pitting scenario. The split cell separates the anodic and cathodic reactions, allowing NR observation of the corroding anodic surface under potential control. We observed the evolution of the TCP film on the Al anode and compared the degradation of the Al with and without TCP protection. When held at 100 mV above the open-circuit potential (OCP), unprotected aluminum dissolves at a rate of 120 Å/h. By contrast, TCP-coated Al is stable up to the pitting potential (200 mV above OCP). In the passive state D(2)O molecules penetrate the bulk TCP film by partially replacing the hydrate water. In spite of exchange of hydration water, the TCP film is stable and the underlying aluminum is fully protected. The passive character of the TCP film is due to a dense layer at the metal-TCP interface and/or to suppression of ion transport in the bulk film. As the pitting potential is approached the film swells and NaCl-D(2)O solution penetrates the TCP film. At this point, 50 vol % of the TCP film is occupied by bulk NaCl-D(2)O solution. Failure occurs by aluminum dissolution under the swollen TCP film as the imbibed solution contacts the Al metal. Further increase in potential leads to complete stripping of the TCP film.

  12. Diffusive Interaction Between Ni-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Tkacz-Śmiech, Katarzyna; Danielewski, Marek; Bożek, Bogusław; Berent, Katarzyna; Zientara, Dariusz; Zajusz, Marek

    2017-03-01

    In high-temperature coatings, welded parts, and a range of other applications, components in the contact zone interdiffuse at elevated temperatures and may react to change the phase composition. The diffusion zone can be complex and can consist of sequential layers of intermediate phases, solid solutions, and in the case of multicomponent systems also of multiphase layers. In this work, the interdiffusion in Ni-Cr-Al alloys is studied experimentally and modeled numerically. The diffusion multiples were prepared by hot isostatic pressing and post-annealing at 1473 K (1200 °C). The concentration profiles were measured with wide-line EDS technique which allowed obtaining high-accuracy diffusion paths. The experimental profiles and diffusion paths were compared with numerical results simulated with application of very recent model of interdiffusion in muticomponent-multiphase systems. The calculated and experimental data show good agreement.

  13. Compound-specific hydrogen isotope analysis of heteroatom-bearing compounds via gas chromatography-chromium-based high-temperature conversion (Cr/HTC)-isotope ratio mass spectrometry.

    PubMed

    Renpenning, Julian; Kümmel, Steffen; Hitzfeld, Kristina L; Schimmelmann, Arndt; Gehre, Matthias

    2015-09-15

    The traditional high-temperature conversion (HTC) approach toward compound-specific stable isotope analysis (CSIA) of hydrogen for heteroatom-bearing (i.e., N, Cl, S) compounds has been afflicted by fractionation bias due to formation of byproducts HCN, HCl, and H2S. This study presents a chromium-based high-temperature conversion (Cr/HTC) approach for organic compounds containing nitrogen, chlorine, and sulfur. Following peak separation along a gas chromatographic (GC) column, the use of thermally stable ceramic Cr/HTC reactors at 1100-1500 °C and chemical sequestration of N, Cl, and S by chromium result in quantitative conversion of compound-specific organic hydrogen to H2 analyte gas. The overall hydrogen isotope analysis via GC-Cr/HTC-isotope ratio mass spectrometry (IRMS) achieved a precision of better than ± 5 mUr along the VSMOW-SLAP scale. The accuracy of GC-Cr/HTC-IRMS was validated with organic reference materials (RM) in comparison with online EA-Cr/HTC-IRMS and offline dual-inlet IRMS. The utility and reliability of the GC-Cr/HTC-IRMS system were documented during the routine measurement of more than 500 heteroatom-bearing organic samples spanning a δ(2)H range of -181 mUr to 629 mUr.

  14. Adherent Al2O3 scales produced on undoped NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1986-01-01

    Repeated oxidation and polishing of high purity Ni-15Cr-13Al has dramatically changed its cyclic oxidation behavior from nonadherent to adherent. No apparent change in scale phase, morphology or interface structure occurred during this transition, dismissing any mechanism based on pegging, vacancy sink, or growth stress. The principle change that did occur was a reduction in the sulfur content from 10 ppmw to 3 ppmw after 25 cycles at 1120 C. These observations are used to support the model of Al2O3 scale adherence put forth by Smeggil et al. which claims that Al2O3 scale spallation occurs due to sulfur segregation and bond deterioration at the oxide-metal interface.

  15. Tetravalent Chromium (Cr(4+)) as Laser-Active Ion for Tunable Solid-State Lasers

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, Robert R.

    1993-01-01

    During 10/31/92 - 3/31/93, the following summarizes our major accomplishments: (1) the self-mode-locked operation of the Cr:forsterite laser was achieved; (2) synchronous pumping was used to mode lock the forsterite laser resulting in picosecond pulses, which in turn provided the starting mechanism for self-mode-locking; and (3) the pulses generated had a FWHW of 105 fs and were tunable between 1230 - 1270 nm.

  16. Non-uniform coupling model of the frustrated chromium-based ring Cr8Ni

    NASA Astrophysics Data System (ADS)

    Antkowiak, Michał; Kucharski, Łukasz; Kamieniarz, Grzegorz

    2014-07-01

    A numerically exact spin-Hamiltonian approach has been proposed for the frustrated Cr8Ni molecule. The non-uniform exchange couplings parameters, improving the fit of the experimental magnetic susceptibility data, have been obtained, using a genetic algorithm search procedure. The energy intervals between the lowest multiplets, relevant for envisaged transitions observable in the INS spectra, have been determined and the critical fields corresponding to the first-level crossing have been estimated in agreement with experiment.

  17. The determination of hexavalent chromium (Cr6+) in electronic and electrical components and products to comply with RoHS regulations.

    PubMed

    Hua, L; Chan, Y C; Wu, Y P; Wu, B Y

    2009-04-30

    Toxicity of hexavalent chromium (Cr(6+)) was focused on with a publication of EU RoHS directive, a novel method to determine hexavalent chromium is developed. It is a combination of energy dispersion X-ray fluorescence spectrometry (EDXRF), spot test, alkali digestion and UV-vis spectrophotometric analysis. First, by EDXRF screening, the presence or absence of element Cr was established. Spot test was followed to identify the valent state of chromium because Cr(6+) and Cr(3+) normally coexist. After alkali digestion, Cr(VI) was separated without an undersired Cr(VI)-Cr(III) interconversions. With a color reagent (DPC) to chelated with Cr(VI), the solution was finally detected by a UV-vis spectrophotometer at a wavelength of 540 nm which is the basis of analyzing Cr(VI) quantitatively. Some parameters affecting analyses were studied. It was found that when pH in the final solution was 2.0, the extraction time was 60 min, the extraction temperature was 90 degrees C, pH during the extraction process was 7.5-8.5, and a mixed buffer solution (0.5M K(2)HPO(4)/0.5M KH(2)PO(4)) was added up to 1 ml, colorimetric reagent was added to 2 ml, it is optimal for extraction. Under this condition, interferences from Fe(3+), Pb(2+), Ag(+), etc., were overcome. It was also found that the curves are rectilinear in the range of 0-500 microg l(-1), the correlation coefficient is up to 0.999924, and the recovery rates are more than 85%, the Cr(III)-DPCO complex can be kept stable for 24h with a relative humidity (RH) range of 60-90%, and a temperature range of 5-40 degrees C. So it can be concluded that the proposed method has a good sensitivity and high precision. It is a more convincing and reliable method due to its relative standard deviation (R.S.D.) <1% after six replicate determinations of Cr(VI) in an Fe-Ni alloy sample.

  18. Effect of chromium additions on the mechanical and physical properties and microstructure of Fe-Co-Ni-Cr-Mo-C ultra-high strength steel: Part I

    NASA Astrophysics Data System (ADS)

    Machmeier, P.; Matuszewski, T.; Jones, R.; Ayer, R.

    1997-06-01

    The effect of chromium additions to an Fe-14Co-10Ni-0.1Mo-0.16C (AF1410 based) secondary hardening steel was evaluated by mechanical and physical properties and by microstructural examination. This unique behavior was extended to encompass a large range of aging temperatures and times that may be encountered during commercial thermal treatment and/or welding. In the aging range of 482 to 550 °C, an increase in chromium from 2 to 3% in the AF1410 based steel resulted in a substantial strength decrease concomitant with an increase in toughness. This behavior is related to a peak hardening shift, early M2C carbide coarsening, and an increase in reverted austenite for the 1 wt% Cr increase. The increased aging kinetics resulting from the 3Cr steel caused a faster dissolution of Fe3C and rapid changes in chromium partitioning in the (Mo,Cr)2C carbide resulting in a coherency loss with a corresponding decrease in lattice parameter. The kinetics of the secondary hardening reaction, for the two steels, was determined by resistivity data for changes in aging parameters (time/temperature).

  19. Chemical ordering in Cr3Al and relation to semiconducting behavior

    NASA Astrophysics Data System (ADS)

    Boekelheide, Z.; Stewart, D. A.; Hellman, F.

    2012-08-01

    Cr3Al shows semiconductor-like behavior which has been attributed to a combination of antiferromagnetism and chemical ordering of the Cr and Al atoms on the bcc sublattice. This article presents a detailed theoretical and experimental study of the chemical ordering in Cr3Al. Using density functional theory within the Korringa-Kohn-Rostoker (KKR) formalism, we consider five possible structures with the Cr3Al stoichiometry: a bcc solid solution, two-phase C11b Cr2Al+Cr, off-stoichiometric C11b Cr3Al, D03 Cr3Al, and X-phase Cr3Al. The calculations show that the chemically ordered, rhombohedrally distorted X-phase structure has the lowest energy of those considered and should, therefore, be the ground state found in nature, while the D03 structure has the highest energy and should not occur. While KKR calculations of the X phase indicate a pseudogap in the density of states, additional calculations using a full potential linear muffin-tin orbital approach and a plane-wave technique show a narrow band gap. Experimentally, thin films of Cr1-xAlx were grown and the concentration, growth temperature, and substrate were varied systematically. The peak resistivity (2400 μΩ-cm) is found for films with x=0.25, grown epitaxially on a 300 ∘C MgO substrate. At this x, a transition between nonmetallic and metallic behavior occurs at a growth temperature of about 400 ∘C, which is accompanied by a change in chemical ordering from X phase to C11b Cr3Al. These results clarify the range of possible structures for Cr3Al and the relationship between chemical ordering and electronic transport behavior.

  20. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: II. Binding of Cr(III) in EPS/soil system.

    PubMed

    Kantar, Cetin; Demiray, Hilal; Dogan, Nazime Mercan

    2011-03-01

    Laboratory batch sorption and column experiments were performed to investigate the effects of microbial EPSs isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 on Cr(III) mobility in heterogeneous subsurface soils. Our batch and column results indicate that microbial EPS may have a pronounced effect on Cr(III) sorption and transport behavior depending on system conditions (e.g., pH, type of EPS). While EPS had no effect on Cr(III) sorption at pH<5, it led to a significant decrease in Cr(III) sorption under slightly acidic to alkaline pH range. Column experiments performed at pH 7.9 suggest that, in the presence of EPS, chromium(III) was significantly mobilized relative to non-EPS containing system due to the formation less sorbing and highly soluble Cr-EPS complexes and competition of EPS against Cr for surface sites. A two-site non-electrostatic surface chemical model incorporating a discrete ligand approach for the description of Cr-EPS interactions accurately predicted Cr(III) sorption and transport behavior in the presence of EPS under variable chemical conditions. Our simulations show that an accurate description of Cr(III) transport in the presence of EPS requires incorporation of proton and Cr(III) binding by EPS, EPS binding by soil minerals, Cr(III) binding by soil minerals, and ternary Cr(III)-EPS surface complexes into the transport equations. Although this approach may not accurately describe the actual mechanisms at the molecular level, it can improve our ability to accurately describe the effects of EPS on Cr(III) mobility in subsurface environment relative to the use of distribution coefficients (K(d)).

  1. The Characteristic and Activation of Mixed Andisol Soil/Bayat Clays/Rice Husk Ash as Adsorbent of Heavy Metal Chromium (Cr)

    NASA Astrophysics Data System (ADS)

    Pranoto; Sajidan; Suprapto, A.

    2017-02-01

    Chromium (Cr) concentration in water can be reduced by adsorption. This study aimed to determine the effect of Andisol soil composition/Bayat clay/husk ash, activation temperature and contact time of the adsorption capacity of Cr in the model solution; the optimum adsorption conditions and the effectiveness of ceramic filters and purifiers to reduce contaminant of Cr in the water. The mixture of Andisol soil, Bayat clay, and husk ash is used as adsorbent of metal ion of Cr(III) using batch method. The identification and characterisation of adsorbent was done with NaF test, infrared spectroscopy (FTIR), X-ray diffraction (XRD). Cr metal concentrations were analyzed by atomic absorption spectroscopy. Sorption isotherms determined by Freundlich equation and Langmuir. The optimum conditions of sorption were achieved at 150°C activation temperature, contact time of 30 minutes and a composition Andisol soil / Bayat clay / husk ash by comparison 80/10/10. The results show a ceramic filter effectively reduces total dissolved solids (TDS) and Chromium in the water with the percentage decrease respectively by 75.91% and 9.44%.

  2. Launcher Roadmap for the CrVI Substitution of Surface Treatments. Screening of Trivalent-Chromium Conversion Solutions and First Promising Results for Repair Applications on Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Debout, Vincent; Pettier, Sophie

    2014-06-01

    Airbus Defence and Space, Space System is involved in a global roadmap for launchers in order to substitute hexavalent chromium (CrVI) and Cadmium in the current surface treatments on metallic structures.Within this framework, a screening of trivalent chromium (CrIII) conversion solutions for touch-up applications has been carried out since this step is crucial to perform local application or to repair minor damages on launcher structures but it leads to higher risks of exposure for the workers.Three commercial CrIII conversion solutions have been evaluated on high performance aluminum alloys such as AA2024 T3 and AA7175 T7351 that are often used as structural materials.This preliminary investigation highlights the effect of surface preparation, rinsing and conversion process on the final corrosion performance of conversion coatings (CCs). The results are also discussed in terms of visual aspect and adhesion with new Cr-free primers.Two operating sets of parameters are identified with promising results that represent the first steps towards the development of a new Cr-free touch-up process.

  3. Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: a combined EMP, SREF, FTIR and Raman study

    NASA Astrophysics Data System (ADS)

    Bosi, Ferdinando; Skogby, Henrik; Lazor, Peter; Reznitskii, Leonid

    2015-06-01

    A study of natural oxy-tourmalines belonging to the system oxy-dravite-chromo-alumino-povondraite-oxy-chromium-dravite from the Sludyanka crystalline complex (Southern Baikal region, Russia) was carried out to explore the characteristic vibrational bands in the principal (OH)-stretching frequency and their relations to the O3 anion site of the tourmaline structure. Relevant information was obtained using electron microprobe analysis (EMPA), structural refinement (SREF), infrared (IR) and Raman single-crystal spectroscopy. The studied oxy-tourmalines are characterized by the substitution AlCr, which is accompanied by redistribution of Mg over the Y and Z sites. The occurrence of strong correlations between relative peak area intensities for two IR bands at 3,565 and 3,519 cm-1 and cation site populations derived from SREF and EMP data allowed assignment of the band at 3,565 cm-1 to the cluster [ Y Mg Z Al Z (Al,Mg)]-O3 and the band at 3,519 cm-1 to the cluster [ Y Cr Z (Cr,Al) Z (Cr,Al,Mg))]-O3. It appears that the combination of polarized IR and Raman spectra collected with the electric vector E⊥ c and E// c may provide a useful characterization of the local (OH) environments around the O3 site of the tourmaline structure.

  4. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater

    USGS Publications Warehouse

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization’s maximum contaminant level for drinking water (50 μg L−1) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 μg L−1. To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to ~1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged from 0 to 42 μg kg−1, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a

  5. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect

    Pang, Mingjun; Zhan, Yongzhong; Du, Yong

    2013-02-15

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  6. Role of Microbial Exopolymeric Substances (EPS) on Chromium Sorption and Transport in Heterogeneous Subsurface Soils: I. Cr(III) Complexation with EPS in Aqueous Solution

    SciTech Connect

    C Kantar; H Demiray; N Dogan; C Dodge

    2011-12-31

    Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groups with arbitrarily assigned pK{sub a} values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL{sub 2} monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL{sub 2} and HL{sub 3} monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.

  7. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution

    SciTech Connect

    Kantar, C.; Dodge, C.; Demiray, H.; Dogan, N.M.

    2011-01-26

    Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groups with arbitrarily assigned pK{sub a} values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL{sub 2} monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL{sub 2} and HL{sub 3} monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.

  8. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution.

    PubMed

    Kantar, Cetin; Demiray, Hilal; Dogan, Nazime Mercan; Dodge, Cleveland J

    2011-03-01

    Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groups with arbitrarily assigned pK(a) values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL(2) monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL(2) and HL(3) monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.

  9. Electronic, magnetic and Fermi properties investigates on quaternary Heusler NiCoCrAl, NiCoCrGa and NiFeCrGa

    NASA Astrophysics Data System (ADS)

    Wei, Xiao-Ping; Zhang, Ya-Ling; Chu, Yan-Dong; Sun, Xiao-Wei; Sun, Ting; Guo, Peng; Deng, Jian-Bo

    2015-07-01

    Using the full-potential local-orbital minimum-basis method within the framework of density functional theory, we study the electronic, magnetic and Fermi properties of three quaternary Heusler compounds: NiCoCrAl, NiCoCrGa and NiFeCrGa. Results identify that these compounds are half-metallic ferromagnets with integer spin magnetic moment, and their spin moments follow the Slater-Pauling rule. Accordingly, the origin of gap and magnetic moment are also discussed. In addition, the Fermi surface is further plotted to explore the behavior of electronic states in the vicinity of Fermi level for these compounds. Finally, we argue the influence of tetragonal deformation on electronic and magnetic properties. Meanwhile, the possible L21 disorder is also discussed for NiCoCrAl and NiCoCrGa.

  10. Microstructure/Oxidation/Microhardness Correlations in Gamma-Based and Tau-Based Al-Ti-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Brady, Michael P.; Smialek, J. L.; Humphrey, D. L.

    1994-01-01

    The relationships between alloy microstructure and air oxidation kinetics and alloy microstructure and microhardness in the Al-Ti-Cr system for exposures at 800 C and 1000 C were investigated. The relevant phases were identified as tau (Ll2), gamma (LIO), r-Al2Ti, TiCrAl (laves), and Cr2AI. Protective alumina formation was associated with tau, Al-rich TiCrAl, and gamma/TiCrAl mixtures. Brittleness was associated with the TiCrAl phase and tau decomposition to A12Ti + Cr2AI. It was concluded that two-phase gamma + TiCrAl alloys offer the greatest potential for oxidation resistance and room temperature ductility in the Al-Ti-Cr system.

  11. Long-term corrosion investigation of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in simulated body solutions

    NASA Astrophysics Data System (ADS)

    Karimi, Shima; Nickchi, Tirdad; Alfantazi, Akram M.

    2012-06-01

    The long-term weight loss, ion release and surface composition of AISI 316L, the Co-28Cr-6Mo and Ti-6Al-4V alloys were investigated in phosphate buffered solutions (PBS) with various bovine serum albumin (BSA) concentrations. All the samples lost weight up to 14 weeks and then started to gain weight. This can be explained by precipitation of dissolved ions on the surface after 14 weeks of immersion. The quantities of the dissolved ions were measured in immersed solution for 8, 14 and 22 weeks by induced coupled plasma-optical emission spectrometer (ICP-OES). The amounts of Fe released from 316L, and Co and Mo released from the Co-28Cr-6Mo alloy decreased after 14 weeks of immersion in PBS and BSA solutions. This observation coincides with the weight change of the samples. The oxide layer composition and concentration of the specimens exposed to solutions for 22 weeks were identified by X-ray photoelectron spectroscopy (XPS) analysis. The XPS results revealed that chromium is the main component of the 316L and Co-28Cr-6Mo alloy. The high Cr concentration of the 316L and Co-Cr-Mo oxide layer corresponds with the slow dissolution rate of Cr compared to other alloying elements of the 316L and Co-28Cr-6Mo alloy.

  12. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Ramazani, Mazaher

    2017-03-01

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe80-xCrxCo20 (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110-200 Oe and 150-220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe55Cr25Co20 magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5.

  13. Report on fundamental modeling of irradiation-induced swelling and creep in FeCrAl alloys

    SciTech Connect

    Kohnert, Aaron A.; Dasgupta, Dwaipayan; Wirth, Brian; Linton, Kory D.

    2016-09-23

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, the material response must be demonstrated to provide suitable radiation stability, in order to ensure that there will not be significant dimensional changes (e.g., swelling), as well as quantifying the radiation hardening and radiation creep behavior. In this report, we describe the use of cluster dynamics modeling to evaluate the defect physics and damage accumulation behavior of FeCrAl alloys subjected to neutron irradiation, with a particular focus on irradiation-induced swelling and defect fluxes to dislocations that are required to model irradiation creep behavior.

  14. High temperature oxidation resistant coatings for the directionally solidified Ni-Nb-Cr-Al eutectic superalloy

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Ulion, N. E.; Felten, E. J.

    1977-01-01

    Protective coatings required for the Ni-Nb-Cr-Al directionally solidified eutectic superalloy were developed and evaluated on the basis of oxidation resistance, diffusional stability, thermal fatigue, and creep resistance. NiCrAlY+Pt and NiCrAlY physical vapor-deposition coating systems exhibited the best combination of properties. Burner-rig testing indicated that the useful life of a 127-micron-thick NiCrAlY+Pt coating exceeds 1000 h at 1366 K. Eutectic-alloy creep lives at 1311 K and a stress of 151.7 MN/sq m were greater for NiCrAlY+Pt-coated specimens than for uncoated specimens by a factor of two.

  15. Evaluation of Ti-48Al-2Cr-2Nb Under Fretting Conditions

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.; Raj, Sai V.

    2001-01-01

    The fretting behavior of Ti-48Al-2Cr-2Nb (y-TiAl) in contact with the nickel-base superalloy 718 was examined in air at temperatures from 296 to 823 K (23 to 550 C). The interfacial adhesive bonds between Ti-48Al-2Cr-2Nb and superalloy 718 were generally stronger than the cohesive bonds within Ti-48Al-2Cr-2Nb. The failed Ti-48Al-2Cr-2Nb debris subsequently transferred to the superalloy 718. In reference experiments conducted with Ti-6Al-4V against superalloy 718 under identical fretting conditions, the degree of transfer was greater for Ti-6A1-4V than for Ti-48Al-2Cr-2Nb. Wear of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting frequency. The increasing rate of oxidation at elevated temperatures led to a drop in wear at 473 K. However, fretting wear increased as the temperature was increased from 473 to 823 K. At 723 and 823 K, oxide film disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.

  16. Effect of film thickness on structural and mechanical properties of AlCrN nanocompoite thin films deposited by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Prakash, Ravi; Kaur, Davinder

    2016-05-01

    In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with different deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.

  17. Visible light CrO4(2-) reduction using the new CuAlO2/CdS hetero-system.

    PubMed

    Brahimi, R; Bessekhouad, Y; Nasrallah, N; Trari, M

    2012-06-15

    In this study, 64% of hexavalent chromium Cr(VI) reduction from the initial concentration (10(-4) M) is reported under visible light using the (CuAlO(2)/CdS) hetero-system. In this new hetero-system, low doped CuAlO(2) delafossite, synthesized by sol-gel works as an electrons reservoir with a wide space charge region (440 nm). In this case, the electron transfer to chromate is mediated via the hexagonal CdS variety, whose conduction band level is at -1.08 V with respect to the saturated calomel electrode which is more negative than the CrO(4)(2-)/Cr(3+) level. This high reduction rate is achieved under optimized pH and CuAlO(2) percentage. Moreover, salicylic acid gives the best performance among hole scavengers and CuAlO(2) approaches 100% photostability at pH 7.5. The photo-catalytic process follows a pseudo first order kinetic with a half life of 2h. The reaction products are identified by UV-visible spectrophotometry and linear voltametry at a platinum rotating electrode. The results reveal the presence of Cr(3+) after irradiation.

  18. A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi.

    PubMed

    Soni, Sumit K; Singh, Rakshapal; Awasthi, Ashutosh; Kalra, Alok

    2014-02-01

    Pot culture experiments were conducted in a glasshouse to evaluate the effects of four efficient Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) isolated from rhizospheric soil, and four arbuscular mycorrhizal fungi (AMF-Glomus mosseae, G. aggregatum, G. fasciculatum, and G. intraradices) alone or in combination, on Zea mays in artificially Cr(VI)-amended soil. Presence of a strain of Microbacterium sp. SUCR140 reduced the chromate toxicity resulting in improved growth and yields of plants compared to control. The bioavailability of Cr(VI) in soil and its uptake by the plant reduced significantly in SUCR140-treated plants; the effects of AMF, however, either alone or in presence of SUCR140 were not significant. On the other hand, presence of AMF significantly restricted the transport of chromium from root to the aerial parts of plants. The populations of AMF chlamydospores in soil and its root colonization improved in presence of SUCR140. This study demonstrates the usefulness of an efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through reducing toxicity to plants by lowering bioavailability and uptake of Cr(VI) and improving nutrient availability through increased mycorrhizal colonization which also restricted the transport of chromium to the aerial parts.

  19. Proteomic analysis of chromium stress and sulfur deficiency responses in leaves of two canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance.

    PubMed

    Yıldız, Mustafa; Terzi, Hakan

    2016-02-01

    Sulfur (S) is an essential macronutrient for plant growth and development, and it plays an essential role in response to environmental stresses. Plants suffer with combined stress of S deficiency and hexavalent chromium [Cr(VI)] in the rhizosphere. Little is known about the impact of S deficiency on leaf metabolism of canola (Brassica napus L.) under Cr(VI) stress. Therefore, this study is the first to examine the effects of Cr(VI) stress and S deficiency in canola at a molecular level. A comparative proteomic approach was used to investigate the differences in protein abundance between Cr-tolerant NK Petrol and Cr-sensitive Sary cultivars. The germinated seeds were grown hydroponically in S-sufficient (+S) nutrient solution for 7 days and then subjected to S-deficiency (-S) for 7 days. S-deficient and +S seedlings were then exposed to 100μM Cr(VI) for 3 days. Protein patterns analyzed by two-dimensional electrophoresis (2-DE) revealed that 58 protein spots were differentially regulated by Cr(VI) stress (+S/+Cr), S-deficiency (-S/-Cr) and combined stress (-S/+Cr). Of these, 39 protein spots were identified by MALDI-TOF/TOF mass spectrometry. Differentially regulated proteins predominantly had functions not only in photosynthesis, but also in energy metabolism, stress defense, protein folding and stabilization, signal transduction, redox regulation and sulfur metabolism. Six stress defense related proteins including 2-Cys peroxiredoxin BAS1, glutathione S-transferase, ferritin-1, l-ascorbate peroxidase, thiazole biosynthetic enzyme and myrosinase-binding protein-like At3g16470 exhibited a greater increase in NK Petrol. The stress-related proteins play an important role in the detoxification of Cr(VI) and maintaining cellular homeostasis under variable S nutrition.

  20. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Deming; Chen, Guiqing; Wang, Yuesheng

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  1. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    SciTech Connect

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar; Terrani, Kurt A.; Field, Kevin G.

    2016-02-17

    We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning of the Al from the α' precipitates was also observed.

  2. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    DOE PAGES

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; ...

    2016-02-17

    We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning ofmore » the Al from the α' precipitates was also observed.« less

  3. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  4. Historical trends (1998-2012) of nickel (Ni), copper (Cu) and chromium (Cr) concentrations in marine sediments at four locations in the Northern Adriatic Sea.

    PubMed

    Traven, Luka; Furlan, Nikolina; Cenov, Arijana

    2015-09-15

    Historical trends (1998-2012) nickel (Ni), copper (Cu) and chromium (Cr) concentrations in marine sediments were assessed at four locations in the Northern Adriatic Sea (Croatia) in the proximity of an oil refinery. Ecological risks were characterized by benchmarking the dataset against Sediment Quality Guidelines (SQG). A significant number of samples had Ni values above ERL with no exceedance of the ERL values for Cu and Cr. Weak positive historical trends were found for only for Cu. At all sites there were statistically significant correlations between Ni and Cr indicating a common origin of these heavy metals in the investigated marine sediments. There were statistically significant differences between the sites under the direct influence of the oil refinery compared to the control site indicating the possibility that the oil refinery is contributing to the concentration of these heavy metals in the marine sediments.

  5. Vacuum-UV absorption spectrum of a laser-produced chromium plasma: 3p-subshell photoabsorption by Cr2+ ions

    NASA Astrophysics Data System (ADS)

    McGuinness, C.; Martins, M.; van Kampen, P.; Hirsch, J.; Kennedy, E. T.; Mosnier, J.-P.; Whitty, W. W.; Costello, J. T.

    2000-11-01

    The dual laser plasma photoabsorption technique has been used to measure the time-resolved vacuum-UV photoabsorption spectrum of a chromium plasma. Resonant photoabsorption cross sections, constructed with the aid of Hartree-Fock calculations, and weighted in accordance with the plasma temperature, have been used to produce the synthetic Cr2+ spectra. The relevant plasma temperature and ionization balance are obtained from simple analytical models for various times during the expansion phase of the plasma plume. The experimental spectra taken at delays of 32, 62 and 90 ns compare well with Cr2+ spectra computed for corresponding predicted temperatures. It is found that in order to produce synthetic spectra that match experiment well, it is necessary to take into account absorption from many states belonging to the Cr2+ ground state configuration 3p63d4, while states from the nearest metastable configuration 3p63p34s make a negligible contribution.

  6. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-09-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  7. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy.

    PubMed

    Manzoni, A; Daoud, H; Völkl, R; Glatzel, U; Wanderka, N

    2013-09-01

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al-Ni rich matrix and Cr-Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr-Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr-Fe-rich precipitates.

  8. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions.

    PubMed

    Lei, Chunsheng; Zhu, Xiaofeng; Zhu, Bicheng; Jiang, Chuanjia; Le, Yao; Yu, Jiaguo

    2017-01-05

    The preparation of hierarchical porous materials as catalysts and sorbents has attracted much attention in the field of environmental pollution control. Herein, Ni/Mg/Al layered double hydroxides (NMA-LDHs) hierarchical flower-like hollow microspheres were synthesized by a hydrothermal method. After the NMA-LDHs was calcined at 600°C, NMA-LDHs transformed into Ni/Mg/Al layered double oxides (NMA-LDOs), which maintained the hierarchical flower-like hollow structure. The crystal phase, morphology, and microstructure of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy elemental mapping, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption methods. Both the calcined and non-calcined NMA-LDHs were examined for their performance to remove Congo red (CR) and hexavalent chromium (Cr(VI)) ions in aqueous solution. The maximum monolayer adsorption capacities of CR and Cr(VI) ions over the NMA-LDOs sample were 1250 and 103.4mg/g at 30°C, respectively. Thermodynamic studies indicated that the adsorption process was endothermic in nature. In addition, the addition of coexisting anions negatively influenced the adsorption capacity of Cr(VI) ions, in the following order: CO3(2-)>SO4(2-)>H2PO4(-)>Cl(-). This work will provide new insight into the design and fabrication of advanced adsorption materials for water pollutant removal.

  9. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.; Unocic, Kinga A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  10. Kinetics of borided 31CrMoV9 and 34CrAlNi7 steels

    SciTech Connect

    Efe, Goezde Celebi; Ipek, Mediha; Ozbek, Ibrahim; Bindal, Cuma

    2008-01-15

    In this study, kinetics of borides formed on the surface of 31CrMoV9 and 34CrAlNi7 steels borided in solid medium consisting of Ekabor II at 850-900-950 deg. C for 2, 4, 6 and 8 h were investigated. Scanning electron microscopy and optical microscopy examinations showed that borides formed on the surface of borided steels have columnar morphology. The borides formed in the coating layer confirmed by X-ray diffraction analysis are FeB, Fe{sub 2}B, CrB, and Cr{sub 2}B. The hardnesses of boride layers are much higher than that of matrix. It was found that depending on process temperature and time the fracture toughness of boride layers ranged from 3.93 to 4.48 MPa m{sup 1/2} for 31CrMoV9 and from 3.87 to 4.40 MPa m{sup 1/2} for 34CrAlNi7 steel. Activation energy, growth rate and growth acceleration of boride layer calculated according to these kinetic studies revealed that lower activation energy results in the fast growth rate and high growth acceleration.

  11. Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Nagashima, Kazuhide; Krot, Alexander N.; Ogliore, Ryan C.; Yin, Qing-Zhu; Amelin, Yuri; Stirling, Claudine H.; Kaltenbach, Angela

    2017-03-01

    We report on the mineralogy, petrography, and in situ measured oxygen- and magnesium-isotope compositions of eight porphyritic chondrules (seven FeO-poor and one FeO-rich) from the Renazzo-like carbonaceous (CR) chondrites Graves Nunataks 95229, Grosvenor Mountains 03116, Pecora Escarpment 91082, and Queen Alexandra Range 99177, which experienced minor aqueous alteration and very mild thermal metamorphism. We find no evidence that these processes modified the oxygen- or Al-Mg isotope systematics of chondrules in these meteorites. Olivine, low-Ca pyroxene, and plagioclase within an individual chondrule have similar O-isotope compositions, suggesting crystallization from isotopically uniform melts. The only exceptions are relict grains in two of the chondrules; these grains are 16O-enriched relative to phenocrysts of the host chondrules. Only the FeO-rich chondrule shows a resolvable excesses of 26Mg, corresponding to an inferred initial 26Al/27Al ratio [(26Al/27Al)0] of (2.5 ± 1.6) × 10-6 (±2SE). Combining these results with the previously reported Al-Mg isotope systematics of CR chondrules (Nagashima et al., 2014, Geochem. J. 48, 561), 7 of 22 chondrules (32%) measured show resolvable excesses of 26Mg; the presence of excess 26Mg does not correlate with the FeO content of chondrule silicates. In contrast, virtually all chondrules in weakly metamorphosed (petrologic type 3.0-3.1) unequilibrated ordinary chondrites (UOCs), Ornans-like carbonaceous (CO) chondrites, and the ungrouped carbonaceous chondrite Acfer 094 show resolvable excesses of 26Mg. The inferred (26Al/27Al)0 in CR chondrules with resolvable excesses of 26Mg range from (1.0 ± 0.4) × 10-6 to (6.3 ± 0.9) × 10-6, which is typically lower than (26Al/27Al)0 in the majority of chondrules from UOCs, COs, and Acfer 094. Based on the inferred (26Al/27Al)0, three populations of CR chondrules are recognized; the population characterized by low (26Al/27Al)0 (<3 × 10-6) is dominant. There are no noticeable

  12. Cr-Al coatings on low carbon steel prepared by a mechanical alloying technique

    NASA Astrophysics Data System (ADS)

    Hia, A. I. J.; Sudiro, T.; Aryanto, D.; Sebayang, K.

    2016-08-01

    Four different compositions of Cr and Al coatings as Cr10o, Cr87.5Al12.5, Cr5oAl5o, and Al100 have been prepared on the surface of low carbon steel by a mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Hereafter, the Cr-Al powder and substrate were mechanical alloyed in air for 1 hour. Heat treatment of coated sample were carried out at 800°C in a vacuum furnace. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The results show that Cr, Cr-Al or Al coatings were formed on the surface of low carbon steel. After heat treatment, new phases and interdiffusion zone were formed in the coating and at the coating/steel interface, depending on the coating composition.

  13. Spectroscopic properties of {Cr}^{3+} in the spinel solid solution {ZnAl}_{2-x}{Cr}x{O}_4

    NASA Astrophysics Data System (ADS)

    Verger, Louisiane; Dargaud, Olivier; Rousse, Gwenaelle; Rozsályi, Emese; Juhin, Amélie; Cabaret, Delphine; Cotte, Marine; Glatzel, Pieter; Cormier, Laurent

    2016-01-01

    The evolution of the structural environment of {Cr}{^{3+}} along the solid solution {ZnAl}_{2-x}{Cr}x{O}_4 has been investigated using a multi-analytical approach. X-ray diffraction confirms that the system follows Vegard's law. Diffuse reflectance spectra show a decrease of the crystal field parameter with the Cr content, usually related to the increase of the Cr-O bond length in a point charge model. This interpretation is discussed and compared to the data obtained by first-principle calculations based on density functional theory. X-ray absorption near edge structure spectra at the Cr K-edge show a pronounced evolution in the pre-edge with the Cr content, characterised by the appearance of a third feature. Calculations enable to assign the origin of this feature to Cr neighbours. The colour change from pink to brownish pink and eventually green along the solid solution has also been quantified by calculating the L*, a*, b* and x, y coefficients in the system defined by the International Commission on Illumination.

  14. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  15. Structural Disorder and Magnetism in the Spin-Gapless Semiconductor CoFeCrAl

    DTIC Science & Technology

    2016-08-24

    semiconductor CoFeCrAl into a half- metallic ferrimagnet and increases the half- metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of...magnets. However, Si addition improves the degree of Heusler ordering and changes the electronic structure from a SGS to a half- metal with increased...total moment per relaxed unit cell are 1.71 µB (I), –0.60 µB (II), and 1.05 µB (III). None of the disordered CoFeCrAl structures is energetically

  16. New mixed aluminium–chromium diarsenate

    PubMed Central

    Bouhassine, Mohamad Alem; Boughzala, Habib

    2017-01-01

    Potassium chromium aluminium diarsenate, KCr1/4Al3/4As2O7, was prepared by solid-state reaction. The structure consists of (Cr1/4/Al3/4)O6 octa­hedra and As2O7 diarsenate groups sharing corners to build up a three-dimensional anionic framework. The potassium cations are located in wide channels running along the c-axis direction. The crystal structure is isostructural with the triclinic A I M III X 2O7 (A I = alkali metal; M III = Al, Cr, Fe; X = As, P) compounds. However, the M III octa­hedrally coordinated site is 25% partially occupied by chromium and 75% by aluminium. PMID:28316805

  17. Properties of Cr2AlC MAX phase thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Buck, Zachary; Donato, Tyler; Rotella, Christopher; Lunk, Carl; Lofland, S. E.; Hettinger, J. D.

    2012-02-01

    Mn+ 1AXn (MAX) phases, where n is 1, 2, and 3, M is an early transition metal, A is an A-group element, and X is either C or N, are ternary carbides with unique properties such as low density, easy machinability, and good oxidation resistance. The MAX phase Cr2AlC is of particular interest for industrial applications to its excellent high-temperature oxidation resistance and relatively low synthesis temperature. We prepared Cr2AlC thin films on c-axis oriented single crystal Al2O3, glassy carbon and Si thermal oxide substrates using reactive magnetron sputtering as precursor materials for carbide-derived carbon (CDC) films for ``on-chip'' supercapacitors. Film deposition was optimized using elemental composition data obtained by WDXRF. Optimized films were characterized using XRD and scanning electron microscopy. It was found that textured Cr2AlC films only form when the composition was Al-rich allowing the formation of a Cr5Al8 interfacial layer. As film composition was optimized, the interfacial layer did not form but the XRD peaks associated with the Cr2AlC also decreased in magnitude. Extremely high-textured films were grown when a thin buffer layer of CrAl2 was deposited on the substrate before depositing the Cr2AlC films. This result suggests that Cr2AlC films may not be ideal for CDC applications since the films may ``lift-off'' during conversion due to the existence of the naturally occurring buffer-layer.

  18. Hexavalent Chromium (Cr(VI)) Down-Regulates Acetylation of Histone H4 at Lysine 16 through Induction of Stressor Protein Nupr1

    PubMed Central

    Chen, Danqi; Kluz, Thomas; Fang, Lei; Zhang, Xiaoru; Sun, Hong; Jin, Chunyuan; Costa, Max

    2016-01-01

    The environmental and occupational carcinogen Hexavalent Chromium (Cr(VI)) has been shown to cause lung cancer in humans when inhaled. In spite of a considerable research effort, the mechanisms of Cr(VI)-induced carcinogenesis remain largely unknown. Nupr1 (nuclear protein 1) is a small, highly basic, and unfolded protein with molecular weight of 8,800 daltons and is induced by a variety of stressors. Studies in animal models have suggested that Nupr1 is a key factor in the development of lung and pancreatic cancers, with little known about the underlying molecular mechanisms. Here we report that the level of Nupr1 is significantly increased in human bronchial epithelial BEAS2B cells following exposure to Cr(VI) through epigenetic mechanisms. Interestingly, Cr(VI) exposure also results in the loss of acetylation at histone H4K16, which is considered a ‘hallmark’ of human cancer. Cr(VI)-induced reduction of H4K16 acetylation appears to be caused by the induction of Nupr1, since (a) overexpression of Nupr1 decreased the levels of both H4K16 acetylation and the histone acetyltransferase MOF (male absent on the first; also known as Kat8, Myst 1), which specifically acetylates H4K16; (b) the loss of acetylation of H4K16 upon Cr(VI) exposure is greatly compromised by knockdown of Nupr1. Moreover, Nupr1-induced reduction of H4K16 acetylation correlates with the transcriptional down-regulation at several genomic loci. Notably, overexpression of Nupr1 induces anchorage-independent cell growth and knockdown of Nupr1 expression prevents Cr(VI)-induced cell transformation. We propose that Cr(VI) induces Nupr1 and rapidly perturbs gene expression by downregulating H4K16 acetylation, thereby contributing to Cr(VI)-induced carcinogenesis. PMID:27285315

  19. Oxidation behavior of cubic phases formed by alloying Al3Ti with Cr and Mn

    NASA Technical Reports Server (NTRS)

    Parfitt, L. J.; Nic, J. P.; Mikkola, D. E.; Smialek, J. L.

    1991-01-01

    Gravimetric, SEM, and XRD data are presented which document the significant improvement obtainable in the oxidation resistance of Al3Ti-containing alloys through additions of Cr. The L1(2) Al(67)Cr(8)Ti25 alloy exhibited excellent cyclic oxidation resistance at 1473 K, with the primary oxide formed being the ideally protective alpha-Al2O3. The Al(67)Mn(8)Ti(25) alloy also tested for comparison exhibited poor cyclic oxidation resistance, with substantial occurrence of TiO2 in the protective scales. Catastrophic oxidation was also encountered in the quaternary alloy Al(67)Mn(8)Ti(22)V(3).

  20. Reduction of Cr (VI) by organic acids in the presence of Al (III).

    PubMed

    Chen, Na; Lan, Yeqing; Wang, Bo; Mao, Jingdong

    2013-09-15

    The effects of Al (III) on the reduction of Cr (VI) by three α-hydroxy acids, tartaric, malic and citric acids, were investigated through batch experiments at pH from 2.5 to 4.0 and temperatures from 25 °C to 35 °C. These reactions could be described as pseudo-zero-order with respect to Cr (VI) when the concentrations of α-hydroxy acids were greatly in excess. The transformation rates of Cr (VI) to Cr (III) in the presence of Al (III) without light were in the decreasing order of tartaric acid>malic acid>citric acid. This order suggested that the two α-hydroxyl groups in tartaric acid could play an important role in the reduction of Cr (VI) by organic acids. The possible mechanism was that the formed complex between organic acids and Al (III) significantly enhanced the reductivity of α-hydroxy acids and further led to the more complicated Cr (VI)-tartaric acid-Al (III) cyclic ester which greatly accelerated the reduction rate. The Cr (VI) reduction reaction rate increased with the decrease of pH but with the increase of Al (III) concentration, tartaric acid concentration, and temperature. As the pH decreased, the increase of [H(+)] led to an increase in {Al(III)H₂Tar₂}(+), the most active species, and thus the enhanced reduction rate.

  1. 57Fe- and 119Sn-Moessbauer Studies of Tin Doped Chromium Iron Oxides of Composition {alpha}-Cr2-xFexO3

    SciTech Connect

    Helgason, Oern; Berry, Frank J.; Ren Xiaolin; Moyo, Thomas

    2005-04-26

    Tin-doped iron chromium oxides of composition {alpha}-Cr2-xFexO3 prepared by the calcination of precipitates adopt the corundum-related structure. 57Fe Moessbauer spectroscopy shows the materials to be composed of small superparamagnetic particles and no evidence for a Morin transition was observed above 80K. The supertransferred hyperfine magnetic field at the tin site is shown by 119Sn Moessbauer spectroscopy to be less than that experienced in tin-doped {alpha}-Fe2O3.

  2. Chromium isotopic anomalies in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.

    1986-01-01

    Abundances of the chromium isotopes in terrestrial and bulk meteorite samples are identical to 0.01 percent. However, Ca-Al-rich inclusions from the Allende meteorite show endemic isotopic anomalies in chromium which require at least three nucleosynthetic components. Large anomalies at Cr-54 in a special class of inclusions are correlated with large anomalies at Ca-48 and Ti-50 and provide strong support for a component reflecting neutron-rich nucleosynthesis at nuclear statistical equilibrium. This correlation suggests that materials from very near the core of an exploding massive star may be injected into the interstellar medium.

  3. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-09-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1- x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1- x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1- x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1- x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  4. Process for producing Ti-Cr-Al-O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2001-01-01

    Thin films of Ti-Cr-Al-O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti-Cr-Al-O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti-Cr-Al-O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti-Cr-Al-O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  5. Flat panel display using Ti-Cr-Al-O thin film

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2002-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  6. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    SciTech Connect

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; Gao, Michael C.; Tang, Zhi; Poplawsky, Jonathan D.; Liaw, Peter K.

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result, the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.

  7. Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen

    NASA Astrophysics Data System (ADS)

    Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.

    2017-02-01

    Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.

  8. NiAl-based Polyphase in situ Composites in the NiAl-Ta-X (X = Cr, Mo, or V) Systems

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Polyphase in situ composites were generated by directional solidification of ternary eutectics. This work was performed to discover if a balance of properties could be produced by combining the NiAl-Laves phase and the NiAl-refractory metal phase eutectics. The systems investigated were the Ni-Al-Ta-X (X = Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and the eutectic composition, temperature, and morphology were determined. The ternary eutectic systems examined were the NiAl-NiAlTa-(Mo, Ta), NiAl-(Cr, Al) NiTa-Cr, and the NiAl-NiAlTa-V systems. Each eutectic consists of NiAl, a C14 Laves phase, and a refractory metal phase. Directional solidification was performed by containerless processing techniques in a levitation zone refiner to minimize alloy contamination. Room temperature fracture toughness of these materials was determined by a four-point bend test. Preliminary creep behavior was determined by compression tests at elevated temperatures, 1100-l400 K. Of the ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr, Al)NiTa-Cr eutectic was intermediate between the values of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  9. [Synthesis and characterization of chromium doped Y3Al5O12 compound pigment].

    PubMed

    Yue, Shi-Juan; Su, Xiao; Jiang, Han-Jie; Liu, Shao-Xuan; Hong, You-Li; Zhang, Kai; Huang, Wan-Xias; Xiong, Zu-Jiang; Zhao, Ying; Liu, Cui-Ge; Wei, Yong-Ju; Meng, Tao; Xu, Yi-Zhuang; Wu, Jin-Guang

    2012-09-01

    The authors synthesized a new kind of green pigment via co-precipitation method by doping Y3Al5O12 with Cr+. The size of the pigment particles is around 200 nm as observed under scanning electron microscope. XRD results demonstrate that the pigment crystalline form of the pigment is yttrium alluminium garnet. UV-Vis spectra were used to investigate the coordination states and transition behavior of the doping ions. In addition, the colour feature was measured by CIE L* a* b* chroma value. The pigment was blended with polypropylene and then polypropylene fiber was produced using the polypropelene-pigment composite via molten spinning process. The distribution of the pigment particles in the polypropylene fibers was characterized by Xray computed tomography (CT) technique on the Beijing synchrotron radiation facility. The result states that the composite oxide pigment particles are homogeneously dispersed in the polypropylene fibers. The pigments are stable, non-toxic to the environment, and may be applied in non-aqueous dyeing to reduce waste water emitted by textile dyeing and printing industry.

  10. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGES

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; ...

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  11. Viability of thin wall tube forming of ATF FeCrAl

    SciTech Connect

    Maloy, Stuart Andrew; Aydogan, Eda; Anderoglu, Osman; Lavender, Curt; Yamamoto, Yukinori

    2016-09-16

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  12. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    SciTech Connect

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  13. Mid-Infrared Spectroscopy Analysis of the Effects of Erbium, Chromium:Yattrium-Scandium-Gallium-Garnet (Er,Cr:YSGG) Laser Irradiation on Bone Mineral and Organic Components.

    PubMed

    Benetti, Carolina; Ana, Patricia Aparecida; Bachmann, Luciano; Zezell, Denise Maria

    2015-12-01

    The effects of varying the energy density of a high-intensity erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser on the mineral and organic components of bone tissue were evaluated using Fourier transform infrared spectroscopy. Bone samples obtained from the tibias of rabbits were irradiated with five energy densities (3, 6, 8, 12, and 15 J/cm(2)), and the effects on the carbonate to phosphate ratio and in the organic components were compared with those of nonirradiated samples. The increased temperature during the laser irradiation was also measured using infrared thermography to relate the observed spectral changes to the laser thermal effects. The analyses of the infrared spectra suggests that the irradiation with Er,Cr:YSGG promoted changes in bone tissue in both the mineral and organic components that depend on the laser energy density, pointing to the importance of using the proper energy density in clinical procedures.

  14. Modeling degradation and failure of Ni-Cr-Al overlay coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    Degradation of a Ni-16Cr-25Al-0.06Zr overlay coating on a Ni-22Cr substrate was examined after oxidation accompanied by thermal cycling. Concentration/distance profiles were measured in the coating and substrate after various one-hour cycles at 1150 C. A numerical model was developed to simulate coating degradation by simultaneous oxidation and coating/substrate interdiffusion. The validity of the model was confirmed by comparison of predicted and measured concentration/distance profiles. The ability of the model to identify critical system parameters was demonstrated for the case of the initial Al and Cr content of the coating and substrate.

  15. Synthesis and optical properties of ZnAl2O4:Cr3+, Tb3+ powders

    NASA Astrophysics Data System (ADS)

    Thi Loan, Trinh; Thi Thuy, Nguyen; Long, Nguyen Ngoc

    2013-10-01

    ZnAl2O4:Cr3+, Tb3+ powders with different dopant contents have been synthesized by sol-gel method using the following precursors: zinc nitrate (Zn(NO3)2), aluminum nitrate (Al(NO3)3), terbium nitrate (Tb(NO3)3), chrome nitrate (Cr(NO3)3), and citric acid. The effect of the Cr3+, Tb3+ concentration and heat-treating temperature on structural and optical properties of the synthesized samples has been studied. International Workshop on Advanced Materials and Nanotechnology 2012 (IWAMN 2012).

  16. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  17. Diffusional transport during the cyclic oxidation of. gamma. +. beta. , Ni-Cr-Al(Y, Zr) alloys

    SciTech Connect

    Nesbitt, J.A.; Heckel, R.W. )

    1988-02-01

    The cyclic oxidation behavior of several cast {gamma} + {beta}, Ni-Cr-Al(Y, Zr) alloys and one LPPS {gamma} + {beta}, Ni-Co-Cr-Al(Y) alloy was examined ({gamma}, fcc; {beta}, NiAl structure). Cyclic oxidation was performed by cycling between 1200{degree}C and approximately 70{degree}C. Oxide morphologies and microstructural changes during cyclic oxidation were noted. Recession of the high-Al {beta} phase was nonparabolic with time. Kirkendall porosity resulting from diffusional transport within the alloy was observed in the near-surface {gamma}-phase layer of one alloy. Concentration profiles for Ni, Cr, and Al were measured in the {gamma}-phase layer after various cyclic oxidation exposures. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide-metal interface due to a high demand for Al (a high rate of Al consumption) associated with oxide scale cracking and spalling. In addition, diffusion paths plotted on the ternary phase diagram shifted to higher Ni concentrations with increasing cyclic oxidation exposures. The alloy with the highest rate of Al consumption, and highest Al content, underwent breakway oxidation after 500 1-hr cycles at 1200{degree}C. Breakaway oxidation occurred when the Al concentration at the oxide-metal interface approached zero. The relationship between the Al transport in the alloy and breakaway oxidation is discussed.

  18. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    SciTech Connect

    Field, Kevin G.; Howard, Richard H.

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C to a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.

  19. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures.

    PubMed

    Vamsi Krishna, B; Xue, Weichang; Bose, Susmita; Bandyopadhyay, Amit

    2008-05-01

    Functionally graded, hard and wear-resistant Co-Cr-Mo alloy was coated on Ti-6Al-4V alloy with a metallurgically sound interface using Laser Engineering Net Shaping (LENS). The addition of the Co-Cr-Mo alloy onto the surface of Ti-6Al-4V alloy significantly increased the surface hardness without any intermetallic phases in the transition region. A 100% Co-Cr-Mo transition from Ti-6Al-4V was difficult to produce due to cracking. However, using optimized LENS processing parameters, crack-free coatings containing up to 86% Co-Cr-Mo were deposited on Ti-6Al-4V alloy with excellent reproducibility. Human osteoblast cells were cultured to test in vitro biocompatibility of the coatings. Based on in vitro biocompatibility, increasing the Co-Cr-Mo concentration in the coating reduced the live cell numbers after 14 days of culture on the coating compared with base Ti-6Al-4V alloy. However, coated samples always showed better bone cell proliferation than 100% Co-Cr-Mo alloy. Producing near net shape components with graded compositions using LENS could potentially be a viable route for manufacturing unitized structures for metal-on-metal prosthetic devices to minimize the wear-induced osteolysis and aseptic loosening that are significant problems in current implant design.

  20. Electrodepositing behaviors and properties of nano Fe-Ni-Cr/SiC composite coatings from trivalent chromium baths containing compound carboxylate-urea system.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Li, Chen; Jiang, Yumei; Wu, Luye

    2013-06-01

    The nano Fe-Ni-Cr/SiC composite coatings were prepared using pulse electrodeposition method from trivalent chromium baths containing compound carboxylate-urea system and nano SiC in ultrasonic field. The effects of the carboxylate-urea system on the nano Fe-Ni-Cr/SiC composite coatings have been investigated. These results indicated that the SiC and Cr contents and the thickness of the Fe-Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that the cathodic polarization of the matrix metal ions could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Fe-Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Fe-Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction (XRD). XRD data showed that the as-posited coating was Fe-Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the functional Fe-Ni-Cr/SiC composite coatings with 4.1 wt.% SiC and 25.1 wt.% Cr, and 23.9 microm thickness were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Fe-Ni-Cr/SiC composite coatings.

  1. Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of δ53/52Cr in the Earth’s mantle over geologic time

    NASA Astrophysics Data System (ADS)

    Farkaš, Juraj; Chrastný, Vladislav; Novák, Martin; Čadkova, Eva; Pašava, Jan; Chakrabarti, Ramananda; Jacobsen, Stein B.; Ackerman, Lukáš; Bullen, Thomas D.

    2013-12-01

    Here we report chromium isotope compositions, expressed as δ53/52Cr in per mil (‰) relative to NIST 979, measured in selected Cr-rich minerals and rocks formed by the primary magmatic as well as the secondary metamorphic and weathering processes. The main objectives of this study were: (i) to further constrain the isotope composition of the Earth’s mantle Cr inventory and its possible variation during geological history, based on the analysis of globally distributed and stratigraphically constrained mantle-derived chromites; and (ii) to investigate the magnitude and systematics of Cr isotope fractionation during oxidative weathering and secondary alteration (i.e., hydration, serpentinization) of the magmatic Cr sources. Specifically, we analyzed δ53/52Cr in a set of globally distributed mantle-derived chromites (FeMgCr2O4, n = 30) collected from various locations in Europe, Asia, Africa and South America, and our results confirm that a chromite-hosted Earth’s mantle Cr inventory is uniform at -0.079 ± 0.129‰ (2SD), which we named here as a ‘canonical’ mantle δ53/52Cr signature. Furthermore our dataset of stratigraphically constrained chromites, whose crystallization ages cover most of the Earth’s geological history, indicate that the bulk Cr isotope composition of the chromite-hosted mantle inventory has remained uniform, within about ±0.100‰, since at least the Early Archean times (∼3500 million years ago, Ma). To investigate the systematics of Cr isotope fractionation associated with alteration processes we analyzed a number of secondary Cr-rich minerals and variably altered ultramafic rocks (i.e., serpentinized harzburgites, lherzolites) that revealed large positive δ53/52Cr anomalies that are systematically shifted to higher values with an increasing degree of alteration and serpentinization. The degree of aqueous alteration and serpentinization was quantified by the abundances of fluid-mobile (Rb, K) elements, and by the Loss On

  2. Application of Doehlert matrix to the study of electrochemical oxidation of Cr(III) to Cr(VI) in order to recover chromium from wastewater tanning baths.

    PubMed

    Ouejhani, A; Hellal, F; Dachraoui, M; Lallevé, G; Fauvarque, J F

    2008-09-15

    The aim of this study was to optimize simultaneously the chemical and faradic yields of electrochemical oxidation of chromium(III) to chromium(VI) over a titanium-platinum anode in order to recover trivalent chromium from aqueous and tanning baths effluent. A Doehlert design was used to optimize the significant experimental variables: concentration of chloride ions [Cl(-)] (mol L(-1)); temperature of reactional media T (degrees C); pH of reactional media; intensity of electrolysis current I (A); time of electrolysis t(h). The quadratic models of second degree relate chemical (R(C)) and faradic (R(F)) yields to the different variables affecting the electrochemical reaction were determined by the NEMROD software program. Having to study simultaneously two responses, the Pareto graphic analysis of effects was used. The results obtained in this study have shown that the current intensity and the electrolysis time were the main influent parameters on the removal ratio of chemical oxygen demand (COD), total organic carbon (TOC) and electrochemical oxidation of trivalent chromium.

  3. Chromium Oxidation State in Planetary Basalts: Oxygen Fugacity Indicator and Critical Variable for Cr-Spinel Stability

    NASA Technical Reports Server (NTRS)

    Bell, A. S.; Burger, P. V.; Le, Loan; Papike, J. J.; Jone, J.; Shearer, C. K.

    2014-01-01

    Cr is a ubiquitous and relatively abundant minor element in basaltic, planetary magmas. At the reduced oxidation states (Cr is present in melts as both divalent and trivalent forms. The ratio of trivalent to divalent Cr present in the melt has many consequences for the stability and Cr concentration of magmatic phases such as spinel, clinopyroxene, and olivine. However, understanding the Cr valence in quenched melts has historically been plagued with analytical issues, and only recently has reliable methodology for quantifying Cr valence in quenched melts been developed. Despite this substantial difficulty, the pioneering works of Hanson and Jones and Berry and O'Neill provided important insights into the oxidation state of Cr in in silicate melts. Here we present a series of 1-bar gas mixing experiments performed with a Fe-rich basaltic melt in which have determined the Cr redox ratio of the melt at over a range of fO2 values by measuring this quantity in olivine with X-ray Absorption Near Edge Spectroscopy (XANES). The measured Cr redox ratio of the olivine phenocrysts can be readily converted to the ratio present in the conjugate melt via the ratio of crystal-liquid partition coefficients for Cr3+ and Cr2+. We have applied these results to modeling Cr spinel stability and Cr redox ratios in a primitive, iron-rich martian basalt.

  4. Hot hardness of nickel-rich nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1976-01-01

    Rockwell A hardness of cast nickel-chromium-aluminum (NiCrAl) alloys was examined from ambient to 1150 K and compared to cast NiAl and IN-100. Alloy constitution was either gamma, gamma prime + gamma or gamma + beta + alpha + gamma prime. Below 1000 K beta containing NiCrAl alloys have hardnesses comparable to IN-100; above 1000 K they soften faster than IN-100. At 1150 K the hardness of beta-containing NiCrAl alloys decreases with increasing beta-content. The beta-containing NiCrAl alloys were harder than beta-NiAl. The ultimate tensile strengths of the NiCrAl alloys were estimated. The effects of NiCrAl coatings on strength and fatigue life of cooled turbine components were deduced.

  5. Transient Oxidation of a γ-Ni-28Cr-11Al Alloy

    SciTech Connect

    Hu, L; Hovis, D B; Heuer, A H

    2012-04-02

    γ-NiCrAl alloys with relatively low Al contents tend to form a layered oxide scale during the early stages of oxidation, rather than an exclusive α-Al2O3 scale, the so-called 'thermally grown oxide' (TGO). A layered oxide scale was established on a model γ-Ni-28Cr-11Al (at.%) alloy after isothermal oxidation for several minutes at 1100 °C. The layered scale consisted of an NiO layer at the oxide/gas interface, an inner Cr2O3 layer, and an α-Al2O3 layer at the oxide/alloy interface. The evolution of such an NiO/Cr2O3/Al2O3 layered structure on this alloy differs from that proposed in earlier work. During heating, a Cr2O3 outer layer and a discontinuous inner layer of Al2O3 initially formed, with metallic Ni particles dispersed between the two layers. A rapid transformation occurred in the scale shortly after the sample reached maximum temperature (1100°C), when two (possibly coupled) phenomena occurred: (i) the inner transition alumina transformed to α-Al2O3, and (ii) Ni particles oxidized to form the outer NiO layer. Subsequently, NiO reacted with Cr2O3 and Al2O3 to form spinel. Continued growth of the oxide scale and development of the TGO was dominated by growth of the inner α-Al2O3 layer.

  6. Thermal stability and thermo-mechanical properties of magnetron sputtered Cr-Al-Y-N coatings

    SciTech Connect

    Rovere, Florian; Mayrhofer, Paul H.

    2008-01-15

    Cr{sub 1-x}Al{sub x}N coatings are promising candidates for advanced machining and high temperature applications due to their good mechanical and thermal properties. Recently the authors have shown that reactive magnetron sputtering using Cr-Al targets with Al/Cr ratios of 1.5 and Y contents of 0, 2, 4, and 8 at % results in the formation of stoichiometric (Cr{sub 1-x}Al{sub x}){sub 1-y}Y{sub y}N films with Al/Cr ratios of {approx}1.2 and YN mole fractions of 0%, 2%, 4%, and 8%, respectively. Here, the impact of Y on thermal stability, structural evolution, and thermo-mechanical properties is investigated in detail. Based on in situ stress measurements, thermal analyzing, x-ray diffraction, and transmission electron microscopy studies the authors conclude that Y effectively retards diffusional processes such as recovery, precipitation of hcp-AlN and fcc-YN, grain growth, and decomposition induced N{sub 2} release. Hence, the onset temperature of the latter shifts from {approx}1010 to 1125 deg. C and the hardness after annealing at T{sub a}=1100 deg. C increases from {approx}32 to 39 GPa with increasing YN mole fraction from 0% to 8%, respectively.

  7. Preliminary Study on Fatigue Strengths of Fretted Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2002-01-01

    The fatigue behavior (stress-life curve) of gamma titanium aluminide (Ti-48Al-2Cr-2Nb, atomic percent) was examined by conducting two tests: first, a fretting wear test with a fatigue specimen in contact with a typical nickel-based superalloy contact pad in air at temperatures of 296 and 823 K and second, a high-cycle fatigue test of the prefretted Ti-48Al-2Cr-2Nb fatigue specimen at 923 K. Reference high-cycle fatigue tests were also conducted with unfretted Ti-48Al-2Cr-2Nb specimens at 923 K. All Ti-48Al-2Cr-2Nb fatigue specimens were machined from cast slabs. The results indicate that the stress-life results for the fretted Ti-48Al-2Cr-2Nb specimens exhibited a behavior similar to those of the unfretted Ti-48Al-2Cr-2Nb specimens. The values of maximum stress and life for the fretted specimens were almost the same as those for the unfretted specimens. The resultant stress-life curve for the unfretted fatigue specimens was very flat. The flat appearance in the stress-life curve of the unfretted specimens is attributed to the presence of a high density of casting pores. The fatigue strengths of both the fretted and unfretted specimens can be significantly affected by the presence of this porosity, which can decrease the fatigue life of Ti-48Al-2Cr-2Nb. The presence of the porosity made discerning the effect of fretting damage on fatigue strength and life of the specimens difficult.

  8. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  9. Optimized Gen-II FeCrAl cladding production in large quantity for campaign testing

    SciTech Connect

    Yamamoto, Yukinori; Sun, Zhiqian; Pint, Bruce A.; Terrani, Kurt A.

    2016-06-03

    There are two major objectives in this report; (1) to optimize microstructure control of ATF FeCrAl alloys during tube drawing processes, and (2) to provide an update on the progress of ATF FeCrAl tube production via commercial manufacturers. Experimental efforts have been made to optimize the process parameters balancing the tube fabricability, especially for tube drawing processes, and microstructure control of the final tube products. Lab-scale sheet materials of Gen II FeCrAl alloys (Mo-containing and Nb-containing FeCrAl alloys) were used in the study, combined with a stepwise warm-rolling process and intermediate annealing, aiming to simulate the tube drawing process in a commercial tube manufacturer. The intermediate annealing at 650ºC for 1h was suggested for the tube-drawing process of Mo-containing FeCrAl alloys because it successfully softened the material by recovering the work hardening introduced through the rolling step, without inducing grain coarsening due to recrystallization. The final tube product is expected to have stabilized deformed microstructure providing the improved tensile properties with sufficient ductility. Optimization efforts on Nb-containing FeCrAl alloys focused on the effect of alloying additions and annealing conditions on the stability of deformed microstructure. Relationships between the second-phase precipitates (Fe2Nb-Laves phase) and microstructure stability are discussed. FeCrAl tube production through commercial tube manufacturers is currently in progress. Three different manufacturers, Century Tubes, Inc. (CTI), Rhenium Alloys, Inc. (RAI), and Superior Tube Company, Inc. (STC), are providing capabilities for cold-drawing, warm-drawing, and HPTR cold-pilgering, respectively. The first two companies are currently working on large quantity tube production (expected 250 ft length) of Gen I model FeCrAl alloy (B136Y3, at CTI) and Gen II (C35M4, at RAI), with the process parameters obtained from the experimental

  10. Chromium crystal chemistry mullite-spinel refractory ceramics

    SciTech Connect

    Levy, D.; Gualtieri, A.; Quartieri, S.; Artioli, G.; Valle, M.

    1999-03-15

    A small amount of chromium oxide was added to a mullite-spinel refractory mixture to improve its thermal and mechanical properties. Two different compositions of mullite-spinel refractory were studied to define the crystal structures hosting the chromium cations, and the chromium solubility in spinel (MgAl{sub 2{minus}x}Cr{sub x}O{sub 4}) was determined. Powder X-ray diffraction (XRD), X-ray absorption near edge spectroscopy (XANES), and scanning electron microscopy (SEM) elemental distribution maps were used to determine the chromium crystal chemistry in the system. The observed maximum solubility of chromium in spinel was found at x = 1.2, but the presence of mullite in the mixture caused a strong decrease of this value. The chromium distribution among the crystal phases reflects the different reaction paths of the two samples: a stage involving spinel and melt drives all present chromium in the spinel, while a simultaneous crystallization of spinel-mullite distributes chromium cations between mullite, spinel, and secondary corundum.

  11. Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe Cr Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Pimentel, G.; Chao, J.

    2012-01-01

    The effect of different starting microstructures on the kinetics of Fe-rich ({alpha}) and Cr-rich ({alpha}') phase separation during aging of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys has been analyzed with a combination of atom probe tomography and thermoelectric power measurements. The results revealed that the high recrystallization temperature necessary to produce a coarse grained microstructure in Fe-base ODS alloys affects the randomness of Cr-atom distributions and defect density, which consequently affect the phase separation kinetics at low annealing temperatures.

  12. Role of Y in the oxidation resistance of CrAlYN coatings

    NASA Astrophysics Data System (ADS)

    Domínguez-Meister, S.; El Mrabet, S.; Escobar-Galindo, R.; Mariscal, A.; Jiménez de Haro, M. C.; Justo, A.; Brizuela, M.; Rojas, T. C.; Sánchez-López, J. C.

    2015-10-01

    CrAlYN coatings with different aluminum (4-12 at.%) and yttrium (2-5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N2 mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr2N, and a more effective Fe and C blocking.

  13. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  14. Synthesis, crystal structure and magnetic properties of trinuclear chromium(III) basic carboxylate assembly: [Cr3O(salH)7(H2O)2] (salH2=salicylic acid), a new member of [Cr3O] family

    NASA Astrophysics Data System (ADS)

    Dong, Jinlong; Liu, Bin; Yang, Binsheng

    2016-07-01

    Synthesizing a novel trinuclear chromium(III) basic carboxylate complex could give rise to new materials with interesting properties. Complex [Cr3O(salH)7(H2O)2] is formed in a one-pot, self-assembly reaction when the inert reaction mixture is exposed to dioxygen. The structural property of the complex has been acquired by single-crystal X-ray crystallography and further characterized by elemental analysis (EA), infrared (IR), UV-Visible (UV-Vis), fluorescence spectroscopy and thermo gravimetric and differential thermal analysis (TG-DTA). X-ray structural analysis shows a slightly distorted equilateral of the Cr triangle. The most important feature of the title complex is the unusual framework of the [Cr3O] family due to a terminal Ph(OH)CO2- ion of Cr(2) center, which is unique among the structurally characterized (μ3-oxo)-trichromium(III) complexes. Variable-temperature magnetic susceptibility studies indicate that the total spin value of the ground state is 1/2.

  15. Fabrication and Characterization of Ni-P-CoNiCrAlY Composite Coatings

    NASA Astrophysics Data System (ADS)

    Heydari, H.; Monirvaghefi, S. M.; Hadipour, Ali

    2017-02-01

    In this study, Ni-P-CoNiCrAlY composite coatings were deposited on 310 stainless steel. The surface morphology and cross-sectional observations were carried out using scanning electron microscopy and optical microscopy. The high-temperature corrosion of all coatings was evaluated by cyclic oxidation method. According to the results, the amounts of CoNiCrAlY particles co-deposited in all samples coated at pH = 4.7 were higher than that of those produced at pH = 6.7. Also, the surface roughness of all composite coatings coated at pH = 6.7 is lower than the coatings produced at pH = 4.7. The Ni-P-(3 g/l) CoNiCrAlY deposit produced at pH = 6.7 had the best corrosion resistance among other coatings.

  16. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approx. 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  17. Fabrication and Characterization of Ni-P-CoNiCrAlY Composite Coatings

    NASA Astrophysics Data System (ADS)

    Heydari, H.; Monirvaghefi, S. M.; Hadipour, Ali

    2017-03-01

    In this study, Ni-P-CoNiCrAlY composite coatings were deposited on 310 stainless steel. The surface morphology and cross-sectional observations were carried out using scanning electron microscopy and optical microscopy. The high-temperature corrosion of all coatings was evaluated by cyclic oxidation method. According to the results, the amounts of CoNiCrAlY particles co-deposited in all samples coated at pH = 4.7 were higher than that of those produced at pH = 6.7. Also, the surface roughness of all composite coatings coated at pH = 6.7 is lower than the coatings produced at pH = 4.7. The Ni-P-(3 g/l) CoNiCrAlY deposit produced at pH = 6.7 had the best corrosion resistance among other coatings.

  18. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33 Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approximately 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  19. BeAl6O10: Cr3+: a promising active medium for femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Petrov, V. V.; Pestryakov, Efim V.; Trunov, V. I.; Kirpichnikov, A. V.; Alimpiev, A. I.

    2003-10-01

    The new laser crystals BeAl6O10:Cr3+ were grown, spectral-luminescence and CW laser properties were investigated and compared with those of well-known laser medium-alexandrite (BeAl2O4:Cr3+). CW laser generation on vibronic transition 4T2-4A2 of Cr3+ ions in BeAl6O10 crystals was realized in the range of 800-880 nm under Ar+ laser pumping. The emission cross-section of laser transition was estimated about 6×10-20 cm2. We confirmed these crystals are perspective for generation of femtosecond pulses in the near IR region under LD pumping.

  20. Microstructural characterization of Ni-22Fe-22Cr-6Al metallic foam by transmission electron microscopy.

    PubMed

    Kim, Hyung Giun; Lee, Taeg Woo; Lee, Jae Young; Lee, Eui Sung; Oh, Kwon Oh; Lee, Chang Woo; Lim, Sung Hwan

    2012-01-01

    Ni-22Fe-22Cr-6Al metallic foam, prepared using a thermomechanical treatment and alloying elements, was studied via transmission electron microscopy (TEM) in order to clarify the relationship between the mechanical properties and the nanoscale microstructural characteristics. Due to the unique porous structure of the metallic foam, TEM specimens were prepared using an embedding-process-assisted-ion-milling technique and a focused-ion-beam method. The Cr-, Fe- and Al-clustered regions around the surface of the metallic foam were investigated using elemental maps. The Ni(3)Al (γ') precipitates, which can affect the mechanical properties of the Ni-Fe-Cr (γ) matrix, were characterized in the metallic foam.

  1. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The SAP technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of the alloy Ni-17Cr-5Al-0.2 Y. SAP-NiCrAl was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. A variety of annealing treatments were applied after working to determine the recrystallization response. NiCrAlY, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl of this study exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl as has been reported for other oxide dispersion strengthened alloys. In contrast, unoxidized NiCrAlY exhibited only primary recrystallization.

  2. Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method

    NASA Astrophysics Data System (ADS)

    Ateia, Ebtesam. E.; Mohamed, Amira. T.

    2017-03-01

    The spinel ferrite Mg0.7Cr0.3Fe2O4, and Mg0.7Al0.3Fe2O4 were prepared by the citrate technique. All samples were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Micrographs (HRTEM), Energy Dispersive X ray Spectroscopy (EDAX) and Atomic Force Microscope (AFM). XRD confirmed the formation of cubic spinel structure of the investigated samples. The average crystallite sizes were found to be between 24.7 and 27.5 nm for Al3+ and Mg2+ respectively. The substitution of Cr3+/Al3+ in place of Mg2+ ion initiates a crystalline anisotropy due to large size mismatch between Cr /Al and Mg2+, which creates strain inside the crystal volume. According to VSM results, by adding Al3+ or Cr3+ ions at the expense of Mg2+, the saturation magnetization increased. The narrow hysteresis loop of the samples indicates that the amount of dissipated energy is small, which is desirable for soft magnetic applications. Magnetic dynamics of the samples were studied by measuring magnetic susceptibility versus temperature at different magnetic fields. The band gap energy, which was calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function, decreases with increasing the particle size. Furthermore, the band gaps were quite narrow (1.5-1.7 eV), hence the investigated samples could act as visible light driven photo catalysts. To sum up the addition of trivalent Al3+, and Cr3+ ions enhanced the optical, magnetic and structure properties of the samples. Mg0.7 Cr0.3Fe2O4 sample will be a better candidate for the optical applications and will also be a guaranteeing hopeful for technological applications.

  3. Equation of State of an AlCoCrCuFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Li, Gong; Xiao, Daihong; Yu, Pengfei; Zhang, Lijun; Liaw, Peter K.; Li, Yanchun; Liu, Riping

    2015-08-01

    The pressure-volume (P-V) relationship of the AlCoCrCuFeNi high-entropy alloy (HEA) at room temperature has been studied using in situ high-pressure energy-dispersive x-ray diffraction with synchrotron radiation at high pressures. The equation of state of the AlCoCrCuFeNi HEA is determined by the calculation of the radial distribution function. The experimental results indicate that the HEA keeps a stable face-centered-cubic + body-centered-cubic structure in the experimental pressure range from 0 GPa to 24 GPa.

  4. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    SciTech Connect

    Thompson, Zachary T.; Terrani, Kurt A.; Yamamoto, Yukinori

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  5. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    SciTech Connect

    Yamamoto, Yukinori

    2015-09-01

    Development and quality assessment of the 2nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  6. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Douglass, D. L.; Nasrallah, M.

    1974-01-01

    The investigation reported included a determination of the optimum composition of a Ni-Cr-Al ternary alloy with respect to oxidation resistance and minimum film-spalling tendencies. Yttrium and thorium in small amounts were added to the ternary alloy and an investigation of the oxidation mechanism and the oxide scale adherence was conducted. It was found that the oxidation mechanism of Ni-Cr-Al ternary alloys depends upon the composition of the alloy as well as the time, oxygen pressure, and temperature of oxidation.

  7. Electronic and vibrational spectroscopy of cis-β-[CrCl 2(1,4,7,11-tetrazaundecane)chromium(III) perchlorate

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Ha; Choi, Sik Young; Hong, Yong Pyo; Ko, Seong-Oon; Ryoo, Keon Sang; Lee, Sang Hak; Park, Yu Chul

    2008-08-01

    The sharp-line absorption spectrum of cis-β-[CrCl 2(2,2,3-tet)]ClO 4 (2,2,3-tet: 1,4,7,11-tetraazaundecane) has been measured between 13,000 and 16,000 cm -1 at 5 K. The 77 K emission, 298 K infrared and visible spectra have also been measured. The zero-phonon band in the highly resolved absorption spectrum splits into four components. The vibrational intervals of the electronic ground state were determined from the far-infrared and emission spectra. The 10 electronic bands due to spin-allowed and spin-forbidden transitions were assigned. Using the observed transitions, a ligand field analysis has been performed to probe the ligand field properties of coordinated atoms in the title chromium(III) complex. The X-ray crystal structure at low-temperature was determined to help in assigning the sharp-line electronic transitions.

  8. Chromium-rich lawsonite in high-Cr eclogites from the Făgăras Massif (South Carpathians)

    NASA Astrophysics Data System (ADS)

    Negulescu, E.; Săbău, G.

    2012-12-01

    Lawsonite is a relatively rare phase in natural rocks, because of its thermal decomposition during exhumation, and Cr-bearing lawsonite being restricted to only a few occurrences worldwide. Here we report Cr-lawsonite in eclogites hosted in a medium-grade metamorphic complex. Several high-Cr eclogite lenses occur in the Topolog Complex (Făgăras Massif) of dominantly gneissic-amphibolitic composition. High Cr contents are the result of emerald-green mm-sized nodules containing Cr-rich minerals, embedded in a gray-green matrix of kyanite, clinopyroxene, garnet, amphibole, zoisite, and rutile. Garnets occur as porphyroblasts or in coronas around clinopyroxene aggregates probably replacing former magmatic pyroxene. Relict gabbroic textures (sometimes pegmatoid) and whole rock geochemistry indicate a gabbroic cumulate origin. The REE pattern, displaying a slight positive Eu anomaly and a tea spoon-shaped LREE depletion is also indicative of a cumulate origin, as also noted by Pe Piper & Piper (2002) for the Othrys gabbro (as well as others in the Vourinos and Pindos ophiolitic suites) with the same unusual REE-pattern. The emerald-green Cr-rich nodules are unevenly distributed in the rock, and always enclosed in Cr-rich clinopyroxenes (up to 5.46% Cr2O3) which may exhibit Cr-diffusion haloes towards normal Cr-free matrix pyroxene. The nodules consist of diablastic chromite, rutile and Cr-rich kyanite of up to 15.67 wt% Cr2O3, Cr-bearing epidote, to which Cr-rich staurolite (up to 10.45% Cr2O3; XMg up to 0.68) and Cr-rich lawsonite (up to 9.17% Cr2O3) may exceptionally associate. Cr concentrations in kyanite and lawsonite are, to our knowledge, the highest reported so far. Cr-lawsonite was identified in a single sample, as small single phase inclusions armoured in Cr-kyanite. Equilibrium PT-conditions of 2.6 GPa and 610o C were derived from the garnet-mantled clinopyroxene aggregates using multi-equilibria calculation with the PTGIBBS routine of Brandelik & Massonne

  9. Fiber optic thermometer using Cr-doped GdAlO3 broadband emission decay

    NASA Astrophysics Data System (ADS)

    Eldridge, Jeffrey I.; Chambers, Matthew D.

    2015-09-01

    Luminescence decay temperature measurements are performed from 800 to 1200 °C using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor tip on a YAG single crystal fiber. As a thermographic phosphor, Cr:GdAlO3 combines the intense luminescence of transition metal dopants with the high temperature long decay times usually exhibited only by rare earth dopants. The proposed mechanism is emission by the Cr3+ dopant via the spin-allowed 4T2  →  4A2 transition supported by a reservoir state in 2E which populates {}4{{\\text{T}}2} (2E  →  {}4{{\\text{T}}2} ) through thermal equilibration. The relative energy levels and transition probabilities associated with the strong crystal field at the Al3+ site in the perovskite structure of GdAlO3 are favorable for suppressing thermal quenching of luminescence. Results from a single-fiber configuration sensor, based on a YAG fiber for its low background luminescence, are presented. Using a decay curve fitting procedure that accounts for background fluorescence, accuracies of better than  ±5 °C are demonstrated.

  10. Crystal growth and spectroscopic properties of Cr3+-doped CaGdAlO4

    NASA Astrophysics Data System (ADS)

    Zhang, Zhu; Huang, Yisheng; Zhang, Lizhen; Sun, Shijia; Yuan, Feifei; Lin, Zhoubin

    2017-04-01

    A Cr3+:CaGdAlO4 single crystal with dimensions of ∅21 × 33 mm3 was grown successfully by Czochralski method for the first time. Its spectral properties including polarized absorption spectra, polarized fluorescence spectra, excitation spectrum and fluorescence decay curves were investigated in detail. The absorption cross-sections at around 573 nm corresponding to the 4A2 → 4T2 transition of Cr3+ ions are 4.75 × 10-20 and 2.56 × 10-20 cm2 for σ- and π-polarizations, respectively. The excitation spectrum shows two broad and intense absorption bands at about 390 nm and 570 nm, which are associated with the 4A2 → 4T1 and 4A2 → 4T2 transitions of Cr3+ ions, respectively. The emission band with peak at around 744 nm is ascribed to the 2E → 4A2 transition of Cr3+ ions, with the emission cross-sections of 5.55 × 10-22 and 5.41 × 10-22 cm2 for σ- and π-polarizations, respectively. The fluorescence lifetime is 4.35 ms at room temperature. The Dq/B value is 2.72, which means that Cr3+ ions occupy the lattice sites with strong crystal field strength. The results show that Cr3+:CaGdAlO4 crystal can be regarded as a potential laser gain medium.

  11. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    SciTech Connect

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explain that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.

  12. Persistent luminescence of AB2O4:Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: New biomarkers for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Gourier, D.; Viana, B.; Maldiney, T.; Teston, E.; Scherman, D.; Richard, C.

    2014-09-01

    Recently red emitting long-lasting phosphorescence (LLP) materials have been demonstrated to be useful biomarkers for small animal in vivo imaging. We report here our investigations on the optical properties of chromium doped AB2O4 spinels (with A = Zn, Mg and B = Ga, Al) suitable for such applications. It is possible to tune the absorption wavelengths of Cr3+ by a crystal field variation and also slightly vary the emission to be better centered in the biological window and to adjust the trap depth in order to better control the release of the charges. These traps are therefore stable at room temperature and could be emptied by thermal or near infrared source, which makes these materials potential new optically photo-storage compounds.

  13. Half-metallicity in highly L21-ordered CoFeCrAl thin films

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Valloppilly, S. R.; Li, X.-Z.; Kim, D. R.; Zhao, G. J.; Chen, T. Y.; Choudhary, R.; Kashyap, A.; Skomski, R.; Sellmyer, D. J.

    2016-10-01

    The structural, magnetic, and electron-transport properties of Heusler-ordered CoFeCrAl thin films are investigated experimentally and theoretically. The films, sputtered onto MgO and having thicknesses of about 100 nm, exhibit virtually perfect single-crystalline epitaxy and a high degree of L21 chemical order. X-ray diffraction and transmission-electron microscopy show that the structure of the films is essentially of the L21 Heusler type. The films are ferrimagnetic, with a Curie temperature of about 390 K, and a net moment of 2 μB per formula unit. The room temperature resistivity is 175 μΩ cm; the carrier concentration and mobility determined from the low temperature (5 K) measurement are 1.2 × 1018 cm-3 and 33 cm2/V s, respectively. In contrast to the well-investigated Heusler alloys such as Co2(Cr1-xFex)Al, the CoFeCrAl system exhibits two main types of weak residual A2 disorder, namely, Co-Cr disorder and Fe-Cr disorder, the latter conserving half-metallicity. Point-contact Andreev reflection yields a lower bound for the spin polarization, 68% at 1.85 K, but our structural and magnetization analyses suggest that the spin polarization at the Fermi level is probably higher than 90%. The high resistivity, spin polarization, and Curie temperature are encouraging in the context of spin electronics.

  14. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    SciTech Connect

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; Hoelzer, David T.

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.

  15. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    DOE PAGES

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; ...

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is amore » general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.« less

  16. Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries.

    PubMed

    Baral, A; Engelken, R; Stephens, W; Farris, J; Hannigan, R

    2006-05-01

    This study evaluated aquatic toxicities of chromium and chromium-containing laboratory samples representative of effluents from chromium electroplating industries, and compared the aquatic environmental risks of hexavalent and trivalent chromium electroplating operations. Trivalent chromium electroplating has emerged as an acceptable alternative to hazardous hexavalent chromium electroplating. This process substitution has reduced the human health impact in the workplace and minimized the production of hazardous sludge regulated under the Resource Conservation and Recovery Act (RCRA). The thrust behind this research was to investigate whether trivalent chromium electroplating operations have lower adverse impacts on standardized toxicity test organisms. Ceriodaphnia dubia and Pimephales promelas were used to investigate toxicities of trivalent chromium (Cr (III)), hexavalent chromium (Cr (VI)), and industrial effluents. In agreement with previous studies, Cr (III) was found to be less toxic than Cr (VI). Despite having several organic and inorganic constituents in the effluents obtained from trivalent chromium plating baths, they exhibited less adverse effects to C. dubia than effluents obtained from hexavalent chromium electroplating baths. Thus, transition from hexavalent to trivalent chromium electroplating processes may be justified. However, because of the presence of organic constituents such as formate, oxalate, and triethylene glycol in effluents, trivalent chromium electroplating operations may face additional regulatory requirements for removal of total organic carbon.

  17. Solubility of Cr, Ti, and Al in co-existing olivine, spinel, and liquid at 1 atm

    NASA Technical Reports Server (NTRS)

    Akella, J.; Williams, R. J.; Mullins, O.

    1976-01-01

    The partitioning of chromium between olivines, spinels and silicate liquids was studied as a function of temperature, oxygen fugacity, and cooling rate between 1175 and 1300 C and redox states near the Fe-FeO buffer. It is found that the weight ratio of Cr2O3 in olivine to that in the liquid increases slightly as oxygen fugacity decreases, but the effect is very small. The cooling experiments showed that the Cr2O3 content does not re-equilibrate with cooling.

  18. Hafnium influence on the microstructure of FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Geanta, V.; Voiculescu, I.; Stanciu, E.-M.

    2016-06-01

    Due to their special properties at high temperatures, FeCrAl alloys micro-alloyed with Zr can be regarded as potential materials for use at nuclear power plants, generation 4R. These materials are resistant to oxidation at high temperatures, to corrosion, erosion and to the penetrating radiations in liquid metal environments. Also, these are able to form continuously, by the self-generation process of an oxide coating with high adhesive strength. The protective oxide layers must be textured and regenerable, with a good mechanical strength, so that crack and peeling can not appear. To improve the mechanical and chemical characteristics of the oxide layer, we introduced limited quantities of Zr, Ti, Y, Hf, Ce in the range of 1-3%wt in the FeCrAl alloy. These elements, with very high affinity to the oxygen, are capable to stabilize the alumina structure and to improve the oxide adherence to the metallic substrate. FeCrAl alloys microalloyed with Hf were prepared using VAR (Vacuum Arc Remelting) unit, under high argon purity atmosphere. Three different experimental alloys have been prepared using the same metallic matrix of Fe-14Cr-5Al, by adding of 0.5%wt Hf, 1.0%wt Hf and respectively 1.5%wt Hf. The microhardness values for the experimental alloys have been in the range 154 ... 157 HV0.2. EDAX analyses have been performed to determine chemical composition on the oxide layer and in the bulk of sample and SEM analyze has been done to determine the microstructural features. The results have shown the capacity of FeCrAl alloy to form oxide layers, with different texture and rich in elements such as Al and Hf.

  19. Progress in the material development of LiCaAlF sub 6 :Cr sup 3+ laser crystals

    SciTech Connect

    Michelle D. Shinn.; Chase, L.L.; Caird, J.A.; Payne, S.A.; Atherton, L.J.; Kway, W.L.

    1990-03-01

    High Cr{sup 3+} doping levels, up to 8 mole percent, and low losses have been obtained with the tunable solid-state laser material LiCaAlF{sub 6}:Cr{sup 3+} (Cr:LiCAF). Measurements and calculations show that high pumping and extraction efficiencies are possible with the improved material. 13 refs., 4 figs., 1 tab.

  20. Food Chromium Contents, Chromium Dietary Intakes And Related Biological Variables In French Free-Living Elderly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromium (Cr III), an essential trace element, functions in potentiating insulin sensitivity, regulating glucose homeostasis, improving lipid profile, and maintaining lean body mass. Glucose intolerance and chromium deficiency increase with age, and could be aggravating factors of the metabolic synd...

  1. Study of the effects of implantation on the high Fe-Ni-Cr and Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Ribarsky, M. W.

    1985-01-01

    A theoretical study of the effects of implantation on the corrosion resistance of Fe-Ni-Cr and Ni-Cr-Al alloys was undertaken. The purpose was to elucidate the process by which corrosion scales form on alloy surfaces. The experiments dealt with Ni implanted with Al, exposed to S at high temperatures, and then analyzed using scanning electron microscopy, scanning Auger spectroscopy and X-ray fluorescence spectroscopy. Pair bonding and tight-binding models were developed to study the compositions of the alloys and as a result, a new surface ordering effect was found which may exist in certain real alloys. With these models, the behavior of alloy constituents in the presence of surface concentrations of O or S was also studied. Improvements of the models to take into account the important effects of long- and short-range ordering were considered. The diffusion kinetics of implant profiles at various temperatures were investigated, and it was found that significant non-equilibrium changes in the profiles can take place which may affect the implants' performance in the presence of surface contaminants.

  2. Solute transport during the cyclic oxidation of Ni-Cr-Al alloys. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.

    1982-01-01

    Important requirements for protective coatings of Ni-Cr-Al alloys for gas turbine superalloys are resistance to oxidation accompanied by thermal cycling, resistance to thermal fatigue cracking. The resistance to oxidation accompanied by thermal cycling is discussed. The resistance to thermal fatigue cracking is also considered.

  3. Database on Performance of Neutron Irradiated FeCrAl Alloys

    SciTech Connect

    Field, Kevin G.; Briggs, Samuel A.; Littrell, Ken; Parish, Chad M.; Yamamoto, Yukinori

    2016-08-01

    The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerance of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.

  4. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE PAGES

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; ...

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  5. Ion irradiation testing and characterization of FeCrAl candidate alloys

    SciTech Connect

    Anderoglu, Osman; Aydogan, Eda; Maloy, Stuart Andrew; Wang, Yongqiang

    2014-10-29

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels. This effort involves development of fuel cladding materials that will be resistant to oxidizing environments for extended period of time such as loss of coolant accident. Ferritic FeCrAl alloys are among the promising candidates due to formation of a stable Al₂O₃ oxide scale. In addition to being oxidation resistant, these promising alloys need to be radiation tolerant under LWR conditions (maximum dose of 10-15 dpa at 250 – 350°C). Thus, in addition to a number of commercially available alloys, nuclear grade FeCrAl alloys developed at ORNL were tested using high energy proton irradiations and subsequent characterization of irradiation hardening and damage microstructure. This report summarizes ion irradiation testing and characterization of three nuclear grade FeCrAl cladding materials developed at ORNL and four commercially available Kanthal series FeCrAl alloys in FY14 toward satisfying FCRD campaign goals.

  6. Reversible control of the chromium valence in chemically reduced Cr-doped SrTiO3 bulk powders.

    PubMed

    Lehuta, Keith A; Kittilstved, Kevin R

    2016-06-14

    The effect of chemical reduction by NaBH4 on the electronic structure of Cr-doped SrTiO3-δ bulk powders prepared by a solid-state reaction was systematically studied as a function of reduction temperature. Electron paramagnetic resonance (EPR) and diffuse reflectance spectroscopies (DRS) were utilized to monitor changes in the electronic structures of both intrinsic defects (oxygen vacancies and/or Ti(3+)) and extrinsic dopants (Cr(3+)) at different reduction temperatures. We identify the existence of two temperature regimes where changes occur within 30 min. The first temperature regime occurs between 300-375 °C and results in (1) reduction of oxygen-related surface defects, and (2) an increase in the concentration of Cr(3+) by over an order of magnitude, suggesting that EPR-silent Cr(4+) or Cr(6+) is being reduced to Cr(3+) by NaBH4. The second temperature regime occurs between 375-430 °C where we observe clear evidence of Ti(3+) formation by EPR spectroscopy that indicates chemical reduction of the SrTiO3 lattice. In addition, the oxygen-related surface defects observed in regime 1 are not formed in regime 2, but instead lattice oxygen vacancies (VO) are observed by EPR. The changes to the Cr-doped SrTiO3 electronic structure after chemical reduction in regime 1 are quantitatively reversible after aerobic annealing at 400 °C for 30 min. The internal oxygen vacancies formed during the higher temperature reductions in regime 2 require increased temperatures of at least 600 °C to be fully reoxidized in 30 min. The effect of these different oxygen-related defects on the EPR spectrum of substitutional Cr(3+) dopants is discussed. These results allow us to independently tune the dopant and host electronic structures of a technologically-relevant multifunctional material by a simple ex situ chemical perturbation.

  7. Nitrification inhibition by hexavalent chromium Cr(VI)--Microbial ecology, gene expression and off-gas emissions.

    PubMed

    Kim, Young Mo; Park, Hongkeun; Chandran, Kartik

    2016-04-01

    The goal of this study was to investigate the responses in the physiology, microbial ecology and gene expression of nitrifying bacteria to imposition of and recovery from Cr(VI) loading in a lab-scale nitrification bioreactor. Exposure to Cr(VI) in the reactor strongly inhibited nitrification performance resulting in a parallel decrease in nitrate production and ammonia consumption. Cr(VI) exposure also led to an overall decrease in total bacterial concentrations in the reactor. However, the fraction of ammonia oxidizing bacteria (AOB) decreased to a greater extent than the fraction of nitrite oxidizing bacteria (NOB). In terms of functional gene expression, a rapid decrease in the transcript concentrations of amoA gene coding for ammonia oxidation in AOB was observed in response to the Cr(VI) shock. In contrast, transcript concentrations of the nxrA gene coding for nitrite oxidation in NOB were relatively unchanged compared to Cr(VI) pre-exposure levels. Therefore, Cr(VI) exposure selectively and directly inhibited activity of AOB, which indirectly resulted in substrate (nitrite) limitation to NOB. Significantly, trends in amoA expression preceded performance trends both during imposition of and recovery from inhibition. During recovery from the Cr(VI) shock, the high ammonia concentrations in the bioreactor resulted in an irreversible shift towards AOB populations, which are expected to be more competitive in high ammonia environments. An inadvertent impact during recovery was increased emission of nitrous oxide (N2O) and nitric oxide (NO), consistent with recent findings linking AOB activity and the production of these gases. Therefore, Cr(VI) exposure elicited multiple responses on the microbial ecology, gene expression and both aqueous and gaseous nitrogenous conversion in a nitrification process. A complementary interrogation of these multiple responses facilitated an understanding of both direct and indirect inhibitory impacts on nitrification.

  8. The oxidation behavior of Ni-Cr-Al-2ThO2 alloys at 1093 and 1204 C.

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wilcox, B. A.; Stringer, J.

    1972-01-01

    A pack diffusion process has been developed which permits the introduction of nearly 6 wt % Al into solid solution in the near surface region of TDNiCr (Ni-20 wt % Cr-2 vol % ThO2) and Ni-20Cr. Alumina scales, adherent under cyclic heating and cooling conditions, were produced on TDNiCr-5.86Al upon exposure to an environment of 1330 N/sq m (10 torr) or 101,000 N/sq m (760 torr) air at temperatures of 1093 and 1204 C. While the same oxidation kinetics were observed in isothermal tests for Ni-14.6Cr-5.86Al as were obtained for the TDNiCr-5.86Al, the dispersion-strengthened alloy exhibited superior oxide scale adhesion during cyclic testing. At 1204 C, continuous weight gains were observed under all test conditions for TDNiCr-5.86Al, in contrast to the weight loss with time which occurred several hours after exposure of TDNiCr to an oxidizing environment. TDNiCr with an initial aluminum surface concentration of 4.95 wt % has nearly comparable oxidation resistance to the TDNiCr-5.86Al alloy.

  9. Formation of (Cr, Al)UO4 from doped UO2 and its influence on partition of soluble fission products

    NASA Astrophysics Data System (ADS)

    Cooper, M. W. D.; Gregg, D. J.; Zhang, Y.; Thorogood, G. J.; Lumpkin, G. R.; Grimes, R. W.; Middleburgh, S. C.

    2013-11-01

    CrUO4 and (Cr, Al)UO4 have been fabricated by a sol-gel method, studied using diffraction techniques and modelled using empirical pair potentials. Cr2O3 was predicted to preferentially form CrUO4 over entering solution into hyper-stoichiometric UO2+x by atomic scale simulation. Further, it was predicted that the formation of CrUO4 can proceed by removing excess oxygen from the UO2 lattice. Attempts to synthesise AlUO4 failed, instead forming U3O8 and Al2O3. X-ray diffraction confirmed the structure of CrUO4 and identifies the existence of a (Cr, Al)UO4 phase for the first time (with a maximum Al to Cr mole ratio of 1:3). Simulation was subsequently used to predict the partition energies for the removal of fission products or fuel additives from hyper-stoichiometric UO2+x and their incorporation into the secondary phase. The partition energies are consistent only with smaller cations (e.g. Zr4+, Mo4+ and Fe3+) residing in CrUO4, while all divalent cations are predicted to remain in UO2+x. Additions of Al had little effect on partition behaviour. The reduction of UO2+x due to the formation of CrUO4 has important implications for the solution limits of other fission products as many species are less soluble in UO2 than UO2+x.

  10. Advanced ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N; Unocic, Kinga A; Hoelzer, David T; Pint, Bruce A

    2014-09-01

    ODS FeCrAl alloys are being developed with optimum composition and properties for accident tolerant fuel cladding. Two oxide dispersion strengthened (ODS) Fe-15Cr-5Al+Y2O3 alloys were fabricated by ball milling and extrusion of gas atomized metallic powder mixed with Y2O3 powder. To assess the impact of Mo on the alloy mechanical properties, one alloy contained 1%Mo. The hardness and tensile properties of the two alloys were close and higher than the values reported for fine grain PM2000 alloy. This is likely due to the combination of a very fine grain structure and the presence of nano oxide precipitates. The nano oxide dispersion was however not sufficient to prevent grain boundary sliding at 800 C and the creep properties of the alloys were similar or only slightly superior to fine grain PM2000 alloy. Both alloys formed a protective alumina scale at 1200 C in air and steam and the mass gain curves were similar to curves generated with 12Cr-5Al+Y2O3 (+Hf or Zr) ODS alloys fabricated for a different project. To estimate the maximum temperature limit of use for the two alloys in steam, ramp tests at a rate of 5 C/min were carried out in steam. Like other ODS alloys, the two alloys showed a significant increase of the mas gains at T~ 1380 C compared with ~1480 C for wrought alloys of similar composition. The beneficial effect of Yttrium for wrought FeCrAl does not seem effective for most ODS FeCrAl alloys. Characterization of the hardness of annealed specimens revealed that the microstructure of the two alloys was not stable above 1000 C. Concurrent radiation results suggested that Cr levels <15wt% are desirable and the creep and oxidation results from the 12Cr ODS alloys indicate that a lower Cr, high strength ODS alloy with a higher maximum use temperature could be achieved.

  11. Immobilization of chromium in cement matrices

    SciTech Connect

    Kindness, A.; Macias, A.; Glasser, F.P. . Dept. of Chemistry)

    1994-01-01

    Portland cement and blended cements containing blast furnace slag afford both physical and chemical immobilization of chromium. To separate physical and chemical effects, the pore fluid contained in set, hydrated cements has been expressed and analyzed. In Portland cement spiked with 5,000 ppm Cr(III), pore fluid levels are 0.1--1 ppm, whereas in well-cured slag blends, they decrease to <0.01 ppm. Both cement types give chemical immobilization, but slag cements give the better performance. Slag-containing cements are the most effective at removing Cr(VI) from the pore fluid, probably by reducing Cr(VI) to Cr(III). Electron microscopy coupled with energy dispersive X-ray analysis shows that Cr(III) can be substituted for Al in most of the calcium aluminated hydrate phases. In synthetic preparations, substitution is complete resulting in Ca-Cr phases that are isostructural to calcium aluminate phases. Three Cr analogues of calcium aluminates were synthesized: Ca[sub 2]Cr(OH)[sub 7] [center dot] 3H[sub 2]O, Ca[sub 2]Cr[sub 2]O[sub 5] [center dot] 6H[sub 2]O and Ca[sub 2]Cr[sub 2]O[sub 5] [center dot] 8H[sub 2]O, as well as solid solutions, e.g., Cr substituted hydrogarnet 3CaO [center dot] (Al[sub 2]O[sub 3]/Cr[sub 2]O[sub 3]) [center dot] 6H[sub 2]O. There is no real evidence that Cr is taken up by C-S-H gel.

  12. High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey; Chambers, Matthew

    2011-01-01

    A new concept has been developed for a high-temperature luminescence-based optical thermometer that both shows the desired temperature sensitivity in the upper temperature range of present state-of-the-art luminescence thermometers (above 1,300 C), while maintaining substantial stronger luminescence signal intensity that will allow these optical thermometers to operate in the presence of the high thermal background radiation typical of industrial applications. This objective is attained by using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor with an orthorhombic perovskite structure, resulting in broadband luminescence that remains strong at high temperature due to the favorable electron energy level spacing of Cr:GdAlO3. The Cr:GdAlO3 temperature (and pressure) sensor can be incorporated into, or applied onto, a component s surface when a non-contact surface temperature measurement is desired, or alternatively, the temperature sensor can be attached to the end of a fiber-optic probe that can then be positioned at the location where the temperature measurement is desired. In the case of the fiber-optic probe, both the pulsed excitation and the luminescence emission travel through the fiber-optic light guide. In either case, a pulsed light source provides excitation of the luminescence, and the broadband luminescence emission is collected. Real-time temperature measurements are obtain ed using a least-squares fitting algorithm that determines the luminescence decay time, which has a known temperature dependence established by calibration. Due to the broad absorption and emission bands for Cr:GdAlO3, there is considerable flexibility in the choice of excitation wavelength and emission wavelength detection bands. The strategic choice of the GdAlO3 host is based on its high crystal field, phase stability, and distorted symmetry at the Cr3+ occupation sites. The use of the broadband emission for temperature sensing at high temperatures is a key feature of the invention and is

  13. Fretting corrosion of CoCrMo and Ti6Al4V interfaces.

    PubMed

    Swaminathan, Viswanathan; Gilbert, Jeremy L

    2012-08-01

    Mechanically assisted corrosion (fretting corrosion, tribocorrosion etc.,) of metallic biomaterials is a primary concern for numerous implant applications, particularly in the performance of highly-loaded medical devices. While the basic underlying concepts of fretting corrosion or tribocorrosion and fretting crevice corrosion are well known, there remains a need to develop an integrated systematic method for the analysis of fretting corrosion involving metal-on-metal contacts. Such a method can provide detailed and quantitative information on the processes present and explore variations in surfaces, alloys, voltages, loadings, motion and solution conditions. This study reports on development of a fretting corrosion test system and presents elements of an in-depth theoretical fretting corrosion model that incorporates both the mechanical and the electrochemical aspects of fretting corrosion. To demonstrate the capabilities of the new system and validate the proposed model, experiments were performed to understand the effect of applied normal load on fretting corrosion performance of Ti6Al4V/Ti6Al4V, CoCrMo/Ti6Al4V, and CoCrMo/CoCrMo material couples under potentiostatic conditions with a fixed starting surface roughness. The results of this study show that fretting corrosion is affected by material couples, normal load and the motion conditions at the interface. In particular, fretting currents and coefficient of friction (COF) vary with load and are higher for Ti6Al4V/Ti6Al4V couple reaching 3 mA/cm(2) and 0.63 at about 73 MPa nominal contact stress, respectively. Ti6Al4V coupled with CoCrMo displayed lower currents (0.6 mA/cm(2)) and COF (0.3), and the fretting corrosion behavior was comparable to CoCrMo/CoCrMo couple (1.2 mA/cm(2) and 0.3, respectively). Information on the mechanical energy dissipated at the interface, the sticking behavior, and the load dependence of the inter-asperity distance calculated using the model elucidated the influence of

  14. Groundwater contaminant by hexavalent chromium

    SciTech Connect

    Parsons, C.

    1995-11-01

    Oxidation of trivalent chromium to hexavalent chromium has been investigated as a function of total manganese in soils as well as various incubation conditions. Chromium and manganese contents were analyzed by atomic absorption (graphite furnace and flame emission respectively) following acid digestion. Total hexavalent chromium generation capacity was determined by addition of 0.001 M CrCL3, incubation, and analysis by s-diphenyl carbazide. Samples were then leached with CaSO{sub 4} and MgSO{sub 4} and incubated in various environments (oven, freeze-drier, field moist, ultrafreeze) to test for geogenic generation of Cr(IV). The degree of geogenic generation of hexavalent chromium was compared with total Mn and Cr content as well as hexavalent generational capacity.

  15. Annealing effect on the electrical properties and composition of a NiCrAl thin film resistor

    NASA Astrophysics Data System (ADS)

    Chuang, Nai-Chuan; Lin, Jyi-Tsong; Chen, Huey-Ru

    2015-12-01

    The composition of NiCrAl thin film resistors, under different annealing conditions in a N2 atmosphere, was investigated. The Auger electron spectrum (AES) has been used in studying the composition of NiCrAl thin films. The concentration ratio of Cr to Ni decreases when the annealing temperature increases. The electrical properties of a NiCrAl thin film resistor are affected by the concentrations of Cr and Ni, which lead to a higher temperature coefficient of resistance (TCR) and a lower sheet resistivity. The TCR of a NiCrAl thin film resistor is -5 ppm/°C at a 250 °C annealing temperature.

  16. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Chen, X. F.; Johnson, D. R.; Noebe, R. D.; Oliver, B. F.

    1995-01-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  17. Cage Structure Formation of Singly Doped Aluminum Cluster Cations Al n TM + ( TM = Ti, V, Cr)

    NASA Astrophysics Data System (ADS)

    Lang, Sandra M.; Claes, Pieterjan; Neukermans, Sven; Janssens, Ewald

    2011-09-01

    Structural information on free transition metal doped aluminum clusters, Al n TM + ( TM = Ti, V, Cr), was obtained by studying their ability for argon physisorption. Systematic size ( n = 5 - 35) and temperature ( T = 145 - 300 K) dependent investigations reveal that bare Al n + clusters are inert toward argon, while Al n TM + clusters attach one argon atom up to a critical cluster size. This size is interpreted as the geometrical transition from surface-located dopant atoms to endohedrally doped aluminum clusters with the transition metal atom residing in an aluminum cage. The critical size, n crit , is found to be surprisingly large, namely n crit = 16 and n crit = 19 - 21 for TM = V, Cr, and TM = Ti, respectively. Experimental cluster-argon bond dissociation energies have been derived as function of cluster size from equilibrium mass spectra and are in the 0.1-0.3 eV range.

  18. A combined APT and SANS investigation of α' phase precipitation in neutron-irradiated model FeCrAl alloys

    DOE PAGES

    Briggs, Samuel A.; Edmondson, Philip D.; Littrell, Kenneth C.; ...

    2017-03-01

    Here, FeCrAl alloys are currently under consideration for accident-tolerant fuel cladding applications in light water reactors owing to their superior high-temperature oxidation and corrosion resistance compared to the Zr-based alloys currently employed. However, their performance could be limited by precipitation of a Cr-rich α' phase that tends to embrittle high-Cr ferritic Fe-based alloys. In this study, four FeCrAl model alloys with 10–18 at.% Cr and 5.8–9.3 at.% Al were neutron-irradiated to nominal damage doses up to 7.0 displacements per atom at a target temperature of 320 °C. Small angle neutron scattering techniques were coupled with atom probe tomography to assessmore » the composition and morphology of the resulting α' precipitates. It was demonstrated that Al additions partially destabilize the α' phase, generally resulting in precipitates with lower Cr contents when compared with binary Fe-Cr systems. The precipitate morphology evolution with dose exhibited a transient coarsening regime akin to previously observed behavior in aged Fe-Cr alloys. Similar behavior to predictions of the LSW/UOKV models suggests that α' precipitation in irradiated FeCrAl is a diffusion-limited process with coarsening mechanisms similar to those in thermally aged high-Cr ferritic alloys.« less

  19. Synthesis of a novel chromium-phosphate built up with unprecedented [CR{sub 9}P{sub 12}O{sub 58}H{sub 12}]{sup 17-} clusters under hydrothermal conditions

    SciTech Connect

    Liu Wei; Xiong Dingbang; Yang Xinxin; Zhao Jingtai

    2007-07-15

    A new chromium-phosphate has been prepared under hydrothermal conditions for the first time. It crystallizes in the Monoclinic system, space group C2/c, a=17.002(3) A, b=26.333(5) A, c=16.017(4) A, {beta}=96.63 (3){sup o}, V=7123.07(2) A{sup 3} and Z=4. The crystal structure displays a centrosymmetric complex aggregate [Cr{sub 9}P{sub 12}O{sub 58}H{sub 12}]{sup 17-}, constructed from the unprecedented enneanucleus chromic core Cr{sub 9}O{sub 10} with peripheral ligations provided by 12 phosphate groups. The sodium ions and water as guests fill in the cavities among the clusters to satisfy the charge balance and keep the structural stability. The magnetic measurement indicates the existence of antiferromagnetic interactions. - Graphical abstract: Polyhedral representation of the oxo-chromium core in compound 1, showing the bridging function of phosphate groups around the octahedral chromium core (CrO{sub 6} octahedron, grey and transparent; Cr, green sphere; P, pink sphere; O, red sphere; H, small black sphere)

  20. Preliminary Analysis of the General Performance and Mechanical Behavior of Irradiated FeCrAl Base Alloys and Weldments

    SciTech Connect

    Gussev, Maxim N.; Field, Kevin G.; Briggs, Samuel A.; Yamamoto, Yukinori

    2016-09-30

    The iron-based, iron-chromium-aluminum (FeCrAl) alloys are promising, robust materials for deployment in current and future nuclear power plants. This class of alloys demonstrates excellent performance in a range of environments and conditions, including high-temperature steam (>1000°C). Furthermore, these alloys have the potential to have prolonged survival under loss-of-coolant accident (LOCA) conditions compared to the more traditional cladding materials that are either Zr-based alloys or austenitic steels. However, one of the issues associated with FeCrAl alloys is cracking during welding. The present project investigates the possibility of mitigating welding-induced cracking via alloying and precise structure control of the weldments; in the frame work of the project, several advanced alloys were developed and are being investigated prior to and after neutron irradiation to provide insight into the radiation tolerance and mechanical performance of the weldments. The present report provides preliminary results on the post-irradiation characterization and mechanical tests performed during United States Fiscal Year (FY) 2016. Chapter 1 provides a general introduction, and Chapter 2 describes the alloy compositions, welding procedure, specimen geometry and manufacturing parameters. Also, a brief discussion of the irradiation at the High Flux Isotope Reactor (HFIR) is provided. Chapter 3 is devoted to the analysis of mechanical tests performed at the hot cell facility; tensile curves and mechanical properties are discussed in detail focusing on the irradiation temperature. Limited fractography results are also presented and analyzed. The discussion highlights the limitations of the testing within a hot cell. Chapter 4 underlines the advantages of in-situ testing and discusses the preliminary results obtained with newly developed miniature specimens. Specimens were moved to the Low Activation Materials Development and Analysis (LAMDA) laboratory and prepared for

  1. Implant Bed Preparation with an Erbium, Chromium Doped Yttrium Scandium Gallium Garnet (Er,Cr: YSGG) Laser Using Stereolithographic Surgical Guide

    PubMed Central

    Seymen, Gülin; Turgut, Zeynep; Berk, Gizem; Bodur, Ayşen

    2013-01-01

    Background: Implant bed preparation with laser is taken into consideration owing to the increased interest in use of lasers in hard tissue surgery. The purpose of this study is to determine the deviations in the position and inclination between the planned and prepared implant beds with Erbium, Chromium doped Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser using stereolithographic (SLA) surgical guides. Methods: After 3-dimensional (3D) imaging of six sheep lower jaws, computed tomography (CT) images were transformed into 3D models. Locations of implant beds were determined on these models. Two implant beds in each half jaw were prepared with an Er,Cr:YSGG laser system and a conventional drilling method using a total of 12 SLA surgical guides. A new CT was taken to analyze the deviation values between planned and prepared implant beds. Finally, a software program was used to superimpose the images on 3D models, then the laser and conventional drilling groups were compared. Results: Differences of mean angular deviations between the planned and prepared implant beds were 5.17±4.91° in the laser group and 2.02±1.94° in the conventional drilling group.The mean coronal deviation values were found to be 0.48±0.25 mm and 0.23±0.14 mm in the laser group and conventional drilling group, respectively. While the mean deviation at the apex between the planned and prepared implant beds were 0.70±0.26 mm and 0.26±0.08 ,the mean vertical deviations were 0.06±0.15 mm and 0.02±0.05 mm for the laser group and the conventional drilling group, respectively. Conclusion: It is possible to prepare an implant bed properly with the aid of Er,Cr:YSGGlaser by using SLA surgical guide. PMID:25606303

  2. Cr:YSO Saturable Absorber for the Three-Level Cr:BeAl2O4 Laser at 680.4 nm

    NASA Astrophysics Data System (ADS)

    Kuo, Yen-Kuang; Chen, Horng-Min

    2000-12-01

    In addition to being an efficient saturable absorber Q switch for the tunable Cr:BeAl2O4 laser for its entire tuning range from 700 to 818 nm, the Cr:YSO is shown to be an effective saturable absorber Q switch for the 3-level Cr:BeAl2O4 laser at 680.4 nm. The passive Q-switching performance of this 3-level laser is similar to that of the passively Q-switched ruby laser.

  3. Stabilization/solidification on chromium (III) wastes by C(3)A and C(3)A hydrated matrix.

    PubMed

    Li, Xiangguo; He, Chao; Bai, Yun; Ma, Baoguo; Wang, Guandong; Tan, Hongbo

    2014-03-15

    Hazardous wastes are usually used in the Portland cement production in order to save energy, costs and/or stabilize toxic substances and heavy metals inside the clinker. This work focus on the stabilization/solidification on chromium (III) wastes by C(3)A and C(3)A hydrated matrix. The immobilization rate of chromium in C(3)A and the leaching characteristics of the C(3)A hydrated matrixes containing chromium were investigated by ICP-AES. The results indicated that C(3)A had a good solidifying effect on chromium using the clinkering process, however, the Cr leaching content of Cr-doped C(3)A was higher than that of hydrated C(3)A matrix in Cr(NO(3))3 solution and was lower than that of the hydrated C(3)A matrix in K(2)CrO(4) solution, no matter the leachant was sulphuric acid & nitric acid or water. To explain this, C(3)A formation, chemical valence states of chromium in C(3)A, hydration products and Cr distribution in the C(3)A-gypsum hydrated matrixes were studied by XRD, XPS and FESEM-EDS. The investigation showed that part of Cr(3+) was oxidized to Cr(6+) in the clinkering process and identified as the chromium compounds Ca(4)Al(6)O(12)CrO(4) (3CaO·Al(20O(3)·CaCrO(4)), which resulted in the higher leaching of hydrated matrix of Cr-doped C(3)A.

  4. Tunable Cr:YSO Q-Switched Cr:BeAl2O4 Laser: Numerical Study on Laser Performance along Three Principal Axes of the Q Switch

    NASA Astrophysics Data System (ADS)

    Kuo, Yen-Kuang; Chang, Jih-Yuan; Lin, Chia-Ching; Chen, Horng-Min

    2000-07-01

    Numerical simulation of the Cr:YSO Q-switched Cr:BeAl2O4 tunable laser is studied along the three principal axes of the Cr:YSO saturable absorber. The n1 axis has the best Q-switching performance when compared to the n2 and n3 axes. Theoretical expressions of important parameters such as the laser population inversion at various stages, the peak photon number inside the laser resonator, and the output energy and the pulsewidth of the Q-switched laser pulses are derived and used to evaluate the characteristics of the Cr:YSO Q-switched Cr:BeAl2O4 laser system.

  5. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  6. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  7. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  8. Long-term high-velocity oxidation and hot corrosion testing of several NiCrAl and FeCrAl base oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.; Whittenberger, J. D.

    1982-01-01

    Several oxide dispersion strengthened (ODS) alloys have been tested for cyclic, long-term, high gas-velocity resistance to oxidation at 1100 C and hot corrosion at 900 C. Both nominally Ni-16Cr-4Al and Fe-20Cr-4.5Al ODS alloys were subjected up to about 2500 cycles, where each cycle consisted of 1 hr in a hot, Mach 0.3 combusted gas stream followed by a 3-min quench in an ambient temperature, Mach 0.3 air blast. For comparison to existing technology, a coated superalloy was simultaneously tested. The ODS iron alloy exhibited clearly superior behavior, surviving 3800 oxidation and 2300 hot corrosion cycles essentially unscathed. While the ODS nickel alloys exhibited adequate oxidation resistance, the long-term hot corrosion resistance could be marginal, since the best life for such alloys under these conditions was only about 1100 cycles. However, the hot corrosion resistance of the ODS Ni-base alloys is excellent in comparison to that of traditional superalloys.

  9. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  10. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barrett, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloy was examined by cyclically oxidizing sodium sulfate coated specimens in still air at 900, 1000 and 1100 C. The compositions tested were within the ternary region: Ni; Ni-50 at.% Cr; and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. Corrosion isopleths were prepared from these equations. Compositional regions with the best hot corrosion resistance were identified.

  11. O-18 tracer studies of Al2O3 scale formation on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Reddy, K. P. R.; Cooper, A. R.; Smialek, J. L.

    1982-01-01

    Diffusion processes in Al2O3 scales formed on NiCrAl + Zr alloys were studied by the proton activation technique employing the O-18 isotope as a tracer. The O-18 profiles identified a zone of oxide penetration beneath the external scale. Both this subscale formation and the outer Al2O3 scale thickness were shown by this technique to increase with Zr content in the alloy. Estimated kp's from scale thicknesses were in agreement with gravimetric measurements for various Zr levels. Alternate exposures in O-16 and O-18 revealed that oxygen inward transport was the primary growth mechanism. A qualitative analysis of these O-18 profiles indicated that the oxygen transport was primarily via short-circuit paths, such as grain boundaries.

  12. Kerr rotation and perpendicular magnetic anisotropy of CoCr films with Al ultrathin interlayers and single-layer CoCr films

    NASA Astrophysics Data System (ADS)

    Hirata, Toyoaki; Takahashi, Takakazu; Hoshi, Youichi; Naoe, Masahiko

    1991-11-01

    The Co81Cr19/Al multilayered films were prepared by using the plasma-free sputtering apparatus. The specimen films with the thicknesses of Co81Cr19 and Al layers lCo-Cr and lAl of 50-170 and 7-14 Å, respectively, were investigated for the Kerr rotation angle θK and the reflectance R of the multilayered films with total thickness of 1500 Å. Films with lCo-Cr and lAl of 138 and 7 Å, respectively, had a θK of 0.21° and R of 0.7 which is larger than Co81Cr19 single-layer films prepared by conventional sputtering where θK and R are 0.036° and 0.4-0.5, respectively. These results indicate that the films were entirely homogeneous, that is, the surface and interior of the films may be almost the same for composition, microstructure and magnetic properties. Consequently, the Co81Cr19 thin films with Al ultrathin interlayers may be useful for microcrystalline magneto-optical media with a high C/N ratio.

  13. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature.

    PubMed

    Hamon, Lomig; Serre, Christian; Devic, Thomas; Loiseau, Thierry; Millange, Franck; Férey, Gérard; De Weireld, Guy

    2009-07-01

    Hydrogen sulfide gravimetric isotherm adsorption measurements were carried out on MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks (MOFs). A two-step adsorption mechanism related to a breathing effect was observed for MIL-53 terephthalate-based MOFs. Methane adsorption measurements highlighted the regenerability of MIL-53(Al, Cr) and MIL-47(V) MOFs after H(2)S treatment, whereas MIL-100 and MIL-101 CH(4) adsorption capacities were significantly decreased.

  14. Relative phase and physical properties of CrN/AlN multilayer: A DFT study

    NASA Astrophysics Data System (ADS)

    Cudris, E. F.; Díaz F, J. H.; Espita R, M. J.

    2016-08-01

    Using first principles total-energy calculations within the framework of density functional theory, we studied the relative stability and the structural and electronic properties of multilayer CrN/AlN in the sodium chloride (NaCl), cesium chloride (CsCl), nickel arsenide (NiAs), zinc-blende, and wurtzite structures. The calculations were carried out using the method based on pseudopotentials, employed exactly as implemented in Quantum-ESPRESSO code. Based on total energy minimization, we found that the minimum global energy of CrN/AlN is obtained for the zincblende structure. Additionally, at high pressure our calculations show the possibility of a phase transition from the zincblende to NaCl structure. For the zincblende phase, the density of states analysis reveals that the multilayer exhibits a half-metallic behavior with a magnetic moment of 3.0^p/Cr-atom. These properties come essentially from the polarization of Cr-d and N-p states that cross the Fermi level. Due to these properties, the multilayer can potentially be used in the field of spintronics or spin injectors.

  15. Electronic structure of AlCrN films investigated using various photoelectron spectroscopies and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Tatemizo, N.; Imada, S.; Miura, Y.; Yamane, H.; Tanaka, K.

    2017-03-01

    The valence band (VB) structures of wurtzite AlCrN (Cr concentration: 0-17.1%), which show optical absorption in the ultraviolet-visible-infrared light region, were investigated via photoelectron yield spectroscopy (PYS), x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), and ab initio density of states (DOS) calculations. An obvious photoelectron emission threshold was observed ~5.3 eV from the vacuum level for AlCrN, whereas no emission was observed for AlN in the PYS spectra. Comparisons of XPS and UPS VB spectra and the calculated DOS imply that Cr 3d states are formed both at the top of the VB and in the AlN gap. These data suggest that Cr doping could be a viable option to produce new materials with relevant energy band structures for solar photoelectric conversion.

  16. Status Report on Irradiation Capsules Containing Welded FeCrAl Specimens for Radiation Tolerance Evaluation

    SciTech Connect

    Field, Kevin G.; Howard, Richard H.

    2016-02-26

    This status report provides the background and current status of a series of irradiation capsules, or “rabbits”, that were designed and built to test the contributions of microstructure, composition, damage dose, and irradiation temperature on the radiation tolerance of candidate FeCrAl alloys being developed to have enhanced weldability and radiation tolerance. These rabbits will also test the validity of using an ultra-miniature tensile specimen to assess the mechanical properties of irradiated FeCrAl base metal and weldments. All rabbits are to be irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) to damage doses up to ≥15 dpa at temperatures between 200-550°C.

  17. Synthesis of Waste Form in the Gd-Fe-Al-Ni-Mn-Cr-O System

    SciTech Connect

    Chae, S.C.; Jang, Y.N.; Bae, I.K.; Ryu, K.W.

    2006-07-01

    Poly-phase waste form which was the mixture of Gd{sub 3}Fe{sub 2}Al{sub 3}O{sub 12} and (Ni{sub x}Mn{sub 1-x})(Fe{sub y}Cr{sub 1-y}){sub 2}O{sub 4} was synthesized. Also, we are intended to examine phase relation and physicochemical properties of coexisted phases in the compositions and to confirm accommodation relation of elements and phases. Two types of phase series were observed: Garnet-perovskite-spinel and Garnet-spinel. The compositions of garnets and spinels were nonstoichiometric, and especially, this poly-phase ceramics may be in a good waste form. The excessive Gd in garnets indicated the immobilization of higher content of actinides. The nonstoichiometric compositions of garnet and spinel were attributed to the formation of perovskite in that perovskite contained Gd, Fe and Al from garnet and Cr from spinel. (authors)

  18. The Temporal Evolution of the Nanostructure of a Model Ni-Al-Cr Superalloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Yoon, Kevin E.; Noebe, Ronald D.; Seidman, David N.

    2004-01-01

    The early to the later stages of precipitation of ordered gamma'-precipitates (L1(sub 2)) in Ni-5.2 Al-14.2 Cr (at.%) are studied at 873 K. Precipitates with radii as small as 0.45 nm are characterized fully by three-dimensional atom-probe (3DAP) microscopy. Contrary to what is often assumed by theory or in models, the average precipitate composition is shown to evolve with time, such that solute concentrations decrease toward an equilibrium value given by the solvus lines. Power-law time dependencies of the number density, mean radius, and supersaturations of Al and Cr are discussed in light of theoretical predictions for Ostwald ripening.

  19. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    SciTech Connect

    George, Nathan; Sweet, Ryan; Maldonado, G. Ivan; Wirth, Brian D.; Powers, Jeffrey J.; Worrall, Andrew

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  20. 1300 K Compressive Properties of Directionally Solidified Ni-33Al-33Cr-1Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, Ivan E.

    2000-01-01

    The Ni-33Al-33Cr-1Mo eutectic has been directionally solidified by a modified Bridgeman technique at growth rates ranging from 7.6 to 508 mm/h to produce grain/cellular microstructures, containing alternating plates of NiAl and Cr alloyed with Mo. The grains had sharp boundaries for slower growth rates (< 12.7 mm/h), while faster growth rates (> 25.4 mm/h) lead to cells bounded by intercellular regions. Compressive testing at 1300 K indicated that alloys DS'ed at rates between 25.4 to 254 mm/h possessed the best strengths which exceed that for the as-cast alloy.

  1. Simulated spatial and temporal dependence of chromium concentration in pure Fe and Fesbnd 14%Cr under high dpa ion irradiation

    NASA Astrophysics Data System (ADS)

    Vörtler, K.; Mamivand, M.; Barnard, L.; Szlufarska, I.; Garner, F. A.; Morgan, D.

    2016-10-01

    In this work we develop an ab initio informed rate theory model to track the spatial and temporal evolution of implanted ions (Cr+) in Fe and Fesbnd 14%Cr during high dose irradiation. We focus on the influence of the specimen surface, the depth dependence of ion-induced damage, the damage rate, and the consequences of ion implantation, all of which influence the depth dependence of alloy composition evolving with continued irradiation. We investigate chemical segregation effects in the material by considering the diffusion of the irradiation-induced defects. Moreover, we explore how temperature, grain size, grain boundary sink strength, and defect production bias modify the resulting distribution of alloy composition. Our results show that the implanted ion profile can be quite different than the predicted SRIM implantation profile due to radiation enhanced transport and segregation.

  2. Chemically sensitive amorphization process in the nanolaminated Cr2AC (A = Al or Ge) system from TEM in situ irradiation

    NASA Astrophysics Data System (ADS)

    Bugnet, Matthieu; Mauchamp, Vincent; Oliviero, Erwan; Jaouen, Michel; Cabioc'h, Thierry

    2013-10-01

    The effect of 320 keV Xe2+ ion-irradiation in Cr2AlC and Cr2GeC is investigated in situ in the transmission electron microscope. Both compounds amorphize at moderate fluences (1013-1014 Xe cm-2) but exhibit different amorphization mechanisms, bearing witness of the major influence of the chemical composition of the nanolaminated Mn+1AXn phases. It is proposed that amorphization takes place via a direct impact amorphization process in Cr2GeC whereas it is governed by a defect accumulation process in Cr2AlC.

  3. Thermodynamic Descriptions of NI Alloys Containing AL, CR, and RU: A Computational Thermodynamic Approach Coupled with Experiments

    DTIC Science & Technology

    2006-09-03

    the present study is to adopt the Calphad approach to develop thermodynamic descriptions of Ni alloys containing elements such as Al, Cr , Ru, etc and...Fig. 2(b), the agreement between calculated 0.0 Al 0 cr three phases SLiquidus o two phases 0.2 0.2 bcc 02 02 O . O 0.2 040. 08 000 0.2 0406 O . 10 44 40...experimentation is achieved. 8 0.7, 0.7, U_. 0.01 0.01 - yphase Y phase Miyazaki 1994 Miyazaki 1994 •Ni, 0 AI, -V Cr , XRe & Ni, o AI, Cr , X Re IE-3 I

  4. The effect of zirconium on the cyclic oxidation of NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Khan, A. S.; Lowell, C. E.

    1981-01-01

    This paper examines results with cyclic oxidation tests of Ni(9-20) Cr(15-30) Al-(x)Zr alloys carried out at 1100 C and 1200 C in static air. The concentration of zirconium varies from 0 to 0.63 atomic percent. Significant aluminum penetration is found in metallographic and electron microscopic examination of oxidized surfaces. Small amounts of zirconium lead to minimal penetration, and with increased zirconium content pronounced oxide penetration is observed.

  5. Thermodynamic estimation on the reduction behavior of iron-chromium ore with carbon

    SciTech Connect

    Hino, Mitsutaka; Higuchi, Kenichi; Nagasaka, Tetsuya; Banya, Shiro

    1998-04-01

    Recently, a number of efforts have been made to produce a crude stainless steel melt by direct smelting of iron-chromium ore in a basic oxygen furnace (BOF) without use of ferrochromium alloys, in order to save electric energy and production costs. In this paper, the thermodynamics for reduction of iron-chromium ore by carbon is discussed. The thermodynamic properties of iron-chromium ore were evaluated from previous work on the activities of constituents in the FeO {center_dot} Cr{sub 2}O{sub 3}-MgO {center_dot} Cr{sub 2}O{sub 3}-MgO {center_dot} Al{sub 2}O{sub 3} iron-chromite spinel-structure solid solution saturated with (Cr, Al){sub 2}O{sub 3}, and those of the Fe-Cr-C alloy were estimated by a sublattice model. The stability diagrams were drawn for carbon reduction of pure FeO {center_dot} Cr{sub 2}O{sub 3}, (Fe{sub 0.5}Mg{sub 0.5})O {center_dot} (Cr{sub 0.8}Al{sub 0.2}){sub 2}O{sub 3} iron-chromite solid solution, and South African iron-chromium ore. The evaluated stability diagrams agreed well with the literature data. It was concluded that the lowest temperature for reduction of FeO {center_dot} Cr{sub 2}O{sub 3} in the iron-chromium ore was 1390 K and a temperature higher than 1470 K would be necessary to reduce Cr{sub 2}O{sub 3} in MgO {center_dot} (Cr,Al){sub 2}O{sub 3} in the prereduction process of iron-chromium ore. The composition of liquid Fe-Cr-C alloy in equilibrium with iron-chromium ore was also estimated under 1 atm of CO at steelmaking temperature. The predicted metal composition showed reasonable agreement with the literature values.

  6. Synthesis of low-moment CrVTiAl: A potential room temperature spin filter

    NASA Astrophysics Data System (ADS)

    Stephen, G. M.; McDonald, I.; Lejeune, B.; Lewis, L. H.; Heiman, D.

    2016-12-01

    The efficient production of spin-polarized currents at room temperature is fundamental to the advancement of spintronics. Spin-filter materials—semiconductors with unequal band gaps for each spin channel—can generate spin-polarized current without the need for spin-polarized contacts. In addition, a spin-filter material with zero magnetic moment would have the advantage of not producing strong fringing fields that would interfere with neighboring electronic components and limit the volume density of devices. The quaternary Heusler compound CrVTiAl has been predicted to be a zero-moment spin-filter material with a Curie temperature in excess of 1000 K. In this work, CrVTiAl has been synthesized with a lattice constant of a = 6.15 Å. Magnetization measurements reveal an exceptionally low moment of μ = 2.3 × 10-3 μB/f.u. at a field of μ0H = 2 T that is independent of temperature between T = 10 K and 400 K, consistent with the predicted zero-moment ferrimagnetism. Transport measurements reveal a combination of metallic and semiconducting components to the resistivity. Combining a zero-moment spin-filter material with nonmagnetic electrodes would lead to an essentially nonmagnetic spin injector. These results suggest that CrVTiAl is a promising candidate for further research in the field of spintronics.

  7. Structural and magnetic properties of Co 2CrAl Heusler alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hakimi, M.; Kameli, P.; Salamati, H.

    2010-11-01

    Mechanical alloying has been used to produce nanocrystalline samples of Co 2CrAl Heusler alloys. The samples were characterized by using different methods. The results indicate that, it is possible to produce L2 1-Co 2CrAl powders after 15 h of ball-milling. The grain size of 15 h ball milled L2 1-Co 2CrAl Heusler phase, calculated by analyzing the XRD peak broadening using Williamson and Hall approach was 14 nm. The estimated magnetic moment per formula unit is ˜2 μ B. The obtained magnetic moment is significantly smaller than the theoretical value of 2.96 μ B for L2 1 structure. It seems that an atomic disorder from the crystalline L2 1-type ordered state and two-phase separation depresses the ferromagnetic ordering in alloy. Also, the effect of annealing on the structural and magnetic properties of ball milled powders was investigated. Two structures were identified for annealed sample, namely L2 1 and B2. The obtained value for magnetic moment of annealed sample is smaller than the as-milled sample due to the presence of disordered B2 phase and improvement of phase separation.

  8. Effects of Solute Concentrations on Kinetic Pathways in Ni-Al-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Booth-Morrison, Christopher; Weninger, Jessica; Sudbrack, Chantal K.; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.

    2008-01-01

    The kinetic pathways resulting from the formation of coherent gamma'-precipitates from the gamma-matrix are studied for two Ni-Al-Cr alloys with similar gamma'-precipitate volume fractions at 873 K. The details of the phase decompositions of Ni-7.5Al-8.5Cr at.% and Ni-5.2Al-14.2Cr at.% for aging times from 1/6 to 1024 h are investigated by atom-probe tomography, and are found to differ significantly from a mean-field description of coarsening. The morphologies of the gamma'-precipitates of the alloys are similar, though the degrees of gamma'-precipitate coagulation and coalescence differ. Quantification within the framework of classical nucleation theory reveals that differences in the chemical driving forces for phase decomposition result in differences in the nucleation behavior of the two alloys. The temporal evolution of the gamma'-precipitate average radii and the gamma-matrix supersaturations follow the predictions of classical coarsening models. The compositional trajectories of the gamma-matrix phases of the alloys are found to follow approximately the equilibrium tie-lines, while the trajectories of the gamma'-precipitates do not, resulting in significant differences in the partitioning ratios of the solute elements.

  9. Oxidation and Hot Corrosion Behavior of Plasma-Sprayed MCrAlY-Cr2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Huang, Chuanbing; Lan, Hao; Du, Lingzhong; Zhang, Weigang

    2016-08-01

    The oxidation and hot corrosion behavior of two atmospheric plasma-sprayed NiCoCrAlY-Cr2O3 and CoNiCrAlY-Cr2O3 coatings, which are primarily designed for wear applications at high temperature, were investigated in this study. The two coatings were exposed to air and molten salt (75%Na2SO4-25%NaCl) environment at 800 °C under cyclic conditions. Oxidation and hot corrosion kinetic curves were obtained by thermogravimetric technique. X-ray diffraction analysis and scanning electron microscopy with energy-dispersive x-ray spectrometry were employed to characterize the coatings' microstructure, surface oxides, and composition. The results showed that both coatings provided the necessary oxidation resistance with oxidation rates of about 1.03 × 10-2 and 1.36 × 10-2 mg/cm2 h, respectively. The excellent oxidation behavior of these two coatings is attributed to formation of protective (Ni,Co)Cr2O4 spinel on the surface, while as-deposited Cr2O3 in the coatings also acted as a barrier to diffusion of oxidative and corrosive substances. The greater presence of Co in the CoNiCrAlY-Cr2O3 coating restrained internal diffusion of sulfur and slowed down the coating's degradation. Thus, the CoNiCrAlY-Cr2O3 coating was found to be more protective than the NiCoCrAlY-Cr2O3 coating under hot corrosion condition.

  10. Yttrium influence on the alumina growth mechanism on an FeCr23Al5 alloy

    NASA Astrophysics Data System (ADS)

    Huntz, A. M.; Abderrazik, G. Ben; Moulin, G.; Young, E. W. A.; De Wit, J. H. W.

    1987-07-01

    The mechanism by which yttrium modifies alumina growth was studied by comparing the behaviour of a high purity FeCr23Al5 alloy, either undoped or Y doped by implantation. By combining several techniques, in particular XPS, nuclear reaction analyses and electrochemical measurements, it is shown that the growth of Al2O3 scales on pure samples is mainly ensured by aluminum short-circuit diffusion. The presence of yttrium promotes the oxygen diffusion along grain boundaries, while retarding Al short-circuit diffusion and increasing Al lattice diffusion. From this growth mechanism with both cationic amd anionic diffusion along different paths, suggestions for the improvement of scale adherence due to yttrium are proposed. The simultaneous study of C- and Y-doped samples indicates that synergetic effects occur.

  11. Redox Equilibria of Chromium in Calcium Silicate Base Melts

    NASA Astrophysics Data System (ADS)

    Mirzayousef-Jadid, A.-M.; Schwerdtfeger, Klaus

    2009-08-01

    The oxidation state of chromium has been determined at 1600 °C in CaO-SiO2-CrO x melts with CaO/SiO2 ratios (mass pct) of 0.66, 0.93, and 1.10, and 0.15 to 3.00 pct Cr2O3 (initial). A few experiments were also carried out with CaO-SiO2-Al2O3-CrO x melts at 1430 °C. The slag samples were equilibrated with gas phases of controlled oxygen pressure. Two techniques were applied to determine the oxidation state: thermogravimetry and quenching of the samples with subsequent wet chemical analysis. In the low-oxygen pressure range, the chromium is mainly divalent. In the high-oxygen pressure range, it is trivalent and hexavalent. It was found that the Cr3+/Cr2+ and Cr6+/Cr3+ ratios depend on oxygen pressure at a constant CaO/SiO2 ratio and a constant content of total chromium, according to the ideal law of mass action. According to the respective chemical reactions, these ratios change proportional to p_{{{text{O}}2 }}{}^{1/4} or p_{{{text{O}}_{ 2} }}{}^{3/4}, respectively. They also increase with increasing basicity. The data are used to compute the fractions of the different ions in the melt. There is a certain range of oxygen pressure in which all three valence states, Cr2+, Cr3+, and Cr6+, coexist. The color of the solidified slag samples is described and is explained with the help of transmission spectra.

  12. Is chromium pharmacologically relevant?

    PubMed

    Vincent, John B

    2014-10-01

    Recent research, combined with reanalysis of previous results, has revealed that chromium can no longer be considered an essential trace element. Clinical studies are ambiguous at best as to whether Cr has a pharmacological effect in humans. Observed effects of Cr on rodent models of insulin resistance and diabetes are best interpreted in terms of a pharmacological role for Cr. Studies on the effects of Cr on rat models of diabetes are reviewed herein and suggest Cr increases insulin sensitivity in peripheral tissues of the rodent models. The lack of effects in human studies may stem from humans receiving a comparably smaller dose than the rodent models. However, given the different responses to Cr in the rodent models, humans could potentially have different responses to Cr.

  13. Fabrication of CuAl1-xMxO2 (M = Fe, Cr)/Ni film delafossite compounds using spin coating and their microstructure and dielectric constant

    NASA Astrophysics Data System (ADS)

    Diantoro, Markus; Yuwita, Pelangi Eka; Olenka, Desyana; Nasikhudin

    2014-09-01

    The discovery of delafossite compound has encouraged more rapid technological developments particularly in transparent electronic devices. Copper oxide-based transparent thin films delafossite semiconductor recently give much attention in the field of optoelectronic technology, after the discovery of p-type CuAlO2. The potential applications of a p-type semiconductor transparent conductive oxides (TCO) have been applied in broad field of optoelectronics. To explore a broad physical properties interms of magnetic conducting subtitution is understudied. In this work we report the fabrication of delafossite film on Ni substrate and their characterization of CuAl1-xMxO2 delafossite compounds doped with Cr3+ and Fe3+ from the raw material of Cu(NO3)2˙3H2O, Al(NO3)3˙9H2O, Fe(NO3)3˙9H2O and Cr(NO3)3˙9H2O. The films were prepared using spin coating through a sol-gel technique at various concentrations of x = 0, 0.03, 0.04, and 0.05 for chromium and x = 0, 0.02, 0.04, 0.06, and 0.08 for iron doped. Crystal and microstructure were characterized by means of Cu-Kα Bragg-Brentano X-RD followed by High Score Plus and SEM-EDAX. The dielectric constants of the films were characterized using LCR meter. It was found that the CuAl1-xMxO2/Ni delafossite films were successfully fabricated. The CuAl1-xFexO2 compound crystallized with lattice parameters of a = b ranged from 2.8603 Å to 2.8675 Å and c ranged from 16.9576 to 17.0763 Å. The increase of the dopant give rise to the increase of the lattice parameters. Since iron has bigger ionic radius (69 pm) than original site of Al3+ with radius of 53 pm the crystal volume lattice also increase. Further analyses of increasing volume of the crystal, as expected, affected to the decreasing of its dielectric constant. The similar trends also shown by Cr3+ doped of CuAl1-xCrxO2 films with smaller effects.

  14. Analysis of the microstructure of Cr-Ni surface layers deposited on Fe{sub 3}Al by TIG

    SciTech Connect

    Ma Haijun . E-mail: hjma123@mail.sdu.edu.cn; Li Yajiang; Wang Juan

    2006-12-15

    A series of Cr-Ni alloys were overlaid on a Fe{sub 3}Al surface by tungsten inert gas arc welding (TIG) technology. The microstructure of the Cr-Ni surface layers were analysed by means of optical metallography, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that when the appropriate TIG parameters were used and Cr25-Ni13 and Cr25-Ni20 alloys were used for the overlaid materials, the Cr-Ni surface layers were crack-free. The matrix of the surface layer was austenite (A), pro-eutectoid ferrite (PF), acicular ferrite (AF), carbide-free bainite (CFB) and lath martensite (LM), distributed on the austenitic grain boundaries as well as inside the grains. The phase constituents of the Cr25-Ni13 surface layer were {gamma}-Fe, Fe{sub 3}Al, FeAl, NiAl, an Fe-C compound and an Fe-C-Cr compound. The microhardness of the fusion zone was lower than that of the Fe{sub 3}Al base metal and Cr25-Ni13 surface layer.

  15. Gamma titanium aluminide rendered castable by low chromium and high niobium additives

    SciTech Connect

    Shyh-Chin Huang.

    1993-05-25

    A castable composition is described comprising titanium, aluminum, chromium, and niobium in the following approximate composition: Ti-Al[sub 46]-[sub 48]Cr[sub 1-3]Nb[sub 6-14]; said alloy having been prepared by cast and HIP processing.

  16. Relation of structure to mechanical properties of thin thoria dispersion strengthened nickel-chromium (TD-NiCr alloy sheet

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1975-01-01

    A study of the relation between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties depend primarily on the grain aspect ratio and sheet thickness. In general, the strength properties increased with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures. A threshold stress for creep appears to exist. Even small amounts of prior creep deformation at elevated temperatures can produce severe creep damage.

  17. Chromium-based catalyst for HFC-125 synthesis: promoters effect

    NASA Astrophysics Data System (ADS)

    Reshetnikov, S. I.; Simonova, L. G.; Zirka, A. A.; Petrov, R. V.

    2016-01-01

    A variation of promoters, including rare-earth elements, allows to control of the specific surface and, perhaps, oxidation state of chromium and, consequently, catalyst activity and selectivity of chromium-based catalyst for HFC-125. To improve the catalytic properties of the 15% Cr2O3 γ - 85% -Al2O3 oxide system were added promoters (Ni or Cu or Co) in an amount of 5 wt% in terms of oxides. It was found that additional promotion Cr-Al samples by nickel and copper allow to increase the specific surface area of about 25-40% and the activity increased about 2 times. Modification of cobalt resulted in a decrease of the surface by 20% and the activity decreased by about 2 times.

  18. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  19. Degradation of Aluminide Coatings in Fe-Al-Cr Alloy on the Isothermal Oxidation

    NASA Astrophysics Data System (ADS)

    Juwita, L.; Prajitno, D. H.; Soedarsono, J. W.; Manaf, A.

    2008-03-01

    Fe base superalloy has a good mechanical strength to be used as component operating at high temperature with oxidative environment. Although, the oxidation rate can not be tolerated as it will be oxidized and form oxide scale of un-protective FeO. Coating is a proper solution that this alloy can be used at high temperature. In this research, pack aluminizing on sample was conducted with temperatures of 900 °C, 1000 °C and 1100 °C for 10 hours in inert (argon) environment and then an oxidation test was carried out at temperature of 650 °C by an isothermal method for 10 hours in air environment. It was carried out an analysis for characteristics of coating and oxide scale formed in Fe-Al-Cr super alloy resulted from pack aluminizing. From this experiment, it was indicated by XRD analysis that the coating formed on substrate was a layer of FeAl2 compound, other than coating it was found a diffused zone, where in this area it occurred movement of Fe and Cr atoms from substrate toward coating, while Al atoms moved from coating to substrate. The increase of temperature of pack aluminizing process will affect settling rate of Al and coating growth.

  20. Chromium and aluminum biosorption on Chryseomonas luteola TEM05.

    PubMed

    Ozdemir, G; Baysal, S H

    2004-05-01

    Cr(VI) and Al(III) are environmental pollutants that are frequently encountered together in industrial wastewaters, e.g., from mining iron-steel, metal cleaning, plating, metal processing, automobile parts, and the manufacturing and dye industries. In this work, several variables that affect the capacity for chromium and aluminum biosorption by Chryseomonas luteola TEM05 were studied, particularly the effects of pH, metal concentration and contact time. Optimum adsorption pH values of Cr(VI) and Al(III) were determined as 4.0 and 5.0, respectively. The biosorption equilibrium was described by Freundlich and Langmuir adsorption isotherms. The value of Qo appears to be significantly higher for the Al(III) C. luteola TEM05 system. Langmuir parameters of C. luteola TEM05 also indicated a maximum adsorption capacity of 55.2 mg g(-1) for Al(III) and 3.0 mg g(-1) for Cr(VI).

  1. Use of modified hydroxy-aluminum bentonites for chromium(III) removal from solutions.

    PubMed

    Volzone, Cristina; Beatriz Garrido, Liliana

    2008-09-01

    The retention of chromium(III) from a 2,000 ppm chromium basic sulfate and tannery waste solution at pH 4.5 using modified hydroxy-aluminum bentonites (OH-Al bentonites) as adsorbents was studied. OH-Al bentonite was prepared by mixing clay with a hydrolyzed commercial chlorohydroxy Al solution. The modified Al bentonites were obtained by (a) a treatment with 0.5M sodium chloride and (b) a treatment with a Na-hexametaphosphate solution (HMP) after adding sodium chloride. The effect of heating the adsorbents at 100, 500, 700 and 800 degrees C on Cr retention as a function of time was also analyzed. Cr retention by modified OH-Al bentonite with HMP increased with time (up to 100 mg Cr/g) where modified OH-Al bentonite was twice that of untreated bentonite. The relatively high uptake of metal from the salt solution by modified OH-Al bentonite treated at 800 degrees C, in which a complete interlayer collapse occurred, indicated the importance of the contribution of external surface sites to the retention capacity. The maximum Cr uptake from a water waste was 24 mg/g, due to interferences and different chromium species in the industrial solution.

  2. Interdiffusion in (fcc) Ni-Cr-X (X = Al, Si, Ge or Pd) Alloys at 700?aC

    SciTech Connect

    Garimella, N; Brady, Michael P; Sohn, Yong Ho

    2007-01-01

    Interdiffusion at 700 aC for Ni-22at.%Cr (fcc ^ phase) alloys with small additions of Al, Si, Ge, or Pd was examined using solid-to-solid diffusion couples. Rods of Ni-22at.%Cr, Ni-21at.%Cr-6.2at.%Al, Ni-22at.%Cr-4.0at.%Si, Ni-22at.%Cr-1.6at.%Ge and Ni-22at.%Cr-1.6at.%Pd alloys were cast using arc-melt and homogenized at 900 aC for 168 hours. The diffusion couples were assembled with alloy disks in Invar steel jig, encapsulated in Argon after several hydrogen flushes, and annealed at 700 XC for 720 hours. Experimental concentration profiles were determined from polished cross-sections by using electron probe microanalysis with pure standards of Ni, Cr, Al, Si, Ge and Pd. Interdiffusion fluxes of individual components were calculated directly from the experimental concentration profiles, and the moments of interdiffusion fluxes were examined to determine average ternary interdiffusion coefficients. Effects of ternary alloying additions on the interdiffusional behavior of Ni-Cr-X alloys at 700 XC are presented in the light of the diffusional interactions and the formation of protective Cr2O3 scale.

  3. Thermo-mechanical processing (TMP) of Ti-48Al-2Nb-2Cr based alloys

    SciTech Connect

    Fuchs, G.E.

    1995-02-01

    The effects of heat treatment and deformation processing on the microstructures and properties of {gamma}-TiAl based alloys produced by ingot metallurgy (I/M) and powder metallurgy (P/M) techniques were examined. The alloy selected for this work is the second generation {gamma}-TiAl based alloy -- Ti-48Al-2Nb-2Cr (at %). Homogenization of I/M samples was performed at a variety of temperatures, followed by hot working by isothermal forging. P/M samples were prepared from gas atomized powders, consolidated by both HIP and extrusion and some of the HIPed material was then hot worked by isothermal forging. The effects of processing, heat treatment and hot working on the microstructures and properties will be discussed.

  4. [An FTIR and XPS study of immobilization of chromium with fly ash based geopolymers].

    PubMed

    Liu, Si-Feng; Wang, Pei-Ming; Li, Zong-Jin; Lo, Irene M C

    2008-01-01

    Immobilization of Cr3+ with fly ash geopolymers was investigated by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopic (XPS) techniques. The chromium sludge, as Cr(OH)3, was prepared with chemical precipitation method. The amounts of aluminum and silicon leached before and after the chromium sludge addition were measured using ICP-AES. The results suggested that the amounts of silicon and aluminum leached were reduced for the fly ash geopolymers after chromium sludge was incorporated. The decrease of silicon leaching was more pronounced than aluminum. FTIR results showed that the intensity of the main peak shifted into lower and the wave number of Si--O--Si and Al--O--Si became higher. The XPS results indicated that the O(1s) bind energy decreased, Si(2p) and Cr(2p) bind energy increased, while Al(2p) bind energy remained unchanged due to Cr3+ addition. It was also confirmed that the chromium is easily incorporated into the fly ash geopolymers paste, and polymerized with silicate units. The immobilization of Cr3+ using fly ash geopolymers is attributed not only to physical encapsulation, but also to chemical reaction.

  5. New alloys to conserve critical elements. [replacing chromium in steels

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1978-01-01

    Previous studies and surveys on availability of domestic reserves have shown that chromium is a most critical element within the U.S. metal industry. More precisely, the bulk of chromium is consumed in the production of stainless steels, specifically Type 304 stainless steel (304SS) which contains 18% Cr. The present paper deals with means of reducing chromium in commercial stainless steels by substituting more abundant or less expensive elements with the intent of maintaining the properties of 304SS. The discussion focuses on some of the oxidation and corrosion properties of new substitute stainless steels with only 12% Cr, which represents a potential saving of 33% of the chromium consumed in the production of 304SS. The alloying elements substituted for Cr in 304SS are selected according to their potential for protective oxide formation during high-temperature oxidation; these are Al, Si, Ti, Y, and misch metal which is 99.7% rare-earth metals containing 50 to 55% cerium. Other alloying elements to impart corrosion resistance are Mn, Mo, and V.

  6. Large magnetization and high Curie temperature in highly disordered nanoscale Fe2CrAl thin films

    NASA Astrophysics Data System (ADS)

    Dulal, Rajendra P.; Dahal, Bishnu R.; Forbes, Andrew; Pegg, Ian L.; Philip, John

    2017-02-01

    We have successfully grown nanoscale Fe2CrAl thin films on polished Si/SiO2 substrates using an ultra-high vacuum deposition with a base pressure of 9×10-10 Torr. The thickness of thin films ranges from 30 to 100 nm. These films exhibit cubic crystal structure with lattice disorder and display ferromagnetic behavior. The Curie temperature is greater than 400 K, which is much higher than that reported for bulk Fe2CrAl. The magnetic moments of the films varies from 2.5 to 2.8 μB per formula unit, which is larger than the reported bulk values. Thus, the disordered nanoscale Fe2CrAl films exhibit strong Fe-Fe exchange interactions through Fe-Cr-Fe and Fe-Al-Fe layers, resulting in both a large magnetization and a high Curie temperature.

  7. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  8. Cyclic Corrosion and Chlorination of an FeCrAl Alloy in the Presence of KCl

    DOE PAGES

    Israelsson, Niklas; Unocic, Kinga A.; Hellström, K.; ...

    2015-05-30

    The KCl-induced corrosion of the FeCrAl alloy Kanthal® APMT in an O2 + N2 + H2O environment was studied at 600 °C. The samples were pre-oxidized prior to exposure in order to investigate the protective nature of alumina scales in the present environment. The microstructure and composition of the corroded surface was investigated in detail. Corrosion started at flaws in the pre-formed α-alumina scales, i.e. α-alumina was protective in itself. Consequently, KCl-induced corrosion started locally and, subsequently, spread laterally. An electrochemical mechanism is proposed here by which a transition metal chloride forms in the alloy and K2CrO4 forms at themore » scale/gas interface. Scale de-cohesion is attributed to the formation of a sub-scale transition metal chloride.« less

  9. High hardness and superlative oxidation resistance in a pseudo-icosahehdral Cr-Al binary

    NASA Astrophysics Data System (ADS)

    Simonson, J. W.; Rosa, R.; Antonacci, A. K.; He, H.; Bender, A. D.; Pabla, J.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Aronson, M. C.

    Improving the efficiency of fossil fuel plants is a practical option for decreasing carbon dioxide emissions from electrical power generation. Present limits on the operating temperatures of exposed steel components, however, restrict steam temperatures and therefore energy efficiency. Even as a new generation of creep-resistant, high strength steels retain long term structural stability to temperatures as high as ~ 973 K, the low Cr-content of these alloys hinders their oxidation resistance, necessitating the development of new corrosion resistant coatings. We report here the nearly ideal properties of potential coating material Cr55Al229, which exhibits high hardness at room temperature as well as low thermal conductivity and superlative oxidation resistance at 973 K, with an oxidation rate at least three times smaller than those of benchmark materials. These properties originate from a pseudo-icosahedral crystal structure, suggesting new criteria for future research.

  10. Epitaxial growth of the Heusler alloy Co2Cr1-xFexAl

    NASA Astrophysics Data System (ADS)

    Kelekar, R.; Clemens, B. M.

    2004-07-01

    We report a method for the growth of single-phase epitaxial thin films of compounds from the family of Heusler alloys Co2Cr1-xFexAl. Elemental targets were dc magnetron sputtered in 1.5 mtorr Ar gas onto MgO substrates held at 500 °C at a total growth rate of ≈0.8 Å/s. As the Fe content increases, the structural quality improves, the level of chemical ordering increases, and the slope of the resistivity versus temperature, dρ/dt, above 50 K changes from negative to positive. An extraordinary Hall resistivity exceeding 1×10-8 Ω m is observed in the Cr-containing alloys at low temperature and room temperature. Preliminary work on the incorporation of a single quaternary alloy into spin valves shows maximum giant magnetoresistances ranging from 4% at 15 K to 2% at room temperature.

  11. Al, Ti, and Cr: Complex Zoning in Synthetic and Natural Nakhlite Pyroxenes

    NASA Technical Reports Server (NTRS)

    McKay, G.; Le, L.; Mikouchi, T.

    2007-01-01

    Nakhlites are olivine-bearing clinopyroxene cumulates. The cumulus pyroxenes have cores that are relatively homogeneous in Fe, Mg, and Ca, but show complex zoning of minor elements, especially Al, Ti, and Cr. Zoning patterns contain information about crystallization history parent magma compositions. But it has proven difficult to decipher this information and translate the zoning patterns into petrogenetic processes. This abstract reports results of high-precision Electron Probe MicroAnalysis (EPMA) analysis of synthetic nakhlite pyroxenes run at fO2 from IW to QFM. It compares these with concurrent analyses of natural nakhlite MIL03346 (MIL), and with standardprecision analyses of Y000593 (Y593) collected earlier. Results suggest that (1) different processes are responsible for the zoning of MIL and other more slowly-cooled nakhlites such as Y593, and (2) changes in oxidation conditions during MIL crystallization are not responsible for the unusual Cr zoning pattern

  12. Chemical zoning and diffusion of Ca, Al, Mn, and Cr in olivine of springwater pallasite

    NASA Technical Reports Server (NTRS)

    Zhou, Y.; Steele, Ian M.

    1993-01-01

    The pallasites, consisting mainly of Fe-Ni metal and olivine, are thought to represent the interior of a planetary body which slowly cooled from high temperature. Although the olivines are nearly homogeneous, ion microprobe studies revealed variations of Ca, Ti, Co, Cr, and Ni near grain edges. These variations were thought to represent diffusion in response to falling temperature of the parent body. Pallasite cooling rates have been estimated based on kamacite taenite textures but results differ by x100. In principle elemental profiles in olivine can allow estimates of cooling rate if diffusion coefficients are known; in addition, given a cooling rate, diffusion coefficients could be derived. Data are presented which show that apparent diffusion profiles can be measured for Al, Ca, Cr, and Mn which qualitatively agree with expected diffusion rates and have the potential of providing independent estimates of pallasite cooling rates.

  13. Potential and frequency effects on fretting corrosion of Ti6Al4V and CoCrMo surfaces.

    PubMed

    Swaminathan, Viswanathan; Gilbert, Jeremy L

    2013-09-01

    Fretting corrosion has been reported at the metal-metal interfaces of a wide range of medical devices, including total joint replacements, spinal devices, and overlapping cardiovascular stents. Currently, the fretting corrosion phenomenon associated with metal-on-metal contacts is not fully understood. This study investigated the effect of potential and fretting frequency on the fretting corrosion performance of Ti6Al4V/Ti6Al4V, Ti6Al4V/CoCrMo, and CoCrMo/CoCrMo alloy combinations at fixed normal load and displacement conditions using a custom built fretting corrosion test system. The results showed that the fretting current densities increased with increases in potential and were highest for Ti6Al4V/Ti6Al4V couple (1.5 mA/cm(2) at 0 V vs. Ag/AgCl). The coefficient of friction varied with potential and was about two times higher for Ti6Al4V/Ti6Al4V (0.71 V at 0 V vs. Ag/AgCl). In most of the potential range tested, the fretting corrosion behavior of CoCrMo/Ti6Al4V and CoCrMo/CoCrMo was similar and dominated by the CoCrMo surface. Increase in applied fretting frequency linearly increased the fretting current densities in the regions where the passive film is stable. Also, the model-based fretting current densities were in excellent agreement with the experimental results. Overall, Ti6Al4V/Ti6Al4V couple was more susceptible to fretting corrosion compared with other couples. However, the effects of these processes on the biological system were not assessed.

  14. Partition coefficients for Al, Ca, Ti, Cr, and Ni in olivine obtained by melting experiment on an LL6 chondrite

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Mikouchi, T.; Mckay, G. A.

    1994-01-01

    We report the partition coefficients for Ca, Al, Ti, Cr, and Ni in olivine obtained through a series of melting experiments on an LL6 chondrite under varying conditions of temperature and oxygen fugacity. It is necessary to examine the variation of partition coefficients up to extremely reducing conditions in order to study meteoritic olivines. For Ca, Al, and Cr, the partition coefficients tend to decrease as temperature increases, but do not change even under extremely reducing conditions.

  15. Structure and composition of higher-rhenium-content superalloy based on La-alloyed Ni-Al-Cr

    SciTech Connect

    Kozlov, Eduard V.; Koneva, Nina A.; Nikonenko, Elena L.; Popova, Natalya A.; Fedorischeva, Marina V.

    2015-10-27

    The paper presents the transmission and scanning electronic microscope investigations of Ni-Al-Cr superalloy alloyed with additional Re and La elements. This superalloy is obtained by a directional solidification method. It is shown that such additional elements as Re and La result in formation of new phases in Ni-Al-Cr accompanied by considerable modifications of quasi-cuboid structure in its γ’-phase.

  16. Characterization of DC magnetron plasma in Ar/Kr/N2 mixture during deposition of (Cr,Al)N coating

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Bagcivan, N.; Theiß, S.; Brugnara, R.; Bibinov, N.; Awakowicz, P.

    2017-02-01

    Reactive sputter deposition of (Cr,Al)N coatings in DC magnetron plasmas containing Ar/Kr/N2 mixtures is characterized by applying a combination of voltage–current measurement, optical emission spectroscopy (OES) and numerical simulation. Theoretical and experimental methods supplement each other and their combination permits us to obtain the most reliable information about the processes by physical vapor deposition. Gas temperature (T g) and plasma parameters, namely electron density n e and electron temperature T e are determined by spatial resolved measurements of molecular nitrogen photoemission. Steady-state densities of Cr and Al atoms are measured using OES. The sputtering of Cr and Al atoms is simulated using the TRIDYN code, measured electric current and applied voltage. Transport of sputtered atoms through the plasma volume is simulated by adopting a Monte-Carlo code. In order to quantify the ‘poisoning’ of the target surface with nitrogen, simulated steady state densities of Al and Cr atoms at different states of poisoning and at different distances from the target are compared with the measured densities. In addition, simulated fluxes of Cr and Al atoms to the substrate are compared with the measured deposition rates of the (Cr,Al)N coating.

  17. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The sintered aluminum powder (SAP) technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of a nickel alloy containing, by weight, 17% Cr, 5% Al, and 0.2% Y. The SAP-NiCrAl alloy (without the ytterbium removed by oxdation) was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. Annealing treatments were applied after working to determine the recrystallization response. The NiCrAlY alloy, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl alloy exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl alloy as has been reported for other oxide dispersion strengthened alloys. In contrast, the unoxidized NiCrAlY alloy exhibited only primary recrystallization.

  18. Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties.

    PubMed

    Singh, S; Wanderka, N; Kiefer, K; Siemensmeyer, K; Banhart, J

    2011-05-01

    Splat-quenched, as-cast and aged (2h at 600 °C after casting) AlCoCrCuFeNi high entropy alloys were investigated by means of transmission electron microscopy and three-dimensional atom probe (3D-AP). 3D-AP revealed anti-correlated fluctuations of the Cr and Fe-Co compositions in Cr-Fe-Co-rich regions of the as-cast alloy. The ferromagnetic behavior of AlCoCrCuFeNi high entropy alloy was correlated with the decomposition of the Cr-Fe-Co-rich regions into ferromagnetic Fe-Co-rich and antiferromagnetic Cr-rich domains, the size of which was determined by statistical analysis of 3D-AP data. The splat-quenched alloy showed a softer magnetic behavior as compared to the as-cast and aged alloys. The aged alloy possessed a higher saturation magnetization and coercivity as compared to the as-cast alloy.

  19. The contemporary anthropogenic chromium cycle.

    PubMed

    Johnson, Jeremiah; Schewel, Laura; Graedel, T E

    2006-11-15

    Chromium is an essential engineering metal used in stainless and alloy steels, chemicals, and refractory products. Using material flow analysis, all major anthropogenic chromium flows are characterized for the year 2000, from mining through discard, on three spatial levels: fifty-four countries, nine world regions, and the planet. Included is the first detailed quantification of chromium in internationally traded finished products and diverse waste streams. Findings include (1) 78% of chromium flow entering final use is added as a net addition to stock on the global level; most countries are close to this figure; (2) the majority of mining occurs in Africa (2400 Gg Cr/yr) and the Commonwealth of Independent States (1090 Gg Cr/yr), while the major end-users are Asia, Europe, and North America at 1150, 1140, and 751 Gg Cr/yr, respectively; (3) waste flows of chromium are the greatest in Europe (420 Gg Cr/yr), Asia (370 Gg Cr/yr), and North America (290 Gg Cr/yr), but the composition of these waste flows varies greatly among the world regions; (4) releases of chromium by the global system, which total 2630 Gg Cr/yr, are nearly evenly divided among tailings, ferrochromium slag, downgraded scrap, and post-consumer losses; (5) many countries have a heavy foreign dependence on chromium in the all forms, as is demonstrated for the United States. The findings relating to in-use stock changes and finished product trade are relevant to industry, allowing for more accurate planning for future scrap availability. The quantification of releases due to discards and dissipation hold environmental and human health relevance, while the full life cycle international trade assessment addresses local scarcity.

  20. Theoretical study of the coordination of the Cr3+ ion in α-Al2O3

    NASA Astrophysics Data System (ADS)

    Franco, R.; Recio, J. M.; Pendas, A. Martín; Francisco, E.; Luaña, V.; Pueyo, L.

    1995-12-01

    The local arrangement of a substitutional Cr3+ ion for an Al3+ ion in corundum is studied by means of first-principles pairwise simulations and quantum-mechanical ab initio Perturbed Ion calculations. Our investigation is organized in two steps. First, we determine the cohesive properties of the host lattice by calculating the set of four crystalline parameters that makes minimum the total energy of corundum. Secondly, we solve cluster models of increasing complexity centered at the Cr3+ site and embedded in the previously computed crystal potential. This is a consistent strategy that contributes to determine the local geometry of Cr3+ in α-Al2O3.

  1. Method of trivalent chromium concentration determination by atomic spectrometry

    DOEpatents

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  2. Atomic-scale microstructure underneath nanoindentation in Al-Cr-N ceramic films

    SciTech Connect

    Zhuang, Chunqiang Li, Zhipeng; Lin, Songsheng

    2015-12-15

    In this work, Al-Cr-N ceramic films deformed by nanoindentation were peeled off from silicon substrates and their atomic-scale microstructures underneath the indenter were investigated by high resolution transmission electron microscope (HR-TEM). Dislocations were formed underneath the indenter and they accumulated along nano-grain boundaries. The accumulative dislocations triggered the crack initiation along grain boundaries, and further resulted in the crack propagation. Dislocations were also observed in nano-grains on the lateral contact area. A model was proposed to describe the variation of microstructures under nanoindentation.

  3. Atomic-scale microstructure underneath nanoindentation in Al-Cr-N ceramic films

    NASA Astrophysics Data System (ADS)

    Zhuang, Chunqiang; Li, Zhipeng; Lin, Songsheng

    2015-12-01

    In this work, Al-Cr-N ceramic films deformed by nanoindentation were peeled off from silicon substrates and their atomic-scale microstructures underneath the indenter were investigated by high resolution transmission electron microscope (HR-TEM). Dislocations were formed underneath the indenter and they accumulated along nano-grain boundaries. The accumulative dislocations triggered the crack initiation along grain boundaries, and further resulted in the crack propagation. Dislocations were also observed in nano-grains on the lateral contact area. A model was proposed to describe the variation of microstructures under nanoindentation.

  4. Interdiffusion in ? (fcc) Ni-Cr-X (X=Al, Si, Ge or Pd) Alloys at 900?C

    SciTech Connect

    Garimella, N; Brady, Michael P; Sohn, Yong Ho

    2006-01-01

    Interdiffusion in Ni-Cr (fcc phase) alloys with small additions of Al, Si, Ge, or Pd was investigated using solid-to-solid diffusion couples. Ni-Cr-X alloys having compositions of Ni- 22at.%Cr, Ni-21at.%Cr-6.2at.%Al, Ni-22at.%Cr-4.0at.%Si, Ni-22at.%Cr-1.6at.%Ge and Ni- 22at.%Cr-1.6at.%Pd were manufactured by arc-casting. The diffusion couples were assembled in an Invar steel jig, encapsulated in Ar after several hydrogen purges, and annealed at 900 C in a three-zone tube furnace for 168 hours. Experimental concentration profiles were determined from polished cross-section of these couples by using electron probe microanalysis with pure element standards. Interdiffusion fluxes of individual components were calculated directly from the experimental concentration profiles, and the moments of interdiffusion fluxes were examined to determine average ternary interdiffusion coefficients. Effects of ternary alloying additions on the diffusional behavior of Ni-Cr-X alloys are presented in the light of the diffusional interactions and the formation of a protective Cr2O3 scale

  5. FORMATION AND DESTRUCTION OF HEXAVALENT CHROMIUM IN A LABORATORY SWIRL FLAME INCINERATOR

    EPA Science Inventory

    The partitioning of chromium (Cr) in combustion systems was investigated theoretically and experimentally. Theoretical predictions were based on chemical equilibrium and suggested that hexavalent chromium [Cr(VI)] was favored by the presence of chlorine (Cl) and diminished by the...

  6. Chromium Redox Equilibria in Fluids and Minerals under Hydrothermal and Subduction-zone Conditions

    NASA Astrophysics Data System (ADS)

    Hao, J.; Sverjensky, D. A.; Hazen, R. M.

    2015-12-01

    Chromium mobility and isotopic variations have been reported from a variety of high-temperature environments from hydrothermal to diamond-forming at elevated temperatures and pressures [1, 2, 3]. In addition, experiments under upper mantle conditions reported Cr-rich fluids in equilibrium with chromium oxide (Cr3+2O3) [4]. These studies suggest the need for theoretical models of the aqueous speciation of chromium in fluids and the stabilities of Cr minerals under deep crustal and upper mantle conditions. We estimated the thermodynamic properties of aqueous Cr2+, Cr3+, HCrO4-, CrO42-, and Cr2O72- using published data [5, 6] and the Deep Earth Water Model [7] to predict the different oxidation states of aqueous Cr to 1,000 °C and 5.0 GPa. We show that Cr(II) becomes the major redox state of Cr in hydrothermal fluids at 100 to 400 °C, with log fO2,g at magnetite/hematite over a wide range of pH values. In subduction zones, with log fO2,g at QFM to QFM - 2, a range of Cr redox states (II, III, and VI) may exist at 600 °C and 5 GPa depending on the pH. However, at higher temperatures (1000 °C), aqueous Cr(III) disappears and Cr(II) is favored relative to Cr(VI), again depending on the pH. Our predicted stability of Cr(II) in aqueous fluids at high temperatures suggests new mechanisms for redox/pH dependent Cr isotopic fractionation. We also estimated the thermodynamic properties of Cr(II)- and Cr(III)-garnets with the Sverjensky-Molling equation [8] to investigate the stability of Cr-garnet-fluid equilibria at elevated pressures and temperatures. References: [1] Schoenberg et al., 2008, Chem Geol 249, 294-306; [2] Farkaš et al., 2013, GCA 123, 74-92; [3] Stachel & Harris, 2008, Ore Geol. Rev, 34, 5-32; [4] Klein-BenDavid et al., 2011, Lithos 125, 122-130; [5] Ball & Nordstrom, 1998, J Chem Eng Data 43, 895-918; [6] Johnson & Nelson, 2012, Inorg Chem 51, 6116-6128; [7] Sverjensky et al. 2014, GCA 129, 125-145; [8] Sverjensky & Molling, 1992, Nature 356, 231-234.

  7. The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys.

    PubMed

    Goldberg, Jay R; Gilbert, Jeremy L

    2004-02-01

    The mechanical and electrochemical behavior of the surface oxides of CoCrMo and Ti6Al4V alloys during fracture and repassivation play an important role in the corrosion of the taper interfaces of modular hip implants. This behavior was investigated in one group of CoCrMo and Ti6Al4V alloy samples passivated with nitric acid and another group coated with a novel TiN/AlN coating. The effects of mechanical load and sample potential on peak currents and time constants resulting from fracture of the surface oxide or coating, and the effects of mechanical load on scratch depth were investigated to determine the mechanical and electrochemical properties of the oxides or coating. The polarization behavior of the samples after fracture of the oxide or coating was also investigated. CoCrMo had a stronger surface oxide and higher interfacial adhesion strength, making it more resistant to fracture than Ti6Al4V. If undisturbed, the oxide on the surface of Ti6Al4V significantly reduced dissolution currents at a wider range of potentials than CoCrMo, making Ti6Al4V more resistant to corrosion. The TiN/AlN coating had a higher hardness and modulus of elasticity than CoCrMo and Ti6Al4V. It was much less susceptible to fracture, had a higher interfacial adhesion strength, and was a better barrier to ionic diffusion than the surface oxides on CoCrMo and Ti6Al4V. The coating provided increased corrosion and fretting resistance to the substrate alloys.

  8. Structural changes in the FeAl2O4-FeCr2O4 solid solution series and their consequences on natural Cr-bearing spinels

    NASA Astrophysics Data System (ADS)

    Lenaz, Davide; Skogby, Henrik

    2013-07-01

    The influence of Al-Cr substitution on the spinel structure was studied in synthetic single crystals belonging to the FeCr2O4-FeAl2O4 series produced by flux growth at 1,000-1,300 °C in controlled atmosphere. Samples were characterized by single-crystal X-ray diffraction, electron microprobe analyses and Mössbauer spectroscopy. Crystals of sufficient size and quality for single-crystal X-ray diffraction were obtained in the ranges Chr0-0.45 and Chr70-100 but not for intermediate compositions, possibly due to a reduced stability in this range. The increase in chromite component leads to an increase in the cell edge from 8.1534 (6) to 8.3672 (1) Å and a decrease in the u parameter from 0.2645 (2) to 0.2628 (1). Chemical analyses show that Fe2+ is very close to 1 apfu (0.994-1.007), Al is in the range 0.0793-1.981 apfu, Cr between 0 and 1.925 apfu. In some cases, Fe3+ is present in amounts up to 0.031 apfu. Spinels with intermediate Cr content (Chr component between 40 and 60) are strongly zoned with Cr-rich cores and Cr-poor rims. Mössbauer analyses on powdered spinels of the runs from which single crystal has been used for X-ray structural data show values of Fe3+/Fetot consistently larger than that calculated by EMPA on single crystals, presumably due to chemical variation between single crystals from the same runs. The synthesis runs ended at a temperature of 1,000 °C, but it is possible that cation ordering continued in the Cr-poor samples towards lower temperatures, possibly down to 700 °C.

  9. The effect of magnetron pulsing on the structure and properties of tribological Cr-Al-N coatings.

    PubMed

    Lin, Jianliang; Moore, John J; Mishra, Brajendra; Sproul, Williams D; Rees, John A

    2010-02-01

    The paper will discuss the effect of pulsing single or two unbalanced magnetrons in a closed magnetic field configuration on the structure and properties of tribological Cr-Al-N coatings. Nanocrystalline Cr-Al-N coatings were reactively deposited from Cr and Al elemental targets using two unbalanced magnetrons, which were powered in both dc, pulsing only Al target and asynchronously pulsing both Cr and Al targets at 100 kHz and 50% duty cycle conditions. The ion energy distributions of these deposition and pulsing conditions were characterized using a Hiden Electrostatic QuadruPole Plasma Analyzer. It was found that pulsing two magnetrons asynchronously at 100 kHz and 50% duty cycle produced higher ion energies and significant increased ion fluxes than pulsing none or pulsing only one (Al) target. The structure and properties of Cr-Al-N coatings synthesized under different dc and pulsing conditions were investigated using X-ray diffraction, scanning electron microscopy, nanoindentation and ball-on-disk wear test, and were correlated with the effects of ion energies and ion flux regimes observed in the plasma diagnostics. The advantages of using pulsed magnetron sputtering producing different energetic ion regimes to enhance the ion bombardment on the growing films and therefore achieving the improved density, refinement of grain size and properties are illustrated.

  10. Unusual reactivity in a commercial chromium supplement compared to baseline DNA cleavage with synthetic chromium complexes.

    PubMed

    Chaudhary, Shveta; Pinkston, Joel; Rabile, M Mohamed; Van Horn, J David

    2005-03-01

    Commercially available chromium supplements were tested for their DNA cleavage ability compared with synthetic chromium(III) complexes, including chromium(III) tris-picolinate [Cr(pic)3], basic chromium acetate [Cr3O(OAc)6]+, model complexes, and recently patented Cr-complexes for use in supplements or therapy. Four different supplements (P1-P4) were tested for their DNA cleaving activity in the presence and the absence of H2O2, dithiothreitol (DTT) or ascorbate. One supplement, P1, showed nicking of DNA in the absence of oxidant or reductant at 120 microM metal concentration. Different lot numbers of P1 were also tested for DNA cleavage activity with similar results. Commercial supplements containing Cr(pic)3 nicked DNA at 120 microM metal concentrations in the presence of 5 mM ascorbate or with excess hydrogen peroxide, analogous to reactions with synthetic Cr(pic)3 reported elsewhere. Another chromium (non-Cr(pic)3) supplement, P2, behaves in a comparable manner to simple Cr(III) salts in the DNA nicking assay. Chromium(III) malonate [Cr(mal)2] and chromium(III) acetate [Cr(OAc)] can nick DNA in the presence of ascorbate or hydrogen peroxide, respectively, only at higher metal concentrations. The Cr(III) complexes of histidine, succinate or N-acetyl-L-glutamate do not nick DNA to a significant degree.

  11. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    NASA Astrophysics Data System (ADS)

    Enamullah; Venkateswara, Y.; Gupta, Sachin; Varma, Manoj Raama; Singh, Prashant; Suresh, K. G.; Alam, Aftab

    2015-12-01

    We present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB , 866 K and 0.9 μB , 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y -type structure while CMCA has L 21 disordered structure. The antisite disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.

  12. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    SciTech Connect

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; Varma, Manoj Raama; Singh, Prashant; Suresh, K. G.; Alam, Aftab

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB, 866 K and 0.9 μB, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L21 disordered structure. The antisite disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.

  13. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    DOE PAGES

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; ...

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB, 866 K and 0.9 μB, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L21 disordered structure. The antisite disorder adds amore » somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.« less

  14. Synthesis of CORONA 5 (Ti-4.5Al-5Mo-1.5Cr)

    NASA Astrophysics Data System (ADS)

    Froes, F. H.; Highberger, W. T.

    1980-05-01

    The synthesis of CORONA 5 (Ti-4.5Al-5Mo-1.5Cr) is described from the viewpoints of alloy chemistry and microstructure. Lenticular alpha is shown to maximize fracture resistance parameters, while a globular alpha optimizes hightemperature flow characteristics. The processing and application of CORONA 5 as forging, plate, sheet and powder metallurgy products are presented. The weldability of the alloy is described and potential use of the alloy for engine applications discussed. The improved mechanical property behavior over the "workhorse" Ti-6Al-4V alloy combined with cost-effective production should result in use of CORONA 5 in many applications. Future developments for CORONA 5 are suggested both in terms of further mechanical property optimization and in light of the economics of producing the alloy.

  15. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    NASA Astrophysics Data System (ADS)

    Lukaszkowicz, Krzysztof; Sondor, Jozef; Balin, Katarzyna; Kubacki, Jerzy

    2014-09-01

    Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction <3 1 1> is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  16. Study on catalytic incineration of methane using Cr2O3/gamma-Al2O3 as the catalyst.

    PubMed

    Wang, Ching-Huei; Lin, Shiow-Shyung

    2004-01-01

    A fixed bed reactor was employed to investigate the catalytic incineration of CH4 by various supported transition metal oxide catalysts, with a view of finding the optimal one. Results indicated that the active species, the support, the metal content, the weight hourly space velocity (WHSV), and the inlet CH4 concentration were all important factors affecting CH4 oxidation. Cr2O3/gamma-Al2O3 was found to be the most active catalyst among the seven gamma-Al2O3-supported metal oxide catalysts tested. With Cr2O3 as the active species, gamma-Al2O3 was the most suitable of six supports tested. Furthermore, the optimal Cr content of Cr2O3/ gamma-Al2O3 was 9 wt.%. X-ray diffraction (XRD) patterns showed that it was formation of CrO3 crystals that caused a decline in catalyst activity at Cr content above 9wt.%. Using the optimal Cr2O3/gamma-Al2O3 catalyst, CH4 was completely oxidized at about 390 degrees C. much lower than the temperature required by noble metal catalysts for the same outcome. The stability of Cr2O3/gamma-Al2O3 was good and was not affected by the reaction temperature, demonstrated by a nearly constant conversion rate of CH4 of 57% at 350 degrees C and 97% at 380 degrees C during a 20 h on-stream test. However, WHSV and inlet concentration of CH4 did affect CH4 conversion noticeably. For complete oxidation of CH4, the reaction temperature required increased with WHSV and inlet CH4 concentration.

  17. Chromium isotopes and the fate of hexavalent chromium in the environment

    USGS Publications Warehouse

    Ellis, Andre S.; Johnson, Thomas M.; Bullen, Thomas D.

    2002-01-01

    Measurements of chromium (Cr) stable-isotope fractionation in laboratory experiments and natural waters show that lighter isotopes reacted preferentially during Cr(VI) reduction by magnetite and sediments. The 53Cr/52Cr ratio of the product was 3.4 ± 0.1 per mil less than that of the reactant.53Cr/52Cr shifts in water samples indicate the extent of reduction, a critical process that renders toxic Cr(VI) in the environment immobile and less toxic.

  18. A Study of Pack Aluminizing Process for NiCrAlY Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Huang, Xiao; Liu, Rong; Yang, Qi

    2014-01-01

    Aluminizing process is widely used to provide additional Al deposition onto superalloy surface for enhanced oxidation and corrosion resistance. In this research, an aluminizing process—pack cementation process, is used to deposit Al onto the surface of NiCrAlY coatings for increasing environmental protection. The experiment is designed using Box-Behnken approach, in which three parameters, the Al content, Ni content of the pack powder, and the temperature of the process, are selected as factors; and the thickness and Al/Ni ratio of the coatings are selected as responses. The effects of the factors on the responses are analyzed and modeled empirically. It is found that these empirical models correlate well with the results from additional sets of experiment. These models can be used to produce aluminized NiCrAlY coatings with specific thicknesses and Al/Ni ratios.

  19. Evaluating Foraminifera as an Archive for Seawater Chromium Isotopic Composition

    NASA Astrophysics Data System (ADS)

    Wang, X.; Planavsky, N.; Hull, P. M.; Tripati, A.; Reinhard, C.; Zou, H.; Elder, L. E.; Henehan, M. J.

    2015-12-01

    In recent years there has been growing interest in using chromium isotopes (δ53Cr) as a proxy to investigate the redox evolution of Earth's ocean-atmosphere system throughout geological history. Potential archives for seawater δ53Cr that have been identified to date include iron formations and organic-rich siliciclastic sediments. However, these types of sediments are not common and they are discontinuous over geologic time. As a result, alternative types of archives are needed. Here we evaluate the utility of foraminifera tests as a recorder of seawater δ53Cr. Core-tops used were from different ocean basins. Mono-specific samples of Globigerinoides sacculifer, Orbulina universa, Pulleniatina obliquiloculata, Globoratalia crassula-crassaformis, Globoratalia truncatulinoides, and Globigerinella siphonifera were isolated to investigate inter-species isotope fractionation. Chromium concentrations were measured by isotope dilution method to be 0.1-0.3 μg/g. The δ53Cr values of these species range from 0.2‰ to 2.4‰, with an analytical uncertainty of 0.3‰ (95% confidence). Despite the high analytical uncertainty due to the extremely low levels of Cr present, there is still large detectable variation in foraminiferal δ53Cr values, which overlap presently available seawater values (Bonnand et al., 2013; Scheiderich et al., 2015). Possible explanations for such variations in foraminiferal δ53Cr values include heterogeneity of seawater δ53Cr in the modern oceans, and/or photobiochemical redox cycling of Cr in the surface oceans. Therefore, care should be taken when using foraminifera to reconstruct past seawater δ53Cr values. ReferencesBonnand, P., James, R., Parkinson, I., Connelly, D., Fairchild, I., 2013. The chromium isotopic composition of seawater and marine carbonates. Earth and Planetary Science Letters, 382: 10-20. Scheiderich, K., Amini, M., Holmden, C., Francois, R., 2015. Global variability of chromium isotopes in seawater demonstrated by Pacific

  20. Structural, Magnetic and Electron Transport Properties of Rapidly Quenched CoFeCrAl Nanostructures

    NASA Astrophysics Data System (ADS)

    Kharel, P.; Fuglsby, R.; Gilbert, S.; Huh, Y.; Zhang, W.; Valloppilly, S.; Skomski, R.; Sellmyer, D. J.

    2015-03-01

    Materials with moderate magnetization, high spin polarization at the Fermi level and high Curie temperature well above room temperature have huge potential for spin-based electronic devices. Several Heusler compounds including a quaternary compound CoFeCrAl are predicted to have these interesting materials properties. We have used a rapid quenching technique to prepare single-phase CoFeCrAl nanostructured ribbons in a cubic L21 crystal structure and have investigated the magnetic and electrical properties. As-quenched ribbons are ferrimagnetic at room temperature with a Curie temperature of about 500 K. The saturation magnetization is 1.9 μB/f.u, which is very close to the value predicted by the Slater-Pauling Rule. The ribbons are conducting with a room temperature resistivity of about 80 m Ωcm, but the resistivity is almost independent of temperature. The thermal coefficient of resistivity is very small and it is negative. These ribbons show a small positive magnetoresistance (1.5% at 5 K) between 5 K and 300 K. We will also discuss the effect of vacuum annealing on the structural and magnetic properties of this material. This research is supported by DOE/BES (DE-FG02-04ER46152) and NCMN. The work at SDSU is supported by the Department of Physics.

  1. High spin polarization and spin splitting in equiatomic quaternary CoFeCrAl Heusler alloy

    NASA Astrophysics Data System (ADS)

    Bainsla, Lakhan; Mallick, A. I.; Coelho, A. A.; Nigam, A. K.; Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K.; Alam, Aftab; Suresh, K. G.; Hono, K.

    2015-11-01

    In this paper, we investigate CoFeCrAl alloy by means of ab-initio electronic structure calculations and various experimental techniques. The alloy is found to exist in the B2-type cubic Heusler structure, which is very similar to Y-type (or LiMgPdSn prototype) structure with space group F-43m (#216). Saturation magnetization (MS) of about 2 μB/f.u. is observed at 8 K under ambient pressure, which is in good agreement with the Slater-Pauling rule. MS values are found to be independent of pressure, which is a prerequisite for half-metals. The ab-initio electronic structure calculations predict half-metallicity for the alloy with a spin slitting energy of 0.31 eV. Importantly, this system shows a high current spin polarization value of 0.67±0.02, as deduced from the point contact Andreev reflection measurements. Linear dependence of electrical resistivity with temperature indicates the possibility of reasonably high spin polarization at elevated temperatures (~150 K) as well. All these suggest that CoFeCrAl is a promising material for the spintronic devices.

  2. Plasma Nitriding Behavior of Fe-C-M (M = Al, Cr, Mn, Si) Ternary Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Tomio, Yusaku; Kitsuya, Shigeki; Oh-ishi, Keilchiro; Hono, Kazuhiro; Miyamoto, Goro; Furuhara, Tadashi

    2014-01-01

    Change in surface hardness and nitrides precipitated in Fe-0.6C binary and Fe-0.6 mass pct C-1 mass pct M (M = Al, Cr, Mn, Si) ternary martensitic alloys during plasma nitriding were investigated. Surface hardness was hardly increased in the Fe-0.6C binary alloy and slightly increased in Fe-0.6C-1Mn and Fe-0.6C-1Si alloys. On the other hand, it was largely increased in Fe-0.6C-1Al and Fe-0.6C-1Cr alloys. In all the Fe-0.6C-1M alloys except for the Si-added alloy, fine platelet alloy nitrides precipitated inside martensite laths. In the Fe-0.6C-1Si alloy, Si-enriched film was observed mainly at a grain boundary and an interface between cementite and matrix. Crystal structure of nitrides observed in the martensitic alloys was similar to those in Fe-M binary ferritic alloys reported previously. However, there was a difference in hardening behavior between ferrite and martensite due to a high density of dislocations acting as a nucleation site of the nitrides and partitioning of an alloying element between martensite and cementite changing the driving force of precipitation of the nitrides.

  3. Submission of FeCrAl Feedstock for Support of AFC ATR-2 Irradiations

    SciTech Connect

    Field, Kevin G.; Barrett, Kristine E.; Sun, Zhiqian; Yamamoto, Yukinori

    2016-09-16

    The Advanced Test Reactor (ATR) is currently being used to test accident tolerant fuel (ATF) forms destined for commercial nuclear power plant deployment. One irradiation program using the ATR for ATF concepts, Accident Tolerant Fuel-2 (ATF-2), is a water loop irradiation test using miniaturized fuel pins as test articles. This complicated testing configuration requires a series of pre-test experiments and verification including a flowing loop autoclave test and a sensor qualification test (SQT) prior to full test train deployment within the ATR. In support of the ATF-2 irradiation program, Oak Ridge National Laboratory (ORNL) has supplied two different Generation II FeCrAl alloys in rod stock form to Idaho National Laboratory (INL). These rods will be machined into dummy pins for deployment in the autoclave test and SQT. Post-test analysis of the dummy pins will provide initial insight into the performance of Generation II FeCrAl alloys in the ATF-2 irradiation experiment as well as within a commercial nuclear reactor.

  4. Effect of Ti/Al ratio and Cr, Nb, and Hf additions on material factors and mechanical properties in TiAl

    NASA Astrophysics Data System (ADS)

    Kawabata, T.; Tamura, T.; Izumi, O.

    1993-01-01

    The effect of the Ti/Al ratio and Cr, Nb, and Hf additions on material factors, such as the grain size, second phase, la tice parameters and the axial ratio, and on mechanical properties in TiAl-base alloys has been studied. The grain size was decreased by the deviation from the stoichiometric composition o the Ti-rich side and the addition of the third elements. The Cr element was contained a little more in Ti3Al phase than in TiAl phase in two-phase Ti-rich alloys. The lattice parameters, a and c, and the axial ratio, c/a, of the binary alloys varied linearly with decreasing Al content even in the dual-phase region. The Cr addition decreased the a and c and also c/a. The Nb addition increased weakly the a and c and c/a. On the contrary, the Hf addition increased the a and c but decreased the c/a ratio. In the Cr added alloys, the decrease of volume of a unit cell, due to the substitution of Cr atoms for Ti and Al atoms, was larger than that expected from the difference of atom sizes. The Nb addition should decrease the volume of a unit cell, but it increased the volume. The Hf addition caused a larger increase of volume of a unit cell than that expected from the difference of atom sizes. We suggested that the Cr addition increases and the Nb and Hf additions decrease the bond strength in TiAl. The deviation from stoichiometry and the addition of third elements caused an increase of work-hardening rate. The alloys with Ti-rich composition have superior mechanical properties compared to those of alloys vith Al-rich composition. The Cr addition resulted in high solution hardening, and the Ti-47A1 3Cr (in atomic percent) alloys had the highest fracture strain of 2.7 pct in all alloys tested. The Nb addition resulted in poor ductility in both Ti- and Al-rich alloys. The Hf additions to the Ti-rich composition caused better mechanical properties than those of Al-rich alloys. Thi; trend was also similar to the Nb-added alloys. In the Hf-added alloys, the Ti-49Al-2Hf

  5. A first-principles study of the tetragonal and hexagonal R 2Al (R = Cr, Zr, Nb, Hf, Ta) phases

    NASA Astrophysics Data System (ADS)

    Shang, Xiu; Shen, Jiang; Tian, Fuyang

    2016-10-01

    The crystal structures, elastic moduli, electronic structure, and phonon dispersion of the tetragonal R 2Al (R = Cr, Zr, Nb, Hf, Ta) intermetallic compounds are investigated by using the first-principles method. The space group number is 139 for tetragonal Cr2Al, 136 for tetragonal Nb2Al and Ta2Al, and the space group numbers are 140 and 194 for tetragonal and hexagonal Zr2Al and Hf2Al, respectively. The results of elastic constants and phonon dispersion indicate that the present intermetallic compounds are thermodynamically stable. The stability of hexagonal Zr2Al and Hf2Al is analyzed via the electronic density of state, compared to the tetragonal Zr2Al and Hf2Al compounds. For the R2Al intermetallic compounds, the less ductility and strong anisotropy are predicted. The more negative formation enthalpy and thermodynamic stability of R2Al (R = Nb, Zr, Hf) shed light on the Nb2Al, Zr2Al, Hf2Al phases found experimentally in refractory high entropy alloys.

  6. Electronic structure, magnetism and stability of Co2CrX (X =Al, Ga, In) ab initio study

    NASA Astrophysics Data System (ADS)

    Dahmane, F.; Mesri, D.; Tadjer, A.; Khenata, R.; Benalia, S.; Djoudi, L.; Doumi, B.; Boumia, L.; Aourag, H.

    2016-01-01

    The structural, electronic as well as the magnetic properties of the Co2CrX (X =Al, Ga and In) full-Heusler alloy have been studied using first-principles calculations performed in the framework of density functional theory (DFT) within the generalized gradient approximation (GGA). It was taken into account both possible L21 structures (i.e. Hg2CuTi- and Cu2MnAl-type). Basically, for all compounds, the Cu2MnAl-type structure is energetically more stable than Hg2CuTi-type structure at the equilibrium volume. The electronic structure calculations for Co2CrAl reveal that half-metallic (HM) character in Cu2MnAl-type structure, Co2CrGa show nearly HM behavior and Co2CrIn has a metallic character. The predicted total magnetic moment is 3μB for Co2CrX (X =Al, Ga) which is in good convergence with the Slater-Pauling (SP) rule.

  7. Studies on the Sliding Wear Performance of Plasma Spray Ni-20Cr and Ni3Al Coatings

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Singh, Harpreet; Singh, Balraj; Singh, Bhupinder

    2010-01-01

    Two metallic powders namely Ni-20Cr and Ni3Al were coated on AISI 309 SS steel by shrouded plasma spray process. The wear behavior of the bare, Ni-20Cr and Ni3Al-coated AISI 309 SS steel was investigated according to ASTM Standard G99-03 on a Pin-on-Disc Wear Test Rig. The wear tests were carried out at normal loads of 30 and 50 N with a sliding velocity of 1 m/s. Cumulative wear rate and coefficient of friction (μ) were calculated for all the cases. The worn-out surfaces were then examined by scanning electron microscopy analysis. Both the as-sprayed coatings exhibited typical splat morphology. The XRD analysis indicated the formation of Ni phase for the Ni-20Cr coating and Ni3Al phase for the Ni3Al coating. It has been concluded that the plasma-sprayed Ni-20Cr and Ni3Al coatings can be useful to reduce the wear rate of AISI 309 SS steel. The coatings were found to be adherent to the substrate steel during the wear tests. The plasma-sprayed Ni3Al coating has been recommended as a better choice to reduce the wear of AISI 309 SS steel, in comparison with the Ni-20Cr coating.

  8. LASERS AND AMPLIFIERS: Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions

    NASA Astrophysics Data System (ADS)

    Pestryakov, Efim V.; Alimpiev, A. I.; Matrosov, V. N.

    2001-08-01

    The physical and laser properties of beryllium-containing BeAl2O4, BeAl6O10, Be3Al2Si6O18, and BeLaAl11O19 oxide crystals doped with chromium and titanium ions are studied. The Cr3+:BeAl2O4, Cr3+:BeAl6O10, and Ti3+:BeAl2O4 crystals were shown to compare favourably in physical and laser properties with the well-known laser media and to be candidates for femtosecond laser systems.

  9. Creep behavior of a {beta}{prime}(NiAl) precipitation strengthened ferritic Fe-Cr-Ni-Al alloy

    SciTech Connect

    Zhu, S.M.; Tjong, S.C.; Lai, J.K.L.

    1998-05-22

    Creep in precipitation-strengthened alloys usually exhibits a pronounced transition in the stress vs creep rate relationship due to dislocations bypassing of particles by climb at low stresses. In the present study, a single-slope behavior is observed in creep of {beta}{prime}(NiAl) strengthened ferritic Fe-19Cr-4Ni-2Al alloy in the temperature range 873--923 K. The alloy exhibits anomalously high values of apparent stress exponent and activation energy (980 kJ/mol). Transmission electron microscopy examination of the deformation microstructure reveals the occurrence of attractive dislocation/particle interaction, a feature which is usually observed in dispersion-strengthened alloys. Such an attractive dislocation particle interaction makes the local climb of dislocations over particles a realistic configuration at low stresses. The creep data are analyzed by the back-stress approach and by the recent dislocation-climb theories based on attractive interaction between dislocations and particles. By considering a back stress, all data can be rationalized by a power-law with a stress exponent of 4 and a creep activation energy close to the self-diffusion energy of the matrix lattice. Local climb together with the attractive but not strong interactions between the dislocations and particles is suggested to be the operative deformation mechanism at low stresses and to account for the single-slope behavior in the stress/creep rate relationship of this alloy.

  10. Flow stress of rapidly solidified Al-5Cr-2Zr alloy as a function of processing variables

    SciTech Connect

    Brahmi, A.; Gerique, T.; Torralba, M.; Lieblich, M.

    1997-12-01

    In a previous work, Lieblich et al. determined that room temperature hardness and tensile strength of as-extruded Al-5Cr-2Zr (wt.%) alloys obtained by gas atomization increased with decreasing powder particle size and extrusion temperature, and depended only very little on extrusion ratio and ram speed. The aim of the present study was to determine the influence of powder particle diameter and extrusion temperature on the flow stress of Al-5Cr-2Zr at temperatures ranging from 373 to 773 K. The contribution to the flow stress of different strengthening mechanisms is evaluated and related to the processing parameters.

  11. Diffusion of chromium in chrysoberyl

    NASA Astrophysics Data System (ADS)

    Ahn, Yong-Kil; Seo, Jin-Gyo; Park, Jong-Wan

    2009-07-01

    Cr 3+ diffusion in chrysoberyl (BeAl 2O 4) irradiated by H + ions and electrons has been studied and compared with diffusion in non-irradiated samples. Chrysoberyl crystals were irradiated with 6 MeV H + ions to fluencies of 1×10 16 cm -2 for 25 min and with 10 MeV electrons to fluencies of 2×10 17 cm -2 for 1 h. Three different types of samples, which were doped with Cr 3+, were annealed in horizontal alumina tube furnaces by 50 K intervals in the temperature range from 1773 to 1923 K for 200 h. Scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDX) was used to measure the diffusion. Arrhenius equations for the diffusion coefficient for Cr 3+ in the temperature range 1773-1923 K were developed: Electron beam irradiated chrysoberyls, Dcr=2.1×10 -5×exp (-482.3±18.2 kJ mol -1/ RT)m 2 s -1 Proton beam irradiated chrysoberyls, Dcr=2.3×10 -3×exp (-545.4±25.0 kJ mol -1/ RT)m 2 s -1 Natural non-irradiated chrysoberyls Dcr=2.2×10 -3×exp (-547.9±36.8 kJ mol -1/ RT)m 2 s -1 The results indicate that the chromium diffuses deepest into the electron beam irradiated chrysoberyls.

  12. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  13. Phytotoxic lesions of chromium in maize.

    PubMed

    Sharma, D C; Sharma, C P; Tripathi, R D

    2003-04-01

    Chromium (Cr) is fairly abundant in the earth's crust and ranks fourth among the 29 elements of biological importance. Besides natural sources, Cr enters biotic components of the ecosystem in various ways. Of other major industrial sources, tanning and chrome-plating industries are prominent sources. Cr(VI) form of chromium is highly reactive and influences both plants and animals. Due to Mn present in soil, Cr(III) is oxidized to Cr(VI) which remains in soil for a long time and can affect plant growth and development. Since maize is an important food and fodder plant for human beings and cattle, a study was conducted to investigate the effects of Cr on some metabolic activities of maize (Zea mays L. cv. Ganga 5). Chromium caused visible lesions of interveinal chlorosis. Young leaves showed vein clearing. Also, a papery appearance was observed in leaves. Margins of leaves were curled and the leaves appeared pale at greater Cr exposure. Concentrations of both chlorophyll a and b were reduced by exposure to Cr, the activities of ribonuclease and phenyl phosphatase were greater while the activity of iron-porphyrin enzyme catalase was less and the activity of amylase was also much less in plants exposed to Cr. Chromium also caused retardation of soluble protein. Accumulation of Cr in roots was much at all the levels of chromium supply. Exposure to Cr resulted in reduction in grain production and quality.

  14. Monitoring of chromium species and 11 selected metals in emission and immission of airborne environment

    NASA Astrophysics Data System (ADS)

    Krystek, Petra; Ritsema, Rob

    2007-08-01

    Monitoring of chromium species as hexavalent chromium (Cr(VI)) and the determination of the total chromium concentration as well as the concentration of 11 selected metals (Al, Ca, Cd, Co, Cu, Fe, Mn, Ni, Pb, Sb, Zn) in industrial emission of a foundry and immission studies of the nearby airborne environment were carried out. The samples were taken as industrial exhaust directly by the outlet and as airborne sample in the environment with distances between some hundred meters and 2 km from the industrial factoryE Wherefore two methods of sampling, sample pre-treatment and mass spectrometric measurement were developed and applied. With respect to different sampling duration different volumes of air were sampled and analysed. For the determination of Cr(VI) sampling in impingers (filled with carbonate-buffer) was used. A procedure of selective complex forming and extraction was developed and measured by double focussing sector field inductively coupled plasma mass spectrometry (ICP-SFMS). For the determination of the total chromium concentration as well as of 11 metals sampling was done by using quartz-filters. After microwave digestion in the medium of aqua regia the samples were analysed by quadrupole inductively coupled plasma mass spectrometry (ICP-QMS). The maximum concentration of Cr(VI)-species in emission samples was determined as 180 ng/m3 air which is about 2% of total Cr. The lowest concentration of Cr(VI)-species in immission was determined as 0.5 ng/m3 air.

  15. First-principles study of the structural and elastic properties of Cr{sub 2}AlX (X=N, C) compounds

    SciTech Connect

    Cui Shouxin; Wei Dongqing; Hu Haiquan; Feng Wenxia; Gong Zizheng

    2012-07-15

    The structural, electronic and elastic properties of Cr{sub 2}AlX, with X=N, C, have been investigated at the density functional theory level by applying a plane-wave pseudopotential approach. The band structure and density of states reveal the metallic features of Cr{sub 2}AlX. The total and projected density of states indicate that the bonding is achieved through a hybridization of Cr 3d states with Al and X-atom p states. The Cr 3d-X2p bonds are lower in energy and are stiffer than Cr 3d-Al 3p bonds. The charge density distributions indicate that there exist soft Cr-Al and relatively strong Cr-X covalent bonds, which might be responsible for their hardness. The elastic constants were obtained in the pressure range 0-100 GPa, and satisfy the stability conditions for hexagonal crystal, which indicates that these two compounds are stable in the pressure regime studied. By analyzing bulk modulus to shear modulus ratio and Cauchy pressure, Cr{sub 2}AlC is predicted to be brittleness and Cr{sub 2}AlN is ductile. The Debye temperature was obtained from the average sound velocity. - Graphical abstract: The heterogeneity of chemical bonds in Cr{sub 2}AlX (X=N, C) is observed: soft Cr-Al and relatively strong Cr-X covalent bonds might be contributed to their hardness. Highlights: Black-Right-Pointing-Pointer Cr 3d-X2p (X=N, C) bonds are lower in energy and stiffer than Cr 3d-Al 3p bonds for Cr{sub 2}AlX. Black-Right-Pointing-Pointer The hardness of Cr{sub 2}AlX might be ascribed to soft Cr-Al and relatively strong Cr-X covalent bonds. Black-Right-Pointing-Pointer The predicted brittleness of Cr{sub 2}AlC and ductility of Cr{sub 2}AlN originated from their novel structure.

  16. Chromium(III) and chromium(VI) surface treated galvanized steel for outdoor constructions: environmental aspects.

    PubMed

    Lindström, David; Hedberg, Yolanda; Odnevall Wallinder, Inger

    2010-06-01

    The long-term degradation of chromium(III) (Zn-Cr(III)) and chromium(VI)-based (Zn-Cr(VI)) surface treatments on galvanized steel and their capacities to hinder the release of zinc induced by atmospheric corrosion at nonsheltered urban and marine exposure conditions for 2 years are investigated. Compared to bare zinc sheet, both surface treatments revealed high corrosion protection abilities and capacities to hinder the release of zinc, still evident after 2 years of exposure. The zinc barrier properties of the thinner Zn-Cr(VI) (10 nm) treatment were during the first 100 days of urban exposure slightly improved compared with Zn-Cr(III) (35 nm). However, their long-term protection capacities were inverse. Released concentrations of total chromium correspond to annual release rates less than 0.000032 (Zn-Cr(III)) and 0.00014 g Cr m(-2) yr(-1) (Zn-Cr(VI)) after 1 year of urban exposure. Aging by indoor storage of the surface treatments prior to outdoor exposure reduced the released Cr concentrations from the surface treatments. No Cr(VI) was released from the aged surfaces but from the freshly exposed Zn-Cr(VI). Marine exposure conditions resulted in a faster reduction of chromate to chromium(III)oxide compared with urban conditions, and a significantly lower amount of both chromium(III) and chromium(VI) released from Zn-Cr(VI) at the marine site compared with the urban site.

  17. Chromium at High Pressure

    NASA Astrophysics Data System (ADS)

    Jaramillo, Rafael

    2012-02-01

    Chromium has long served as the archetype of spin density wave magnetism. Recently, Jaramillo and collaborators have shown that Cr also serves as an archetype of magnetic quantum criticality. Using a combination of x-ray diffraction and electrical transport measurements at high pressures and cryogenic temperatures in a diamond anvil cell, they have demonstrated that the N'eel transition (TN) can be continuously suppressed to zero, with no sign of a concurrent structural transition. The order parameter undergoes a broad regime of exponential suppression, consistent with the weak coupling paradigm, before deviating from a BCS-like ground state within a narrow but accessible quantum critical regime. The quantum criticality is characterized by mean field scaling of TN and non mean field scaling of the transport coefficients, which points to a fluctuation-induced reconstruction of the critical Fermi surface. A comparison between pressure and chemical doping as means to suppress TN sheds light on different routes to the quantum critical point and the relevance of Fermi surface nesting and disorder at this quantum phase transition. The work by Jaramillo et al. is broadly relevant to the study of magnetic quantum criticality in a physically pure and theoretically tractable system that balances elements of weak and strong coupling. [4pt] [1] R. Jaramillo, Y. Feng, J. Wang & T. F. Rosenbaum. Signatures of quantum criticality in pure Cr at high pressure. Proc. Natl. Acad. Sci. USA 107, 13631 (2010). [0pt] [2] R. Jaramillo, Y. Feng, J. C. Lang, Z. Islam, G. Srajer, P. B. Littlewood, D. B. McWhan & T. F. Rosenbaum. Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transition. Nature 459, 405 (2009).

  18. Experimental and first-principles investigation of the electronic structure anisotropy of Cr2AlC

    NASA Astrophysics Data System (ADS)

    Bugnet, M.; Jaouen, M.; Mauchamp, V.; Cabioc'h, T.; Hug, G.

    2014-11-01

    The anisotropy of the electronic structure of the MAX phase Cr2AlC has been investigated by electron-energy-loss spectroscopy (EELS) at the C K edge, and x-ray-absorption spectroscopy (XAS) at the Al K , Cr L2 ,3, and Cr K edges. The experimental spectra were interpreted using either a multiple-scattering approach or a full-potential band-structure method. The anisotropy is found to be small around C atoms because of the rather isotropic nature of the octahedral site, and of the averaging of the empty C p states probed by EELS at the C K edge. In turn, a pronounced anisotropy of the charge distribution around Al atoms is evidenced from polarized XAS measurements performed on textured Cr2AlC sputtered thin films. From the analysis of the XAS data using the multiple-scattering feff code, it is demonstrated that the probed thin film is constituted of 70 % (0001) and 30 % (10 1 ¯3 ) grains oriented parallel to the film surface. A decomposition of the calculated spectrum in coordination shells allows for the ability to connect XAS fine structures to the Cr2AlC structure. Combining high-resolution data with up-to-date multiple-scattering calculations, it is shown that the crystalline orientations of the grains present in a probe of 100 ×100 μ m 2 can be determined from the Cr K edge. Interestingly, it is also revealed that a static disorder is involved in the studied thin films. These findings highlight that, given the overall agreement between experimental and calculated spectra, the Cr2AlC electronic structure is accurately predicted using density functional theory.

  19. Effects of particle size and forming pressure on pore properties of Fe-Cr-Al porous metal by pressureless sintering

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Uk; Yi, Yujeong; Lee, Minjeong; Kim, Byoung-Kee

    2017-03-01

    With increased hydrogen consumption in ammonia production, refining and synthesis, fuel cells and vehicle industries, development of the material components related to hydrogen production is becoming an important factor in industry growth. Porous metals for fabrication of hydrogen are commonly known for their relative excellence in terms of large area, lightness, lower heat capacity, high toughness, and permeability. Fe-Cr-Al alloys not only have high corrosion resistance, heat resistance, and chemical stability but also ductility, excellent mechanical properties. In order to control powder size and sintering temperature effects of Fe-Cr-Al porous metal fabrication, Fe-Cr-Al powder was classified into 25-35 μm, 35-45 μm, 45-75 μm using an auto shaking sieve machine and then classified Fe-Cr-Al powders were pressed into disk shapes using a uniaxial press machine and CIP. The pelletized Fe-Cr-Al specimens were sintered at various temperatures in high vacuum. Properties such as pore size, porosity, and air permeability were evaluated using perm-porosimetry. Microstructure and phase changes were observed with SEM and XRD. Porosity and relative density were proportionated to increasing sintering temperature. With sufficient sintering at increasing temperatures, the pore size is expected to be gradually reduced. Porosity decreased with increasing sintering temperature and gradually increased necking of the powder.

  20. High-pressure behaviour of Cr-Fe-Mg-Al spinels: applications to diamond geobarometry

    NASA Astrophysics Data System (ADS)

    Periotto, Benedetta; Bruschini, Enrico; Nestola, Fabrizio; Lenaz, Davide; Princivalle, Francesco; Andreozzi, Giovanni B.; Bosi, Ferdinando

    2014-05-01

    Spinels belonging to the chromite - magnesiochromite - hercynite (FeCr2O4-MgCr2O4-FeAl2O4) system are among the most common inclusions found in diamonds (Stachel and Harris 2008). In particular, although FeCr2O4 and MgCr2O4 components sum to between 85 and 88% of spinels found in diamonds, hercynite FeAl2O4 plays a not negligible role in determining their thermo-elastic properties with concentrations reaching 7-9 % (other minor end-members like MgAl2O4, MgFe2O4 and Fe2O3 rarely reach 2-3% in total, see Lenaz et al. 2009). Recent studies were focused on the determination of the diamond formation pressure by the so-called "elastic method" (see for example Nestola et al. 2011 and references therein). It was demonstrated that accurate and precise thermo-elastic parameters are fundamental to minimize the uncertainty of formation pressure. In this work we have determined the equations of state at room temperature of three synthetic spinel end-members chromite - magnesiochromite - hercynite and one natural spinel crystal extracted from a diamond (from Udachnaya mine, Siberia, Russia) by single-crystal X-ray diffraction in situ at high-pressure. A diamond-anvil cell was mounted on a STADI IV diffractometer equipped with a point detector and motorized by SINGLE software (Angel and Finger 2011). The natural crystal was investigated to test (and possibly validate) the "empirical prediction model", capable to provide bulk modulus and its first pressure derivative only knowing the composition of the spinels found in diamonds. Such prediction model could be used to obtain pressure of formation for the diamond-spinel pair through the elastic method. Details and results will be discussed. The research was funded by the ERC Starting Grant to FN (grant agreement n° 307322). References Angel R.J., Finger L.W. (2011) SINGLE A program to control single-crystal diffractometers. Journal of Applied Crystallography, 44, 247-251. Lenaz D., Logvinova A.M., Princivalle F., Sobolev N. (2009

  1. Microstructure of Al2O3 scales formed on NiCrAl alloys. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1981-01-01

    The structure of transient scales formed on pure and Y or Zr-doped Ni-15Cr-13Al alloys oxidized for 0.1 hr at 1100 C was studied by the use of transmission electron microscopy. Crystallographically oriented scales were found on all three alloys, but especially for the Zr-doped NiCrAl. The oriented scales consisted of alpha-(Al,Cr)2O3, Ni(Al,Cr)2O4 and gamma-Al2O3. They were often found in intimate contact with each other such that the close-packed planes and directions of one oxide phase were aligned with those of another. The prominent structural features of the oriented scales were approximately equal to micrometer subgrains; voids, antiphase domain boundaries and aligned precipitates were also prevalent. Randomly oriented alpha-Al2O3 was also found and was the only oxide ever observed at the immediate oxide metal interface. These approximately 0.15 micrometer grains were populated by intragranular voids which decreased in size and number towards the oxide metal interface. A sequence of oxidation was proposed in which the composition of the growing scale changed from oriented oxides rich in Ni and Cr to oriented oxides rich in Al. At the same time the structure changed from cubic spinels to hexagonal corundums with apparent precipitates of one phase in the matrix of the other. Eventually randomly oriented pure alpha-Al2O3 formed as the stable oxide with an abrupt transition: there was no gradual loss of orientation, no gradual compositional change or no gradual decrease in precipitate density.

  2. Production of Chromium Oxide from Turkish Chromite Concentrate Using Ethanol

    NASA Astrophysics Data System (ADS)

    Aktas, S.; Eyuboglu, C.; Morcali, M. H.; Özbey, S.; Sucuoglu, Y.

    2015-05-01

    In this study, the possibility of chromium extraction from Turkish chromite concentrate and the production of chromium oxide were investigated. For the conversion of chromium(III) into chromium(VI), NaOH was employed, as well as air with a rate of 20 L/min. The effects of the base amount, fusing temperature, and fusing time on the chromium conversion percentage were investigated in detail. The conversion kinetics of chromium(III) to chromium(VI) was also undertaken. Following the steps of dissolving the sodium chromate in water and filtering, aluminum hydroxide was precipitated by adjusting the pH level of the solution. The chromium(VI) solution was subsequently converted to Cr(III) by the combination of sulfuric acid and ethanol. Interestingly, it was observed that ethanol precipitated chromium as chromium(VI) at mildly acidic pH levels, although this effect is more pronounced for K2Cr2O7 than Na2Cr2O7. On the other hand, in the strongly acidic regime, ethanol acted as a reducing agent role in that chromium(VI) was converted into Cr(III) whereas ethanol itself was oxidized to carbon dioxide and water. Subsequently, chromium hydroxide was obtained by the help of sodium hydroxide and converted to chromium oxide by heating at 800 °C, as indicated in thermo gravimetric analysis (TGA).

  3. Letter Report Documenting Progress of Second Generation ATF FeCrAl Alloy Fabrication

    SciTech Connect

    Yamamoto, Y.; Yang, Y.; Field, K. G.; Terrani, K.; Pint, B. A.; Snead, L. L.

    2014-06-10

    Development of the 2nd generation ATF FeCrAl alloy has been initiated, and a candidate alloy was selected for trial tube fabrication through hot-extrusion and gun-drilling processes. Four alloys based on Fe-13Cr-4.5Al-0.15Y in weight percent were newly cast with minor alloying additions of Mo, Si, Nb, and C to promote solid-solution and second-phase precipitate strengthening. The alloy compositions were selected with guidance from computational thermodynamic tools. The lab-scale heats of ~ 600g were arc-melted and drop-cast, homogenized, hot-forged and -rolled, and then annealed producing plate shape samples. An alloy with Mo and Nb additions (C35MN) processed at 800°C exhibits very fine sub-grain structure with the sub-grain size of 1-3μm which exhibited more than 25% better yield and tensile strengths together with decent ductility compared to the other FeCrAl alloys at room temperature. It was found that the Nb addition was key to improving thermal stability of the fine sub-grain structure. Optimally, grains of less than 30 microns are desired, with grains up to and order of magnitude in desired produced through Nb addition. Scale-up effort of the C35MN alloy was made in collaboration with a commercial cast company who has a capability of vacuum induction melting. A 39lb columnar ingot with ~81mm diameter and ~305mm height (with hot-top) was commercially cast, homogenized, hot-extruded, and annealed providing 10mm-diameter bar-shape samples with the fine sub-grain structure. This commercial heat proved consistent with materials produced at ORNL at the lab-scale. Tubes and end caps were machined from the bar sample and provided to another work package for the ATF-1 irradiation campaign in the milestone M3FT-14OR0202251.

  4. Energy transfer efficiency from Cr(3+) to Nd(3+) in solar-pumped laser using transparent Nd/Cr:Y(3)Al(5)O(12) ceramics.

    PubMed

    Hasegawa, Kazuo; Ichikawa, Tadashi; Mizuno, Shintaro; Takeda, Yasuhiko; Ito, Hiroshi; Ikesue, Akio; Motohiro, Tomoyoshi; Yamaga, Mitsuo

    2015-06-01

    We report energy transfer efficiency from Cr3+ to Nd3+ in Nd (1.0 at.%)/Cr (0.4 at.%) co-doped Y3Al5O12 (YAG) transparent ceramics in the laser oscillation states. The laser oscillation has performed using two pumping lasers operating at 808 nm and 561 nm; the former pumps Nd3+ directly to create the 1064 nm laser oscillation, whereas the latter assists the performance via Cr3+ absorption and sequential energy transfer to Nd3+. From the laser output power properties and laser mode analysis, the energy transfer efficiency was determined to be around 65%, which is close to that obtained from the spontaneous Nd3+ emission.

  5. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Hoelzer, David T.

    2016-10-01

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb-17Li and He) blanket concept requires improved Pb-17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), (3) Y2O3 + HfO2 (125YH), and (4) Y2O3 + TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb-17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb-17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb-17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  6. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    DOE PAGES

    Unocic, Kinga A.; Hoelzer, David T.

    2016-07-09

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3+ZrO2 (125YZ), (3) Y2O3+HfO2 (125YH), and (4) Y2O3+TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700°C. Alloys showed promising compatibility with Pb–17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experiencedmore » the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (~1 at.%) in Al content beneath the oxide scale was observed in all 4 ODS alloys, which extended through 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.« less

  7. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    SciTech Connect

    Unocic, Kinga A.; Hoelzer, David T.

    2016-07-09

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3+ZrO2 (125YZ), (3) Y2O3+HfO2 (125YH), and (4) Y2O3+TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700°C. Alloys showed promising compatibility with Pb–17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (~1 at.%) in Al content beneath the oxide scale was observed in all 4 ODS alloys, which extended through 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  8. Effect of Al Enrichment by Pack Cementation of FeCr Coatings Deposited by HVOF

    NASA Astrophysics Data System (ADS)

    Bellucci, A.; Bellini, S.; Pileggi, R.; Stocchi, D.; Tuurna, S.

    2015-01-01

    A great contribution to CO2 emissions comes from coal fired power generation. Combination of carbon capture sequestering technologies with sustainable biomass conversion constitutes a decisive boost in limiting rise in global temperature. Co-firing alternative materials with pulverized coal and using oxy-fuel combustion conditions (oxy-fuel co-combustion) is a very attractive process for power industry. Materials with both high mechanical properties and high environmental resistance are required by such advanced combustion systems. One approach to improve high-temperature oxidation/corrosion resistance is to apply protective coatings. In the present work, low and high Cr content Fe-based alloys have been deposited in order to investigate the influence of Cr content on coating protective performance in oxy-fuel co-combustion conditions. Grade 91 steel has been assumed as reference substrate. Effect of Al enrichment on coating environmental resistance has also been analyzed. Activities have been performed within the framework of Macplus Project (Integrated Project co-founded by the European Commission under the 7th Framework Program in the Energy area).

  9. Cyclic Corrosion and Chlorination of an FeCrAl Alloy in the Presence of KCl

    SciTech Connect

    Israelsson, Niklas; Unocic, Kinga A.; Hellström, K.; Svensson, J-E; Johansson, L-G

    2015-05-30

    The KCl-induced corrosion of the FeCrAl alloy Kanthal® APMT in an O2 + N2 + H2O environment was studied at 600 °C. The samples were pre-oxidized prior to exposure in order to investigate the protective nature of alumina scales in the present environment. The microstructure and composition of the corroded surface was investigated in detail. Corrosion started at flaws in the pre-formed α-alumina scales, i.e. α-alumina was protective in itself. Consequently, KCl-induced corrosion started locally and, subsequently, spread laterally. An electrochemical mechanism is proposed here by which a transition metal chloride forms in the alloy and K2CrO4 forms at the scale/gas interface. Scale de-cohesion is attributed to the formation of a sub-scale transition metal chloride.

  10. Multiple quasicrystal approximants with the same lattice parameters in Al-Cr-Fe-Si alloys

    PubMed Central

    He, Zhanbing; Li, Hua; Ma, Haikun; Li, Guowu

    2017-01-01

    By means of atomic-resolution high-angle annular dark-field scanning transmission electron microscopy, we found three types of giant approximants of decagonal quasicrystal in Al-Cr-Fe-Si alloys, where each type contains several structural variants possessing the same lattice parameters but different crystal structures. The projected structures of these approximants along the pseudo-tenfold direction were described using substructural blocks. Furthermore, the structural relationship and the plane crystallographic groups in the (a, c) plan of these structural variants was also discussed. The diversity of quasicrystal approximants with the same lattice parameters was shown to be closely related to the variety of shield-like tiles and their tiling patterns. PMID:28084405

  11. Microstructure Evolution in a New Refractory High-Entropy Alloy W-Mo-Cr-Ti-Al

    NASA Astrophysics Data System (ADS)

    Gorr, Bronislava; Azim, Maria; Christ, Hans-Juergen; Chen, Hans; Szabo, Dorothee Vinga; Kauffmann, Alexander; Heilmaier, Martin

    2016-02-01

    The microstructure of a body-centered cubic 20W-20Mo-20Cr-20Ti-20Al alloy in the as-cast condition as well as its microstructural evolution during heat treatment was investigated. Different characterization techniques, such as focused ion beam-scanning electron microscope, X-ray diffraction, and transmission electron microscope, were applied. Experimental observations were supported by thermodynamic calculations. The alloy exhibits a pronounced dendritic microstructure in the as-cast condition with the respective dendritic and interdendritic regions showing significant fluctuations of the element concentrations. Using thermodynamic calculations, it was possible to rationalize the measured element distribution in the dendritic and the interdendritic regions. Observations of the microstructure evolution reveal that during heat treatment, substantial homogenization takes place leading to the formation of a single-phase microstructure. Driving forces for the microstructural evolution were discussed from a thermodynamic point of view.

  12. Microstructure and Properties of FeAlCrNiMo x High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Li, X. C.; Dou, D.; Zheng, Z. Y.; Li, J. C.

    2016-06-01

    FeAlCrNiMo x high-entropy alloys were prepared. The effect of Mo content on the microstructure and the properties of the alloys were investigated. When the Mo content was 0.1, the alloys were composed of single BCC solid solution; when Mo content reaches 0.25, the alloys were composed of BCC solid solution and ordered B2 solid solution. When Mo content is more than 0.75, some σ phases emerged. The volume fraction of the second phase increases with the increasing Mo content, and the crystal grains became coarsening. The yield strength, fracture strength, and hardness increase with the increasing Mo content and reach 2252, 2612 MPa, and 1006 Hv, respectively. The magnetic transformation undergoes from the ferromagnetism to paramagnetism with the increasing Mo content. The saturation intensity and remnant magnetism are decreased with the increasing Mo content.

  13. Multiple quasicrystal approximants with the same lattice parameters in Al-Cr-Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    He, Zhanbing; Li, Hua; Ma, Haikun; Li, Guowu

    2017-01-01

    By means of atomic-resolution high-angle annular dark-field scanning transmission electron microscopy, we found three types of giant approximants of decagonal quasicrystal in Al-Cr-Fe-Si alloys, where each type contains several structural variants possessing the same lattice parameters but different crystal structures. The projected structures of these approximants along the pseudo-tenfold direction were described using substructural blocks. Furthermore, the structural relationship and the plane crystallographic groups in the (a, c) plan of these structural variants was also discussed. The diversity of quasicrystal approximants with the same lattice parameters was shown to be closely related to the variety of shield-like tiles and their tiling patterns.

  14. The hot workability and superplasticity of Ti-48Al-2Nb-2Cr alloys

    SciTech Connect

    Fuchs, G.E.

    1998-02-01

    The hot compression behavior and microstructure evolution of ingot metallurgy (I/M) and powder metallurgy (P/M) processed samples of the near-{gamma} Ti-aluminide alloy, Ti-48Al-2Nb-2Cr (at%), were determined. Three I/M conditions and two P/M conditions were examined in this study. Hot compression tests were performed in the temperature range 1,100--1,300 C at strain rates ranging from 1.67 {times} 10{sup {minus}1}/sec to 1.67 {times} 10{sup {minus}4}/sec. P/M materials consolidated by either hot isostatic pressing (HIP`ing) or extrusion exhibited the best hot workability in most cases. The P/M materials possessed finer, more homogeneous microstructures than the I/M materials. It was also noted that improved workability, and in some cases superplastic behavior, was observed in the materials with equiaxed microstructures without any lamellar constituents.

  15. Tensile behavior of the L(1)2 compound Al67Ti25Cr8

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.

    1992-01-01

    Temperature-related variations in tensile yield strength and ductility were studied on cast, homogenized and isothermally forged Al67Ti25Cr8. Yield strength dropped discontinuously between 623 K and 773 K and then decreased gradually with increasing temperature. Below 623 K, fracture occurred prior to macroscopic yielding. Ductility decreased from 0.2 percent at 623 K to zero at 773 K, but increased again at higher temperatures. At 1073 K, an elongation of 19 percent was obtainable, and ultimate tensile strength and localized necking were observed. Fracture surfaces and deformed microstructures were examined. The 1073 K tensile specimen that exhibited 19 percent elongation showed grain boundary serrations and some evidence of recrystallization (likely dynamic) although fracture occurred predominantly via an intergranular mode.

  16. Structural and magnetization behavior of highly spin polarized Co{sub 2}CrAl full Heusler alloy

    SciTech Connect

    Saha, S. N. Panda, J. Nath, T. K.

    2014-04-24

    The half metallic ferromagnet Co{sub 2}CrAl full Huesler alloy was successfully prepared by arc melting process. The electrical and magnetic properties of Co{sub 2}CrAl alloy have been studied in the temperature range of 5 – 300 K. The ferromagnetic Curie temperature T{sub c} of the same alloy has been observed at 329.8 K. The alloy shows semiconducting like electronic transport behavior throughout the studied temperature range. The origin of the semiconducting behavior of Co{sub 2}CrAl alloy can be best explained by the localization of conduction electrons and the presence of an energy gap in the electronic spectrum near the Fermi level E{sub F}.

  17. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al Part II: Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  18. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 2; Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  19. High-temperature oxidation of CrN/AlN multilayer coatings

    NASA Astrophysics Data System (ADS)

    Bardi, U.; Chenakin, S. P.; Ghezzi, F.; Giolli, C.; Goruppa, A.; Lavacchi, A.; Miorin, E.; Pagura, C.; Tolstogouzov, A.

    2005-12-01

    Experiments are reported on sputter depth profiling of CrN/AlN multilayer abrasive coatings by secondary ion mass spectrometry (SIMS) coupled with sample current measurements (SCM). The coatings were deposited by a closed-field unbalanced magnetron sputtering. It is shown that after oxidation tests, performed in air at 900 °C for 2 h and at 1100 °C for 4 h, the layered structure begins to degrade but is not destroyed completely. Oxidation at 1100 °C for 20 h causes total destruction of the coatings that can be attributed to a fast diffusion of oxygen, nickel, manganese and other elements along defect paths (grain boundaries, dislocations, etc.) in the coating. There are practically no nitrides in the near-surface layer after such a treatment and all the metallic components are in the oxidized form as follows from the data obtained by X-ray photoelectron spectroscopy (XPS). According to XPS and mass-resolved ion scattering spectrometry (MARISS), the surface content of Al in the heat-treated coatings has decreased in comparison with the as-received sample and that of Cr increased. Both XPS and MARISS data exhibit real increase in superficial concentration of the substrate materials (Mn and Ni) that is controversial if using SIMS alone. SCM turned out to be an informative depth profiling method complementary to more expensive and complicated SIMS, being particularly useful for structures with different secondary electron emission properties of the layers. SCM with predetermined SIMS calibration allows a routine characterization of coatings and other multilayer structures, particularly, in situations where the expenses of analysis can be justified.

  20. Temporal Evolution of the Nanostructure and Phase Compositions in a Model Ni-Al-Cr Alloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Yoon, Kevin E.; Seidman, David N.; Seidman, David N.

    2006-01-01

    In a Ni-5.2 Al-14.2 Cr at.% alloy with moderate solute supersaturations and a very small gamma/gamma prime lattice parameter misfit, the nanostructural and compositional pathways during gamma prime(L12) precipitation at 873 K are investigated using atom-probe tomography, conventional transmission electron microscopy, and hardness measurements. Nucleation of high number densities (N(sub v) greater than 10(sup 23) per cubic meters) of solute-rich precipitates (mean radius = [R] = 0.75 nm), with a critical nucleus composition of Ni-18.3 plus or minus 0.9 Al-9.3 plus or minus 0.7 Cr at.%, initiates between 0.0833 and 0.167 h. With increasing aging time (a) the solute concentrations decay in spheroidal precipitates ([R] less than 10 nm); (b) the observed early-stage coalescence peaks at maximum N(sub v) in coincidence with the smallest interprecipitate spacing; and (c) the reaction enters a quasi-stationary regime where growth and coarsening operate concomitantly. During this quasi-stationary regime, the c (face-centered cubic)-matrix solute supersaturations decay with a power-law dependence of about -1/3, while the dependencies of [R] and N(sub v) are 0.29 plus or minus 0.05 and -0.64 plus or minus 0.06 at a coarsening rate slower than model predications. Coarsening models allow both equilibrium phase compositions to be determined from the compositional measurements. The observed early-stage coalescence is discussed in further detail.

  1. Sonoassisted microbial reduction of chromium.

    PubMed

    Kathiravan, Mathur Nadarajan; Karthick, Ramalingam; Muthu, Naggapan; Muthukumar, Karuppan; Velan, Manickam

    2010-04-01

    This study presents sonoassisted microbial reduction of hexavalent chromium (Cr(VI)) using Bacillus sp. isolated from tannery effluent contaminated site. The experiments were carried out with free cells in the presence and absence of ultrasound. The optimum pH and temperature for the reduction of Cr(VI) by Bacillus sp. were found to be 7.0 and 37 degrees C, respectively. The Cr(VI) reduction was significantly influenced by the electron donors and among the various electron donors studied, glucose offered maximum reduction. The ultrasound-irradiated reduction of Cr(VI) with Bacillus sp. showed efficient Cr(VI) reduction. The percent reduction was found to increase with an increase in biomass concentration and decrease with an increase in initial concentration. The changes in the functional groups of Bacillus sp., before and after chromium reduction were observed with FTIR spectra. Microbial growth was described with Monod and Andrews model and best fit was observed with Andrews model.

  2. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar

    2017-01-01

    FeCrAl alloys are an attractive class of materials for nuclear power applications because of their increased environmental compatibility compared with more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300 and 400 °C have shown post-irradiation microstructures containing dislocation loops and a Cr-rich α‧ phase. Although these initial studies established the post-irradiation microstructures, there was little to no focus on understanding the influence of pre-irradiation microstructures on this response. In this study, a well-annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 displacements per atom (dpa) at 382 °C and then the effect of random high-angle grain boundaries on the spatial distribution and size of a<100> dislocation loops, a/2<111> dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with a/2<111> dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and a<100> dislocation loops exhibiting an increased size in the vicinity of the grain boundary. These results suggest the importance of the pre-irradiation microstructure and, specifically, defect sink density spacing to the radiation tolerance of FeCrAl alloys.

  3. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; ...

    2016-11-01

    FeCrAl alloys are an attractive materials class for nuclear power applications due to their increased environmental compatibility over more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300-400 °C have shown post-irradiation microstructures containing dislocation loops and Cr-rich ' phase. Although these initial works established the post-irradiation microstructures, little to no focus was applied towards the influence of pre-irradiation microstructures on this response. Here, a well annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 dpa at 382 °C and then the role of random high angle grain boundariesmore » on the spatial distribution and size of dislocation loops, dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and an increased size of dislocation loops in the vicinity directly adjacent to the grain boundary. Lastly, these results suggest the importance of the pre-irradiation microstructure on the radiation tolerance of FeCrAl alloys.« less

  4. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    SciTech Connect

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar

    2016-11-01

    FeCrAl alloys are an attractive materials class for nuclear power applications due to their increased environmental compatibility over more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300-400 °C have shown post-irradiation microstructures containing dislocation loops and Cr-rich ' phase. Although these initial works established the post-irradiation microstructures, little to no focus was applied towards the influence of pre-irradiation microstructures on this response. Here, a well annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 dpa at 382 °C and then the role of random high angle grain boundaries on the spatial distribution and size of dislocation loops, dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and an increased size of dislocation loops in the vicinity directly adjacent to the grain boundary. Lastly, these results suggest the importance of the pre-irradiation microstructure on the radiation tolerance of FeCrAl alloys.

  5. Enhanced wear and fatigue properties of Ti-6Al-4V alloy modified by plasma carburizing/CrN coating.

    PubMed

    Park, Y G; Wey, M Y; Hong, S I

    2007-05-01

    In this study, a newly developed duplex coating method incorporating plasma carburization and CrN coating was applied to Ti-6Al-4V and its effects on the wear resistance and fatigue life were investigated. The carburized layer with approximately150 microm in depth and CrN coating film with 7.5 microm in thickness were formed after duplex coating. Hard carbide particles such as TiC And V(4)C(3) were formed in the carburized layer. XRD diffraction pattern analysis revealed that CrN film had predominant [111] and [200] textures. The hardness (Hv) was significantly improved up to about 1,960 after duplex coating while the hardness value of original Ti-6Al-4V was 402. The threshold load for the modification and/or failure of CrN coating was measured to be 32 N using the acoustic emission technique. The wear resistance and fatigue life of duplex-coated Ti-6Al-4V improved significantly compared to those of un-treated specimen. The enhanced wear resistance can be attributed to the excellent adhesion and improved hardness of CrN coating film for the duplex-coated Ti-6Al-4V. The initiation of fatigue cracks is likely to be retarded by the presence of hard and strong layers on the surface, resulting in the enhanced fatigue life.

  6. Optical properties and storage capabilities in AB2O4:Cr3+ (A=Zn, Mg, B=Ga, Al)

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Bessiere, A.; Gourier, D.; Sraiki, G.; Viana, B.; Dereń, P. J.; Rudnicka, D.; Watras, A.; Basavaraju, N.; Priolkar, K. R.; Maldiney, T.; Scherman, D.; Richard, C.

    2014-03-01

    Red emitting long-lasting phosphorescence (LLP) material, are useful biomarker for small animal in vivo imaging. We report here our investigations on the optical features of chromium doped AB2O4 spinels (A=Zn, Mg and B=Ga, Al…) suitable for such applications. It is possible to tune the emission wavelengths of Cr3+ by a crystal field variation to be well centered in the biological window and it is also possible to adjust the traps depth in order to better control the release of the traps. These traps are therefore stable at room temperature and could be emptied by thermal or near infrared source making this material a potential new photostimulated/optically compound. Photoluminescence (PL) and thermally stimulated luminescence (TSL) studies are reported.

  7. Effect of nitrogen pressure on the hardness and chemical states of TiAlCrN coatings

    SciTech Connect

    Sullivan, Jonathan F.; Huang Feng; Barnard, John A.; Weaver, Mark L.

    2005-01-01

    TiAlCrN coatings were reactively sputtered from a Ti{sub 0.37}Al{sub 0.51}Cr{sub 0.12} alloy target in this study with a nitrogen partial pressure ranging from 0% to 25% of the total pressure. The effects of the incorporation of nitrogen into the coatings on the hardness, elastic modulus, and chemical state of the metal atoms in the coatings were investigated. The hardness and reduced modulus of the coatings increased with increasing nitrogen partial pressures. The formation of ternary nitrides was inferred from the noticeable difference in the chemical states from those for the corresponding binary nitrides.

  8. Optimization of the NiCrAl-Y/ZrO-Y2O3 thermal barrier system

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1985-01-01

    The effects of bond and thermal barrier coating compositions, thicknesses, and densities on air plasma spray deposited Ni-Cr-Al-Y/ZrO2-Y2O3 life were evaluated in cyclic furnace oxidation tests at temperatures from 1110 to 1220 C. An empirical relation was developed to give life as a function of the above parameters. The thermal barrier system tested which had the longest life consisted of Ni-35.0 wt% Cr-5.9 wt% Al-0.95 wt% Y bond coating and ZrO2-6.1 wt% Y2O3 thermal barrier coating.

  9. Remediation of soils contaminated with chromium using citric and hydrochloric acids: the role of chromium fractionation in chromium leaching.

    PubMed

    Cheng, Shu-Fen; Huang, Chin-Yuan; Tu, Yao-Ting

    2011-01-01

    Acid washing is a common method for soil remediation, but is not always efficient for chromium-contaminated soil. Both soil particle size and the forms of chromium existing in the soil affect the efficiency of soil washing. Laboratory batch and column dissolution experiments were conducted to determine the efficiencies of citric and hydrochloric acids as agents to extract chromium from soils contaminated with chromium. The effects of soil particle size and chromium fractionation on Cr leaching were also investigated. About 90% of chromium in the studied soil existed either in residual form or bound to iron and manganese oxides, and Cr fraction distributions were similar for all soil particle sizes. Almost all exchangeable and carbonate-bound chromium was removed by washing once with 0.5 M HCl, whereas organic chromium was more effectively removed by washing with citric acid rather than with HCl solution of the same concentration. For chromium fractions that were either bound to Fe-Mn oxides or existed as residual forms, the efficiencies of acid washing were usually 20% or less, except for 0.5 M HCl solution, which had much higher efficiencies. Separation of the soil sample by particle size before the separate washing of the soil fractions had little improvement on the chromium removal.

  10. Effects of chromium and aluminum on mechanical and oxidation properties of iron-nickel-base superalloys based on CG-27

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1985-01-01

    The effects of chromium and aluminum on the mechanical and oxidation properties of a series of gamma-prime-strengthened alloys based on CG-27 were studied. Gamma-prime dispersion and solid-solution strengthening were the principal modes of alloy strengthening. The oxidation attack parameter K sub a decreased with increasing Cr and Al contents for each alloy group based on Al content. As a group, alloys with 3 wt % Al had the lowest attack parameters. Therefore, 3 wt % is the optimum level of Al for parabolic oxidation behavior. Spalling, due to diffusion-induced grain growth, was controlled by the overall Cr and Al levels. The alloy with 4 wt % Cr and 3 wt % Al had stress-rupture properties superior to those of the base alloy, CG-27, and maintained parabolic oxidation behavior while the Cr content was reduced by two-thirds of its value in cast CG-27.

  11. Temperature Sensing Above 1000 C Using Cr-Doped GdAlO3 Spin-Allowed Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Chambers, Matthew D.

    2012-01-01

    Cr-doped GdAlO3 (Cr:GdAlO3) is shown to produce remarkably high-intensity spin-allowed broadband luminescence with sufficiently long decay times to make effective luminescence-decay-time based temperature measurements above 1000 C. This phosphor is therefore an attractive alternative to the much lower luminescence intensity rare-earth-doped thermographic phosphors that are typically utilized at these elevated temperatures. In particular, Cr:GdAlO3 will be preferred over rare-earth-doped phosphors, such as Dy:YAG, at temperatures up to 1200 C for intensity-starved situations when the much lower emission intensity from rare-earth-doped phosphors is insufficient for accurate temperature measurements in the presence of significant radiation background. While transition-metal-doped phosphors such as Cr:Al2O3 (ruby) are known to exhibit high luminescence intensity at low dopant concentrations, quenching due to nonradiative decay pathways competing with the (sup 2)E to (sup 4)A(sub 2) radiative transition (R line) has typically restricted their use for temperature sensing to below 600 C. Thermal quenching of the broadband (sup 4)T(sub 2) to (sup 4)A(sub 2) radiative transition from Cr:GdAlO3, however, is delayed until much higher temperatures (above 1000 C). This spin-allowed broadband emission persists to high temperatures because the lower-lying (sup 2)E energy level acts as a reservoir to thermally populate the higher shorter-lived (sup 4)T(sub 2) energy level and because the activation energy for nonradiative crossover relaxation from the (sup 4)T(sub 2) level to the (sup 4)A(sub 2) ground state is high. The strong crystal field associated with the tight bonding of the AlO6 octahedra in the GdAlO3 perovskite structure is responsible for this behavior.

  12. Evolution of the electronic structure and physical properties of Fe2MeAl (Me = Ti, V, Cr) Heusler alloys

    NASA Astrophysics Data System (ADS)

    Shreder, E.; Streltsov, S. V.; Svyazhin, A.; Makhnev, A.; Marchenkov, V. V.; Lukoyanov, A.; Weber, H. W.

    2008-01-01

    We present the results of experiments on the optical, electrical and magnetic properties and electronic structure and optical spectrum calculations of the Heusler alloys Fe2TiAl, Fe2VAl and Fe2CrAl. We find that the drastic transformation of the band spectrum, especially near the Fermi level, when replacing the Me element (Me = Ti, V, Cr), is accompanied by a significant change in the electrical and optical properties. The electrical and optical properties of Fe2TiAl are typical for metals. The abnormal behavior of the electrical resistivity and the optical properties in the infrared range for Fe2VAl and Fe2CrAl are determined by electronic states at the Fermi level. Both the optical spectroscopic measurements and the theoretical calculations demonstrate the presence of low-energy gaps in the band spectrum of the Heusler alloys. In addition, we demonstrate that the formation of Fe clusters may be responsible for the large enhancement of the total magnetic moment in Fe2CrAl.

  13. High-velocity-oxidation performance of metal-chromium-aluminum (MCrAl), cermet, and modified aluminide coatings on IN-100 and type VIA alloys at 1093 C

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.

    1974-01-01

    Cermet, MCrAl, and modified aluminide types of coatings applied to IN-100 and NASA-TRW-VIA alloy specimens were cyclically oxidation tested in a high velocity (Mach 1) gas flame at 1093 C. Several coating compositions of each type were evaluated for oxidation resistance. The modified aluminide coating, Pt-Al, applied to alloy 6A proved to be the best, providing oxidation protection to approximately 750 hours based on weight change measurements. The second best, a CoCrAlY coating applied to 6A, provided protection to 450 hours. The third best was a cermet + aluminide coating on 6A with a protection time to 385 hours.

  14. A study of interdiffusion in beta + gamma/gamma + gamma prime Ni-Cr-Al. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Carol, L. A.

    1985-01-01

    Ternary diffusion in the NiCrAl system at 1200 C was studied with beta + gamma/gamma + gamma prime infinite diffusion couples. Interdiffusion resulted in the formation of complex, multiphase diffusion zones. Concentration/distance profiles for Cr and Al in the phases present in the diffusion zone were measured after 200 hr. The Ni-rich portion of the NiCrAl phase diagram (1200 C) was also determined. From these data, bulk Cr and Al profiles were calculated and translated to diffusion paths on the ternary isotherm. Growth layer kinetics of the layers present in the diffusion zone were also measured.

  15. Spray Forming of Bulk Ultrafine-Grained Al-Fe-Cr-Ti

    NASA Astrophysics Data System (ADS)

    Banjongprasert, C.; Hogg, S. C.; Liotti, E.; Kirk, C. A.; Thompson, S. P.; Mi, J.; Grant, P. S.

    2010-12-01

    An Al-2.7Fe-1.9Cr-1.8Ti alloy has been spray formed in bulk and the microstructure and properties compared with those of similar alloys produced by casting, powder aomization (PA), and mechanical alloying (MA) routes. In PA and MA routes, a nanoscale metastable icosahedral phase is usually formed and is known to confer high tensile strength. Unlike previous studies of the spray forming of similar Al-based metastable phase containing alloys that were restricted to small billets with high porosity, standard spray forming conditions were used here to produce a ~98 pct dense 19-kg billet that was hot isostatically pressed (“HIPed”), forged, and/or extruded. The microstructure has been investigated at all stages of processing using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and synchrotron X-ray diffraction (XRD) at the Diamond Light Source. Consistent with the relatively low cooling rate in spray forming under standard conditions, the microstructure showed no compelling evidence for the formation of metastable icosahedral phases. Nonetheless, after downstream processing, the spray-formed mechanical properties as a function of temperature were very similar to both PA rapid solidification (RS) materials and those made by MA. These aspects have been rationalized in terms of the typical phases, defects, and residual strains produced in each process route.

  16. Optimization of an oxide dispersion strengthened Ni-Cr-Al alloy for gas turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Klarstrom, D. L.; Grierson, R.

    1975-01-01

    The investigation was carried out to determine the optimum alloy within the Ni-16Cr-Al-Y2O3 system for use as a vane material in advanced aircraft gas turbine engines. Six alloys containing nominally 4%, 5% and 6% Al with Y2O3 levels of 0.8% and 1.2% were prepared by mechanical attrition. Six small-scale, rectangular extrusions were produced from each powder lot for property evaluation. The approximate temperatures for incipient melting were found to be 1658 K (2525 F), 1644 K (2500 F) and 1630 K (2475 F) for the 4%, 5% and 6% aluminum levels, respectively. With the exception of longitudinal crystallographic texture, the eight extrusions selected for extensive evaluation either exceeded or were close to mechanical property goals. Major differences between the alloys became apparent during dynamic oxidation testing, and in particular during the 1366 K (2000 F)/500 hour Mach 1 tests carried out by NASA-Lewis. An aluminum level of 4.75% was subsequently judged to be optimum based on considerations of dynamic oxidation resistance, susceptibility to thermal fatigue cracking and melting point.

  17. The effect of zirconium on the isothermal oxidation of nominal Ni-14Cr-24Al alloys

    NASA Technical Reports Server (NTRS)

    Kahn, A. S.; Lowell, C. E.; Barrett, C. A.

    1980-01-01

    The isothermal oxidation of Ni-14Cr-24Al-xZr-type alloys was performed in still air at 1100, 1150, and 1200 C for times up to 200 hr. The zirconium content of the alloys varied from 0-0.63 atom percent (a/o). The oxidized surfaces were studied by optical microscopy, X-ray diffraction, and scanning electron microscopy. The base alloy was an alumina former with the zirconium-containing alloys also developing some ZrO2. The addition of zirconium above 0.066 a/o increased the rate of weight gain relative to the base alloy. Due to oxide penetratio, the weight gain increased with Zr content; however, the scale thickness did not increase. The Zr did increase the adherence of the oxide, particularly at 1200 C. The delta W/A vs. time data fit the parabolic model of oxidation. The specific diffusion mechanism operative could not be identified by analysis of the calculated activation energies. Measurements of the Al2O3 scale lattice constants yielded the same values for all alloys.

  18. 21 CFR 73.1327 - Chromium oxide greens.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Chromium oxide greens. 73.1327 Section 73.1327... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1327 Chromium oxide greens. (a) Identity. (1) The color additive chromium oxide greens is principally chromic sesquioxide (Cr2O3). (2) Color...

  19. 21 CFR 73.1327 - Chromium oxide greens.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Chromium oxide greens. 73.1327 Section 73.1327... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1327 Chromium oxide greens. (a) Identity. (1) The color additive chromium oxide greens is principally chromic sesquioxide (Cr2O3). (2) Color...

  20. 21 CFR 73.1327 - Chromium oxide greens.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Chromium oxide greens. 73.1327 Section 73.1327... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1327 Chromium oxide greens. (a) Identity. (1) The color additive chromium oxide greens is principally chromic sesquioxide (Cr2O3). (2) Color...

  1. 21 CFR 73.1327 - Chromium oxide greens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium oxide greens. 73.1327 Section 73.1327... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1327 Chromium oxide greens. (a) Identity. (1) The color additive chromium oxide greens is principally chromic sesquioxide (Cr2O3). (2) Color...

  2. 21 CFR 73.1327 - Chromium oxide greens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium oxide greens. 73.1327 Section 73.1327... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1327 Chromium oxide greens. (a) Identity. (1) The color additive chromium oxide greens is principally chromic sesquioxide (Cr2O3). (2) Color...

  3. Mechanical Properties and Thermal Shock Resistance of HVOF Sprayed NiCrAlY Coatings Without and With Nano Ceria

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoguang; Chen, Shufen; Wang, You; Pan, Zhaoyi; Wang, Liang

    2012-09-01

    NiCrAlY coatings without and with 0.2 wt.% nano ceria were prepared by high velocity oxygen fuel spraying. The microstructure, mechanical properties, and thermal shock resistance of as-sprayed coatings were investigated. The results showed that in the as-sprayed coatings, the number of un-melted particles was reduced drastically, the microstructure was refined and compact due to the refinement of sprayable powders. Both the hardness and adhesive strength of the NiCrAlY increased due to the refinement of microstructure and the decrease of the defects, such as pores and oxides, after adding nano ceria. The thermal cycle life of NiCrAlY coatings was improved by 15% after adding 0.2 wt.% nano ceria, which is attributed to the low content of spinel NiCr2O4 and high content of Cr2O3 in the thermal cycling, the refined and compact microstructure, and increased interfacial boundary.

  4. Chromium(VI) Bioremoval by Pseudomonas Bacteria: Role of Microbial Exudates for Natural Attenuation and Biotreatment of Cr(VI) Contamination

    SciTech Connect

    N Mercan Dogan; C Kantar; S Gulcan; C Dodge; B Coskun Yilmaz; M Ali Mazmanci

    2011-12-31

    Laboratory batch and column experiments were conducted to investigate the role of microbial exudates, e.g., exopolymeric substance (EPS) and alginic acid, on microbial Cr(VI) reduction by two different Pseudomonas strains (P. putida P18 and P. aeuroginosa P16) as a method for treating subsurface environment contaminated with Cr(VI). Our results indicate that microbial exudates significantly enhanced microbial Cr(VI) reduction rates by forming less toxic and highly soluble organo-Cr(III) complexes despite the fact Cr(III) has a very low solubility under the experimental conditions studied (e.g., pH 7). The formation of soluble organo-Cr(III) complexes led to the protection of the cells and chromate reductases from inactivation. In systems with no organic ligands, soluble organo-Cr(III) end products were formed between Cr(III) and the EPS directly released by bacteria due to cell lysis. Our results also provide evidence that cell lysis played an important role in microbial Cr(VI) reduction by Pseudomonas bacteria due to the release of constitutive reductases that intracellularly and/or extracellularly catalyzed the reduction of Cr(VI) to Cr(III). The overall results highlight the need for incorporation of the release and formation of organo-Cr(III) complexes into reactive transport models to more accurately design and monitor in situ microbial remediation techniques for the treatment of subsurface systems contaminated with Cr(VI).

  5. Chromium(VI) bioremoval by pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination

    SciTech Connect

    Dogan, N.M.; Dodge, C.; Kantar, C.; Gulcan, S.; Yilmaz, B.C.; Mazmanci, M.A.

    2011-02-14

    Laboratory batch and column experiments were conducted to investigate the role of microbial exudates, e.g., exopolymeric substance (EPS) and alginic acid, on microbial Cr(VI) reduction by two different Pseudomonas strains (P. putida P18 and P. aeuroginosa P16) as a method for treating subsurface environment contaminated with Cr(VI). Our results indicate that microbial exudates significantly enhanced microbial Cr(VI) reduction rates by forming less toxic and highly soluble organo-Cr(III) complexes despite the fact Cr(III) has a very low solubility under the experimental conditions studied (e.g., pH 7). The formation of soluble organo-Cr(III) complexes led to the protection of the cells and chromate reductases from inactivation. In systems with no organic ligands, soluble organo-Cr(III) end products were formed between Cr(III) and the EPS directly released by bacteria due to cell lysis. Our results also provide evidence that cell lysis played an important role in microbial Cr(VI) reduction by Pseudomonas bacteria due to the release of constitutive reductases that intracellularly and/or extracellularly catalyzed the reduction of Cr(VI) to Cr(III). The overall results highlight the need for incorporation of the release and formation of organo-Cr(III) complexes into reactive transport models to more accurately design and monitor in situ microbial remediation techniques for the treatment of subsurface systems contaminated with Cr(VI).

  6. Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination.

    PubMed

    Dogan, Nazime Mercan; Kantar, Cetin; Gulcan, Sibel; Dodge, Cleveland J; Yilmaz, Banu Coskun; Mazmanci, Mehmet Ali

    2011-03-15

    Laboratory batch and column experiments were conducted to investigate the role of microbial exudates, e.g., exopolymeric substance (EPS) and alginic acid, on microbial Cr(VI) reduction by two different Pseudomonas strains (P. putida P18 and P. aeuroginosa P16) as a method for treating subsurface environment contaminated with Cr(VI). Our results indicate that microbial exudates significantly enhanced microbial Cr(VI) reduction rates by forming less toxic and highly soluble organo-Cr(III) complexes despite the fact Cr(III) has a very low solubility under the experimental conditions studied (e.g., pH 7). The formation of soluble organo-Cr(III) complexes led to the protection of the cells and chromate reductases from inactivation. In systems with no organic ligands, soluble organo-Cr(III) end products were formed between Cr(III) and the EPS directly released by bacteria due to cell lysis. Our results also provide evidence that cell lysis played an important role in microbial Cr(VI) reduction by Pseudomonas bacteria due to the release of constitutive reductases that intracellularly and/or extracellularly catalyzed the reduction of Cr(VI) to Cr(III). The overall results highlight the need for incorporation of the release and formation of organo-Cr(III) complexes into reactive transport models to more accurately design and monitor in situ microbial remediation techniques for the treatment of subsurface systems contaminated with Cr(VI).

  7. Effect of thermal cycling on the microstructure of a directionally solidified Fe, Cr, Al-TaC eutectic alloy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.; Tewari, S. N.

    1977-01-01

    Cylindrical bars (1.2 cm diameter) of Fe-13.6Cr-3.7Al-9TaC (wt %) eutectic alloy were directionally solidified in a modified Bridgman type furnace at 1 cm/h. The alloy microstructure consisted of aligned TaC fibers imbedded in a bcc Fe-Cr-Al matrix. Specimens of the alloy were thermally cycled from 1100 to 425 C in a burner rig. The effects of 1800 thermal cycles on the microstructure was examined by scanning electron microscopy, revealing a zig-zag shape of TaC fibers aligned parallel to the growth direction. The mechanism of carbide solution and reprecipitation on the (111) easy growth planes, suggested previously to account for the development of irregular serrations in Co-Cr-Ni matrix alloys, is believed to be responsible for these zig-zag surfaces.

  8. Structure and Tribological Properties of CrTiAlN Coatings Deposited by Multi-Arc Ion Plating

    NASA Astrophysics Data System (ADS)

    Tian, Canxin; Yang, Bing; He, Jun; Wang, Hongjun; Wang, Zesong; Wang, Guangfu; Fu, Dejun

    2011-02-01

    CrTiAlN coatings were prepared by using a home-made industrial scale multi-arc ion plating system. The coatings were found to be composites of face-center-cubic CrN and TiN. The surface roughness, microhardness, and tribological properties of the films were significantly affected by the nitrogen pressure and dc-pulsed bias voltage applied to the substrate. The CrTiAlN coatings with the smoothest surfaces were obtained at optimum conditions of nitrogen pressure of 5.0 Pa and bias voltage of -200 V. The samples were found to exhibit a hardness of 2900 HV0.05 with an average friction coefficient of 0.16 and wear rate of 1.5×10-16 m3/N·m against cemented carbide.

  9. Evaluation on the Effect of Composition on Radiation Hardening and Embrittlement in Model FeCrAl Alloys

    SciTech Connect

    Field, Kevin G.; Briggs, Samuel A.; Edmondson, Philip; Hu, Xunxiang; Littrell, Kenneth C.; Howard, Richard; Parish, Chad M.; Yamamoto, Yukinori

    2015-09-18

    This report details the findings of post-radiation mechanical testing and microstructural characterization performed on a series of model and commercial FeCrAl alloys to assist with the development of a cladding technology with enhanced accident tolerance. The samples investigated include model alloys with simple ferritic grain structure and two commercial alloys with minor solute additions. These samples were irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to nominal doses of 7.0 dpa near or at Light Water Reactor (LWR) relevant temperatures (300-400 C). Characterization included a suite of techniques including small angle neutron scattering (SANS), atom probe tomography (APT), and transmission based electron microscopy techniques. Mechanical testing included tensile tests at room temperature on sub-sized tensile specimens. The goal of this work was to conduct detailed characterization and mechanical testing to begin establishing empirical and/or theoretical structure-property relationships for radiation-induced hardening and embrittlement in the FeCrAl alloy class. Development of such relationships will provide insight on the performance of FeCrAl alloys in an irradiation environment and will enable further development of the alloy class for applications within a LWR environment. A particular focus was made on establishing trends, including composition and radiation dose. The report highlights in detail the pertinent findings based on this work. This report shows that radiation hardening in the alloys is primarily composition dependent due to the phase separation in the high-Cr FeCrAl alloys. Other radiation induced/enhanced microstructural features were less dependent on composition and when observed at low number densities, were not a significant contributor to the observed mechanical responses. Pre-existing microstructure in the alloys was found to be important, with grain boundaries and pre-existing dislocation

  10. Strain rate sensitivity of nanoindentation creep in an AlCoCrFeNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Jiao, Z. M.; Wang, Z. H.; Wu, R. F.; Qiao, J. W.

    2016-09-01

    Creep behaviors of an AlCoCrFeNi high-entropy alloy with the body-centered cubic structure were investigated by nanoindentation. The enhanced strain gradient induced by higher strain rate leads to decreased strain rate sensitivity during creep process. The present alloy exhibits excellent creep resistance, mainly due to its large entropy of mixing and highly distorted lattice structure.

  11. Magnetic and electron-transport properties of spin-gapless semiconducting CoFeCrAl films

    NASA Astrophysics Data System (ADS)

    Sellmyer, David; Jin, Yunlong; Kharel, Parashu; Valloppilly, Shah; George, Tom; Balasubramanian, Balamurugan; Skomski, Ralph

    Recently, spin-gapless semiconductors (SGS) with a semiconducting or insulating gap in one spin channel and zero gap in the other at the Fermi level have attracted much attention due to their new functionalities such as voltage-tunable spin polarization, the ability to switch between spin-polarized n-type and p-type conduction, high spin polarization and carrier mobility. For the development of spintronic devices utilizing SGS, it is necessary to have a better understanding of the magnetic and transport properties of the thin films of these materials. In this study, the structural, magnetic, and electron-transport properties of a SGS material CoFeCrAl in the thin film geometry have been investigated. CoFeCrAl films were grown on atomically flat SiO2 substrates using magnetron sputtering. The Curie temperature was measured to be 550 K very close to the value reported for bulk CoFeCrAl. Electron-transport measurements on the oriented films revealed a negative temperature coefficient of resistivity, small anomalous Hall conductivity and linear field dependence of magnetoresistance, which are transport signatures of SGS. The effect of elemental compositions and structural ordering on the SGS properties of the CoFeCrAl films will be discussed. Research supported by NSF (Y. J.), DoE (B. B., D. J. S), ARO (T. A. G., S. R. V.), SDSU (P. K.), and NRI (Facilities).

  12. Microstructure and Properties of HVOF-Sprayed NiCrAlY Coatings Modified by Rare Earth

    NASA Astrophysics Data System (ADS)

    Chen, S. F.; Liu, S. Y.; Wang, Y.; Sun, X. G.; Zou, Z. W.; Li, X. W.; Wang, C. H.

    2014-06-01

    Rare earth (RE)-modified NiCrAlY powders were prepared by ultrasonic gas atomization and deposited on stainless steel substrate by high-velocity oxygen fuel spraying. The effects of the RE on the microstructure, properties, and thermal shock resistance of the NiCrAlY coatings were investigated. The results showed that the NiCrAlY powders were refined and distributed uniformly after adding RE, while the number of unmelted particles in the coatings was reduced. Moreover, the RE-modified coatings showed improved microhardness and distribution uniformity. The microhardness of the coating reached a maximum after adding 0.9 wt.% RE, being 34.4 % higher than that of coatings without RE. The adhesive strength increased and reached a maximum after adding 0.6 wt.% RE, being 18.8 % higher than that of coatings without RE. Excessive RE decreased the adhesive strength. The thermal cycle life of NiCrAlY coatings increased drastically with RE addition. The coating with 0.9 wt.% RE showed optimum thermal shock resistance, being 21.2 % higher than that of coatings without RE.

  13. The Analysis of the General Performance and Mechanical Behavior of Unirradiated FeCrAl Alloys Before and After Welding

    SciTech Connect

    Gussev, Maxim N.; Field, Kevin G.; Yamamoto, Yukinori

    2016-06-03

    The present report summarizes and discusses the preliminary results for the in-depth characterization of the modern, nuclear-grade FeCrAl alloys currently under development. The alloys were designed for enhanced radiation tolerance and weldability, and the research is currently being pursued by the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Last year, seven candidate FeCrAl alloys with well-controlled chemistry and microstructures were designed and produced; welding was performed under well-controlled conditions. The structure and general performance of unirradiated alloys were assessed using standardized and advanced microstructural characterization techniques and mechanical testing. The primary objective is to identify the best candidate alloy, or at a minimum to identify the contributing factors that increase the weldability and radiation tolerance of FeCrAl alloys, therefore enabling future generations of FeCrAl alloys to deliver better performance parameters. This report is structured so as to describe these critical assessments of the weldability; radiation tolerance will be reported on in later reports from this program.

  14. Interdiffusion between the L1(2) trialuminides Al66Ti25Mn9 and Al67Ti25Cr8

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    Concentration-distance profiles obtained from Al66Ti25Mn9/Al67Ti25Cr8 diffusion couples are used to determine the interdiffusion coeffients in the temperature range 1373-1073 K. The couples are treated as pseudobinaries, and the diffusion coefficients are determined using the Matano approach. The results are then used to compute the activation energies for diffusion, and a comparison is made with some existing data for the activation energy for creep of Al22Ti8Fe3.

  15. Long-term strength and allowable stresses of grade 10Kh9MFB and X10CrMoVNb9-1 (T91/P91) chromium heat-resistant steels

    NASA Astrophysics Data System (ADS)

    Skorobogatykh, V. N.; Danyushevskiy, I. A.; Schenkova, I. A.; Prudnikov, D. A.

    2015-04-01

    Currently, grade X10CrMoVNb9-1 (T91, P91) and 10Kh9MFB (10Kh9MFB-Sh) chromium steels are widely applied in equipment manufacturing for thermal power plants in Russia and abroad. Compilation and comparison of tensile, impact, and long-term strength tests results accumulated for many years of investigations of foreign grade X10CrMoVNb9-1, T91, P91, and domestic grade 10Kh9MFB (10Kh9MFB-Sh) steels is carried out. The property identity of metals investigated is established. High strength and plastic properties of steels, from which pipes and other products are made, for operation under creep conditions are confirmed. Design characteristics of long-term strength on the basis of tests with more than one million of hour-samples are determined ( and at temperatures of 500-650°C). The table of recommended allowable stresses for grade 10Kh9MFB, 10Kh9MFB-SH, X10CrMoVNb9-1, T91, and P91 steels is developed. The long-time properties of pipe welded joints of grade 10Kh9MFB+10Kh9MFB, 10Kh9MFB-Sh+10Kh9MFB-Sh, X10CrMoVNb9-1+X10CrMoVNb9-1, P91+P91, T91+T91, 10Kh9MFB (10Kh9MFB-Sh)+X10CrMoVNb9-1(T/P91) steels is researched. The welded joint reduction factor is experimentally determined.

  16. Role of Cr(III) deposition during the photocatalytic transformation of hexavalent chromium and citric acid over commercial TiO2 samples.

    PubMed

    Montesinos, V N; Salou, C; Meichtry, J M; Colbeau-Justin, C; Litter, M I

    2016-02-01

    Removal of Cr(VI) and citric acid (Cit) by heterogeneous photocatalytic Cr(VI) transformation under UV light over two commercial TiO2 samples (1 g L(-1)), Evonik P25 and Hombikat UV100, was studied at pH 2 and Cr(VI) concentrations between 0.2 and 3 mM, with a fixed [Cit]0/[Cr(VI)]0 molar ratio (MR) of 2.5. In both cases, up to complete Cr(VI) removal, the temporal profiles of Cr(VI) and Cit were well adjusted to a pseudo-first order rate law with the same rate constant, evidencing that Cr(VI) removal controls the kinetics of the system. Once Cr(VI) is fully removed, Cit degradation continues with a Langmuir-Hinshelwood behaviour. In all cases, the rate constants decreased with increasing [Cr(VI)]0, and time resolved microwave conductivity (TRMC) measurements revealed that this was due to an increasing retention of Cr(III) on the surface of the photocatalysts, which reduces the lifetime of the electrons. Both kinetic experiments and TRMC measurements confirm that UV100 is not only more efficient than P25 for Cr(VI) and Cit removal, but it is also less influenced by the poisoning of the surface, consistent with its larger specific area. The use of Cit as the sacrificial agent improves the rate and efficiency of the photocatalytic Cr(VI) removal, and also the stability of the photocatalyst by preventing Cr(III) deposition, due to the formation of soluble Cr(III)-complexes, envisaged as a general result of the presence of oligocarboxylic acids in the photocatalytic Cr(VI) system.

  17. Removal of hexavalent chromium using distillery sludge.

    PubMed

    Selvaraj, K; Manonmani, S; Pattabhi, S

    2003-09-01

    Batch mode experiments were conducted to study the removal of hexavalent chromium from aqueous and industrial effluent using distillery sludge. Effects of pH, contact time, initial concentration and adsorbent dosage on the adsorption of Cr(VI) were studied. The data obeyed Langmuir and Freundlich adsorption isotherms. The Langmuir adsorption capacity was found to be 5.7 mg/g. Freundlich constants K(f) and n were 2.05 [mg/g(L/mg)(n)] and 3.9, respectively. Desorption studies indicated the removal of 82% of the hexavalent chromium. The efficiency of adsorbent towards the removal of chromium was also tested using chromium-plating wastewater.

  18. Selective reduction of Cr(VI) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 photocatalysis.

    PubMed

    Zheng, Shan; Jiang, Wenjun; Rashid, Mamun; Cai, Yong; Dionysiou, Dionysios D; O'Shea, Kevin E

    2015-02-03

    The highly toxic Cr(VI) is a critical component in the Chromated Copper Arsenate (CCA) formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI) to less toxic Cr(III) in the presence of arsenate, As(V), and copper, Cu(II). The rapid conversion of Cr(VI) to Cr(III) during UV/TiO2 photocatalysis occurs over a range of concentrations, solution pH and at different Cr:As:Cu ratios. The reduction follows pseudo-first order kinetics and increases with decreasing solution pH. Saturation of the reaction solution with argon during UV/TiO2 photocatalysis had no significant effect on the Cr(VI) reduction demonstrating the reduction of Cr(VI) is independent of dissolved oxygen. Reduction of Cu(II) and As(V) does not occur under the photocatalytic conditions employed herein and the presence of these two in the tertiary mixtures had a minimal effect on Cr(VI) reduction. The Cr(VI) reduction was however, significantly enhanced by the addition of formic acid, which can act as a hole scavenger and enhance the reduction processes initiated by the conduction band electron. Our results demonstrate UV/TiO2 photocatalysis effectively reduces Cr(VI) in mixed waste streams under a variety of conditions.

  19. Effect of Sealing Treatment on Corrosion Resistance of Plasma-Sprayed NiCrAl/Cr2O3-8 wt.%TiO2 Coating

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Wang, Zehua; Lin, Pinghua; Lu, Wenhuan; Zhou, Zehua; Jiang, Shaoqun

    2011-03-01

    Plasma-sprayed ceramic coatings inherently contain pores and micro-cracks which is deleterious when performed in aggressive environment. Various methods were applied to the as-sprayed coatings in order to improve the corrosion resistance. In the investigation of this study, plasma-sprayed NiCrAl/Cr2O3-8 wt.%TiO2 coatings were sealed by epoxy resin and silicone resin, respectively. Coatings were characterized by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), optical microscopy (OM) and x-ray diffraction (XRD). The possible corrosion mechanism was discussed. The results of salt spray test and electrochemical measurements indicated that after the sealing treatment, the porosity of coatings decreased obviously and a compact layer was formed to protect the coating from corrosion. The silicone resin proved to be more effective than epoxy resin in enhancing the corrosion resistance of the coatings used in this research.

  20. Nanomechanical characterization of alumina coatings grown on FeCrAl alloy by thermal oxidation.

    PubMed

    Frutos, E; González-Carrasco, J L; Polcar, T

    2016-04-01

    This work studies the feasibility of using repetitive-nano-impact tests with a cube-corner tip and low loads for obtaining quantitative fracture toughness values in thin and brittle coatings. For this purpose, it will be assumed that the impacts are able to produce a cracking, similar to the pattern developed for the classical fracture toughness tests in bulk materials, and therefore, from the crack developed in the repetitive impacts it will be possible to evaluate the suitability of the classical indentation models (Anstins and Laugier) for measuring fracture toughness. However, the length of this crack has to be lower than 10% of the total coating thickness to avoid substrate contributions. For this reason, and in order to ensure a small plastic region localized at the origin of the crack tip, low load values (or small distance between the indenter tip and the surface) have to be used. In order to demonstrate the validity of this technique, repetitive-nano-impact will be done in a fine and dense oxide layer (α-Al2O3), which has been developed on the top of oxide dispersion strengthened (ODS) FeCrAl alloys (PM 2000) by thermal oxidation at elevated temperatures. Moreover, it will be shown how it is possible to know with each new impact the crack geometry evolution from Palmqvist crack to half-penny crack, being able to study the proper evolution of the different values of fracture toughness in terms of both indentation models and as a function of the strain rate, ε̇, decreasing. Thereby, fracture toughness values for α-Al2O3 layer decrease from ~4.40MPam , for high ϵ̇ value (10(3)s(-1)), to ~3.21MPam, for quasi-static ϵ̇ value (10(-3)s(-1)). On the other hand, ϵ̇ a new process to obtain fracture toughness values will be analysed, when the classical indentation models are not met. These values are typically found in the literature for bulk α-Al2O3, demonstrating the use of repetitive-nano-impact tests which not only provide qualitative information about

  1. Use of synchrotron XANES and Cr-doped coal to further confirm the vaporization of organically bound Cr and the formation of chromium(VI) during coal oxy-fuel combustion.

    PubMed

    Chen, Juan; Jiao, Facun; Zhang, Lian; Yao, Hong; Ninomiya, Yoshihiko

    2012-03-20

    Through the use of synchrotron XANES and Cr-doped brown coal, extensive efforts have been made to clarify the volatility of organically bound Cr during oxy-fuel combustion and the mode of occurrence and leachability of Cr in resulting fly ashes. As the continuation of our previous study using raw coal, the Cr-doped coal has been tested in this study to improve the signal-to-noise ratio for Cr K-edge XANES spectra, and hence the accuracy for Cr(VI) quantification. As has been confirmed, the abundant CO(2) as a balance gas for oxy-firing has the potential to inhibit the decomposition of organically bound Cr, thereby favoring its retention in solid ash. It also has the potential to promote the oxidation of Cr(III) to Cr(VI) to a minor extent. Increasing the oxygen partial pressure, particularly in the coexistence of HCl in flue gas, favored the oxidation of Cr(III) into gaseous Cr(VI)-bearing species such as CrO(2)Cl(2). Regarding the solid impurities including Na(2)SO(4) and CaO, Na(2)SO(4) has proven to preferentially capture the Cr(III)-bearing species at a low furnace temperature such as 600 °C. Its promoting effect on the oxidation of Cr(III) to Cr(VI), although thermodynamically available at the temperatures examined here, is negligible in a lab-scale drop tube furnace (DTF), where the particle residence time is extremely short. In contrast, CaO has proven facilitating the capture of Cr(VI)-bearing species particularly oxychloride vapors at 1000 °C, forming Ca chromate with the formulas of CaCrO(4) and Ca(3)(CrO(4))(2) via a direction stabilization of Cr(VI) oxychloride vapor by CaO particle or an indirect oxidation of Cr(III) via the initial formation of Ca chromite. The fly ash collected from the combustion of Cr-doped coal alone has a lower water solubility (i.e., 58.7%) for its Cr(VI) species, due to the formation of Ba/Pb chromate and/or the incorporation of Cr(VI) vapor into a slagging phase which is water-insoluble. Adding CaO to coal increased the

  2. BeAl 6O 10:Cr 3+ (Ti 3+, Ni 2+) laser crystals and their spectroscopic characteristics

    NASA Astrophysics Data System (ADS)

    Solntsev, V. P.; Pestryakov, E. V.; Alimpiev, A. I.; Tsvetkov, E. G.; Matrosov, V. N.; Trunov, V. I.; Petrov, V. V.

    2003-12-01

    The EPR, optical absorption, luminescence spectra, and lasing characteristics of Cr 3+, Ti 3+, and Ni 2+ ions in BeAl 6O 10 (beryllium hexaaluminate, BHA) crystals are studied. The spectroscopic data show that the BHA crystals have an orthorhombic structure with the space group Pbcm. The temperature dependence of luminescence lifetime of the excited state of Cr 3+ ions ( τ≈13×10 -6 s at 300 K) is investigated. The energy gap between the 2E- and 4T 2-levels of Cr 3+ (˜236 cm -1) and the nonradiative relaxation activation energy ( Ea≈1667 cm -1) are determined. High-efficient tunable radiation of a new BeAl 6O 10:Cr 3+ laser crystal is demonstrated in the region of 0.78-0.92 μm at 300 K. It is shown that the doped BHA crystals are promising active media for tunable solid state lasers in the spectral regions of 0.7-1.0 μm (Cr 3+) and 1.35-1.65 μm (Ni 2+).

  3. Deposition of LaMO 3 (M=Co, Cr, Al) films by spray pyrolysis in inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Ichinose, Hiromichi; Katsuki, Hiroaki; Nagano, Masamitsu

    1994-11-01

    LaMO 3 (M=Co, Cr, Al) films were prepared on substrates by introducing ultrasonically atomized metal nitrate solutions into an inductively coupled plasma under atmospheric pressure (spray-ICP technique). Dense perovskite-type oxide films of LaCoO 3 and LaCrO 3 were obtained at 600-900°C, while the LaAiO 3 films consisted of loosely packed aggregates. Deposition rates of the films were 6-35 nm/min at 600-900°C. The high temperature phases (cubic) of LaCoO 3 and LaAlO 3 crystallized due to effect of grain size. LaCrO 3 film crystallized in the room temperature phase (orthorhombic). LaCoO 3 was highly oriented to (100) on MgO(100), and LaCrO 3 to (011) and (101) on sapphire(001). Lowest electric resistivities of LaCoO 3 and LaCrO 3 film on MgO were 9.8X10 -3 and 2.7X10 -1 Ω m, respectively, at room temperature.

  4. Characterization and oxidation behavior of NiCoCrAlY coating fabricated by electrophoretic deposition and vacuum heat treatment

    NASA Astrophysics Data System (ADS)

    Li, Zhiming; Qian, Shiqiang; Wang, Wei

    2011-03-01

    Electrophoretic deposition (EPD) was showed to be a feasible and convenient method to fabricate NiCoCrAlY coatings on nickel based supperalloys. The microstructure and composition of the NiCoCrAlY coatings after vacuum heat treatment were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX). Isothermal-oxidation test was performed at 1100 °C in static air for 100 h. The results show that the major phases in electrophoretic deposited and vacuum heat treated NiCoCrAlY coating are γ-Ni and γ‧-Ni3Al phases, also there is an extremely small quantity of Al2O3 in the coating. Composition fluctuations occur in the coating and a certain amount of titanium diffuse from the superalloy substrate to the top of the coating during vacuum heat treatment. The oxidation test results exhibit that the oxidation kinetics of this coating has two typical stages. The protective oxide layer is mainly formed in the initial linear growth stage and then the oxide layer hinders further oxidation of the coating in the subsequent parabolic growth stage. The coating can effectively protect the superalloy substrate from oxidation. A certain amount of rutile TiO2 is formed in the coating during oxidation and it is adverse to the oxidation resistance of the coating.

  5. Erosion behavior of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    SciTech Connect

    Franz, Robert Mendez Martin, Francisca; Hawranek, Gerhard; Polcik, Peter

    2016-03-15

    Al{sub x}Cr{sub 1−x} composite cathodes with Al contents of x = 0.75, 0.5, and 0.25 were exposed to cathodic arc plasmas in Ar, N{sub 2}, and O{sub 2} atmospheres and their erosion behavior was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by x-ray diffraction analysis. Cathode poisoning effects in the reactive N{sub 2} and O{sub 2} atmospheres were nonuniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded center region of the cathodes.

  6. Flow microcapillary plasma mass spectrometry-based investigation of new Al-Cr-Fe complex metallic alloy passivation.

    PubMed

    Ott, N; Beni, A; Ulrich, A; Ludwig, C; Schmutz, P

    2014-03-01

    Al-Cr-Fe complex metallic alloys are new intermetallic phases with low surface energy, low friction, and high corrosion resistance down to very low pH values (0-2). Flow microcapillary plasma mass spectrometry under potentiostatic control was used to characterize the dynamic aspect of passivation of an Al-Cr-Fe gamma phase in acidic electrolytes, allowing a better insight on the parameters inducing chemical stability at the oxyhydroxide-solution interface. In sulfuric acid pH 0, low element dissolution rates (in the µg cm(-2) range after 60 min) evidenced the passive state of the Al-Cr-Fe gamma phase with a preferential over-stoichiometric dissolution of Al and Fe cations. Longer air-aging was found to be beneficial for stabilizing the passive film. In chloride-containing electrolytes, ten times higher Al dissolution rates were detected at open-circuit potential (OCP), indicating that the spontaneously formed passive film becomes unstable. However, electrochemical polarization at low passive potentials induces electrical field generated oxide film modification, increasing chemical stability at the oxyhydroxide-solution interface. In the high potential passive region, localized attack is initiated with subsequent active metal dissolution.

  7. Uniform corrosion of FeCrAl alloys in LWR coolant environments

    NASA Astrophysics Data System (ADS)

    Terrani, K. A.; Pint, B. A.; Kim, Y.-J.; Unocic, K. A.; Yang, Y.; Silva, C. M.; Meyer, H. M.; Rebak, R. B.

    2016-10-01

    The corrosion behavior of commercial and model FeCrAl alloys and type 310 stainless steel was examined by autoclave tests and compared to Zircaloy-4, the reference cladding materials in light water reactors. The corrosion studies were carried out in three distinct water chemistry environments found in pressurized and boiling water reactor primary coolant loop conditions for up to one year. The structure and morphology of the oxides formed on the surface of these alloys was consistent with thermodynamic predictions. Spinel-type oxides were found to be present after hydrogen water chemistry exposures, while the oxygenated water tests resulted in the formation of very thin and protective hematite-type oxides. Unlike the alloys exposed to oxygenated water tests, the alloys tested in hydrogen water chemistry conditions experienced mass loss as a function of time. This mass loss was the result of net sum of mass gain due to parabolic oxidation and mass loss due to dissolution that also exhibits parabolic kinetics. The maximum thickness loss after one year of LWR water corrosion in the absence of irradiation was ∼2 μm, which is inconsequential for a ∼300-500 μm thick cladding.

  8. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Nasrallah, M.; Douglass, D. L.

    1974-01-01

    The effect of quaternary additions of 0.5% Y, 0.5 and 1.0% Th to a base alloy of Ni-10CR-5Al on the oxidation behavior and mechanism was studied during oxidation in air over the range of 1000 to 1200 C. The presence of yttrium decreased the oxidation kinetics slightly, whereas, the addition of thorium caused a slight increase. Oxide scale adherence was markedly improved by the addition of the quaternary elements. Although a number of oxides formed on yttrium containing alloys, quantitative X-ray diffraction clearly showed that the rate-controlling step was the diffusion of aluminum through short circuit paths in a thin layer of alumina that formed parabolically with time. Although the scale adherence of the yttrium containing alloy was considerably better than the base alloys, spalling did occur that was attributed to the formation of the voluminous YAG particles which grew in a mushroom-like manner, lifting the protective scale off the subrate locally. The YAG particles formed primarily at grain boundaries in the substrate in which the yttrium originally existed as YNi9.

  9. Uniform corrosion of FeCrAl alloys in LWR coolant environments

    DOE PAGES

    Terrani, K. A.; Pint, B. A.; Kim, Y. -J.; ...

    2016-06-29

    The corrosion behavior of commercial and model FeCrAl alloys and type 310 stainless steel was examined by autoclave tests and compared to Zircaloy-4, the reference cladding materials in light water reactors. The corrosion studies were carried out in three distinct water chemistry environments found in pressurized and boiling water reactor primary coolant loop conditions for up to one year. The structure and morphology of the oxides formed on the surface of these alloys was consistent with thermodynamic predictions. Spinel-type oxides were found to be present after hydrogen water chemistry exposures, while the oxygenated water tests resulted in the formation ofmore » very thin and protective hematite-type oxides. Unlike the alloys exposed to oxygenated water tests, the alloys tested in hydrogen water chemistry conditions experienced mass loss as a function of time. This mass loss was the result of net sum of mass gain due to parabolic oxidation and mass loss due to dissolution that also exhibits parabolic kinetics. Finally, the maximum thickness loss after one year of LWR water corrosion in the absence of irradiation was ~2 μm, which is inconsequential for a ~300–500 μm thick cladding.« less

  10. Uniform corrosion of FeCrAl alloys in LWR coolant environments

    SciTech Connect

    Terrani, K. A.; Pint, B. A.; Kim, Y. -J.; Unocic, K. A.; Yang, Y.; Silva, C. M.; Meyer, III, H. M.; Rebak, R. B.

    2016-06-29

    The corrosion behavior of commercial and model FeCrAl alloys and type 310 stainless steel was examined by autoclave tests and compared to Zircaloy-4, the reference cladding materials in light water reactors. The corrosion studies were carried out in three distinct water chemistry environments found in pressurized and boiling water reactor primary coolant loop conditions for up to one year. The structure and morphology of the oxides formed on the surface of these alloys was consistent with thermodynamic predictions. Spinel-type oxides were found to be present after hydrogen water chemistry exposures, while the oxygenated water tests resulted in the formation of very thin and protective hematite-type oxides. Unlike the alloys exposed to oxygenated water tests, the alloys tested in hydrogen water chemistry conditions experienced mass loss as a function of time. This mass loss was the result of net sum of mass gain due to parabolic oxidation and mass loss due to dissolution that also exhibits parabolic kinetics. Finally, the maximum thickness loss after one year of LWR water corrosion in the absence of irradiation was ~2 μm, which is inconsequential for a ~300–500 μm thick cladding.

  11. Tribological Characterization of Plasma-Sprayed CoNiCrAlY-BN Abradable Coatings

    NASA Astrophysics Data System (ADS)

    Irissou, E.; Dadouche, A.; Lima, R. S.

    2014-01-01

    The processing conditions, microstructural and tribological characterizations of plasma-sprayed CoNiCrAlY-BN high temperature abradable coatings are reported in this manuscript. Plasma spray torch parameters were varied to produce a set of abradable coatings exhibiting a broad range of porosity levels (34-62%) and superficial Rockwell hardness values (0-78 HR15Y). Abradability tests have been performed using an abradable-seal test rig, capable of simulating operational wear at different rotor speeds and seal incursion rates (SIRs). These tests allowed determining the rubbing forces and quantifying the blade and seal wear characteristics for slow and fast SIRs. Erosion wear performance and ASTM C633 coating adhesion strength test results are also reported. For optimal abradability performance, it is shown that coating hardness needs to be lower than 70 and 50 HR15Y for slow and fast blade incursion rate conditions, respectively. It is shown that the erosion wear performance, as well as, the coating cohesive strength is a function of the coating hardness. The current results allow defining the coating specifications in terms of hardness and porosity for targeted applications.

  12. Magnetic properties of polycrystalline Co2Cr1-xFexAl alloys

    NASA Astrophysics Data System (ADS)

    Buchmeier, M.; Schneider, C. M.; Werner, J.; Elefant, D.; Teresiak, A.; Behr, G.; Schumann, J.; Arushanov, E.

    2007-06-01

    We have investigated the magnetic properties of the Heusler phase Co2Cr1-xFexAl in the composition regime (x=0.3-0.5) in the disordered B2 phase. Both bulk and surface static and dynamic magnetic aspects were addressed by employing alternating gradient magnetometry (AGM), magneto-optical Kerr effect (MOKE) and Brillouin light scattering (BLS). All samples show ferromagnetic hysteresis loops and a tendency of increasing saturation magnetization Ms with the iron content. With BLS the behavior of bulk spin waves and the Damon Eshbach (DE) surface spin wave mode have been studied. The spectra are typical for opaque bulk ferromagnetic samples with strong exchange. The measured spin wave frequencies as a function of magnetic field are in good agreement with the calculated values. Saturation magnetization and gyromagnetic ratio g have been determined from the field-dependent peak positions of the bulk and the DE modes. The g-factor extracted from the DE mode shows a clear tendency of increase with increasing Fe-content. However, we could not find any peculiarities of the alloy with x=0.4, which had been proposed as a Heusler phase on the basis of electronic structure calculations [T. Block, C. Felser, G. Jakob, J. Ensling, B. Mühling, P. Gütlich, R.J. Cava, J. Solid State Chem. 176 (2003) 646].

  13. Magnetic and electrical properties of the half-metallic ferromagnets Co2CrAl

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Korolev, A. V.; Marchenkov, V. V.; Lukoyanov, A. V.; Belozerova, K. A.

    2013-05-01

    This paper presents the results of measurements of the magnetic and electrical properties of the ferromagnetic alloy Co2CrAl in two structural states: (i) after severe plastic deformation and (ii) after shortterm high-temperature annealing of the deformed specimens. The experiments have been performed at temperatures in the range from 2 to 900 K in magnetic fields H ≤ 50 kOe. The ferromagnetic Curie temperature T C and the paramagnetic Curie temperature Θ have been determined ( T C = 305 K and Θ = 326 K), as well as the spontaneous magnetic moment μ S and the effective magnetic moment μeff per molecule of the alloy (μ S = 1.62 μB and μ{eff/2} = 8.2 μ{B/2}). It has been shown that the magnetic crystalline anisotropy energy of the alloy is on the order of ˜5 × 105 erg/g. The specific features of the electrical properties are associated with the presence of an energy gap in the electronic spectrum near the Fermi level E F and with the change in the parameters of the energy gap as a function of the temperature.

  14. Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying

    NASA Astrophysics Data System (ADS)

    Löbel, M.; Lindner, T.; Kohrt, C.; Lampke, T.

    2017-03-01

    High Entropy Alloys (HEA) are gaining increasing interest due to their unique combination of properties. Especially the combination of high mechanical strength and hardness with distinct ductility makes them attractive for numerous applications. One interesting alloy system that exhibits excellent properties in bulk state is AlCoCrFeNiTi. A high strength, wear resistance and high-temperature resistance are the necessary requirements for the application in surface engineering. The suitability of blended, mechanically ball milled and inert gas atomized feedstock powders for the development of atmospheric plasma sprayed (APS) coatings is investigated in this study. The ball milled and inert gas atomized powders were characterized regarding their particle morphology, phase composition, chemical composition and powder size distribution. The microstructure and phase composition of the thermal spray coatings produced with different feedstock materials was investigated and compared with the feedstock material. Furthermore, the Vickers hardness (HV) was measured and the wear behavior under different tribological conditions was tested in ball-on-disk, oscillating wear and scratch tests. The results show that all produced feedstock materials and coatings exhibit a multiphase composition. The coatings produced with inert gas atomized feedstock material provide the best wear resistance and the highest degree of homogeneity.

  15. Magnetism, electron transport and effect of disorder in CoFeCrAl

    NASA Astrophysics Data System (ADS)

    Kharel, P.; Zhang, W.; Skomski, R.; Valloppilly, S.; Huh, Y.; Fuglsby, R.; Gilbert, S.; Sellmyer, D. J.

    2015-06-01

    Structural, electronic, and magnetic properties of a Heusler-type CoFeCrAl alloy have been investigated experimentally and by model calculations, with a focus on the alloy’s spin-gapless semiconductivity. The as-quenched samples are ferrimagnetic at room temperature with a Curie temperature of about 456 K, which increases to 540 K after vacuum annealing at 600 °C for 2 h. The saturation magnetizations of the as-quenched and 600 °C-annealed samples are 1.9 µB/f.u. and 2.1 µB/f.u., respectively, which are very close to the value predicted by the Slater-Pauling curve. The resistivity shows a nearly linear decrease with increasing temperature, from about 930 µΩ cm at 5 K to about 820 µΩ cm at 250 K, with dρ/dT of about  -5   ×   10-7 Ω cm K-1. We explain this high resistivity and its temperature dependence as imperfect spin-gapless semiconducting behavior, with a negative band-gap parameter of 0.2 eV.

  16. Properties of nanocrystalline Fe75Si15M10 (M-Cr and Al) powders prepared by mechanical alloying.

    PubMed

    Kalita, M P C; Perumal, A; Srinivasan, A; Pandey, Brajesh; Verma, H C

    2008-08-01

    We report the structural and magnetic properties of the nanocrystalline Fe75Si15M10 (M-Al and Cr) powders prepared by mechanical alloying. The milling process produced a non-equilibrium solid solutions of bcc alpha-Fe(Si,Cr) and alpha-Fe(Si,Al). The average dislocation density increases and the average crystallite size decreases with increasing milling time. Magnetic property studies show that the coercivity of the sample increases and magnetization of the sample decreases with increasing milling time. The evolution of a non-equilibrium solid solution and the resulting magnetic properties of nanocrystalline powders are explained on the basis of Neel theory and modified random anisotropy model proposed by Shen et al.

  17. Application of Chromium Stable Isotopes to the Evaluation of Cr(VI) Contamination in Groundwater and Rock Leachates from Central Euboea, the Assopos Basin and Thebes Valley (Greece)

    NASA Astrophysics Data System (ADS)

    Frei, R.; Frei, K. M.; Economou-Eliopoulos, M.; Atsarou, C.; Koilakos, D.

    2014-12-01

    In order to identify the source(s) of toxic Cr(VI) prevalent in drinking and irrigation waters of Central Euboea (CE), the Assopos Basin (AB) and the Thebes Valley (TV;Greece), we have analyzed stable Cr isotopes, together with major and trace elements in porous, karstic and ultramafic mélange-hosted aquifers and groundwaters, ultramafic rocks from the hinterlands and soil samples from cultivated sites of this region. In addition we complemented our data with experimentally produced water leachates of rocks and soils. Mg/Ca ratios >1 in much of the water samples indicate the influence of ultramafic rocks which dominate the geology on the geochemical composition of the groundwaters. Elevated Cr(VI) concentrations in experimental soil leachates, compared to those in rock pulp leachates, can be potentially explained by the presence of larger amounts of Fe(II) and lower amounts of Mn(IV) in the country rocks. Factor analysis on the 17 water samples from TV indicates a strong relationship between Na, Cl-, and Cr(VI), and also points to an aversion of Cr(VI) to nitrates (fertilizer-sewage sourced) and its independency from Mg and SiO2. Assuming that redox processes produce significant Cr isotope fractionation (groundwater δ53Cr values range between +0.62 and +1.99‰), the compilation of the analytical data suggests that the dominant cause of Cr isotope fractionation is post-mobilization reduction of Cr(VI). However, the lack of a clear negative relationship between Cr(VI) concentrations and δ53Cr values may reflect that other processes complicate this interpretation. The variation in δ53Cr values, together with the results from the experimentally produced ultramafic rock pulp leachates, imply initial oxidative mobilization of Cr(VI) from the ultramafic host rocks, followed by reductive processes, as the main reason for the toxicity of the groundwaters. Using a Rayleigh distillation model and different fractionation factors of Cr(VI) reduction valid for aqueous Fe

  18. Cyclic Oxidation Behavior of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Karthikeyan, J.; Garlick, R.

    2006-01-01

    A newly developed Cu-23 (wt %) Cr-5%Al (CuCrAl) alloy shown to resist hydridation and oxidation in an as-cast form is currently being considered as a protective coating for GRCop-84, which is an advanced copper alloy containing 8 (at.%) Cr and 4 (at.%) Nb. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. About a 10 percent weight loss observed at 973 and 1073 K was attributed to the excessive oxidation of the uncoated sides. In contrast, the uncoated substrate lost as much as 80 percent of its original weight under similar test conditions. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  19. Characterization of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Karthikeyan, J.; Lerch, B. A.; Barrett, C.; Garlich, R.

    2007-01-01

    A newly developed Cu-23(wt.%)Cr-5%Al (CuCrAl) alloy is currently being considered as a protective coating for GRCop-84 (Cu-8(at.%)Cr-4%Nb). The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. In contrast, the uncoated substrate lost as much as 80% of its original weight under similar test conditions. Low cycle fatigue tests revealed that the fatigue lives of thinly coated GRCop-84 specimens were similar to the uncoated specimens within the limits of experimental scatter. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  20. Controlling microstructure, preferred orientation, and mechanical properties of Cr-Al-N by bombardment and alloying with Ta

    NASA Astrophysics Data System (ADS)

    Hollerweger, R.; Zhou, L.; Holec, D.; Koller, C. M.; Rachbauer, R.; Polcik, P.; Mayrhofer, P. H.

    2016-02-01

    Recent ab initio studies showed that the inherent ductility of cubic structured Cr1-xAlxN coatings (as compared with similar hard coatings) significantly increases when alloyed with Ta. As there is only little experimental and theoretical information available, we have performed a combined experimental and ab initio based study on the influence of Ta additions (0, 2, 6, 12, and 26 at. % on the metal sublattice) on structure and mechanical properties of arc evaporated Cr1-x-yAlxTayN coatings with Al/(Cr + Al) ratios >0.61. With increasing Ta-content, the droplet number density decreases and the coating surface smoothens, which is much more pronounced as with increasing the bias potential from -40 to -120 V. Simultaneously, the columnar structure observed for Ta-free Cr0.37Al0.63N significantly changes into a fine-grained structure (crystallite size ˜5 nm) with clearly reduced columnar character. Increasing the Ta content also favors the formation of a preferred 200 growth orientation resulting in a reduction of the indentation moduli E from ˜500 to ˜375 GPa, which is in agreement with ab initio calculations. As the hardness H remains between 34 and 41 GPa, an increased resistance against brittle fracture is indicated with increasing Ta.

  1. Deposition of LaMO3 (M=Ni,Co,Cr,Al)-Oriented Films by Spray Combustion Flame Technique

    NASA Astrophysics Data System (ADS)

    Ichinose, Hiromichi; Shiwa, Yuzo; Nagano, Masamitsu

    1994-10-01

    LaMO3 (M=Ni,Co,Cr,Al) films were prepared on sintered alumina, sapphire (001) and MgO(100) at 500 900°C by spraying ultrasonically atomized aqueous solutions of nitrates into a combustion flame (spray combustion flame technique). LaNiO3 and LaCoO3 on MgO(100) crystallized in high-temperature phases (cubic) while LaCrO3 and LaAlO3 crystallized in room-temperature phases. LaMO3 (M=Ni,Co,Cr,Al) films on MgO(100) were highly oriented to (100), (100), (001) and (100), respectively, while the films on sintered alumina and sapphire were not. The electric resistivities of the dense LaMO3 (M=Ni,Co,Cr) films were as low as those of bulk ceramics. LaNiO3 film deposited on MgO above 700°C showed the lowest resistivity of about 6×10-6 Ω m. It was suggested that the reactivities of the constituent metal atoms with OH in the flame are associated with the preferred phase and the morphology of the films.

  2. Fabrication of CuAl{sub 1−x}M{sub x}O{sub 2} (M = Fe, Cr)/Ni film delafossite compounds using spin coating and their microstructure and dielectric constant

    SciTech Connect

    Diantoro, Markus Yuwita, Pelangi Eka Olenka, Desyana Nasikhudin

    2014-09-25

    The discovery of delafossite compound has encouraged more rapid technological developments particularly in transparent electronic devices. Copper oxide-based transparent thin films delafossite semiconductor recently give much attention in the field of optoelectronic technology, after the discovery of p-type CuAlO{sub 2}. The potential applications of a p-type semiconductor transparent conductive oxides (TCO) have been applied in broad field of optoelectronics. To explore a broad physical properties interms of magnetic conducting subtitution is understudied. In this work we report the fabrication of delafossite film on Ni substrate and their characterization of CuAl{sub 1−x}M{sub x}O{sub 2} delafossite compounds doped with Cr{sup 3+} and Fe{sup 3+} from the raw material of Cu(NO{sub 3}){sub 2}@@‡3H{sub 2}O, Al(NO{sub 3}){sub 3}@@‡9H{sub 2}O, Fe(NO{sub 3}){sub 3}@@‡9H{sub 2}O and Cr(NO{sub 3}){sub 3}@@‡9H{sub 2}O. The films were prepared using spin coating through a sol-gel technique at various concentrations of x = 0, 0.03, 0.04, and 0.05 for chromium and x = 0, 0.02, 0.04, 0.06, and 0.08 for iron doped. Crystal and microstructure were characterized by means of Cu-Kα Bragg-Brentano X-RD followed by High Score Plus and SEM-EDAX. The dielectric constants of the films were characterized using LCR meter. It was found that the CuAl{sub 1−x}M{sub x}O{sub 2}/Ni delafossite films were successfully fabricated. The CuAl{sub 1−x}Fe{sub x}O{sub 2} compound crystallized with lattice parameters of a = b ranged from 2.8603 Å to 2.8675 Å and c ranged from 16.9576 to 17.0763 Å. The increase of the dopant give rise to the increase of the lattice parameters. Since iron has bigger ionic radius (69 pm) than original site of Al{sup 3+} with radius of 53 pm the crystal volume lattice also increase. Further analyses of increasing volume of the crystal, as expected, affected to the decreasing of its dielectric constant. The similar trends also shown by Cr{sup 3+} doped of

  3. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  4. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route

    SciTech Connect

    Pereira, J.C.; Zambrano, J.C.; Afonso, C.R.M.; Amigó, V.

    2015-03-15

    Nickel-based superalloys such as NiCoCrAlY are widely used in high-temperature applications, such as gas turbine components in the energy and aerospace industries, due to their strength, high elastic modulus, and high-temperature oxidation resistance. However, the processing of these alloys is complex and costly, and the alloys are currently used as a bond coat in thermal barrier coatings. In this work, the effect of cold press and sintering processing parameters on the microstructure and mechanical properties of NiCoCrAlY alloy were studied using the powder metallurgy route as a new way to obtain NiCoCrAlYTa samples from a gas atomized prealloyed powder feedstock. High mechanical strength and adequate densification up to 98% were achieved. The most suitable compaction pressure and sintering temperature were determined for NiCoCrAlYTa alloy through microstructure characterization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy microanalysis (EDS) were performed to confirm the expected γ-Ni matrix and β-NiAl phase distribution. Additionally, the results demonstrated the unexpected presence of carbides and Ni–Y-rich zones in the microstructure due to the powder metallurgy processing parameters used. Thus, microhardness, nanoindentation and uniaxial compression tests were conducted to correlate the microstructure of the alloy samples with their mechanical properties under the different studied conditions. The results show that the compaction pressure did not significantly affect the mechanical properties of the alloy samples. In this work, the compaction pressures of 400, 700 and 1000 MPa were used. The sintering temperature of 1200 °C for NiCoCrAlYTa alloy was preferred; above this temperature, the improvement in mechanical properties is not significant due to grain coarsening, whereas a lower temperature produces a decrease in mechanical properties due to high porosity and

  5. Environmental biochemistry of chromium.

    PubMed

    Losi, M E; Amrhein, C; Frankenberger, W T

    1994-01-01

    Chromium is a d-block transitional element with many industrial uses. It occurs naturally in various crustal materials and is discharged to the environment as industrial waste. Although it can occur in a number of oxidation states, only 3+ and 6+ are found in environmental systems. The environmental behavior of Cr is largely a function of its oxidation state. Hexavalent Cr compounds (mainly chromates and dichromates) are considered toxic to a variety of terrestrial and aquatic organisms and are mobile in soil/water systems, much more so than trivalent Cr compounds. This is largely because of differing chemical properties: Hexavalent Cr compounds are strong oxidizers and highly soluble, while trivalent Cr compounds tend to form relatively inert precipitates at near-neutral pH. The trivalent state is generally considered to be the stable form in equilibrium with most soil/water systems. A diagram of the Cr cycle in soils and water is given in Fig. 6 (Bartlett 1991). This illustration provides a summary of environmentally relevant reactions. Beginning with hexavalent Cr that is released into the environment as industrial waste, there are a number of possible fates, including pollution of soil and surface water and leaching into groundwater, where it may remain stable and, in turn, can be taken up by plants or animals, and adsorption/precipitation, involving soil colloids and/or organic matter. Herein lies much of the environmental concern associated with the hexavalent form. A portion of the Cr(VI) will be reduced to the trivalent form by inorganic electron donors, such as Fe2+ and S2-, or by bioprocesses involving organic matter. Following this conversion, Cr3+ can be expected to precipitate as oxides and hydroxides or to form complexes with numerous ligands. This fraction includes a vast majority of global Cr reserves. Soluble Cr3+ complexes, such as those formed with citrate, can undergo oxidation when they come in contact with manganese dioxide, thus reforming

  6. Electronic and magnetic structure of chromium surfaces and chromium monolayers on iron

    SciTech Connect

    Victora, R.H.; Falicov, L.M.

    1985-05-01

    Chromium surfaces and Cr monolayers atop Fe have greatly enhanced magnetizations relative to bulk. The Cr (100) surface is ferromagnetic with a spin polarization of 3.00; the (110) surface is antiferromagnetic. A Cr monolayer is ferromagnetic atop either the (100) or (110) Fe surfaces; the former has a large polarization of 3.63.

  7. A Laboratory Procedure for the Reduction of Chromium(VI) to Chromium(III).

    ERIC Educational Resources Information Center

    Lunn, George; Sansone, Eric B.

    1989-01-01

    Chromium(VI) compounds are classified as oxidizers and must be specially packaged and transported for disposal while Cr(III) compounds are considered nonoxidizers. A process which reduces Cr(VI) to Cr(III) by adding sodium metabisulfite followed by neutralization with magnesium hydroxide is explored. (MVL)

  8. In vitro evaluation of human osteoblast adhesion to a thermally oxidized gamma-TiAl intermetallic alloy of composition Ti-48Al-2Cr-2Nb (at.%).

    PubMed

    Bello, Samir A; de Jesús-Maldonado, Idaris; Rosim-Fachini, Esteban; Sundaram, Paul A; Diffoot-Carlo, Nanette

    2010-05-01

    Ti-48Al-2Cr-2Nb (at.%) (gamma-TiAl), a gamma titanium aluminide alloy originally designed for aerospace applications, appears to have excellent potential as implant material. Thermal treatment of gamma-TiAl renders this alloy extremely corrosion resistant in vitro, which could improve its biocompatibility. In this study, the surface oxides produced by thermal oxidation (at 500 degrees C, and at 800 degrees C for 1 h in air) on gamma-TiAl were characterized by X-ray photoelectron spectroscopy (XPS). hFOB 1.19 cell adhesion on thermally oxidized gamma-TiAl was examined in vitro by a hexosaminidase assay, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) after 1, 7 and 14 days. Ti-6Al-4V surfaces were used for comparison. Hexosaminidase assay data and CLSM analysis of focal contacts and cytoskeleton organization showed no differences in cell attachment on autoclaved and both heat-treated gamma-TiAl surfaces at the different time points. SEM images showed well organized multi-layers of differentiated cells adhered on thermally oxidized gamma-TiAl surfaces at day 14. Unexpectedly, thermally oxidized Ti-6Al-4V surfaces oxidized at 800 degrees C exhibited cytotoxic effects on hFOB 1.19 cells. Our results indicate that thermal oxidation of gamma-TiAl seems to be a promising method to generate highly corrosion resistant and biocompatible surfaces for implant applications.

  9. A critical evaluation of GGA + U modeling for atomic, electronic and magnetic structure of Cr2AlC, Cr2GaC and Cr2GeC.

    PubMed

    Dahlqvist, M; Alling, B; Rosen, J

    2015-03-11

    In this work we critically evaluate methods for treating electron correlation effects in multicomponent carbides using a GGA + U framework, addressing doubts from previous works on the usability of density functional theory in the design of magnetic MAX phases. We have studied the influence of the Hubbard U-parameter, applied to Cr 3d orbitals, on the calculated lattice parameters, magnetic moments, magnetic order, bulk modulus and electronic density of states of Cr2AlC, Cr2GaC and Cr2GeC. By considering non-, ferro-, and five different antiferromagnetic spin configurations, we show the importance of including a broad range of magnetic orders in the search for MAX phases with finite magnetic moments in the ground state. We show that when electron correlation is treated on the level of the generalized gradient approximation (U = 0 eV), the magnetic ground state of Cr2AC (A = Al, Ga, Ge) is in-plane antiferromagnetic with finite Cr local moments, and calculated lattice parameters and bulk modulus close to experimentally reported values. By comparing GGA and GGA + U results with experimental data we find that using a U-value larger than 1 eV results in structural parameters deviating strongly from experimentally observed values. Comparisons are also done with hybrid functional calculations (HSE06) resulting in an exchange splitting larger than what is obtained for a U-value of 2 eV. Our results suggest caution and that investigations need to involve several different magnetic orders before lack of magnetism in calculations are blamed on the exchange-correlation approximations in this class of magnetic MAX phases.

  10. Evaluation of the corrosion resistance of Fe-Al-Cr alloys in simulated low NOx environments

    SciTech Connect

    Deacon, R.M.; DuPont, J.N.; Kiely, C.J.; Marder, A.R.; Tortorelli, P.F.

    2009-08-15

    Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has led researchers to examine the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In this work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 and 700{sup o}C for short (100 h) and long (5000 h) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance during short term exposures. For longer test times, increasing the aluminum concentration improved alloy corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in slower corrosion kinetics. A general classification of the scales developed on these alloys is presented.

  11. Study of the structure and properties of metal of the major steam lines of a CCGT-420 unit made from high-chromium X10CrMoVNb9-1 (P91) steel

    NASA Astrophysics Data System (ADS)

    Grin', E. A.; Anokhov, A. E.; Pchelintsev, A. V.; Krüger, E.-T.

    2016-07-01

    The technology of manufacture of live steam lines and hot reheat lines at FINOW Rohrsysteme GmbH are discussed. These pipelines are designed for high-performance CCGT units and are made from high-chromium martensitic steel X10CrMoVNb9-1 (P91). The principles of certification and evaluation of conformance of thermal and mechanical equipment made from new construction materials with the TRCU 032-2013 technical regulation of the Customs Union are detailed. The requirements outlined in Russian and international regulatory documents regarding the manufacture of pipes and semifinished products for pipeline systems are compared. The characteristic features of high-chromium martensitic steel, which define the requirements for its heat treatment and welding, are outlined. The methodology and the results of a comprehensive analysis of metal of pipes, fittings, and weld joints of steam lines are presented. It is demonstrated that the short-term mechanical properties of metal (P91 steel) of pipes, bends, and weld joints meet the requirements of European standards and Russian technical specifications. The experimental data on long-term strength of metal of pipes from a live steam line virtually match the corresponding reference curve from the European standard, while certain experimental points for metal of bends of this steam line and metal of pipes and bends from a hot reheat line lie below the reference curve, but they definitely stay within the qualifying (20%) interval of the scatter band. The presence of a weakened layer in the heat-affected zone of weld joints of steel P91 is established. It is shown that the properties of this zone govern the short-term and long-term strength of weld joints in general. The results of synthesis and analysis of research data support the notion that the certification testing of steam lines and other equipment made from chromium steels should necessarily involve the determination of long-term strength parameters.

  12. Increasing the structural complexity of chromium(IV) oxides by high-pressure and high-temperature reactions of CrO2.

    PubMed

    Castillo-Martínez, E; Arévalo-López, A M; Ruiz-Bustos, R; Alario-Franco, M A

    2008-10-06

    This work presents an overview of a series of increasingly complex oxides synthesized from CrO 2, under high-pressure and high-temperature conditions, having Cr (4+) in octahedral coordination. Although the emphasis is on the structure and microstructure of the compounds as obtained from X-ray diffraction and transmission electron microscopy and diffraction, attention is also given to their interesting electronic and magnetic properties. The study is complemented with an electron energy loss spectroscopic analysis of the different phases. These are the cubic perovskite SrCrO 3, the orthorhombic perovskite CaCrO 3, the solid solution Sr 1-xCa xCrO 3, the Ruddlesden-Popper-type Sr 3Cr 2O 7, the family CrSr 2RECu 2O 8 (RE = rare earth), a compositionally modulated perovskite "PbCrO 3", and the misfit layer oxide SrO 2[CrO 2] 1.85.

  13. A comparative first-principles study on electronic structures and mechanical properties of ternary intermetallic compounds Al8Cr4Y and Al8Cu4Y: Pressure and tension effects

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Pang, Mingjun; Tan, Yong; Zhan, Yongzhong

    2016-11-01

    An investigation into the bulk properties, elastic properties and Debye temperature under pressure, and deformation mode under tension of Al8Cu4Y and Al8Cr4Y compounds was investigated by using first principles calculations based on density functional theory. The calculated lattice constants for the ternary compounds (Al8Cu4Y and Al8Cr4Y) are in good agreement with the experimental data. It can be seen from interatomic distances that the bonding between Al1 atom and Cr, Y, and Al2 atoms in Al8Cr4Y are stronger than Al8Cu4Y. The results of cohesive energy show that Al8Cr4Y should be easier to be formed and much stronger chemical bonds than Al8Cu4Y. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν can be obtained by using the Voigt-Reuss-Hill averaging scheme. From the results of elastic properties, Al8Cr4Y has the stronger mechanical behavior than Al8Cu4Y. Our calculations also show that pressure has a greater effect on mechanical behavior for both compounds. The ideal tensile strength are obtained by stress-strain relationships under [001](001) uniaxial tensile deformation, which are 15.4 and 23.4 GPa for Al8Cu4Y and Al8Cr4Y, respectively. The total and partial density of states and electron charge density under uniaxial tensile deformations for Al8Cu4Y and Al8Cr4Y compounds are also calculated and discussed in this work.

  14. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films. [FEPC; TIPC; TIBC; CR

    SciTech Connect

    DiStefano, S.; Ramesham, R.; Fitzgerald, D.J. )

    1991-07-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. We report some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique. The films were characterized using differential scanning calorimetry (DSC), stress analysis, scanning electron microscopy (SEM), x-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), electron microprobe, and potentiodynamic polarization technique.

  15. Be/W and W/Be bilayers deposited on Si substrates with hydrogenated Fe-Cr and Fe-Cr-Al interlayers for plasma facing components

    NASA Astrophysics Data System (ADS)

    Greculeasa, S. G.; Palade, P.; Schinteie, G.; Lungu, G. A.; Porosnicu, C.; Jepu, I.; Lungu, C. P.; Kuncser, V.

    2016-12-01

    Be/W and W/Be bilayers, of interest in regard to the specific behavior of plasma facing components (PFCs) were deposited on Si substrates by thermionic vacuum arc, with Fe, Fe-Cr and Fe-Cr-Al interlayers. The interlayers, with compositions approaching the one of the reduced activation steels used in supporting PFCs, were subsequently annealed in hydrogen atmosphere. The multilayers were characterized with respect to morphologic, structural, diffusional and atomic intermixing aspects via XRD, XRR, X-ray photoemission spectroscopy and Mössbauer spectroscopy. All as-prepared samples present partially amorphous structures. A main α-Fe phase is observed, as well as (superparamagnetic) secondary Fe oxides, metallic Fe with Si, Cr, W and Be neighbors, Be-rich Fe-Be and Fe-Si phases. High amounts of tungsten and tungsten oxides were also evidenced in the Fe layer. The strong atomic intermixing of W and Be layers was indirectly supported by the unusual densities of W and Be layers and 57Fe Mössbauer spectroscopy results.

  16. Microstructures and Mechanical Properties of Ultrafine Grained Ti-47Al-2Cr (at %) Alloy Produced Using Powder Compact Forging

    NASA Astrophysics Data System (ADS)

    Nadakuduru, Vijay N.; Zhang, Deliang; Cao, Peng; Gabbittas, Brian

    Development of innovative techniques to produce gamma TiAl based alloys, with good mechanical properties, while still maintaining ultra fine grain size can be rewarding, but also is a great challenge. In the present study study a Ti-47Al-2Cr (at %) alloy has been synthesized by directly forging green powder compacts of a Ti/Al/Cr composite powder produced by high energy mechanical milling of a mixture of elemental Ti, Al, Cr powders. It has been found that the density of the bulk consolidated alloy sample after forging decreases from 95% of the theoretical density in the central region to 84% in the periphery region. The microstructure of the bulk alloy consisted of several Ti rich regions, which was expected to be mainly due to initial powder condition. The room temperature tensile strength of the samples produced from this process was found to be in the range of 115 - 130 MPa. The roles of canning and green powder compact density in determining the forged sample porosity level and distribution are discussed.

  17. On the resonant level of chromium in the rhombohedral and cubic phases of Pb{sub 1-x-y}Ge{sub x}Cr{sub y}Te alloys

    SciTech Connect

    Skipetrov, E. P. Pichugin, N. A.; Slyn'ko, E. I.; Slyn'ko, V. E.

    2013-06-15

    The temperature dependences of the Hall coefficient (4.2 K {<=} T {<=} 300 K, B {<=} 0.07 T) in Pb{sub 1-x-y}Ge{sub x}Cr{sub y}Te alloys (x = 0.03-0.08, y {<=} 0.01) are studied. An increase in the absolute value of the Hall coefficient with an increase in temperature is found. This fact is indicative of a decrease in the concentration of free electrons as a result of the motion of the resonant level of chromium stabilizing the Fermi level relative to the conduction-band bottom. The temperature dependences of the Hall coefficient, in satisfactory agreement with the experimental ones, are calculated in the context of the two-band Kane dispersion law allowing for the structural phase transition upon increasing temperature. The energy position and temperature coefficients of the motion of the resonant level of chromium relative to the middle of the band gap in the rhombohedral and cubic phases are determined.

  18. Bioremediation of chromium solutions and chromium containing wastewaters.

    PubMed

    Malaviya, Piyush; Singh, Asha

    2016-08-01

    Cr(VI) represents a serious threat to human health, living resources and ecological system as it is persistent, carcinogenic and toxic, whereas, Cr(III), another stable oxidation state of Cr, is less toxic and can be readily precipitated out of solution. The conventional methods of Cr(VI) removal from wastewaters comprise of chemical reduction followed by chemical precipitation. However, these methods utilize large amounts of chemicals and generate toxic sludge. This necessitates the need for devising an eco-technological strategy that would use the untapped potential of the biological world for remediation of Cr(VI) containing wastewaters. Among several viable approaches, biotransformation of Cr(VI) to relatively non-toxic Cr(III) by chromium resistant bacteria offers an economical- and environment-friendly option for its detoxification. Various studies on use of Cr(VI) tolerant viable bacterial isolates for treatment of Cr(VI) containing solutions and wastewater have been reported. Therefore, a detailed account of mechanisms and processes involved in bioreduction of Cr(VI) from solutions and wastewaters by bacterial isolates are the focus of this review article in addition to a discussion on toxicity of Cr(VI) on bacterial strains and various factors affecting Cr(VI) bioreduction.

  19. Brillouin light scattering study of Co2Cr0.6Fe0.4Al and Co2FeAl Heusler compounds

    NASA Astrophysics Data System (ADS)

    Gaier, O.; Hamrle, J.; Trudel, S.; Conca Parra, A.; Hillebrands, B.; Arbelo, E.; Herbort, C.; Jourdan, M.

    2009-04-01

    The thermal magnonic spectra of Co2Cr0.6Fe0.4Al (CCFA) and Co2FeAl were investigated using Brillouin light scattering (BLS) spectroscopy. For CCFA, the exchange constant A (exchange stiffness D) is found to be 0.48 ± 0.04 µerg cm-1 (203 ± 16 meV Å2), while for Co2FeAl the corresponding values of 1.55 ± 0.05 µerg cm-1 (370 ± 10 meV Å2) were found. The observed asymmetry in the BLS spectra between the Stokes and anti-Stokes frequencies was assigned to an interplay between the asymmetrical profiles of hybridized Damon-Esbach and perpendicular standing spin-wave modes, combined with the optical sensitivity of the BLS signal to the upper side of the CCFA or Co2FeAl film.

  20. Mechanical Properties of High Entropy Alloy Al0.1CoCrFeNi for Peripheral Vascular Stent Application.

    PubMed

    Alagarsamy, Karthik; Fortier, Aleksandra; Komarasamy, Mageshwari; Kumar, Nilesh; Mohammad, Atif; Banerjee, Subhash; Han, Hai-Chao; Mishra, Rajiv S

    2016-12-01

    High entropy alloys (HEAs) are new class of metallic materials with five or more principal alloying elements. Due to this distinct concept of alloying, the HEAs exhibit unique properties compared to conventional alloys. The outstanding properties of HEAs include increased strength, superior wear resistance, high temperature stability, increased fatigue properties, good corrosion, and oxidation resistance. Such characteristics of HEAs have generated significant interest among the scientific community. However, their applications are yet to be explored. This paper discusses the mechanical behavior and microstructure of Al0.1CoCrFeNi HEA subjected to thermo-mechanical processing, and its potential application in peripheral vascular stent implants that are prone to high failure rates. Results show that Al0.1CoCrFeNi alloy possesses characteristics that compare well against currently used stent materials and it can potentially find use in peripheral vascular stent implants and extend their life-cycle.

  1. Status Report on Irradiation Capsules Designed to Evaluate FeCrAl-UO2 Interactions

    SciTech Connect

    Field, Kevin G.; Howard, Richard H.

    2016-06-24

    This status report provides the background and current status of a series of irradiation capsules that were designed and are being built to test the interactions between candidate FeCrAl cladding for enhanced accident tolerant applications and prototypical enriched commercial UO2 fuel in a neutron radiation environment. These capsules will test the degree, if any, of fuel cladding chemical interactions (FCCI) between FeCrAl and UO2. The capsules are to be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory to burn-ups of 10, 30, and 50 GWd/MT with a nominal target temperature at the interfaces between the pellets and clad of 350°C.

  2. Superior Mechanical Properties of AlCoCrFeNiTi x High-Entropy Alloys upon Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Jiao, Z. M.; Ma, S. G.; Chu, M. Y.; Yang, H. J.; Wang, Z. H.; Zhang, Y.; Qiao, J. W.

    2016-02-01

    High-entropy alloys with composition of AlCoCrFeNiTi x ( x: molar ratio; x = 0, 0.2, 0.4) under quasi-static and dynamic compression exhibit excellent mechanical properties. A positive strain-rate sensitivity of yield strength and the strong work-hardening behavior during plastic flows dominate upon dynamic loading in the present alloy system. The constitutive relationships are extracted to model flow behaviors by employing the Johnson-Cook constitutive model. Upon dynamic loading, the ultimate strength and fracture strain of AlCoCrFeNiTi x alloys are superior to most of bulk metallic glasses and in situ metallic glass matrix composites.

  3. Effects of chromium and nitrogen content on the microstructures and mechanical properties of as-cast Co-Cr-Mo alloys for dental applications.

    PubMed

    Yoda, Keita; Suyalatu; Takaichi, Atsushi; Nomura, Naoyuki; Tsutsumi, Yusuke; Doi, Hisashi; Kurosu, Shingo; Chiba, Akihiko; Igarashi, Yoshimasa; Hanawa, Takao

    2012-07-01

    The microstructure and mechanical properties of as-cast Co-(20-33)Cr-5Mo-N alloys were investigated to develop ductile Co-Cr-Mo alloys without Ni addition for dental applications that satisfy the requirements of the type 5 criteria in ISO 22674. The effects of the Cr and N contents on the microstructure and mechanical properties are discussed. The microstructures were evaluated using scanning electron microscopy with energy-dispersive X-ray spectroscopy (EDS), X-ray diffractometry (XRD), and electron back-scattered diffraction pattern analysis. The mechanical properties were evaluated using tensile testing. The proof strength and elongation of N-containing 33Cr satisfied the type 5 criteria in ISO 22674. ε-phase with striations was formed in the N-free (20-29)Cr alloys, while there was slight formation of ε-phase in the N-containing (20-29)Cr alloys, which disappeared in N-containing 33Cr. The lattice parameter of the γ-phase increased with increasing Cr content (i.e. N content) in the N-containing alloys, although the lattice parameter remained almost the same in the N-free alloys because of the small atomic radius difference between Co and Cr. Compositional analyses by EDS and XRD revealed that in the N-containing alloys Cr and Mo were concentrated in the cell boundary, which became enriched in N, stabilizing the γ-phase. The mechanical properties of the N-free alloys were independent of the Cr content and showed low strength and limited elongation. Strain-induced martensite was formed in all the N-free alloys after tensile testing. On the other hand, the proof strength, ultimate tensile strength, and elongation of the N-containing alloys increased with increasing Cr content (i.e. N content). Since formation of ε-phase after tensile testing was confirmed in the N-containing alloys the deformation mechanism may change from strain-induced martensite transformation to another form, such as twinning or dislocation slip, as the N content increases. Thus the N

  4. Formation of Al2O3/FeAl coatings on a 9Cr-1Mo steel, and corrosion evaluation in flowing Pb-17Li loop

    NASA Astrophysics Data System (ADS)

    Majumdar, Sanjib; Paul, Bhaskar; Chakraborty, Poulami; Kishor, Jugal; Kain, Vivekanand; Dey, Gautam Kumar

    2017-04-01

    Iron aluminide coating layers were formed on a ferritic martensitic grade 9Cr-1Mo (P 91) steel using pack aluminizing process. The formation of different aluminide compositions such as orthorhombic-Fe2Al5, B2-FeAl and A2-Fe(Al) on the pack chemistry and heat treatment conditions have been established. About 4-6 μm thick Al2O3 scale was formed on the FeAl phase by controlled heat treatment. The corrosion tests were conducted using both the FeAl and Al2O3/FeAl coated specimens in an electro-magnetic pump driven Pb-17Li Loop at 500 °C for 5000 h maintaining a flow velocity of 1.5 m/s. The detailed characterization studies using scanning electron microscopy, back-scattered electron imaging and energy dispersive spectrometry revealed no deterioration of the coating layers after the corrosion tests. Self-healing oxides were formed at the cracks generated in the aluminide layers during thermal cycling and protected the base alloy (steel) from any kind of elemental dissolution or microstructural degradation.

  5. Effects of Tantalum on the Temporal Evolution of a Model Ni-Al-Cr Superalloy During Phase Decomposition

    NASA Technical Reports Server (NTRS)

    Booth, Morrison, Christopher; Seidman, David N.; Noebe, Ronald D.

    2009-01-01

    The effects of a 2.0 at.% addition of Ta to a model Ni-10.0Al-8.5Cr (at.%) superalloy aged at 1073 K are assessed using scanning electron microscopy and atom-probe tomography. The gamma'(Ll2)-precipitate morphology that develops as a result of gamma-(fcc)matrix phase decomposition is found to evolve from a bimodal distribution of spheroidal precipitates, to {001}-faceted cuboids and parallelepipeds aligned along the elastically soft {001}-type directions. The phase compositions and the widths of the gamma'-precipitate/gamma-matrix heterophase interfaces evolve temporally as the Ni-Al-Cr-Ta alloy undergoes quasi-stationary state coarsening after 1 h of aging. Tantalum is observed to partition preferentially to the gamma'-precipitate phase, and suppresses the mobility of Ni in the gamma-matrix sufficiently to cause an accumulation of Ni on the gamma-matrix side of the gamma'/gamma interface. Additionally, computational modeling, employing Thermo-Calc, Dictra and PrecipiCalc, is employed to elucidate the kinetic pathways that lead to phase decomposition in this concentrated Ni-Al-Cr-Ta alloy.

  6. Development of a CuNiCrAl Bond Coat for Thermal Barrier Coatings in Rocket Combustion Chambers

    NASA Astrophysics Data System (ADS)

    Fiedler, Torben; Rösler, Joachim; Bäker, Martin

    2015-12-01

    The lifetime of rocket combustion chambers can be increased by applying thermal barrier coatings. The standard coating systems usually used in gas turbines or aero engines will fail at the bond coat/substrate interface due to the chemical difference as well as the different thermal expansion between the copper liner and the applied NiCrAlY bond coat. A new bond coat alloy for rocket engine applications was designed previously with a chemical composition and coefficient of thermal expansion more similar to the copper substrate. Since a comparable material has not been applied by thermal spraying before, coating tests have to be carried out. In this work, the new Ni-30%Cu-6%Al-5%Cr bond coat alloy is applied via high velocity oxygen fuel spraying. In a first step, the influence of different coating parameters on, e.g., porosity, amount of unmolten particles, and coating roughness is investigated and a suitable parameter set for further studies is chosen. In a second step, copper substrates are coated with the chosen parameters to test the feasibility of the process. The high-temperature behavior and adhesion is tested with laser cycling experiments. The new coatings showed good adhesion even at temperatures beyond the maximum test temperatures of the NiCrAlY bond coat in previous studies.

  7. Mechanical properties and permeability of hydrogen isotopes through CrNi35WTiAl alloy, containing radiogenic helium

    SciTech Connect

    Maksimkin, I.P.; Yukhimchuk, A.A.; Boitsov, I.Y.; Malkov, I.L.; Musyaev, R.K.; Baurin, A.Y.; Shevnin, E.V.; Vertey, A.V.

    2015-03-15

    The long-term contact of structural materials (SM) with tritium-containing media makes their properties in terms of kinetic permeability of hydrogen isotopes change. This change is the consequence of the defect formation in SM due to the result of {sup 3}He build-up generated by the radioactive decay of tritium dissolved in SM. This paper presents the experimental results concerning the permeability of hydrogen isotopes through CrNi35WTiAl alloy containing {sup 3}He and the impact of the presence of {sup 3}He and H on its mechanical properties. Tensile tests of cylindrical samples containing various concentrations of {sup 3}He (90, 230 and 560 appm) have been performed in inert and hydrogen atmospheres. The build-up of {sup 3}He has been made using the 'helium trick' technique. The maximal decrease in the plastic characteristics of the CrNi35WTiAl alloy occurs in samples with the highest {sup 3}He (560 appm) content at 873 K. The permeability of deuterium through the CrNi35WTiAl alloy in the initial state and that with 560 appm of {sup 3}He content was explored. The presence of this {sup 3}He concentration has shown an increase in deuterium permeability, evidently due to structural changes in the material under the impact of radiogenic helium.

  8. Deformation Behavior of Laser Welds in High Temperature Oxidation Resistant Fe-Cr-Al Alloys for Fuel Cladding Applications

    SciTech Connect

    Field, Kevin G; Gussev, Maxim N; Yamamoto, Yukinori; Snead, Lance Lewis

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al in weight percent with a minor addition of yttrium using laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds has been carried out to determine the performance of welds as a function of alloy composition. Laser welding resulted in a defect free weld devoid of cracking or inclusions for all alloys studied. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. No significant correlation was found between the deformation behavior/mechanical performance of welds and the level of Cr or Al in the alloy ranges studied.

  9. Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings

    NASA Astrophysics Data System (ADS)

    Huang, Ping-Kang; Yeh, Jien-Wei

    2009-06-01

    AlCrNbSiTiV nitride films were deposited by reactive radio-frequency magnetron sputtering and the effects of substrate bias on the chemical composition, structure and mechanical properties of the deposited films were investigated. AlCrNbSiTiV nitride films exhibit a single FCC NaCl-type structure and have the stoichiometric nitride ratio of (Al, Cr, Nb, Si, Ti, V)50N50. The deposition rate decreases with increasing substrate bias due to resputtering effects and densification of films, which also leads to less obvious columnar structure, reduced grain size, smaller surface roughness and transition of preferred orientation from the (1 1 1) plane to the (2 0 0) plane. The nitride film deposited at -100 V exhibits the maximum compressive stress around 4.5 GPa and attains a peak hardness and an elastic modulus of 42 GPa and 350 GPa, respectively, which fall in the superhard grade. Moreover, the film keeps its hardness at the superhard grade even after its residual compressive stress was partially released by annealing at 1073 K for 5 h. The structural evolution mechanism and strengthening mechanism are both discussed.

  10. Overview of the multifaceted activities towards development and deployment of nuclear-grade FeCrAl Alloys

    SciTech Connect

    Field, Kevin G; Yamamoto, Yukinori; Pint, Bruce A; Terrani, Kurt A

    2016-01-01

    A large effort is underway under the leadership of US DOE Fuel Cycle R&D program to develop advanced FeCrAl alloys as accident tolerant fuel (ATF) cladding to replace Zr-based alloys in light water reactors. The primary motivation is the excellent oxidation resistance of these alloys in high-temperature steam environments right up to their melting point (roughly three orders of magnitude slower oxidation kinetics than zirconium). A multifaceted effort is ongoing to rapidly advance FeCrAl alloys as a mature ATF concept. The activities span the broad spectrum of alloy development, environmental testing (high-temperature high-pressure water and elevated temperature steam), detailed mechanical characterization, material property database development, neutron irradiation, thin tube production, and multiple integral fuel test campaigns. Instead of off-the-shelf commercial alloys that might not prove optimal for the LWR fuel cladding application, a large amount of effort has been placed on the alloy development to identify the most optimum composition and microstructure for this application. The development program is targeting a cladding that offers performance comparable to or better than modern Zr-based alloys under normal operating and off-normal conditions. This paper provides a comprehensive overview of the systematic effort to advance nuclear-grade FeCrAl alloys as an ATF cladding in commercial LWRs.

  11. Creep behavior of a rapidly solidified Al-5Cr-2Zr alloy between room temperature and 823 K

    SciTech Connect

    Brahmi, A.; Gerique, T.; Lieblich, M.; Torralba, M.

    1996-12-15

    Rapidly solidified (RS) Al-Cr-Zr alloys are established contenders for applications in the aircraft industry where lower cost, lightweight substitutes for titanium alloys are being sought for use in the temperature range of 473 to 723 K. Creep resistance is one of the critical properties of any material intended for high temperature applications. Therefore, a precise knowledge of creep behavior and a clear understanding of the mechanisms controlling creep in these materials are of great importance. The good thermal stability exhibited by the RS Al-5Cr-2Zr (wt.%) alloy makes it a good candidate for applications where high creep resistance is needed. This paper presents the results of creep behavior over a wide range of temperatures (0.32 to 0.88 Tm, where Tm = 933 K is the melt temperature of pure aluminum) of an Al-5Cr-2Zr alloy processed by gas atomization and extrusion and includes a brief discussion on the creep mechanisms that may be involved.

  12. Effects of processing variables on the creep behavior of investment cast Ti-48Al-2Nb-2Cr

    SciTech Connect

    Keller, M.M.; Jones, P.E.; Porter, W.J. III; Eylon, D.

    1995-12-31

    Intermetallics based on ordered {gamma}-TiAl are being considered for the replacement of steels and nickel-based superalloys for high temperature aerospace and automotive applications. This study investigates the creep behavior of investment cast Ti-48Al-2Nb-2Cr with microstructures ranging from duplex to nearly lamellar. Constant load creep tests were conducted in air at temperatures of 650 C and 760 C and at stress levels of 104MPa, 155MPa, and 207MPa. The effects of cooling rates during casting, aluminum content, oxygen level, and microstructure on creep properties are discussed. The activation energy for creep and stress exponent are also reported.

  13. Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Jiang, Li; Jiang, Hui; Pan, Xuemin; Cao, Zhiqiang; Deng, Dewei; Wang, Tongmin; Li, Tingju

    2015-10-01

    A series of Al2CrFeNiMo x ( x = 0 to 2.0 at.%) high-entropy alloys coatings was synthesized on stainless steel by laser cladding. The effect of Mo content on the microstructures and mechanical properties of Al2CrFeNiMo x coatings was studied. The results show that the laser clad layer consists of the cladding zone, bonding zone, and heat-affected zone. The Al2CrFeNiMo x coatings are composed of two simple body-center cubic phases and the cladding zone is mainly composed of equiaxed grains. When the content of Mo reaches 2 at.%, a eutectic structure is found in the interdendritic regions. The surface microhardness of the Al2CrFeNiMo2 coating is 678 HV, which is about three times higher than that of the substrate (243 HV). Compared with stainless steel, the wear resistance of the coatings has been improved greatly. The wear mass loss of the Al2CrFeNiMo alloy is 9.8 mg, which is much less than that of the substrate (18.9 mg) and its wear scar width is the lowest among the Al2CrFeNiMo x coatings, indicating that the wear resistance of the Al2CrFeNiMo is the best.

  14. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    PubMed

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively.

  15. Hygienic behaviour in chromium plating industries.

    PubMed

    Lumens, M E; Ulenbelt, P; Géron, H M; Herber, R F

    1993-01-01

    The impact of hygienic behaviour on the uptake of chromium has been studied in two small chromium plating factories. The correlation between the environmental monitoring measure (Cr-A) and the biological monitoring measure (Cr-U) varied between the two factories. In one factory (I) the correlation between Cr-U and Cr-A was 0.68 (P < 0.001), while in the other factory (II) it was negative (r = -0.64, P = 0.03). However, in both populations a significant impact of hygienic behaviour on the variance in Cr-U levels could be detected. In factory I, explained variance could be enhanced to R2 = 0.94 (P < 0.001) when considering expressions of hygienic behaviour. In factory II, a strong relation proved to exist between Cr-U and dermal uptake. For the various questions referring to skin problems and possible dermal uptake, the correlation with Cr-U is up to 0.70 (P = 0.03). When comparing the results for the two factories, it is shown that in addition to individual differences in hygienic behaviour, general hygienic conditions also have an impact on uptake of chromium. In factory II, where many efforts were made to prevent exposure to chromium, Cr-U was significantly lower than in factory I (P < 0.001).

  16. Trivalent Chromium Conversion Coatings for Aluminum

    DTIC Science & Technology

    1993-09-27

    salts corrosion. This is without any hexavalent chromium in the bath. The absence of Cr+ 6 was determined by analysis of the bath by atomic absorption spectroscopy and...coating was determined by dissolving the films 5 minutes in 25% (vol.) HC1 at 250 C and analyzing for Cr 20 by atomic absorption spectroscopy . The solution

  17. Chemical behavior of acidified chromium (3) solutions

    SciTech Connect

    Terman, D.K.

    1981-05-01

    A unique energy-storage system has been developed at NASA's Lewis Research Center called REDOX. This NASA-REDOX system is an electrochemical storage device that utilized the oxidation and reduction of two fully soluble redox couples for charging and discharging. The redox couples now being investigated are acidified chloride solutions of chromium (Cr(+2)/Cr(+3)) and iron (Fe(+2)/Fe(+3)).

  18. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Liu, Jingmao; Geng, Dongsen; Guo, Peng; Zheng, Jun; Wang, Qimin

    2016-12-01

    DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C2H2 and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C2H2 fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C2H2 fraction. The results show that the Al and Cr contents in the films increased continuously as the C2H2 fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would cause abrasive wear and thus deteriorate the wear performance of the films.

  19. Healthy response from chromium survived pteridophytic plant-Ampelopteris prolifera with the interaction of mycorrhizal fungus-Glomus deserticola.

    PubMed

    Singh, Joginder; Kumar, Manoj; Vyas, Anil

    2014-01-01

    Interaction between arbuscular mycorrhizal fungus Glomus deserticola and pteridophytic member Ampelopteris prolifera was found abundant on entire growth level based on elemental composition and gaseous exchange as a potential remediation system for phytoextraction of chromium. Inoculated A. prolifera (AM) and non-inoculated A. prolifera (Non-AM) were supplied with two Cr species: 12 mmol of trivalent cation (Cr(+3)) [Cr(III)] and 0.1 mmol of divalent dichromate anion (Cr2O7(-2)) [Cr(VI)]. Both Cr species were found to be depressed in overall growth and inefficient stomatal conductance (g(s)) and net photosynthesis (NP). Mycorrhizal association was found to be natural scavenger of Cr toxicity as indicated by greater growth in plants exposed to Cr species, and increased gas exchange of Cr(III) treated plants. Though, chromium reduction resulted lower level of nitrogen (N), phosphorus (P), and potassium (K) but interest