Science.gov

Sample records for al codoped zno

  1. Charge Compensated (Al, N) Co-Doped Zinc Oxide (ZnO) Films for Photlelectrochemical Application

    SciTech Connect

    Shet, S.

    2012-01-01

    ZnO thin films with significantly reduced bandgaps were synthesized by doping N and co-doping Al and N at 100oC. All the films were synthesized by radio-frequency magnetron sputtering on F-doped tin-oxide-coated glass. We found that co-doped ZnO:(Al,N) thin films exhibited significantly enhanced crystallinity as compared to ZnO doped solely with N, ZnO:N, at the same growth conditions. Furthermore, annealed ZnO:(Al,N) thin films exhibited enhanced N incorporation over ZnO:N films. As a result, ZnO:(Al,N) films exhibited improved photocurrents than ZnO:N films grown with pure N doping, suggesting that charge-compensated donor-acceptor co-doping could be a potential method for bandgap reduction of wide-bandgap oxide materials to improve their photoelectrochemical performance.

  2. Ferromagnetism studies of Cu-doped and (Cu, Al) co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Wu, S. Z.; Yang, H. L.; Xu, X. G.; Miao, J.; Jiang, Y.

    2011-01-01

    We have studied the room temperature ferromagnetism (FM) in Cu-doped and (Cu, Al) co-doped ZnO thin films which were grown on quartz substrates by chemical method based on a sol-gel process combining with spin-coating technology. X-ray diffraction (XRD) patterns demonstrate that both the Cu-doped and (Cu, Al) co-doped ZnO films have the hexagonal wurtzite structure with c-axis orientation. Alternating Gradient Magnetometer (AGM) measurements confirm that all the doped ZnO samples are ferromagnetic at room temperature. When the doped Cu content is 1 %, the Cu-doped ZnO film has the strongest FM. The FM significantly decreases in the (Cu, Al) co-doped ZnO films. The doping of Al ions suppresses the FM induced by the doped Cu ions.

  3. Study of properties of (Mg, Al)-codoped ZnO with GGA and mBJ approximations

    NASA Astrophysics Data System (ADS)

    Khuili, Mohamed; Fazouan, Nejma; El Makarim, Hassna Abou; Atmani, El Houssine

    2016-08-01

    The physical properties of the codoped ZnO system Zn 1 - x - yMgxAly O were studied using a Gaussian and plane waves basis set method implemented in CP2K code, combined to the modified Becke-Johnson potential approximation implemented in the Wien2k code. We have found that the magnesium doped ZnO enhances the optical properties and induces a blue shift in the optical band gap, but reduces its electrical properties. The incorporation of a low Mg concentration in Al doped ZnO achieves a good electrical conductivity and high transmittance. These results make this material a suitable candidate for electronic transparent devices.

  4. Transparent and conductive Al/F and In co-doped ZnO thin films deposited by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Hadri, A.; Taibi, M.; El hat, A.; Mzerd, A.

    2016-02-01

    In doped ZnO (IZO), In-Al co-doped ZnO (IAZO) and In-F co-doped ZnO (IFZO) were deposited on glass substrates at 350 °C by spray pyrolysis technique. The structural, optical and electrical properties of as-deposited thin films were investigated and compared. A polycrystalline and (002) oriented wurtzite crystal structure was confirmed by X-ray patterns for all films; and the full width at half -maximum (FWHM) of (002) diffraction peak increased after co-doping. The investigation of the optical properties was performed using Uv-vis spectroscopy. The average transmittances of all the films were between 70 and 85%. Hall Effect measurements showed that the electrical conductivity of co-doped films increased as compared with IZO thin film. The highest conductivity of about 16.39 Ω-1 cm-1 was obtained for as-deposited IFZO thin film. In addition, the thin films were annealed at 350 °C for two hour under Ar atmosphere and their optical, electrical properties and the associated photoluminescence (PL) responses of selected films were analysed. After annealing, the electrical conductivity of all thin films was improved and the optical transmittance remained above 70%. Room temperature PL revealed that the annealed IAZO thin film had a strong green emission than that of IZO film.

  5. Hydrothermal growth and conductivity enhancement of (Al, Cu) co-doped ZnO nanorods thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mohua; Mahapatra, Preetilata; Thangavel, R.

    2016-05-01

    The incorporation of Al, Cu co-doping in ZnO host lattice plays an important role in modification of structural, optical and electrical properties in optoelectronic devices. In the present work, we were grown one dimensional ZnO nanorods (NRs) doped with different concentration of Al (0%~5%) and Cu was kept 20 M% on ITO glass substrates using a facile hydrothermal method, and investigated the effect of the codoping on the surface morphology and the electrical and optical performances of the doped ZnO NRs as photo anodes for solar water splitting applications. The crystallite size of NRs shows tuning in the band gap between 3.194 (Zn0.79Al0.01Cu0.2O) to 3.212 eV (Zn0.75Al0.05Cu0.2O) with Aluminium doping concentration and a remarkable improvement in current density (J) from 0.05 mA/cm2 to 4.98 mA/cm2 was achieved by incorporating Al and Cu has a critical effect of ZnO nanorods.

  6. Sol-gel derived Al-Ga co-doped transparent conducting oxide ZnO thin films

    NASA Astrophysics Data System (ADS)

    Serrao, Felcy Jyothi; Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2016-05-01

    Transparent conducting ZnO doped with Al, Ga and co-doped Al and Ga (1:1) (AGZO) thin films were grown on glass substrates by cost effective sol-gel spin coating method. The XRD results showed that all the films are polycrystalline in nature and highly textured along the (002) plane. Enhanced grain size was observed in the case of AGZO thin films. The transmittance of all the films was more than 83% in the visible region of light. The electrical properties such as carrier concentration and mobility values are increased in case of AGZO compared to that of Al and Ga doped ZnO thin films. The minimum resistivity of 2.54 × 10-3 Ω cm was observed in AGZO thin film. The co-doped AGZO thin films exhibited minimum resistivity and high optical transmittance, indicate that co-doped ZnO thin films could be used in transparent electronics mainly in display applications.

  7. RETRACTED: Investigation of structural, optical and electronic properties in Al-Sn co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pan, Zhanchang; Tian, Xinlong; Wu, Shoukun; Yu, Xia; Li, Zhuliang; Deng, Jianfeng; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2013-01-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Figures 3 and 4 of this paper have also been presented as belonging to other materials in other publications. This observation is evidence of fraud and therefore it is not certain that the described research and conclusions of this paper belong to the presented images. Figures 3 and 4 of this paper can also be found in: Effect of annealing on the structures and properties of Al and F co-doped ZnO nanostructures, Materials Science in Semiconductor Processing, 2014, 17, 162-167, http://dx.doi.org/10.1016/j.mssp.2013.09.023 Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol-gel method, Journal of Alloys and Compounds, 2014,583, 32-38, http://dx.doi.org/10.1016/j.jallcom.2013.06.192 Properties of fluorine and tin co-doped ZnO thin films deposited by sol-gel method, Journal of Alloys and Compounds, 2013,576, 31-37, http://dx.doi.org/10.1016/j.jallcom.2013.04.132

  8. X-ray Photoelectron Spectroscopy Study of Al- and N- Co-Doped p-Type ZnO Thin Films

    SciTech Connect

    Yuan, G. D.; Ye, Z. Z.; Huang, J. Y.; Zhu, L. P.; Perkins, C. L.; Zhang, S. B.

    2009-01-01

    The chemical state of nitrogen, aluminum, oxygen and zinc in Al-N co-doped p-type ZnO thin films was investigated by X-ray photoelectron spectroscopy (XPS). N{sub 1s} peak were detected in both the two p-type ZnO thin films, showing two components. The higher binding energy peak may be due to the Al-No-H species, and the lower one perhaps derive from the (NH{sub 2}){sup -} cluster for the ammonia introduction. These two peaks both contribute to the p-type behavior in the ZnO films. A symmetry 74.4 eV binding energy in Al{sub 2p3/2} photoelectron peaks revealed an Al-N bonding state, a key factor to the co-doping method.

  9. Effect of annealing atmosphere on photoluminescence and gas sensing of solution-combustion-synthesized Al, Pd co-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Min; Lv, Tan; Wang, Qiong; Zou, Yun-ling; Lian, Xiao-xue; Liu, Hong-peng

    2015-11-01

    Al, Pd co-doped ZnO nanoparticles (NPs) synthesized using a solution combustion method and subsequent annealing process under various atmospheres, including air, nitrogen, and hydrogen, were characterized using x-ray diffraction, energy-dispersive x-ray spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The gas-sensing properties of the sensors based on the NPs were also examined. The results indicated that the Al, Pd co-doped ZnO NPs, with an average crystallite size of 10 nm, exhibited enhanced gas-sensing performance compared with that of pure ZnO and Al-doped ZnO. The response of the Al, Pd co-doped ZnO NPs annealed in N2 to ethanol (49.22) was nearly 5.7 times higher than that to acetone (8.61) and approximately 20 - 27 times higher than that to benzene (2.38), carbon monoxide (2.23), and methane (1.78), which demonstrates their excellent selectivity to ethanol versus other gases. This high ethanol response can be attributed to the combined effects of the small size, Schottky barrier, lattice defects, and catalysis. [Figure not available: see fulltext.

  10. Transparent conducting Si-codoped Al-doped ZnO thin films prepared by magnetron sputtering using Al-doped ZnO powder targets containing SiC

    SciTech Connect

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu

    2009-07-15

    Transparent conducting Al-doped ZnO (AZO) thin films codoped with Si, or Si-codoped AZO (AZO:Si), were prepared by radio-frequency magnetron sputtering using a powder mixture of ZnO, Al{sub 2}O{sub 3}, and SiC as the target; the Si content (Si/[Si+Zn] atomic ratio) was varied from 0 to 1 at. %, but the Al content (Al/[Al+Zn] atomic ratio) was held constant. To investigate the effect of carbon on the electrical properties of AZO:Si thin films prepared using the powder targets containing SiC, the authors also prepared thin films using a mixture of ZnO, Al{sub 2}O{sub 3}, and SiO{sub 2} or SiO powders as the target. They found that when AZO:Si thin films were deposited on glass substrates at about 200 degree sign C, both Al and Si doped into ZnO acted as effective donors and the atomic carbon originating from the sputtered target acted as a reducing agent. As a result, sufficient improvement was obtained in the spatial distribution of resistivity on the substrate surface in AZO:Si thin films prepared with a Si content (Si/[Si+Zn] atomic ratio) of 0.75 at. % using powder targets containing SiC. The improvement in resistivity distribution was mainly attributed to increases in both carrier concentration and Hall mobility at locations on the substrate corresponding to the target erosion region. In addition, the resistivity stability of AZO: Si thin films exposed to air for 30 min at a high temperature was found to improve with increasing Si content.

  11. Microstructural, optical, and electrical properties of Ni–Al co-doped ZnO films prepared by DC magnetron sputtering

    SciTech Connect

    Jo, Young Dae; Hui, K.N.; Hui, K.S.; Cho, Y.R.; Kim, Kwang Ho

    2014-03-01

    Graphical abstract: - Highlights: • Ni–Al co-doped ZnO (NiAl:ZnO) composite thin films were deposited by DC magnetron sputtering at room temperature. • All films showed a highly preferential (0 0 2) c-axis orientation. • XPS revealed the presence of metallic Ni, NiO, and Ni{sub 2}O{sub 3} states, and Ni atoms were successfully doped in the NiAl:ZnO films. • NiAl:ZnO (3 wt% Ni) film showed the lowest electrical resistivity of 2.59 × 10{sup −3} Ω cm. • Band gap widening (4.18 eV) was observed in the NiAl:ZnO films with 5 wt% Ni. - Abstract: Ni–Al co-doped ZnO (NiAl:ZnO) films with fixed Al content at 2 wt% and different Ni contents (2.5, 3, and 5 wt%) were deposited by DC magnetron sputtering in an argon atmosphere at room temperature. X-ray diffraction revealed that all films showed a highly preferential (0 0 2) c-axis orientation. XPS revealed the presence of metallic Ni, NiO, and Ni{sub 2}O{sub 3} states, and Ni atoms were successfully doped in NiAl:ZnO films, which did not result in a change in ZnO crystal structure and orientation. The electrical resistivity of NiAl:ZnO film was decreased to 2.59 × 10{sup −3} Ω cm at a Ni doping concentration of 3 wt% compared with undoped Al-doped ZnO film (5.58 × 10{sup −3} Ω cm). The mean optical transmittance in the visible range was greater than 80% for all films. Band gap widening (4.18 eV) was observed in the NiAl:ZnO films with 5 wt% Ni, attributed to the Burstein–Moss shift due to the increase of carrier concentration.

  12. Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Hsing; Chang, Chiao-Lu

    2016-05-01

    ZnO is a wide bandgap semiconductor that has many potential applications such as solar cells, thin film transistors, light emitting diodes, and gas/biological sensors. In this study, a composite ceramic ZnO target containing 1 wt% Al2O3 and 1.5 wt% ZnF2 was prepared and used to deposit transparent conducting Al and F co-doped zinc oxide (AFZO) thin films on glass substrates by radio frequency magnetron sputtering. The effect of substrate temperatures ranging from room temperature (RT) to 200 °C on structural, morphological, electrical, chemical, and optical properties of the deposited thin films were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), Hall effect measurement, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and UV-vis spectrophotometer. The XRD results showed that all the AFZO thin films had a (0 0 2) diffraction peak, indicating a typical wurtzite structure with a preferential orientation of the c-axis perpendicular to the substrate. The FE-SEM and AFM analyses indicated that the crystallinity and grain size of the films were enhanced while the surface roughness decreased as the substrate temperature increased. Results of Hall effect measurement showed that Al and F co-doping decreased the resistivity more effectively than single-doping (either Al or F doping) in ZnO thin films. The resistivity of the AFZO thin films decreased from 5.48 × 10-4 to 2.88 × 10-4 Ω-cm as the substrate temperature increased from RT to 200 °C due to the increased carrier concentration and Hall mobility. The optical transmittances of all the AFZO thin films were over 92% in the wavelength range of 400-800 nm regardless of substrate temperature. The blue-shift of absorption edge accompanied the rise of the optical band gap, which conformed to the Burstein-Moss effect. The developed AFZO thin films are suitable as transparent conducting electrodes for various optoelectronic

  13. Structural, electrical and optical properties of Al-Ti codoped ZnO (ZATO) thin films prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jiang, Minhong; Liu, Xinyu

    2008-12-01

    Al-Ti codoped ZnO (ZATO) thin films were grown on glass substrates at room temperature by radio frequency (RF) magnetron sputtering technique and annealed under vacuum (˜10 -1 Pa) at 400 °C for 3 h. The X-ray diffraction (XRD) patterns show that Al-doped ZnO (ZAO) and ZATO thin films are highly textured along the c-axis and perpendicular to the surface of the substrate. After annealing in a vacuum condition at 400 °C for 3 h, the lowest resistivity of 7.96 and 8.7 × 10 -4 Ω cm are observed for ZATO and ZAO films, respectively. But after annealing in air, the resistivity of ZATO and ZAO is higher than 10 5 Ω cm. In the visible region, the ZAO films show the average transmittance of the order of 90%, while ZATO films were of the order of 75%, which illustrates that the additional Ti doping reduces the optical properties. The optical band gap was found to be 3.46 eV for ZAO film and it increases to 3.53 eV for ZATO films.

  14. Effect of Ag/Al co-doping method on optically p-type ZnO nanowires synthesized by hot-walled pulsed laser deposition

    PubMed Central

    2012-01-01

    Silver and aluminum-co-doped zinc oxide (SAZO) nanowires (NWs) of 1, 3, and 5 at.% were grown on sapphire substrates. Low-temperature photoluminescence (PL) was studied experimentally to investigate the p-type behavior observed by the exciton bound to a neutral acceptor (A0X). The A0X was not observed in the 1 at.% SAZO NWs by low-temperature PL because 1 at.% SAZO NWs do not have a Ag-O chemical bonding as confirmed by XPS measurement. The activation energies (Ea) of the A0X were calculated to be about 18.14 and 19.77 meV for 3 and 5 at.% SAZO NWs, respectively, which are lower than the activation energy of single Ag-doped NW which is about 25 meV. These results indicate that Ag/Al co-doping method is a good candidate to make optically p-type ZnO NWs. PMID:22647319

  15. Al-Mg co-doping effect on optical and magnetic properties of ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Si, Xiaodong; Liu, Yongsheng; Wu, Xinfang; Lei, Wei; Lin, Jia; Gao, Tian; Zheng, Li

    2015-07-01

    Zn0.97 - xMgxAl0.03O (x = 0 , 0.01 , 0.03 and 0.05) nanoparticles were prepared by hydrothermal growth, and their optical and magnetic properties were systematically studied by the X-ray diffraction (XRD), the UV-visible spectrophotometer, the infrared spectrometer and the physical properties measurement system (PPMS). These results showed that all the nanopowders had hexagonal wurtzite structures. With increasing the content of Mg, the strength of the (110) intensity peak increased. When Mg atoms were not incorporated into the Zn0.97Al0.03O lattice, the infrared light transmittance was higher than that of other groups of samples. In the UV range, the absorption decreased with the increase of the concentration of Mg. Mg doping weakened the magnetic property of the nanoparticles at room temperature. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves were separated with the decrease of temperature due to the pinning effect between the ferromagnetic domain and antiferromagnetic domain.

  16. Electrical and optical properties of p-type codoped ZnO thin films prepared by spin coating technique

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok Kumar; Kumar, Vinod; Swart, H. C.; Purohit, L. P.

    2016-03-01

    Undoped, doped and codoped ZnO thin films were synthesized on glass substrates using a spin coating technique. Zinc acetate dihydrate, ammonium acetate and aluminum nitrate were used as precursor for zinc, nitrogen and aluminum, respectively. X-ray diffraction shows that the thin films have a hexagonal wurtzite structure for the undoped, doped and co-doped ZnO. The transmittance of the films was above 80% and the band gap of the film varied from 3.20 eV to 3.24 eV for undoped and doped ZnO. An energy band diagram to describe the photoluminescence from the thin films was also constructed. This diagram includes the various defect levels and possible quasi-Fermi levels. A minimum resistivity of 0.0834 Ω-cm was obtained for the N and Al codoped ZnO thin films with p-type carrier conductivity. These ZnO films can be used as a window layer in solar cells and in UV lasers.

  17. Effect of gas sensing properties by Sn-Rh codoped ZnO nanosheets

    NASA Astrophysics Data System (ADS)

    Chen, Ziwei; Lin, Zhidong; Xu, Mengying; Hong, Yuyuan; Li, Na; Fu, Ping; Chen, Ze

    2016-05-01

    The hierarchically porous Sn-Rh codoped ZnO, Sn-doped ZnO and pure ZnO nanosheets have been successfully synthesized through a simple hydrothermal reaction process without any surfactant or template at 180°C. The morphology and composition were carefully characterized by X-ray diffraction, energy dispersive X-ray spectrometer, field emission scanning electronic microscopy and BET. The gas-sensing testing results indicated that the Sn-Rh codoped ZnO nanosheets, with the specific surface area was 26.9 m2/g, exhibited enhanced gas-sensing performance compared with that of pure ZnO and Sn-doped ZnO. The high sensitivity of the sensor based on Sn-Rh codoped ZnO was 149.38 to 100 ppm ethanol and the detection limit was less than 5 ppm (5.8). The response and recovery times were measured to be ˜3 s and ˜10 s when exposed to 100 ppm ethanol at the test temperature of 300°C. The good sensing performance of the Sn-Rh codoped ZnO sensor indicated that hierarchically porous Sn-Rh codoped ZnO could be a promising candidate for highly sensitive gas sensors. [Figure not available: see fulltext.

  18. Ferromagnetic (Mn, N)-codoped ZnO nanopillars array: Experimental and computational insights

    SciTech Connect

    Wang, D. D.; Yan, Y. S.; Xing, G. Z. Li, S.; Yan, F.

    2014-01-13

    To reveal the mechanism responsible for ferromagnetism in transition metal and hole codoped oxide semiconductors, we carry out a comparative study on Mn-doped and (Mn, N)-codoped ZnO nanopillars. Compared with Mn-doped ZnO samples, (Mn, N)-codoped ZnO nanopillars exhibit an enhanced room temperature ferromagnetism. The modulation of bound magnetic polarons via Mn and N codoping corroborates the correlation between the ferromagnetism and hole carriers, which is also verified by first-principles density functional theory calculations. Our study suggests that the electronic band alteration as a result of codoping engineering plays a critical role in stabilizing the long-range magnetic orderings.

  19. Synthesis, structural and optical characterization of undoped, N-doped ZnO and co-doped ZnO thin films

    SciTech Connect

    Pathak, Trilok Kumar Kumar, R.; Purohit, L. P.

    2015-05-15

    ZnO, N-doped ZnO and Al-N co-doped ZnO thin films were deposited on ITO coated corning glass by spin coater using sol-gel method. The films were annealed in air at 450°C for one hour. The crystallographic structure and morphology of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The X-ray diffraction results confirm that the thin films are of wurtzite hexagonal with a very small distortion. The optical properties were investigated by transmission spectra of different films using spectrophotometer (Shimadzu UV-VIS-NIR 3600). The results indicate that the N doped ZnO thin films have obviously enhanced transmittance in visible region. Moreover, the thickness of the films has strong influences on the optical constants.

  20. Ni, Fe Co-doped ZnO nanoparticles synthesized by solution combustion method

    SciTech Connect

    Dhiman, Pooja Chand, Jagdish Verma, S. Sarveena, Singh, M.

    2014-04-24

    This paper outlines the synthesis and characterization of Ni-Fe co-doped ZnO nanoparticles by facile solution combustion method. The structural characterization by XRD confirmed the phase purity of the samples. Surface morphology studied by scanning electron microscope revealed cubic type shape of grains. EDS analysis conformed the elemental composition. Higher value of DC electrical conductivity and less band gap for co-doped ZnO from UV-Vis studies confirmed the change in defect chemistry of ZnO Matrix.

  1. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C. S.; de Moura, Ana P.; Freire, Poliana G.; da Silva, Luis F.; Longo, Elson; Munoz, Rodrigo A. A.; Lima, Renata C.

    2015-10-01

    We report for the first time a rapid preparation of Zn1-2xCoxNixO nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green-orange-red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO.

  2. Synthesis and characterization of aluminum–boron co-doped ZnO nanostructures

    SciTech Connect

    Kumar, Vinod; Singh, R.G.; Singh, Neetu; Kapoor, Avinashi; Mehra, R.M.; Purohit, L.P.

    2013-02-15

    Graphical abstract: In this paper, we have reported the development of aluminum boron co-doped ZnO (AZB) nanostructures deposited by sol–gel method using spin coating technique. The structure of AZB nanostructure films has been found to exhibit the hexagonal wurtzite structure. The shape of nanostructures has been changed from seed structure to tetra-pods, tetra-pods to nanorods and finally nanorods to nanofiber with variation in Al concentration. The structural, electrical and optical properties of AZB nanostructures are tuned with shape and size of the nanostructures. The effect of Al concentration on the resistivity (ρ), carrier concentration (n) and mobility (μ) of nanostructure films is shown in graph below. A minimum resistivity of 6.8 × 10{sup −4} Ω cm is obtained in AZB films at doping concentration of B 0.6 at.% and Al 0.4 at.% with a sheet resistance of 24 Ω/□ and transmittance of ∼88% for nanorods structure. These nanostructures could be applicable for a various nano-regime devices such as photovolatics, gas sensing and field emission device. Display Omitted Highlights: ► Synthesis of Al and B co-doped ZnO (AZB) nanostructures. ► Minimum resistivity (ρ) of 6.8 × 10{sup −4} Ω cm in AZB films. ► Minimum sheet resistance (R{sub s}) 24 Ω/□ in nanorods (NRs). ► Maximum transmittance ∼88% in NRs. ► Application in nano-electronic devices. -- Abstract: In this paper, we have reported the development of aluminum boron co-doped ZnO (AZB) nanostructures deposited by sol–gel method using spin coating technique. The structure of AZB nanostructure films has been found to exhibit the hexagonal wurtzite structure. The shape of AZB nanostructures has changed from seed structure to tetra-pods, tetra-pods to nanorods and finally to nanofibers with increase in aluminum concentration. The structural, electrical and optical properties of AZB films are tuned with shape and size of the nanostructures. These AZB nanostructures could be

  3. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    SciTech Connect

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S.; Moura, Ana P. de; Freire, Poliana G.; Silva, Luis F. da; Longo, Elson; Munoz, Rodrigo A.A.; Lima, Renata C.

    2015-10-15

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.

  4. Electronic structure of Co-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Neffati, Ahmed; Souissi, Hajer; Kammoun, Souha

    2012-10-01

    The optical transmission spectra, the photoluminescence (PL), and the photoluminescence excitation (PLE) spectra of the cobalt doped zinc oxide nanorods Zn1-xCoxO (x = 0.01, 0.10) were measured by Loan et al. [J. Phys. D: Appl. Phys. 42, 065412 (2009)] in the region 1.5-4 eV. These spectra exhibit a group of ultraviolet narrow lines in the region of 3.0-3.4 eV related to the near-band-edge emission of the host ZnO materials and a group of emission lines in the red region of 1.8-1.9 eV assigned to the radiative transitions within the tetrahedral Co2+ ions in the ZnO host crystal. The group of lines in the visible region provides important information about the electronic structure of the cobalt doped zinc oxide nanorods. This work investigates a theoretical crystal-field analysis of the visible lines associated to the Co2+ ion transition occupying a Td site symmetry in ZnO host crystal. A satisfactory correlations were obtained between experimental and calculated energy levels. The electronic structure was compared with the reported for cobalt transition ion doped in ZnO nanoparticles and bulk crystals [Volbers et al., Appl. Phys. A 88, 153 (2007) and H. J. Schulz and M. Thiede, Phys. Rev. B 35, 18 (1987)]. In order to explain the existence of excitation peaks observed near the band edge of the ZnO host, an energy transfer mechanism is proposed.

  5. Characterization of co-doped (In, N): ZnO by indigenous thermopower measurement system

    NASA Astrophysics Data System (ADS)

    Kedia, Sanjay Kumar; Singh, Anil; Chaudhary, Sujeet

    2016-05-01

    The thermopower measurement of (In, N) co-doped ZnO thin films have been carried out using indigenous high and low temperature thermopower measurement system. The compact thermopower measurement system has been designed, developed, tested in house. The sensitivity and accuracy of indigenous thermopower system have been investigated by measuring thermopower of standard samples like Cu, Ni, Sb etc. It has been also investigated by the comparison of carrier concentration using Hall Effect and Thermopower measurement of these (In, N) co-doped ZnO thin films. The constant temperature gradient between hot and cold junction has been maintained by using the temperature controller. The room temperature and low temperature Seebeck coefficient measurements were performed on these co-doped ZnO samples. A series of experiments have been performed to detect the p-type conductivity in co-doped ZnO thin films, particularly at low temperature. The negative Seebeck coefficient observed down to 40 K established the n-type behavior in these co-doped samples.

  6. Physical study on Cobalt-Indium Co-doped ZnO nanofilms as hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Mimouni, R.; Mahdhi, N.; Boubaker, K.; Madouri, A.; Amlouk, M.

    2016-03-01

    The present work reports some physical investigations on (Co,In) codoped zinc oxide nanofilms deposited on glass substrates at 460 °C by the spray pyrolysis technique. The effect of Co and In concentration on the structural, morphological, optical and surface wettability properties have been investigated using X-ray diffraction (XRD) patterns, Raman spectroscopy, SEM, optical measurement, photoluminescence spectroscopy as well as the measurement of hydrophobicity in terms of water contact angle. It is found that all films crystallized in würtzite ZnO phase, with a preferentially orientation towards (002) direction parallel to c-axis. The Raman spectra of the samples exhibit the presence of E2high characteristic mode of würtzite structure with high crystallinity as well as two dominant bands 1LO and 2LO. Also, no additional modes introduced by codopoing have been found. SEM micrographs show the uniform deposition of fine grains on surface films. Thicknesses of films are less than 100 nm. In addition, optical investigations indicate that the band gap narrowing of (Co,In) codoped ZnO thin films is due to the increase in the band tail width. Indeed, PL study indicates that (Co,In) codoped ZnO nanofilms exhibit a large decrease of the UV luminescence, which is assigned to the trapping of photo-generated electrons by both In3+ and Co2+ ions as well as an improvement of charge separation in the ZnO thin films. Finally, the (Co,In) codoping influences the surface wettability property and transform the ZnO character from hydrophilic (θ < 90°) for pure ZnO nanofilm to hydrophobic (θ > 90°) for (Co,In) codoped ZnO ones.

  7. Structural, electronic and magnetic properties of (N, C)-codoped ZnO nanotube: First principles study

    NASA Astrophysics Data System (ADS)

    Esmailian, Amirhosein; Shahrokhi, Masoud; Kanjouri, Faramarz

    2015-04-01

    We have studied the electronic structure and magnetic properties of Nitrogen and Carbon codoped ZnO (5,0) single-walled zigzag nanotube using first-principle calculations based on the density functional theory. We performed our calculations for N- and C- codoping ZnO nanotube in two different configurations. For the first configuration in which the two impurity atoms (N or C) are on first nearest-neighbor sites in the plane of codoping, our calculation predicts that the N- and C-codoped ZnO nanotubes are antiferromagnetic material with no net magnetization. On the other hand, it is found that for the configuration in which the two impurity atoms are next nearest-neighbors, a spin polarization results in a magnetic moment in the N- and C-codoped ZnO nanotubes.

  8. Luminescence Properties of Sm3+/Eu3+ Co-Doped ZnO Quantum Dots.

    PubMed

    Liu, Fengyi; Li, Hong; Hu, Yajing; Na, Jin; Mou, Yun; Yang, Kun; Ye, Zuhu; Li, Mingyue; Xie, Ya-Hong

    2016-04-01

    In order to improve luminescence properties of semiconductor ZnO quantum dots (QDs), Sm3+/Eu3+ co-doped ZnO QDs have been controllably synthesized by sol-gel method in this paper. ZnO QDs have a spherical shape with mean diameter at about 5-6 nm, which was characterized by high-resolution transmission electron microscopy (HRTEM). ZnO QDs have hexagonal wurtzite structure with parts of Sm3+ and Eu3+ incorporated into the lattice, which was demonstrated by X-ray Diffraction (XRD). Luminescence properties at room temperature (RT) of different amount of Sm3+ and 2 mol% Eu3+ doped ZnO QDs were examined in-depth by optical spectra. In contrast to the Pr3+/Eu3+ co-doped fluorescent performance researched in our previous study, the photoluminescence (PL) spectra indicates the unique luminescence properties of Sm3+/Eu3+ co-doped ZnO QDs. In addition, fluorescence lifetimes were obtained to illustrate the luminous mechanism. PMID:27451672

  9. Functional control of ZnO nanoparticles by F, C-codoping

    NASA Astrophysics Data System (ADS)

    Cao, Jialei; Lu, Juan; Zhou, Xiufeng; Wang, Zuoshan; Li, Xiaobin

    2014-12-01

    F, C-codoped ZnO nanoparticles were synthesized by the precipitation method. X-ray photoelectron spectroscopy spectra (XPS) measurements confirmed the existence of F-Zn, C-F, -CF2- and O-C-O bonds in the lattices of ZnO nanoparticles. The band gap of ZnO was narrowed due to F and C dopants, which should be beneficial for the improvement of the photocatalytic activity. However, our experiments demonstrated that F, C-codoping restrained the photocatalytic activity of ZnO nanoparticles. To detect the possible microstructural defects, the analysis of electron paramagnetic resonance (EPR) was performed. It was suggested that the positive-charged F O defects were formed by the substitution of F ions for O lattice sites. F_O^{\\bullet} defects are deep donors and act as recombination centers for photo-generated electrons and holes, which could result in the decrease of the photocatalytic activity. Although the photocatalytic activity of F, C-codoped ZnO is depressed, the antibacterial activity still keeps a comparable level in comparison with that of pure ZnO. Therefore, this material has a potential application in textiles.

  10. Al-doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Kadam, Pratibha; Agashe, Chitra; Mahamuni, Shailaja

    2008-11-01

    Al3+-doped ZnO nanocrystals were differently obtained by wet chemical and an electrochemical route. An increase in forbidden gap due to change in crystal size and also due to Al3+ doping in ZnO is critically analyzed. The Moss-Burstein type shift in Al3+-doped ZnO nanocrystals provides an evidence of successful Al3+ doping in ZnO nanocrystals. The possibility of varying the carrier concentration in ZnO nanocrystals is the indirect implication of the present investigations.

  11. Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Luo, L.; Huang, F. Y.; Dong, G. S.; Fan, H. H.; Li, K. F.; Cheah, K. W.; Chen, J.

    2014-11-01

    Single crystalline Eu3+/Tb3+-codoped ZnO nanocrystals have been synthesized by using a simple co-precipitation method. Successful doping is realized so that strong green and red luminescence can be efficiently excited by ultraviolet and near ultraviolet radiation, demonstrating an efficient energy transfer from ZnO host to rare earth ions. The energy transfer from the ZnO host to Tb3+ in ZnO: Tb3+ samples and ZnO host to Eu3+ in the ZnO: Eu3+ samples under UV excitation are investigated. It is found that the red 5D0 → 7F2 emission of Eu3+ ions decreases with increasing temperature but the green 5D4 → 7F5 emission of Tb3+ ions increases with increasing temperature, implying a different energy transfer processes in the two samples. Moreover, energy transfer from Tb3+ ions to Eu3+ ions in ZnO nanocrystals is also observed by analyzing luminescence spectra and the decay curves. By adjusting the doping concentration, the Eu3+/Tb3+-codoped ZnO phosphors emit green and red luminescence with chromaticity coordinates near white light region, high color purity and high intensity, indicating that they are promising light-conversion materials and have potential in field emission display devices and liquid crystal display backlights.

  12. Enhanced Visible-Light Photocatalytic Activity of C/Ce-Codoped ZnO Nanoellipsoids Synthesized by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Ha, Luu Thi Viet; Dai, Luu Minh; Nhiem, Dao Ngoc; Van Cuong, Nguyen

    2016-05-01

    C/Ce-codoped ZnO nanomaterial has been synthesized by a hydrothermal method and its physical properties and characterization investigated using thermogravimetric and differential thermal analysis (TG-DTA), x-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive x-ray (EDX) spectroscopy, UV-Vis diffuse reflectance spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the nanomaterial was examined using methylene blue as organic dye under visible-light source. The results show that the C/Ce-codoped ZnO nanomaterial exhibited higher photocatalytic activity under visible-light irradiation compared with undoped ZnO, Ce-doped ZnO or C-doped ZnO nanomaterials. Such enhancement of the photocatalytic activity of C/Ce-codoped ZnO under visible-light irradiation suggests that these nanoparticles might have good applications in optoelectronics and wastewater treatment.

  13. Enhanced Visible-Light Photocatalytic Activity of C/Ce-Codoped ZnO Nanoellipsoids Synthesized by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Ha, Luu Thi Viet; Dai, Luu Minh; Nhiem, Dao Ngoc; Van Cuong, Nguyen

    2016-08-01

    C/Ce-codoped ZnO nanomaterial has been synthesized by a hydrothermal method and its physical properties and characterization investigated using thermogravimetric and differential thermal analysis (TG-DTA), x-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive x-ray (EDX) spectroscopy, UV-Vis diffuse reflectance spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the nanomaterial was examined using methylene blue as organic dye under visible-light source. The results show that the C/Ce-codoped ZnO nanomaterial exhibited higher photocatalytic activity under visible-light irradiation compared with undoped ZnO, Ce-doped ZnO or C-doped ZnO nanomaterials. Such enhancement of the photocatalytic activity of C/Ce-codoped ZnO under visible-light irradiation suggests that these nanoparticles might have good applications in optoelectronics and wastewater treatment.

  14. Structural and magnetic properties of Ni/Mn codoped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Vijayaprasath, G.; Murugan, R.; Asaithambi, S.; Sakthivel, P.; Mahalingam, T.; Ravi, G.

    2016-05-01

    We report systematic studies of the magnetic properties of Ni and Mn co-doped ZnO nanoparticles prepared by co-precipitation method. Structural characterization reveals that Ni and Mn ions substituted into ZnO lattices without any secondary phases formation. Photoluminescence and Raman spectra shows that the Ni/Mn were doped into the ZnO lattice resulting slight shift in near-band-edge emission. Moreover, the novel Raman peak at 586 cm-1 indicates two kinds of cations via doping that could affect the local polarizability. Magnetic measurements of the nanoparticles exhibits ferromagnetic behavior at room-temperature.

  15. First-principles study on the electronic and optical properties of Si and Al co-doped zinc oxide for solar cell devices

    NASA Astrophysics Data System (ADS)

    Abbassi, A.; El Amrani, A.; Ez-Zahraouy, H.; Benyoussef, A.; El Amraoui, Y.

    2016-06-01

    Electronic and optical properties of co-doped zinc oxide ZnO with silicon (Si) and aluminum (Al), in Zn1-2 x Si x Al x O (0 ≤ x ≤ 0.0625) original structure forms, are investigated by the first-principles calculations based on the density functional theory (DFT). The optical constants and dielectric functions are investigated with the full-potential linearized augmented plane wave (FP-LAPW) method and the generalized gradient approximation (GGA) by WIEN2k package. The complex dielectric functions, refractive index and band gap of the pure as well as doped and co-doped ZnO were investigated, which are in good agreement with the available experimental results for the undoped ZnO. Thus, the maximum optical transmittance of the co-doped ZnO of about 95 % was achieved; it is higher than that of pure ZnO. Thus, we showed for the Si-Al co-doped ZnO with x = 0.0315 that the optical transmittance can cover a larger range in the visible light region. In addition, an occurrence of important energy levels around Fermi levels was showed, which is mainly due to doping atoms that lead to an overlap between valence and conduction bands, and consequently to the significant conductor behavior of the Si-Al co-doped ZnO. The original Zn1-2 x Si x Al x O structure reveals promising optical and electronic properties, and it can be investigated as good candidates for practical uses as transparent and conducting electrodes in solar cell devices.

  16. Resistive switching: An investigation of the bipolar–unipolar transition in Co-doped ZnO thin films

    SciTech Connect

    Santos, Daniel A.A.; Zeng, Hao; Macêdo, Marcelo A.

    2015-06-15

    Highlights: • A purely bipolar behavior on a Co-doped ZnO thin film has been demonstrated. • We have shown what can happen if a unipolar test is performed in a purely bipolar device. • An explanation for how a sample can show a purely bipolar switching behavior was suggested. • An important open issue about resistive switching effect was put in debate. - Abstract: In order to investigate the resistive switching effect we built devices in a planar structure in which two Al contacts were deposited on the top of the film and separated by a small gap using a shadow mask. Therefore, two samples of 10% Co-doped ZnO thin films were sputtered on glass substrate. High resolution X-ray diffraction (HRXRD) revealed a highly c-axis oriented crystalline structure, without secondary phase. The high resolution scanning electron microscopy (HRSEM) showed a flat surface with good coverage and thickness about 300 nm. A Keithley 2425 semiconductor characterization system was used to perform the resistive switching tests in the bipolar and unipolar modes. Considering only the effect of compliance current (CC), the devices showed a purely bipolar behavior since an increase in CC did not induce a transition to unipolar behavior.

  17. XAFS study on the temperature-dependent occupation sites of Co codopants in (Co, Cu)-codoped ZnO films

    NASA Astrophysics Data System (ADS)

    Hu, Fengchun; Zhang, Shibao; Pan, Zhiyun; Yan, Wensheng; Liu, Qinghua; Yao, Tao; Wei, Shiqiang

    2016-05-01

    Elemental codoping has been an effective way to regulate the structural and electronic properties of semiconductors. By using x-ray diffraction and x-ray absorption fine structure spectroscopy, we investigate the local structure and spatial occupations of Co dopants in Cu-doped ZnO thin films prepared by pulsed-laser deposition method. It is revealed that the Co dopants are substantially incorporated into ZnO matrix when the deposition temperature is increased up to 650 °C, although the preferential orientation of ZnO film is changed. The results provide experimental guidance in the synthesis of the co-doped ZnO based dilute magnetic semiconductors.

  18. Fabrication and photoelectric properties of Er3+ and Yb3+ co-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Wang, Xiangfu; Meng, Lan; Yan, Xiaohong

    2016-01-01

    In this paper, the Er3+ and Yb3+ co-doped ZnO films deposited by a novel thermal decomposition method under different annealing temperature process have been reported. The effects of annealing temperature on the morphology and properties of the films are systematically studied. The resulting spectra demonstrate that the Er3+ and Yb3+ co-doped ZnO films possessed the property of up-conversion, converting IR light into visible light that can be absorbed by amorphous silicon solar cell. After all, inner photoelectric effect of the Er3+ and Yb3+ co-doped ZnO films in the amorphous as a light scattering layer are also found with an infrared 980 nm laser as excitation source.

  19. Magnetic structure and interaction in (Sb, Co) co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Samanta, K.; Sardar, M.; Singh, S. P.; Katiyar, R. S.

    2014-10-01

    The magnetic behaviour of (Co, Sb) co-doped ZnO thin films grown by pulsed laser deposition is investigated. The irreversibility (ZFC-FC bifurcation) in low field (H = 100 Oe) magnetization and small hysteresis below 300 K are similar in samples with or without Sb co-doping. Both the phenomena originate from the presence of blocked supermoments in the samples. Incorporation of Sb only increases the saturation magnetization and coercivity. The quantitative increase in moment due to Sb co-doping suggests a transfer of electrons from Co ions to Sb-related acceptor complexes. This is supported by a decrease in the number of electronic transitions from Co d electrons to the conduction band seen in optical transmission spectroscopy when Sb is added. The high field susceptibility data show the existence of supermoments with antiferromagnetic interaction between them. We find that the value of the effective antiferromagnetic molecular field constant decreases with increasing Co concentration, revealing that the supermoments are bound magnetic polarons around intrinsic donors, rather than coming from Co precipitates. True ferromagnetism (overlapping polarons) can emerge either with larger intrinsic donors, or with acceptors with shallower levels, than those created by Sb co-doping. Our results suggest that Sb-related acceptor states may be unstable towards accepting electrons from deep d levels of Co ions.

  20. Photoluminescence, ellipsometric, optical and morphological studies of sprayed Co-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Gençyılmaz, O.; Atay, F.; Akyüz, I.

    2016-06-01

    In this study, undoped and cobalt (Co)-doped zinc oxide (ZnO) films were successfully produced by ultrasonic spray pyrolysis (USP) technique at low temperature (350°C). The optical and surface properties were investigated as a function of Co content. The optical parameters (thickness, refractive index and extinction coefficient) were determined using spectroscopic ellipsometry (SE) and it was seen that the refractive index and extinction coefficient values of Co-doped ZnO films decreased slightly depending on the increasing of Co doping. For investigation, the transmittance and photoluminescence (PL) spectra of the films, UV-Vis spectrophotometer and PL spectroscopy were used at room temperature. The transmittance spectra show that transmittance values decreased and Co+2 ions substitute Zn+2 ions of ZnO lattice. The optical band gap values decreased from 3.26 eV to 2.85 eV with the changing of Co content. The results of PL spectra exhibit the position of the different emission peaks unchanged but the intensity of peaks increased with increasing Co doping. Also, the surface properties of the films were obtained by atomic force microscopy (AFM) and these results indicated that the surface morphology and roughness values were prominently changed with Co doping.

  1. Giant temperature coefficient of resistance in Co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zhou, X. F.; Zhang, H.; Yan, H.; He, C. L.; Lu, M. H.; Hao, R. Y.

    2014-03-01

    A novel high-performance thermistor material based on Co-doped ZnO thin films is presented. The films were deposited by the pulsed laser deposition technique on Si (111) single-crystal substrates. The structural and electronic transport properties were correlated as a function of parameters such as substrate temperature and Co-doped content for Zn1- x Co x O ( x=0.005,0.05,0.10 and 0.15) to prepare these films. The Zn1- x Co x O films were deposited at various substrate temperatures between 20 and 280 °C. A value of 20 %/K for the negative temperature coefficient of resistance (TCR) with a wide range near room temperature was obtained. It was found that both TCR vs. temperature behavior and TCR value were strongly affected by cobalt doping level and substrate temperature. In addition, a maximal TCR value of over 20 % K-1 having a resistivity value of 3.6 Ω cm was observed in a Zn0.9Co0.1O film near 260 °C, which was deposited at 120 °C and shown to be amorphous by X-ray diffraction. The result proved that the optimal Co concentration could help us to achieve giant TCR in Co-doped ZnO films. Meanwhile, the resistivities of the films ranged from 0.4 to 270 Ω cm. A Co-doped ZnO/Si film is a strong candidate of thermometric materials for non-cooling and high-performance bolometric applications.

  2. Magnetic and dielectric studies of Li-Cu co-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Vivek, S.; Ajith, S. K.; Chitralekha, C. S.; Nair, Swapna S.

    2016-05-01

    Room temperature ferromagnetism has been observed in Li-Cu co-doped ZnO nanoparticles prepared by sol-gel route. Our studies indicated that the observed ferromagnetism is a surface phenomenon which depends on oxygen vacancy and the nature of the dopants. Dependence of ferromagnetism on the annealing temperature indicated the role of oxygen vacancy, and the decrease in coercivity as the particle size increases indicates the surface dependence of ferromagnetism. It is found that the addition of dopants also enhanced ferromagnetism. Dielectric studies indicated an increase in dielectric constant as the doping concentration is increased.

  3. The Electrical Properties of Co-Doped ZnO Thin Films

    SciTech Connect

    Hamid, H. A.; Abdullah, M. J.; Aziz, A. A.

    2010-03-11

    Codoped ZnO thin films were prepared on silicon (111) substrates by cosputtering of aluminium rods and zinc target using DC magnetron sputtering followed by heat treatment at 400 deg. C for 1 hour at different ratios of oxygen and nitrogen gas. Results indicate that gas ratios influenced the film conduction properties, which had the lowest resistivity of 7.985x10{sup -3} cm{sup -3} and highest carrier concentration of 6.89x10{sup 21} cm{sup -3}.

  4. Co and Cu co-doped ZnO epitaxial films—A magnetically soft nano-composite

    NASA Astrophysics Data System (ADS)

    Ney, V.; Venkataraman, V.; Henne, B.; Ollefs, K.; Wilhelm, F.; Rogalev, A.; Ney, A.

    2016-04-01

    A series of Co/Cu co-doped ZnO epitaxial films has been grown on sapphire substrates to investigate the possibilities of tailoring the magnetic properties in functional ZnO-Co/Cu nano-composites. The growth was performed using reactive magnetron sputtering varying the oxygen partial pressure to tune the incorporation of the dopants and the resulting valence state. At high oxygen pressures, Co2+ is formed and the resulting magnetic properties are very similar to phase pure paramagnetic Co-doped ZnO samples. However, the formation of a secondary CuO phase reduces the overall structural quality of the layers and virtually no substitutional incorporation of Cu2+ in ZnO could be evidenced. At low oxygen pressures, a significant fraction of metallic Co and Cu forming nanometer-sized superparamagnetic precipitates of a Co/Cu alloy can be evidenced which are embedded in a ZnO host matrix.

  5. Local investigation of hyperfine interactions in pure and Co-doped ZnO

    NASA Astrophysics Data System (ADS)

    Mercurio, M. E.; Carbonari, A. W.; Cordeiro, M. R.; Saxena, R. N.; D'Agostino, L. Z.

    2010-05-01

    In the present work bulk samples of pure as well as Co-doped ZnO with different concentrations were prepared by sol-gel method from highly pure metallic Zn (99.9999%) and Co (99.9999%). The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray microanalysis (EDS) and perturbed gamma-gamma angular correlation (PAC) spectroscopy. Carrier-free 111In nuclei were introduced during preparation of the samples and used as probe nuclei at Zn sites for PAC measurements. PAC results show that both pure and Zn1-xCoxO ( x≤0.15) samples have the same electric quadrupole frequency when Co-doped samples are annealed in air, argon or nitrogen atmosphere at 1173 K. SEM and EDS results showed that Co-doped samples are homogeneous without any secondary Co phases. These observations indicate that Co ions are substituted for Zn ions and have a similar electronic structure of Zn ions. A weak local magnetism was observed at temperatures below about 300 K for Co concentration of 10% when sample was annealed in Nitrogen.

  6. Thermal ionization induced metal-semiconductor transition and room temperature ferromagnetism in trivalent doped ZnO codoped with lithium

    SciTech Connect

    Sivagamasundari, A.; Chandrasekar, S.; Pugaze, R.; Kannan, R.; Rajagopan, S.

    2014-03-07

    Thermal ionization induced metallic to semiconductor (MST) transition occurring at 460 K for Zn{sub 0.97}Al{sub 0.03}O, 463 K for Zn{sub 0.94}Al{sub 0.03}Li{sub 0.03}O, and 503 K for Zn{sub 0.91}Al{sub 0.03}Li{sub 0.03}Mn{sub 0.03}O has been found in the sol-gel synthesized (using hexamethylenetetramine), trivalent doped (Al, Mn) ZnO codoped with lithium. Increase in the thermally ionized carrier concentration due to Al doping is responsible for near band edge (NBE) peak shift causing Fermi level to move into conduction band making it metallic consistent with resistivity results. Free carrier (thermally activated) neutralization with ionized donor is responsible for semiconducting nature, which is supported from the free carrier screening produced energy shift in the NBE of photoluminescence peak. Furthermore, independently band gap shrinkage is also obtained from UV-Visible studies confirming localization induced MST. An anti-correlation is found between defect density (DLE) and room temperature ferromagnetism (RTFM) indicating intrinsic defects are not directly responsible for RTFM.

  7. Magnetic and optical properties of Co-doped and Mn-doped ZnO nanocrystalline particles

    NASA Astrophysics Data System (ADS)

    Alsmadi, Abdel; Salameh, B.; Shatnawi, M.; Alnawashi, G.; Bsoul, I.

    We carried out a systematic study on the effect of Co doping and Mn doping on the structural, magnetic and optical properties of ZnO nanocrystalline particles, using x-ray diffraction, x-ray photoelectron spectroscopy (XPS), Quantum Design PPMS-9 magnetometry, and Ultra Violet-Visible spectroscopy. The Zn1- x CoxO and Zn1- x MnxO nanoparticles with 0 <= x <= 0 . 1 were successfully prepared by the formal solid-state reaction method. The XPS results and the XRD analysis with full structural Rietveld refinement reveal that both structures have hexagonal wurtzite structure. For all Co-doped ZnO nanoparticles under investigation, the field dependence of the magnetization curves exhibits ferromagnetic behavior with relatively small coercive fields at room temperature. In addition, we found a signature for antiferromagnetic ordering between the Co ions. For the Mn-doped ZnO nanoparticles, we observed ferromagnetic behavior only below 50 K. We also observed a strong correlation between the magnetic and optical behavior of the Co-doped ZnO nanoparticles. Optical diffuse reflectance and absorption spectra exhibit a red shift at room temperature in the absorption band edge with increasing Co-doping. The red shift is attributed to the sp-d exchange interaction between free charge carriers in ZnO band and the localized magnetic moments.

  8. Reactive codoping of GaAlInP compound semiconductors

    DOEpatents

    Hanna, Mark Cooper; Reedy, Robert

    2008-02-12

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  9. The influence of substrate curvature on structural, optical properties of Cu, Co codoped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Liu, Huilian; Li, Weijun; Li, Hongbo; Sun, Yunfei; Song, Junlin; Yang, Jinghai; Gao, Ming; Liu, Xiaoyan

    2015-07-01

    The influence of substrate curvature on structural, optical properties of Cu, Co codoped ZnO thin films were investigated in this study. XRD analysis indicated that the crystal quality of the ZnO films could been influenced by the substrate curvature. The biaxial stress of our samples was measured by side-inclination X-ray diffraction technique. The results indicated that the type of the stress was biaxial compressive stress. Optical absorption spectra showed the absorption edge of our samples displayed blueshift with decreasing substrate curvature. Gauss fit for PL emission spectra showed that the substrate curvature affected the PL properties of the Cu, Co codoped ZnO thin films deposited on polystyrene particles. The various substrates induced defect-related emission increased in visible region.

  10. Different magnetic origins of (Mn, Fe)-codoped ZnO powders and thin films

    SciTech Connect

    Fan, Jiuping; Jiang, Fengxian; Quan, Zhiyong; Qing, Xiufang; Xu, Xiaohong

    2012-11-15

    Graphical abstract: The effects of the sample forms, fabricated methods, and process conditions on the structural and magnetic properties of (Mn, Fe)-codoped ZnO powders and films were systematically studied. The origins of ferromagnetism in the vacuum-annealed powder and PLD-deposited film are different. The former originates from the impurities of magnetic clusters, whereas the latter comes from the almost homogenous phase. Highlights: ► The magnetic natures of Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powders and thin films come from different origins. ► The ferromagnetism of the powder is mainly from the contribution of magnetic clusters. ► Whereas the ferromagnetic behavior of the film comes from the almost homogenous phase. -- Abstract: The structural and magnetic properties of (Mn, Fe)-codoped ZnO powders as well as thin films were investigated. The X-ray diffraction and magnetic measurements indicated that the higher sintering temperature facilitates more Mn and Fe incorporation into ZnO. Magnetic measurements indicated that the powder sintered in air at 800 °C showed paramagnetic, but it exhibited obvious room temperature ferromagnetism after vacuum annealing at 600 °C. The results revealed that magnetic clusters were the major contributors to the observed ferromagnetism in vacuum-annealed Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powder. Interestingly, the room temperature ferromagnetism was also observed in the Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O film deposited via pulsed laser deposition from the air-sintered paramagnetic target, but the secondary phases in the film were not detected from X-ray diffraction, transmission electron microscopy, and zero-field cooling and field cooling. Apparently, the magnetic natures of powders and films come from different origins.

  11. Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping

    SciTech Connect

    Lee, J. J.; Xing, G. Z. Yi, J. B.; Li, S.; Chen, T.; Ionescu, M.

    2014-01-06

    Cluster free, Co (3d) and Eu (4f) doped ZnO thin films were prepared using ion implantation technique accompanied by post annealing treatments. Compared with the mono-doped ZnO thin films, the samples codoped with Co and Eu exhibit a stronger magnetization with a giant coercivity of 1200 Oe at ambient temperature. This was further verified through x-ray magnetic circular dichroism analysis, revealing the exchange interaction between the Co 3d electrons and the localized carriers induced by Eu{sup 3+} ions codoping. The insight gained with modulating coercivity in magnetic oxides opens up an avenue for applications requiring non-volatility in spintronic devices.

  12. Investigation of structural and optical properties of ZnO films co-doped with fluorine and indium

    NASA Astrophysics Data System (ADS)

    Keskenler, E. F.; Turgut, G.; Doğan, S.

    2012-07-01

    Undoped ZnO film and ZnO films, which are co-doped with F and In (FIZO) at different concentrations, were synthesized by sol-gel technique and the effects of co-doping of F and In on structural and optical properties of ZnO thin films were investigated. The concentration ratio of [F]/[Zn] was altered from 0.25 to 1.75 with 0.50 step at.% mole and [In]/[Zn] was altered from 0.25 to 1.00 with 0.25 step at.% mole. X-ray diffraction analysis indicates that the films have polycrystalline nature and the (0 0 2) preferred orientation is the stronger peak. No extra phases involving zinc, fluorine and indium compounds were observed even at high F and In content. The grain size of undoped ZnO and FIZO thin films varied between 15 and 20 nm with a small fluctuation. From the SEM images, although the undoped ZnO had a smooth and particle-shaped surface, FIZO films had nanofiber-networks shapes over the surface with average size of 500 nm. The surface morphologies and crystallite sizes for the F and In doped films were slightly different from than those of undoped film. From the optical study, a slight shrinkage of band gap was backwardly observed from 3.36 to 3.25 eV with the increasing of F and In content.

  13. Effect of nitrogen as co-dopant in carbon and boron-doped ZnO clusters

    NASA Astrophysics Data System (ADS)

    Kapila, Neha; Sharma, Gaurav; Mudahar, Isha; Sharma, Hitesh

    2016-05-01

    The effect of N as co-dopant have been investigated on magnetic properties of C and B-doped (ZnO)n clusters (n = 1 - 16) using spin-polarized density functional theory. Total energy calculations show that C and N more stable when substituted at O site, whereas B is more stable at the Zn site. The B:N co-doping is energetically more stable than C:N which is more stable than N:N doping. C and N atoms do not show tendency to form clusters when doped separately. The magnetic moment (MM) of C-doped ZnO clusters is enhanced significantly with N co-doping. The MM of 2 μB, 1 μB and 1 μB per atom is induced due to C, N and B respectively. The MM of 3 μB or 5 μB and 2 μB or 4 μB are observed for co-doping of 2C:N and C:2N respectively. In contrary, the MM in 2B:N and B:2N co-doped (ZnO)n remains 1 μB for n=2-4, 12 and 16. The results are in agreement with the available theoretical results.

  14. Influence of Li-N and Li-F co-doping on defect-induced intrinsic ferromagnetic and photoluminescence properties of arrays of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Ghosh, Shyamsundar; Gopal Khan, Gobinda; Varma, Shikha; Mandal, Kalyan

    2012-08-01

    The role of N/F co-doping on the defect-driven room-temperature d0 ferromagnetism in group-I element Li doped ZnO nanowire arrays has been investigated. The ferromagnetic signature of pristine ZnO nanowires has enhanced significantly after Li doping but the Li-N co-doping has found to be more effective in the stabilization and enhancement in room-temperature ferromagnetism in ZnO nanowires. Saturation magnetization in Li-doped ZnO nanowires found to increase from 0.63 to 2.52 emu/g and the Curie temperature rises up to 648 K when 10 at. % N is co-doped with 6 at. % Li. On the other hand, Li-F co-doping leads to exhibit much poor room-temperature ferromagnetic as well as visible luminescence properties. The valance state of the different dopants is estimated by x-ray photoelectron spectroscopy while the photoluminescence spectra indicate the gradual stabilization of Zn vacancy defects or defect complexes in presence of No acceptor states, which is found to be responsible for the enhancement of intrinsic ferromagnetism in ZnO:Li matrix. Therefore, the Li-N co-doping can be an effective parameter to stabilize, enhance, and tune zinc vacancy-induced room-temperature d0 ferromagnetism in ZnO nanowires, which can be an exciting approach to prepare new class of spintronic materials.

  15. Ferromagnetism and Conductivity in Hydrogen Irradiated Co-Doped ZnO Thin Films.

    PubMed

    Di Trolio, A; Alippi, P; Bauer, E M; Ciatto, G; Chu, M H; Varvaro, G; Polimeni, A; Capizzi, M; Valentini, M; Bobba, F; Di Giorgio, C; Amore Bonapasta, A

    2016-05-25

    Impressive changes in the transport and ferromagnetic properties of Co-doped ZnO thin films have been obtained by postgrowth hydrogen irradiation at temperatures of 400 °C. Hydrogen incorporation increases the saturation magnetization by one order of magnitude (up to ∼1.50 μB/Co) and increases the carrier density and mobility by about a factor of two. In addition to the magnetic characterization, the transport and structural properties of hydrogenated ZnO:Co have been investigated by Hall effect, local probe conductivity measurements, micro-Raman, and X-ray absorption spectroscopy. Particular care has been given to the detection of Co oxides and metal Co nanophases, whose influence on the increase in the transport and ferromagnetic properties can be excluded on the ground of the achieved results. The enhancement in ferromagnetism is directly related to the dose of H introduced in the samples. On the contrary, despite the shallow donor character of H atoms, the increase in carrier density n is not related to the H dose. These apparently contradictory effects of H are fully accounted for by a mechanism based on a theoretical model involving Co-VO (Co-O vacancy) pairs. PMID:27123761

  16. Unipolarity of ZnO with a wide-band gap and its solution using codoping method

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuya; Katayama-Yoshida, Hiroshi

    2000-06-01

    We have investigated the electronic structures of p- or n-type-doped ZnO based on ab initio electronic band structure calculations. We find unipolarity in ZnO; p-type doping using Li or N increases the Madelung energy while n-type doping using Al, Ga, In or F species decreases the Madelung energy. We find a very weak repulsive interaction between Li acceptors in Li-doped ZnO (ZnO : Li) with a remarkable increase in the Madelung energy, in contrast with the case of ZnO : N. For ZnO : (2Li, F), total energy calculations show that the formation of the complex with Li Zn-F O-Li Zn which occupy the nearest-neighbor sites is energetically favorable with a decrease in the Madelung energy, which produces low-resistivity p-type ZnO crystals.

  17. Structural characterization and low temperature growth of ferromagnetic Bi-Cu codoped ZnO bicrystal nanowires

    NASA Astrophysics Data System (ADS)

    Xu, C.; Chun, J.; Kim, D.; Chon, B.; Joo, T.

    2007-10-01

    Ferromagnetic Bi-Cu codoped ZnO nanowires were fabricated at temperatures as low as 300°C via a vapor phase transport using the mixture of Zn, BiI3 and CuI powders. They are grown as a bicrystal, along the [011¯2] direction, have a width of 40-150nm, and a length of a few microns. The investigation of the growth mechanism proposes that the synergy of BiCu and iodine/iodide induces the formation of bicrystallinity. The photoluminescence measurement shows the cooperative effect of Bi and Cu ions. The ferromagnetism observed in this study is the result of the combined effect of structural defects, the substitution of Cu into Zn site along the c axis, and codoping of Bi.

  18. A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles.

    PubMed

    Li, Hongbo; Qiao, Yunfei; Li, Jing; Fang, Hailin; Fan, Dahe; Wang, Wei

    2016-03-15

    Co-doped ZnO diluted magnetic semiconductor as a novel photoelectric beacon was first constructed for photoelectrochemical (PEC) aptasensor of acetamiprid. The fabricated PEC sensing is based on the specific binding of acetamiprid and its aptamer, which induces the decreasement of enhanced photocurrent produced by the electron donor of quercetin. Co(2+) doping has a beneficial effect in extending the band width of light absorption of ZnO into the visible region and to promote the separation of the photoinduced carriers due to the sp-d exchange interactions existing between the band electrons and the localized d electrons of Co(2+). The fabricated aptasensor was linear with the concentration of acetamiprid in the range of 0.5-800 nmolL(-1) with the detection limit of 0.18 nmolL(-1). The presence of same concentration of other conventional pesticides did not interfere in the detection of acetamiprid and the recovery is between 96.2% and 103.7%. This novel PEC aptasensor has good performances with high sensitivity, good selectivity, low cost and portable features. The strategy of Co-doped ZnO diluted magnetic semiconductor paves a new way to improve the performances of PEC aptasensor. PMID:26436325

  19. First-principle study on Ag-2N heavy codoped of p-type graphene-like ZnO nanosheet

    NASA Astrophysics Data System (ADS)

    Zhang, W. X.; Li, T.; He, C.; Wu, X. L.; Duan, L.; Li, H.; Xu, L.; Gong, S. B.

    2015-02-01

    In this article, two different Ag-2N heavy codoped of graphene-like ZnO nanosheets have been investigated based on first-principles density-functional theory. The geometric optimization, Density of States (DOS) and Band structure (BS) for all models are calculated, respectively. The results indicate that Ag substituted on the cation site (AgZn) exhibit a strong attractive interaction with a nitrogen acceptor located at the nearest-neighbor oxygen site, forming passive Ag-N complex. This study can be a theoretical guidance to improve the electrical conductivity of p-type graphene-like ZnO nanosheet by heavy codoping.

  20. Local structure investigation of (Co, Cu) co-doped ZnO nanocrystals and its correlation with magnetic properties

    NASA Astrophysics Data System (ADS)

    Tiwari, N.; Doke, S.; Lohar, A.; Mahamuni, Shailaja; Kamal, C.; Chakrabarti, Aparna; Choudhary, R. J.; Mondal, P.; Jha, S. N.; Bhattacharyya, D.

    2016-03-01

    Pure, Co doped and (Co, Cu) co-doped ZnO nanocrystals have been prepared by wet chemical route at room temperature to investigate the effect of Cu doping in Co doped ZnO nanocrystals . The nanocrystals have initially been characterized by X-ray diffraction, FTIR, Raman, optical absorption and EPR spectroscopy and the results were corroborated with DFT based electronic structure calculations. Magnetic properties of the samples have been investigated by studying their magnetic hysteresis behavior and temperature dependence of susceptibilities. Finally the local structure at the host and dopant sites of the nanocrystals have been investigated by Zn, Co and Cu K edges EXAFS measurements with synchrotron radiation to explain their experimentally observed magnetic properties.

  1. Studies on the structural and optical properties of zinc oxide nanobushes and Co-doped ZnO self-aggregated nanorods synthesized by simple thermal decomposition route

    SciTech Connect

    Freedsman, Joseph J.; Kennedy, L. John; Kumar, R. Thinesh; Sekaran, G.; Vijaya, J. Judith

    2010-10-15

    Pure and Co-doped zinc oxide nanomaterials were prepared by a simple low temperature synthesis and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution-transmission electron microscopy (HR-TEM), diffused reflectance spectroscopy (DRS) and electron paramagnetic resonance (EPR) techniques. The results showed the formation of nanobushes that consists of several nanowires for pure ZnO and the nanorods formed by self-aggregation for Co-doped ZnO. The presence of Co{sup 2+} ions replacing some of the Zn{sup 2+} in the ZnO lattice was confirmed by EPR and DRS studies. The mechanism for the formation of self-aggregated and self-aligned ZnO rods after the incorporation of cobalt in the lattice by the building block units is discussed in this study. Morphological studies were carried out using SEM and HR-TEM, which supports the validity of the proposed mechanism for the formation of ZnO nanobushes and Co-doped ZnO nanorods. The synthesized nanomaterials were found to have good optoelectronic properties.

  2. Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects

    SciTech Connect

    Tang, Kun Gu, Ran; Gu, Shulin Ye, Jiandong; Zhu, Shunming; Yao, Zhengrong; Xu, Zhonghua; Zheng, Youdou

    2015-04-07

    In this article, the authors have conducted an extensive investigation on the roles of intrinsic zinc defects by annealing of a batch of Te-N co-doped ZnO films. The formation and annihilation of Zn interstitial (Zn{sub i}) clusters have been found in samples with different annealing temperatures. Electrical and Raman measurements have shown that the Zn{sub i} clusters are a significant compensation source to holes, and the Te co-doping has a notable effect on suppressing the Zn{sub i} clusters. Meanwhile, shallow acceptors have been identified in photoluminescence spectra. The N{sub O}-Zn-Te complex, zinc vacancy (V{sub Zn})-N{sub O} complex, and V{sub Zn} clusters are thought to be the candidates as the shallow acceptors. The evolution of shallow acceptors upon annealing temperature have been also studied. The clustering of V{sub Zn} at high annealing temperature is proposed to be a possible candidate as a stable acceptor in ZnO.

  3. Structural and optical properties of highly crystalline Ce, Eu and co-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Murugadoss, G.; Jayavel, R.; Rajesh Kumar, M.

    2015-06-01

    Different concentrations of europium (Eu), cerium (Ce) doped and co-doped ZnO:Eu (1%), Ce (1%) nanorods were successfully synthesized by chemical method using Polyvinylpyrrolidone as a surfactant. Crystalline phase, morphology, functional groups, optical absorption, emission and thermal properties of prepared samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), Scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HR-TEM), Fourier transform infra-red (FT-IR), UV-visible, Photoluminescence (PL) spectrophotometer and thermogravimetry (TG) and differential thermal analysis (DTA) analysis. The XRD study showed high crystalline nature of the products with nanoscale regime. Optical study showed shifting the absorption and emission spectra toward higher wavelength side when increasing the doping concentrations. Mainly, this is first time observed a red emission peak at 660 nm for Ce (3%) doped ZnO. Additionally, co-doped ZnO:Eu (1%), Ce (1%) nanorods were synthesized and studied their optical properties. This work demonstrates that simply modified their optical absorption and emission of ZnO by introducing rare earth ions can be used as an effective electrode material in solar cell applications, optoelectronic devices and photocatalysis analysis.

  4. Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF6 crystal

    NASA Astrophysics Data System (ADS)

    Fukuda, Kentaro; Yanagida, Takayuki; Fujimoto, Yutaka

    2015-06-01

    Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF6 crystal. Eu doped and Eu, Y co-doped LiCaAlF6 were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded.

  5. Li and Ag Co-Doped ZnO Photocatalyst for Degradation of RO 4 Dye Under Solar Light Irradiation.

    PubMed

    Dhatshanamurthi, P; Shanthi, M

    2016-06-01

    The synthesis of Li doped Ag-ZnO (Li-Ag-ZnO) has been successfully achieved by a sonochemically assisted precipitation-decomposition method. The synthesized catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), X-ray photoelectron spectra (XPS) and BET surface area measurements. The photocatalytic activity of Li-Ag-ZnO was investigated for the degradation of Reactive orange 4 (RO 4) dye in aqueous solution under solar light irradiation. Co-dopants shift the absorbance of ZnO to the visible region. Li-Ag-ZnO is found to be more efficient than Ag-ZnO, Li-ZnO, commercial ZnO and prepared ZnO at pH 7 for the mineralization of RO 4 dye under solar light irradiation. The influences of operational parameters such as the amount of photocatalyst, dye concentration, initial pH on photo-mineralization of RO 4 have been analyzed. The mineralization of RO 4 dye has been confirmed by COD measurements. A degradation mechanism is proposed for the degradation of RO 4 under solar light. The catalyst was found to be more stable and reusable. PMID:27427652

  6. Effect of thermal treatment on room-temperature ferromagnetism in Co-doped ZnO powders

    NASA Astrophysics Data System (ADS)

    Zhou, Xueyun; Ge, Shihui; Yao, Dongsheng; Zuo, Yalu; Xiao, Yuhua

    2008-09-01

    The Co-doped ZnO powders were synthesized by sol-gel method, and treated at different temperatures (673-873 K) in the presence or absence of NH 3 atmosphere for 0.5 and 2 h, respectively. X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) show that better crystal structure can cause larger ferromagnetism and the second phase (Co 3O 4) is the reason for saturation magnetization decrease of the sample sintered at higher temperature in air. XPS and nuclear magnetic resonance (NMR) prove the existence of Co 2+ ions in the Zn 0.9Co 0.1O and the absence of Co clusters, indicating intrinsic ferromagnetism of the samples treated in air. However, strong ferromagnetism of the samples annealed in NH 3 is ascribed to cobalt nitride formed during annealing.

  7. Morphological evolution and electronic alteration of ZnO nanomaterials induced by Ni/Fe co-doping

    NASA Astrophysics Data System (ADS)

    Fletcher, Cameron; Jiang, Yijiao; Sun, Chenghua; Amal, Rose

    2014-06-01

    Zinc oxide (ZnO) nanocrystals mono- and co-doped with nickel/iron were prepared using a facile solvothermal procedure. A significant change in the surface morphology from nanorods to plate-like nanoparticles was observed with an increase in the dopant concentration. The variations of their optical and electronic properties induced by metal dopants were investigated using a combination of characterization techniques and ab initio calculations. It is found that both nickel and iron atoms have been successfully incorporated into the crystal lattice rather than forming a secondary phase, suggesting good dispersion of dopants within the ZnO matrix. Doping with iron has red-shifted the absorption edges of ZnO towards the visible portion resulting in lower band gap energies with increasing dopant concentration. Evidenced by Raman and EPR spectroscopy, the addition of iron has been shown to promote the formation of more oxygen vacancy and crystal defects within the host lattice as well as increasing the free-electron density of the nanomaterial. The DFT plus Hubbard model calculations confirm that low concentration Ni-doping does not induce band gap narrowing but results in localized states. The calculations show that Fe-doping has the potential to greatly improve the optical absorption characteristics and lead to structural deformation, corroborating the UV-Vis, Raman, and EPR spectra.Zinc oxide (ZnO) nanocrystals mono- and co-doped with nickel/iron were prepared using a facile solvothermal procedure. A significant change in the surface morphology from nanorods to plate-like nanoparticles was observed with an increase in the dopant concentration. The variations of their optical and electronic properties induced by metal dopants were investigated using a combination of characterization techniques and ab initio calculations. It is found that both nickel and iron atoms have been successfully incorporated into the crystal lattice rather than forming a secondary phase

  8. Spin-polarized transport current in n-type codoped ZnO thin films measured by Andreev spectroscopy.

    SciTech Connect

    Yates, K. A.; Behan, A. J.; Neal, J. R.; Score, D. S.; Blythe, H. J.; Gehring, G. A.; Heald, S. M.; Branford, W. R.; Cohen, L. F.; Imperial Coll.; Univ. of Sheffield

    2009-12-01

    We use point-contact Andreev-reflection measurements to determine the spin polarization of the transport current in pulse laser deposited thin films of ZnO with 1% Al and with and without 2% Mn. Only films with Mn are ferromagnetic and show spin polarization of the transport current of up to 55 {+-} 0.5% at 4.2 K, in sharp contrast to measurements of the nonmagnetic films without Mn where the polarization is consistent with zero. Our results imply strongly that ferromagnetism in these Al-doped ZnO films requires the presence of Mn.

  9. Structural and spectroscopic properties of Li+ co-doped MgAl2O4: Eu3+ nanophosphors

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd.; Ahmad, Shabbir

    2016-05-01

    The red light emitting highly-luminescent Li+ co-doped magnesium aluminates (MgAl2O4: Eu3+) nanophosphors were synthesized by combustion synthesis method. The phosphors were characterized by XRD, FTIR, UV-visible and photoluminescence (PL) spectroscopy. The crystal structure and phase of the phosphors were investigated using XRD. The band gap of pure, Eu3+ doped and Li+ codoped MgAl2O4 phosphor were obtained from the DR spectra using the K-M function F(R∞). The photoluminescence spectra of MgAl2O4:Eu3+ and Li+ codoped MgAl2O4:Eu3+ phosphors were described by well known 5D0-7Fj transitions (J=0, 1, 2, 3, 4). The emission intensity of MgAl2O4:Eu3+ phosphor is enhanced with Li+ codoping.

  10. White Light Emission and Luminescence Dynamics in Eu³⁺/Dy³⁺ Codoped ZnO Nanocrystals.

    PubMed

    Luo, L; Huang, F Y; Dong, G S; Wang, Y H; Hu, Z F; Chen, J

    2016-01-01

    In order to expand the use of ZnO in advanced display and lighting device applications, such as distinguishable emissive flat panel displays and liquid crystal display backlights, Eu³⁺/Dy³⁺-codoped ZnO nanocrystals were synthesized using a low temperature wet chemical doping technique and chemical surface modification. X-ray diffraction patterns revealed that co-doping Eu³⁺ and Dy³⁺ does not change the wurtzite structure of ZnO. A high-resolution TEM image showing obvious lattice fringes confirmed the high crystallinity of the nanosized sample. The luminescence and dynam- ics of Eu³⁺/Dy³⁺-codoped ZnO nanocrystals of various doping concentrations were studied under ultraviolet excitation. Excitation into the ZnO conduction band was also studied. ZnO doped with Eu³⁺ and Dy³⁺ ions exhibited a strong blue (483 nm) emission from the ⁴F₉/₂ --> ⁶H₁₅/₂ transition of Dy³⁺ ions, a yellowish-green (575 nm) emission from the ⁴F₉/₂ --> ⁶H₁₃/₂ transition of Dy³⁺ ions and a red (612 nm) emission from the ⁵D₀ --> ⁷F₂ transition of Eu³⁺ ions, without a defect background. Undoped ZnO emitted a broadband green light, demonstrating an efficient energy transfer from the ZnO host to the Eu³⁺ and Dy³⁺ ions. Moreover, energy transfer from the Eu³⁺ ions to the Dy³⁺ ions in the ZnO host was also observed by analyzing luminescence decay curves. The luminescence dynamics of the Eu³⁺/Dy³⁺-codped ZnO sample indicate that as the Eu³⁺ concentration increased, both the rise and the decay time constants of the ⁴H₉/₂ level of the Dy³⁺ ions became longer, while the decay time constants of the ⁵D₀ level of the Eu³⁺ ions became shorter, suggesting an energy transfer from the Eu³⁺ ions to the Dy³⁺ ions in the ZnO host. Furthermore, by adjusting the doping concentration ratio of Eu³⁺ and Dy³⁺ ions, the Eu³⁺/Dy³⁺-codoped ZnO phosphors emitted strong white luminescence with a high

  11. Structural, optical and magnetic properties of Co-doped ZnO nanorods with hidden secondary phases.

    PubMed

    Wang, Xuefeng; Zheng, Rongkun; Liu, Zongwen; Ho, Ho-Pui; Xu, Jianbin; Ringer, Simon P

    2008-11-12

    Co-doped ZnO nanorods (composition: Zn(0.955)Co(0.045)O) were grown by a simple surfactant-assisted hydrothermal technique. The morphological, structural, optical and magnetic properties of the as-prepared nanorods were investigated by means of scanning electron microscopy, high-resolution transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, micro-Raman spectroscopy, micro-cathodoluminescence, and vibrating sample magnetometry (VSM). The results showed that the sample had rod-like morphology and that the preferential growth direction was along the c axis. While Co was successfully doped into the ZnO wurtzite lattice structure as revealed by several characterization techniques, hidden secondary phases of Zn(y)Co(3-y)O(4) (0≤y≤1) were also clearly detected by the micro-Raman spectroscopic technique. We propose that the predominant diffusion-limited Ostwald ripening crystal growth mechanism under the hydrothermal coarsening yielded such phase segregation. VSM results showed that the nanorods displayed relatively weak room-temperature ferromagnetism. We suggest that the origin of the ferromagnetism is probably due to the presence of the mixed cation valence of Co via a d-d double-exchange mechanism rather than the real doping effect. It is essential to control the crystal growth mechanism and defect states associated with the ferromagnetism in order to realize the intrinsic diluted magnetic semiconductors. PMID:21832791

  12. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    SciTech Connect

    Mohan, R. Raj; Rajendran, K.; Sambath, K.

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  13. Highly piezoelectric co-doped AlN thin films for wideband FBAR applications.

    PubMed

    Yokoyama, Tsuyoshi; Iwazaki, Yoshiki; Onda, Yosuke; Nishihara, Tokihiro; Sasajima, Yuichi; Ueda, Masanori

    2015-06-01

    We report piezoelectric materials composed of charge-compensated co-doped (Mg, β)(x)Al(1-x)N (β = Zr or Hf) thin films. The effect of the dopant element into AlN on the crystal structure, and piezoelectric properties of co-doped AlN was determined on the basis of a first-principles calculation, and the theoretical piezoelectric properties were confirmed by experimentally depositing thin films of magnesium (Mg) and zirconium (Zr) co-doped AlN (Mg-Zr-doped AlN). The Mg-Zrdoped AlN thin films were prepared on Si (100) substrates by using a triple-radio-frequency magnetron reactive co-sputtering system. The crystal structures and piezoelectric coefficients (d33) were investigated as a function of the concentrations, which were measured by X-ray diffraction and a piezometer. The results show that the d33 of Mg-Zr-doped AlN at total Mg and Zr concentrations (both expressed as β) of 0.35 was 280% larger than that of pure AlN. The experimentally measured parameter of the crystal structure and d33 of Mg-Zr-doped AlN (plotted as functions of total Mg and Zr concentrations) were in very close agreement with the corresponding values obtained by the first-principle calculations. Thin film bulk acoustic wave resonators (FBAR) employing (Mg,Zr)0.13Al0.87N and (Mg, Hf)0.13 Al0.87N as a piezoelectric thin film were fabricated, and their resonant characteristics were evaluated. The measured electromechanical coupling coefficient increased from 7.1% for pure AlN to 8.5% for Mg-Zr-doped AlN and 10.0% for Mg- Hf-doped AlN. These results indicate that co-doped (Mg, β)(x)Al(1-x)N (β = Zr or Hf) films have potential as piezoelectric thin films for wideband RF applications. PMID:26067035

  14. Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects

    SciTech Connect

    Simimol, A.; Anappara, Aji A.; Greulich-Weber, S.; Chowdhury, Prasanta; Barshilia, Harish C.

    2015-06-07

    We report the growth of un-doped and cobalt doped ZnO nanostructures fabricated on FTO coated glass substrates using electrodeposition method. A detailed study on the effects of dopant concentration on morphology, structural, optical, and magnetic properties of the ZnO nanostructures has been carried out systematically by varying the Co concentration (c.{sub Co}) from 0.01 to 1 mM. For c.{sub Co }≤ 0.2 mM, h-wurtzite phase with no secondary phases of Co were present in the ZnO nanostructures. For c.{sub Co} ≤ 0.2 mM, the photoluminescence spectra exhibited a decrease in the intensity of ultraviolet emission as well as band-gap narrowing with an increase in dopant concentration. All the doped samples displayed a broad emission in the visible range and its intensity increased with an increase in Co concentration. It was found that the defect centers such as oxygen vacancies and zinc interstitials were the source of the visible emission. The X-ray photoelectron spectroscopy studies revealed, Co was primarily in the divalent state, replacing the Zn ion inside the tetrahedral crystal site of ZnO without forming any cluster or secondary phases of Co. The un-doped ZnO nanorods exhibited diamagnetic behavior and it remained up to a c.{sub Co} of 0.05 mM, while for c.{sub Co }> 0.05 mM, the ZnO nanostructures exhibited ferromagnetic behavior at room temperature. The coercivity increased to 695 G for 0.2 mM Co-doped sample and then it decreased for c.{sub Co }> 0.2 mM. Our results illustrate that up to a threshold concentration of 0.2 mM, the strong ferromagnetism is due to the oxygen vacancy defects centers, which exist in the Co-doped ZnO nanostructures. The origin of strong ferromagnetism at room temperature in Co-doped ZnO nanostructures is attributed to the s-d exchange interaction between the localized spin moments resulting from the oxygen vacancies and d electrons of Co{sup 2+} ions. Our findings provide a new insight for tuning the

  15. Effect of (Fe, Co) co-doping on the structural, electrical and magnetic properties of ZnO nanocrystals prepared by solution combustion method

    NASA Astrophysics Data System (ADS)

    Ram, Mast; Negi, N. S.

    2016-01-01

    The structural, electrical and magnetic properties of Zn1-xCo0.05FexO (where, x=0, 1, 2, 3 and 5 mol%) nanoparticles prepared by solution combustion method are reported. The X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDX) have been used for structural and compositional analysis. The X-ray diffraction pattern showed the existence of hexagonal wurtzite structure of parent ZnO with co-doping. The microstructural studies reveal the dense nanostructured morphology of these samples. The DC electrical conductivity measurements have been carried out in the temperature range of 300-450 K. The DC electrical conductivity decreases with the increasing Fe concentration. The magnetic studies reveal room temperature ferromagnetisation in doped ZnO nanoparticles. The magnetic properties of ZnO nanoparticles improve with increasing Fe dopant concentration.

  16. Manganese valence and coordination structure in Mn,Mg-codoped {gamma}-AlON green phosphor

    SciTech Connect

    Takeda, Takashi; Xie, Rong-Jun; Hirosaki, Naoto; Matsushita, Yoshitaka; Honma, Tetuso

    2012-10-15

    The valence and coordination structure of manganese in a Mn,Mg-codoped {gamma}-AlON spinel-type oxynitride green phosphor were studied by synchrotron X-ray diffraction and absorption fine structure measurements. The absorption edge position of the XANES revealed the bivalency of Mn. Two cation sites are available in the spinel structure for cation doping: a tetrahedral site and an octahedral site. The pre-edge of the XANES and the distance to the nearest neighbor atoms obtained from the EXAFS measurement showed that Mn was situated at the tetrahedral site. Rietveld analysis showed that the vacancy occupied the octahedral site. The preferential occupation of the tetrahedral site by Mn and the roles of N and Mg are discussed in relation to the spinel crystal structure. - Graphical Abstract: Fourier transform of EXAFS of Mn K-edge for Mn,Mg-codoped green phosphor and Mn coordination structure. Highlights: Black-Right-Pointing-Pointer Mn, Mg-codoped {gamma}-AlON green phosphor for white LED. Black-Right-Pointing-Pointer The valence of Mn is divalent. Black-Right-Pointing-Pointer Mn occupies the tetrahedral site in the spinel structure.

  17. Structural, optical, and magnetic properties of (Co, Cu)-codoped ZnO films with different Co concentrations

    SciTech Connect

    Xu, M. Yuan, H. Zhou, P. F.; Dong, C. J.; You, B.; Duan, M. Y.

    2014-03-07

    Zn{sub 0.99-x}Co{sub x}Cu{sub 0.01}O films with different Co concentrations from 0% to 20% were fabricated by a sol-gel method. Moderate Co doping is found to improve the surface uniformity and crystal quality of the films, and causes a redshift of the band edge of Zn(Co,Cu) films. X-ray photoelectron spectroscopy reveals that the introduction of Co ions causes the valence state of Cu to change from +2 to +1; while at Co concentrations lower than 10%, the Co exists in the +2 valence state. Strong blue emission at ∼420 and 440 nm are observed, decreasing with increasing Co concentration, but becoming strong again as the concentration is increased to 20%. Enhanced room-temperature ferromagnetism is observed for the (Co, Cu)-codoped ZnO films at Co concentrations lower than 10%. These interesting magnetic properties are explained based on charge transfer, together with the defect-related model for ferromagnetism.

  18. CL from ZnO nanowires and microneedles Co-doped with N and Mn

    NASA Astrophysics Data System (ADS)

    Herrera, M.; Morales, A.; Díaz, J. A.

    2014-05-01

    Cathodoluminescence (CL) was used to study the luminescence emission of ZnO : N, Mn nanowires and microneedles grown by thermal evaporation. CL spectra acquired at room temperature showed the presence of near band edge and defect-related emissions. The defect related emission comprised two bands centered at 2.28 and 2.5 eV. The first component was attributed to the formation of spinel ZnMn2O4 and the second to the well-known ZnO green emission. CL spectra acquired at 100 K showed two emissions centered at 3.22 and 3.25 eV that were attributed to donor-acceptor pair (DAP) and FA transitions, respectively. It was proposed that substitutional nitrogen (NO) and zinc interstitial (Zni) were acceptor and shallow-donor centers in the DAP transition.

  19. Effective n-type doping strategy through codoping SiAl-FN in aluminum nitride

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Li, Jingbo; Qing Fu, Yong

    2014-11-01

    Using a first-principles pseudopotential method, we studied an effective n-type doping strategy through codoping SiAl-XN (X = F, Cl, Br, and I) in aluminum nitride. Results revealed that the donor ionization energy of the SiAl-XN complex is much lower than that of the corresponding isolated SiAl impurity. Theoretically obtained ɛ(+/0) ionization energies are all near the conduction band minimum (CBM), which is only 1.4 meV below the CBM of the SiAl-FN pair. The low ɛ(+/0) ionization energy of the SiAl-XN complex can be explained by the combined repulsion between the X element (X = F, Cl, Br, and I)- and Si donor-induced levels.

  20. Enhanced energy transfer between Co-dopants Pyronin-Y and Thionine incorporated into modified polymethyl methacrylate with addition of ZnO nanoparticles.

    PubMed

    Vijayaraghavan, G V; Basheer Ahamed, M

    2016-04-01

    Using a prism dye cell arrangement, the study investigated spectral energy transfer between co-dopants Pyronin-Y and Thionine incorporated into ethanol-modified polymethyl methacrylate. The spectral parameters of the absorption and fluorescence spectra of the donor and acceptor dyes in the so designed solid-state dye laser were calculated theoretically. Fluorescence lasing properties and slope efficiency of the solid-state dye laser were investigated both with and without addition of ZnO nanoparticles. The dye pair generally improved lasing efficiency and tunability in the range from 582 to 689nm. PMID:26803748

  1. Enhanced energy transfer between Co-dopants Pyronin-Y and Thionine incorporated into modified polymethyl methacrylate with addition of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, G. V.; Basheer Ahamed, M.

    2016-04-01

    Using a prism dye cell arrangement, the study investigated spectral energy transfer between co-dopants Pyronin-Y and Thionine incorporated into ethanol-modified polymethyl methacrylate. The spectral parameters of the absorption and fluorescence spectra of the donor and acceptor dyes in the so designed solid-state dye laser were calculated theoretically. Fluorescence lasing properties and slope efficiency of the solid-state dye laser were investigated both with and without addition of ZnO nanoparticles. The dye pair generally improved lasing efficiency and tunability in the range from 582 to 689 nm.

  2. Effects of Ti additives on structural and electric properties of Cr- and Ti-codoped ZnO layers

    NASA Astrophysics Data System (ADS)

    Lee, Sejoon; Lee, Youngmin; Young Kim, Deuk; Won Kang, Tae

    2013-08-01

    We investigate the effects of Ti-codoping on the structural and electrical properties of the ZnCrTiO layers grown on the Pt (111)/Ti/Al2O3 (0001) substrates by co-sputtering of ZnCrO and Ti. The ZnCrTiO layers with the Ti contents of 0.2-0.3 at. % reveal the enhanced disorder-activated Raman modes, attributing to increased lattice-displacement-induced phonon scattering due to the incorporation of Ti additives. In comparison with ZnCrO, the ZnCrTiO layers exhibit the improved ferroelectric properties with one order of magnitude-increased remnant polarization. This causes a polarization-dependent asymmetric hysteresis behavior in the Pt/ZnCrTiO/Pt top-to-bottom metal-ferroelectric-metal device, suggesting potential applications for two-terminal ferroelectric-tunneling resistive memories.

  3. Structure and Properties of Al and Ga- Doped ZnO

    NASA Astrophysics Data System (ADS)

    Temizer, Namik Kemal

    Recently there is tremendous interest in Transparent conducting oxide (TCO) research due to the unlimited and exciting application areas. Current research is mostly focused on finding alternative low cost and sustainable materials in order to replace indium tin oxide (ITO), which caused serious concern due to the increasing cost of indium and chemical stability issues of ITO. The primary aim of this research is to develop alternative TCO materials with superior properties in order to increase the efficiency in optoelectronic applications, as well as to study the properties of these materials to fully characterize them. We have grown Al and Ga-doped ZnO films with an optimized composition under different deposition conditions in order to understand the effect of processing parameters on the film properties. We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110muO-cm) values. The films grown in an ambient oxygen partial pressure (PO2 ) of 50 mTorr and at growth temperatures from room temperature to 600°C showed semiconducting behavior, whereas samples grown at a Po2 of 1 mTorr showed metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical and magnetic properties and such changes in physical properties are controlled predominantly by the defect content. To gain a better understanding of the conduction processes in doped ZnO thin films, we have studied the temperature variation of resistivity of some selected samples that showed some interesting behavior

  4. Yb/Al-codoped fused-silica planar-waveguide amplifier

    NASA Astrophysics Data System (ADS)

    Atar, Gil; Eger, David; Bruner, Ariel; Sfez, Bruno; Ruschin, Shlomo

    2016-05-01

    We report an Yb/Al-codoped fused silica planar waveguide amplifier with <0.2 dB/cm passive loss and 0.6 dB/cm gain, featuring a high damage threshold (>0.1 GW/cm2) and a relatively large core (20 μm thick). Waveguide fabrication is based on a novel silica-on-silica technology combining modified-chemical-vapor deposition and a high temperature CO2 laser treatment for making high-power photonic devices.

  5. Effect of Al and Fe doping in ZnO on magnetic and magneto-transport properties

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Deepika; Tripathi, Malvika; Vaibhav, Pratyush; Kumar, Aman; Kumar, Ritesh; Choudhary, R. J.; Phase, D. M.

    2016-12-01

    The structural, magnetic and magneto-transport of undoped ZnO, Zn0.97Al0.03O, Zn0.95Fe0.05O and Zn0.92Al0.03Fe0.05O thin films grown on Si(100) substrate using pulsed laser deposition were investigated. The single phase nature of the films is confirmed by X-ray diffraction and Raman spectroscopy measurements. The possibility of Fe metal cluster in Fe doped/co-doped films is ruled out by Fe 2p core level photoelectron spectra. From O 1s core level spectra it is observed that oxygen vacancy is present in all the films. The undoped ZnO film shows magnetic ordering below ∼175 K, whereas Fe doped/codoped samples show magnetic ordering even at 300 K. The Al doped sample reveals paramagnetic behavior. The magneto-transport measurements suggest that the mobile carriers undergo exchange interaction with local magnetic moments.

  6. Ferromagnetism in homogeneous (Al,Co)-codoped 4H-silicon carbides

    NASA Astrophysics Data System (ADS)

    Zhang, X. H.; Han, J. C.; Zhou, J. G.; Xin, C.; Zhang, Z. H.; Song, B.

    2014-08-01

    In view of the recent controversies on above room-temperature (RT) ferromagnetism (FM) in transition-metal (TM) doped silicon carbides (SiC), the present paper aims to shed some light on the natural origin of long-range magnetic order by investigating the (Al, Co)-doped 4H-SiC, both experimentally and theoretically. A combination of characterizations means including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and X-ray absorption near-edge structure spectroscopy (XANES) measurement eliminated the presence of any nanoclusters or secondary phases as the source of FM. X-ray absorption near-edge structure spectroscopy analyses provided convincing evidence that no secondary phases such as Co metallic clusters were present when Co and Al are homogeneously inserted in the SiC matrix. RT FM originates from a composite mechanism based on the Ruderman-Kittel-Kasuya-Yosida, and double-exchange interactions. The dopant Al is found to stabilize the crystal structure as well as show the experimental possibility of tuning the magnetization by codoping.

  7. Synthesis and up-conversion luminescence properties of Ho3+, Yb3+ co-doped BaLa2ZnO5

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Mei, Lefu; Liao, Libing; Guan, Ming; Liu, Haikun

    2015-08-01

    Up-conversion phosphors BaLa2ZnO5 co-doped with Ho3+/Yb3+ were synthesized by high temperature solid-state reaction method. The phase composition of the phosphors was characterized by X-ray diffraction (XRD). The structure of BaLa2ZnO5: 0.75% Ho/15% Yb phosphor was refined by the Rietveld method and results showed the decreased unit cell parameters and cell volume after doping Ho3+ and Yb3+, indicating Ho3+ and Yb3+ have successfully replaced La3+. Under the excitation of 980 nm diode laser, the strong green and weak red up-conversion emissions centered at 548 nm, 664 nm and 758 nm were observed, which originating from 5S2, 5F2→5I8, 5F4→5I8 and 5S2, 5F2→5I7 transitions of Ho3+ ions, respectively. The optimum doping concentrations of Ho3+ and Yb3+ were determined to be 0.75% and 15%, and the corresponding Commission International de L'Eclairage (CIE) coordinates are calculated to be x=0.298 and y=0.692. The related UC mechanism of Ho3+/Yb3+ co-doped BaLa2ZnO5 depending on pump power was studied in detail. The results indicate that BaLa2ZnO5: Ho3+/Yb3+ can be an effective candidate for up-conversion yellowish-green light emitter.

  8. Structural, linear and nonlinear optical properties of co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Shaaban, E. R.; El-Hagary, M.; Moustafa, El Sayed; Hassan, H. Shokry; Ismail, Yasser A. M.; Emam-Ismail, M.; Ali, A. S.

    2016-01-01

    Different compositions of Co-doped zinc oxide [(Zn(1- x)Co x O) ( x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10)] thin films were evaporated onto highly clean glass substrates by thermal evaporation technique using a modified source. The structural properties investigated by X-ray diffraction revealed hexagonal wurtzite ZnO-type structure. The crystallite size of the films was found to decrease with increasing Co content. The optical characterization of the films has been carried out using spectral transmittance and reflectance obtained in the wavelength range from 300 to 2500 nm. The refractive index has been found to increase with increasing Co content. It was further found that optical energy gap decreases from 3.28 to 3.03 eV with increasing Co content from x = 0 to x = 0.10, respectively. The dispersion of refractive index has been analyzed in terms of Wemple-DiDomenico (WDD) single-oscillator model. The oscillator parameters, the single-oscillator energy ( E o), the dispersion energy ( E d), and the static refractive index ( n 0), were determined. The nonlinear refractive index of the Zn(1- x)Co x O thin films was calculated and revealed well correlation with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system.

  9. Ferromagnetic mechanism of (Co, Cu)-codoped ZnO films with different Co concentrations investigated by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Yuan, Huan; Du, Xiaosong; Xu, Ming

    2016-05-01

    Cobalt/copper-codoped ZnO nanoparticles, synthesized with different Co concentrations by a sol-gel method using ethanol as solvent, were studied via XPS. Hexagonal wurtzite structure was found in all samples, with no evidence of any secondary phase. The average crystallite size of the samples was around 20-30 nm, altered significantly with increasing Co concentration. Copper ions and Cobalt ions are indeed substituted into the ZnO lattice at the Zn2+ site, as shown by XRD and XPS. Further studies showed dramatic changes of Cu valence from +2 to +1 as the Co concentration level exceeds 1%, accompanied by a blue-shift of the optical bandgap from 3.01 to 3.13 eV. Ferromagnetism of the Co-doped Zn0.95Cu0.05O thin films was observed and found to be tunable - a phenomenon associated with the valence state of the Cu ions and the existence of some defects like oxygen vacancies in the films.

  10. Semiconducting properties of Al doped ZnO thin films.

    PubMed

    Al-Ghamdi, Ahmed A; Al-Hartomy, Omar A; El Okr, M; Nawar, A M; El-Gazzar, S; El-Tantawy, Farid; Yakuphanoglu, F

    2014-10-15

    Aluminum doped ZnO (AZO) thin films were successfully deposited via spin coating technique onto glass substrates. Structural properties of the films were analyzed by X-ray diffraction, atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy. X-ray diffraction results reveal that all the films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction (002) plane. The crystallite size of ZnO and AZO films was determined from Scherrer's formula and Williamson-Hall analysis. The lattice parameters of the AZO films were found to decrease with increasing Al content. Energy dispersive spectroscopy (EDX) results indicate that Zn, Al and O elements are present in the AZO thin films. The electrical conductivity, mobility carriers and carrier concentration of the films are increased with increasing Al doping concentration. The optical band gap (Eg) of the films is increased with increasing Al concentration. The AZO thin films indicate a high transparency in the visible region with an average value of 86%. These transparent AZO films may be open a new avenue for optoelectronic and photonic devices applications in near future. PMID:24840493

  11. EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition.

    PubMed

    Mino, Lorenzo; Gianolio, Diego; Bardelli, Fabrizio; Prestipino, Carmelo; Senthil Kumar, E; Bellarmine, F; Ramanjaneyulu, M; Lamberti, Carlo; Ramachandra Rao, M S

    2013-09-25

    Ni doped, Li doped and (Li, Ni) codoped ZnO thin films were successfully grown using a pulsed laser deposition technique. Undoped and doped ZnO thin films were investigated using extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES). Preliminary investigations on the Zn K-edge of the undoped and doped ZnO thin films revealed that doping has not influenced the average Zn-Zn bond length and Debye-Waller factor. This shows that both Ni and Li doping do not appreciably affect the average local environment of Zn. All the doped ZnO thin films exhibited more than 50% of substitutional Ni, with a maximum of 77% for 2% Ni and 2% Li doped ZnO thin film. The contribution of Ni metal to the EXAFS signal clearly reveals the presence of Ni clusters. The Ni-Ni distance in the Ni(0) nanoclusters, which are formed in the film, is shorter with respect to the reference Ni metal foil and the Debye-Waller factor is higher. Both facts perfectly reflect what is expected for metal nanoparticles. At the highest doping concentration (5%), the presence of Li favors the growth of a secondary NiO phase. Indeed, 2% Ni and 5% Li doped ZnO thin film shows %Nisub = 75 ± 11, %Nimet = 10 ± 8, %NiO = 15 ± 8. XANES studies further confirm that the substitutional Ni is more than 50% in all the samples. These results explain the observed magnetic properties. PMID:23988792

  12. Realization of p-type conductivity in ZnO by (N, Ag) dual acceptor codoping: a first-principles study

    NASA Astrophysics Data System (ADS)

    Xiong, Zhihua; Chen, Lanli; Wan, Qixin; Li, Dongmei

    2010-10-01

    Ag monodoped, N monodoped and (nN, Ag) codoped ZnO have been investigated by the first-principles calculations, where the formation energies and ionization energies of various complexes and the electronic structure for 3N-Ag complex are studied. The calculated results are that N prefers to substitute O site, and Ag substitutes Zn site under the most growth condition, which indicate NO and AgZn all act as acceptors. Meanwhile, it's shown that N-Ag, 2N-Ag complex contribute little to p-type conduction because of the relatively higher ionization energy. However, 3N-Ag complex may have the lowest ionization energy among various complexes, while the formation energy of 3N-Ag is lower than that of N monodoped, Ag monodoped, N-Ag and 2N-Ag complex under the Zn-rich condition, which indicates that 3N-Ag complex is energetically favorable for the formation of p-type ZnO. Furthermore, by studying the electronic structure of 3N-Ag complex, it may generate an additional impurity band above the valence band maximum of ZnO. It is found that NO generated holes around the top of the valence band, and at the same time, N 2p states hybridized with 4d states of AgZn at the Fermi energy, and the hybridization lowered the repulsive interaction between the two dual acceptors, which enhance the concentration of impurities and the stability of the system, indicating that the dual acceptors evidently improve p-type conductivity of ZnO. Thus, it is found that 3N-Ag complex is the better dopant configuration. That can gain a better quality p-type ZnO under the Zn-rich condition. Our theoretical results are consistent with the experiment results.

  13. Effect of Corrosion by Diluted HCL Solution on the Zno:. AL Texture

    NASA Astrophysics Data System (ADS)

    Shi, Mingji; Wang, Ping; Chen, Lanli

    2012-08-01

    High quality textured ZnO: Al electrode can improve the energy conversion efficiency of silicon based thin film solar cells. ZnO: Al films were deposited under 200W. Different textured surfaces were got when etching ZnO: Al films with diluted HCl solutions of 0.5% for different times. The transmission spectrum, square resistance and atomic force microscopy (AFM) images of the samples were measured. The dependence of corrosion time on the resistivity, transmittance and surface texture of the samples were studied. With the increasing of the corrosion time, the resistivity increased, the transmittance decreased, the root-mean-square roughness first increases, then decreases. High quality textured ZnO: Al electrode was obtained when etching the ZnO: Al film deposited under 200W of sputtering power with diluted HCl solution of 0.5%.

  14. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    SciTech Connect

    Kovács, A.; Duchamp, M.; Boothroyd, C. B.; Dunin-Borkowski, R. E.; Ney, A.; Ney, V.; Galindo, P. L.; Kaspar, T. C.; Chambers, S. A.

    2013-12-28

    We study planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al{sub 2}O{sub 3}), as well as the Co:ZnO/Al{sub 2}O{sub 3} interface, using aberration-corrected transmission electron microscopy and electron energy-loss spectroscopy. Co:ZnO samples that were deposited using pulsed laser deposition and reactive magnetron sputtering are both found to contain extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3–4 Co:ZnO layers next to the Al{sub 2}O{sub 3} substrate. The stacking fault density is in the range of 10{sup 17} cm{sup −3}. We also measure the local lattice distortions around the stacking faults. It is shown that despite the relatively high density of planar defects, lattice distortions, and small compositional variation, the Co:ZnO films retain paramagnetic properties.

  15. Enhanced photovoltaic performance of quantum dot-sensitized solar cell fabricated using Al-doped ZnO nanorod electrode

    NASA Astrophysics Data System (ADS)

    Raja, M.; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Balasundrapraphu, R.; Senthil, T. S.; Agilan, S.

    2015-04-01

    ZnO and Al doped ZnO nanorods have been successfully synthesized on ITO substrate via solgel dip coating method without using any catalyst. The X-ray diffraction studies showed that the Al doped ZnO samples are of hexagonal wurtzite structure. The Al ions were successfully incorporated into the ZnO lattice. Scanning electron microscopy images reveal that the average diameter of ZnO nanorods and Al doped ZnO nanorods are ∼300 nm and ∼200 nm respectively. The energy dispersive X-ray (EDS) analysis confirmed the presence Al in the ZnO thin films. The CdS quantum dot sensitized Al doped ZnO solar cell exhibited a power conversion efficiency of 1.5%.

  16. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    NASA Astrophysics Data System (ADS)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  17. Atomic layer deposition of Al-doped ZnO thin films

    SciTech Connect

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit; Okazaki, Ryuji; Terasaki, Ichiro

    2013-01-15

    Atomic layer deposition has been used to fabricate thin films of aluminum-doped ZnO by depositing interspersed layers of ZnO and Al{sub 2}O{sub 3} on borosilicate glass substrates. The growth characteristics of the films have been investigated through x-ray diffraction, x-ray reflection, and x-ray fluorescence measurements, and the efficacy of the Al doping has been evaluated through optical reflectivity and Seebeck coefficient measurements. The Al doping is found to affect the carrier density of ZnO up to a nominal Al dopant content of 5 at. %. At nominal Al doping levels of 10 at. % and higher, the structure of the films is found to be strongly affected by the Al{sub 2}O{sub 3} phase and no further carrier doping of ZnO is observed.

  18. A Density Functional Theory Study of Codoping Characteristics of Sulfur with Alkaline Earth in Delafossite CuAlO2

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Qin, Han; Liu, Zheng-Tang

    2016-04-01

    The structural, electronic properties and formation energies of sulfur and alkaline earth codoped delafossite CuAlO2 have been investigated using the first-principles density functional theory calculations. Our results reveal that the volume of codoping systems increases with the increasing atomic radius of metal atoms. The formation energies under different growth conditions have been calculated, showing that the codoping systems are formed easily under O-rich growth conditions. Electronic band structures and density of states have been obtained. The decreased bandgaps, enhanced covalence and appearance of electron acceptors after codoping are all good for p-type conductivity. Supported by the National Natural Science Foundation of China under Grant Nos. 11347199, 51402244, and 11547311, the Specialized Research Fund for Doctoral Program of Higher Education of China under Grant No. 20130184120028, the Fundamental Research Fund for the Central Universities, China under Grant Nos. 2682014CX084, 2682014ZT30, and 2682014ZT31, and the fund of the State Key Laboratory of Solidification Processing in NWPU under Grant No. SKLSP201511

  19. Co-Dopant Influence on the Persistent Luminescence of BaAl2O4:Eu2+,R3+

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lucas C. V.; Hölsä, Jorma; Carvalho, José M.; Pedroso, Cássio C. S.; Lastusaari, Mika; Felinto, Maria C. F. C.; Watanabe, Shigeo; Brito, Hermi F.

    2014-04-01

    The R3+ (rare earth) co-dopants may have a surprisingly important role in persistent luminescence - enhancement of up to 1-3 orders of magnitude may be obtained in the performance of these phosphor materials - depending strongly on the R3+ ion, of course. In this work, the effects of the R3+ co-dopants in the BaAl2O4:Eu2+,R3+ materials were studied using mainly thermoluminescence (TL) and synchrotron radiation XANES methods. In BaAl2O4, the conventional and persistent luminescence both arise from the 4f7→4f65d1 transition of Eu2+, yielding blue-green emission color. The former, in the presence of humidity, turns to more bluish because of creation of an additional Eu2+ luminescence centre which is not, however, visible in persistent luminescence. The trap structure in the non-co-doped BaAl2O4:Eu2+ is rather complex with 4-5 TL bands above room temperature. With R3+ co-doping, this basic structure is modified though no drastic change can be observed. This underlines the fact that even very small changes in the trap depths can produce significant modifications in the persistent luminescence efficiency. It should be remembered that basically the persistent luminescence performance is controlled by the Boltzmann population law depending exponentially on both the temperature and trap depth. Some mechanisms for persistent luminescence have suggested the presence of either divalent R2+ or tetravalent RIV during the charging of the Eu2+ doped materials. The present XANES measurements on BaAl2O4:Eu2+,R3+ confirmed the presence of only the trivalent form of the R3+ co-dopants excluding both of these pathways. It must thus be concluded, that the energy is stored in intrinsic and extrinsic defects created by the synthesis conditions and charge compensation due to R3+ co-doping. Even though the effect of the R3+ co-dopants was carefully exploited and characterized, the differences in the effect of different R3+ ions with very similar chemical and spectroscopic properties could

  20. Fabrication of Al-Doped ZnO Film with High Conductivity Induced by Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Hong, Jeongsoo; Katsumata, Ken-ichi; Matsushita, Nobuhiro

    2016-06-01

    We have fabricated Al-doped ZnO films by a spin-spray method, achieving high conductivity by Al-ion doping and photocatalytic activity of the ZnO. The surface morphology of the as-deposited films was varied by changing the Al concentration and addition of citrate ions. As-deposited Al-doped ZnO film without citrate ions showed rod array structure with increasing rod width as the Al concentration was increased. Meanwhile, Al-doped ZnO film deposited with addition of citrate ions changed to exhibit dense and continuous surface morphology with high transmittance of 85%. The lowest resistivity recorded for undoped and Al-doped ZnO film was 2.1 × 10-2 Ω cm and 5.9 × 10-3 Ω cm, after ultraviolet (UV) irradiation. The reason for the decreased resistivity is thought to be that Al-ion doping and the photocatalytic activity of ZnO contributed to improve the conductivity.

  1. Morphological properties of Al-doped ZnO nano/microstructures

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Ho; Umakoshi, Tomoyuki; Abe, Yoshio; Kawamura, Midori; Kiba, Takayuki

    2016-03-01

    We discussed the morphological properties of Al-doped zinc oxide (Al-ZnO) microrods grown on a ZnO seed layer and precipitation particles and compared them with undoped ZnO samples. The ZnO nanorods grown on a ZnO seed layer were dense and perpendicular to the surface of the substrate, i.e., fluorine-doped tin oxide (FTO). In contrast the Al-ZnO grew as larger microrods, and the rods were sparsely and obliquely arranged. Precipitation particles synthesized in the ZnO solution through homogeneous nucleation had flower-like structures assembled from the rods and individual rods with lengths of several micrometers. Al-ZnO precipitation particles consisted of rods with length of several micrometers and hexagonal nanoplates. Fourier transform infrared (FTIR) analysis results showed that the rods and precipitation particles had the good chemical properties of ZnO. Both size and morphology of the rods could be effectively controlled by adding aluminum nitrate (Al(NO3)3) as dopant in the ZnO rod solution.

  2. Study of structural and optical properties of Al doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallika, A. N.; Ramachandra Reddy, A.

    2014-03-01

    This paper reports on the structural and optical properties of Al doped ZnO nanoparticles prepared through sol-gel method using poly vinyl alcohol as chelating agent. Al was effectively doped in ZnO with concentrations up to 6 atomic percent concentrations (at. %). X-ray diffraction (XRD) results revealed that all the samples do not have impurity phase indicating hexagonal wurtzite structure of ZnO formed, the average crystallite sizes were decreased with increasing Al concentrations. A compressive strain was induced with Al doping and was calculated with W-H plot analysis. The morphology of all the samples was studied from Field Emission Scanning Electron Microscope (FE-SEM). The energy band gap of the Al doped samples was estimated from UV-Vis spectrum showed an overall increase. The presence of functional groups and chemical bonding of ZnO with Al doping was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectra, and in addition to this, the photoluminescence (PL) properties of Al doped ZnO nanoparticles were studied. This paper reports on the structural and optical properties of Al doped ZnO nanoparticles prepared through sol-gel method using poly vinyl alcohol as chelating agent. Al was effectively doped in ZnO with concentrations up to 6 atomic percent concentrations (at. %). X-ray diffraction (XRD) results revealed that all the samples do not have impurity phase indicating hexagonal wurtzite structure of ZnO formed, the average crystallite sizes were decreased with increasing Al concentrations. A compressive strain was induced with Al doping and was calculated with W-H plot analysis. The morphology of all the samples was studied from Field Emission Scanning Electron Microscope (FE-SEM). The energy band gap of the Al doped samples was estimated from UV-Vis spectrum showed an overall increase. The presence of functional groups and chemical bonding of ZnO with Al doping was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectra, and in

  3. Influence Al doped ZnO nanostructure on structural and optical properties

    NASA Astrophysics Data System (ADS)

    Ramelan, Ari Handono; Wahyuningsih, Sayekti; Chasanah, Uswatul; Munawaroh, Hanik

    2016-04-01

    The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO cause of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.

  4. Role of Ce4+ in the scintillation mechanism of codoped Gd3Ga3Al2O12:Ce

    DOE PAGESBeta

    Wu, Yuntao; Meng, Fang; Li, Qi; Koschan, Merry; Melcher, Charles L.

    2014-10-17

    To control the time-response performance of widely used cerium-activated scintillators in cutting-edge medical-imaging devices, such as time-of-flight positron-emission tomography, a comprehensive understanding of the role of Ce valence states, especially stable Ce4+, in the scintillation mechanism is essential. However, despite some progress made recently, an understanding of the physical processes involving Ce4+ is still lacking. The aim of this work is to clarify the role of Ce4+ in scintillators by studying Ca2+ codoped Gd3Ga3Al2O12∶Ce (GGAG∶Ce). By using a combination of optical absorption spectra and x-ray absorption near-edge spectroscopies, the correlation between Ca2+codoping content and the Ce4+ fraction is seen. The energy-levelmore » diagrams of Ce3+ and Ce4+ in the Gd3Ga3Al2O12 host are established by using theoretical and experimental methods, which indicate a higher position of the 5d1 state of Ce4+ in the forbidden gap in comparison to that of Ce3+. Underlying reasons for the decay-time acceleration resulting from Ca2+ codoping are revealed, and the physical processes of the Ce4+-emission model are proposed and further demonstrated by temperature-dependent radioluminescence spectra under x-ray excitation.« less

  5. Resistive switching characteristics of a compact ZnO nanorod array grown directly on an Al-doped ZnO substrate

    NASA Astrophysics Data System (ADS)

    Yoo, E. J.; Shin, J. Y.; Yoon, T. S.; Kang, C. J.; Choi, Y. J.

    2016-07-01

    ZnO’s resistive switching properties have drawn much attention because ZnO has a simple chemical composition and is easy to manipulate. The propulsion mechanism for resistive switching in ZnO is based on a conducting filament that consists of oxygen vacancies. In the case of film structure, the random formation of the conducting filaments occasionally leads to unstable switching characteristics. Limiting the direction in which the conducting filaments are formed is one way to solve this problem. In this study, we demonstrate reliable resistive switching behavior in a device with an Au/compact ZnO nanorod array/Al-doped ZnO structure with stable resistive switching over 105 cycles and a long retention time of 104 s by confining conducting filaments along the boundaries between ZnO nanorods. The restrictive formation of conducting filaments along the boundaries between ZnO nanorods is observed directly using conductive atomic force microscopy.

  6. New valence control and spin control method in GaN and AlN by codoping and transition atom doping

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Kato, R.; Yamamoto, T.

    2001-10-01

    We propose the following codoping method with doping both p - and n -type dopants at the same time in order to fabricate the low-resistivity p-type GaN and AlN based upon ab initio electronic structure calculations: (1) GaN : [Si Ga+2Mg Ga(or Be Ga), and O N+2Mg Ga(or Be Ga)], (2) AlN : [O N+2C N]. We compare our predictions of codoping with the recent successful codoping experiments for the low-resistivity p-type GaN and AlN. It is shown that the codoping method enhances the solubility of the dopant, reduces the acceptor energy level, and increases the mobility of the carriers. We predict that the Mn-doped GaN exhibits half-metallic ferromagnetism, in which the majority spin state is metallic and minority spin state is insulating, since the ferromagnetic double exchange interaction overcomes the anti-ferromagnetic super-exchange interaction. It is also shown that the carrier compensation by O donor codoping with the Mn stabilizing the anti-ferromagnetic insulator. We find that Fe-doped GaN is an anti-ferromagnetic insulator because the anti-ferromagnetic super-exchange interaction dominates the magnetism with no contribution from the ferromagnetic double exchange interaction.

  7. Electron transport in Al-doped ZnO nanolayers obtained by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Blagoev, B. S.; Dimitrov, D. Z.; Mehandzhiev, V. B.; Kovacheva, D.; Terziyska, P.; Pavlic, J.; Lovchinov, K.; Mateev, E.; Leclercq, J.; Sveshtarov, P.

    2016-03-01

    Al-doped ZnO thin films with different Al content were prepared by atomic layer deposition (ALD). To carry out thermal ALD, diethyl zinc (DEZ) and tri-methyl aluminium (TMA) were used as Zn and Al precursors, respectively, and water vapor as oxidant. Various numbers n of DEZ and m TMA cycles was used to obtain different [ZnO] n [Al2O3] m films, where n = 100 – 95, m = 1 – 5. The X-ray diffraction analysis showed a predominantly (100) oriented polycrystalline phase for the ZnO:Al films with a low Al content (m = 1 – 3) and an amorphous structure for pure Al2O3. In ZnO:Al with a higher Al content (m = 4 – 6) the (100) reflection disappeared and the (002) peak increased. The resistivity of the films decreased with the increase in the Al content, reaching a minimum of 3.3×10-3 Ω cm at about 1.1 % Al2O3 for the [ZnO]99[Al2O3]2 sample; for higher dopant concentrations, the resistivity increased because of the increased crystal inhomogeneity due to axis reorientation.

  8. Precipitation of ZnO in Al 2O 3-doped zinc borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Masai, Hirokazu; Ueno, Takahiro; Takahashi, Yoshihiro; Fujiwara, Takumi

    2011-10-01

    Crystallization behavior of the oxide semiconductor ZnO in zinc borate glass was investigated. The precipitated crystalline phase of glass ceramics containing a small amount of Al 2O 3 was α-Zn 3B 2O 6 whereas that of the glass ceramics containing a large amount of Al 2O 3 was ZnO. It was found that the c-oriented precipitation of ZnO in a glass ceramic was brought about by the in-plane crystal growth of needle-like ZnO crystallites along the a-axis. Amount of Al 2O 3 that can make glass network affected the coordination state of B 2O 3 in the glass, and a three-coordinated BO 3 unit was preferentially formed in the glass containing a higher amount of Al 2O 3. The present results suggest that crystallization of ZnO from multi-component glass is dominated by the local coordination state of the mother glass.

  9. Large lateral photovoltaic effect observed in nano Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Wang, Hui

    2011-07-01

    Zinc oxide (ZnO), including a variety of metal-doped ZnO, as one kind of most important photoelectric materials, has been widely investigated and received enormous attention for a series of applications. In this work, we report a new finding which we call as lateral photovoltaic effect (LPE) in a nano Al-doped ZnO (ZAO) film based on ZAO/SiO2/Si homo-heterostructure. This large and stable LPE observed in ZAO is an important supplement to the existing ZnO properties. In addition, all data and analyses demonstrate ZAO film can also be a good candidate for new type position-sensitive detector (PSD) devices.

  10. Gas sensing properties of Al-doped ZnO for UV-activated CO detection

    NASA Astrophysics Data System (ADS)

    Dhahri, R.; Hjiri, M.; El Mir, L.; Bonavita, A.; Iannazzo, D.; Latino, M.; Donato, N.; Leonardi, S. G.; Neri, G.

    2016-04-01

    Al-doped ZnO (AZO) samples were prepared using a modified sol-gel route and charaterized by means of trasmission electron microscopy, x-ray diffraction and photoluminescence analysis. Resistive planar devices based on thick films of AZO deposited on interdigitated alumina substrates were fabricated and investigated as UV light activated CO sensors. CO sensing tests were performed in both dark and illumination condition by exposing the samples to UV radiation (λ  =  400 nm).Under UV light, Al-doped ZnO gas sensors operated at lower temperature than in dark. Furthermore, by photoactivation we also promoted CO sensitivity and made signal recovery of AZO sensors faster. Results demonstrate that Al-doped ZnO might be a promising sensing material for the detection of CO under UV illumination.

  11. Tailoring Energy Bandgap of Al Doped ZnO Thin Films Grown by Vacuum Thermal Evaporation Method.

    PubMed

    Vyas, Sumit; Singh, Shaivalini; Chakrabarti, P

    2015-12-01

    The paper presents the results of our experimental investigation pertaining to tailoring of energy bandgap and other associated characteristics of undoped and Al doped ZnO (AZO) thin film by varying the atomic concentration of Al in ZnO. Thin films of ZnO and ZnO doped with Al (1, 3, and 5 atomic percent (at.%)) were deposited on silicon substrate for structural characterization and on glass substrate for optical characterization. The dependence of structural and optical properties of Al doped ZnO on the atomic concentration of Al added to ZnO has been reported. On the basis of the experimental results an empirical formula has been proposed to calculate the energy bandgap of AZO theoretically in the range of 1 to 5 at.% of Al. The study revealed that AZO films are composed of smaller and larger number of grains as compared to pure ZnO counterpart and density of the grains was found to increase as the Al concentration increased (from 1 to 5 at.%). The transmittance in the visible region was greater than 90% and found to increase with increasing Al concentration up to 5 at.%. The optical bandgap was found to increase initially with increase in atomic concentration of Al concentration up to 3 at.% and decrease thereafter with increasing concentration of Al. PMID:26682390

  12. Fabrication and characterization of n-type aluminum-boron co-doped ZnO on p-type silicon (n-AZB/p-Si) heterojunction diodes

    SciTech Connect

    Kumar, Vinod; Singh, Neetu; Kapoor, Avinashi; Ntwaeaborwa, Odireleng M.; Swart, Hendrik C.

    2013-11-15

    Graphical abstract: - Highlights: • n-AZB/p-Si heterojunction diodes were formed. • n-AZB/p-Si diode annealed at 700 °C showed best rectifying behavior. • Zn{sub 2}SiO{sub 4} was formed at 800 °C. • n and ϕ{sub b} were estimated to be 1.63 and 0.4 eV, respectively, at 700 °C. • Tailoring of BG was attributed to annealing induced stresses in the films. - Abstract: In this paper, the growth of n-type aluminum boron co-doped ZnO (n-AZB) on a p-type silicon (p-Si) substrate by sol–gel method using spin coating technique is reported. The n-AZB/p-Si heterojunctions were annealed at different temperatures ranging from 400 to 800 °C. The crystallite size of the AZB nanostructures was found to vary from 28 to 38 nm with the variation in annealing temperature. The band gap of the AZB decreased from 3.29 to 3.27 eV, with increasing annealing temperature from 400 to 700 °C and increased to 3.30 eV at 800 °C probably due to the formation of Zn{sub 2}SiO{sub 4} at the interface. The band gap variation is explained in terms of annealing induced stress in the AZB. The n-AZB/p-Si heterojunction exhibited diode behavior. The best rectifying behavior was exhibited at 700 °C.

  13. Effect of substrate temperature on the structural and optical properties of ZnO and Al-doped ZnO thin films prepared by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Li, Xue-Yong; Li, Hong-Jian; Wang, Zhi-Jun; Xia, Hui; Xiong, Zhi-Yong; Wang, Jun-Xi; Yang, Bing-Chu

    2009-01-01

    ZnO and Al-doped ZnO(ZAO) thin films have been prepared on glass substrates by direct current (dc) magnetron sputtering from 99.99% pure Zn metallic and ZnO:3 wt%Al 2O 3 ceramic targets, the effects of substrate temperature on the crystallization behavior and optical properties of the films have been studied. It shows that the surface morphologies of ZAO films exhibit difference from that of ZnO films, while their preferential crystalline growth orientation revealed by X-ray diffraction remains always the (0 0 2). The optical transmittance and photoluminescence (PL) spectra of both ZnO and ZAO films are obviously influenced by the substrate temperature. All films exhibit a transmittance higher than 86% in the visible region, while the optical transmittance of ZAO films is slightly smaller than that of ZnO films. More significantly, Al-doping leads to a larger optical band gap ( Eg) of the films. It is found from the PL measurement that near-band-edge (NBE) emission and deep-level (DL) emission are observed in pure ZnO thin films. However, when Al was doped into thin films, the DL emission of the thin films is depressed. As the substrate temperature increases, the peak of NBE emission has a blueshift to region of higher photon energy, which shows a trend similar to the Eg in optical transmittance measurement.

  14. Formation of Al-doped ZnO thin films on glass by sol-gel process and characterization

    NASA Astrophysics Data System (ADS)

    Shahid, M. U.; Deen, K. M.; Ahmad, A.; Akram, M. A.; Aslam, M.; Akhtar, W.

    2016-02-01

    In this study, pure ZnO and Al-doped ZnO thin films were developed on glass by sol-gel process followed by drying and annealing in air at 170 and 400 °C, respectively. The surface morphology and structural characteristics were determined through scanning electron microscopy, atomic force microscopy and X-ray diffraction. The Fourier transform infrared spectroscopy validated the formation of Al-doped ZnO film on glass substrate. It was evaluated that 1 at% aluminum (Al) doping in ZnO film showed low electrical resistivity and higher charge carrier concentration due to uniformly dispersed regular shape crystallites as compared to pure ZnO and 2 at% `Al'-doped thin films.

  15. Al-doped ZnO nanocoatings obtained by sol-gel route

    NASA Astrophysics Data System (ADS)

    Mihaiu, S.; Toader, A.; Atkinson, I.; Anastasescu, M.; Vasilescu, M.; Zaharescu, M.; Plugaru, R.

    2010-11-01

    In recent years aluminum doped zinc oxide (AZO) film has attracted more attention due to many advantages including low cost, non-toxicity, and high stability to H2 plasma in comparison with indium tin oxide (ITO) film, the best known and used transparent conductive oxide (TCO) film. In this work, mono and multilayer Al-doped ZnO coatings have been obtained by dip coating sol-gel method on the glass and silicon supports. X-ray Diffraction, Atomic Force Microscopy (AFM) and Fluorescence Spectroscopy were used for the structural, morphological and optical characterization of the obtained coatings. The multilayer Al-doped ZnO coatings (after five layer depositions) on the silicon substrate present a polycrystalline wurtzite type structure with crystallite size of 20 nm. The AFM measurements have shown that no matter the support type, the Al-doped ZnO coatings present a similar morphology consisting in a smooth distribution of the circular grains leading also to similar values of the RMS roughness, around 2 nm. The photoluminescence properties of the Al-doped ZnO coatings depend on the number of depositions and type of substrate. Systematic study performed allows finding most suitable parameters for obtaining coatings with desired properties.

  16. Aluminum-nitride codoped zinc oxide films prepared using a radio-frequency magnetron cosputtering system

    SciTech Connect

    Liu, D.-S.; Sheu, C.-S.; Lee, C.-T.

    2007-08-01

    Al-N codoped zinc oxide films were prepared using a radio-frequency magnetron cosputtering system at room temperature. AlN and ZnO materials were employed as the cosputtered targets. The as-deposited cosputtered films at various theoretical atomic ratios [Al/(Al+Zn) at. %] showed n-type conductive behavior in spite of the N atoms exceeding that of the Al dopants, indicating that the N-related acceptors were still inactive. The crystalline structure was obviously correlated with the cosputtered AlN contents and eventually evolved into an amorphous structure for the Al-N codoped ZnO film at a theoretical Al doping level reaching 60%. With an adequate postannealing treatment, the N-related acceptors were effectively activated and the p-type ZnO conductive behavior achieved. The appearance of the Zn{sub 3}N{sub 2} phase in the x-ray diffraction pattern of the annealed Al-N codoped ZnO film provided evidence of the nitrification of zinc ions. The redshift of the shallow level transition and the apparent suppression of the oxygen-related deep level emission investigated from the photoluminescence spectrum measured at room temperature were concluded to be influenced by the activated N-related acceptors. In addition, the activation of the N acceptors denoted as N-Zn bond and the chemical bond related to the Zn{sub 3}N{sub 2} crystalline structure were also observed from the associated x-ray photoelectron spectroscopy spectra.

  17. Synthesis of SrAl2O4:Eu2+ phosphors co-doped with Dy3+, Tb3+, Si4+ and optimization of co-doping amount by response surface method

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Liang, Xiaoping; Liu, Kai; Zhou, Qianqian; Chen, Peng; Wang, Jun; Li, Jianxin

    2016-03-01

    Dy3+ doped SrAl2O4:Eu2+ phosphors were synthesized by high temperature solid phase method in a weak reducing atmosphere (5% H2 + 95% N2). The relationship between the crushed granularity and the phosphors brightness was studied. The effect of co-doping amount of Dy3+, Tb3+ and Si4+ on the structure and properties of SrAl2O4:Eu2+ via response surface method was investigated. Photoluminescence measurement results showed that the initial afterglow brightness of 0.002 mol% Dy3+ doped SrAl2O4:Eu2+0.002 phosphors decreased after first increased within the sintering temperature range from 1150 to 1400 °C, which created the highest value of 12,101 mcd/m2 at 1300 °C. Numerous coarse particles in the powder ought to be crushed for the practical application, however, the brightness became lower accompanied by the decrease of the granularity. The luminescence property of SrAl2O4:Eu2+ sintered at 1200 °C improved by co-doping Dy3+-Tb3+-Si4+. The results of response surface method showed that the influence extent on the luminescence property was Dy3+ > Tb3+ > Si4+. When the co-doping amount in SrAl2O4:Eu2+0.002 phosphors of Dy3+, Tb3+ and Si4+ was 0.001 mol%, 0.0005 mol% and 0.002 mol%, respectively, the initial afterglow brightness of SrAl2O4 was up to the highest value of 12,231 mcd/m2, which was in good agreement on the predicted maximum value of 12,519 mcd/m2 with the optimum co-doping amount of 0.0015 mol% Dy3+, 0.0005 mol% Tb3+ and 0.0017 mol% Si4+. The brightness of co-doped phosphors not only increased by 56.79% than that of SrAl2O4:Eu2+0.002, Dy3+0.002 sintered at 1200 °C, but also was above that of 1300 °C. The emission spectra results showed that, compared with 0.001 mol% Dy3+ doped phosphor, the emission peak of 0.001 mol% Dy3+-0.001 mol% Tb3+ co-doped phosphor generated red shift and increased by 9.3% in emission intensity; 0.001 mol% Dy3+-0.004 mol% Si4+ and 0.001 mol% Dy3+-0.001 mol% Tb3+-0.004 mol% Si4+ co-doped SrAl2O4:Eu2+0.002 emission peak created blue

  18. Charge compensation assisted enhanced photoluminescence derived from Li-codoped MgAl2O4:Eu3+ nanophosphors for solid state lighting applications.

    PubMed

    Saha, Subhajit; Das, Swati; Ghorai, Uttam Kumar; Mazumder, Nilesh; Gupta, Bipin Kumar; Chattopadhyay, Kalyan Kumar

    2013-09-28

    Highly-luminescent nanophosphors have a decisive role in solid-state lighting (SSL) as well as in field emission display (FED) applications due to their potential use in fabrication of nanophosphor based FED and solid state display devices. Herein, the red emitting highly-luminescent Eu(3+)-Li(+) co-doped magnesium aluminate (MgAl2O4) nanophosphors were synthesized by a customized sol-gel route with an average particle size of 18 nm, which can be easily scaled up in a large quantity. The resulting nanophosphor exhibits hypersensitive red emission, peaking at 615 nm upon 394 nm excitation. Furthermore, comparative photoluminescence (PL) studies have been carried out for Eu(3+) doped and Eu(3+) doped-Li(+) co-doped magnesium aluminate (Li(+) co-doped MgAl2O4:Eu(3+)) nanophosphors, which indicated that Li(+) co-doping significantly improves luminescence intensity along with good crystallinity. Moreover, the charge compensation by addition of Li(+) co-activator in MgAl2O4:Eu(3+) lattice led to the two fold enhancement of PL intensity. The obtained results suggest that this nanophosphor could be an ultimate choice for next generation advanced luminescent nanomaterials for solid state lighting and portable FED devices. PMID:23868069

  19. Growth and optical properties of ZnO nanorod arrays on Al-doped ZnO transparent conductive film

    PubMed Central

    2013-01-01

    ZnO nanorod arrays (NRAs) on transparent conductive oxide (TCO) films have been grown by a solution-free, catalyst-free, vapor-phase synthesis method at 600°C. TCO films, Al-doped ZnO films, were deposited on quartz substrates by magnetron sputtering. In order to study the effect of the growth duration on the morphological and optical properties of NRAs, the growth duration was changed from 3 to 12 min. The results show that the electrical performance of the TCO films does not degrade after the growth of NRAs and the nanorods are highly crystalline. As the growth duration increases from 3 to 8 min, the diffuse transmittance of the samples decreases, while the total transmittance and UV emission enhance. Two possible nanorod self-attraction models were proposed to interpret the phenomena in the sample with 9-min growth duration. The sample with 8-min growth duration has the highest total transmittance of 87.0%, proper density about 75 μm−2, diameter about 26 nm, and length about 500 nm, indicating that it can be used in hybrid solar cells. PMID:23566567

  20. Electrical and optical properties of in and Al doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Park, Sang-Uk; Koh, Jung-Hyuk

    2013-07-01

    In this study, to improve the electrical and optical properties of aluminium (Al) doped zinc oxide thin films, we have added small amounts of indium (In) to Al doped ZnO thin films. We will present the results of In and Al doped ZnO thin film on glass substrates prepared by the sol-gel processing method. A rapid thermal annealing process was applied to cure the thin film properties. Different amounts of In were used to dope the AZO thin films to find the optimum process condition. The effects of crystallinity were analyzed by an x-ray diffraction method. In addition, the optical transmittance and electrical proprties of In doped AZO thin films were investigated.

  1. Antiferromagnetic half metallicity in codoped chalcopyrite semiconductors Cu(Al 1 - 2 xAxBx)Se2 (A and B are 3d transition-metal atoms)

    NASA Astrophysics Data System (ADS)

    Shahjahan, M.; Oguchi, T.

    2016-06-01

    Electronic structures and magnetic properties of group I-III-VI2 chalcopyrite-type compounds Cu(Al 1 - 2 xAxBx)Se2 are calculated using the Korringa-Kohn-Rostoker Green's function method, where A (Ti, V, Cr, Mn) and B (Fe, Co, Ni) are 3d transition metal atoms, and x is atomic concentration. We found that codoping of Cr-Co and V-Ni pairs at Al site of host CuAlSe2 exhibit antiferromagnetic (AF) half metallicity with low Curie temperature (TC). The AF half metallic property is supported by nullified net magnetic moment and compensated density of states in the minority spin direction. On the other hand, codoping of Cr-Ni, Mn-Co, V-Co, and Ti-Co pairs at Al site of host CuAlSe2 manifest ferrimagnetic half metallicity with a small net magnetization and keeping antiparallel local spin moments. In Mn-Co case TC is close to room temperature. Besides, Cr-Fe, V-Fe, and Ti-Ni codoping cases lead to an instable magnetic ordering and therefore obtain a disordered local moment (spin-glass like) state.

  2. Origins of low resistivity in Al ion-implanted ZnO bulk single crystals

    SciTech Connect

    Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2011-06-15

    The origins of low resistivity in Al ion-implanted ZnO bulk single crystals are studied by combining Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA), photoluminescence (PL), and Van der Pauw methods. The Al-ion implantation (peak concentration: 2.6 x 10{sup 20}cm{sup -3}) into ZnO is performed using a multiple-step energy. The resistivity decreases from {approx}10{sup 4{Omega}} cm for un-implanted ZnO to 1.4 x 10{sup -1{Omega}} cm for as-implanted, and reaches 6.0 x 10{sup -4{Omega}} cm for samples annealed at 1000 deg. C. RBS and NRA measurements for as-implanted ZnO suggest the existence of the lattice displacement of Zn (Zn{sub i}) and O (O{sub i}), respectively. After annealing at 1000 deg. C, the Zn{sub i} related defects remain and the O{sub i} related defects disappear. The origin of the low resistivity in the as-implanted sample is attributed to the Zn{sub i} ({approx}30 meV [Look et al., Phys. Rev. Lett. 82, 2552 (1999)]). In contrast, the origin of the low resistivity in the sample annealed at 1000 deg. C is assigned to both of the Zn{sub i} related defects and the electrically activated Al donor. A new PL emission appears at around 3.32 eV after annealing at 1000 deg. C, suggesting electrically activated Al donors.

  3. Effect of seed layer on the self assembly of spray pyrolyzed Al-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Dwivedi, Charu; Dutta, V.

    2013-03-01

    Al-doped ZnO (AlZO) nanorod arrays and nanostructures were fabricated on seed coated glass substrates via CoSP (Continuous Spray Pyrolysis) reactor. The as-synthesized aluminium doped ZnO nanoparticles and nanorods were analyzed through different characterization techniques. There were no significant changes found in the structure with doping of Al but the morphology of the film changed to branched nanorods and nanosheets with the change in seed solution and annealing temperature, respectively. Also, the current-voltage curves of the ZnO and AZO nanorod arrays was measured and it was found that the current response of AZO nanorods was higher than that of ZnO nanorods, proving the Al incorporation as a dopant.

  4. Properties of transparent (Gd,Lu)3(Al,Ga)5O12:Ce ceramic with Mg, Ca and Ce co-dopants

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Baldoni, Gary; Brecher, Charles; Rhodes, William H.; Shirwadkar, Urmila; Glodo, Jarek; Shah, Ishaan; Ji, Chuncheng

    2015-08-01

    Cerium activated mixed lutetium/gadolinium- and aluminum/gallium-based garnets have great potential as host scintillators for medical imaging applications. (Gd,Lu)3(Al,Ga)5O12:Ce and denoted as GLuGAG feature high effective atomic number and good light yield, which make it particularly attractive for Positron Emission Tomography (PET) and other γ-ray detection applications. For PET application, rapid decay and good timing resolution are extremely important. Most Ce-doped mixed garnet materials such as GLuGAG:Ce, have their main decay component at around 80 ns. However, it has been reported that the decays of some single crystal scintillators (e.g., LSO and GGAG) can be effectively accelerated by codoping with selected additives such as Ca, Mg and B. In this study, transparent polycrystalline (Gd,Lu)3(Al,Ga)5O12:Ce ceramics codoped with Ca or Mg or additional Ce, were fabricated by the sinter-HIP approach. It was found the transmission of the ceramics are closely related to the microstructure of the ceramics. As the co-dopant levels increase, 2nd phase occurs in the ceramic and thus transparency of the ceramic decreases. Ca and Mg co-doping in GLuGAG:Ce ceramic effectively accelerate decays of GLuGAG:Ce ceramics at a cost of light output. However, additional Ce doping in the GLuGAG:Ce has no benefit on improving decay time but, on the other hand, reduces transmission, light output. The mechanism under the different scintillation behaviors with Mg, Ca and Ce dopants are discussed. The results suggest that decay time of GLuGAG:Ce ceramics can be effectively tailored by co-doping GLuGAG:Ce ceramic with Mg and Ca for applications with optimal timing resolution.

  5. Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer

    PubMed Central

    2012-01-01

    In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the p-n junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it. PMID:22222067

  6. Plasma versus thermal annealing for the Au-catalyst growth of ZnO nanocones and nanowires on Al-doped ZnO buffer layers

    NASA Astrophysics Data System (ADS)

    Güell, Frank; Martínez-Alanis, Paulina R.; Roso, Sergio; Salas-Pérez, Carlos I.; García-Sánchez, Mario F.; Santana, Guillermo; Marel Monroy, B.

    2016-06-01

    We successfully synthesized ZnO nanocones and nanowires over polycrystalline Al-doped ZnO (AZO) buffer layers on fused silica substrates by a vapor-transport process using Au-catalyst thin films. Different Au film thicknesses were thermal or plasma annealed in order to analyze their influence on the ZnO nanostructure growth morphology. Striking differences have been observed. Thermal annealing generates a distribution of Au nanoclusters and plasma annealing induces a fragmentation of the Au thin films. While ZnO nanowires are found in the thermal-annealed samples, ZnO nanocones and nanowires have been obtained on the plasma-annealed samples. Enhancement of the preferred c-axis (0001) growth orientation was demonstrated by x-ray diffraction when the ZnO nanocones and nanowires have been grown over the AZO buffer layer. The transmittance spectra of the ZnO nanocones and nanowires show a gradual increase from 375 to 900 nm, and photoluminescence characterization pointed out high concentration of defects leading to observation of a broad emission band in the visible range from 420 to 800 nm. The maximum emission intensity peak position of the broad visible band is related to the thickness of the Au-catalyst for the thermal-annealed samples and to the plasma power for the plasma-annealed samples. Finally, we proposed a model for the plasma versus thermal annealing of the Au-catalyst for the growth of the ZnO nanocones and nanowires. These results are promising for renewable energy applications, in particular for its potential application in solar cells.

  7. Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3Al2Ga3O12 crystals

    NASA Astrophysics Data System (ADS)

    Lucchini, M. T.; Babin, V.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-04-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd3Al2Ga3O12 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd3Al2Ga3O12 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd3Al2Ga3O12 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  8. Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses.

    PubMed

    Biswas, Kaushik; Sontakke, Atul D; Sen, R; Annapurna, K

    2013-08-01

    In this work, a new and non-conventional oxide glass composition based on Bi2O3-GeO2-ZnO system has been formulated with an aim to realize low phonon oxide glass and elucidate its performance when co-doped with Ho(3+)/Yb(3+) for the energy transfer based NIR emission at 2 μm from Ho(3+) ions under Yb(3+) excitation. The glass with 1.0 mol% Ho2O3 and 0.5 mol% Yb2O3 has exhibited maximum energy transfer rate (3602 s(-1)) and energy transfer efficiency (65.92%). Important radiative properties have been predicted for emission transitions of Ho(3+) ions using intensity parameters derived from measured absorption spectra using standard Judd-Ofelt theory. At lower acceptor ion concentration (0.1 mol%), an efficient NIR to visible up-conversion emission has been observed based on two photon absorption process which has found to be reduced significantly at higher Ho(3+) concentrations with simultaneous enhancement in 2 μm emission. Hence, this newly developed glass codoped with Yb(3+)/Ho(3+) is promising glass for sensitized 2 μm emission applications as broad band tunable lasers because of the combination of low phonon energy (707 cm(-1)), high energy transfer efficiency, moderately high emission cross-section (5.33×10(-21) cm(2)) and larger effective half-width of the emission band value of 169 nm. PMID:23685797

  9. A clear effect of charge compensation through Na+ co-doping on the luminescence spectra and decay kinetics of Nd3+-doped CaAl4O7

    NASA Astrophysics Data System (ADS)

    Puchalska, M.; Watras, A.

    2016-06-01

    We present a detailed analysis of luminescence behavior of singly Nd3+ doped and Nd3+, Na+ co-doped calcium aluminates powders: Ca1-xNdxAl4O7 and Ca1-2xNdxNaxAl4O7 (x=0.001-0.1). Relatively intense Nd3+ luminescence in IR region corresponding to typical 4F3/2→4IJ (J=9/2-13/2) transitions with maximum located at about 1079 nm was obtained in all samples on direct excitation into f-f levels. The effect of dopant concentration and charge compensation by co-doping with Na+ ions on morphology and optical properties were studied. The results show that both, the Nd3+ concentration and the alkali metal co-doping affected the optical properties but had no influence on the powders morphology. The studies of luminescence spectra (298 and 77 K) in a function of dopant concentration showed an increasing distortion of the local symmetry of Nd3+with raising activator content due to certain defects created in the crystal lattice. On the other hand Na+ addition led to significant narrowing of absorption and luminescence bands and also a reduction of the number of their components, showing smaller disturbance of Nd3+ ions local symmetries. Consequently, charge compensated by Na+ co-doping materials showed significantly enhanced Nd3+ luminescence. The decrease of emission intensity and luminescence lifetimes with increase of activator concentration was attributed mainly to phonon-assisted cross-relaxation processes between Nd3+ ions. Analysis with Inokuti-Hirayama model indicated dipole-dipole mechanism of ion-ion interaction. Na+ addition led to much smaller concentration quenching due to smaller clustering of dopant ions in CaAl4O7 lattice.

  10. Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition

    PubMed Central

    2013-01-01

    ZnO/Al2O3 multilayers were prepared by alternating atomic layer deposition (ALD) at 150°C using diethylzinc, trimethylaluminum, and water. The growth process, crystallinity, and electrical and optical properties of the multilayers were studied with a variety of the cycle ratios of ZnO and Al2O3 sublayers. Transparent conductive Al-doped ZnO films were prepared with the minimum resistivity of 2.4 × 10−3 Ω·cm at a low Al doping concentration of 2.26%. Photoluminescence spectroscopy in conjunction with X-ray diffraction analysis revealed that the thickness of ZnO sublayers plays an important role on the priority for selective crystallization of ZnAl2O4 and ZnO phases during high-temperature annealing ZnO/Al2O3 multilayers. It was found that pure ZnAl2O4 film was synthesized by annealing the specific composite film containing alternative monocycle of ZnO and Al2O3 sublayers, which could only be deposited precisely by utilizing ALD technology. PMID:23537274

  11. Growth and properties of electrodeposited transparent Al-doped ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Baka, O.; Mentar, L.; Khelladi, M. R.; Azizi, A.

    2015-12-01

    Al-doped zinc oxide (AZO) nanostructures were fabricated on fluorine-doped tin-oxide (FTO)- coated glass substrates by using electrodeposition. The effects of the doping concentration of Al on the morphological, microstructural, electrical and optical properties of the nanostructures were investigated. From the field emission scanning electron microscopy (FE-SEM) observation, when the amount of Al was increased in the solution, the grains size was observed to decreases. The observed changes in the morphology indicate that Al acts as nucleation centers in the vacancy sites of ZnO and destroys the crystalline structure at high doping level. Effectively, the X-ray diffraction (XRD) analysis indicated that the undoped and the doped ZnO nanostructures has a polycrystalline nature and a hexagonal wurtzite structure with a (002) preferential orientation. The photoluminescence (PL) room-temperature measurements showed that the incorporation of Al in the Zn lattice can improve the intensity of ultraviolet (UV) emission, thus suggesting its greater prospects for use in UV optoelectronic devices.

  12. Atomic scattering spectroscopy for determination of the polarity of semipolar AlN grown on ZnO

    SciTech Connect

    Kobayashi, Atsushi; Ohta, Jitsuo; Ueno, Kohei; Oshima, Masaharu; Fujioka, Hiroshi

    2013-11-04

    Determination of the polarity of insulating semipolar AlN layers was achieved via atomic scattering spectroscopy. The back scattering of neutralized He atoms on AlN surfaces revealed the atomic alignment of the topmost layers of semipolar AlN and the ZnO substrate. Pole figures of the scattering intensity were used to readily determine the polarity of these wurtzite-type semipolar materials. In addition, we found that +R-plane AlN epitaxially grows on −R-plane ZnO, indicating that the polarity flips at the semipolar AlN/ZnO interface. This polarity flipping is possibly explained by the appearance of −c and m-faces on the −R ZnO surfaces, which was also revealed by atomic scattering spectroscopy.

  13. Silicon passivation and tunneling contact formation by atomic layer deposited Al2O3/ZnO stacks

    NASA Astrophysics Data System (ADS)

    Garcia-Alonso, D.; Smit, S.; Bordihn, S.; Kessels, W. M. M.

    2013-08-01

    The passivation of Si by Al2O3/ZnO stacks, which can serve as passivated tunneling contacts or heterojunctions in silicon photovoltaics, was investigated. It was demonstrated that stacks with Al2O3 thicknesses >3 nm lead to lower surface recombination velocities (Seff,max < 4 cm s-1) on n- and p-type Si than single-layer Al2O3 films for a wide range of ZnO thicknesses and irrespective of Al-doping of the ZnO. Stacks with an Al2O3 thickness of 1-2 nm were found to combine reasonable surface passivation (Seff,max = 100-700 cm s-1) with sufficiently high tunneling current densities (10-300 mA cm-2 at 700 mV).

  14. Spectroscopic properties and energy transfer of Tm(3+)/Ho(3+)-codoped TeO(2)-WO(3)-ZnO glasses for 1.47mum amplifier.

    PubMed

    Chen, Ganxin; Zhang, Qinyuan; Cheng, Yun; Zhao, Chun; Qian, Qi; Yang, Zhongmin; Jiang, Zhonghong

    2009-05-01

    We report on spectroscopic properties and energy transfer of Tm(3+)/Ho(3+)-codoped tungsten tellurite glasses for 1.47microm amplifier. Fluorescence spectra and the analysis of energy transfer indicate that Ho(3+) is an excellent codopant for 1.47microm emission. Comparing with other tellurite glasses, the radiative lifetime of the (3)H(4) level of Tm(3+) in tungsten tellurite glass is slightly lower, but the spontaneous emission probability, stimulated emission cross-section and the figure of merit for bandwidth are obviously larger. Although the pump efficiency of tungsten tellurite amplifier is approximately 50% less than that of fluoride glass, the figure of merit for bandwidth is approximately three times larger in tungsten tellurite glass than in fluoride glass. The results indicate that Tm(3+)/Ho(3+)-codoped tungsten tellurite glass is attractive for broadband amplifier. PMID:19111500

  15. Defects in semipolar (1122) ZnO grown on (112) LaAlO3/(La,Sr)(Al,Ta)O3 substrate by pulsed laser deposition.

    PubMed

    Tian, Jr-Sheng; Wu, Yue-Han; Peng, Chun-Yen; Chiu, Kun-An; Shih, Yi-Sen; Do, Hien; Lin, Pei-Yin; Ho, Yen-Teng; Chu, Ying-Hao; Chang, Li

    2013-03-27

    The microstructure of semipolar [Formula: see text] ZnO deposited on (112) LaAlO3/(La,Sr)(Al,Ta)O3 was investigated by transmission electron microscopy. The ZnO shows an in-plane epitaxial relationship of [Formula: see text] with oxygen-face sense polarity. The misfit strain along [Formula: see text] and [Formula: see text] is relieved through the formation of misfit dislocations with the Burgers vectors [Formula: see text] and [Formula: see text], respectively. The line defects in the semipolar ZnO are predominantly perfect dislocations, and the dislocation density decreases with increasing ZnO thickness as a result of dislocation reactions. Planar defects were observed to lie in the M-plane and extend along 〈0001〉, whereas basal stacking faults were rarely found. PMID:23449009

  16. Improving the electrochemical properties of Al, Zr Co-doped Li4Ti5O12 as a lithium-ion battery anode material

    NASA Astrophysics Data System (ADS)

    Park, Jung Soo; Baek, Seong-Ho; Park, Yiseul; Kim, Jae Hyun

    2014-05-01

    Li4Ti5O12 and Al3+, Zr4+ co-doped Li(4- x/3)Al x Ti(5-5 x/3)Zr x O12 ( x = 0.01, 0.05, 0.1, 0.15, 0.2) were synthesized at 950 °C via a solid state reaction by using rutile TiO2, Li2 CO3, and Al2O3 as precursors for the anode material of a lithium-ion battery. The average particle sizes of Li(4- x/3)Al x Ti(5-5 x/3)Zr x O12 ( x = 0, 0.01, 0.05, 0.1, 0.15, 0.2) range from 700 to 1200 nm. The particle sizes of pure Li4Ti5O12 and Al3+, Zr4+ co-doped Li4Ti5O12 were not obviously different, but did result in a shift in the (111) peak in X-ray diffraction. Li(4- x/3)Al x Ti(5-5 x/3)Zr x O12 ( x = 0.01) exhibits an excellent rate capability with a reversible capacity of 127.7 mAh/g at a 5 C-rate and even 113.1 mAh/g at a 10 C-rate. The capacity retention was improved remarkably compared to that for an undoped anode when discharged at a high C- rate.

  17. Transparent conductive Al-doped ZnO thin films grown at room temperature

    SciTech Connect

    Wang Yuping; Lu Jianguo; Bie Xun; Gong Li; Li Xiang; Song Da; Zhao Xuyang; Ye Wenyi; Ye Zhizhen

    2011-05-15

    Aluminum-doped ZnO (ZnO:Al, AZO) thin films were prepared on glass substrates by dc reactive magnetron sputtering from a Zn-Al alloy target at room temperature. The effects of the Ar-to-O{sub 2} partial pressure ratios on the structural, electrical, and optical properties of AZO films were studied in detail. AZO films grown using 100:4 to 100:8 Ar-to-O{sub 2} ratio result in acceptable quality films with c-axis orientated crystals, uniform grains, 10{sup -3} {Omega} cm resistivity, greater than 10{sup 20} cm{sup -3} electron concentration, and high transmittance, 90%, in the visible region. The lowest resistivity of 4.11x10{sup -3} {Omega} cm was obtained under the Ar-to-O{sub 2} partial pressure ratio of 100:4. A relatively strong UV emission at {approx}3.26 eV was observed in the room-temperature photoluminescence spectrum. X-ray photoelectron spectroscopy analysis confirmed that Al was introduced into ZnO and substitutes for Zn and doped the film n-type.

  18. Tunable Photoluminescent Core/Shell Cu(+)-Doped ZnSe/ZnS Quantum Dots Codoped with Al(3+), Ga(3+), or In(3+).

    PubMed

    Cooper, Jason K; Gul, Sheraz; Lindley, Sarah A; Yano, Junko; Zhang, Jin Z

    2015-05-13

    Semiconductor quantum dots (QDs) with stable, oxidation resistant, and tunable photoluminescence (PL) are highly desired for various applications including solid-state lighting and biological labeling. However, many current systems for visible light emission involve the use of toxic Cd. Here, we report the synthesis and characterization of a series of codoped core/shell ZnSe/ZnS QDs with tunable PL maxima spanning 430-570 nm (average full width at half-maximum of 80 nm) and broad emission extending to 700 nm, through the use of Cu(+) as the primary dopant and trivalent cations (Al(3+), Ga(3+), and In(3+)) as codopants. Furthermore, we developed a unique thiol-based bidentate ligand that significantly improved PL intensity, long-term stability, and resilience to postsynthetic processing. Through comprehensive experimental and computational studies based on steady-state and time-resolved spectroscopy, electron microscopy, and density functional theory (DFT), we show that the tunable PL of this system is the result of energy level modification to donor and/or acceptor recombination pathways. By incorporating these findings with local structure information obtained from extended X-ray absorption fine structure (EXAFS) studies, we generate a complete energetic model accounting for the photophysical processes in these unique QDs. With the understanding of optical, structural, and electronic properties we gain in this study, this successful codoping strategy may be applied to other QD or related systems to tune the optical properties of semiconductors while maintaining low toxicity. PMID:25893312

  19. Structural and Morphological Properties of Al doped ZnO Nanoparticles

    NASA Astrophysics Data System (ADS)

    Akdağ, A.; Budak, H. F.; Yılmaz, M.; Efe, A.; Büyükaydın, M.; Can, M.; Turgut, G.; Sönmez, E.

    2016-04-01

    Zinc oxide nanoparticles have a wide area of use because of their unique properties such as catalytic, electrical, and optical properties and low cost. Since the suitable additive materials can be changed the electrical and optical properties of zinc oxide, the demand of the industrial commercial area to the zinc oxide increased. In this study, Al doped ZnO nanoparticles produced by using the methods of reduction thought having materials of the Zn(NO)3, AlCl3 and NaOH. XRD, SEM and EDS used for making analyzing of structural and dimensional of particles. The analyses show that the large amount of the Al3+ ions did nut substitute with Zn2+ successfully with the reduction method. XRD and EDS results confirm this situation.

  20. Fabrication of tantalum and nitrogen codoped ZnO (Ta, N-ZnO) thin films using the electrospay: twin applications as an excellent transparent electrode and a field emitter.

    PubMed

    Mahmood, Khalid; Park, Seung Bin; Sung, Hyung Jin

    2013-05-01

    The realization of stable p-type nitrogen-doped ZnO thin films with durable and controlled growth is important for the fabrication of nanoscale electronic and optoelectronic devices. ZnO thin films codoped with tantalum and nitrogen (Ta, N-ZnO) were fabricated by using the electrospraying method at an atmospheric pressure. X-ray diffraction (XRD) studies demonstrated that all the prepared films were polycrystalline in nature with hexagonal wurtzite structure. In addition, a shift in the XRD patterns was observed, and the crystal orientation was changed at a certain amount of nitrogen (>6 at.%) in the starting solution. Analysis of X-ray diffraction patterns and X-ray photoelectron spectra revealed that nitrogen which was combined with the zinc atom (N-Zn) was successfully doped into the ZnO crystal lattice. It was also observed that 2 at.% tantalum and 6 at.% nitrogen (2 at.% Ta and 6 at.% N) were the optimal dopant amounts to achieve the minimum resistivity of about 9.70 × 10(-5) Ω cm and the maximum transmittance of 98% in the visible region. Consequently, the field-emission characteristics of such a Ta, N-ZnO emitter can exhibit the higher current density of 1.33 mA cm(-2), larger field-enhancement factor (β) of 4706, lower turn-on field of 2.6 V μm(-1), and lower threshold field of 3.5 V μm(-1) attributed to the enhanced conductivity and better crystallinity of films. Moreover, the obtained values of resistivity were closest to the lowest resistivity values among the doped ZnO films as well as to the indium tin oxide (ITO) resistivity values that were previously studied. We confirmed that the tantalum and nitrogen atoms substitution in the ZnO lattice induced positive effects in terms of enhancing the free carrier concentration which will further improve the electrical, optical, and field-emission properties. The proposed electrospraying method was well suitable for the fabrication of Ta, N-ZnO thin films at optimum conditions with superior electrical

  1. Modified pulse growth and misfit strain release of an AlN heteroepilayer with a Mg-Si codoping pair by MOCVD

    NASA Astrophysics Data System (ADS)

    Majid Soomro, Abdul; Wu, Chenping; Lin, Na; Zheng, Tongchang; Wang, Huachun; Chen, Hangyang; Li, Jinchai; Li, Shuping; Cai, Duanjun; Kang, Junyong

    2016-03-01

    We report the modified pulse growth method together with an alternating introduction of larger-radius impurity (Mg) for the quality improvement and misfit strain release of an AlN epitaxial layer by the metal-organic chemical vapour deposition (MOCVD) method. Various pulse growth methods were employed to control the migration of Al atoms on the substrate surface. The results showed that the pulse time and overlapping of V/III flux is closely related with the enhancement of the 2D and 3D growth mode. In order to reduce the misfit strain between AlN and sapphire, an impurity of larger atomic radius (e.g. Mg) was doped into the AlN lattice to minimize the rigidity of the AlN epilayer. It was found that the codoping of Mg-Si ultrathin layers could significantly minimize the residual strain as well as the density of threading dislocations.

  2. The thermodynamics of codoping: how does it work?

    NASA Astrophysics Data System (ADS)

    Zhang, S. B.; Wei, S.-H.; Yan, Yanfa

    2001-01-01

    Using first-principle total energy calculations, we have studied the energetics of codoping [Katayama-Yoshida, Yamamoto, Phys. Stat. Sol. (b) 202 (1997) 763.] in II-VI semiconductors. We demonstrate that (i) for Cd-based II-VI materials such as CdTe, the recently proposed codoping method (e.g., 2 acceptors+1 donor) may neither increase the solubility of the desired (p-type) dopants nor improve shallowness of the acceptor level. To increase solubility, one needs to suppress the formation of secondary phases involving the dopant by low-T quasi-equilibrium growth/doping processes. To improve the dopant shallowness, one needs to avoid the interaction between the acceptors using combinations such as (1 double acceptor+1 single donor): for example V Cd2-+Cl Te+. (ii) We further demonstrate that the recent experimental results on p-type ZnO [Joseph et al., Japan J. Appl. Phys. 38 (1999) L1205.] may have little to do with codoping. Instead, the data on n +-, p- and p +-samples can be consistently understood in terms of increased solubility by incorporating molecular dopants: N 2O and NO. The NO doping source is present due to plasma decomposition of N 2O.

  3. Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors.

    PubMed

    Yang, C H; Pan, Y X; Zhang, Q Y; Jiang, Z H

    2007-09-01

    Polycrystalline GdAl(3)(BO(3))(4) phosphors co-doped with Yb(3+)/Tb(3+) and/or Nd(3+)/Yb(3+)/Tb(3+) have been synthesized by combustion method. Upon excitation with a 980 nm laser diode, an intense green upconversion luminescence has been observed in GdAl(3)(BO(3))(4):Yb,Tb phosphor. The quadratic dependence of the luminescence on the pump-laser power indicating a cooperative energy transfer process. Meanwhile, it is noticed that upon excitation with 808 nm laser diode, intense luminescence has clearly been detected in GdAl(3)(BO(3))(4):Nd,Yb,Tb phosphor. The luminescence intensity exhibits also a quadratic dependence on incident pump-laser power. However, no green-emission has been observed in GdAl(3)(BO(3))(4) phosphors co-doped with Yb(3+)/Tb(3+) or Nd(3+)/Tb(3+) respectively upon excited at 808 nm laser diode. A proposed upconversion mechanism involving energy transfer from Nd(3+) to Yb(3+), and then a cooperative energy transfer process from two excited Yb(3+) to Tb(3+) has been presented. PMID:17609865

  4. Exploration of Al-Doped ZnO in Photovoltaic Thin Films

    NASA Astrophysics Data System (ADS)

    Ciccarino, Christopher; Sahiner, M. Alper

    The electrical properties of Al doped ZnO-based thin films represent a potential advancement in the push for increasing solar cell efficiency. Doping with Aluminum will theoretically decrease resistivity of the film and therefore achieve this potential as a viable option in the P-N junction phase of photovoltaic cells. The n-type semi-conductive characteristics of the ZnO layer will theoretically be optimized with the addition of Aluminum carriers. In this study, Aluminum doping concentrations ranging from 1-3% by mass were produced, analyzed, and compared. Films were developed onto ITO coated glass using the Pulsed Laser Deposition technique. Target thickness was 250 nm and ellipsometry measurements showed uniformity and accuracy in this regard. Active dopant concentrations were determined using Hall Effect measurements. Efficiency measurements showed possible applications of this doped compound, with upwards of 7% efficiency measured, using a Keithley 2602 SourceMeter set-up. XRD scans showed highly crystalline structures, with effective Al intertwining of the hexagonal wurtzile ZnO molecular structure. This alone indicates a promising future of collaboration between these two materials.

  5. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    SciTech Connect

    Gupta, D.; Barman, P. B.; Hazra, S. K.; Dutta, D.; Kumar, M.; Som, T.

    2015-10-28

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C–150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C–150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  6. Origin of carrier scattering in polycrystalline Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Oka, Nobuto; Kusayanagi, Minehide; Nakatomi, Satoshi; Shigesato, Yuzo

    2014-10-01

    We observed the carrier transport phenomena in polycrystalline Al-doped ZnO (AZO) films with carrier densities ranging from 2.0 × 1019 to 1.1 × 1021 cm-3. A comparison of the optical carrier density and Hall carrier density indicates that the conduction band in AZO films is nonparabolic above 2.0 × 1020 cm-3. A transition from grain boundary scattering to ionized impurity scattering is observed at a doping level of ˜4.0 × 1020 cm-3. The trap density at the grain boundary increases with increasing Al concentration in the films, implying that the doping level plays a decisive role in the trap density. The excellent fitting of the optical mobility and carrier density using the Brooks-Herring model shows that the acceptor concentration increases with increasing doping level.

  7. Crystal structure and photoluminescence of Mn2+-Mg2+ codoped gamma aluminum oxynitride (γ-AlON): A promising green phosphor for white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Xie, Rong-Jun; Hirosaki, Naoto; Liu, Xue-Jian; Takeda, Takashi; Li, Hui-Li

    2008-05-01

    This letter reports on the crystal structure and luminescence of a green gamma aluminum oxynitride phosphor. This phosphor, codoped with Mn2+ and Mg2+, shows a single cubic spinel phase, with Mn2+ and Mg2+ substituting Al3+ in the tetrahedral sites. It shows a broad emission band centered at 520nm and a full width at half maximum of 44nm. The green phosphor exhibits a small thermal quenching and high internal quantum efficiency of 62% under the blue light irradiation, enabling it to be used in high color rendering white light-emitting diodes.

  8. Continuum emission in Nd3+/Yb3+ co-doped Ca12Al14O33 phosphor: Charge transfer state luminescence versus induced optical heating

    NASA Astrophysics Data System (ADS)

    Verma, R. K.; Rai, S. B.

    2013-02-01

    An unusual phenomenon of local heating and associated emission of continuum in lanthanide doped material has attracted much interest currently because of its use in white light generation and in localized heating. In the present work, Nd3+/Yb3+ co-doped Ca12Al14O33 phosphor has been synthesized, which gives broad continuum emission both by downconversion (DC) and upconversion (UC) processes. On 266 nm excitation, broad continuum emission is achieved through charge transfer state (CTS) luminescence of Yb3+ ion. On the other hand on 976 nm excitation, UC emission is observed from Nd3+ ion, which at higher pump power gives continuum emission.

  9. Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films

    SciTech Connect

    Banerjee, P; Lee, W. J.; Bae, K. R.; Lee, Sang Bok; Rubloff, Gary W

    2010-01-01

    Al-doped ZnO (AZO) films of ∼100 nm thickness with various Aldoping were prepared at 150 °C by atomic layer deposition on quartz substrates. At low Aldoping, the films were strongly textured along the [100] direction, while at higher Aldoping the films remained amorphous. Atomic force microscopy results showed that Al–O cycles when inserted in a ZnOfilm, corresponding to a few atomic percent Al, could remarkably reduce the surface roughness of the films. Hall measurements revealed a maximum mobility of 17.7 cm{sup 2} /V s . Film resistivity reached a minima of 4.4×10{sup −3}  Ω cm whereas the carrier concentration reached a maxima of 1.7×10{sup 20}  cm{sup −3} , at 3 at. % Al. The band gap of AZO films varied from 3.23 eV for undoped ZnOfilms to 3.73 eV for AZO films with 24.6 at. % Al. Optical transmittance over 80% was obtained in the visible region. The detrimental impact of increased Al resulting in decreased conductivity due to doping past 3.0 at. % is evident in the x-ray diffraction data, as an abrupt increase in the optical band gap and as a deviation from the Burstein–Moss effect.

  10. Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al2O3 spacer layer

    NASA Astrophysics Data System (ADS)

    Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Chen, Hong-Yan; Zhang, Yuan; Li, De-Hui; Liu, Wen-Jun; Ding, Shi-Jin; Jiang, An-Quan; Zhang, David Wei

    2016-04-01

    Surface-plasmon mediated photoluminescence emission enhancement has been investigated for ZnO nanowire (NW)/Pt nanoparticle (NP) nanostructures by inserting an Al2O3 spacer layer. The thickness of the Al2O3 spacer layer and of the Pt NPs capped on the ZnO NWs are well controlled by atomic layer deposition. It is found that the photoluminescence property of the ZnO NW/Al2O3/Pt hybrid structure is highly tunable with respect to the thickness of the inserted Al2O3 spacer layer. The highest enhancement (˜14 times) of the near band emission of ZnO NWs is obtained with an optimized Al2O3 spacer layer thickness of 10 nm leading to a ultraviolet-visible emission ratio of 271.2 compared to 18.8 for bare ZnO NWs. The enhancement of emission is influenced by a Förster-type non-radiative energy transfer process of the exciton energy from ZnO NWs to Pt NPs as well as the coupling effect between excitons of ZnO NWs and surface plasmons of Pt NPs. The highly versatile and tunable photoluminescence properties of Pt-coated ZnO NWs achieved by introducing an Al2O3 spacer layer demonstrate their potential application in highly efficient optoelectronic devices.

  11. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    PubMed

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs. PMID:25756598

  12. Enhanced Photoluminescence and Raman Properties of Al-Doped ZnO Nanostructures Prepared Using Thermal Chemical Vapor Deposition of Methanol Assisted with Heated Brass

    PubMed Central

    Thandavan, Tamil Many K.; Gani, Siti Meriam Abdul; San Wong, Chiow; Md. Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs. PMID:25756598

  13. Defect related microstructure, optical and photoluminescence behaviour of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Anbuselvan, D.; Muthukumaran, S.

    2015-04-01

    In the present study Ni-doped ZnO and Ni, Cu-doped ZnO nanoparticles were successfully synthesized by co-precipitation method. Structural studies confirmed the dominant presence of hexagonal wurtzite ZnO phase at lower Cu concentration and CuO phase was observed at higher Cu (Cu = 5%) concentration. The existence of Cu2+ ions were dominant at Cu ⩽ 3% (responsible for lattice shrinkage) and the presence of Cu+ ions were dominant at Cu > 3% (responsible for lattice expansion). The change in UV-visible absorption and energy gap were discussed by secondary phase generation and charge carrier density. The low absorption loss and high transmittance at Cu = 3% doped samples is used as potential candidate for opto-electronic devices. The increase of green band intensity and decrease of UV band at higher Cu concentration confirmed the existence of more defect related states.

  14. Tunable antireflection from conformal Al-doped ZnO films on nanofaceted Si templates

    PubMed Central

    2014-01-01

    Photon harvesting by reducing reflection loss is the basis of photovoltaic devices. Here, we show the efficacy of Al-doped ZnO (AZO) overlayer on ion beam-synthesized nanofaceted silicon for suppressing reflection loss. In particular, we demonstrate thickness-dependent tunable antireflection (AR) from conformally grown AZO layer, showing a systematic shift in the reflection minima from ultraviolet to visible to near-infrared ranges with increasing thickness. Tunable AR property is understood in light of depth-dependent refractive index of nanofaceted silicon and AZO overlayer. This improved AR property significantly increases the fill factor of such textured heterostructures, which reaches its maximum for 60-nm AZO compared to the ones based on planar silicon. This thickness matches with the one that shows the maximum reduction in surface reflectance. PACS 81.07.-b; 42.79.Wc; 81.16.Rf; 81.15.Cd PMID:24808799

  15. Sputter deposition of Al-doped ZnO films with various incident angles

    SciTech Connect

    Sato, Yasushi; Yanagisawa, Kei; Oka, Nobuto; Nakamura, Shin-ichi; Shigesato, Yuzo

    2009-09-15

    Al-doped ZnO (AZO) films were sputter deposited on glass substrates heated at 200 degree sign C under incident angles of sputtered particles at 0 degree sign (incidence normal to substrate), 20 deg., 40 deg., 60 deg., and 80 deg. In the case of normal incidence, x-ray diffraction pole figures show a strong [001] preferred orientation normal to the film surface. In contrast, in the case wherein the incident angles were higher than 60 degree sign , the [001] orientation inclined by 25 deg. - 35 deg. toward the direction of sputtered particles. Transmission electron microscopy revealed that the tilt angle of the [001] orientation increased with increasing angle of the incident sputtered particles, whereas the columnar structure did not show any sign of inclination with respect to the substrate plane.

  16. Tunable antireflection from conformal Al-doped ZnO films on nanofaceted Si templates

    NASA Astrophysics Data System (ADS)

    Basu, Tanmoy; Kumar, Mohit; Sahoo, Pratap Kumar; Kanjilal, Aloke; Som, Tapobrata

    2014-04-01

    Photon harvesting by reducing reflection loss is the basis of photovoltaic devices. Here, we show the efficacy of Al-doped ZnO (AZO) overlayer on ion beam-synthesized nanofaceted silicon for suppressing reflection loss. In particular, we demonstrate thickness-dependent tunable antireflection (AR) from conformally grown AZO layer, showing a systematic shift in the reflection minima from ultraviolet to visible to near-infrared ranges with increasing thickness. Tunable AR property is understood in light of depth-dependent refractive index of nanofaceted silicon and AZO overlayer. This improved AR property significantly increases the fill factor of such textured heterostructures, which reaches its maximum for 60-nm AZO compared to the ones based on planar silicon. This thickness matches with the one that shows the maximum reduction in surface reflectance.

  17. Effect of anion-to-cation supplying ratio on the surface morphology of AlN films grown on ZnO substrates at low temperature

    SciTech Connect

    Im, Inho; Jung, Mina; Koo, Jieun; Lee, Hyunjae; Park, Jinsub; Minegishi, Tsutomu; Park, Seunghwan; Fujii, Katsushi; Yao, Takafumi; Kil, Gyungsuk; Hanada, Takashi; Chang, Jiho

    2010-01-15

    The authors investigated the evolution of surface morphology of AlN films grown on ZnO substrates at low temperature (LT) (400 deg. C) as a function of anion/cation supplying ratio (V/III ratio). Unlike the well-known favorable growth conditions for high-temperature growth, smooth-surface LT-AlN layers were obtained under the O-polar surface, stoichiometric, and N-rich conditions. LT-AlN layers revealed smooth surface (roughness in root mean square=0.20 nm for AlN on O-polar ZnO and 0.44 nm for AlN on Zn-polar ZnO) and quite low etch-pit density ({approx}2x10{sup 6} cm{sup -2} for AlN/Zn-polar ZnO).

  18. Mechanisms of lighting enhancement of Al nanoclusters-embedded Al-doped ZnO film in GaN-based light-emitting diodes

    SciTech Connect

    Lee, Hsin-Ying; Chou, Ying-Hung; Lee, Ching-Ting

    2010-01-15

    Aluminum (Al)-doped ZnO (AZO) films with embedded Al nanoclusters were proposed and utilized to enhance the light output power and maximum operation current of GaN-based light-emitting diodes (LEDs). The AZO films were sputtered using ZnO and Al targets in a magnetron cosputtering system. With Al dc power of 7 W and ZnO 100 W ac power, the electron concentration of 4.1x10{sup 20} cm{sup -3}, electron mobility of 16.2 cm{sup 2}/V s, and resistivity of 7.2x10{sup -4} {Omega} cm were obtained for the deposited AZO film annealed at 600 deg. C for 1 min in a N{sub 2} ambient. As verified by a high resolution transmission electron microscopy, the deposited AZO films with embedded Al nanoclusters were clearly observed. A 35% increase in light output power of the GaN-based LEDs with Al nanoclusters-embedded AZO films was realized compared with the conventional LEDs operated at 500 mA. It was verified experimentally that the various characteristics of GaN-based LEDs including the antireflection, light scattering, current spreading, and the light extraction efficiency in light emission could be significantly enhanced with the use of Al nanoclusters-embedded AZO films.

  19. Efficient green and red upconversion emissions in Er3+/Yb3+ co-doped ZnAl2O4 phosphor obtained by combustion reaction

    NASA Astrophysics Data System (ADS)

    de Camargo, A. S. S.; Nunes, L. A. O.; Silva, J. F.; Costa, A. C. F. M.; Barros, B. S.; Silva, J. E. C.; de Sá, G. F.; Alves, S., Jr.

    2007-06-01

    Thin ceramic powders of zinc aluminate ZnAl2O4 co-doped with Er3+ and Yb3+ were prepared by a combustion reaction and characterized from the spectroscopic point of view, with the aim of investigating the effect and mechanisms of upconversion emissions. The characteristic cubic spinel structure was predominantly formed for all doped samples, and intense upconversion emission was observed in the green and red spectral regions, under 980 nm diode laser excitation. The upconversion mechanism of both emissions was confirmed to involve two photon absorptions and it was found that the efficiencies of the emissions are considerably enhanced by increasing the Yb3+ concentration in relation to Er3+. The results indicate the potential of ZnAl2O4:Er3+,Yb3+ phosphor powders for applications in luminescent display panels and other photonic devices.

  20. Synthesis of high-quality Al-doped ZnO nanoink

    NASA Astrophysics Data System (ADS)

    Thu, Tran V.; Maenosono, Shinya

    2010-01-01

    Al-doped ZnO (AZO) nanoparticles (NPs) have been synthesized via the thermal decomposition of metal acetylacetonate precursors in a nonoxygen and nonpolar solvent. Long-chain alkyl amines have been utilized to terminate the growth of AZO NPs and to stabilize them. The NPs have been characterized by a number of techniques as monocrystalline, exhibiting a hexagonal (wurtzite) structure with sizes from 8 to 13 nm. The composition of Al in the resulting NP is related solely to the composition of the reaction mixture and the size is controllable with the temperature of the reaction. The AZO NP dispersion has been proven to be stable over a 24 h period by dynamic light scattering measurements. The influence of the synthetic conditions, such as temperature, reaction time and the Al doping content, on the properties of NPs have also been investigated. An optically transparent AZO thin film was fabricated using the AZO nanoink by spin casting followed by annealing. The resulting film resistivity was measured to be 5.0×10-3 Ω cm.

  1. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films

    PubMed Central

    2012-01-01

    We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin films regarding crystallization and electrical and optical properties for application in transparent conducting oxide devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol–gel spin-coating process. As a starting material, AlCl3⋅6H2O, Ga(NO3)2, and Zn(CH3COO)2⋅2H2O were used. A lowest sheet resistance of 3.3 × 103 Ω/□ was obtained for the GZO thin film doped with 1.5 mol% of Ga after post-annealing at 650°C for 60 min in air. All the films showed more than 85% transparency in the visible region. We have studied the structural and microstructural properties as a function of Al and Ga concentrations through X-ray diffraction and scanning electron microscopy analysis. In addition, the optical bandgap and photoluminescence were estimated. PMID:23173885

  2. Effects of annealing pressure and Ar+ sputtering cleaning on Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Wang, Jiwei; Mei, Yong; Lu, Xuemei; Fan, Xiaoxing; Kang, Dawei; Xu, Panfeng; Tan, Tianya

    2016-11-01

    Post-treatments of Al-doped ZnO films fabricated by sol-gel method were studied in condition of annealing in air, vacuum and protective ambient, as well as the follow-up Ar+ sputtering cleaning. The effect of annealing pressure on resistivity of AZO films was investigated from 105 to 10-4 Pa, where the resistivity decreased four orders of magnitude as the pressure decreased and approached to its minimum at 10 Pa. It was observed that the main decreasing of resistivity occurred in a very narrow range of middle vacuum (between 100 and 10 Pa) and high vacuum was dispensable. The XRD and XPS characterizations demonstrated that the radical increasing of oxygen vacancy, Zn interstitial and substitution of Al3+ for Zn2+ under middle vacuum were responsible for the significant enhancement of conductivity. The follow-up Ar+ sputtering cleaning can further decrease the resistivity through removing the chemisorbed oxygen on film surface and grain boundaries, meanwhile fulfil the surface texture process, and thus improve both electrical and optical performances for applications.

  3. The improvement of solar photocatalytic activity of ZnO by doping with Er3+:Y3Al5O12 during dye degradation

    NASA Astrophysics Data System (ADS)

    Yin, L. N.; Li, Y.; Wang, J.; Kong, Y. M.; Zhai, Y.; Wang, B. X.; Li, K.; Zhang, X. D.

    2012-12-01

    The Er3+:Y3Al5O12, an upconversion luminescence agent, which is able to transform the visible light to ultraviolet light, was synthesized by nitrate-citric acid method. And then, a novel photocatalyst, Er3+:Y3Al5O12/ZnO composites, was prepared by ultrasonic dispersing and liquid boil method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structural morphology and surface properties of the Er3+:Y3Al5O12/ZnO. Azo Fuchsine dye was selected as target organic pollutant to inspect the photocatalytic activity of Er3+:Y3Al5O12/ZnO. The key parameters affecting the photocatalytic activity of Er3+:Y3Al5O12/ZnO, such as Er3+:Y3Al5O12 content, heat-treatment temperature and heat-treatment time, were studied. In addition, the effects of dye initial concentration, Er3+:Y3Al5O12/ZnO amount and solar light irradiation time were also reviewed, as well as the photocatalytic activity in degradation of other organic dyes were compared. It was found that the photocatalytic activity of Er3+:Y3Al5O12/ZnO was much superior to pure ZnO under the same conditions. Thus, the Er3+:Y3Al5O12/ZnO is a useful photocatalyst for the wastewater treatment because it can efficiently utilize solar light by converting visible light into ultraviolet light.

  4. A facile cost-effective method for preparing poinsettia-inspired superhydrophobic ZnO nanoplate surface on Al substrate with corrosion resistance

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Han, Huilong; Li, Junfeng; Fan, Xiaoliang; Ding, Haimin; Wang, Jinfeng

    2016-02-01

    This paper reports an easy method to imitate the "poinsettia leaves" by constructing ZnO nanoplates on Al substrate. Using ammonium hydroxide as the reactant, together with zinc nitrate hexahydrate, randomly distributed ZnO nanoplates can be fabricated on the Al substrate directly. The morphology of the ZnO nanoplates can be controlled by the growth time, and the nanoplate growth mechanism is discussed in detail. After modification with stearic acid, the nanoplate surface shows a stable superhydrophobicity. Moreover, the superhydrophobic ZnO nanoplate surface showed much smaller corrosion current density, reduced 23,088-fold from the bare Al 6061 substrate. This facile and low-cost method may open a new avenue in the design and fabrication of superhydrophobic surfaces on Al materials with anticorrosive property.

  5. Photovoltaic Conversion Enhancement of a Carbon Quantum Dots/p-Type CuAlO2/n-Type ZnO Photoelectric Device.

    PubMed

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-04-22

    Carbon quantum dots (C QDs)/p-type CuAlO2/n-type ZnO photoelectric bilayer film composites were prepared by a simple route, through which ZnO films were sputtered on crystal quartz substrates and CuAlO2 films were prepared by sol-gel on ZnO films and then these bilayer films were composited with C QDs on their surface. The characterization results indicated that C QDs were well combined with the surface of the CuAlO2 films. The photovoltage and photocurrent of these bilayer film composites were investigated under illumination and darkness switching, which demonstrated to be significantly enhanced compared with those of the CuAlO2/ZnO bilayer films. Through analysis, this enhancement of the photoconductivity was mainly attributed to C QDs with unique up-converted photoluminescence behavior. PMID:25822085

  6. Photoluminescence and energy transfer in Tb{sup 3+}/Mn{sup 2+} co-doped ZnAl{sub 2}O{sub 4} glass ceramics

    SciTech Connect

    Lakshminarayana, Gandham; Wondraczek, Lothar

    2011-08-15

    We report on Tb{sup 3+} as efficient sensitizer for red photoemission from Mn{sup 2+}-centers in ZnO-B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-Si{sub 2}O-Na{sub 2}O-SrO glasses and corresponding gahnite glass ceramics. In comparison to singly or co-doped glasses, the glass ceramics exhibit significantly increased emission intensity. Structural considerations, ESR, and dynamic luminescence spectroscopy indicate partial incorporation of Mn{sup 2+} as well as Tb{sup 3+} into the crystalline phase, the former on octahedral Zn{sup 2+}-sites. Interionic distance and charge transfer probability between both species depend on crystallization conditions. This enables control of the energy transfer process and, hence, tunability of the color of photoemission by simultaneous emission from Tb{sup 3+} and Mn{sup 2+} centers. Concentration quenching in Mn{sup 2+}-singly doped materials was found at a critical dopant concentration of about 1.0 mol%. The energy transfer process was studied in detail by dynamic as well as static luminescence spectroscopy. Spectroscopic results suggest the application of the studied materials as single or dual-mode emitting phosphor for luminescent lighting. - Graphical abstract: In the prepared Tb{sup 3+}/Mn{sup 2+} codoped glass ceramics containing gahnite (ZnAl{sub 2}O{sub 4}) nanocrystals, the luminescence color is changed from green light to yellowish-red light with an increase in Mn{sup 2+} concentration due to enhanced energy transfer from Tb{sup 3+} to Mn{sup 2+} ions. This tunability should have potential applications in solid state lighting to produce white light, which can be obtained by appropriately optimizing the ratio of Tb{sup 3+}/Mn{sup 2+} ions under UV(350 nm) excitation. Highlights: > Photoluminescence from Mn{sup 2+} and Tb{sup 3+} singly and co-doped glasses and gahnite glass ceramics was studied. > Occurrence of energy transfer from Tb{sup 3+} to Mn{sup 2+} was confirmed. > Luminescence color tunability is achieved by varying dopant

  7. Enhancement of optical properties of hydrothermally synthesized TiO2/ZrO2 nanoparticles by Al, Ce Co-doping

    NASA Astrophysics Data System (ADS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, Bishwajit S.

    2015-06-01

    Al, Ce co-doped TiO2/ZrO2 (TZ) nano composites have been prepared by hydrothermal method. The structural and optical properties of the obtained samples were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. It has been found that the crystallite size of all the samples was distributed in the range 9.19 to 17.41 nm. The content of anatase phase varied in the range 48.71 to 100% depending on doping. The dopant produced lattice strain in material and it was found between 0.027 - 0.069. A clear shift of absorption edge for different dopant has been observed from UV-Visible absorption spectra. The change in optical bandgap, refractive index, absorption co efficient and optical conductivity was also evaluated from absorption spectra.

  8. 50 μm core diameter Yb³⁺Al³⁺/F⁻ codoped silica fiber with M²<1.1 beam quality.

    PubMed

    Xu, Wenbin; Lin, Zhiquan; Wang, Meng; Feng, Suya; Zhang, Lei; Zhou, Qinling; Chen, Danping; Zhang, Liyan; Wang, Shikai; Yu, Chunlei; Hu, Lili

    2016-02-01

    This paper reports, for the first time to our best knowledge, a nearly diffraction-limited output in a Yb(3+)/Al(3+)/F(-) codoped double cladding silica fiber with a 50 μm core diameter and 0.02 core NA. The core glass with a diameter >6  mm was fabricated through solgel process combined with high temperature sintering. Laser performances of this fiber at different bend diameters were studied. The mean M2<1.1 in this 50 μm core diameter fiber was achieved at a bend diameter of 0.35 m. The core glass with the refractive index nearly equal to pure silica glass is suitable for the fiber design, such as large-mode-area photonic crystal fiber. PMID:26907409

  9. Enhancement of optical properties of hydrothermally synthesized TiO{sub 2}/ZrO{sub 2} nanoparticles by Al, Ce Co-doping

    SciTech Connect

    Tomar, Laxmi J.; Bhatt, Piyush J. Desai, Rahul K.; Chakrabarty, Bishwajit S.

    2015-06-24

    Al, Ce co-doped TiO{sub 2}/ZrO{sub 2} (TZ) nano composites have been prepared by hydrothermal method. The structural and optical properties of the obtained samples were investigated by X –ray diffraction (XRD) and UV-Visible spectroscopy respectively. It has been found that the crystallite size of all the samples was distributed in the range 9.19 to 17.41 nm. The content of anatase phase varied in the range 48.71 to 100% depending on doping. The dopant produced lattice strain in material and it was found between 0.027 - 0.069. A clear shift of absorption edge for different dopant has been observed from UV-Visible absorption spectra. The change in optical bandgap, refractive index, absorption co efficient and optical conductivity was also evaluated from absorption spectra.

  10. Improving the ethanol gas-sensing properties of porous ZnO microspheres by Co doping

    SciTech Connect

    Xiao, Qi Wang, Tao

    2013-08-01

    Graphical abstract: - Highlights: • Co-doped porous ZnO microspheres were synthesized. • 3 mol% Co-doped ZnO sensor showed the highest response to ethanol. • 3 mol% Co-doped ZnO sensor exhibited fast recovery property. • 3 mol% Co-doped ZnO sensor exhibited good selectivity and long-term stability. - Abstract: Porous Co-doped ZnO microspheres were prepared by a simple hydrothermal method combined with post-annealing. Co species existed as a form of divalent state in the sample and substituted Zn{sup 2+} sites in ZnO crystal lattice, which was affirmed by X-ray diffraction, UV–vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The gas-sensing measurements demonstrated that the 3 mol% Co-doped ZnO sample showed the highest response value to 100 ppm ethanol at 350 °C, which were 5 folds higher than that of the pure ZnO sample. In addition, the 3 mol% Co-doped ZnO sensor exhibited fast recovery property, good quantitative determination, good selectivity and long-term stability. The superior sensing properties were contributed to high specific surface area combined with the large amount of oxygen vacancies originating from Co doping.

  11. Competition between (001) and (111) MgO thin film growth on Al-doped ZnO by oxygen plasma assisted pulsed laser deposition

    SciTech Connect

    Xiao, Bo; Yang, Qiguang; Walker, Brandon; Gonder, Casey A.; Romain, Gari C.; Mundle, Rajeh; Bahoura, Messaoud; Pradhan, A. K.

    2013-06-07

    We report on the study of epitaxial MgO thin films on (0001) Al-doped ZnO (Al: ZnO) underlayers, grown by oxygen plasma assisted pulsed laser deposition technique. A systematic investigation of the MgO thin films was performed by X-ray diffraction and atomic force microscopy, along with the current-voltage characteristics. A distinguished behavior was observed that the preferred MgO orientation changes from (111) to (001) in the films as the growth temperature increases. Two completely different in-plane epitaxial relationships were also determined from X-ray diffraction as: [110]MgO//[1120]Al: ZnO and [110]MgO//[1100]Al: ZnO for (001) MgO with 60 Degree-Sign rotated triplet domains, and [110]MgO//[1120]Al: ZnO for (111) MgO with 180 Degree-Sign rotated twin. The pronounced temperature dependence indicates a reconciliation of the nucleation driving forces among surface, interfacial, and strain energy for heteroepitaxy of cubic MgO on hexagonal Al: ZnO. The related interfacial atomic registry is considered to be important to the formation of unusual (001) MgO on hexagonal crystals. In addition, the electrical characterization revealed a dramatic reduction of the leakage current in (001) MgO thin films, whereas the small grain size of (111) MgO is identified by atomic force microscopy as a main cause of large leakage current.

  12. Enhanced Ultraviolet Stability of Air-Processed Polymer Solar Cells by Al Doping of the ZnO Interlayer.

    PubMed

    Prosa, Mario; Tessarolo, Marta; Bolognesi, Margherita; Margeat, Olivier; Gedefaw, Desta; Gaceur, Meriem; Videlot-Ackermann, Christine; Andersson, Mats R; Muccini, Michele; Seri, Mirko; Ackermann, Jörg

    2016-01-27

    Photostability of organic photovoltaic devices represents a key requirement for the commercialization of this technology. In this field, ZnO is one of the most attractive materials employed as an electron transport layer, and the investigation of its photostability is of particular interest. Indeed, oxygen is known to chemisorb on ZnO and can be released upon UV illumination. Therefore, a deep analysis of the UV/oxygen effects on working devices is relevant for the industrial production where the coating processes take place in air and oxygen/ZnO contact cannot be avoided. Here we investigate the light-soaking stability of inverted organic solar cells in which four different solution-processed ZnO-based nanoparticles were used as electron transport layers: (i) pristine ZnO, (ii) 0.03 at %, (iii) 0.37 at %, and (iv) 0.8 at % aluminum-doped AZO nanoparticles. The degradation of solar cells under prolonged illumination (40 h under 1 sun), in which the ZnO/AZO layers were processed in air or inert atmosphere, is studied. We demonstrate that the presence of oxygen during the ZnO/AZO processing is crucial for the photostability of the resulting solar cell. While devices based on undoped ZnO were particularly affected by degradation, we found that using AZO nanoparticles the losses in performance, due to the presence of oxygen, were partially or totally prevented depending on the Al doping level. PMID:26751271

  13. Ultrasonic spray pyrolysis growth of ZnO and ZnO:Al nanostructured films: Application to photocatalysis

    SciTech Connect

    Kenanakis, G.; Katsarakis, N.

    2014-12-15

    Highlights: • Al–ZnO thin films and nanostructures were obtained by ultrasonic spray pyrolysis. • The texture and morphology of the samples depend on the deposition parameters. • The photocatalytic degradation of stearic acid was studied upon UV-A irradiation. - Abstract: Pure and Al-doped ZnO (Al = 1, 3, 5%) nanostructured thin films were grown at 400 °C on glass substrates by ultrasonic spray pyrolysis, a simple, environmental-friendly and inexpensive method, using aqueous solutions as precursors. The structural and morphological characteristics of the samples depend drastically on deposition parameters; ZnO nanostructured films, nanopetals and nanorods were systematically obtained by simply varying the precursor solution and/or the spraying time. Transmittance measurements have shown that all samples are transparent in the visible wavelength region. Finally, the photocatalytic properties of the samples were investigated against the degradation of stearic acid under UV-A light illumination (365 nm); both pure and Al-doped ZnO nanostructured thin films show good photocatalytic activity regarding the degradation of stearic acid, due to their good crystallinity and large surface area.

  14. The formation of tungsten doped Al2O3/ZnO coatings on aluminum by plasma electrolytic oxidation and their application in photocatalysis

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Vasilić, Rastko; Radić, Nenad; Tadić, Nenad; Stefanov, Plamen; Grbić, Boško

    2016-07-01

    Tungsten doped Al2O3/ZnO coatings are formed by plasma electrolytic oxidation of aluminum substrate in supporting electrolyte (0.1 M boric acid + 0.05 M borax + 2 g/L ZnO) with addition of different concentrations of Na2WO4·2H2O. The morphology, crystal structure, chemical composition, and light absorption characteristics of formed surface coatings are investigated. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that formed surface coatings consist of alpha and gamma phase of Al2O3, ZnO, metallic tungsten and WO3. Obtained results showed that incorporated tungsten does not have any influence on the absorption spectra of Al2O3/ZnO coatings, which showed invariable band edge at about 385 nm. The photocatalytic activity of undoped and tungsten doped Al2O3/ZnO coatings is estimated by the photodegradation of methyl orange. The photocatalytic activity of tungsten doped Al2O3/ZnO coatings is higher thanof undoped Al2O3/ZnO coatings; the best photocatalytic activity is ascribed to coatings formed in supporting electrolyte with addition of 0.3 g/L Na2WO4·2H2O. Tungsten in Al2O3/ZnO coatings acts as a charge trap, thus reducing the recombination rate of photogenerated electron-hole pairs. The results of PL measurements are in agreement with photocatalytic activity. Declining PL intensity corresponds to increasing photocatalytic activity of the coatings, indicating slower recombination of electron-hole pairs.

  15. Energy transfer based photoluminescence spectra of co-doped (Dy3+ + Sm3+): Li2O-LiF-B2O3-ZnO glasses for orange emission

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, L.; Naveen Kumar, K.; Vijayalakshmi, R. P.

    2016-07-01

    The present paper brings out the results concerning the preparation and optical properties of Sm3+ and Dy3+ each ion separately in different concentrations (0.3, 0.5, 1.0 and 1.5 mol.%) and also together doped (x mol.% Dy3+ + 1.5 mol.% Sm3+): Li2O-LiF-B2O3-ZnO (where x = 0.5, 1.0 and 1.5 mol.%) glasses by a melt quenching method. Structural and thermal properties have been extensively studied for those glasses by XRD and TG/DTA. The compositional analysis has been carried out from FTIR spectral profile. Optical absorption spectral studies were also carried out. Sm3+: LBZ glasses have displayed an intense orange emission at 603 nm (4G5/2 → 6H7/2) with an excitation wavelength at 403 nm and Dy3+: LBZ glasses have shown two emissions located at 485 nm (4F9/2 → 6H15/2; blue) and 574 nm (4F9/2 → 6H13/2; yellow) with an excitation wavelength at 385 nm. Remarkably, it has been identified that the significant increase in the reddish orange emission of Sm3+ ions and diminished yellow emission pertaining to Dy3+ ions in the co-doped LBZ glass system under the excitation of 385 nm which relates to Dy3+ ions. This could be due energy transfer from Dy3+ to Sm3+. The non-radiative energy transfer from Dy3+ to Sm3+ is explained in terms of their emission spectra, donor lifetime, energy level diagram and energy transfer characteristic factors. These significantly enhanced orange emission exhibited glasses could be suggested as potential optical glasses for orange luminescence photonic devices.

  16. Epitaxial growth of ZnO thin films on ScAlMgO 4 (0 0 0 1) by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Wessler, B.; Steinecker, A.; Mader, W.

    2002-07-01

    Epitaxial zinc oxide films were produced on the low misfit (0.3%) substrate ScAlMgO 4 (0 0 0 1) by chemical solution deposition (CSD). Epitaxial growth of ZnO films was achieved by spin coating a precursor solution of zinc acetate dihydrate and ethanolamine in 2-methoxyethanol, heating at 300°C, then at 500°C, and finally at 850°C. X-ray diffraction ( θ/2 θ-scans/off-axis ϕ-scans) as well as electron diffraction show that the axes a and c of ZnO and ScAlMgO 4 are parallel. The absolute orientation of the ZnO film was determined by electron microdiffraction patterns to be [0 0 0 1¯] . Electron microscopy did not reveal any reaction between film and substrate. The structure of the interface between ZnO and ScAlMgO 4 was characterized in detail by high-resolution TEM methods. Exit wave reconstruction from focus series was carried out to localize the positions of atoms at the interface. It was found that the ZnO film coherently continues the terminating tetrahedral (Mg,Al)O 4 layer of the ScAlMgO 4 substrate to result in an ABAB stacking of the oxygen layers across the interface as in the wurtzite structure. The structural model is in agreement with the absolute orientation of the ZnO film.

  17. Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes

    PubMed Central

    2013-01-01

    Background Semiconductor doped nanostructure materials have attained considerable attention owing to their electronic, opto-electronic, para-magnetic, photo-catalysis, electro-chemical, mechanical behaviors and their potential applications in different research areas. Doped nanomaterials might be a promising owing to their high-specific surface-area, low-resistances, high-catalytic activity, attractive electro-chemical and optical properties. Nanomaterials are also scientifically significant transition metal-doped nanostructure materials owing to their extraordinary mechanical, optical, electrical, electronic, thermal, and magnetic characteristics. Recently, it has gained significant interest in manganese oxide doped-semiconductor materials in order to develop their physico-chemical behaviors and extend their efficient applications. It has not only investigated the basic of magnetism, but also has huge potential in scientific features such as magnetic materials, bio- & chemi-sensors, photo-catalysts, and absorbent nanomaterials. Results The chemical sensor also displays the higher-sensitivity, reproducibility, long-term stability, and enhanced electrochemical responses. The calibration plot is linear (r2 = 0.977) over the 0.1 nM to 50.0 μM 4-nitrophenol concentration ranges. The sensitivity and detection limit is ~4.6667 μA cm-2 μM-1 and ~0.83 ± 0.2 nM (at a Signal-to-Noise-Ratio, SNR of 3) respectively. To best of our knowledge, this is the first report for detection of 4-nitrophenol chemical with doped Mn2O3-ZnO NPs using easy and reliable I-V technique in short response time. Conclusions As for the doped nanostructures, NPs are introduced a route to a new generation of toxic chemo-sensors, but a premeditate effort has to be applied for doped Mn2O3-ZnO NPs to be taken comprehensively for large-scale applications, and to achieve higher-potential density with accessible to individual chemo-sensors. In this report, it is also discussed the prospective

  18. Preparation, structural, photoluminescence and magnetic studies of Cu doped ZnO nanoparticles co-doped with Ni by sol-gel method

    NASA Astrophysics Data System (ADS)

    Theyvaraju, D.; Muthukumaran, S.

    2015-11-01

    Zn0.96-xNi0.04CuxO nanoparticles have been synthesized by varying different Cu concentrations between 0% and 4% using simple sol-gel method. X-ray diffraction studies confirmed the hexagonal structure of the prepared samples. The formation of secondary phases, CuO (111) and Zn (101) at higher Cu content is due un-reacted Cu2+ and Zn2+ ions present in the solution which reduces the interaction between precursor ions and surfaces of ZnO. Well agglomerated and rod-like structure noticed at Cu=4% greatly de-generate and enhanced the particle size. The nominal elemental composition of Zn, Cu, Ni and O was confirmed by energy dispersive X-ray analysis. Even though energy gap was increased (blue-shift) from Cu=0-2% by quantum size effect, the s-d and p-d exchange interactions between the band electrons of ZnO and localized d electrons of Cu and Ni led to decrease (red-shift) the energy gap at Cu=4%. Presence of Zn-Ni-Cu-O bond was confirmed by Fourier transform infrared analysis. Ultraviolet emission by band to band electronic transition and defect related blue emission were discussed by photoluminescence spectra. The observed optical properties concluded that the doping of Cu in the present system is useful to tune the emission wavelength and hence acting as the important candidates for the optoelectronic device applications. Ferromagnetic ordering of Cu=2% sample was enhanced by charge carrier concentration where as the antiferromagnetic interaction between neighboring Cu-Cu ions suppressed the ferromagnetism at higher doping concentrations of Cu.

  19. Recent progress in research of f-SiC codoped with N-B-Al pairs for optoelectronics

    NASA Astrophysics Data System (ADS)

    Shiyi, Zhuo; Xi, Liu; Xuechao, Liu; Erwei, Shi

    2015-08-01

    This paper reviewed the advances in fluorescent SiC codoped with nitrogen, boron and aluminum dopants applied to optoelectronics in recent years. The progress aspects in research of the fluorescent property, recombination theory, experiment, and construction design were discussed. The advantages that fluorescent SiC based white LEDs compared with conventional white LEDs were analyzed. It was confirmed that fluorescent SiC is a promising material to replace phosphor in the luminous field. Finally, the problems in the study of fluorescent 4H-SiC were pointed out. Project supported by the Shanghai Rising-Star Program (No. 13QA1403800), the Innovation Program of the Chinese Academy of Sciences (No. KJCX2-EW-W10), the National High-Tech R&D Program of China (Nos. 2013AA031603, 2014AA032602), and the National Natural Science Foundation of China (No. 31275136).

  20. The Preparation and Properties of Al-Doped ZnO Thin Films as Transparent Electrodes for Solar Cell

    NASA Astrophysics Data System (ADS)

    Ding, J. N.; Tan, C. B.; Yuan, N. Y.; Feng, X. W.; Chang, X. Y.; Ye, F.

    Transparent conductive oxides based on ZnO are promising materials for application in thin-film solar photovoltaic cells. Al-doped ZnO thin films with a large area of 1 m × 1.5 m were prepared by magnetic sputtering on glass substrate using a ceramic target (98 wt. % ZnO, 2 wt. % Al2O3) in different Ar+H2 ambient at different substrate temperature. SiO2 layer with a thickness of 20 nm was deposited as a resistant layer. To investigate the influence of H2-flow on the properties of AZO films, H2-flow rate was changed during the growth process with a fixed Ar-flow rate. The effect of the substrate temperature and the H2-flow rate on the structure, electrical and optical properties was studied. In order to enhance light scattering and absorption inside the cell, suitable surface texture is needed. The influence of wet chemical etching on surface roughness and haze of AZO were also investigated.

  1. Comparison of Magnetic Property of Cu-, Al-, and Li-DOPED ZnO Dilute Magnetic Semiconductor Thin Films

    NASA Astrophysics Data System (ADS)

    van, L. H.; Ding, J.; Hong, M. H.; Fan, Z. C.; Wang, L.

    The properties of Cu-, Al-, and Li-doped ZnO dilute magnetic semiconductor (DMS) have been analyzed and compared. Zincite with wurtzite structures have been synthesized successfully on SiO2 (101) and SiO2 (110) substrates in both the Cu-ZnO and Li-ZnO DMS. The highly textured ZnO (002) peaks were able to form in the Cu-ZnO system at 400°C. However, it formed at even much lower temperature in the Li-ZnO system, that is only 25°C. ZnO (002) peaks in both systems were formed without any impurity phases. However, no crystalline structure is synthesized in the Al-ZnO system. The thin films formed are amorphous. The structural and related magnetic properties of the films were analyzed by XRD, AFM, and VSM. The films were found to be at their highest magnetism at the value of 3.1 emu/cm3 for Co-ZnO and 2.5 emu/cm3 for Li-ZnO, synthesized at 400°C, and under 1 × 10-4 Torr oxygen partial pressure.

  2. Eu2+ and Mn2+ Co-doped BaMgAl10O17 Blue- and Green-Emitting Phosphor: A Luminescence and EPR Study

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Sivaramaiah, G.; Rao, J. L.; Singh, N.; Srivastava, Anoop K.; Jirimali, H. D.; Li, J.; Gao, H.; Kumaran, R. Senthil; Singh, Pramod K.; Dhoble, S. J.

    2016-06-01

    Eu2+ and Mn2+ co-doped BaMgAl10O17 phosphor has been prepared by a solution combustion method. The structural, morphological and compositional analysis of the BaMgAl10O17:Eu2+ and Mn2+ powders have been studied by x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy. The electron paramagnetic resonance (EPR) spectrum exhibited resonance signals with the effective g values of g ≈ 4.88 and g ≈ 1.98. The resonance signal with the effective g value of g ≈ 4.88 is characteristic of Eu2+ ions whereas g ≈ 1.98 is due to Mn2+ ions. The number of spins participating in resonance, Gibbs free energy, magnetic susceptibility, Curie constant, effective magnetic moment, zero-field splitting parameter and hyperfine splitting constant have been evaluated. From optical and EPR correlation, it is inferred that Eu2+ and Mn2+ are present in the BaMgAl10O17 matrix.

  3. Structural Properties and Electrochemical Performance of ZnO Nanosheets Grown Directly on Al substrate by Chemical Bath Deposition Techniques

    NASA Astrophysics Data System (ADS)

    Al-Asadi, Ahmed; Ferrera, Roberto; Henley, Luke; Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Talapatra, Saikat

    We will report on the synthesis & electrochemical characterization of 2-dimentional zinc oxide grown directly on Al substrate by a simple chemical bath deposition method at low temperature (below 1000C). Detail structural characterizations of the synthesized ZnO sheets will be presented and discussed. The electrochemical performances of electrochemical double layer capacitors (EDLC) on electrodes fabricated using these materials were evaluated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy using various electrolytes. We found that high specific capacitance values (greater than 300 F/g) could be achieved using an aqueous electrolyte. The aforementioned results indicates the possibly for using 2-D ZnO architectures fabricated by this simple and cost efficient technique for future electrochemical energy storage devices.

  4. Enhancement ZnO nanofiber as semiconductor for dye-sensitized solar cells by using Al doped

    NASA Astrophysics Data System (ADS)

    Sutanto, Bayu; Arifin, Zainal; Suyitno, Hadi, Syamsul; Pranoto, Lia Muliani; Agustia, Yuda Virgantara

    2016-03-01

    The purpose of this research is to produce Al-doped ZnO (AZO) nanofibers in order to enhance the performance of Dye-Sensitized Solar Cell (DSSC). AZO nanofiber semiconductor was manufactured by electrospinning process of Zinc Acetate Dehydrate (Zn(CH3COO)2) solution and precursor of Polyvinyl Acetate (PVA). The doping process of Al was built by dissolving 0-4 wt% in concentrations of AlCl3 to Zinc Acetate. AZO green fiber was sintered at temperature 500°C for an hour. The result shows that Al doped ZnO had capability to increase the electrical conductivity of semiconductor for doping 0, 1, 2, 3, and 4 wt% for 2,07×10-3; 3,71×10-3; 3,59 ×10-3; 3,10 ×10-3 and 2,74 ×10-3 S/m. The best performance of DSSC with 3 cm2 active area was obtained at 1 wt% Al-ZnO which the value of VOC, ISC, FF, and efficiency were 508,43 mV, 3,125 mA, 38,76%, and 0,411% respectively. These coincide with the electrical conductivity of semiconductor and the crystal size of XRD result that has the smallest size as compared to other doping variations.

  5. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    NASA Astrophysics Data System (ADS)

    Shafura, A. K.; Sin, N. D. Md.; Azhar, N. E. I.; Saurdi, I.; Uzer, M.; Mamat, M. H.; Shuhaimi, A.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    CH4 gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10-3 S/cm and 11.5%, respectively.

  6. Defect analysis by transmission electron microscopy of epitaxial Al-doped ZnO films grown on (0001) ZnO and a-sapphire by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rengachari, Mythili; Bikowski, André; Ellmer, Klaus

    2016-07-01

    Microstructural investigations by cross section Transmission Electron Microscopy have been carried out on Al-doped ZnO films epitaxially grown on (0001) ZnO and a-sapphire by RF magnetron sputtering, since it is known that crystallographic defects influence the physical properties of ZnO films. Threading dislocations and basal stacking faults were the predominant defects observed in these films, which were dependent on the type of the substrate and its orientation. The orientational relationship between the ZnO:Al film and the a-sapphire was determined to be ( 11 2 ¯ 0 )sapphire||(0001)ZnO:Al and [0001]sapphire||[ 11 2 ¯ 0 ]ZnO:Al. The density of dislocations in the heteroepitaxial film of ZnO:Al on a-sapphire was higher than that of the homoepitaxial film of ZnO:Al on undoped ZnO, due to the difference in the lattice mismatch, which also affected the crystallinity of the film.

  7. Defects in semipolar (1 1\\bar {2}\\bar {2}) ZnO grown on (112) LaAlO3/(La,Sr)(Al,Ta)O3 substrate by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Tian, -Sheng, Jr.; Wu, Yue-Han; Peng, Chun-Yen; Chiu, Kun-An; Shih, Yi-Sen; Do, Hien; Lin, Pei-Yin; Ho, Yen-Teng; Chu, Ying-Hao; Chang, Li

    2013-03-01

    The microstructure of semipolar (1 1\\bar {2}\\bar {2}) ZnO deposited on (112) LaAlO3/(La,Sr)(Al,Ta)O3 was investigated by transmission electron microscopy. The ZnO shows an in-plane epitaxial relationship of [1 1\\bar {2}3]_{{ZnO}}\\parallel [1 1\\bar {1}]_{{LAO/ LSAT}} with oxygen-face sense polarity. The misfit strain along [1 1\\bar {2}3]_{{ZnO}} and [1\\bar {1}0 0]_{{ZnO}} is relieved through the formation of misfit dislocations with the Burgers vectors \\mathbf{b}=1/6[1 1\\bar {2}3]_{{ZnO}} and \\mathbf{b}=1/3\\langle 1\\bar {2}1 0\\rangle _{{ZnO}}, respectively. The line defects in the semipolar ZnO are predominantly perfect dislocations, and the dislocation density decreases with increasing ZnO thickness as a result of dislocation reactions. Planar defects were observed to lie in the M-plane and extend along <0001>, whereas basal stacking faults were rarely found.

  8. Characteristics of Al-doped ZnO films grown by atomic layer deposition for silicon nanowire photovoltaic device.

    PubMed

    Oh, Byeong-Yun; Han, Jin-Woo; Seo, Dae-Shik; Kim, Kwang-Young; Baek, Seong-Ho; Jang, Hwan Soo; Kim, Jae Hyun

    2012-07-01

    We report the structural, electrical, and optical characteristics of Al-doped ZnO (ZnO:Al) films deposited on glass by atomic layer deposition (ALD) with various Al2O3 film contents for use as transparent electrodes. Unlike films fabricated by a sputtering method, the diffraction peak position of the films deposited by ALD progressively moved to a higher angle with increasing Al2O3 film content. This indicates that Zn sites were effectively replaced by Al, due to layer-by-layer growth mechanism of ALD process which is based on alternate self-limiting surface chemical reactions. By adjusting the Al2O3 film content, a ZnO:Al film with low electrical resistivity (9.84 x 10(-4) Omega cm) was obtained at an Al2O3 film content of 3.17%, where the Al concentration, carrier mobility, optical transmittance, and bandgap energy were 2.8 wt%, 11.20 cm2 V(-1) s(-1), 94.23%, and 3.6 eV, respectively. Moreover, the estimated figure of merit value of our best sample was 8.2 m7Omega(-1). These results suggest that ZnO:Al films deposited by ALD could be useful for electronic devices in which especially require 3-dimensional conformal deposition of the transparent electrode and surface passivation. PMID:22966566

  9. Al-doped ZnO contact to CdZnTe for x- and gamma-ray detector applications

    NASA Astrophysics Data System (ADS)

    Roy, U. N.; Camarda, G. S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Mundle, R. M.; Pradhan, A. K.; James, R. B.

    2016-06-01

    The poor adhesion of common metals to CdZnTe (CZT)/CdTe surfaces has been a long-standing challenge for radiation detector applications. In this present work, we explored the use of an alternative electrode, viz., Al-doped ZnO (AZO) as a replacement to common metallic contacts. ZnO offers several advantages over the latter, such as having a higher hardness, a close match of the coefficients of thermal expansion for CZT and ZnO, and better adhesion to the surface of CZT due to the contact layer being an oxide. The AZO/CZT contact was investigated via high spatial-resolution X-ray response mapping for a planar detector at the micron level. The durability of the device was investigated by acquiring I-V measurements over an 18-month period, and good long-term stability was observed. We have demonstrated that the AZO/CZT/AZO virtual-Frisch-grid device performs fairly well, with comparable or better characteristics than that for the same detector fabricated with gold contacts.

  10. Etching Characteristics of ZnO and Al-Doped ZnO in Inductively Coupled Cl2/CH4/H2/Ar and BCl3/CH4/H2/Ar Plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Hack Joo; Kwon, Bong Soo; Kim, Hyun Woo; Kim, Seon Il; Yoo, Dong-Geun; Boo, Jin-Hyo; Lee, Nae-Eung

    2008-08-01

    ZnO and Al-doped ZnO (AZO) were etched in Cl2/CH4/H2/Ar (Cl2-based) and BCl3/CH4/H2/Ar (BCl3-based), inductively coupled plasmas (ICPs) and their etching characteristics were compared by varying the Cl2/(Cl2+CH4) and BCl3/(BCl3+CH4) flow ratios, top electrode power and dc self-bias voltage (Vdc). The etch rates of both ZnO and AZO layers were higher in the Cl2-based chemistry than in the BCl3-based chemistry. The AZO and ZnO etch rates were increased and decreased, respectively, with increasing Cl2 or BCl3 flow ratio. Optical emission measurements of the radical species in the plasma and surface binding states by optical emission spectroscopy (OES) and X-ray photoelectron spectroscopy (XPS), respectively, indicated that, with increasing Cl2 or BCl3 flow ratio; the effective removal of Al in the AZO enhanced the AZO etch rate, whereas the reduced removal of Zn by the Zn(CHx)y products reduced the ZnO etch rate.

  11. Dependence on pressure of the refractive indices of wurtzite ZnO, GaN, and AlN

    SciTech Connect

    Goni, AR; Kaess, F; Reparaz, JS; Alonso, MI; Garriga, M; Callsen, G; Wagner, MR; Hoffmann, A; Sitar, Z

    2014-07-25

    We have measured both the ordinary and extraordinary refractive index of m-plane cuts of wurtzite ZnO, GaN, and AlN single crystals at room temperature and as a function of hydrostatic pressure up to 8 GPa. For that purpose we have developed an alternative optical interference method, called bisected-beam method, which leads, in general, to high contrast interference fringes. Its main feature, however, is to be particularly suitable for high pressure experiments with the diamond anvil cell, when the refractive index of the sample is low and similar to that of diamond and/or the pressure transmitting medium, as is the case here. For all three wide-gap materials we observe a monotonous decrease of the ordinary and extraordinary refractive indices with increasing pressure, being most pronounced for GaN, less marked for ZnO, and the smallest for AlN. The frequency dependence of the refractive indices was extrapolated to zero energy using a critical-point-plus-Lorentz-oscillator model of the ordinary and extraordinary dielectric function. In this way, we determined the variation with pressure of the electronic part (no-phonon contribution) of the static dielectric constant epsilon(infinity). Its volume derivative, r = d ln epsilon(infinity)/d ln V, serves as single scaling coefficient for comparison with experimental and/or theoretical results for other semiconductors, regarding the pressure effects on the dielectric properties. We have obtained an ordinary/extraordinary average value (r) over bar of 0.49(15) for ZnO, 1.22(9) for GaN, and 0.32(4) for AlN. With the values for the ordinary and extraordinary case being within experimental uncertainty, there is thus no apparent change in dielectric anisotropy under pressure for these wurtzite semiconductors. Results are discussed in terms of the pressure-dependent electronic band structure of the materials.

  12. Dependence on pressure of the refractive indices of wurtzite ZnO, GaN, and AlN

    NASA Astrophysics Data System (ADS)

    Goñi, A. R.; Kaess, F.; Reparaz, J. S.; Alonso, M. I.; Garriga, M.; Callsen, G.; Wagner, M. R.; Hoffmann, A.; Sitar, Z.

    2014-07-01

    We have measured both the ordinary and extraordinary refractive index of m-plane cuts of wurtzite ZnO, GaN, and AlN single crystals at room temperature and as a function of hydrostatic pressure up to 8 GPa. For that purpose we have developed an alternative optical interference method, called bisected-beam method, which leads, in general, to high contrast interference fringes. Its main feature, however, is to be particularly suitable for high pressure experiments with the diamond anvil cell, when the refractive index of the sample is low and similar to that of diamond and/or the pressure transmitting medium, as is the case here. For all three wide-gap materials we observe a monotonous decrease of the ordinary and extraordinary refractive indices with increasing pressure, being most pronounced for GaN, less marked for ZnO, and the smallest for AlN. The frequency dependence of the refractive indices was extrapolated to zero energy using a critical-point-plus-Lorentz-oscillator model of the ordinary and extraordinary dielectric function. In this way, we determined the variation with pressure of the electronic part (no-phonon contribution) of the static dielectric constant ɛ∞. Its volume derivative, r =dlnɛ∞/dlnV, serves as single scaling coefficient for comparison with experimental and/or theoretical results for other semiconductors, regarding the pressure effects on the dielectric properties. We have obtained an ordinary/extraordinary average value r¯ of 0.49(15) for ZnO, 1.22(9) for GaN, and 0.32(4) for AlN. With the values for the ordinary and extraordinary case being within experimental uncertainty, there is thus no apparent change in dielectric anisotropy under pressure for these wurtzite semiconductors. Results are discussed in terms of the pressure-dependent electronic band structure of the materials.

  13. [Er3+:Yb3+ co-doped nanocrystals BaGd2ZnO5 of up-conversion optical temperature sensing].

    PubMed

    Liu, Yan-zhou; Yang, Yan-min; Guo, Yan-ming; Zhang, Lian-shui; Mi, Chao; Liu, Lin-lin

    2015-02-01

    By far, the most efficient upconversion nanocrystals luminescence materials BaGd2ZnO5: 4%Yb3+ , 1%Er3+, with stable chemical performance, were prepared by using Sol-gel method. XRD pattern shows that the sample is pure phase, belongs to the orthogonal crystals, and space group is Pbnm; SEM micrograph shows that the prepared sample of the morphology sized around 150 nm is evenly distributed. Samples with 971 nm semiconductor laser excitation produce a strong green emission, visible to the naked eye, and uponversion strength and pump energy relation n = 1.22 is two-photon for the realization of the upconversion emission. They originated from Er3+ ions 2H(11/2)--2H(11/2)-->4I(15/2) and 4S(3/2)-->4I(15/2) transition emission, Er3+ ions main excited state absorption (ESA) process is: 4I(15/2)-->4I(11/2)-->2F(7/2)-->2H(11/2), 4S(3/2), Yb3+ was added because of its large absorption cross section (10(4) cm(-1)) so that it is easy to transfer excitation energy to the E3+ ions which enhance the layout particles number and the energy state of the 1F7/2, thereby enhancing the intensity of the peaks of the spectrum. Fluorescence intensity ratio (FIR) technique based on the green upconversion emission of the sample has been studied because the Er3+ ions 2H(11/2) and 4S(3/2) energy level spacing is small. The electrons at the two levels conform to the Boltzmann distribution which is a function of temperature, and thus the fluorescence intensity ratio of two levels can be used to measure the temperature of the substrate material. This method does not interfere with temperature field of the measured object, and can eliminate the uncertainty of the accuracy; the test has a wide temperature range and reasonable temperature resolution, the pump source used is simple, convenient and inexpensive, and has more commercial values. The temperature range of the samples is from 350 to 800 K, and the highest temperature measuring sensitivity can reach 0.0031 K(1). At the same time, under low

  14. Structural and photoluminescence properties of Cd and Cu co-doped zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Samuel, T.; Sujatha, K.; Rao, K. Ramachandra; Rao, M. C.

    2016-05-01

    Cd and Cu co-doped ZnO nanoparticles were synthesized by Polyol method and subsequently have been characterized by their structure, optical and photoluminescence studies. XRD and PSA results revealed the formation of Cd and Cu co-doped ZnO nanoparticles with an average crystallite size of 50 nm and average particle size of 246 nm. From Zeta Potential measurements the Zeta Potential was found to be - 29.2 eV indicating the stability of prepared nanoparticles. From Uv-Vis studies, it is found that the absorption of undoped ZnO is less compared with Cd and Cu co-doped ZnO and the absorbance increases with increase in dopant concentration. Photoluminescence studies revealed that the samples are with high structural and optical quality.

  15. Site location of Al-dopant in ZnO lattice by exploiting the structural and optical characterisation of ZnO:Al thin films

    NASA Astrophysics Data System (ADS)

    Nakrela, A.; Benramdane, N.; Bouzidi, A.; Kebbab, Z.; Medles, M.; Mathieu, C.

    The zinc oxide thin films, highly transparent, doped aluminium were prepared on glass substrates by the reactive chemical spray method. The incorporation nature of Al atoms in the ZnO lattice was determined by X-ray diffraction and optical analyses. Indeed, for low doping ⩽2%, the results of X-ray spectra analysis show a simultaneous reduction of lattice parameters (a and c), this variation, which follows VEGARD's law, tends to indicate a substitution of Zn by Al. By against for doping >2% the increase in the lattice parameters thus the grain sizes, in accordance with the VEGARD's law can be explained by occupation of the interstitial sites by Al atoms. Beyond 4%, the material tends to get disorderly and the crystallites orientation is random. The studied optical properties show that the variation of the optical gap follows a law of the x3/2 form for x < 3% (x is the aluminium atom fraction incorporated in the ZnO lattice). The granular structure is fairly visible and some local growths are disrupted. The crystallite size at low enlargement is coherent with the XRD results.

  16. Computational discovery of lanthanide doped and Co-doped Y{sub 3}Al{sub 5}O{sub 12} for optoelectronic applications

    SciTech Connect

    Choudhary, Kamal; Chernatynskiy, Aleksandr; Phillpot, Simon R.; Sinnott, Susan B.; Mathew, Kiran; Bucholz, Eric W.; Hennig, Richard G.

    2015-09-14

    We systematically elucidate the optoelectronic properties of rare-earth doped and Ce co-doped yttrium aluminum garnet (YAG) using hybrid exchange-correlation functional based density functional theory. The predicted optical transitions agree with the experimental observations for single doped Ce:YAG, Pr:YAG, and co-doped Er,Ce:YAG. We find that co-doping of Ce-doped YAG with any lanthanide except Eu and Lu lowers the transition energies; we attribute this behavior to the lanthanide-induced change in bonding environment of the dopant atoms. Furthermore, we find infrared transitions only in case of the Er, Tb, and Tm co-doped Ce:YAG and suggest Tm,Ce:YAG and Tb,Ce:YAG as possible functional materials for efficient spectral up-conversion devices.

  17. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2 O3 catalysts induced by strong metal-support interactions.

    PubMed

    Lunkenbein, Thomas; Schumann, Julia; Behrens, Malte; Schlögl, Robert; Willinger, Marc G

    2015-04-01

    In industrially relevant Cu/ZnO/Al2 O3 catalysts for methanol synthesis, the strong metal support interaction between Cu and ZnO is known to play a key role. Here we report a detailed chemical transmission electron microscopy study on the nanostructural consequences of the strong metal support interaction in an activated high-performance catalyst. For the first time, clear evidence for the formation of metastable "graphite-like" ZnO layers during reductive activation is provided. The description of this metastable layer might contribute to the understanding of synergistic effects between the components of the Cu/ZnO/Al2 O3 catalysts. PMID:25683230

  18. Crystal Structure and Optical Properties of Al-Doped ZnO Large-Area Thin Films Using 1500 mm Dual Cylindrical Cathodes.

    PubMed

    Lee, JinJu; Ha, Jong-Yoon; Yim, Haena; Choi, Won-Kook; Choi, Ji-Won

    2015-11-01

    The large-area Al-doped ZnO thin films are successfully deposited at room temperature on polycarbonate substrate using a 1500 mm dual cylindrical cathodes sputtering system. Those thin films have smooth surfaces (RMS: 9.6 nm) and lower thicknesses deviation (Uniformity: 98.6%) despite of high RF power. The optical transmittance properties of 3.13 wt% Al doped ZnO thin films have above 85% in visible region. A dual cylindrical cathodes sputtering system can fabricate transparent electrode on flexible electronic devices at room temperature for mass production of 6th generation solar cell and display industry. PMID:26726519

  19. Electronic structure of Al- and Ga-doped ZnO films studied by hard X-ray photoelectron spectroscopy

    SciTech Connect

    Gabás, M.; Ramos Barrado, José R.; Torelli, P.; Barrett, N. T.

    2014-01-01

    Al- and Ga-doped sputtered ZnO films (AZO, GZO) are semiconducting and metallic, respectively, despite the same electronic valence structure of the dopants. Using hard X-ray photoelectron spectroscopy we observe that both dopants induce a band in the electronic structure near the Fermi level, accompanied by a narrowing of the Zn 3d/O 2p gap in the valence band and, in the case of GZO, a substantial shift in the Zn 3d. Ga occupies substitutional sites, whereas Al dopants are in both substitutional and interstitial sites. The latter could induce O and Zn defects, which act as acceptors explaining the semiconducting character of AZO and the lack of variation in the optical gap. By contrast, mainly substitutional doping is consistent with the metallic-like behavior of GZO.

  20. On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering

    NASA Astrophysics Data System (ADS)

    Crovetto, Andrea; Sand Ottsen, Tobias; Stamate, Eugen; Kjær, Daniel; Schou, Jørgen; Hansen, Ole

    2016-07-01

    The electrical properties of RF-sputtered Al-doped ZnO are often spatially inhomogeneous and strongly dependent on deposition parameters. In this work, we study the mechanisms that limit the minimum resistivity achievable under different deposition regimes. In a low- and intermediate-pressure regime, we find a generalized dependence of the electrical properties, grain size, texture, and Al content on compressive stress, regardless of sputtering pressure or position on the substrate. In a high-pressure regime, a porous microstructure limits the achievable resistivity and causes it to increase over time as well. The primary cause of inhomogeneity in the electrical properties is identified as energetic particle bombardment. Inhomogeneity in oxygen content is also observed, but its effect on the electrical properties is small and limited to the carrier mobility.

  1. High rate reactive magnetron sputter deposition of Al-doped ZnO with unipolar pulsing and impedance control system

    SciTech Connect

    Nishi, Yasutaka; Hirohata, Kento; Tsukamoto, Naoki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Al-doped ZnO (AZO) films were deposited on quartz glass substrates, unheated and heated to 200 deg. C, using reactive sputtering with a special feedback system of discharge impedance combined with midfrequency pulsing. A planar Zn-Al alloy target was connected to the switching unit, which was operated in a unipolar pulse mode. The oxidation of the target surface was precisely controlled by a feedback system for the entire O{sub 2} flow ratio including ''the transition region''. The deposition rate was about 10-20 times higher than that for films deposited by conventional sputtering using an oxide target. A deposition rate of AZO films of 390 nm/min with a resistivity of 3.8x10{sup -4} {Omega} cm and a transmittance in the visible region of 85% was obtained when the films were deposited on glass substrates heated to 200 deg. C with a discharge power of 4 kW.

  2. Catalyst-Free Direct Vapor-Phase Growth of Hexagonal ZnO Nanowires on α-Al2O3

    NASA Astrophysics Data System (ADS)

    Hullavarad, S. S.; Hullavarad, N. V.; Vispute, R. D.; Venkatesan, T.; Kilpatrick, S. J.; Ervin, M. H.; Nichols, B.; Wickenden, A. E.

    2010-08-01

    The evolution of ZnO nanowires has been studied under supersaturation of Zn metal species with and without a ZnO thin-film buffer layer on α-Al2O3 deposited by the pulsed laser ablation technique. The nanowires had diameters in the range of 30 nm to 50 nm and lengths in the range of 5 μm to 10 μm with clear hexagonal shape and [000bar{1}] , [10bar{1}1] , and [10bar{1}0] facets. X-ray diffraction (XRD) measurements indicated crystalline properties for the ZnO nanostructures grown on pulsed laser deposition (PLD) ZnO nucleation layers. The optical properties were analyzed by photoluminescence (PL) and cathodoluminescence (CL) measurements. The ZnO nanowires were found to emit strong ultraviolet (UV) light at 386 nm and weak green emission as observed by PL measurements. The stoichiometry of Zn and O was found to be close to 1 by x-ray photoelectron spectroscopy (XPS) measurements. The process-dependent growth properties of ZnO nanostructures can be harnessed for future development of nanoelectronic components including optically pumped lasers, optical modulators, detectors, electron emitters, and gas sensors.

  3. On the variations of optical property and electronic structure in heavily Al-doped ZnO films during double-step growth process

    SciTech Connect

    Hu, Q. C.; Ding, K. Zhang, J. Y.; Yan, F. P.; Pan, D. M.; Huang, F.; Chiou, J. W.

    2014-01-13

    We have investigated the variations of optical property and electronic structure in heavily Al-doped ZnO (AZO) films during the growth process, which were formed by first creating Zn vacancies in O{sub 2}-rich atmosphere and second filling the vacancies with Zn atoms in Zn-vapor atmosphere. After the first step, the high-resistance AZO films have the same optical bandgap with nominally undoped ZnO, indicating that negligible variations in the fundamental bandgap happened to the AZO films although Al atom was incorporated into the ZnO lattice. After the second step, once free electrons were brought into the lattice by Zn-filling, the optical transition energy blueshifts due to the band-filling effect. X-ray absorption fine structure measurements suggest that Zn-filling process decreased the unoccupied states of the conduction band, but not raised the conduction band minimum.

  4. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen Edward; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  5. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  6. The effect of sulfur and zirconium co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1988-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys (less than 500 ppma), the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S(0.2) (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggest that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  7. The effect of sulfur and zirconium Co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1987-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys, the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S sup 0.2 (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggests that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  8. Formation energy of oxygen vacancies in ZnO determined by investigating thermal behavior of Al and In impurities

    SciTech Connect

    Komatsuda, S.; Sato, W.; Ohkubo, Y.

    2014-11-14

    Thermal behavior and interacting nature of 100-ppm Al and ∼100-ppt In impurities doped in zinc oxide (ZnO) were investigated by means of the time-differential perturbed angular correlation method with the {sup 111}In(→{sup 111}Cd) probe. Contrasting interactions between Al and In impurities were observed depending on different atmospheric conditions: (1) in air, Al and In impurities irreversibly associate with each other in the process of their thermal diffusion, but (2) in vacuum, their bound state formed in air dissociates by heat treatment at temperatures higher than 873 K, and this process is enhanced with increasing temperature. Detailed investigation of the thermal behavior of the impurities has revealed that the dissociation reaction is triggered by the formation of oxygen vacancies in the vicinity of the locally associated In-Al structure. A unique method to determine the activation energy of the oxygen-vacancy formation is presented with the estimated experimental value of E{sub a} = 0.72(6) eV.

  9. Structural and optical properties of Al-doped ZnO films coated by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Bo; Huang, Bo; Zhang, Liang-Tang; Li, Jing; Wu, Sun-Tao

    2007-12-01

    The Al-doped ZnO (AZO) films were deposited on glass by RF magnetron sputtering under different sputtering power: 75W, 120W, 160W and 200W. During the films deposition, the other sputtering conditions were maintained constant. The crystal structures of the AZO films were characterized and analyzed by X-ray diffraction. The surface morphologies of the films were observed by SEM. The transmission spectra of the films were measured using a spectrophotometer within the range from 200 to 800 nm at room temperature. The results indicate each of the films has a preferential c-axis orientation and the grain size increases with the increase of sputtering power. All the films exhibit a high transmittance in visible region and have sharp ultraviolet absorption characteristics.

  10. Environmental stability of solution processed Al-doped ZnO naoparticulate thin films using surface modification technique

    NASA Astrophysics Data System (ADS)

    Vunnam, Swathi; Ankireddy, Krishnamraju; Kellar, Jon; Cross, William

    2014-12-01

    The environmental stability of solution processed Al-doped ZnO (AZO) thin films was enhanced by functionalizing the film surface with a thin self-assembled molecular layer. Functionalization of AZO films was performed using two types of molecules having identical 12-carbon alkyl chain termination but different functional groups: dodecanethiol (DDT) and dodecanoic acid (DDA). Surface modified AZO films were examined using electrical resistivity measurements, contact angle measurements and quantitative nanomechanical property mapping atomic force microscopy. The hydrophobic layer inhibits the penetration of oxygen and water into the AZO's grain boundaries thus significantly increasing the environmental stability over unmodified AZO. Surface modified AZO films using DDT exhibited lower electrical resistivity compared to DDA functionalized AZO films. Our study demonstrates a new approach for improving the physical properties of oxide based nanoparticulate films for device applications.

  11. Design of Shallow P-Type Dopants in ZnO: Preprint

    SciTech Connect

    Wei, S.-H.; Li, J.; Yan, Y.

    2008-05-01

    This paper describes approaches to lower the acceptor ionization energy in ZnO by codoping acceptors with donor or isovalent atoms and proposes a universal approach to overcome the doping polarity problem for wide-band-gap semiconductors.

  12. Direct ultraviolet excitation of an amorphous AlN:praseodymium phosphor by codoped Gd{sup 3+} cathodoluminescence

    SciTech Connect

    Maqbool, Muhammad; Ahmad, I.; Richardson, H. H.; Kordesch, M. E.

    2007-11-05

    Sputter deposited thin film amorphous AlN:Pr (1 at. %) emits in the blue-green (490-530 nm) and red ({approx}650 nm) regions of the visible spectrum under electron excitation. The addition of Gd 1 at. % in the film enhances the blue emission by an order of magnitude. The enhancement in the blue region is a result of cathodoluminescence from Gd{sup 3+} at 313 nm. The optical bandgap of amorphous AlN is about 210 nm, so that the film is transparent in the ultraviolet, allowing the Gd emission to excite the Pr{sup 3+} ions. No significant quenching of the Gd emission is observed when the Gd and Pr ions are mixed. The blue enhancement is observed even with the two films containing each of the ions that are separated by a 500 {mu}m thick quartz spacer, showing that the enhancement is due entirely to UV radiation.

  13. Characteristics of the electromagnetic interference shielding effectiveness of Al-doped ZnO thin films deposited by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Choi, Yong-June; Gong, Su Cheol; Johnson, David C.; Golledge, Stephen; Yeom, Geun Young; Park, Hyung-Ho

    2013-03-01

    The structural, optical, and electrical properties of Al-doped ZnO (ZnO:Al) thin films deposited by atomic layer deposition (ALD) with a modified precursor pulse sequence were investigated to evaluate the electromagnetic interference shielding effectiveness (EMI-SE). A Zn-Al-O precursor exposure sequence was used in a modified ALD procedure to result in better distribution of Al3+ ions in the ZnO matrix with the aim of reducing the formation of complete nano-laminated structures that may form in the typical alternating ZnO and Al2O3 deposition procedure. The ALD dopant concentration of the ZnO:Al films was varied by adjusting the dopant deposition intervals of the ZnO:Znsbnd Alsbnd O precursor pulse cycle ratios among 24:1, 19:1, 14:1, and 9:1. The lowest obtained resistivity and average transmittance in the visible region (380-780 nm) were 5.876 × 10-4 Ω cm (carrier concentration of 6.02 × 1020 cm-3 and Hall mobility of 17.65 cm2/V s) and 85.93% in the 131 nm thick ZnO:Al(19:1) film, respectively. The average value of the EMI-SE in the range of 30 MHz to 1.5 GHz increased from 1.1 dB for the 121 nm thick undoped ZnO film to 6.5 dB for the 131 nm thick ZnO:Al(19:1) film.

  14. Thermoelectric properties optimization of Al-doped ZnO thin films prepared by reactive sputtering Zn-Al alloy target

    NASA Astrophysics Data System (ADS)

    Fan, Ping; Li, Ying-zhen; Zheng, Zhuang-hao; Lin, Qing-yun; Luo, Jing-ting; Liang, Guang-xing; Zhang, Miao-qin; Chen, Min-cong

    2013-11-01

    Al-doped ZnO (AZO) has practical applications in the industry for thermoelectric generation, owing to its nontoxicity, low-cost and stability at high temperatures. In this study, AZO thin films with high quality were deposited on BK7 glass substrates at room-temperature by direct current reactive magnetron sputtering using Zn-Al alloy target. The deposited thin films were annealed at various temperatures ranging from 623 K to 823 K with a space of 50 K. It is found that the absolute value of Seebeck coefficient of AZO thin film annealed at 723 K increases stably with increasing of measuring temperature and reaches a value of ∼60 μV/K at 575 K. After that, Al-doping content was varied to further optimize the thermoelectric properties of AZO thin films. The power factor of AZO thin films with Al content of 3 wt% increased with increase of measuring temperature and the maximum power factor of 1.54 × 10-4 W m-1K-2 was obtained at 550 K with the maximum absolute values of Seebeck coefficient of 99 μV/K, which is promising for high temperature thermoelectric application.

  15. Eu2+,Dy3+ codoped SrAl2O4 nanocrystalline phosphor for latent fingerprint detection in forensic applications

    NASA Astrophysics Data System (ADS)

    Sharma, Vishal; Das, Amrita; Kumar, Vinay

    2016-01-01

    In this work, europium and dysprosium doped strontium aluminate (SrAl2O4:Eu2+,Dy3+) nanophosphor is synthesized and its novel application for the detection of latent fingerprints on various contact surfaces is reported. The SrAl2O4:Eu2+,Dy3+ is synthesized using a combustion method and shows long-lasting afterglow luminescence. The powder particles are characterized using field emission scanning electron microscopy (FE-SEM), SEM-energy dispersive x-ray analysis, x-ray diffraction and photoluminescence spectrophotometry. The FE-SEM image analysis reveals that the nanoparticles are mostly 8-15 nm in size with an irregular spherical shape. This nano-structured powder was applied to fresh and aged fingerprints deposited on porous, semi-porous and non-porous contact surfaces, such as ordinary colored paper, glossy paper, glass, aluminum foil, a yellow foil chocolate wrapper, a soft drink can, a PET bottle, a compact disc and a computer mouse. The results are reproducible and show great sensitivity and high contrast in the developed fingermark regions on these surfaces. These nanophosphor particles also show a strong and long-lasting afterglow property, making them a suitable candidate for use as a fingerprint developing agent on luminescent and highly patterned surfaces. These kinds of powders have shown that they can remove the interference from background luminescence, which is not possible using ordinary luminescent fingerprinting powders.

  16. Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells.

    PubMed

    Mahmood, Khalid; Swain, Bhabani Sankar; Jung, Hyun Suk

    2014-08-01

    In this paper, ZnO and Al-doped ZnO films were deposited using the electrospraying method and studied for the first time as photoanodes for efficient perovskite solar cells. Effects of substrate temperature, deposition time, applied voltage, substrate-to-nozzle distance and flow rate (droplet size) on the morphology of ZnO were studied with the help of FE-SEM images. The major factors such as the droplet size of the spray, substrate temperature and substrate-to-nozzle distance at deposition control the film morphology. Indeed, these factors determine the density of the film, its smoothness and the flow of solution over the substrate. The droplet size was controlled by the flow rate of the spray. The substrate-to-nozzle distance and flow rate will both regulate the solution amount deposited on the surface of the substrate. The most favorable conditions for a good quality ZnO thin film were a long substrate-to-nozzle distance and lower solution flow rates. In situ droplet size measurement shows that the size and dispersion of particles were narrowed. The method was shown to have a high deposition rate and efficiency relative to well-established thin film deposition techniques such as chemical and physical vapor deposition. In addition, it also allows easy control of the microstructure and stoichiometry of the deposits. The pure ZnO film produced under optimum conditions (440 nm thick) demonstrated a high power conversion efficiency (PCE) of 10.8% when used as a photoanode for perovskite solar cells, owing to its high porosity, uniform morphology and efficient electron transport. For thicker films a drastic decrease in PCE was observed due to their low porosity. We also observed that the open-circuit voltage increases from 1010 mV to 1045 mV and also the PCE increases from 10.8% to 12.0% when pure ZnO films were doped with aluminum (Al). Under atmospheric pressure, the electrospraying system produces the reasonably uniform-sized droplets of smaller size, so the films

  17. Cation distribution in co-doped ZnAl2O4 nanoparticles studied by X-ray photoelectron spectroscopy and 27Al solid-state NMR spectroscopy.

    PubMed

    Duan, Xiulan; Yuan, Duorong; Yu, Fapeng

    2011-06-20

    Co(x)Zn(1-x)Al(2)O(4) (x = 0.01-0.6) nanoparticles were synthesized by the citrate sol-gel method and were characterized by X-ray powder diffraction and transmission electron microscopy to identify the crystalline phase and determine the particle size. X-ray photoelectron spectroscopy and (27)Al solid-state NMR spectroscopy were used to study the distribution of the cations in the tetrahedral and octahedral sites in Co(x)Zn(1-x)Al(2)O(4) nanoparticles as a function of particle size and composition. The results show that all of the as-synthesized samples exhibit spinel-type single phase; the crystallite size of the samples is about 20-50 nm and increases with increasing annealing temperature and decreases with Co-enrichment. Zn(2+) ions are located in large proportions in the tetrahedral sites and in small proportions in the octahedral sites in Co(x)Zn(1-x)Al(2)O(4) nanoparticles. The fraction of octahedral Zn(2+) increases with increasing Co concentration and decreases with increasing particle size. Besides the tetrahedral and octahedral coordinations, the presence of the second octahedrally coordinated Al(3+) ions is observed in the nanoparticles. The change of the inversion parameter (2 times the fraction of Al(3+) ions in tetrahedral sites) with Co concentration and particle size is consistent with that of the Zn fraction in octahedral sites. Analysis of the absorption properties indicates that Co(2+) ions are located in the tetrahedral sites as well as in the octahedral sites in the nanoparticles. The inversion degree of Co(2+) decreases with increasing particle size. PMID:21612229

  18. Synthesis and magnetic properties of Al doped Zn0.995Mn0.005O powers

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yu, Zhou; Long, Xue; Lin, Pengtin; Cheng, Xingwang; Liu, Ying; Cao, Chuanbao; Zhang, Hongwei; Wu, Guangheng; Yu, Richeng

    2009-06-01

    Chemical method was employed to synthesize Mn and Al codoped ZnO, namely, Zn0.995-xMn0.005AlxO with the nominal composition of x =0, 0.005, and 0.02. Structural, optical, and magnetic properties of the produced samples were studied. The results indicated that introduce Al as additional dopants induces in an enhancement of the ferromagnetism in Zn0.995Mn0.005O. The enhanced ferromagnetism (FM) in (Mn,Al) codoped sample can be understood in view of that introducing of Al could promote spinodal decomposition and lead to Mn rich regions. The Mn rich regions could be responsibility for the observed enhancement of FM at room temperature.

  19. Isoelectronic co-doping

    DOEpatents

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  20. Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Mahmood, Khalid; Swain, Bhabani Sankar; Jung, Hyun Suk

    2014-07-01

    In this paper, ZnO and Al-doped ZnO films were deposited using the electrospraying method and studied for the first time as photoanodes for efficient perovskite solar cells. Effects of substrate temperature, deposition time, applied voltage, substrate-to-nozzle distance and flow rate (droplet size) on the morphology of ZnO were studied with the help of FE-SEM images. The major factors such as the droplet size of the spray, substrate temperature and substrate-to-nozzle distance at deposition control the film morphology. Indeed, these factors determine the density of the film, its smoothness and the flow of solution over the substrate. The droplet size was controlled by the flow rate of the spray. The substrate-to-nozzle distance and flow rate will both regulate the solution amount deposited on the surface of the substrate. The most favorable conditions for a good quality ZnO thin film were a long substrate-to-nozzle distance and lower solution flow rates. In situ droplet size measurement shows that the size and dispersion of particles were narrowed. The method was shown to have a high deposition rate and efficiency relative to well-established thin film deposition techniques such as chemical and physical vapor deposition. In addition, it also allows easy control of the microstructure and stoichiometry of the deposits. The pure ZnO film produced under optimum conditions (440 nm thick) demonstrated a high power conversion efficiency (PCE) of 10.8% when used as a photoanode for perovskite solar cells, owing to its high porosity, uniform morphology and efficient electron transport. For thicker films a drastic decrease in PCE was observed due to their low porosity. We also observed that the open-circuit voltage increases from 1010 mV to 1045 mV and also the PCE increases from 10.8% to 12.0% when pure ZnO films were doped with aluminum (Al). Under atmospheric pressure, the electrospraying system produces the reasonably uniform-sized droplets of smaller size, so the films

  1. Selective growth of catalyst-free ZnO nanowire arrays on Al:ZnO for device application

    SciTech Connect

    Chung, T. F.; Luo, L. B.; He, Z. B.; Leung, Y. H.; Shafiq, I.; Yao, Z. Q.; Lee, S. T.

    2007-12-03

    Vertically aligned ZnO nanowire (NW) arrays have been synthesized selectively on patterned aluminum-doped zinc oxide (AZO) layer deposited on silicon substrates without using any metal catalysts. The growth region was defined by conventional photolithography with an insulating template. Careful control of the types of template materials and growth conditions allows good alignment and growth selectivity for ZnO NW arrays. Sharp ultraviolet band-edge peak observed in the photoluminescence spectra of the patterned ZnO NW arrays reveals good optical qualities. The current-voltage characteristics of ZnO NWs/AZO/p-Si device suggest that patterned and aligned ZnO NW arrays on AZO may be used in optoelectronic devices.

  2. Effect of different dopant elements (Al, Mg and Ni) on microstructural, optical and electrochemical properties of ZnO thin films deposited by spray pyrolysis (SP)

    NASA Astrophysics Data System (ADS)

    Benzarouk, Hayet; Drici, Abdelaziz; Mekhnache, Mounira; Amara, Abdelaziz; Guerioune, Mouhamed; Bernède, Jean Christian; Bendjffal, Hacen

    2012-09-01

    In the present work we studied the influence of the dopant elements and concentration on the microstructural and electrochemical properties of ZnO thin films deposited by spray pyrolysis. Transparent conductive thin films of zinc oxide (ZnO) were prepared by the spray pyrolysis process using an aqueous solution of zinc acetate dehydrate [Zn(CH3COO)2·2H2O] on soda glass substrate heated at 400 ± 5 °C. AlCl3, MgCl2 and NiCl2 were used as dopant. The effect of doping percentage (2-4%) has been investigated. Afterwards the samples were thermally annealed in an ambient air during one hour at 500 °C. X-ray diffraction showed that films have a wurtzite structure with a preferential orientation along the (0 0 2) direction for doped ZnO. The lattice parameters a and c are estimated to be 3.24 and 5.20 Ǻ, respectively. Transmission allowed to estimate the band gaps of ZnO layers. The electrochemical studies revealed that the corrosion resistance of the films depended on the concentration of dopants.

  3. Recombination luminescence and trap levels in undoped and Al-doped ZnO thin films on quartz and GaSe (0 0 0 1) substrates

    SciTech Connect

    Evtodiev, I.; Caraman, I.; Leontie, L.; Rusu, D.-I.; Dafinei, A.; Nedeff, V.; Lazar, G.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer ZnO films on GaSe create electron trapping states and PL recombination levels. Black-Right-Pointing-Pointer Zn and Al diffusion in GaSe produces low-energy widening of its PL emission. Black-Right-Pointing-Pointer ZnO:Al films on GaSe lamellas are suitable for gas-discharge lamp applications. -- Abstract: Photoluminescence spectra of ZnO and ZnO:Al (1.00, 2.00 and 5.00 at.%) films on GaSe (0 0 0 1) lamellas and amorphous quartz substrates, obtained by annealing, at 700 K, of undoped and Al-doped metal films, are investigated. For all samples, the nonequilibrium charge carriers recombine by radiative band-to-band transitions with energy of 3.27 eV, via recombination levels created by the monoionized oxygen atoms, forming the impurity band laying in the region 2.00 - 2.70 eV. Al doping induces an additional recombination level at 1.13 eV above the top of the valence band of ZnO films on GaSe substrates. As a result of thermal diffusion of Zn and Al into the GaSe interface layer from ZnO:Al/GaSe heterojunction, electron trap levels located at 0.22 eV and 0.26 eV below the conduction band edge of GaSe, as well as a deep recombination level, responsible for the luminescent emission in the region 1.10 - 1.40 eV, are created.

  4. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing

    NASA Astrophysics Data System (ADS)

    Vunnam, S.; Ankireddy, K.; Kellar, J.; Cross, W.

    2014-05-01

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10-2 Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate.

  5. Local probe microscopic studies on Al-doped ZnO: Pseudoferroelectricity and band bending at grain boundaries

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2016-01-01

    In this paper, based on piezoforce measurements, we show the presence of opposite polarization at grains and grain boundaries of Al-doped ZnO (AZO). The polarization can be flipped by 180° in phase by switching the polarity of the applied electric field, revealing the existence of nanoscale pseudoferroelectricity in AZO grown on Pt/TiO2/SiO2/Si substrate. We also demonstrate an experimental evidence on local band bending at grain boundaries of AZO films using conductive atomic force microscopy and Kelvin probe force microscopy. The presence of an opposite polarization at grains and grain boundaries gives rise to a polarization-driven barrier formation at grain boundaries. With the help of conductive atomic force microscopy, we show that the polarization-driven barrier along with the defect-induced electrostatic potential barrier account for the measured local band bending at grain boundaries. The present study opens a new avenue to understand the charge transport in light of both polarization and electrostatic effects.

  6. Solution processed Al-doped ZnO nanoparticles/TiOx composite for highly efficient inverted organic solar cells.

    PubMed

    Gadisa, Abay; Hairfield, Travis; Alibabaei, Leila; Donley, Carrie L; Samulski, Edward T; Lopez, Rene

    2013-09-11

    We investigated the electrical properties of solution processed Al-doped ZnO (AZO) nanoparticles, stabilized by mixing with a TiOx complex. Thin solid films cast from the solution of AZO-TiOx (AZOTi) (Ti/Zn ∼0.4 in the bulk and ∼0.8 on its surface) is processable in inert environment, without a need for either ambient air exposure for hydrolysis or high temperature thermal annealing commonly applied to buffer layers of most metal-oxides. It was found that the electronic structure of AZOTi matches the electronic structure of several electron acceptor and donor materials used in organic electronic devices, such as solar cells. Inverted solar cells employing a bulk heterojunction film of poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester, cast on an indium-tin-oxide/AZOTi electrode, and capped with a tungsten oxide/aluminum back electrode, give rise to a nearly 70% fill factor and an optimized open-circuit voltage as a result of efficient hole blocking behavior of AZOTi. The resulting electron collecting/blocking capability of this material solves crucial interfacial recombination issues commonly observed at the organic/metal-oxide interface in most inverted organic bulk heterojunction solar cells. PMID:23980825

  7. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing.

    PubMed

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-05-16

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10(-2) Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. PMID:24763438

  8. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing. PMID:25321779

  9. Bi-layer Al2O3/ZnO atomic layer deposition for controllable conductive coatings on polypropylene nonwoven fiber mats

    NASA Astrophysics Data System (ADS)

    Sweet, William J.; Jur, Jesse S.; Parsons, Gregory N.

    2013-05-01

    Electrically conductive zinc oxide coatings are applied to polypropylene nonwoven fiber mats by atomic layer deposition (ALD) at 50-155 °C. A low temperature (50 °C) aluminum oxide ALD base layer on the polypropylene limits diffusion of diethyl zinc into the polypropylene, resulting in ZnO layers with properties similar to those on planar silicon. Effective conductivity of 63 S/cm is achieved for ZnO on Al2O3 coated polypropylene fibers, and the fibers remain conductive for months after coating. Without the Al2O3 precoating, the effective conductivity was much smaller, consistent with precursor diffusion into the polymer and sub-surface ZnO nucleation. Mechanical robustness tests showed that conductive samples bent around a 6 mm radius maintained up to 40% of the pre-bending conductivity. Linkages between electrical conductivity and mechanical performance will help inform materials choice for flexible and porous electronics including textile-based sensors and antennas.

  10. Al-doped ZnO aligned nanorod arrays for opto-electronic and sensor applications

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Mundle, R.; Dondapati, H.; Konda, R. B.; Bahoura, M.; Pradhan, A. K.

    2012-04-01

    We report on the growth of vertically aligned Al:ZnO nanorod arrays synthesized by the hydrothermal technique at considerably low temperature on a sputtered Al:ZnO seed layer. The morphology demonstrates that the nanorod arrays maintain remarkable alignment along the c-axis over a large area. The optoelectronic properties of nanorod arrays on Al:ZnO/p-Si seed layer with SiO2 have been illustrated. The photocurrent is significantly reduced in nanorod arrays on AZO/SiO2/p-Si heterojunction due to multiple scattering phenomena associated with the nanorod arrays. The optical properties of the AZO film with and without the AZO nanorod arrays were investigated. Also the effects of an intermediate layer in the AZO/P-Si heterojunction structure with and without the AZO nanorod array present were explored. All the various intermediate layers displayed photovoltaic effect behavior, especially with the AZO/SiO2/P-Si heterojunction structure, which exhibited ideal diode behavior. The optoelectronic properties of nanorod arrays on AZO/P-Si seed layer with SiO2 have been illustrated. The photocurrent is significantly reduced in nanorod arrays on AZO/SiO2/P-Si heterojunction due to multiple scattering phenomena associated with the nanorod arrays. The results have tremendous impact for sensor fabrication, including glucose sensor.

  11. Synthesis and down-conversion luminescence properties of Er3+/Yb3+ co-doped AlF3-PbF2-CaF2 powders

    NASA Astrophysics Data System (ADS)

    Liu, Fangchao; Han, Qun; Liu, Tiegen; Chen, Yaofei; Du, Yang; Yao, Yunzhi

    2015-08-01

    Er3+/Yb3+ co-doped oxy-fluoride powders with varying Er/Yb concentration were prepared by a melt quenching method at various sintering temperature. The effect of the Er/Yb doped concentration and sintering temperature were analyzed by using optical absorption and emission techniques. The Judd-Ofelt theory has been used to evaluate the three intensity parameters (Ωλ, where λ = 2, 4 and 6) and calculate the oscillator strengths (fc). Ultraviolet-to-visible emissions were observed under the excitation of a 325 nm CW laser. It was found that the down-conversion fluorescence intensity changes with the sintering temperature and Er/Yb content ratio, the results were explained with the level transitions in Er3+/Yb3+ co-doped systems. The intensity ratios (intensity of 437 nm as reference) of the luminescence spectra that the samples sintered at various temperature are relevant to Ω6 parameter which indicates the vibration amplitude of the Er-O distance. The sintering temperature also has an influence on the intensity ratios via affecting the thermalization of the excited 4I15/2 level.

  12. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.

    PubMed

    Greenberg, Benjamin L; Ganguly, Shreyashi; Held, Jacob T; Kramer, Nicolaas J; Mkhoyan, K Andre; Aydil, Eray S; Kortshagen, Uwe R

    2015-12-01

    Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation. PMID:26551232

  13. Thickness Effect of Al-Doped ZnO Window Layer on Damp-Heat Stability of CuInGaSe2 Solar Cells

    SciTech Connect

    Pern, F. J.; Mansfield, L.; DeHart, C.; Glick, S. H.; Yan, F.; Noufi, R.

    2011-01-01

    We investigated the damp heat (DH) stability of CuInGaSe{sub 2} (CIGS) solar cells as a function of thickness of the Al-doped ZnO (AZO) window layer from the 'standard' 0.12 {micro}m to a modest 0.50 {micro}m over an underlying 0.10-{micro}m intrinsic ZnO buffer layer. The CIGS cells were prepared with external electrical contact using fine Au wire to the tiny 'standard' Ni/Al (0.05 {micro}m/3 {micro}m) metal grid contact pads. Bare cell coupons and sample sets encapsulated in a specially designed, Al-frame test structure with an opening for moisture ingress control using a TPT backsheet were exposed to DH at 85 C and 85% relative humidity, and characterized by current-voltage (I-V), quantum efficiency (QE), and (electrochemical) impedance spectroscopy (ECIS). The results show that bare cells exhibited rapid degradation within 50-100 h, accompanied by film wrinkling and delamination and corrosion of Mo and AlNi grid, regardless of AZO thickness. In contrast, the encapsulated cells did not show film wrinkling, delamination, and Mo corrosion after 168 h DH exposure; but the trend of efficiency degradation rate showed a weak correlation to the AZO thickness.

  14. Thickness Effect of Al-Doped ZnO Window Layer on Damp Heat Stability of CuInGaSe2 Solar Cells: Preprint

    SciTech Connect

    Pern, F. J.; Mansfield, L.; DeHart, C.; Glick, S. H.; Yan, F.; Noufi, R.

    2011-07-01

    We investigated the damp heat (DH) stability of CuInGaSe2 (CIGS) solar cells as a function of thickness of the Al-doped ZnO (AZO) window layer from the 'standard' 0.12 μm to a modest 0.50 μm over an underlying 0.10-μm intrinsic ZnO buffer layer. The CIGS cells were prepared with external electrical contact using fine Au wire to the tiny 'standard' Ni/Al (0.05 μm/3 μm) metal grid contact pads. Bare cell coupons and sample sets encapsulated in a specially designed, Al-frame test structure with an opening for moisture ingress control using a TPT backsheet were exposed to DH at 85oC and 85% relative humidity, and characterized by current-voltage (I-V), quantum efficiency (QE), and (electrochemical) impedance spectroscopy (ECIS). The results show that bare cells exhibited rapid degradation within 50-100 h, accompanied by film wrinkling and delamination and corrosion of Mo and AlNi grid, regardless of AZO thickness. In contrast, the encapsulated cells did not show film wrinkling, delamination, and Mo corrosion after 168 h DH exposure; but the trend of efficiency degradation rate showed a weak correlation to the AZO thickness.

  15. Effects of N- and N-In doping on ZnO films prepared by using ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Park, Se-Jeong; Shin, Dong-Myeong; Kim, Hyung-Kook; Hwang, Yoon-Hwae; Zhang, Yiwen; Li, Xiaomin

    2014-12-01

    The effects of N-doping, and N-In co-doping on ZnO films were studied by analyzing the structural, electrical, and optical properties of the films prepared by using an ultrasonic spray pyrolysis (USP) method. According to scanning electron microscopy (SEM) data, all films had very complex surface structures. Their polycrystallinity were also proven by using an X-ray diffraction method. The Hall-effect measurement showed that both the undoped and the N-doped ZnO films exhibited n-type conductivity and that the N-In co-doped ZnO film showed p-type conductivity. In the extended X-ray absorption fine structure (EXAFS) analysis, the number of oxygen atoms in the N-In codoped ZnO films was found to be larger than that in the N-doped and the undoped ZnO films. The photoluminescence spectra also showed that the N-In co-doping suppressed the concentration of oxygen vacancies in the ZnO films. Through an effective incorporation of indium atoms, more oxygen atoms seem to have been introduced into the lattice of the N-In co-doped ZnO films.

  16. Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping

    PubMed Central

    2014-01-01

    Undoped ZnO, Ce-doped ZnO, and (Li, Ce)-codoped ZnO nanophosphors were prepared by a sol-gel process. The effects of the additional doping with Li ions on the crystal structure, particle morphology, and luminescence properties of Ce-doped ZnO were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy and photoluminescence spectroscopy. The results indicate that the obtained samples are single phase, and a nanorod shaped morphology is observed for (Li, Ce)-codoping. Under excitation with 325 nm light, Ce-doped ZnO phosphors show an ultraviolet emission, a green emission, and a blue emission caused by Zn interstitials. The spectrum of the sample codoped with a proper Li concentration features two additional emissions that can be attributed to the Ce3+ ions. With the increase of the Li doping concentration, the Ce3+ blue luminescence of (Li, Ce)-codoped ZnO is obviously enhanced, which results not only from the increase of the Ce3+ ion concentration itself but also from the energy transfer from the ZnO host material to the Ce3+ ions. This enhancement reaches a maximum at a Li content of 0.02, and then decreases sharply due to the concentration quench. These nanophosphors may promise for application to the visible-light-emitting devices. PACS 78.55.Et; 81.07.Wx; 81.20.Fw PMID:25258604

  17. Electronic structure of Al-doped ZnO transparent conductive thin films studied by x-ray absorption and emission spectroscopies

    SciTech Connect

    Huang, W. H.; Sun, S. J.; Chiou, J. W.; Chou, H.; Chan, T. S.; Lin, H.-J.; Kumar, Krishna; Guo, J.-H.

    2011-11-15

    This study used O K-, Zn L{sub 3}-, Zn K-, and Al K-edges x-ray absorption near-edge structure (XANES) and O K-edge x-ray emission spectroscopy (XES) measurements to investigate the electronic structure of transparent Al-doped ZnO (AZO) thin film conductors. The samples were prepared on glass substrates at a low temperature near 77 K by using a standard RF sputtering method. High-purity Ne (5N) was used as the sputtering gas. The crystallography of AZO thin films gradually transformed from the ZnO wurtize structure to an amorphous structure during sample deposition, which suggests the suitability to grow on flexible substrates, eliminating the severe degradation due to fragmentation by repeated bending. The O K- and Zn L{sub 3}-edges XANES spectra of AZO thin films revealed a decrease in the number of both O 2p and Zn 3d unoccupied states when the pressure of Ne was increased from 5 to 100 mTorr. In contrast, Al K-edges XANES spectra showed that the number of unoccupied states of Al 3p increased in conjunction with the pressure of Ne, indicating an electron transfer from Al to O atoms, and suggesting that Al doping increases the negative effective charge of oxygen ions. XES and XANES spectra of O 2p states at the O K-edge also revealed that Al doping not only raised the conduction-band-minimum, but also increased the valence-band-maximum and the band-gap. The results indicate that the reduction in conductivity of AZO thin films is due to the generation of ionic characters, the increase in band-gap, and the decrease in density of unoccupied states of oxygen.

  18. Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots-SiO(2) composite/p-AlGaN heterojunction light-emitting diodes.

    PubMed

    Shih, Ying Tsang; Wu, Mong Kai; Li, Wei Chih; Kuan, Hon; Yang, Jer Ren; Shiojiri, Makoto; Chen, Miin Jang

    2009-04-22

    This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer. PMID:19420563

  19. An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor.

    PubMed

    Ma, Siwei; Liao, Qingliang; Liu, Hanshuo; Song, Yu; Li, Ping; Huang, Yunhua; Zhang, Yue

    2012-10-21

    An excellent biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor (HEMT) was used to detect lactic acid. Due to the new structure, addition of the Si-doped GaAs cap layer, the HEMT biosensor could detect a wide range of lactic acid concentrations from 0.03 nM to 300 mM. The novel biosensor exhibiting good performance along with fast response, high sensitivity, wide detection range, and long-term stability, can be integrated with a commercially available transmitter to realize lactic acid detection. PMID:22951602

  20. Field-induced doping-mediated tunability in work function of Al-doped ZnO: Kelvin probe force microscopy and first-principle theory

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Mookerjee, Sumit; Som, Tapobrata

    2016-09-01

    We demonstrate that the work function of Al-doped ZnO (AZO) can be tuned externally by applying an electric field. Our experimental investigations using Kelvin probe force microscopy show that by applying a positive or negative tip bias, the work function of AZO film can be enhanced or reduced, which corroborates well with the observed charge transport using conductive atomic force microscopy. These findings are further confirmed by calculations based on first-principles theory. Tuning the work function of AZO by applying an external electric field is not only important to control the charge transport across it, but also to design an Ohmic contact for advanced functional devices.

  1. Improved optical and electrical properties of rf sputtered Al doped ZnO films on polymer substrates by low-damage processes

    SciTech Connect

    Min, Hyung Seob; Yang, Min Kyu; Lee, Jeon-Kook

    2009-03-15

    Three types of low-damage radio-frequency (rf) magnetron sputtering processes--an interruptive process, a rotating cylindrical holder method, and an off-axis sputtering method--were designed and studied to reduce the film surface temperature during deposition. Low-damage sputtering processes were investigated to improve the resistivity and optical transmittance in the visible range of Al doped ZnO (AZO) thin films deposited on polymer substrates. In the case of the polyethersulfone substrate, AZO films with a resistivity of 1.0x10{sup -3} {omega} cm and an optical transmittance of 75% were obtained by the rotating repeat holder method during rf sputtering.

  2. Atomic layer deposition of Al-doped ZnO films using ozone as the oxygen source: A comparison of two methods to deliver aluminum

    SciTech Connect

    Yuan Hai; Luo Bing; Yu Dan; Cheng, An-jen; Campbell, Stephen A.; Gladfelter, Wayne L.

    2012-01-15

    Aluminum-doped ZnO films were prepared by atomic layer deposition at 250 deg. C using diethylzinc (DEZ), trimethylaluminum (TMA), and ozone as the precursors. Two deposition methods were compared to assess their impact on the composition, structural, electrical, and optical properties as a function of Al concentration. The first method controlled the Al concentration by changing the relative number of Al to Zn deposition cycles; a process reported in the literature where water was used as the oxygen source. The second method involved coinjection of the DEZ and TMA during each cycle where the partial pressures of the precursors control the aluminum concentration. Depth profiles of the film composition using Auger electron spectroscopy confirmed a layered microstructure for the films prepared by the first method, whereas the second method led to a homogeneous distribution of the aluminum throughout the ZnO film. Beneath the surface layer the carbon concentrations for all of the films were below the detection limit. Comparison of their electrical and optical properties established that films deposited by coinjection of the precursors were superior.

  3. Highly Repeatable and Recoverable Phototransistors Based on Multifunctional Channels of Photoactive CdS, Fast Charge Transporting ZnO, and Chemically Durable Al2O3 Layers.

    PubMed

    Ahn, Cheol Hyoun; Kang, Won Jun; Kim, Ye Kyun; Yun, Myeong Gu; Cho, Hyung Koun

    2016-06-22

    Highly repeatable and recoverable phototransistors were explored using a "multifunctional channels" structure with multistacked chalcogenide and oxide semiconductors. These devices were made of (i) photoactive CdS (with a visible band gap), (ii) fast charge transporting ZnO (with a high field-effect mobility), and (iii) a protection layer of Al2O3 (with high chemical durability). The CdS TFT without the Al2O3 protection layer did not show a transfer curve due to the chemical damage that occurred on the ZnO layer during the chemical bath deposition (CBD) process used for CdS deposition. Alternatively, compared to CdS phototransistors with long recovery time and high hysteresis (ΔVth = 19.5 V), our "multi-functional channels" phototransistors showed an extremely low hysteresis loop (ΔVth = 0.5V) and superior photosensitivity with repeatable high photoresponsivity (52.9 A/W at 400 nm). These improvements are likely caused by the physical isolation of the sensing region and charge transport region by the insertion of the ultrathin Al2O3 layer. This approach successfully addresses some of the existing problems in CdS phototransistors, such as the high gate-interface trap site density and high absorption of molecular oxygen, which originate from the polycrystalline CdS. PMID:27259048

  4. Strong Energy-Transfer-Induced Enhancement of Luminescence Efficiency of Eu(2+)- and Mn(2+)-Codoped Gamma-AlON for Near-UV-LED-Pumped Solid State Lighting.

    PubMed

    Liu, Lihong; Wang, Le; Zhang, Chenning; Cho, Yujin; Dierre, Benjamin; Hirosaki, Naoto; Sekiguchi, Takashi; Xie, Rong-Jun

    2015-06-01

    A series of Eu(2+)- and Mn(2+)-codoped γ-AlON (Al1.7O2.1N0.3) phosphors was synthesized at 1800 °C under 0.5 MPa N2 by using the gas-pressure sintering method (GPS). Eu(2+) and Mn(2+) ions were proved to enter into γ-AlON host lattice by means of XRD, CL, and EDS measurements. Under 365 nm excitation, two emission peaks located at 472 and 517 nm, resulting from 4f(6)5d(1) → 4f(7) and (4)T1(4G) → (6)A1 electron transitions of Eu(2+) and Mn(2+), respectively, can be observed. Energy transfer from Eu(2+) to Mn(2+) was evidenced by directly observing appreciable overlap between the excitation spectrum of Mn(2+) and the emission spectrum of Eu(2+) as well as by the decreased decay time of Eu(2+) with increasing Mn(2+) concentration. The critical energy-transfer distance between Eu(2+) and Mn(2+) and the energy-transfer efficiency were also calculated. The mechanism of energy transfer was identified as a resonant type via a dipole-dipole mechanism. The external quantum efficiency was increased 7 times (from 7% for γ-AlON:Mn(2+) to 49% for γ-AlON:Mn(2+),Eu(2+) under 365 nm excitation), and color-tunable emissions from blue-green to green-yellow were also realized with the Eu(2+) → Mn(2+) energy transfer in γ-AlON. PMID:25993116

  5. Comparison of interfacial and electrical properties between Al2O3 and ZnO as interface passivation layer of GaAs MOS device with HfTiO gate dielectric

    NASA Astrophysics Data System (ADS)

    Shuyan, Zhu; Jingping, Xu; Lisheng, Wang; Yuan, Huang; Wing Man, Tang

    2015-03-01

    GaAs metal-oxide-semiconductor (MOS) capacitors with HfTiO as the gate dielectric and Al2O3 or ZnO as the interface passivation layer (IPL) are fabricated. X-ray photoelectron spectroscopy reveals that the Al2O3 IPL is more effective in suppressing the formation of native oxides and As diffusion than the ZnO IPL. Consequently, experimental results show that the device with Al2O3 IPL exhibits better interfacial and electrical properties than the device with ZnO IPL: lower interface-state density (7.2 × 1012 eV-1 cm-2), lower leakage current density (3.60 × 10-7 A/cm2 at Vg = 1 V) and good C-V behavior. Project supported by the National Natural Science Foundation of China (Nos. 61176100, 61274112).

  6. Improving p-type doping efficiency in Al{sub 0.83}Ga{sub 0.17}N alloy substituted by nanoscale (AlN){sub 5}/(GaN){sub 1} superlattice with Mg{sub Ga}-O{sub N} δ-codoping: Role of O-atom in GaN monolayer

    SciTech Connect

    Zhong, Hong-xia; Shi, Jun-jie Jiang, Xin-he; Huang, Pu; Ding, Yi-min; Zhang, Min

    2015-01-15

    We calculate Mg-acceptor activation energy E{sub A} and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on E{sub A} in nanoscale (AlN){sub 5}/(GaN){sub 1} superlattice (SL), a substitution for Al{sub 0.83}Ga{sub 0.17}N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMg{sub Ga}-O{sub N} (n = 1-3) complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing E{sub A}. The shorter the Mg-O bond is, the smaller the E{sub A} is. The Mg-acceptor activation energy can be reduced significantly by nMg{sub Ga}-O{sub N} δ-codoping. Our calculated E{sub A} for 2Mg{sub Ga}-O{sub N} is 0.21 eV, and can be further reduced to 0.13 eV for 3Mg{sub Ga}-O{sub N}, which results in a high hole concentration in the order of 10{sup 20} cm{sup −3} at room temperature in (AlN){sub 5}/(GaN){sub 1} SL. Our results prove that nMg{sub Ga}-O{sub N} (n = 2,3) δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN.

  7. Thickness effect on the optical and morphological properties in Al2O3/ZnO nanolaminate thin films prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    López, J.; Martínez, J.; Abundiz, N.; Domínguez, D.; Murillo, E.; Castillón, F. F.; Machorro, R.; Farías, M. H.; Tiznado, H.

    2016-02-01

    In this work, we studied the optical and morphological properties of ultrathin nanolaminate films based on Al2O3/ZnO (AZ) bilayers stack. The films were deposited on Si (100) by means of thermal atomic layer deposition (ALD) technique. The bilayer thicknesses (ratio = 1:1) were 0.2, 1, 2, 4, 10 and 20 nm. Refractive index (n) and band gap (Eg) of each nanolaminate were studied via spectroscopic ellipsometry (SE), and spectral reflectance ultraviolet-visible spectroscopy (UV-vis). Surface morphology and roughness parameters of the nanolaminates were measured by Atomic Force Microscopy (AFM). The optical and morphological properties were shown highly dependent on the bilayer thickness. Ellipsometric data treated through the Cody-Lorentz optical model revealed that the refractive index decreases for thinner bilayers. A sharp intensity decay of refractive index and peaks at the UV region (200-400 nm) indicated increased transparency for thinner bilayers. It is also shown that the band gap is tunable. The maximum band gap value was 4.8 eV. These results reveal that ZnO combined with Al2O3 as bilayers stack can be converted into a dielectric material with enhanced band gap, opening the possibility for new optical and dielectric applications.

  8. Quadrupole mass spectrometry and time-of-flight analysis of ions resulting from 532 nm pulsed laser ablation of Ni, Al, and ZnO targets

    SciTech Connect

    Sage, Rebecca S.; Cappel, Ute B.; Ashfold, Michael N. R.; Walker, Nicholas R.

    2008-05-01

    This work describes the design and validation of an instrument to measure the kinetic energies of ions ejected by the pulsed laser ablation (PLA) of a solid target. Mass spectra show that the PLA of Ni, Al, and ZnO targets, in vacuum, using the second harmonic of a Nd:YAG laser (532 nm, pulse duration {approx}10 ns) generates abundant X{sup n+} ions (n{<=}3 for Ni, {<=}2 for Al, {<=}3 and {<=}2 for Zn and O respectively from ZnO). Ions are selected by their mass/charge (m/z) ratio prior to the determination of their times of flight. PLA of Ni has been studied in most detail. The mean velocities of ablated Ni{sup n+} ions are shown to follow the trend v(Ni{sup 3+})>v(Ni{sup 2+})>v(Ni{sup +}). Data from Ni{sup 2+} and Ni{sup 3+} are fitted to shifted Maxwellian functions and agree well with a model which assumes both thermal and Coulombic contributions to ion velocities. The dependence of ion velocities on laser pulse energy (and fluence) is investigated, and the high energy data are shown to be consistent with an effective accelerating voltage of {approx}90 V within the plume. The distribution of velocities associated with Ni{sup 3+} indicates a population at cooler temperature than Ni{sup 2+}.

  9. Investigations on the roles of position controlled Al layers incorporated into an Al-doped ZnO active channel during atomic layer deposition for thin film transistor applications

    NASA Astrophysics Data System (ADS)

    Kim, Eom-Ji; Lee, Won-Ho; Yoon, Sung-Min

    2016-03-01

    We investigated the effects of the distance between incorporated Al layers on the characteristics of thin-film transistors (TFTs) using Al-doped ZnO (AZO) as the active channels. The intervals between the Al layers were controlled by designing the sequences of Al cycles during the atomic-layer deposition. Two configurations were designed as “scatter” or “focus”, in which the incorporated Al layers were dispersed to bottom and top sides or concentrated on the center region. Electrical conductivities of “scatter” and “focus” films were observed to be different. While the dispersed Al layers could work as dopants, a too-close interval between the Al layers suppressed carrier transport, even with the same incorporated Al amounts. These differences were reflected on the device characteristics. The TFT performance of the “scatter” device was better than that of the “focus” device. Consequently, adequately dispersed Al layers in the AZO channel are very important for improving device performance.

  10. Effect of ZnO channel thickness on the device behaviour of nonvolatile memory thin film transistors with double-layered gate insulators of Al2O3 and ferroelectric polymer

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Min; Yang, Shin-Hyuk; Park, Sang-Hee Ko; Jung, Soon-Won; Cho, Doo-Hee; Byun, Chun-Won; Kang, Seung-Youl; Hwang, Chi-Sun; Yu, Byoung-Gon

    2009-12-01

    Poly(vinylidene fluoride trifluoroethylene) and ZnO were employed for nonvolatile memory thin film transistors as ferroelectric gate insulator and oxide semiconducting channel layers, respectively. It was proposed that the thickness of the ZnO layer be carefully controlled for realizing the lower programming voltage, because the serially connected capacitor by the formation of a fully depleted ZnO channel had a critical effect on the off programming voltage. The fabricated memory transistor with Al/P(VDF-TrFE) (80 nm)/Al2O3 (4 nm)/ZnO (5 nm) exhibits encouraging behaviour such as a memory window of 3.8 V at the gate voltage of -10 to 12 V, and 107 on/off ratio, and a gate leakage current of 10-11 A.

  11. Defects in nonpolar (134{sup ¯}0) ZnO epitaxial film grown on (114) LaAlO{sub 3} substrate

    SciTech Connect

    Yen, Tzu-Chun Wang, Wei-Lin; Peng, Chun-Yen; Tian, Jr-Sheng; Ho, Yen-Teng; Chang, Li

    2014-03-15

    The defects in (134{sup ¯}0)ZnO epitaxial film grown on (114)LaAlO{sub 3} (LAO) have been systematically investigated by using transmission electron microscopy. At the ZnO/LAO interface, the Burgers vectors of misfit dislocations are identified to be 1/3[1{sup ¯}21{sup ¯}0] and 1/2[0001]. Threading dislocations with the Burgers vectors of 1/3〈112{sup ¯}0〉 and 〈0001〉 are distributed on the basal plane. In (134{sup ¯}0)ZnO film, the predominant planar defects are basal stacking faults (BSFs) with 1/6〈202{sup ¯}3〉 displacement vectors. The densities of dislocations and BSFs are about 3.8 × 10{sup 10} cm{sup −2} and 3.1 × 10{sup 5} cm{sup −1}, respectively.

  12. High-Hall-Mobility Al-Doped ZnO Films Having Textured Polycrystalline Structure with a Well-Defined (0001) Orientation.

    PubMed

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2016-12-01

    Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility (μ H) of 50.1 cm(2)/Vs with a carrier concentration (N) of 2.55 × 10(20) cm(-3). Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm(2)/Vs with an N of 2.22 × 10(20) cm(-3). PMID:27365000

  13. Polymer solar cells with efficiency >10% enabled via a facile solution-processed Al-doped ZnO electron transporting layer (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Jagadamma, Lethy K.; Al-Senani, Mohammed; Amassian, Aram

    2015-10-01

    The present work details a facile and low-temperature (125C) solution-processed Al-doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems, and yielding power conversion efficiency in excess of 10% (8%) on glass (plastic) substrates. We show that ammonia addition to the aqueous AZO nanoparticle solution is a critically important step toward producing compact and smooth thin films which partially retain the aluminum doping and crystalline order of the starting AZO nanocrystals. The ammonia treatment appears to reduce the native defects via nitrogen incorporation, making the AZO film a very good electron transporter and energetically matched with the fullerene acceptor. Importantly, highly efficient solar cells are achieved without the need for additional surface chemical passivation or modification, which has become an increasingly common route to improving the performance of evaporated or solution-processed ZnO ETLs in solar cells.

  14. Studies on the Controlling of the Microstructural and Morphological Properties of Al Doped ZnO Thin Films Prepared by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Gil Gang, Myeng; Shin, Seung Wook; Gurav, K. V.; Wang, YinBo; Agawane, G. L.; Lee, Jeong Yong; Moon, Jong-Ha; Hyeok Kim, Jin

    2013-10-01

    Al doped ZnO (AZO) thin films were prepared on ZnO coated glass substrates by hydrothermal synthesis technique using aqueous solutions containing zinc nitrate hexahydrate, ammonium hydroxide, and different sodium citrate concentrations at 60 °C for 6 h. The effects of different trisodium citrate concentrations on the microstructural, crystallinity, morphological, optical, and chemical properties of thin films were investigated. X-ray diffraction studies showed that the AZO thin films were grown as a polycrystalline wurtzite hexagonal phase with a c-axis preferred orientation and without an unwanted second phase regardless of trisodium citrate concentrations. The thickness and grain sizes of AZO thin films decreased with increasing trisodium citrate concentration. The microstructure of AZO thin films was changed from flat to needle shaped and the morphology was smoother with increasing trisodium citrate concentrations. The AZO thin films have a high transmittance in the visible region ranging from 75 to 85% and a sharp edge from 366 to 374 nm.

  15. High-Hall-Mobility Al-Doped ZnO Films Having Textured Polycrystalline Structure with a Well-Defined (0001) Orientation

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2016-06-01

    Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility ( μ H) of 50.1 cm2/Vs with a carrier concentration ( N) of 2.55 × 1020 cm-3. Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm2/Vs with an N of 2.22 × 1020 cm-3.

  16. Effect of codopants on enhanced luminescence of GdTaO 4 : Eu 3+ phosphors

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolin; Han, Kun; Gu, Mu; Xiao, Lihong; Ni, Chen; Huang, Shiming; Liu, Bo

    2007-06-01

    (Gd 0.92- xM x)TaO 4:Eu 0.08 (M=Li +, Na +,K +,Mg 2+,Zn 2+,Ca 2+,Ba 2+,Al 3+) phosphors were synthesized by conventional solid-state reaction. The effect of codoping M ions on enhanced photoluminescence (PL) of GdTaO 4:Eu 3+ was investigated. It was found that the improvement of PL intensity was closely related to the effective ionic radius of codopant and the mismatch in Pauling's electronegativity between codopant and Gd. The PL intensity of GdTaO 4:Eu 3+ phosphor was improved evidently by codoping with Li +,Mg 2+,Zn 2+, or Al 3+ whose radius is less than that of Gd 3+, and hardly with Na +,K +,Ca 2+, or Ba 2+ whose radius is larger than that of Gd 3+. Meanwhile, the intensity increased with the electronegativity mismatch for codoping with Li +,Mg 2+,Zn 2+, or Al 3+. It was proposed that the effect of codopants on enhanced luminescence was mainly regarded as the result of a suitable local distortion of crystal field surrounding the Eu 3+ activator. These results will play an important role in seeking some more effective codopants.

  17. Plasma-assisted hot filament chemical vapor deposition of AlN thin films on ZnO buffer layer: toward highly c-axis-oriented, uniform, insulative films

    NASA Astrophysics Data System (ADS)

    Alizadeh, M.; Mehdipour, H.; Ganesh, V.; Ameera, A. N.; Goh, B. T.; Shuhaimi, A.; Rahman, S. A.

    2014-12-01

    c-Axis-oriented aluminum nitride (AlN) thin film with improved quality was deposited on Si(111) substrate using ZnO buffer layer by plasma-assisted hot filament chemical vapor deposition. The optical and electrical properties and surface morphology as well as elemental composition of the AlN films deposited with and without ZnO buffer layer were investigated using a host of measurement techniques: X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, field emission scanning electron microscopy (FESEM), and current-voltage (I-V) characteristic measurement. The XRD and XPS results reveal that the AlN/ZnO/Si films are free of metallic Al particles. Also, cross-sectional FESEM observations suggest formation of a well-aligned, uniform, continuous, and highly (002) oriented structure for a bi-layered AlN film when Si(111) is covered with ZnO buffer. Moreover, a decrease in full width at half maximum of the E2 (high)-mode peak in Raman spectrum indicates a better crystallinity for the AlN films formed on ZnO/Si substrate. Finally, I-V curves obtained indicate that the electrical behavior of the AlN thin films switches from conductive to insulative when film is grown on a ZnO-buffered Si substrate.

  18. Investigation of the biaxial stress of Al-doped ZnO thin films on a flexible substrate with RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ting; Chen, Hsi-Chao; Cheng, Po-Wei; Chang, Jhe-Ming

    2016-01-01

    Transparent conductive Al-doped ZnO (AZO) thin films were deposited onto poly(ethylene terephthalate) (PET) substrate, using the radio frequency (RF) magnetron sputtering method. The residual stress of flexible electronics was investigated by a double beam shadow moiré interferometer with phase shifting interferometry (PSI). Moreover, the biaxial stress of AZO thin films can be graphically represented by using Mohr’s circle of stress. The residual stress of AZO thin films becomes more compressive with the increase in sputtering power. The maximum residual stress is -1115.74 MPa, and the shearing stress is 490.57 MPa at a sputtering power of 200 W. The trends of residual stress were evidenced by the X-ray diffraction (XRD) patterns and optical properties of AZO thin films. According to the evaluation results of the refractive index and the extinction coefficient, the AZO thin films have better quality when the sputtering power less than 100 W.

  19. Modeling of circular piezoelectric micro ultrasonic transducer using CuAl10Ni5Fe4 on ZnO film for sonar applications

    NASA Astrophysics Data System (ADS)

    Yaacob, M. I. H.; Arshad, M. R.; Manaf, A. Abd.

    2011-03-01

    Modeling and theoretical characterization of piezoelectric micro ultrasonic transducer ( pMUT) using ZnO film sandwiched between nickel aluminum bronze (CuAl10Ni5Fe4) electrodes was reported in this paper. The transducer is targeted to be utilized in sonar applications. Analyses on the model were carried out using finite element method. Model's dimensional parameters were optimized for desired performance. Simplified technique was proposed to determine transmit and receive sensitivities of the model. As the result, micro ultrasonic transducer model with resonance frequency of 40 kHz was proposed with estimated receive and transmit sensitivities of -93 dB re 1 V/μPa and 137 dB re 1 μPa/V, respectively. Further model validations require actual device fabrication and this will be included in our future works.

  20. Micro/Nano hierarchical peony-like Al doped ZnO superhydrophobic film: The guiding effect of (100) preferred seed layer

    PubMed Central

    Li, Yang; Wang, Jingfeng; Kong, Yi; Zhou, Jia; Wu, Jinzhu; Wang, Gang; Bi, Hai; Wu, Xiaohong; Qin, Wei; Li, Qingkun

    2016-01-01

    In this communication, we present a versatile and controllable strategy for formation of superhydrophobic micro/nano hierarchical Al doped ZnO (AZO) films with a water contact angle (CA) of 170 ± 4°. This strategy involves a two-step layer-by-layer process employing an atomic layer deposition (ALD) technique followed by a hydrothermal method, and the resulting novel AZO surface layer consists of (100) dominant nano-rice-like AZO seed layer (the water CA of 110 ± 4°) covered with micro-peony-like AZO top. The growth mechanisms and superhydrophobic properties of the hierarchical AZO layer are discussed. It is believed that the present route holds promise for future success in the design and development of practical superhydrophobic materials. PMID:26753877

  1. Polarity assignment in ZnTe, GaAs, ZnO, and GaN-AlN nanowires from direct dumbbell analysis.

    PubMed

    de la Mata, Maria; Magen, Cesar; Gazquez, Jaume; Utama, Muhammad Iqbal Bakti; Heiss, Martin; Lopatin, Sergei; Furtmayr, Florian; Fernández-Rojas, Carlos J; Peng, Bo; Morante, Joan Ramon; Rurali, Riccardo; Eickhoff, Martin; Fontcuberta i Morral, Anna; Xiong, Qihua; Arbiol, Jordi

    2012-05-01

    Aberration corrected scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging and the newly developed annular bright field (ABF) imaging are used to define a new guideline for the polarity determination of semiconductor nanowires (NWs) from binary compounds in two extreme cases: (i) when the dumbbell is formed with atoms of similar mass (GaAs) and (ii) in the case where one of the atoms is extremely light (N or O: ZnO and GaN/AlN). The theoretical fundaments of these procedures allow us to overcome the main challenge in the identification of dumbbell polarity. It resides in the separation and identification of the constituent atoms in the dumbbells. The proposed experimental via opens new routes for the fine characterization of nanostructures, e.g., in electronic and optoelectronic fields, where the polarity is crucial for the understanding of their physical properties (optical and electronic) as well as their growth mechanisms. PMID:22493937

  2. Spatial distribution of electrical properties for Al-doped ZnO films deposited by dc magnetron sputtering using various inert gases

    SciTech Connect

    Sato, Yasushi; Ishihara, Keita; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Spatial distribution of electrical properties of Al-doped ZnO (AZO) films deposited by magnetron sputtering was investigated. To adjust the intensity of bombardment by high-energy particles, the AZO films were deposited using Ar, Kr, or Xe gas with varying plasma impedance. The spatial distribution of the electrical properties clearly depends on the sputtering gas. In the case of using Kr or Xe, the resistivity of the films in front of the target center and erosion areas was significantly enhanced, in contrast with Ar. This was attributed to an enhancement in bombardment damage due to the increased sputtering voltages required for Kr or Xe discharges. The increase in plasma impedance was due to the smaller coefficients for secondary-electron emission of the target surface by Kr or Xe impingements, which leads to the larger sputtering voltage.

  3. Micro/Nano hierarchical peony-like Al doped ZnO superhydrophobic film: The guiding effect of (100) preferred seed layer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Wang, Jingfeng; Kong, Yi; Zhou, Jia; Wu, Jinzhu; Wang, Gang; Bi, Hai; Wu, Xiaohong; Qin, Wei; Li, Qingkun

    2016-01-01

    In this communication, we present a versatile and controllable strategy for formation of superhydrophobic micro/nano hierarchical Al doped ZnO (AZO) films with a water contact angle (CA) of 170 ± 4°. This strategy involves a two-step layer-by-layer process employing an atomic layer deposition (ALD) technique followed by a hydrothermal method, and the resulting novel AZO surface layer consists of (100) dominant nano-rice-like AZO seed layer (the water CA of 110 ± 4°) covered with micro-peony-like AZO top. The growth mechanisms and superhydrophobic properties of the hierarchical AZO layer are discussed. It is believed that the present route holds promise for future success in the design and development of practical superhydrophobic materials.

  4. A codoping route to realize low resistive and stable p-type conduction in (Li, Ni):ZnO thin films grown by pulsed laser deposition.

    PubMed

    Kumar, E Senthil; Chatterjee, Jyotirmoy; Rama, N; DasGupta, Nandita; Rao, M S Ramachandra

    2011-06-01

    We report on the growth of Li-Ni codoped p-type ZnO thin films using pulsed laser deposition. Two mole percent Li monodoped ZnO film shows highly insulating behavior. However, a spectacular decrease in electrical resistivity, from 3.6 × 10(3) to 0.15 Ω cm, is observed by incorporating 2 mol % of Ni in the Li-doped ZnO film. Moreover, the activation energy drops to 6 meV from 78 meV with Ni incorporation in Li:ZnO lattice. The codoped [ZnO:(Li, Ni)] thin film shows p-type conduction with room temperature hole concentration of 3.2 × 10(17) cm(-3). Photo-Hall measurements show that the Li-Ni codoped p-ZnO film is highly stable even with UV illumination. XPS measurements reveal that most favorable chemical state of Ni is Ni(3+) in (Li, Ni): ZnO. We argue that these Ni(3+) ions act as reactive donors and increase the Li solubility limit. Codoping of Li, with other transitional metal ions (Mn, Co, etc.) in place of Ni could be the key to realize hole-dominated conductivity in ZnO to envisage ZnO-based homoepitaxial devices. PMID:21598966

  5. Broadband down-conversion based near infrared quantum cutting in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} for crystalline silicon solar cells

    SciTech Connect

    Tai, Yuping; Zheng, Guojun; Wang, Hui; Bai, Jintao

    2015-03-15

    Near infrared (NIR) quantum cutting involving the down conversion of an absorbed visible photon to emission of two NIR photons was achieved in SrAl{sub 2}O{sub 4}:0.01Eu{sup 2+}, xYb{sup 3+} (x=0, 1, 2, 5, 10, 20, 30 mol%) samples. The photoluminescence properties of samples in visible and NIR regions were measured to verify the energy transfer (ET) from Eu{sup 2+} to Yb{sup 3+}. The results demonstrated that Eu{sup 2+} was an efficient sensitizer for Yb{sup 3+} in the SrAl{sub 2}O{sub 4} host lattice. According to Gaussian fitting analysis and temperature-dependent luminescence experiments, the conclusion was drawn that the cooperative energy transfer (CET) process dominated the ET process and the influence of charge transfer state (CTS) of Yb{sup 3+} could be negligible. As a result, the high energy transfer efficiency (ETE) and quantum yield (QY) have been acquired, the maximum value approached 73.68% and 147.36%, respectively. Therefore, this down-conversion material has potential application in crystalline silicon solar cells to improve conversion efficiency. - Graphical abstract: Near infrared quantum cutting was achieved in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} samples. The cooperative energy transfer process dominated energy transfer process and high energy transfer efficiency was acquired. - Highlights: • The absorption spectrum of Eu{sup 2+} ion is strong in intensity and broad in bandwidth. • The spectra of Eu{sup 2+} in SrAl{sub 2}O{sub 4} lies in the strongest region of solar spectrum. • The cooperative energy transfer (CET) dominated the energy transfer process. • The domination of CET is confirmed by experimental analysis. • SrAl{sub 2}O{sub 4}:Eu{sup 2+},Yb{sup 3+} show high energy transfer efficiency and long lifetime.

  6. Effect of band gap energy on the electrical conductivity in doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Benramache, Said; Belahssen, Okba; Ben Temam, Hachemi

    2014-07-01

    The transparent conductive pure and doped zinc oxide thin films with aluminum, cobalt and indium were deposited by ultrasonic spray technique on glass substrate at 350 °C. This paper is to present a new approach to the description of correlation between electrical conductivity and optical gap energy with dopants' concentration of Al, Co and In. The correlation between the electrical and optical properties with doping level suggests that the electrical conductivity of the films is predominantly estimated by the band gap energy and the concentrations of Al, Co and In. The measurement in the electrical conductivity of doped films with correlation is equal to the experimental value, the error of this correlation is smaller than 13%. The minimum error value was estimated in the cobalt-doped ZnO thin films. This result indicates that such Co-doped ZnO thin films are chemically purer and have far fewer defects and less disorder owing to an almost complete chemical decomposition.

  7. Homoepitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C-H; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; McCarty, P.; George, M. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    ZnO films have high potential for many applications, such as surface acoustic wave filters, UV detectors, and light emitting devices due to its structural, electrical, and optical properties. High quality epitaxial films are required for these applications. The Al2O3 substrate is commonly used for ZnO heteroepitaxial growth. Recently, high quality ZnO single crystals are available for grow homoepitaxial films. Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films were also deposited on (0001) Al2O3 substrates. It was found that the two polar ZnO surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which strongly influence the epitaxial film growth. The morphology and structure of homoepitaxial films grown on the ZnO substrates were different from heteroepitaxial films grown on the Al2O3. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  8. Electrical transport in hydrogen-aluminium Co-doped ZnO and Zn{sub 1-x}Mg{sub x}O films: Relation to film structure and composition

    SciTech Connect

    Bikowski, A.; Ellmer, K.

    2013-02-07

    ZnO:Al and Zn{sub 1-x}Mg{sub x}O:Al films have been deposited in Ar/H{sub 2} atmospheres by magnetron sputtering from oxidic targets at two substrate temperatures: room temperature and 300 Degree-Sign C. The electrical transport parameters-carrier concentration, resistivity, and Hall mobility-have been measured and related to the structural properties and the chemical composition. The resistivity {rho} both of ZnO:Al as well as Zn{sub 1-x}Mg{sub x}O:Al films decreases with increasing hydrogen flow for the films deposited at room temperature. The decrease is up to 2 orders of magnitude and in both cases due to an increase of the electron concentration and the Hall mobility and occurred despite the fact, that the films became almost X-ray amorphous with increasing hydrogen content. In contrast to these results, for depositions at 300 Degree-Sign C, the resistivity increases with increasing hydrogen portion in the sputtering atmosphere, more strongly for the Zn{sub 1-x}Mg{sub x}O:Al films (3 orders of magnitude). Based on literature data, it is concluded that the built-in atomic hydrogen acts as a shallow donor at low deposition temperatures, while it becomes deactivated at T{sub sub}= 300 Degree-Sign C by the formation of molecular H{sub 2}.

  9. Reversible Change in Electrical and Optical Properties in Epitaxially Grown Al-Doped ZnO Thin Films

    SciTech Connect

    Noh, J. H.; Jung, H. S.; Lee, J. K.; Kim, J. Y; Cho, C. M.; An, J.; Hong, K. S.

    2008-01-01

    Aluminum-doped ZnO (AZO) films were epitaxially grown on sapphire (0001) substrates using pulsed laser deposition. As-deposited AZO films had a low resistivity of 8.01 x 10{sup -4} {Omega} cm. However, after annealing at 450 C in air, the electrical resistivity of the AZO films increased to 1.97 x 10{sup -1} {Omega} cm because of a decrease in the carrier concentration. Subsequent annealing of the air-annealed AZO films in H{sub 2} recovered the electrical conductivity of the AZO films. In addition, the conductivity change was reversible upon repeated air and H{sub 2} annealing. A photoluminescence study showed that oxygen interstitial (O{sub i}) is a critical material parameter allowing for the reversible control of the electrical conducting properties of AZO films.

  10. Relation between surface and bulk electronic properties of Al doped ZnO films deposited at varying substrate temperature by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Singh, C. C.; Patel, T. A.; Panda, E.

    2015-06-01

    In this study, a qualitative relationship between the surface and bulk electronic states for Al-doped ZnO (AZO) thin films (thickness < 260 nm) is established. To this end, AZO films were deposited on soda lime glass substrates by varying substrate temperature (Ts) from 303 K to 673 K in RF magnetron sputtering. All these AZO films are found to have grown in ZnO hexagonal wurtzite structure with strong (002) orientation of the crystallites and with an average transmittance of 84%-91% in the visible range. Room temperature scanning tunneling spectroscopy measurements reveal semiconducting behavior for the films deposited at Ts ≤ 373 K and semi-metallic behavior for those deposited at Ts > 373 K. Further, these films show two modes of electron tunneling, (a) direct tunneling at lower bias voltage and (b) FN tunneling at higher bias voltage, with transition voltage ( Vtrans ) shifting towards lower bias voltage (and thereby reducing the barrier height ( Φ)) with increasing Ts. This is attributed to additional (local) density of states near the Fermi level of these AZO films because of higher carrier concentration ( ne ) at increased Ts. Thus, qualitatively, the behavior in both the local surface electronic states and bulk state electronic properties for these deposited AZO films are found to follow similar trends with increasing Ts. The variation in local barrier heights (indicative of the local surface electronic structures) across the AZO film surface is found to be smaller for the films deposited at Ts ≤ 373 K, where semiconducting behavior is observed and wider for the semi-metallic AZO films deposited at higher Ts > 373 K, indicating a larger inhomogeneity of local surface electronic properties at higher bulk carrier concentration.

  11. Ab-initio study of donor-acceptor codoping for n-type CuO

    SciTech Connect

    Peng, Yuan; Wang, Junling; Zheng, Jianwei; Wu, Ping

    2014-10-28

    Single n-type dopant in CuO has either a deep donor level or limited solubility, inefficient in generating free electrons. We have performed ab-initio study of the donor-acceptor codoping to obtain n-type CuO. Our results show that N codoping can slightly improve the donor level of Zr and In by forming shallower n-type complexes (Zr{sub Cu}-N{sub O} and 2In{sub Cu}-N{sub O}), but their formation energies are too high to be realized in experiments. However, Li codoping with Al and Ga is found to be relatively easy to achieve. 2Al{sub Cu}-Li{sub Cu} and 2Ga{sub Cu}-Li{sub Cu} have shallower donor levels than single Al and Ga by 0.14 eV and 0.08 eV, respectively, and their formation energies are reasonably low to act as efficient codopants. Moreover, Li codoping with both Al and Ga produce an empty impurity band just below the host conduction band minimum, which may reduce the donor ionization energy at high codoping concentrations.

  12. Passivation analysis of silicon surfaces via sol—gel derived Al-rich ZnO film

    NASA Astrophysics Data System (ADS)

    Khan, Firoz; Baek, Seong-Ho; Kim, Jae Hyun

    2015-01-01

    Electronic recombination losses can be reduced via passivation of silicon surfaces. Most techniques available in the literature are either not cost effective or not applicable for solar cell applications. We investigate low cost sol-gel derived Al-rich zinc oxide (ZnO:Al) film and its effective passivation of p-type silicon surfaces. Herein, we present the elemental composition of the film and interfacial structure of ZnO:Al/Si using FTIR, XPS, TEM, and SIMS characterizations. ZnO:Al is polycrystalline and contains some very small amorphous regions of Al2O3. At the ZnO:Al/c-Si interface, a thin SiOx layer with a thickness of ˜6 nm is formed. The XPS analyses reveal that the Al/Zn molar ratio in the ZnO:Al increases from ˜10% at the surface to ˜80% at the ZnO:Al/c-Si interface. The hydrogen content also gradually increases from the surface to the interface. The FTIR absorption area corresponding to the Si-H bonding is ˜2.89 au. The obtained hydrogen concentration is ˜3.93 × 1022 atoms cm-3. A fixed negative charge is created by ZnO:Al on ZnO//SiOx interface. The thermal equilibrium was established between Si and ZnO:Al through SiOx by electron tunneling current. Here, the c-Si may be passivated for two reasons: (i) Al creates defects on the ZnO:Al/c-Si interface and H is attached to the defects (dangling bonds) and (ii) due to the field effect passivation via the negative charged ZnO:Al film.

  13. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Kizu, Takio; Mitoma, Nobuhiko; Miyanaga, Miki; Awata, Hideaki; Nabatame, Toshihide; Tsukagoshi, Kazuhito

    2015-09-01

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm2/V s with good stability under a negative bias stress in InWZnO thin film transistors.

  14. Transparent conducting impurity-doped ZnO thin films prepared using oxide targets sintered by millimeter-wave heating

    SciTech Connect

    Minami, Tadatsugu; Okada, Kenji; Miyata, Toshihiro; Nomoto, Juni-chi; Hara, Youhei; Abe, Hiroshi

    2009-07-15

    The preparation of transparent conducting impurity-doped ZnO thin films by both pulsed laser deposition (PLD) and magnetron sputtering deposition (MSD) using impurity-doped ZnO targets sintered with a newly developed energy saving millimeter-wave (28 GHz) heating technique is described. Al-doped ZnO (AZO) and V-co-doped AZO (AZO:V) targets were prepared by sintering with various impurity contents for 30 min at a temperature of approximately 1250 degree sign C in an air or Ar gas atmosphere using the millimeter-wave heating technique. The resulting resistivity and its thickness dependence obtainable in thin films prepared by PLD using millimeter-wave-sintered AZO targets were comparable to those obtained in thin films prepared by PLD using conventional furnace-sintered AZO targets; a low resistivity on the order of 3x10{sup -4} {Omega} cm was obtained in AZO thin films prepared with an Al content [Al/(Al+Zn) atomic ratio] of 3.2 at. % and a thickness of 100 nm. In addition, the resulting resistivity and its spatial distribution on the substrate surface obtainable in thin films prepared by rf-MSD using a millimeter-wave-sintered AZO target were almost the same as those obtained in thin films prepared by rf-MSD using a conventional powder AZO target. Thin films prepared by PLD using millimeter-wave-sintered AZO:V targets exhibited an improved resistivity stability in a high humidity environment. Thin films deposited with a thickness of approximately 100 nm using an AZO:V target codoped with an Al content of 4 at. % and a V content [V/(V+Zn) atomic ratio] of 0.2 at. % were sufficiently stable when long-term tested in air at 90% relative humidity and 60 degree sign C.

  15. Enhanced cathodoluminescence from an amorphous AlN:holmium phosphor by co-doped Gd{sup +3} for optical devices applications

    SciTech Connect

    Maqbool, Muhammad; Kordesch, Martin E.; Kayani, A.

    2009-05-15

    Sputter-deposited thin films of amorphous AlN:Ho (1 at. %) emits in the green (549 nm) region of the visible spectrum under electron excitation. The addition of Gd (1 at. %) in the film enhances the green emission linearly after thermal activation at 900 deg. C for 40 min in a nitrogen atmosphere. The luminescence enhancement saturates when the gadolinium concentration reaches four times the holmium concentration. The optical bandgap of amorphous AlN is about 210 nm, so that the film is transparent in the ultraviolet, allowing us to observe the ultraviolet emission at 313 nm from Gd. No significant quenching of the Gd emission is observed. Energy dispersive x-ray (EDX) spectra confirm the increasing concentration of Gd. X-ray diffraction (XRD) analysis shows no peaks other than those arising from the Si (111) substrate, confirming that the films are amorphous. The enhanced luminescence can be used to make high-efficiency optical devices.

  16. Enhancement Of Free Exciton Peak Intensity In Reactively Sputtered ZnO Thin Films On (0001) Al2O3

    SciTech Connect

    Tuezemen, S.; Guer, Emre; Yildirim, T.; Xiong, G.; Williams, R. T.

    2007-04-23

    Wide bandgap materials such as GaN with its direct bandgap structure have been developed rapidly for applications in short wavelength light emission. ZnO, II-VI oxide semiconductor, is also promising for various technological applications, especially for optoelectronic light emitting devices in the visible and ultraviolet (UV) range of the electromagnetic spectrum. Above-band-edge absorption spectra of reactively sputtered Zn- and O-rich samples exhibit free exciton (FX) and neutral acceptor bound exciton (A deg. X) features. It is shown that the residual acceptors which bind excitons with an energy of 75 meV reside about 312 meV above the valence band, according to effective mass theory. An intra-bandgap absorption feature peaking at 2.5 eV shows correlation with the characteristically narrow A-free exciton peak intensity. Relevant annealing processes are presented as a function of time and temperature dependently for both Zn- and O- rich thin films. Enhancement of the free exciton peak intensity is observed without disturbing the residual shallow acceptor profile which is necessary for at least background p-type conductivity.

  17. Ab inito study of Ag-related defects in ZnO

    NASA Astrophysics Data System (ADS)

    Wan, Qixin; Xiong, Zhihua; Li, Dongmei; Liu, Guodong

    2008-12-01

    Using first-principles calculations, we investigated the structure and electronic properties of Ag-related defects in ZnO. The calculation results indicate that AgZn behaves as acceptor. Simultaneously, by comparing the formation energy and electronic structure of Ag-related defects in ZnO, Oi-AgZn behaves as acceptor in Ag-doped ZnO and it is better to gain p-type ZnO. However, Hi-AgZn complex has the lowest formation energy. Thus, the formation of the other point defects is greatly suppressed by the formation of Hi in Ag-doped ZnO. Moreover, the H atoms can be easily dissociated from hydrogen-passivated complexes by post-annealing at moderate temperatures, thus, codoping Ag with H may be a good method to achieve p-type in Ag-doped ZnO.

  18. Optimized structure stability and electrochemical performance of LiNi0.8Co0.15Al0.05O2 by sputtering nanoscale ZnO film

    NASA Astrophysics Data System (ADS)

    Lai, Yan-Qing; Xu, Ming; Zhang, Zhi-An; Gao, Chun-Hui; Wang, Peng; Yu, Zi-Yang

    2016-03-01

    LiNi0.8Co0.15Al0.05O2 (NCA) is one of the most promising cathode material for lithium-ion batteries (LIBs) in electric vehicles, which is successfully adopted in Tesla. However, the dissolution of the cation into the electrolyte is still a one of the major challenges (fading capacity and poor cyclability, etc.) presented in pristine NCA. Herein, a homogeneous nanoscale ZnO film is directly sputtered on the surface of NCA electrode via the magnetron sputtering (MS). This ZnO film is evidenced by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results clearly demonstrate that ZnO film is fully and uniformly covered on the NCA electrodes. After 90 cycles at 1.0C, the optimized MS-2min coated NCA electrode delivers much higher discharge capacity with 169 mAh g-1 than that of the pristine NCA electrode with 127 mAh g-1. In addition, the discharge capacity also reaches 166 mAh g-1 at 3.0C, as compared to that of 125 mAh g-1 for the pristine electrode. The improved electrochemical performance can be ascribed to the superiority of the MS ZnO film that reduce charge transfer resistance and protect the NCA electrode from cation dissolution.

  19. Origins of Highly Stable Al-evaporated Solution-processed ZnO Thin Film Transistors: Insights from Low Frequency and Random Telegraph Signal Noise.

    PubMed

    Kim, Joo Hyung; Kang, Tae Sung; Yang, Jung Yup; Hong, Jin Pyo

    2015-01-01

    One long-standing goal in the emerging field of flexible and transparent electronic devices is to meet the demand of key markets, such as enhanced output performance for metal oxide semiconductor thin film transistors (TFTs) prepared by a solution process. While solution-based fabrication techniques are cost-effective and ensure large-area coverage at low temperature, their utilization has the disadvantage of introducing large trap states into TFTs. Such states, the formation of which is induced by intrinsic defects initially produced during preparation, have a significant impact on electrical performance. Therefore, the ability to enhance the electrical characteristics of solution-processed TFTs, along with attaining a firm understanding of their physical nature, remains a key step towards extending their use. In this study, measurements of low-frequency noise and random telegraph signal noise are employed as generic alternative tools to examine the origins of enhanced output performance for solution-processed ZnO TFTs through the control of defect sites by Al evaporation. PMID:26525284

  20. Band alignment at the interface between Ni-doped Cr2O3 and Al-doped ZnO: implications for transparent p-n junctions

    NASA Astrophysics Data System (ADS)

    Arca, Elisabetta; McInerney, Michael A.; Shvets, Igor V.

    2016-06-01

    The realization of transparent electronic and optoelectronic devices requires the use of transparent p-n junctions. In this context, understanding the band alignment at the interface between the p- and n-components represents a fundamental step towards the realization of high performance devices. In this work, the band alignment at the interface between Al-doped ZnO (AZO) and Ni-doped Cr2O3 has been analysed. The formation and evolution of the core levels as the interface progressively forms have been followed by means of x-ray Photoelectron Spectroscopy, x-ray diffraction and x-ray reflectivity. A type two (staggered) band alignment was identified, with the valence band offset and conduction band offset found to be 2.6 eV and 2.5 eV, respectively. The electrical behaviour will be discussed in terms of the position of the bands, the presence of band bending and the expected built-in potential and how these can be engineered in order to achieve the maximum performance for this hetero-structure.

  1. Correlations between 1/f noise and thermal treatment of Al-doped ZnO thin films deposited by direct current sputtering

    SciTech Connect

    Barhoumi, A. Guermazi, S.; Leroy, G.; Gest, J.; Carru, J. C.; Yang, L.; Boughzala, H.; Duponchel, B.

    2014-05-28

    Al-doped ZnO thin films (AZO) have been deposited on amorphous glass substrates by DC sputtering at different substrate temperatures T{sub s}. X-Ray diffraction results reveal that AZO thin films have a hexagonal wurtzite structure with (002) preferred orientation. (002) peaks indicate that the crystalline structure of the films is oriented with c-axis perpendicular to the substrate. Three-dimensional (3D) atomic force microscopy images of AZO thin films deposited on glass substrate at 200 °C, 300 °C, and 400 °C, respectively, shows the improvement of the crystallinity and the homogeneity of AZO thin films with T{sub s} which is in agreement with the noise measurements. The noise was characterized between 1 Hz and 100 kHz and we have obtained 1/f spectra. The noise is very sensitive to the crystal structure especially to the orientation of the crystallites which is perpendicular to the substrate and to the grain boundaries which generate a high current flow and a sharp increase in noise. Through time, R{sub sh} and [αμ]{sub eff} increase with the modification of the crystallinity of AZO thin films. Study of noise aging shows that the noise is more sensitive than resistivity for all AZO thin films.

  2. Correlations between 1/f noise and thermal treatment of Al-doped ZnO thin films deposited by direct current sputtering

    NASA Astrophysics Data System (ADS)

    Barhoumi, A.; Leroy, G.; Yang, L.; Gest, J.; Boughzala, H.; Duponchel, B.; Guermazi, S.; Carru, J. C.

    2014-05-01

    Al-doped ZnO thin films (AZO) have been deposited on amorphous glass substrates by DC sputtering at different substrate temperatures Ts. X-Ray diffraction results reveal that AZO thin films have a hexagonal wurtzite structure with (002) preferred orientation. (002) peaks indicate that the crystalline structure of the films is oriented with c-axis perpendicular to the substrate. Three-dimensional (3D) atomic force microscopy images of AZO thin films deposited on glass substrate at 200 °C, 300 °C, and 400 °C, respectively, shows the improvement of the crystallinity and the homogeneity of AZO thin films with Ts which is in agreement with the noise measurements. The noise was characterized between 1 Hz and 100 kHz and we have obtained 1/f spectra. The noise is very sensitive to the crystal structure especially to the orientation of the crystallites which is perpendicular to the substrate and to the grain boundaries which generate a high current flow and a sharp increase in noise. Through time, Rsh and [αμ]eff increase with the modification of the crystallinity of AZO thin films. Study of noise aging shows that the noise is more sensitive than resistivity for all AZO thin films.

  3. Origins of Highly Stable Al-evaporated Solution-processed ZnO Thin Film Transistors: Insights from Low Frequency and Random Telegraph Signal Noise

    PubMed Central

    Kim, Joo Hyung; Kang, Tae Sung; Yang, Jung Yup; Hong, Jin Pyo

    2015-01-01

    One long-standing goal in the emerging field of flexible and transparent electronic devices is to meet the demand of key markets, such as enhanced output performance for metal oxide semiconductor thin film transistors (TFTs) prepared by a solution process. While solution-based fabrication techniques are cost-effective and ensure large-area coverage at low temperature, their utilization has the disadvantage of introducing large trap states into TFTs. Such states, the formation of which is induced by intrinsic defects initially produced during preparation, have a significant impact on electrical performance. Therefore, the ability to enhance the electrical characteristics of solution-processed TFTs, along with attaining a firm understanding of their physical nature, remains a key step towards extending their use. In this study, measurements of low-frequency noise and random telegraph signal noise are employed as generic alternative tools to examine the origins of enhanced output performance for solution-processed ZnO TFTs through the control of defect sites by Al evaporation. PMID:26525284

  4. Band alignment at the interface between Ni-doped Cr2O3 and Al-doped ZnO: implications for transparent p-n junctions.

    PubMed

    Arca, Elisabetta; McInerney, Michael A; Shvets, Igor V

    2016-06-01

    The realization of transparent electronic and optoelectronic devices requires the use of transparent p-n junctions. In this context, understanding the band alignment at the interface between the p- and n-components represents a fundamental step towards the realization of high performance devices. In this work, the band alignment at the interface between Al-doped ZnO (AZO) and Ni-doped Cr2O3 has been analysed. The formation and evolution of the core levels as the interface progressively forms have been followed by means of x-ray Photoelectron Spectroscopy, x-ray diffraction and x-ray reflectivity. A type two (staggered) band alignment was identified, with the valence band offset and conduction band offset found to be 2.6 eV and 2.5 eV, respectively. The electrical behaviour will be discussed in terms of the position of the bands, the presence of band bending and the expected built-in potential and how these can be engineered in order to achieve the maximum performance for this hetero-structure. PMID:26952763

  5. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination

    SciTech Connect

    Minami, Tadatsugu; Ohtani, Yuusuke; Miyata, Toshihiro; Kuboi, Takeshi

    2007-07-15

    A newly developed Al-doped ZnO (AZO) thin-film magnetron-sputtering deposition technique that decreases resistivity, improves resistivity distribution, and produces high-rate depositions has been demonstrated by dc magnetron-sputtering depositions that incorporate rf power (dc+rf-MS), either with or without the introduction of H{sub 2} gas into the deposition chamber. The dc+rf-MS preparations were carried out in a pure Ar or an Ar+H{sub 2} (0%-2%) gas atmosphere at a pressure of 0.4 Pa by adding a rf component (13.56 MHz) to a constant dc power of 80 W. The deposition rate in a dc+rf-MS deposition incorporating a rf power of 150 W was approximately 62 nm/min, an increase from the approximately 35 nm/min observed in dc magnetron sputtering with a dc power of 80 W. A resistivity as low as 3x10{sup -4} {omega} cm and an improved resistivity distribution could be obtained in AZO thin films deposited on substrates at a low temperature of 150 deg. C by dc+rf-MS with the introduction of hydrogen gas with a content of 1.5%. This article describes the effects of adding a rf power component (i.e., dc+rf-MS deposition) as well as introducing H{sub 2} gas into dc magnetron-sputtering preparations of transparent conducting AZO thin films.

  6. In situ spectroscopic ellipsometry growth studies on the Al-doped ZnO films deposited by remote plasma-enhanced metalorganic chemical vapor deposition

    SciTech Connect

    Volintiru, I.; Creatore, M.; Sanden, M. C. M. van de

    2008-02-01

    In situ spectroscopic ellipsometry (SE) was applied to study the pyramidlike and pillarlike growth of Al doped ZnO (AZO) films deposited by means of remote plasma-enhanced metalorganic chemical vapor deposition for transparent conductive oxide applications. Real time SE studies in the visible region allowed discerning between the two growth modes by addressing the time evolution of the bulk and surface roughness layer thickness. While the pillarlike mode is characterized by a constant growth rate, a slower rate in the initial stage (up to 150-200 nm film thickness), compared to the bulk, is observed for the growth of pyramidlike AZO films. The two modes differ also in terms of surface roughness development: a saturation behavior is observed for film thickness above 150-200 nm in the case of the pyramidlike films, while a slow linear increase with film thickness characterizes the pillarlike mode. By extending the SE analysis of the AZO films to the near infrared region, valuable information about the in grain properties could be extracted: excellent in grain mobility values, i.e., larger than 100 and 50 cm{sup 2}/V s, are determined for the pyramidlike and pillarlike AZO layers, respectively. The comparison between the outcome of the in situ real time SE studies and the ex situ electrical and chemical characterization highlights the limitations in the electron transport occurring in both types of films and allows one to address routes toward further improvement in AZO conductivity.

  7. Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dai, Xinyi; Zhou, Aijun; Xu, Jin; Yang, Bin; Wang, Liping; Li, Jingze

    2015-12-01

    A conductive Al2O3-doped ZnO (AZO) layer is coated directly on the LiCoO2 (LCO) porous composite electrode by magnetron sputtering of an AZO target, offering more efficient electron transfer and a stabilized interface layer. Up to 90% of the initial capacity of the AZO-coated electrode can be retained (173 mAh g-1) after 150 cycles between 3.0 and 4.5 V vs. Li/Li+. Meanwhile, the rate performance is remarkably improved showing a reversible capacity of 112 mAh g-1 at 12 C. The formation of amorphous solid electrolyte interface (SEI) observed on the uncoated LCO electrode is effectively impeded on the AZO-coated one. Acting as an intermediate barrier, the AZO layer can prevent chemical dissolution of the active materials by forming a thin passivation layer on the electrode surface containing some metal fluorides which are chemically inactive and ionically conductive. The positive role of the AZO coating is still effective under a more severe condition tested with an upper cut-off potential of 4.7 V.

  8. Origins of Highly Stable Al-evaporated Solution-processed ZnO Thin Film Transistors: Insights from Low Frequency and Random Telegraph Signal Noise

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyung; Kang, Tae Sung; Yang, Jung Yup; Hong, Jin Pyo

    2015-11-01

    One long-standing goal in the emerging field of flexible and transparent electronic devices is to meet the demand of key markets, such as enhanced output performance for metal oxide semiconductor thin film transistors (TFTs) prepared by a solution process. While solution-based fabrication techniques are cost-effective and ensure large-area coverage at low temperature, their utilization has the disadvantage of introducing large trap states into TFTs. Such states, the formation of which is induced by intrinsic defects initially produced during preparation, have a significant impact on electrical performance. Therefore, the ability to enhance the electrical characteristics of solution-processed TFTs, along with attaining a firm understanding of their physical nature, remains a key step towards extending their use. In this study, measurements of low-frequency noise and random telegraph signal noise are employed as generic alternative tools to examine the origins of enhanced output performance for solution-processed ZnO TFTs through the control of defect sites by Al evaporation.

  9. Photocatalytic oxidation of organic dyes with visible-light-driven codoped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Dongfang; Zeng, Fanbin

    2011-06-01

    A novel copper (II) and zinc (II) codoped TiO2 photocatalyst was synthesized by a modified sol-gel method using titanium (IV) isopropoxide, Zn(NO3)2 · 6H2O and copper(Il) nitrate as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and photo-luminescence spectra (PL). The XRD results showed undoped and Zn, Cu-codoped TiO2 nanoparticles mainly including anatase phase and a tiny amount of Zn- and Cu-oxides exist in the mixed system, which is attributed to the decomposition of copper and zinc nitrates in the TiO2 gel to form CuO and ZnO and randomly dispersed on the TiO2 surface. On the basis of the optical characterization results, we found that the codoping of copper (II) and zinc (II) resulted a red shift of adsorption and lower recombination probability between electrons and holes, which were the reasons for high photocatalytic activity of Zn, Cu-codoped TiO2 nanoparticles under visible light (λ > 400 nm). The photocatalytic activity of samples was tested for degradation of methyl orange (MO) in solutions. The results indicated that the visible-light driven capability of the codoped catalyst were much higher than that of the pure TiO2 catalyst under visible irradiation. Because of the synergetic effect of copper (II) and zinc (II) element, the Zn, Cu-codoped TiO2 catalyst will show higher quantum yield and enhance absorption of visible light. In the end, a key mechanism was proposed in order to account for the enhanced activity.

  10. Nitrogen and cobalt co-doped zinc oxide nanowires - Viable photoanodes for hydrogen generation via photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Hanumantha, Prashanth Jampani; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Hong, Daeho; Gattu, Bharat; Poston, James A.; Manivannan, Ayyakkannu; Kumta, Prashant N.

    2015-12-01

    Photoelectrochemical (PEC) water splitting has been considered as a promising and environmentally benign approach for efficient and economic hydrogen generation by utilization of solar energy. Development of semiconductor materials with low band gap, high photoelectrochemical activity and stability has been of particular interest for a viable PEC water splitting system. In this study, Co doped ZnO, .i.e., (Zn0.95Co0.05)O nanowires (NWs) was selected as the composition for further co-doping with nitrogen by comparing solar to hydrogen efficiency (SHE) of ZnO NWs with that of various compositions of (Zn1-xCox)O NWs (x = 0, 0.05, 0.1). Furthermore, nanostructured vertically aligned Co and N-doped ZnO, .i.e., (Zn1-xCox)O:N NWs (x = 0.05) have been studied as photoanodes for PEC water splitting. An optimal SHE of 1.39% the highest reported so far to the best of our knowledge for ZnO based photoanodes was obtained for the co-doped NWs, (Zn0.95Co0.05)O:N - 600 NWs generated at 600 °C in ammonia atmosphere. Further, (Zn0.95Co0.05)O:N-600 NWs exhibited excellent photoelectrochemical stability under illumination compared to pure ZnO NWs. These promising results suggest the potential of (Zn0.95Co0.05)O:N-600 NWs as a viable photoanode in PEC water splitting cell. Additionally, theoretical first principles study conducted explains the beneficial effects of Co and N co-doping on both, the electronic structure and the band gap of ZnO.

  11. Temperature dependence of microstructure and strain evolution in strained ZnO films on Al2O3(0001)

    NASA Astrophysics Data System (ADS)

    Kim, In-Woo; Lee, Kyu-Mann

    2008-09-01

    We have studied the temperature dependence of the growth mode and microstructure evolution in highly mismatched sputter-grown ZnO/Al2O3(0001) heteroepitaxial films. The growth mode was studied by real-time synchrotron x-ray scattering. We find that the growth mode changes from a two-dimensional (2D) layer to a 3D island in the early growth stage with temperature (300-600 °C), in sharp contrast to the reported transition from three dimensions to two dimensions in metal-organic vapor phase epitaxy. At around 400 °C intermediate 2D platelets nucleate in the early stage, which act as nucleation cores of 3D islands and transform to a misaligned state during further growth. Meanwhile, at high temperature (above 500 °C), the spinel structure of ZnAl2O4 grows in the early stage, and it undergoes a transition to wurtzite-ZnO (w-ZnO) with thickness. The spinel formation is presumably driven by high temperature and large incident energy of impacting atoms during sputtering. The results of the strain evolution as functions of temperature and thickness during growth suggest that the surface diffusion is a major factor determining the microstructural properties in the strained ZnO/Al2O3(0001) heteroepitaxy.

  12. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  13. Lattice relaxation mechanism of ZnO thin films grown on c-Al{sub 2}O{sub 3} substrates by plasma-assisted molecular-beam epitaxy

    SciTech Connect

    Park, S. H.; Hanada, T.; Oh, D. C.; Minegishi, T.; Goto, H.; Fujimoto, G.; Park, J. S.; Im, I. H.; Chang, J. H.; Cho, M. W.; Yao, T.; Inaba, K.

    2007-12-03

    We report on the lattice relaxation mechanism of ZnO films grown on c-Al{sub 2}O{sub 3} substrates by plasma-assisted molecular-beam epitaxy. The lattice relaxation of ZnO films with various thicknesses up to 2000 nm is investigated by using both in situ time-resolved reflection high energy electron diffraction observation during the initial growth and absolute lattice constant measurements (Bond method) for grown films. The residual strain in the films is explained in terms of lattice misfit relaxation (compression) at the growth temperature and thermal stress (tension) due to the difference of growth and measurement temperatures. In thick films (>1 {mu}m), the residual tensile strain begins to relax by bending and microcrack formation.

  14. P3HT:PCBM:pentacene inverted polymer solar cells with roughened Al-doped ZnO nanorod array and photoelectrochemical treatment

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Ying; Huang, Hung-Lin

    2014-05-01

    In this work, the P3HT:PCBM:pentacene (1:0.8:0.065 by weight) inverted polymer solar cells with roughened Aldoped ZnO (AZO) nanorod array were fabricated. The pentacene doping could modulate the hole mobility and the electron mobility in the active layer. The optimal hole-electron mobility balance ( µh/ µe=1.000) was achieved as the pentacene doping ratio of 0.065. The 100-nm-long AZO nanorod array were formed as the carrier collection layer and the carrier transportation layer of the inverted polymer solar cells using the combination techniques of the laser interference photolithography method and the wet etching process. Because the AZO nanorod array was prepared using the wet etching process, more defects were formed on the sidewall surface of the AZO nanorods. In this work, the photoelectrochemical (PEC) method was used to grow Zn(OH)2 and Al(OH)3 thin layer on the sidewall surface of the AZO nanorods, which could reduce the carrier recombination path in the inverted polymer solar cells. Compared with the P3HT:PCBM:pentacene (1:0.8:0.065) inverted polymer solar cells without PEC treatment, the short circuit current density and the power conversion efficiency of the inverted polymer solar cells with PEC treatment were increased from 14.56 mA/cm2 to 15.85 mA/cm2 and from 5.45% to 6.13%, respectively. The enhancement in the performance of the inverted polymer solar cells with PEC treatment could be attributed to that the PEC treatment could effectively passivate the defects on the surface of the AZO nonorods.

  15. Electrical stability of Al-doped ZnO transparent electrode prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Tabassum, Samia; Yamasue, Eiji; Okumura, Hideyuki; Ishihara, Keiichi N.

    2016-07-01

    Al-doped zinc oxide (AZO) thin films have been considered as a promising alternative to tin doped indium oxide (ITO), which is currently used in various optoelectronic applications. However, the environmental stability of AZO film is not satisfactory, in that the resistivity is significantly increases in air. Here, we investigate the resistivity stability of AZO thin films prepared by sol-gel method using various annealing temperatures and durations. The degradation of resistivity property was observed for AZO films stored in ambient or damp heat environment, where the degradation rate was influenced by annealing temperature. A significant improvement of electrical stability was attained in AZO films that were prepared at high annealing temperature. The films, which showed the highest and the lowest increasing rate of resistivity, were further characterized in detail to shed light on the possible mechanisms explaining the improved stability through crystallinity, surface morphology and elemental state of the thin film.

  16. Effects of NIR annealing on the characteristics of al-doped ZnO thin films prepared by RF sputtering.

    PubMed

    Jun, Min-Chul; Koh, Jung-Hyuk

    2012-01-01

    Aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed. In this paper, the effects of near infrared ray (NIR) annealing technique on the structural, optical, and electrical properties of the AZO thin films have been researched. Experimental results showed that NIR annealing affected the microstructure, electrical resistance, and optical transmittance of the AZO thin films. X-ray diffraction analysis revealed that all films have a hexagonal wurtzite crystal structure with the preferentially c-axis oriented normal to the substrate surface. Optical transmittance spectra of the AZO thin films exhibited transmittance higher than about 80% within the visible wavelength region, and the optical direct bandgap (Eg) of the AZO films was increased with increasing the NIR energy efficiency. PMID:22673232

  17. Effects of NIR annealing on the characteristics of al-doped ZnO thin films prepared by RF sputtering

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed. In this paper, the effects of near infrared ray (NIR) annealing technique on the structural, optical, and electrical properties of the AZO thin films have been researched. Experimental results showed that NIR annealing affected the microstructure, electrical resistance, and optical transmittance of the AZO thin films. X-ray diffraction analysis revealed that all films have a hexagonal wurtzite crystal structure with the preferentially c-axis oriented normal to the substrate surface. Optical transmittance spectra of the AZO thin films exhibited transmittance higher than about 80% within the visible wavelength region, and the optical direct bandgap (Eg) of the AZO films was increased with increasing the NIR energy efficiency. PMID:22673232

  18. In situ analyses on negative ions in the sputtering process to deposit Al-doped ZnO films

    SciTech Connect

    Tsukamoto, Naoki; Watanabe, Daisuke; Saito, Motoaki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    The origin of high energy negative ions during deposition of aluminum doped zinc oxide (AZO) films by dc magnetron sputtering of an AZO (Al{sub 2}O{sub 3}: 2.0 wt %) target was investigated by in situ analyses using the quadrupole mass spectrometer combined with the electrostatic energy analyzer. High energy negative oxygen (O{sup -}) ions which possessed the kinetic energy corresponding to the cathode sheath voltage were detected. The maximum flux of the O{sup -} ions was clearly observed at the location opposite to the erosion track area on the target. The flux of the O{sup -} ions changed hardly with increasing O{sub 2} flow ratio [O{sub 2}/(Ar+O{sub 2})] from 0% to 5%. The kinetic energy of the O{sup -} ions decreased with decreasing cathode sheath voltage from 403 to 337 V due to the enhancement of the vertical maximum magnetic field strength at the cathode surface from 0.025 to 0.100 T. The AZO films deposited with the lower O{sup -} bombardment energy showed the higher crystallinity and improved the electrical conductivity.

  19. Microwave-assisted hydrothermally grown epitaxial ZnO films on Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket MgAl{sub 2}O{sub 4} substrate

    SciTech Connect

    Liew, Laura-Lynn; Le, Hong Quang; Goh, Gregory K.L.

    2012-05-15

    In this report, epitaxial ZnO films were grown on Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket MgAl{sub 2}O{sub 4} single crystal substrates using Microwave Assisted Hydrothermal (MAH) method with microwave radiation heating (2.45 GHz) at 90 Degree-Sign C in a short time (within 15 min). Scanning electron microscopy confirms that these films possess smooth surface morphology with fully coalesced grains. In addition, photoluminescence (PL) measurements exhibit strong ultraviolet emission at room temperature, indicating potential applications for short-wave light-emitting photonic devices. The PL properties were improved by a thermal annealing process without generating structural defects. Hall measurements after thermal treatment show the carrier concentration to be of the order of 10{sup 19} cm{sup -3} which is comparable to those grown by conventional solution methods. The MAH method will offer a rapid route to synthesize epitaxial ZnO films with good optical and electrical properties for various applications. - Graphical abstract: FESEM images showing the morphology and cross sectional view of ZnO films grown using microwave assisted hydrothermal method at 90 Degree-Sign C for 30 min. Highlights: Black-Right-Pointing-Pointer Microwave Assisted Hydrothermal (MAH) method was introduced to synthesize epitaxial ZnO films. Black-Right-Pointing-Pointer The films possess smooth surface morphology, fully coalesced grains with high optical properties. Black-Right-Pointing-Pointer It exhibit good electrical properties (carrier concentration 10{sup 19} cm{sup -3}, mobility 19 cm{sup 2}/Vs).

  20. Ferroelectric properties of (Pb,La)(Zr,Ti)O3 capacitors employing Al-doped ZnO top electrodes prepared by pulsed laser deposition under different oxygen pressures

    NASA Astrophysics Data System (ADS)

    Takada, Yoko; Okamoto, Naoki; Saito, Takeyasu; Kondo, Kazuo; Yoshimura, Takeshi; Fujimura, Norifumi; Higuchi, Koji; Kitajima, Akira

    2016-06-01

    Al-doped ZnO (AZO) top electrodes were deposited under oxygen pressures from 0.02 to 20 Pa using pulsed laser deposition (PLD) to fabricate ferroelectric (Pb,La)(Zr,Ti)O3 capacitors. The oxygen pressure during PLD affected the surface morphology of the AZO top electrodes as well as the ferroelectric properties. In particular, the surface morphologies were dramatically altered by increasing oxygen pressure. We obtained desirable ferroelectric properties with the highest maximum polarization and lowest coercive voltage at around 2.0 Pa. The saturation characteristics, hydrogen degradation resistance, and fatigue resistance were almost unrelated to the oxygen pressure during PLD.

  1. Interband emission energy in wurtzite GaN/Ga{sub 0.8}Al{sub 0.2}N and ZnO/ Zn{sub 0.607}Mg{sub 0.393}O strained quantum dots

    SciTech Connect

    Minimala, N. S.; Peter, A. John

    2014-04-24

    The effects of geometrical confinement on the exciton binding energies and thereby the interband emission energy are investigated in wurtzite /Ga{sub 0.8}Al{sub 0.2}N and ZnO/ Zn{sub 0.607}Mg{sub 0.393}O quantum dots taking into account the geometrical confinement. The calculations are performed with the same barrier height of both the materials. The effects of strain and the internal electric field, induced by spontaneous and piezoelectric polarization, are taken into consideration in all the calculations.

  2. Defects in ZnO

    NASA Astrophysics Data System (ADS)

    McCluskey, M. D.; Jokela, S. J.

    2009-10-01

    Zinc oxide (ZnO) is a wide band gap semiconductor with potential applications in optoelectronics, transparent electronics, and spintronics. The high efficiency of UV emission in this material could be harnessed in solid-state white lighting devices. The problem of defects, in particular, acceptor dopants, remains a key challenge. In this review, defects in ZnO are discussed, with an emphasis on the physical properties of point defects in bulk crystals. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. However, experiments and theory have shown that O vacancies are deep donors, while Zn interstitials are too mobile to be stable at room temperature. Group-III (B, Al, Ga, and In) and H impurities account for most of the n-type conductivity in ZnO samples. Interstitial H donors have been observed with IR spectroscopy, while substitutional H donors have been predicted from first-principles calculations but not observed directly. Despite numerous reports, reliable p-type conductivity has not been achieved. Ferromagnetism is complicated by the presence of secondary phases, grain boundaries, and native defects. The famous green luminescence has several possible origins, including Cu impurities and Zn vacancies. The properties of group-I (Cu, Li, and Na) and group-V (N, P, As, and Sb) acceptors, and their complexes with H, are discussed. In the future, doping of ZnO nanocrystals will rely on an understanding of these fundamental properties.

  3. Characteristics of Al-doped ZnO thin films prepared in Ar + H{sub 2} atmosphere and their vacuum annealing behavior

    SciTech Connect

    Zhu, Bailin; Lü, Kun; Wang, Jun; Li, Taotao; Wu, Jun; Zeng, Dawen; Xie, Changsheng

    2013-11-15

    The microstructure and electrical–optical properties of Al-doped ZnO (AZO) films have been studied as a function of H{sub 2} flux in the magnetron sputtering process at 150 °C and postannealing temperature in vacuum. As H{sub 2} flux increases in the sputtering gas, the AZO films deposited have a (002) preferred orientation rather than the mixed (100) and (002) orientations, the grain size shows a tendency to first increase then decrease, and (002) diffraction peak position is inclined to shift to higher angles first then to lower angles. The resistivity of the films first decreases then increases with H{sub 2} flux, and the lowest resistivity of 4.02 × 10{sup −4}Ω cm is obtained at a H{sub 2} flux of 10 sccm. The average transmittance in the visible region shows little dependence on H{sub 2} flux. As a whole, the AZO films with higher values of figure of merit are obtained when the H{sub 2} flux is in the range of 6–12 sccm. The AZO films deposited in Ar and Ar + H{sub 2} exhibit different annealing behaviors. For the AZO film deposited in Ar, the grain size gradually increases, the stresses are relaxed, the resistivity first decreases then increases, and the average transmittance in the visible region is unchanged initially then somewhat decreased as annealing temperature is increased. The optimum annealing temperature for improving properties of AZO films deposited in Ar is 300 °C. For the AZO films deposited in Ar + H{sub 2}, annealing does not significantly change the microstructure but increases the resistivity of the films; the average transmittance in the visible region remains unchanged initially but greatly reduced with further increase in annealing temperature. The carrier transport in the as-deposited and annealed films appears to be controlled by a mechanism of grain boundary scattering, and the value of E{sub g} increases with the increase in carrier concentration due to Burstein–Moss effect.

  4. Poole-Frenkel effect on electrical characterization of Al-doped ZnO films deposited on p-type GaN

    SciTech Connect

    Huang, Bohr-Ran; Liao, Chung-Chi; Ke, Wen-Cheng Chang, Yuan-Ching; Huang, Hao-Ping; Chen, Nai-Chuan

    2014-03-21

    This paper presents the electrical properties of Al-doped ZnO (AZO) films directly grown on two types of p-type GaN thin films. The low-pressure p-GaN thin films (LP-p-GaN) exhibited structural properties of high-density edge-type threading dislocations (TDs) and compensated defects (i.e., nitrogen vacancy). Compared with high-pressure p-GaN thin films (HP-p-GaN), X-ray photoemission spectroscopy of Ga 3d core levels indicated that the surface Fermi-level shifted toward the higher binding-energy side by approximately 0.7 eV. The high-density edge-type TDs and compensated defects enabled surface Fermi-level shifting above the intrinsic Fermi-level, causing the surface of LP-p-GaN thin films to invert to n-type semiconductor. A highly nonlinear increase in leakage current regarding reverse-bias voltage was observed for AZO/LP-p-GaN. The theoretical fits for the reverse-bias voltage region indicated that the field-assisted thermal ionization of carriers from defect associated traps, which is known as the Poole-Frenkel effect, dominated the I-V behavior of AZO/LP-p-GaN. The fitting result estimated the trap energy level at 0.62 eV below the conduction band edge. In addition, the optical band gap increased from 3.50 eV for as-deposited AZO films to 3.62 eV for 300 °C annealed AZO films because of the increased carrier concentration. The increasing Fermi-level of the 300 °C annealed AZO films enabled the carrier transport to move across the interface into the LP-p-GaN thin films without any thermal activated energy. Thus, the Ohmic behavior of AZO contact can be achieved directly on the low-pressure p-GaN films at room temperature.

  5. Preparation of superior lubricious amorphous carbon films co-doped by silicon and aluminum

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqiang; Hao, Junying; Yang, Jun; Zheng, Jianyun; Liang, Yongmin; Liu, Weimin

    2011-09-01

    Silicon (Si) and aluminum (Al) co-doped amorphous carbon films ((Si, Al)-C:H) were deposited on Si and stainless steel substrates by radio frequency (13.56 MHz) magnetron sputtering. The Al and Si were found to jointly regulate the hybridized carbon bonds. Mechanical properties of the films were detected by nano-indention and scratch tests. The nano-indention results revealed that all the samples exhibited good elastic recovery rate, among which the highest one was beyond 84%. Besides co-regulating the hybridizations of carbon, the co-doped Si and Al also had a common regulation on the mechanical and tribological properties. Especially, the film containing 1.6 at. % of Si and 0.9 at. % of Al showed a super-low friction (< 0.01) and a superior wear resistance in ambient air.

  6. Defect Chemistry Study of Nitrogen Doped ZnO Thin Films

    SciTech Connect

    Miami University: Dr. Lei L. Kerr Wright State University: Dr. David C. Look and Dr. Zhaoqiang Fang

    2009-11-29

    Our team has investigated the defect chemistry of ZnO:N and developed a thermal evaporation (vapor-phase) method to synthesis p-type ZnO:N. Enhanced p-type conductivity of nitrogen doped ZnO via nano/micro structured rods and Zn-rich Co-doping process were studied. Also, an extended X-Ray absorption fine structure study of p-type nitrogen doped ZnO was conducted. Also reported are Hall-effect, photoluminescence, and DLTS studies.

  7. Effect of cobalt doping on structural and optical properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, J.; Chanda, A.; Gupta, S.; Shukla, P.; Chandra, V.

    2016-05-01

    Cobalt doped ZnO nanoparticles of uniform sizes were prepared by a chemical method using ZnCl2 and NaOH as the source materials. The formation of Co-doped ZnO nanoparticles was confirmed by transmission electron microscopy (TEM), high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) studies. The optical properties of obtained products were examined using room temperature UV-visible and FTIR spectroscopy. SAED of cobalt doped ZnO nanoparticles shows homogeneous distribution of nanoparticles with hexagonal structure. The HRTEM image of the Co-doped ZnO nanoparticles reveals a clear lattice spacing of 0.52 nm corresponding to the interplanar spacing of wurtzite ZnO (002) plane. The absorption band at 857 cm-1 in FTIR spectra confirmed the tetrahedral coordination of Zn and a shift of absorption peak to shorter wavelength region and decrease in absorbance with Co doping.is observed in UV-Visible spectra.

  8. Preparation of ZnO nanoparticles showing upconversion luminescence through simple chemical method

    NASA Astrophysics Data System (ADS)

    Anjana, R.; Subha, P. P.; Markose, Kurias K.; Jayaraj, M. K.

    2016-05-01

    Upconversion luminescence is an interesting area while considering its applications in a vast variety of fields. Rare earth ions like erbium is the most studied and efficient candidate for achieving upconversion. Erbium and ytterbium co-doped ZnO nanoparticles were prepared through co-precipitation method. A strong red emission has been obtained while exciting with 980 nm laser. Dependence of luminescence emission colour on ytterbium concentration has been studied.

  9. An optical study of the D—D neutron irradiation-induced defects in Co- and Cu-doped ZnO wafers

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Bo; Li, Gong-Ping; Xu, Nan-Nan; Pan, Xiao-Dong

    2013-03-01

    Room-temperature photoluminescence and optical transmittance spectroscopy of Co-doped (1 × 1014, 5 × 1016, and 1 × 1017 cm-2) and Cu-doped (5 × 1016 cm-2) ZnO wafers irradiated by D—D neutrons (fluence of 2.9 × 1010 cm-2) have been investigated. After irradiation, the Co or Cu metal and oxide clusters in doped ZnO wafers are dissolved, and the würtzite structure of ZnO substrate for each sample remains unchanged and keeps in high c-axis preferential orientation. The degree of irradiation-induced crystal disorder reflected from the absorption band tail parameter (E0) is far greater for doped ZnO than the undoped one. Under the same doping concentration, the Cu-doped ZnO wafer has much higher irradiation-induced disorder than the Co-doped one. Photoluminescence measurements indicate that the introduction rate of both the zinc vacancy and the zinc interstitial is much higher for the doped ZnO wafer with a high doping level than the undoped one. In addition, both crystal lattice distortion and defect complexes are suggested to be formed in doped ZnO wafers. Consequently, the Co- or Cu-doped ZnO wafer (especially with a high doping level) exhibits very low radiation hardness compared with the undoped one, and the Cu-doped ZnO wafer is much less radiation-hard than the Co-doped one.

  10. Spectral properties of ZnO and ZnO-Al2O3 coatings prepared by polymer-salt method

    NASA Astrophysics Data System (ADS)

    Evstropiev, Sergey K.; Gatchin, Yury A.; Evstropyev, Kirill S.; Romanova, Eva B.

    2016-04-01

    Experimental results show that the use of film-forming solutions based on zinc and aluminum nitrates and high molecular polyvinylpyrrolidone allows obtaining thin oxide coatings having unusually large bandgap values and transparent in a wide spectral range. The values of the bandgaps of coating materials are significantly higher than the bandgap of bulk ZnO, and it is varied in the range from 3.46 to 4.16 eV, resulting from the metastable structure of the coating.

  11. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    SciTech Connect

    Kizu, Takio E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Miyanaga, Miki; Awata, Hideaki; Nabatame, Toshihide

    2015-09-28

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm{sup 2}/V s with good stability under a negative bias stress in InWZnO thin film transistors.

  12. Enhanced light extraction of GaN-based light-emitting diodes with periodic textured SiO2 on Al-doped ZnO transparent conductive layer

    NASA Astrophysics Data System (ADS)

    Yu, Zhao; Bingfeng, Fan; Yiting, Chen; Yi, Zhuo; Zhoujun, Pang; Zhen, Liu; Gang, Wang

    2016-07-01

    We report an effective enhancement in light extraction of GaN-based light-emitting diodes (LEDs) with an Al-doped ZnO (AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 inch transparent through-pore anodic aluminum oxide (AAO) membrane was fabricated and used as the etching mask. The periodic pore with a pitch of about 410 nm was successfully transferred to the surface of the SiO2 layer without any etching damages to the AZO layer and the electrodes. The light output power was enhanced by 19% at 20 mA and 56% at 100 mA compared to that of the planar LEDs without a patterned surface. This approach offers a technique to fabricate a low-cost and large-area regular pattern on the LED chip for achieving enhanced light extraction without an obvious increase of the forward voltage. ).

  13. Catalyst-free synthesis of well-aligned ZnO nanowires on In0.2Ga0.8N, GaN, and Al0.25Ga0.75N substrates.

    PubMed

    Yang, W Q; Dai, L; You, L P; Zhang, B R; Shen, B; Qin, G G

    2006-12-01

    Well-aligned ZnO nanowires have been synthesized vertically on In0.2Ga0.8N, GaN, and Al0.25Ga0.75N substrates, using a catalyst-free carbon thermal-reduction vapor phase deposition method for the first time. The as-synthesized nanowires are single crystalline wurtzite structure, and have a growth direction of [0001]. Each nanowire has a smooth surface, and uniform diameter along the growth direction. The average diameter and length of these nanowires are 120-150 nm, and 3-10 )m, respectively. We suggest that the growth mechanism follow a self-catalyzing growth model. Excitonic emission peaked around 385 nm dominates the room-temperature photoluminescence spectra of these nanowires. The room-temperature photoluminescence and Raman scattering spectra show that these nanowires have good optical quality with very less structural defects. PMID:17256330

  14. First-principles study for ferromagnetism of Cu-doped ZnO with carrier doping

    SciTech Connect

    Kang, Byung-Sub; Kim, Kyeong-Sup; Yu, Seong-Cho; Chae, Heejoon

    2013-02-15

    We studied the effects on the ferromagnetism of carrier doping in Zn{sub 1-x}Cu{sub x}O with x=0.0277-0.0833 by using the first-principles calculations. The total magnetic moment of Cu is about 1, 2, and 3 {mu}{sub B}/cell at the concentration of 2.77%, 5.55%, and 8.33%, respectively. For Zn{sub 1-x}Cu{sub x}O{sub 1-y}N{sub y}, we obtained the ferromagnetic and half-metallic ground state. The Cu magnetic moment in low Cu concentration is increased by the N-doping. However, for the F-doping it decreases. The ferromagnetism in Cu-doped ZnO is controllable by changing the carrier density. The N 2p states hybridize well with Cu 3d states instead of the O 2p states. Due to the hybridization between N 2p and Cu 3d states, the holes are itinerant with keeping its 3d states. For (Cu,N)-codoped ZnO, it is recognized that the width of 3d states is larger than that of (Cu,F)-codoped ZnO. - Graphical abstract: Considered clean wurtzite ZnO structure, the Cu magnetic moments for Zn{sub 1-x}Cu{sub x}O{sub 1-y}N{sub y} or Zn{sub 1-x}Cu{sub x}O{sub 1-y}F{sub y} of the ferromagnetic state (left), and the charge density difference of Zn{sub 1-x}Cu{sub x}O (x=0.0277) (right). Highlights: Black-Right-Pointing-Pointer The ferromagnetism of Cu-doped ZnO is controllable by N or F carrier density. Black-Right-Pointing-Pointer The Cu magnetic moment in low Cu concentration is increased by hole doping. Black-Right-Pointing-Pointer The N 2p states hybridize well with the Cu 3d states instead of the O 2p states. Black-Right-Pointing-Pointer For (Cu,F)-codoped ZnO, the Cu 3d band is narrower than that for (Cu,N)-codoped ZnO.

  15. Co-doped spinels: promising materials for solid state lasers

    NASA Astrophysics Data System (ADS)

    Kuleshov, Nickolai V.; Mikhailov, Victor P.; Scherbitsky, V. G.

    1994-07-01

    Optical absorption, luminescence, saturation of absorption and lifetime measurements have been carried out on Co-doped MgAl2O4 and ZnGa2O4. The crystal field parameters are estimated for the tetrahedral Co2+ ion. Three luminescence bands observed in the visible and near infrared are assigned to transitions from the 4T1(4P) level to the lower levels 4A2(4F), 4T2(4F), and 4T1(4F), respectively. Strong luminescence quenching due to nonradiative decay processes is observed MgAl2O4:Co. Saturation of Co2+ absorption at 540 nm is measured and the absorption cross section is estimated to be 2.1 + 0.2 X 10-19 cm2 in MgAl2O4.

  16. Effect of Er3+ and Yb3+ co-doping on the performance of a ZnO-based DSSC

    NASA Astrophysics Data System (ADS)

    Tsege, Ermias Libnedengel; Vu, Hong Ha Thi; Atabaev, Timur Sh.; Kim, Hyung-Kook; Hwang, Yoon-Hwae

    2016-06-01

    Zinc-oxide (ZnO) nanoparticles (NPs) co-doped with different concentrations of rare-earth ions of erbium and ytterbium, (ZnO: Er3+, Yb3+) were synthesized for applications to ZnO-based dye sensitized solar cells (DSSC). The composite NPs used for the photoelectrode (PE) were synthesized using a simple co-precipitation technique. X-ray diffraction and scanning electron microscopy measurements on the prepared samples revealed a single phase wurzite ZnO powder with approximate sizes in the range from 15 to 20 nm. Photoluminescence (PL) measurements confirmed that the synthesized composite NPs had a good up-conversion (UPC) property. The prepared powders were directly used to make PEs for DSSCs. The photovoltaic efficiency of the DSSCs was enhanced compared to that of pure ZnO-based DSSCs. Particularly, the PE made up of ZnO: Er3+, Yb3+ NPs with 4 wt% of Er3+ and Yb3+ generates a short-circuit current density ( J sc ) of 4.794 mA·cm -2 and an open circuit voltage ( V oc ) of 0.602 V with an efficiency ( η) of 1.58%. The result indicates a 48.4% J sc improvement compared to a pure ZnO PE-based DSSC. The photocurrent improvement is due to an increase in the light-harvesting capacity of the PEs attained through the UPC property of ZnO: Er3+, Yb3+ NPs. As confirmed by PL and electrochemical impedance spectra (EIS), the use of ZnO: Er3+,Yb3+ NPs as PEs for DSSCs enhances charge concentration and transport as a result of n-type doping. However, all ZnO: Er3+, Yb3+ NP based PEs exhibited a lower V oc as a result of a down shift in the Fermi energy, which affects the overall efficiency of the cell.

  17. Electrical property studies on chemically processed polypyrolle/aluminum doped ZnO based hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Mohan Kumar, G.; Ilanchezhiyan, P.; Madhan Kumar, A.; Yuldashev, Sh. U.; Kang, T. W.

    2016-04-01

    A hybrid structure based on p-type polypyrolle (PPy) and n-type aluminum (Al) doped ZnO nanorods was successfully constructed. The effect of Al doping on material properties of wurtzite structured ZnO were studied using several analytical techniques. To establish the desired hybrid structure, pyrrole monomers were polymerized on hydrothermally grown Al doped ZnO nanorods by chemical polymerization. The current-voltage characteristics on the fabricated PPy/Al doped ZnO heterostructures were found to exhibit excellent rectifying characteristics under dark and illumination conditions. The obtained results augment the prescribed architecture to be highly suitable for high-sensitivity optoelectronic applications.

  18. Domain matched epitaxial growth of (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films on (0001) Al{sub 2}O{sub 3} with ZnO buffer layer

    SciTech Connect

    Krishnaprasad, P. S. E-mail: mkj@cusat.ac.in; Jayaraj, M. K. E-mail: mkj@cusat.ac.in; Antony, Aldrin; Rojas, Fredy

    2015-03-28

    Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BST thin films show significantly improved tunable performance over polycrystalline thin films.

  19. The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu2ZnSnS4 thin-film solar cells prepared by electrodeposition method

    NASA Astrophysics Data System (ADS)

    Mkawi, E. M.; Ibrahim, K.; Ali, M. K. M.; Farrukh, M. A.; Mohamed, A. S.

    2015-11-01

    Al-doped ZnO (AZO) thin films were potentiostatically deposited on indium tin oxide substrates. The influence of the doping level of the ZnO:Al films was investigated. The results of the X-ray diffraction and scanning electron microscopy analysis revealed that the structural properties of the AZO films were found polycrystalline with a hexagonal wurtzite-type structure along the (002) plane. The grain size of the AZO films was observed as approximately 3 μm in the film doping with 4 mol% ZnO:Al concentration. The thin films also exhibited an optical transmittance as high as 90 % in the wavelength range of 100-1,000 nm. The optical band gap increased from 3.33 to 3.45 eV. Based on the Hall studies, the lowest resistivity (4.78 × 10-3 Ω cm) was observed in the film doping with 3 mol% ZnO:Al concentration. The sheet resistant, carrier concentration and Hall mobility values were found as 10.78 Ω/ square, 9.03 × 1018 cm-3 and 22.01 cm2/v s, respectively, which showed improvements in the properties of AZO thin films. The ZnO:Al thin films were used as a buffer layer in thin-film solar cells with the structure of soda-lime glass/Mo/Cu2ZnSnS4/ZnS/ZnO/Al grid. The best solar cell efficiency was 2.3 % with V OC of 0.430 V, J SC of 8.24 mA cm-2 and FF of 68.1 %.

  20. Influence of Li-doping on structural characteristics and photocatalytic activity of ZnO nano-powder formed in a novel solution pyro-hydrolysis route

    NASA Astrophysics Data System (ADS)

    Ganesh, Ibram; Sekhar, P. S. Chandra; Padmanabham, G.; Sundararajan, G.

    2012-10-01

    Different types of Li-doped ZnO (LDZ) (Li = 0-10 wt.%) powders were prepared by following a novel pyro-hydrolysis route at 450 °C, and were thoroughly characterized by means of thermo-gravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR), Fourier-transform Raman (FT-Raman) spectroscopy, diffuse reflectance spectroscopy (DRS), ultra-violet visible (UV-Vis) spectroscopy, Brunauer-Emmett-Teller (BET) surface area (SA), and zeta potential (ζ) measurements. Photocatalytic activity of these powders was evaluated by means of methylene blue (MB) degradation experiments conducted under the irradiation of simulated and natural solar light. Characterization results suggest that both pure ZnO and LDZ powders are quite thermally stable up to a temperature of 700 °C and possess band gap (BG) energies in the range of 3.16-3.2 eV with a direct band to band transition and ζ values of -31.6 mV to -56.4 mV. The properties exhibited by LDZ powders were found to be quite comparable to those exhibited by p-type semi-conducting LDZ powders. In order to study the kinetics of MB degradation reaction under the irradiation of simulated solar light, the Li (0.2-10 wt.%) and Al (0.5 wt.%) co-doped ZnO (0.2LADZ to 10LADZ) powders were also synthesized and employed for this purpose. The photocatalytic degradation of MB over LADZ catalysts followed the Langmuir-Hinshelwood (L-H) first order reaction rate relationship. The 10LDZ catalyst exhibited highest photocatalytic activity among various powders investigated in this study.

  1. Fundamental understanding of the growth, doping and characterization of aligned ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Gang

    Zinc oxide (ZnO) is a II-VI semiconductor whose wide direct bandgap (3.37 eV) and large exciton binding energy (60 meV) make it compelling for optoelectronic devices such as light emitting diodes, lasers, photodetectors, solar cells, and mechanical energy harvesting devices. One dimensional structures of ZnO (nanowires) have become significant due to their unique physical properties arising from quantum confinement, and they are ideal for studying transport mechanisms in one-dimensional systems. In this doctoral research work, ZnO nanowire (NW) arrays were synthesized on sapphire substrates through carbo-thermal reduction of ZnO powders, and the effects of growth parameters on the properties of ZnO NW arrays were studied by scanning and transmission electron microscopy, X-ray diffraction, photoluminescence and Raman spectroscopy. Based on the phonon mode selection rules in wurtzite ZnO, confocal Raman spectroscopy was used to assess the alignment of ZnO NWs in an array, thereby complementing X-ray diffraction. Al doped ZnO NW arrays were achieved by mixing Al powder into the ZnO and graphite source mixture, and the presence of Al was confirmed by Energy-dispersive X-ray spectroscopy. The incorporation of Al had the effects of lowering the electrical resistivity, slightly deteriorating crystal quality and suppressing defect related green emission. Two models of ZnO NW growth were developed by establishing the relationship between NW length and diameter for undoped and Al doped ZnO NWs separately. The growth of undoped ZnO NWs followed the diffusion-induced model which was characterized by thin wires being longer than thick wires, while the growth of Al doped ZnO was controlled by Gibbs-Thomson effect which was characterized by thin wires being shorter than thin wires. Local electrode atom probe analysis of ZnO NWs was carried out to study the crystal stoichiometry and Al incorporation. Undoped ZnO NWs were found to be high purity with no detectable impurities

  2. Solubility control in dilute magnetic semiconductors by using the co-doping method

    NASA Astrophysics Data System (ADS)

    Sato, Kazunori; Fujii, Hitoshi; Bergqvist, Lars; Dederichs, Peter H.; Katayama-Yoshida, Hiroshi

    2009-03-01

    To overcome low solubility limit of magnetic impurities in dilute magnetic semiconductors (DMS) and realize room temperature ferromagnetism, we propose a co-doping method to increase solubility of magnetic impurities in DMS [1]. We calculate electronic structure of (Ga, Mn)As, (Ga, Mn)N, (Ga, Cr)N and (Zn, Cr)Te with interstitial impurities, such as Li, Na and Cu, from first-principles by using the Korringa-Kohn- Rostoker coherent potential approximation (KKR-CPA) method. From the total energy results, it is shown that the mixing energy of magnetic impurity becomes negative and the solubility of magnetic impurities is strongly enhanced under the existence of interstitials [1]. In general, the co-dopants compensate hole carriers, thus the system becomes paramagnetic. However, owing to the large diffusivity of these interstitial impurities, we can anneal out the co-dopants after the crystal growth to recover the ferromagnetism. As an example, kinetic Monte Carlo simulations for the diffusion of interstitial co-dopants in DMS will be shown. [1] K. Sato et al., Jpn. J. Appl. Phys. 46 L1120 (2007)

  3. Impacts of Co doping on ZnO transparent switching memory device characteristics

    NASA Astrophysics Data System (ADS)

    Simanjuntak, Firman Mangasa; Prasad, Om Kumar; Panda, Debashis; Lin, Chun-An; Tsai, Tsung-Ling; Wei, Kung-Hwa; Tseng, Tseung-Yuen

    2016-05-01

    The resistive switching characteristics of indium tin oxide (ITO)/Zn1-xCoxO/ITO transparent resistive memory devices were investigated. An appropriate amount of cobalt dopant in ZnO resistive layer demonstrated sufficient memory window and switching stability. In contrast, pure ZnO devices demonstrated a poor memory window, and using an excessive dopant concentration led to switching instability. To achieve suitable memory performance, relying only on controlling defect concentrations is insufficient; the grain growth orientation of the resistive layer must also be considered. Stable endurance with an ON/OFF ratio of more than one order of magnitude during 5000 cycles confirmed that the Co-doped ZnO device is a suitable candidate for resistive random access memory application. Additionally, fully transparent devices with a high transmittance of up to 90% at wavelength of 550 nm have been fabricated.

  4. Growth and characterization of periodically polarity-inverted ZnO structures on sapphire substrates

    SciTech Connect

    Park, Jinsub; Yao, Takafumi

    2012-10-15

    We report on the fabrication and characterization of periodically polarity inverted (PPI) ZnO heterostructures on (0 0 0 1) Al{sub 2}O{sub 3} substrates. For the periodically inverted array of ZnO polarity, CrN and Cr{sub 2}O{sub 3} polarity selection buffer layers are used for the Zn- and O-polar ZnO films, respectively. The change of polarity and period in fabricated ZnO structures is evaluated by diffraction patterns and polarity sensitive piezo-response microscopy. Finally, PPI ZnO structures with subnanometer scale period are demonstrated by using holographic lithography and regrowth techniques.

  5. Conductivity and touch-sensor application for atomic layer deposition ZnO and Al:ZnO on nylon nonwoven fiber mats

    SciTech Connect

    Sweet, William J.; Oldham, Christopher J.; Parsons, Gregory N.

    2015-01-15

    Flexible electronics and wearable technology represent a novel and growing market for next generation devices. In this work, the authors deposit conductive zinc oxide films by atomic layer deposition onto nylon-6 nonwoven fiber mats and spun-cast films, and quantify the impact that deposition temperature, coating thickness, and aluminum doping have on the conductivity of the coated substrates. The authors produce aluminum doped zinc oxide (AZO) coated fibers with conductivity of 230 S/cm, which is ∼6× more conductive than ZnO coated fibers. Furthermore, the authors demonstrate AZO coated fibers maintain 62% of their conductivity after being bent around a 3 mm radius cylinder. As an example application, the authors fabricate an “all-fiber” pressure sensor using AZO coated nylon-6 electrodes. The sensor signal scales exponentially under small applied force (<50 g/cm{sup 2}), yielding a ∼10{sup 6}× current change under 200 g/cm{sup 2}. This lightweight, flexible, and breathable touch/force sensor could function, for example, as an electronically active nonwoven for personal or engineered system analysis and diagnostics.

  6. Epitaxial Growth and Properties of Cobalt-doped ZnO on α-Al₂O₃ Single-Crystal Substrates

    SciTech Connect

    Tuan, Allan C.; Bryan, John D.; Pakhomov, Alexandre; Shutthanandan, V.; Thevuthasan, Suntharampillai; McCready, David E.; Gaspar, Dan J.; Engelhard, Mark H.; Rogers, J. W.; Krishnan, Kannan M.; Gamelin, Daniel R.; Chambers, Scott A.

    2004-08-30

    Co-doped ZnO (CoxZn₁-xO) is of potential interest for spintronics due to the prediction of room-temperature ferromagnetism. We have grown epitaxial CoxZn₁-xO films on Al₂O₃(012) substrates by metalorganic chemical vapor deposition using a liquid precursor delivery system. High concentrations of Co (x < 0.35) can be uniformly incorporated into the film without phase segregation. Co is found to be in the ⁺² oxidation state, independent of x. This material can be grown n type by the deliberate incorporation of oxygen vacancies, but not by inclusion of ~1 at. % Al. Semiconducting films remain ferromagnetic up to 350 K. In contrast films without oxygen vacancies are insulating and nonmagnetic, suggesting that exchange interaction is mediated by itinerant carriers. The saturation and remanent magnetization on a per Co basis was very small (< 0.1 μB/Co), even in the best films. The dependence of saturation magnetization, as measured by optical magnetic circular dichroism, on magnetic field and temperature, agrees with the theoretical Brillouin function, demonstrating that the majority of the Co(II) ions behave as magnetically isolated S = 3/2 spins.

  7. Efficiency and Color Coordinate Improvement Using Codopants in Blue Organic Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Wang, Xiu Ru; Chen, Jiang Shan; You, Han; Ma, Dong Ge; Sun, Run Guang

    2005-12-01

    The codoping method is applied to fabricate efficient blue organic light-emitting diodes (OLEDs). With the same structure of indium-tin oxide (ITO)/N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'diamine (NPB)(80 nm)/light-emitting layer (30 nm)/tris-(8-hydroxy-quinoline)aluminum (Alq3) (20 nm)/LiF (1 nm)/Al (120 nm), a set of three devices was manufactured for comparison. For Devices 1, 2, and 3, the light-emitting layers are 9,10-di(2-naphthyl)anthracene (ADN):4,4'-(1,4-phenylenedi-2,1-ethene diyl)bis[N,N-bis(4-methylphenyl)-benzenamine] (DPAVB) (1 wt %), ADN:2,5,8,11-tetra-(t-butyl)-perylene (TBPE) (1 wt %), and ADN:DPAVB (0.3 wt %):TBPE (0.7 wt %), respectively. It is found that the codoped Device 3 has the highest maximum luminance, Electroluminescence (EL) quantum efficiency and color saturation. Further study on the effect of the codopants was through a relative photoluminescence (PL) quantum efficiency measurement. The result shows that the relative PL efficiencies of Devices 1, 2, and 3 are 15.6, 19.3, and 24%, respectively, as determined using an integrating sphere system excited at 375 nm. The codoping method improves the EL efficiency intrinsically. Codopants of the heterogeneous light-emitting molecules may decrease the possibility of self-quenching from the interaction of the homogenous molecules at the same total doping concentration. Furthermore, the decrease in the interaction of homogenous molecules suppresses the light emission from the aggregations thus narrowing the emission spectrum, and results in saturated blue light emission.

  8. Influence of transparent conductive oxides on passivation of a-Si:H/c-Si heterojunctions as studied by atomic layer deposited Al-doped ZnO

    NASA Astrophysics Data System (ADS)

    Macco, B.; Deligiannis, D.; Smit, S.; van Swaaij, R. A. C. M. M.; Zeman, M.; Kessels, W. M. M.

    2014-12-01

    In silicon heterojunction solar cells, the main opportunities for efficiency gain lie in improvements of the front-contact layers. Therefore, the effect of transparent conductive oxides (TCOs) on the a-Si:H passivation performance has been investigated for Al-doped zinc oxide (ZnO:Al) layers made by atomic layer deposition (ALD). It is shown that the ALD process, as opposed to sputtering, does not impair the chemical passivation. However, the field-effect passivation is reduced by the ZnO:Al. The resulting decrease in low injection-level lifetime can be tuned by changing the ZnO:Al doping level (carrier density = 7 × 1019-7 × 1020 cm-3), which is explained by a change in the TCO workfunction. Additionally, it is shown that a ˜10-15 nm ALD ZnO:Al layer is sufficient to mitigate damage to the a-Si:H by subsequent sputtering, which is correlated to ALD film closure at this thickness.

  9. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain.

    PubMed

    Shrivastava, Rupal; Raza, Saimah; Yadav, Abhishek; Kushwaha, Pramod; Flora, Swaran J S

    2014-07-01

    Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. However the information regarding toxicity of these nanoparticles on humans and environment is still deficient. The present study investigated the toxic effects of three metal oxide nanoparticles, TiO2, ZnO and Al2O3 on mouse erythrocytes, brain and liver. Male mice were administered a single oral dose of 500 mg/kg of each nanoparticles for 21 consecutive days. The results suggest that exposure to these nano metallic particles produced a significant oxidative stress in erythrocyte, liver and brain as evident from enhanced levels of Reactive Oxygen Species (ROS) and altered antioxidant enzymes activities. A significant increase in dopamine and norepinephrine levels in brain cerebral cortex and increased brain oxidative stress suggest neurotoxic potential of these nanoparticles. Transmission electron microscopic (TEM) analysis indicated the presence of these nanoparticles inside the cytoplasm and nucleus. These changes were also supported by the inhibition of CuZnSOD and MnSOD, considered as important biomarkers of oxidative stress. The toxic effects produced by these nanoparticles were more pronounced in the case of zinc oxide, followed by aluminum oxide and titanium dioxide, respectively. The present results further suggest the involvement of oxidative stress as one of the main mechanisms involved in nanoparticles induced toxic manifestations. PMID:24344737

  10. Design and development of a new generation of UV-visible-light-driven nanosized codoped titanium dioxide photocatalysts and biocides/sporocides, and environmental applications

    NASA Astrophysics Data System (ADS)

    Hamal, Dambar B.

    For solar environmental remediation, a new generation of nanosized (< 10 nm) titanium dioxide photocatalysts codoped with metals and nonmetals, or metals only were prepared by the xero-gel and aero-gel methods. For silver or cobalt-based xero-gel titanium dioxide photocatalysts, photoactivities tests revealed that codoping of titanium dioxide with a metal (1% Ag or 2% Co) and nonmetals (carbon and sulfur) is necessary to achieve high-activities for acetaldehyde degradation under visible light (wavelength > 420 nm). It was concluded that high visible-light-activities for acetaldehyde degradation over codoped titanium dioxide were attributed to an interplay of anatase crystallinity, high-surface area, reduced band-gap (< 3.0 eV), uniform dispersion of doped metal ions, and suppressed recombination rate of photogenerated electronhole pairs. Moreover, the nature and amount of codoped metals play a significant role in visible-light-induced photocatalysis. Metals (Al, Ga, and In) doped/codoped titanium dioxide photocatalysts were prepared by the aero-gel method. The photocatalytic studies showed that activities of metal doped/codoped photocatalysts under UV light (wavelength < 400 nm) were found to be dependent on pollutants. Indium demonstrated beneficial effects in both textural and photocatalytic properties. Gallium and indium codoped titanium dioxide photocatalysts displayed even better performance in the CO oxidation reaction under UV light. Notably, titanium dioxide codoped with Ga, In, and Pt, exhibited unique photoactivities for the CO oxidation under both UV and visible light irradiation, indicating that this system could have promise for the water-gas shift reaction for hydrogen production. Silver-based nanostructured titanium dioxide samples were developed for killing human pathogens (Escherichia coli cells and Bacillus subtilis spores). Biocidal tests revealed that silver, carbon, and sulfur codoped titanium dioxide nanoparticles (< 10 nm) possess very strong

  11. High-quality ZnO growth, doping, and polarization effect

    NASA Astrophysics Data System (ADS)

    Kun, Tang; Shulin, Gu; Jiandong, Ye; Shunming, Zhu; Rong, Zhang; Youdou, Zheng

    2016-03-01

    The authors have reported their recent progress in the research field of ZnO materials as well as the corresponding global advance. Recent results regarding (1) the development of high-quality epitaxy techniques, (2) the defect physics and the Te/N co-doping mechanism for p-type conduction, and (3) the design, realization, and properties of the ZnMgO/ZnO hetero-structures have been shown and discussed. A complete technology of the growth of high-quality ZnO epi-films and nano-crystals has been developed. The co-doping of N plus an iso-valent element to oxygen has been found to be the most hopeful path to overcome the notorious p-type hurdle. High mobility electrons have been observed in low-dimensional structures utilizing the polarization of ZnMgO and ZnO. Very different properties as well as new physics of the electrons in 2DEG and 3DES have been found as compared to the electrons in the bulk. Project supported by the National Natural Science Foundation of China (Nos. 61025020, 61274058, 61322403, 61504057, 61574075), the Natural Science Foundation of Jiangsu Province (Nos. BK2011437, BK20130013, BK20150585), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Fundamental Research Funds for the Central Universities.

  12. Emission enhancement from metallodielectric-capped ZnO films

    NASA Astrophysics Data System (ADS)

    Ni, W. H.; An, J.; Lai, C. W.; Ong, H. C.; Xu, J. B.

    2006-07-01

    Emission enhancement from ZnO thin films coated with Al /AlOx has been studied by photoluminescence spectroscopy. While Al exhibits a moderate enhancement on ZnO, the introduction of an ultrathin AlOx spacer can increase the luminescence significantly. By examining the dependence of light emission of Al /AlOx/ZnO on AlOx thickness, we found, other than the surface plasmon mediation, a short-ranged nonradiative channel that plays a crucial role in determining that the overall emission enhancement is also present. Based on a simple analytical model, it is found that the nonradiative process is strongly dependent on (AlOxthickness)-6 and therefore its origin is suggested to be of Förster type. Finally, an AlOx spacer with thickness of 5nm is found to be adequate to eliminate the unwanted quenching effect.

  13. Improved photovoltaic performance of inverted polymer solar cells through a sol-gel processed Al-doped ZnO electron extraction layer.

    PubMed

    Kim, Jun Young; Cho, Eunae; Kim, Jaehoon; Shin, Hyeonwoo; Roh, Jeongkyun; Thambidurai, Mariyappan; Kang, Chan-mo; Song, Hyung-Jun; Kim, SeongMin; Kim, Hyeok; Lee, Changhee

    2015-09-21

    We demonstrate that nanocrystalline Al-doped zinc oxide (n-AZO) thin film used as an electron-extraction layer can significantly enhance the performance of inverted polymer solar cells based on the bulk heterojunction of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) and [6,6]-phenyl C(71)-butyric acid methyl ester (PC(70)BM). A synergistic study with both simulation and experiment on n-AZO was carried out to offer a rational guidance for the efficiency improvement. As a result, An n-AZO film with an average grain size of 13 to 22 nm was prepared by a sol-gel spin-coating method, and a minimum resistivity of 2.1 × 10(-3) Ω·cm was obtained for an Al-doping concentration of 5.83 at.%. When an n-AZO film with a 5.83 at.% Al concentration was inserted between the ITO electrode and the active layer (PCDTBT:PC(70)BM), the power conversion efficiency increased from 3.7 to 5.6%. PMID:26406762

  14. Role of Ce4+ in the scintillation mechanism of codoped Gd3Ga3Al2O12:Ce

    SciTech Connect

    Wu, Yuntao; Meng, Fang; Li, Qi; Koschan, Merry; Melcher, Charles L.

    2014-10-17

    To control the time-response performance of widely used cerium-activated scintillators in cutting-edge medical-imaging devices, such as time-of-flight positron-emission tomography, a comprehensive understanding of the role of Ce valence states, especially stable Ce4+, in the scintillation mechanism is essential. However, despite some progress made recently, an understanding of the physical processes involving Ce4+ is still lacking. The aim of this work is to clarify the role of Ce4+ in scintillators by studying Ca2+ codoped Gd3Ga3Al2O12∶Ce (GGAG∶Ce). By using a combination of optical absorption spectra and x-ray absorption near-edge spectroscopies, the correlation between Ca2+codoping content and the Ce4+ fraction is seen. The energy-level diagrams of Ce3+ and Ce4+ in the Gd3Ga3Al2O12 host are established by using theoretical and experimental methods, which indicate a higher position of the 5d1 state of Ce4+ in the forbidden gap in comparison to that of Ce3+. Underlying reasons for the decay-time acceleration resulting from Ca2+ codoping are revealed, and the physical processes of the Ce4+-emission model are proposed and further demonstrated by temperature-dependent radioluminescence spectra under x-ray excitation.

  15. AlGaN/GaN HEMT And ZnO nanorod-based sensors for chemical and bio-applications

    NASA Astrophysics Data System (ADS)

    Chu, B. H.; Kang, B. S.; Wang, H. T.; Chang, C. Y.; Lele, T.,; Tseng, Y.; Goh, A.; Sciullo, A.; Wu, W. S.; Lin, J. N.; Gila, B. P.; Pearton, S. J.; Johnson, J. W.; Piner, E. L.; Linthicum, K. J.; Ren, F.

    2009-02-01

    Chemical sensors can be used to analyze a wide variety of environmental and biological gases and liquids and may need to be able to selectively detect a target analyte. Different methods, including gas chromatography (GC), chemiluminescence, selected ion flow tube (SIFT), and mass spectroscopy (MS) have been used to measure biomarkers. These methods show variable results in terms of sensitivity for some applications and may not meet the requirements for a handheld biosensor. A promising sensing technology utilizes AlGaN/GaN high electron mobility transistors (HEMTs). HEMT structures have been developed for use in microwave power amplifiers due to their high two dimensional electron gas (2DEG) mobility and saturation velocity. The conducting 2DEG channel of GaN/AlGaN HEMTs is very close to the surface and extremely sensitive to adsorption of analytes. HEMT sensors can be used for detecting gases, ions, pH values, proteins, and DNA. In this paper we review recent progress on functionalizing the surface of HEMTs for specific detection of glucose, kidney marker injury molecules, prostate cancer and other common substances of interest in the biomedical field.

  16. Single phase formation of Co-implanted ZnO thin films by swift heavy ion irradiation: Optical studies

    SciTech Connect

    Kumar, Ravi; Singh, Fouran; Angadi, Basavaraj; Choi, Ji-Won; Choi, Won-Kook; Jeong, Kwangho; Song, Jong-Han; Khan, M. Wasi; Srivastava, J. P.; Kumar, Ajay; Tandon, R. P.

    2006-12-01

    Low temperature photoluminescence and optical absorption studies on 200 MeV Ag{sup +15} ion irradiated Co-implanted ZnO thin films were studied. The Co clusters present in as implanted samples were observed to be dissolved using 200 MeV Ag{sup +15} ion irradiation with a fluence of 1x10{sup 12} ions/cm{sup 2}. The photoluminescence spectrum of pure ZnO thin film was characterized by the I{sub 4} peak due to the neutral donor bound excitons and the broad green emission. The Co-doped ZnO films show three sharp levels and two shoulders corresponding to 3t{sub 2g} and 2e{sub g} levels of crystal field splitted Co d orbitals, respectively. The ultraviolet-visible absorption spectroscopy also shows the systematic variation of band gap after 200 MeV Ag{sup +15} ion irradiation.

  17. Synthesis and Photoluminescence Characteristics of CaIn2O4:Dy3+ Phosphors Co-Doped with Gd3+, Zn2+ or AI3+ Ions.

    PubMed

    Gou, Jing; Wang, Jing; Yu, Binxun; Zhang, Dongyang

    2016-04-01

    Novel warm-white emitting phosphors CaIn2O4:Dy3+ co-doped with Gd3+, Zn2+, or Al3+ ions were prepared by solid state reaction. In this paper, a strategy of co-doping with different ions was used with the aim of affecting the luminescence properties of CaIn204:0.6%Dy3+ under NUV excitation. The luminescence intensities of CaIn2O4:0.6%Dy3+ were enhanced by 0.2% Gd3+ or 0.2% Zn2+ ions co-doping under 367 nm excitation, but lowered by co-doping with 0.2% Al3+ ions. Furthermore, the chromaticity coordinates of CaIn2O4:0.6%Dy3+ can be tuned from the cold-white region to warm-white region with Gd3+ or Zn2+ ions co-doping. These findings show that CaIn2O4:0.6%Dy3+,0.2% Gd3+, and CaIn2O4:0.6%Dy3+,0.2% Zn2+ have potential application value as new warm-white LED phosphors. PMID:27451749

  18. An enzymatic biosensor based on three-dimensional ZnO nanotetrapods spatial net modified AlGaAs/GaAs high electron mobility transistors

    SciTech Connect

    Song, Yu; Zhang, Xiaohui; Yan, Xiaoqin; Liao, Qingliang; Wang, Zengze; Zhang, Yue

    2014-11-24

    We designed and constructed three dimensional (3D) zinc oxide Nanotetrapods (T-ZnOs) modified AlGaAs/GaAs high electron mobility transistors (HEMTs) for enzymatic uric acid (UA) detection. The chemical vapor deposition synthesized T-ZnOs was distributed on the gate areas of HEMTs in order to immobilize uricase and improve the sensitivity of the HEMTs. Combining with the high efficiency of enzyme immobilization by T-ZnOs and high sensitivity from HEMT, the as-constructed uricase/T-ZnOs/HEMTs biosensor showed fast response towards UA at ∼1 s, wide linear range from 0.2 nM to 0.2 mM and the low detect limit at 0.2 nM. The results point out an avenue to design electronic device as miniaturized lab-on-chip device for high sensitive and specific in biomedical and clinical diagnosis applications.

  19. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    SciTech Connect

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2015-08-07

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  20. Ultraviolet band-pass Schottky barrier photodetectors formed by Al-doped ZnO contacts to n-GaN

    SciTech Connect

    Sheu, J.K.; Lee, M.L.; Tun, C.J.; Lin, S.W.

    2006-01-23

    This work prepared Al-doped ZnO(AZO) films using dc sputtering to form Schottky contacts onto GaN films with low-temperature-grown GaN cap layer. Application of ultraviolet photodetector showed that spectral responsivity exhibits a narrow bandpass characteristic ranging from 345 to 375 nm. Moreover, unbiased peak responsivity was estimated to be around 0.12 A/W at 365 nm, which corresponds to a quantum efficiency of around 40%. In our study, relatively low responsivity can be explained by the marked absorption of the AZO contact layer. When the reverse biases were below 5 V, the study revealed that dark currents were well below 5x10{sup -12} A even though the samples were annealed at increased temperatures.

  1. Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition

    SciTech Connect

    Volintiru, I.; Creatore, M.; Kniknie, B. J.; Spee, C. I. M. A.; Sanden, M. C. M. van de

    2007-08-15

    Al-doped zinc oxide (AZO) films were deposited by means of remote plasma-enhanced metalorganic chemical vapor deposition from oxygen/diethylzinc/trimethylaluminum mixtures. The electrical, structural (crystallinity and morphology), and chemical properties of the deposited films were investigated using Hall, four point probe, x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), electron recoil detection (ERD), Rutherford backscattering (RBS), and time of flight secondary ion mass spectrometry (TOF-SIMS), respectively. We found that the working pressure plays an important role in controlling the sheet resistance R{sub s} and roughness development during film growth. At 1.5 mbar the AZO films are highly conductive (R{sub s}<6 {omega}/{open_square} for a film thickness above 1200 nm) and very rough (>4% of the film thickness), however, they are characterized by a large sheet resistance gradient with increasing film thickness. By decreasing the pressure from 1.5 to 0.38 mbar, the gradient is significantly reduced and the films become smoother, but the sheet resistance increases (R{sub s}{approx_equal}100 {omega}/{open_square} for a film thickness of 1000 nm). The sheet resistance gradient and the surface roughness development correlate with the grain size evolution, as determined from the AFM and SEM analyses, indicating the transition from pyramid-like at 1.5 mbar to pillar-like growth mode at 0.38 mbar. The change in plasma chemistry/growth precursors caused by the variation in pressure leads to different concentration and activation efficiency of Al dopant in the zinc oxide films. On the basis of the experimental evidence, a valid route for further improving the conductivity of the AZO film is found, i.e., increasing the grain size at the initial stage of film growth.

  2. Evaluation of the optoelectronic properties and corrosion behavior of Al2O3-doped ZnO films prepared by dc pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zubizarreta, C.; Berasategui, E. G.; Bayón, R.; Escobar Galindo, R.; Barros, R.; Gaspar, D.; Nunes, D.; Calmeiro, T.; Martins, R.; Fortunato, E.; Barriga, J.

    2014-12-01

    The main requirements for transparent conducting oxide (TCO) films acting as electrodes are a high transmission rate in the visible spectral region and low resistivity. However, in many cases, tolerance to temperature and humidity exposure is also an important requirement to be fulfilled by the TCOs to assure proper operation and durability. Besides improving current encapsulation methods, the corrosion resistance of the developed TCOs must also be enhanced to warrant the performance of optoelectronic devices. In this paper the performance of aluminum-doped zinc oxide (AZO) films deposited by pulsed dc magnetron sputtering has been studied. Structure, optical transmittance/reflectance, electrical properties (resistivity, carrier concentration and mobility) and corrosion resistance of the developed coatings have been analyzed as a function of the doping of the target and the coating thickness. Films grown from a 2.0 wt% Al2O3 target with a thickness of approximately 1 µm showed a very low resistivity of 6.54  ×  10-4 Ωcm and a high optical transmittance in the visible range of 84%. Corrosion studies of the developed samples have shown very low corrosion currents (nanoamperes), very high corrosion resistances (in the order of 107 Ω) and very high electrochemical stability, indicating no tendency for electrochemical corrosion degradation.

  3. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    PubMed Central

    2014-01-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively. PMID:25276101

  4. Noble metal nanodisks epitaxially formed on ZnO nanorods and their effect on photoluminescence

    NASA Astrophysics Data System (ADS)

    Chu, Sheng; Ren, Jingjian; Yan, Dong; Huang, Jian; Liu, Jianlin

    2012-07-01

    Triangular and hexagonal shaped noble metal (Au, Ag, Pt, Pd) nanodisks were synthesized on the top facets of ZnO nanorods via simple deposition-annealing method. Other metals (Ni, Cu, Cr, Pb, Al) only formed irregular shaped nanostructures on ZnO nanorods. The morphology, elemental composition, as well as growth mechanism of the metal nanodisks/ZnO nanorod composite materials were studied. The localized surface plasmon resonant effects from different metal nanodisks on the photoluminescence of ZnO nanorods were investigated. It was demonstrated that the carriers transfer between the metal nanodisks and ZnO can efficiently manipulate the photoluminescence intensities from the nanorods.

  5. Comparative study on beryllium and magnesium as a co-doping element for ZnO:N

    NASA Astrophysics Data System (ADS)

    Yu-Quan, Su; Ming-Ming, Chen; Long-Xing, Su; Yuan, Zhu; Zi-Kang, Tang

    2016-06-01

    Stable nitrogen doping is an important issue in p-type ZnO research for device applications. In this paper, beryllium and magnesium are systematically compared as a dopant in ZnO to reveal their nitrogen-stabilizing ability. Secondary ion mass spectrum shows that Be and Mg can both enhance the stability of nitrogen in ZnO while Be has a better performance. Zn 2p and O 1s electron binding energies change in both MgZnO and BeZnO thin films. Donor-acceptor luminescence is observed in the BeZnO samples. We conclude that Be is a better co-doping element than Mg for p-type ZnO:N. Project supported by the National Key Basic Research Program of China (Grant No. 2011CB302000), the National Natural Science Foundation of China (Grant Nos. 51232009 and 51202299), the Fundamental Research Funds for the Central Universities, China (Grant No. 11lgpy16), the Natural Science Foundation for Jiangsu Provincial Higher Education, Institutions of China (Grant No. 15KJB510005), and the Talent Fund of Jiangsu University, China (Grant No. 15JDG042).

  6. Orientation-Dependent Structural Properties and Growth Mechanism of ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Yu, H.-J.; Jeong, E.-S.; Park, S.-H.; Seo, S.-Y.; Kim, S.-H.; Han, S.-W.

    2007-01-01

    We present the local structural properties of ZnO nanorods studied by using extended x-ray absorption fine structure (EXAFS). Vertically aligned ZnO nanorods were fabricated on Al2O3 substrates by a catalyst free metal organic chemical vapor deposition (MOCVD). The polarized EXAFS measurements on the ZnO nanorods were performed at Zn K-edge. The polarized EXAFS study revealed that the nanorods had a wurtzite structure, and that there were substantial amount of structural disorders in Zn-O pairs in the beginning of the nanorod growth. The EXAFS measurements revealed that the orientation-dependent disorders of the Zn-O pairs were directly related to the growth mechanism and crystal quality of the ZnO nanorods.

  7. Enhancement of Red Persistent Luminescence in Cr3+-Doped ZnGa2O4 Phosphors by Bi2O3 Codoping

    NASA Astrophysics Data System (ADS)

    Zhuang, Yixi; Ueda, Jumpei; Tanabe, Setsuhisa

    2013-05-01

    Bi2O3 was proved to be an effective codopant to enhance red persistent luminescence in Cr3+-doped ZnGa2O4 spinel. The Cr-Bi-codoped ZnGa2O4 phosphors showed about 10 times higher persistent luminescence intensity than the Cr-singly-doped phosphors. The radiance (in mW sr-1m-2) of persistent luminescence in ZnGa2O4:Cr,Bi phosphors was comparable to that in commercialized SrAl2O4:Eu,Dy phosphors. Increases of Cr3+ absorption and photoluminescence were also observed in the Cr-Br-codoped ZnGa2O4 sample. The obtained results suggest that Bi2O3 may play a critical role in stabilizing Cr3+ in ZnGa2O4 spinel.

  8. Epitaxial growth of ZnO nanowall networks on GaN/sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Park, Hyun-Kyu; Yi, Min-Su; Park, Nae-Man; Park, Jong-Hyurk; Kim, Sang-Hyeob; Maeng, Sung-Lyul; Choi, Chel-Jong; Moon, Seung-Eon

    2007-01-01

    Heteroepitaxy of vertically well-aligned ZnO nanowall networks with a honeycomblike pattern on GaN /c-Al2O3 substrates by the help of a Au catalyst was realized. The ZnO nanowall networks with wall thicknesses of 80-140nm and an average height of about 2μm were grown on a self-formed ZnO thin film during the growth on the GaN /c-Al2O3 substrates. It was found that both single-crystalline ZnO nanowalls and catalytic Au have an epitaxial relation to the GaN thin film in synchrotron x-ray scattering experiments. Hydrogen-sensing properties of the ZnO nanowall networks have also been investigated.

  9. Control of selforganized magnetic nanocrystals aggregation in (Ga,Fe)N by co-doping with shallow donors and acceptors

    NASA Astrophysics Data System (ADS)

    Bonanni, A.; Navarro-Quezada, A.; Li, T.; Kiecana, M.; Sawicki, M.; Dietl, T.

    2008-03-01

    A number of possible room temperature functionalities has recently been proposed for magnetically doped semiconductors, in which spinodal decomposition leads to the self-organized formation of coherent ferromagnetic nanodots or nanocolumns [1]. It has also been suggested that the decomposition can be controlled in a wide range by growth conditions and co-doping [2]. We have extended our previous structural and magnetic studies of (Ga,Fe)N [3] by examining the effects of Si and Mg co-doping. As before, we have found the magnetic response to consist of a paramagnetic signal from substitutional Fe and of a ferromagnetic component due to Fe1-xN nanocrystals. Our results demonstrate that the co-doping reduces the fractional concentration of Fe contributing to the nanocrystals. This shows that tuning of the Fermi energy by changing the charge state of the transition metal ions affects their aggregation, as proposed recently [2].1. H.Katayama-Yosida et al., phys.stat. sol. (a) 204, 15 (2007); T.Dietl, arXiv:0711.0343. 2. S.Kuroda et al., Nature Mat. 6, 440 (2007). 3. A.Bonanni et al., Phys. Rev. B 75, 125210 (2007).

  10. Valency configuration of transition metal impurities in ZnO

    SciTech Connect

    Petit, Leon; Schulthess, Thomas C; Svane, Axel; Temmerman, Walter M; Szotek, Zdzislawa; Janotti, Anderson

    2006-01-01

    We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn{sub 1-x}TM{sub x}O, the localized TM{sup 2+} configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy {epsilon}F close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with {epsilon}F close to the valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.

  11. Light emission from electrically stressed ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Lucera, Luca; Adnane, Lhacene; Cil, Kadir; Manthina, Venkata; Agrios, Alexander; Silva, Helena; Gokirmak, Ali

    2012-02-01

    Zinc oxide (ZnO) nanorods were grown on various substrates by a chemical growth process based on a ZnO seed solution, and starting from Zinc acetate (ZnAc) material. The nanorods were grown on insulating silicon (low doped) and oxidized silicon substrates, and also over patterned conducting (highly-doped) nanocrystalline silicon microwires. When high voltage is applied directly to the ZnO film using tungsten needles (˜ 50-60 V across ˜ 5-10 μm), high intensity blue and white light emission is observed, both in air and under high vacuum (10-4 - 10-5 Torr). Blue light appears as broad bright flashes covering a large area whereas white light is more localized and appears to come from individual nanostructures. The results suggest a combination of electroluminescence and photoluminescence processes that take place after an electrical breakdown (possibly across individual ZnO nanorods) that is observed as an exponential increase in current. Percolative conduction and light paths are also observed during the measurements. Measurements of the ZnO films of rods on conducting silicon substrate give more repeatable results, likely due to the higher probability of conducting paths between the two probes. The electrical stress results in significant self-heating and modification of the ZnO nanostructures and the contacts.[4pt] [1] Greene L. E. et al. Solution-Grown Zinc oxide nanowires. Innorganic Chemistry. Vol 45. 7535-7543. (2006)

  12. A dual-colored bio-marker made of doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Y. L.; Fu, S.; Tok, A. I. Y.; Zeng, X. T.; Lim, C. S.; Kwek, L. C.; Boey, F. C. Y.

    2008-08-01

    Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.

  13. Properties of (Ga,Mn)As codoped with Li

    SciTech Connect

    Miyakozawa, Shohei; Chen, Lin; Matsukura, Fumihiro; Ohno, Hideo

    2014-06-02

    We grow Li codoped (Ga,Mn)As layers with nominal Mn composition up to 0.15 by molecular beam epitaxy. The layers before and after annealing are characterized by x-ray diffraction, transport, magnetization, and ferromagnetic resonance measurements. The codoping with Li reduces the lattice constant and electrical resistivity of (Ga,Mn)As after annealing. We find that (Ga,Mn)As:Li takes similar Curie temperature to that of (Ga,Mn)As, but with pronounced magnetic moments and in-plane magnetic anisotropy, indicating that the Li codoping has nontrivial effects on the magnetic properties of (Ga,Mn)As.

  14. Niobia and tantala codoped orthorhombic zirconia ceramics

    SciTech Connect

    Hoeftberger, M.; Gritzner, G.

    1995-04-15

    During recent studies it was found that codoping of zirconia with niobia and tantala yielded very corrosion resistant, orthorhombic zirconia ceramics. The powders for those novel ceramics were made via the sol-gel technique by hydrolysis of the respective metal propoxides; a method which required dry-box techniques during the preparation of the alkoxides. In these studies the authors investigated the fabrication of precursor material from aqueous solutions. The preparation of aqueous solutions of salts of zirconium, niobium and tantalum is hampered by rapid hydrolysis. Premature hydrolysis of the chlorides and oxichlorides of niobium, tantalum and zirconium can be, however, prevented in aqueous solutions of oxalic acid. Thus the authors investigated the coprecipitation of hydroxides as precursors by reacting oxalic acid solutions of the respective cations with aqueous ammonia. In addition they studied the effects of calcination and of hydrothermal conversion of the hydroxides to oxides on the powder characteristics and on the mechanical properties of the niobia and tantala codoped zirconia ceramics.

  15. Ceria co-doping: synergistic or average effect?

    PubMed

    Burbano, Mario; Nadin, Sian; Marrocchelli, Dario; Salanne, Mathieu; Watson, Graeme W

    2014-05-14

    Ceria (CeO2) co-doping has been suggested as a means to achieve ionic conductivities that are significantly higher than those in singly doped systems. Rekindled interest in this topic over the last decade has given rise to claims of much improved performance. The present study makes use of computer simulations to investigate the bulk ionic conductivity of rare earth (RE) doped ceria, where RE = Sc, Gd, Sm, Nd and La. The results from the singly doped systems are compared to those from ceria co-doped with Nd/Sm and Sc/La. The pattern that emerges from the conductivity data is consistent with the dominance of local lattice strains from individual defects, rather than the synergistic co-doping effect reported recently, and as a result, no enhancement in the conductivity of co-doped samples is observed. PMID:24658460

  16. Electrical property measurements of Cr-N codoped TiO2 epitaxial thin films grown by pulsed laser deposition

    SciTech Connect

    Jacimovic, J; Gaal, R; Magrez, Arnaud; Forro, Laszlo; Regmi, Murari; Eres, Gyula

    2013-01-01

    The temperature dependent resistivity and thermo-electric power of Cr-N codoped TiO2 were compared with that of single element N and Cr doped and undoped TiO2 using epitaxial anatase thin films grown by pulsed laser deposition on (100) LaAlO3 substrates. The resistivity plots and especially the thermoelectric power data confirm that codoping is not a simple sum of single element doping. However, the negative sign of the Seebeck coefficient indicates electron dominated transport independent of doping. The narrowing distinction among the effects of different doping methods combined with increasing resistivity of the films with improving crystalline quality of TiO2 suggest that structural defects play a critical role in the doping process.

  17. Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition

    PubMed Central

    2012-01-01

    We demonstrate the morphological control method of ZnO nanostructures by atomic layer deposition (ALD) on an Al2O3/ZnO seed layer surface and the application of a hierarchical ZnO nanostructure for a photodetector. Two layers of ZnO and Al2O3 prepared using ALD with different pH values in solution coexisted on the alloy film surface, leading to deactivation of the surface hydroxyl groups. This surface complex decreased the ZnO nucleation on the seed layer surface, and thereby effectively screened the inherent surface polarity of ZnO. As a result, a 2-D zinc hydroxyl compound nanosheet was produced. With increasing ALD cycles of ZnO in the seed layer, the nanostructure morphology changes from 2-D nanosheet to 1-D nanorod due to the recovery of the natural crystallinity and polarity of ZnO. The thin ALD ZnO seed layer conformally covers the complex nanosheet structure to produce a nanorod, then a 3-D, hierarchical ZnO nanostructure was synthesized using a combined hydrothermal and ALD method. During the deposition of the ALD ZnO seed layer, the zinc hydroxyl compound nanosheets underwent a self-annealing process at 150 °C, resulting in structural transformation to pure ZnO 3-D nanosheets without collapse of the intrinsic morphology. The investigation on band electronic properties of ZnO 2-D nanosheet and 3-D hierarchical structure revealed noticeable variations depending on the richness of Zn-OH in each morphology. The improved visible and ultraviolet photocurrent characteristics of a photodetector with the active region using 3-D hierarchical structure against those of 2-D nanosheet structure were achieved. PMID:22672780

  18. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.

    PubMed

    Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Majeed Khan, M A; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  19. Characterization of ZnO and Zn0.95Co0.05O prepared by sol-gel method using PAC spectroscopy

    NASA Astrophysics Data System (ADS)

    Mercurio, M. E.; Carbonari, A. W.; Cordeiro, M. R.; Saxena, R. N.

    The measurement of the electric field gradient (efg) with PAC spectroscopy was used to follow the heat treatment during the preparation of ZnO samples using sol-gel method. In particular, the investigation was carried out on samples of intrinsically n-type II-VI wurtzite semiconductor ZnO and Co-doped Zn0.95Co0.05O samples prepared by sol-gel methodology from pure metallic Zn(99.9999%). Carrier-free 111In nuclei were introduced in the samples by thermal diffusion. 111In solution was added to the precursor sol-gel solution prior to the formation of gel material. PAC measurements were carried out to follow the formation of the ZnO. Two undoped ZnO samples, which were heated in air and argon atmosphere, show different results. PAC measurements were also used to follow the 111In diffusion in a commercially purchased ZnO (99.99%) sample as well as to compare the results with the measurements taken with sol-gel prepared samples. The results show that samples prepared by sol-gel process followed by heating in argon produce better quality ZnO samples. The results also show that the Co atoms in Zn0.95Co0.05O are in substitutional sites.

  20. Characterization of ZnO and Zn0.95Co0.05O prepared by sol-gel method using PAC spectroscopy

    NASA Astrophysics Data System (ADS)

    Mercurio, M. E.; Carbonari, A. W.; Cordeiro, M. R.; Saxena, R. N.

    2007-07-01

    The measurement of the electric field gradient (efg) with PAC spectroscopy was used to follow the heat treatment during the preparation of ZnO samples using sol-gel method. In particular, the investigation was carried out on samples of intrinsically n-type II-VI wurtzite semiconductor ZnO and Co-doped Zn0.95Co0.05O samples prepared by sol-gel methodology from pure metallic Zn(99.9999%). Carrier-free 111In nuclei were introduced in the samples by thermal diffusion. 111In solution was added to the precursor sol-gel solution prior to the formation of gel material. PAC measurements were carried out to follow the formation of the ZnO. Two undoped ZnO samples, which were heated in air and argon atmosphere, show different results. PAC measurements were also used to follow the 111In diffusion in a commercially purchased ZnO (99.99%) sample as well as to compare the results with the measurements taken with sol-gel prepared samples. The results show that samples prepared by sol-gel process followed by heating in argon produce better quality ZnO samples. The results also show that the Co atoms in Zn0.95Co0.05O are in substitutional sites.

  1. Gas sensing performance of nanocrystalline ZnO prepared by a simple route

    NASA Astrophysics Data System (ADS)

    Murade, P. A.; Sangawar, V. S.; Chaudhari, G. N.; Kapse, V. D.; Bajpeyee, A. U.

    2013-08-01

    The nanocrystalline powders of pure and Al3+-doped ZnO with hexagonal structure were prepared by a simple hydrothermal decomposition route. The structure and crystal phase of the powders were characterized by X-ray diffraction (XRD) and the microstructure by transmission electron microscopy (TEM). All the compositions exhibited a single phase, suggesting a formation of solid solution between Al2O3 and ZnO. DC electrical properties of the prepared nanoparticles were studied by DC conductivity measurements. The indirect heating structure sensors based on pure and doped ZnO as sensitive materials were fabricated on an alumna tube with Au electrodes. Gas-sensing properties of the sensor elements were measured as a function of concentration of dopant, operating temperature and concentrations of the test gases. The pure ZnO exhibited high response to NH3 gas at an operating temperature of 200 °C. Doping of ZnO with Al3+ increased its response towards NH3 and the Al3+-doped ZnO (3.0 wt% Al2O3) showed the maximum response at 175 °C. The selectivity of the sensor elements for NH3 against different reducing gases like LPG, H2S and H2 was studied. The results on response and recovery time were also discussed.

  2. Zn(O, S) layers for chalcoyprite solar cells sputtered from a single target

    NASA Astrophysics Data System (ADS)

    Grimm, A.; Kieven, D.; Lauermann, I.; Lux-Steiner, M. Ch.; Hergert, F.; Schwieger, R.; Klenk, R.

    2012-09-01

    A simplified Cu(In, Ga)(S, Se)2/Zn(O, S)/ZnO:Al stack for chalcopyrite thin-film solar cells is proposed. In this stack the Zn(O, S) layer combines the roles of the traditional CdS buffer and undoped ZnO layers. It will be shown that Zn(O, S) films can be sputtered in argon atmosphere from a single mixed target without substrate heating. The photovoltaic performance of the simplified stack matches that of the conventional approach. Replacing the ZnO target with a ZnO/ZnS target may therefore be sufficient to omit the CdS buffer layer and avoid the associated complexity, safety and recycling issues, and to lower production cost.

  3. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  4. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    PubMed Central

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M.A.; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33–55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  5. Heteroepitaxial growth of nonpolar Cu-doped ZnO thin film on MnS-buffered (100) Si substrate

    NASA Astrophysics Data System (ADS)

    Nakamura, Tatsuru; Nguyen, Nam; Nagata, Takahiro; Takahashi, Kenichiro; Ri, Sung-Gi; Ishibashi, Keiji; Suzuki, Setsu; Chikyow, Toyohiro

    2015-06-01

    The preparation of nonpolar ZnO and Cu-doped ZnO thin films on Si substrates was studied for the application to the fabrication of green-light-emitting diodes. The use of rocksalt MnS and wurtzite AlN as buffer layers is a key technology for achieving the heteroepitaxial growth of nonpolar ZnO thin film on a (100) Si substrate. X-ray diffraction and photoluminescence measurements revealed that deposition under a high oxygen partial pressure (∼1 Torr) can enhance the nonpolar crystallization of undoped ZnO, and can simultaneously suppress the formation of defects such as oxygen vacancies. These techniques can be also applied to the growth of Cu-doped ZnO. A room-temperature photoluminescence study revealed that nonpolar [11\\bar{2}0]-oriented Cu-doped ZnO film exhibits enhanced green emission owing to the doped Cu ions.

  6. Pulsed laser deposited cobalt-doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Wang, Li; Su, Xue-qiong; Lu, Yi; Chen, Jiang-bo

    2013-09-01

    To realize the room-temperature ferromagnetism (RTFM) in diluted magnetic semiconductors (DMS), we prepared a series of Cobalt-doped ZnO thin films using pulsed laser deposition (PLD) at deposition temperatures 500°C under oxygen pressure from 2.5×10-4 Pa to 15 Pa. To elucidate the physical origin of RTFM, Co 2p spectra of cobalt-doped ZnO thin films was measured by X-ray photoelectron spectroscopy (XPS). The magnetic properties of films were measured by an alternating gradient magnetometer (AGM), and the electrical properties were detected by a Hall Effect instrument using the Van der Pauw method. XPS analysis shows that the Co2+ exists and Co clusters and elemental content change greatly in samples under various deposition oxygen pressures. Not only the valence state and elemental content but also the electrical and magnetic properties were changed. In the case of oxygen pressure 10 Pa, an improvement of saturation magnetic moment about one order of magnitude over other oxygen pressure experiments, and the film exhibits ferromagnetism with a curie temperature above room temperature. It was found that the value of carrier concentration in the Co-doped ZnO film under oxygen pressure 10Pa increases about one order of magnitude than the values of other samples under different oxygen pressure. Combining XPS with AGM measurements, we found that the ferromagnetic signals in cobalt-doped ZnO thin film deposited at 500 °C under oxygen pressure 10 Pa only appear with the detectable Co2+ spectra from incompletely oxidized Co metal or Co cluster. So oxygen pressure 10 Pa can be thought the best condition to obtain room-temperature dilute magnetic semiconductor about cobalt-doped ZnO thin films.

  7. Effects of interfacial layer structures on crystal structural properties of ZnO films

    SciTech Connect

    Park, J. S.; Minegishi, T.; Lee, S. H.; Im, I. H.; Park, S. H.; Hanada, T.; Goto, T.; Cho, M. W.; Yao, T.; Hong, S. K.; Chang, J. H.

    2008-01-15

    Single crystalline ZnO films were grown on Cr compound buffer layers on (0001) Al{sub 2}O{sub 3} substrates by plasma assisted molecular beam epitaxy. In terms of lattice misfit reduction between ZnO and substrate, the CrN and Cr{sub 2}O{sub 3}/CrN buffers are investigated. The structural and optical qualities of ZnO films suggest the feasibility of Cr compound buffers for high-quality ZnO films growth on (0001) Al{sub 2}O{sub 3} substrates. Moreover, the effects of interfacial structures on selective growth of different polar ZnO films are investigated. Zn-polar ZnO films are grown on the rocksalt CrN buffer and the formation of rhombohedral Cr{sub 2}O{sub 3} results in the growth of O-polar films. The possible mechanism of polarity conversion is proposed. By employing the simple patterning and regrowth procedures, a periodical polarity converted structure in lateral is fabricated. The periodical change of the polarity is clearly confirmed by the polarity sensitive piezo response microscope images and the opposite hysteretic characteristic of the piezo response curves, which are strict evidences for the validity of the polarity controlling method as well as the successful fabrication of the periodical polarity controlled ZnO structure.

  8. The mechanism of long phosphorescence of SrAl{sub 2-x}B{sub x}O{sub 4} (0Al{sub 14-x}B{sub x}O{sub 25} (0.1co-doped with Eu{sup 2+} and Dy{sup 3+}

    SciTech Connect

    Nag, Abanti; Kutty, T.R.N

    2004-03-01

    The role of B{sub 2}O{sub 3} in realizing the long phosphorescence of Eu(II)+Dy(III) doped strontium aluminates has been investigated. IR and solid state {sup 27}Al MAS NMR spectra show the incorporation of boron as BO{sub 4} in the AlO{sub 4} framework of SrAl{sub 2}O{sub 4} and Sr{sub 4}Al{sub 14}O{sub 25}. Phosphor, made free of glassy phases by washing with hot acetic acid+glycerol, did not show any photoconductivity under UV irradiation, indicating that the mechanism involving hole conduction in valence band is untenable for long phosphorescence. EPR studies confirm the presence of both electron and hole trap centers. Dy{sup 3+} forms substitutional defect complex with borate; [Dy-BO{sub 4}-V{sub Sr}]{sup 2-}, and acts as a hole trap center. The electron centers are formed by the oxygen vacancies associated with BO{sub 3}{sup 3-}, i.e. [BO{sub 3}-V{sub O}]{sup 3-}. Under indigo light or near UV irradiation, the photoinduced electron centers are formed as [BO{sub 3}-V{sub O}(e')]{sup 4-}. The holes are released from [Dy-BO{sub 4}-V{sub Sr}(h{center_dot})]{sup 1-} under thermal excitation at room temperature. The recombination of electrons with holes releases energy which is expended to excite Eu{sup 2+} to induce long phosphorescence.

  9. Aluminum doping studies on high field ZnO varistors

    SciTech Connect

    Kimball, K.M.; Doughty, D.H.

    1987-08-01

    We have investigated the effect of Al doping on the physical and electronic properties of high field ZnO varistors. For this study, varistors containing 98.94 m/o ZnO, 0.25 m/o CoO, 0.25 m/o MnO, 0.56 m/o Bi/sub 2/O/sub 3/ and 0 to 200 ppM Al were prepared from powders obtained from solution precipitation techniques. Because of the amphoteric nature of aluminum oxides, precise control of pH and metal concentrations was necessary to assure complete incorporation of dopants. We observed inhibition of grain growth during sintering of varistor pellets at aluminum concentrations of 50 ppM and above. The measured electrical properties show increased switching fields and increased nonlinearity coefficients for Al doping levels of 50 to 200 ppM.

  10. Non-linear Electrical Characteristics of ZnO Modified by Trioxides Sb2O3, Bi2O3, Fe2O3, Al2O3 and La2O3

    NASA Astrophysics Data System (ADS)

    Mekap, Anita; Das, Piyush R.; Choudhary, R. N. P.

    2016-08-01

    The non-linear behavior of polycrystalline-ZnO-based voltage-dependent resistors is considered in the present study. A high-temperature solid-state reaction route was used to synthesize polycrystalline samples of ZnO modified by small amounts of the trioxides Sb2O3, Bi2O3, Fe2O3, etc. in various proportions. X-ray diffraction and scanning electron microscopy techniques were used to study the structural and microstructural characteristics of modified ZnO. Detailed studies of non-linear phenomena of the I-V characteristics, dielectric permittivity ( ɛ r), impedance ( Z), etc. of the samples have provided many interesting results. All the samples exhibited dielectric anomaly. Non-linear variation in polarization with electric field for all the samples was observed. Moreover, significant non-linearity in the I-V characteristics was observed in the breakdown region of all the samples at room temperature. The non-linear coefficient ( α) in different cases, i.e. for I- V, ɛ r- f, ɛ r- T, and ɛ r- Z, was calculated and found to be appreciable. The frequency dependence of ac conductivity suggests that the material obeys Jonscher's universal power law.

  11. Optical and spectroscopic characterization of Er3+-Yb3+co-doped tellurite glasses and fibers

    NASA Astrophysics Data System (ADS)

    Narro-García, R.; Desirena, H.; Chillcce, E. F.; Barbosa, L. C.; Rodriguez, E.; De la Rosa, E.

    2014-04-01

    Optical and spectroscopic properties of Er3+-Yb3+ co-doped TeO2-WO3-Nb2O5-Na2O-Al2O3 glasses and fibers were investigated. Emission spectra and fluorescence lifetimes of 4I13/2 level of Er3+ion as a function of rare earth concentration and fiber length were measured in glasses. Results show that the self-absorption effect broadens the spectral bandwidth of 4I13/2→4I15/2 transition and lengthens the lifetime significantly from 3.5 to 4.6 ms. Fibers were fabricated by the rod-in-tube technique using a Heathway drawing tower. The emission power of these Er3+-Yb3+ co-doped Step Index Tellurite Fibers (SITFs; lengths varying from 2 to 60 cm) were generated by a 980 nm diode laser pump and then the emission power spectra were acquired with an OSA. The maximum emission power spectra, within the 1530-1560 nm region, were observed for fiber lengths ranging from 3 to 6 cm. The highest bandwidth obtained was 108 nm for 8 cm fiber length around 1.53 µm.

  12. Specifications of ZnO growth for heterostructure solar cell and PC1D based simulations

    PubMed Central

    Hussain, Babar; Ebong, Abasifreke

    2015-01-01

    This data article is related to our recently published article (Hussain et al., in press [1]) where we have proposed a new solar cell model based on n-ZnO as front layer and p-Si as rear region. The ZnO layer will act as an active n-layer as well as antireflection (AR) coating saving considerable processing cost. There are several reports presenting use of ZnO as window/antireflection coating in solar cells (Mansoor et al., 2015; Haq et al., 2014; Hussain et al., 2014; Matsui et al., 2014; Ding et al., 2014 [2], [3], [4], [5], [6]) but, here, we provide data specifically related to simultaneous use of ZnO as n-layer and AR coating. Apart from the information we already published, we provide additional data related to growth of ZnO (with and without Ga incorporation) layers using MOCVD. The data related to PC1D based simulation of internal and external quantum efficiencies with and without antireflection effects of ZnO as well as the effects of doping level in p-Si on current–voltage characteristics have been provided. PMID:26587557

  13. Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al₂O₃ spacer layer.

    PubMed

    Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Chen, Hong-Yan; Zhang, Yuan; Li, De-Hui; Liu, Wen-Jun; Ding, Shi-Jin; Jiang, An-Quan; Zhang, David Wei

    2016-04-22

    Surface-plasmon mediated photoluminescence emission enhancement has been investigated for ZnO nanowire (NW)/Pt nanoparticle (NP) nanostructures by inserting an Al2O3 spacer layer. The thickness of the Al2O3 spacer layer and of the Pt NPs capped on the ZnO NWs are well controlled by atomic layer deposition. It is found that the photoluminescence property of the ZnO NW/Al2O3/Pt hybrid structure is highly tunable with respect to the thickness of the inserted Al2O3 spacer layer. The highest enhancement (∼14 times) of the near band emission of ZnO NWs is obtained with an optimized Al2O3 spacer layer thickness of 10 nm leading to a ultraviolet-visible emission ratio of 271.2 compared to 18.8 for bare ZnO NWs. The enhancement of emission is influenced by a Förster-type non-radiative energy transfer process of the exciton energy from ZnO NWs to Pt NPs as well as the coupling effect between excitons of ZnO NWs and surface plasmons of Pt NPs. The highly versatile and tunable photoluminescence properties of Pt-coated ZnO NWs achieved by introducing an Al2O3 spacer layer demonstrate their potential application in highly efficient optoelectronic devices. PMID:26963868

  14. Codoping of magnesium with oxygen in gallium nitride nanowires

    SciTech Connect

    Wang, Zhiguo; Li, Jingbo; Gao, Fei; Weber, William J.

    2010-03-08

    Co-doping of p-type GaN nanowires with Mg and oxygen was investigated using first-principles calculations. The Mg becomes a deep acceptor in GaN nanowires with high ionization energy due to the quantum confinement. The ionization energy of Mg doped GaN nanowires containing passivated Mg-O complex decreases with increasing the diameter, and reduces to 300 meV as the diameter of the GaN nanowire is larger than 2.01 nm, which indicates that Mg-O co-doping is suitable for achieving p-type GaN nanowires with larger diameters. The co-doping method to reduce the ionization energy can be effectively used in other semiconductor nanostructures.

  15. Jc enhancement and flux pinning in Y1-xGdxBCO and (Gd, Eu) codoped Y0.9-yEuyGd0.1BCO thin films by TFA-MOD

    NASA Astrophysics Data System (ADS)

    Jian, Hongbin; Shao, Dingfu; Yang, Zhaorong; Zhu, Xuebin; Sun, Yuping

    2013-05-01

    Y1-xGdxBa2Cu3O7-δ (0 ⩽ x ⩽ 0.5) thin films were prepared on LaAlO3 (0 0 1) substrates by trifluoroacetate metal organic deposition (TFA-MOD). It was observed that the critical current density under self-field of Y0.9Gd0.1Ba2Cu3O7-δ thin film was about two times higher than that of YBCO thin film within the range of 5-85 K. Then, codoped Y0.9-yEuyGd0.1BCO thin films (0 ⩽ y ⩽ 0.2) were fabricated by TFA-MOD. It was observed that the critical current density under magnetic fields was enhanced largely due to codoping. The flux pinning type was not changed with Gd doping and codoping, which could be attributed to the normal surface pins.

  16. Assessment of structural, optical and conduction properties of ZnO thin films in the presence of acceptor impurities

    NASA Astrophysics Data System (ADS)

    Plugaru, R.; Plugaru, N.

    2016-06-01

    The structural, optical and electrical conduction properties of (Li/Cu,N):ZnO codoped thin films synthesized by the sol–gel method were investigated by field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), transmission and absorption, photoluminescence (PL) and I–V measurements in order to bring evidence of the formation of acceptor centers by dual-acceptor codoping processes. The (Li 3%,N 5%):ZnO films consist of crystallites with average size of 15 nm, show 95% transmission in the visible region, and an optical band gap of 3.22 eV. The PL spectra show emission maxima at 3.21 and 2.96 eV which are related to the emission of acceptor centers and the presence of defects, respectively. Li occupies interstitial sites and may form Lii–N(O) defect complexes that act as acceptor centers. The (Cu 3%,N 5%):ZnO films consist of crystallites with average size of 12 nm, and exhibit 90% transmission in the visible region. The PL spectra reveal band edge emission at 3.23 eV and defect related emission at 2.74 eV. In the (Cu,N) codoped films, copper substitutes zinc and adopts mainly the Cu1+ state. A possible defect complex involving Cu and N determines the transition from n- to p-type conductivity. These findings are in agreement with results of electronic structure calculations at the GGA-PBE level.

  17. Assessment of structural, optical and conduction properties of ZnO thin films in the presence of acceptor impurities.

    PubMed

    Plugaru, R; Plugaru, N

    2016-06-01

    The structural, optical and electrical conduction properties of (Li/Cu,N):ZnO codoped thin films synthesized by the sol-gel method were investigated by field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), transmission and absorption, photoluminescence (PL) and I-V measurements in order to bring evidence of the formation of acceptor centers by dual-acceptor codoping processes. The (Li 3%,N 5%):ZnO films consist of crystallites with average size of 15 nm, show 95% transmission in the visible region, and an optical band gap of 3.22 eV. The PL spectra show emission maxima at 3.21 and 2.96 eV which are related to the emission of acceptor centers and the presence of defects, respectively. Li occupies interstitial sites and may form Lii-N(O) defect complexes that act as acceptor centers. The (Cu 3%,N 5%):ZnO films consist of crystallites with average size of 12 nm, and exhibit 90% transmission in the visible region. The PL spectra reveal band edge emission at 3.23 eV and defect related emission at 2.74 eV. In the (Cu,N) codoped films, copper substitutes zinc and adopts mainly the Cu(1+) state. A possible defect complex involving Cu and N determines the transition from n- to p-type conductivity. These findings are in agreement with results of electronic structure calculations at the GGA-PBE level. PMID:26979467

  18. Effect of aluminium doping on structural and optical properties of ZnO thin films by sol-gel method

    SciTech Connect

    Vijayaprasath, G.; Murugan, R.; Ravi, G. E-mail: gravicrc@gmail.com; Hayakawa, Y.

    2015-06-24

    We systematically investigated the structural, morphological and optical properties of 0.05 mol % Al doped ZnO (Al:ZnO) thin films deposited on glass substrates by sol-gel spin coating method. The influences of Al doping in ZnO thin films are characterized by Powder X-ray diffraction study. ZnO and Al:ZnO thin films have showed hexagonal wurtzite structure without any secondary phase in c-axis (002) orientation. The SEM images also proved the hexagonal rod like morphologies for both films. All the films exhibited transmittance of 70-80% in the visible range up to 800 nm and cut-off wavelength observed at ∼390 nm corresponding to the fundamental absorption of ZnO. The band gap of the ZnO thin films slightly widened with the Al doping. The photoluminescence properties have been studied for Al: ZnO thin films and the results are presented in detail.

  19. Ga and Al doped zinc oxide thin films for transparent conducting oxide applications: Structure-property correlations

    NASA Astrophysics Data System (ADS)

    Temizer, Namik K.; Nori, Sudhakar; Narayan, Jagdish

    2014-01-01

    We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110 μΩ-cm) values. The films grown in an ambient oxygen partial pressure (PO2) of 5 × 10-2 Torr and at growth temperatures from room temperature to 600 °C show semiconducting behavior, whereas samples grown at a PO2 of 1 × 10-3 Torr show metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The measured optical and transport properties were found to be a strong function of growth conditions implying that the drastic changes are brought about essentially by native point defects. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical, and magnetic properties and such changes in physical properties are controlled predominantly by the defect content.

  20. Growth of ZnO thin films doped with (Mn & Co) by spin coating technique

    NASA Astrophysics Data System (ADS)

    Dhruvashi, Rawat, Kusum; Shishodia, P. K.

    2016-05-01

    ZnO thin films co-doped with Mn and Co have been deposited on glass substrates by spin coating technique. Structural, optical and magnetic properties have been investigated as a function of dopant concentration. X-ray diffraction has confirmed the growth of c-axis oriented polycrystalline thin films. No impurity phases have been detected corresponding to metal oxides within the limitation of x-ray diffraction. The optical bandgap has been evaluated from tauc's plots derived from the transmittance spectra in the wavelength range 350-900 nm. Surface morphology of the films has been observed by field emission scanning electron microscope. The field dependence of magnetization (M-H curve) measured by vibrating sample magnetometer shows the ferromagnetic behavior of the films at room temperature. The magnetization versus temperature (M-T) curve has also been measured under zero field cooled and field cooled conditions.

  1. Enhanced ultraviolet photoresponse based on ZnO nanocrystals/Pt bilayer nanostructure

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Lin; Xia, Xiao-Zhi; Li, Qing-Xia

    2015-06-01

    The development of solution strategies for Zinc oxide (ZnO) quantum dots provides a pathway to utilizing ZnO nanocrystal thin films in optoelectronic devices. In this work, quasi-spherical ZnO quantum dots with a diameter of 5 nm are synthesized by using ethanol as a solvent. ZnO nanocrystal thin film is obtained by spin-coating ZnO quantum dots on a Au interdigital electrode (IDE)/Al2O3 substrate and annealing at different temperatures in order to yield the optimal photosensitive on/off ratio of ZnO. For further enhancing the responsivity, ion sputtering is utilized to deposit Pt nanoparticles on the surface of ZnO nanocrystal thin film, the responsivity of the ZnO/Pt bilayer nanostructure increases from 0.07 A/W to 54 A/W, showing that the metal/inorganic nanocrystal bilayer nanostructure can be used to improve the performance of optoelectronic devices. The excellent properties of ZnO/Pt bilayer nanostructure have important applications in future electronic and optoelectronic devices. Project supported by the National Natural Science Foundation of China (Grant No. 41176156).

  2. Shape-dependent localized surface plasmon enhanced UV-emission from ZnO grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Liu, Xing Qiang; Wang, Ti; Chen, Chao; Wu, Hao; Liao, Lei; Liu, Chang

    2013-03-01

    Two-dimensional arrays of Al nanoparticles (NPs) were used to demonstrate the localized surface plasmon resonance (LSPR) enhanced UV light emission from ZnO grown by atomic layer deposition. Well defined NP arrays with different shapes were fabricated on the surface of ZnO by electron-beam lithography. A theoretical analysis based on the finite-difference time-domain method was carried out to show the shape dependence of the LSPR wavelength. Time resolved photoluminescence and temperature-dependent photoluminescence measurements suggested that the Al NPs arrays increase the radiative recombination rate by the resonance coupling between the localized surface plasmons and the excitons of the ZnO. By top excitation of the Al NP arrays coupled with ZnO, a 2.6-fold enhancement in peak photoluminescence intensity was measured. The enhancement strongly depended on the NP’s shape, revealing an important way of geometrical tuning the UV-emission.

  3. Shape-dependent localized surface plasmon enhanced UV-emission from ZnO grown by atomic layer deposition.

    PubMed

    Lin, Ying; Liu, Xing Qiang; Wang, Ti; Chen, Chao; Wu, Hao; Liao, Lei; Liu, Chang

    2013-03-29

    Two-dimensional arrays of Al nanoparticles (NPs) were used to demonstrate the localized surface plasmon resonance (LSPR) enhanced UV light emission from ZnO grown by atomic layer deposition. Well defined NP arrays with different shapes were fabricated on the surface of ZnO by electron-beam lithography. A theoretical analysis based on the finite-difference time-domain method was carried out to show the shape dependence of the LSPR wavelength. Time resolved photoluminescence and temperature-dependent photoluminescence measurements suggested that the Al NPs arrays increase the radiative recombination rate by the resonance coupling between the localized surface plasmons and the excitons of the ZnO. By top excitation of the Al NP arrays coupled with ZnO, a 2.6-fold enhancement in peak photoluminescence intensity was measured. The enhancement strongly depended on the NP's shape, revealing an important way of geometrical tuning the UV-emission. PMID:23466715

  4. Realizing ferromagnetic ordering in SnO2 and ZnO nanostructures with Fe, Co, Ce ions.

    PubMed

    Verma, Kuldeep Chand; Kotnala, R K

    2016-07-14

    We report the defects/vacancies that attribute to room temperature ferromagnetism in SnO2 in contrast to ZnO [Phys. Chem. Chem. Phys., 2016, 18, 5647], which has observed ferromagnetic ordering below room temperature, since both the systems involve similar dopant Fe, Co, and Ce ions. The Fe, Co, Ce doped SnO2 nanostructures were synthesized by a sol-gel process. The Rietveld refinement of the X-ray diffraction data detects a rutile SnO2 structure, with structural defects due to the deformation of the unit cell with doping. The pure, Fe and Co doped SnO2 have nanoparticle formation that is induced to nanorods with Ce co-doping. However, ZnO retained a nanorod-type shape with Fe and Co ions and changed to nanoparticles with Ce co-doping. The rutile SnO2 structure and defect formation with Fe, Co, and Ce ions is also confirmed with Raman vibrational modes. The observed lattice defects due to oxygen vacancies are shown by the photoluminescence study. The weak room temperature ferromagnetism is observed with Fe and Co ions in SnO2, which is enhanced with Ce ions. The zero field (ZFC) and field cooling magnetic measurements indicate an improvement in magnetization with a cusp in the ZFC curve at low temperature, observed due to an antiferromagnetic transition. It also induced variations in the magnetic coercive field due to the phenomenon of superparamagnetism, spin glasses, and magnetic clustered growth. This can be further confirmed with ac magnetic susceptibility measurements that show magnetic transitions as well as frequency dispersive and dependent behaviors of χ'(T)/χ''(T). However, the Fe, Co, Ce doped ZnO exhibit paramagnetic behavior at room temperature due to favorable antiferromagnetic interactions and have a ferromagnetic transition at low temperature with little ferromagnetic cluster growth. PMID:27305970

  5. Polarity Effects of Substrate Surface in Epitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; George, M. A.; McCarty, P.

    1999-01-01

    Epitaxial ZnO films were grown on the two polar surfaces (0-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films are also deposited on the (000 I) Al203 substrates. It is found that the two polar surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which are strongly inference the epitaxial film growth. The morphology and structure of epitaxial films on the ZnO substrates are different from the film on the Al203 substrates. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite Surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth using reactive sputtering deposition.

  6. Carrier mobility of highly transparent conductive Al-doped ZnO polycrystalline films deposited by radio-frequency, direct-current, and radio-frequency-superimposed direct-current magnetron sputtering: Grain boundary effect and scattering in the grain bulk

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2015-01-01

    The effects of using radio-frequency (RF)-superimposed direct-current (DC) magnetron sputtering deposition on the structural, electrical, and optical properties of aluminum-doped ZnO (AZO)-based highly transparent conducting oxide films have been examined. AZO films were deposited on heated non-alkaline glass substrates (200 °C) using ZnO:Al2O3 (2 wt. % Al2O3) ceramic oxide targets with the total power varied from 150 to 300 W, and at various RF to DC power ratios, AZO films deposited by a mixed approach with the RF to the total power ratio of 0.14 showed the lowest resistivity of 2.47 × 10-4 Ω cm with the highest carrier concentration of 6.88 × 1020 cm-3 and the highest Hall mobility (μH) of 36.8 cm2/Vs together with the maximum value of an average transmittance in the visible spectral range from 400 to 700 nm. From the analysis of optical data based on the simple Drude model combined with the Tauc-Lorentz model and the results of Hall effect measurements, the optical mobility (μopt) was determined. A comparison of μopt with μH clarified the effects of the mixed approach not only on the reduction of the grain boundary contribution to the carrier transport but also on retaining high carrier mobility of in-grains for the AZO films.

  7. Correlated substitution in paramagnetic Mn{sup 2+}-doped ZnO epitaxial films.

    SciTech Connect

    Droubay, T. C.; Keavney, D. J.; Kaspar, T. C.; Heald, S. M.; Wang, C. M.; Johnson, C. A.; Whitaker, K. M.; Gamelin, D. R.; Chambers, S. A.; X-Ray Science Division; PNNL; Univ. of Washington

    2009-04-01

    Epitaxial films of Mn2+-doped ZnO were deposited by pulsed laser deposition on {alpha}-Al{sub 2}O{sub 3}(0001) using targets created from Mn{sup 2+}-doped ZnO nanoparticles. Using x-ray absorption spectroscopy and x-ray magnetic circular dichroism, Mn(II) was found to substitute for Zn(II) in the wuertzite ZnO lattice with only a paramagnetic dichroic component from the Mn and no magnetic component from either the O or Zn. The dichroism reveals that, while substitutional, the Mn{sup 2+} distribution in the ZnO lattice is not stochastic. Rather, Mn{sup 2+} has a tendency to substitute with higher effective local concentrations than anticipated from a stochastic doping model.

  8. Synthesis and characterization of Sb-doped ZnO microspheres by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Nagasaki, Fumiaki; Shimogaki, Tetsuya; Tanaka, Toshinobu; Ikebuchi, Tatsuya; Ueyama, Takeshi; Fujiwara, Yuki; Higashihata, Mitsuhiro; Nakamura, Daisuke; Okada, Tatsuo

    2016-08-01

    We succeeded in synthesizing antimony (Sb)-doped zinc oxide (ZnO) microspheres by ablating a sintered ZnO target containing Sb in air. The structural properties of the microspheres were investigated by Raman scattering studies. The Zn–Sb related local vibrational mode (LVM) was detected around 238 cm‑1. Room-temperature photoluminescence (PL) properties of the microspheres were investigated under cw and pulsed laser excitations, and ultraviolet (UV) emission and whispering-gallery-mode (WGM) lasing were observed from the microspheres. Furthermore, a p–n heterojunction was formed between a single Sb-doped ZnO microsphere and an n-Al-doped ZnO thin film, and a good rectifying property with a turn-on voltage of approximately 1.8 V was observed in the current–voltage (I–V) characteristics across the junction.

  9. Atomic Oxygen Sensors Based on Nanograin ZnO Films Prepared by Pulse Laser Deposition

    SciTech Connect

    Wang Yunfei; Chen Xuekang; Li Zhonghua; Zheng Kuohai; Wang Lanxi; Feng Zhanzu; Yang Shengsheng

    2009-01-05

    High-quality nanograin ZnO thin films were deposited on c-plane sapphire (Al{sub 2}O{sub 3}) substrates by pulse laser deposition (PLD). Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were used to characterize the samples. The structural and morphological properties of ZnO films under different deposition temperature have been investigated before and after atomic oxygen (AO) treatment. XRD has shown that the intensity of the (0 0 2) peak increases and its FWHM value decreases after AO treatment. The AO sensing characteristics of nano ZnO film also has been investigated in a ground-based atomic oxygen simulation facility. The results show that the electrical conductivity of nanograin ZnO films decreases with increasing AO fluence and that the conductivity of the films can be recovered by heating.

  10. Dopant source choice for formation of p-type ZnO: Li acceptor

    NASA Astrophysics Data System (ADS)

    Zeng, Y. J.; Ye, Z. Z.; Xu, W. Z.; Li, D. Y.; Lu, J. G.; Zhu, L. P.; Zhao, B. H.

    2006-02-01

    Li-doped, p-type ZnO thin films have been realized via dc reactive magnetron sputtering. An optimized result with a resistivity of 16.4Ωcm, Hall mobility of 2.65cm2/Vs, and hole concentration of 1.44×1017cm-3 was achieved, and electrically stable over a month. Hall-effect measurements supported by secondary ion mass spectroscopy indicated that the substrate temperature played a key role in optimizing the p-type conduction of Li-doped ZnO thin films. Furthermore, ZnO-based p-n homojunction was fabricated by deposition of a Li-doped p-type ZnO layer on an Al-doped n-type ZnO layer.

  11. Pulsed-laser deposition of ZnO and related compound thin films for optoelectronics

    NASA Astrophysics Data System (ADS)

    Millon, Eric; Perrière, Jacques; Tricot, Sylvain; Boulmer-Leborgne, Chantal

    2008-05-01

    ZnO is a wide and direct band-gap material (3.37 eV at room temperature) making this compound very suitable for UV photodetector applications as well as for UV and blue light emitting devices. As an electronic conductor, ZnO may be used as transparent and conducting electrodes for flat panel displays and solar cells. ZnO doped with various atoms can also lead to new or enhanced functional properties. For example, doping with Al, Ga, In, Si or H allows decreasing its resistivity to below 10-4 Ω.cm, while keeping the high optical transparency. Rare-earth doped ZnO thin films have been studied for optics and optoelectronics such as visible or infrared emitting devices, planar optical waveguide amplifiers. Ferromagnetic semiconductors can be obtained by doping ZnO with transition metal atoms (Mn, Co, Ni...) that could be used as spin injectors in spintronics. These new and exciting properties of pure and doped ZnO request the use of thin films or multilayer structures. ZnO thin film growth by pulsed-laser deposition (PLD) with or without any dopants or alloyed atoms has been intensively studied. In this paper, we will review the aspects of ZnO thin films grown by PLD, in order to prepare dense, stoichiometric and crystalline epitaxied ZnO layers or to form nanocrystalline films. Then, the optical and electrical properties will be discussed with a special emphasis on the growth conditions in relation to the physical properties for applications in p-n junctions, light emission devices, spintronics and bandgap tuning.

  12. Enhanced ZnO Thin-Film Transistor Performance Using Bilayer Gate Dielectrics.

    PubMed

    Alshammari, Fwzah H; Nayak, Pradipta K; Wang, Zhenwei; Alshareef, Husam N

    2016-09-01

    We report ZnO TFTs using Al2O3/Ta2O5 bilayer gate dielectrics grown by atomic layer deposition. The saturation mobility of single layer Ta2O5 dielectric TFT was 0.1 cm(2) V(-1) s(-1), but increased to 13.3 cm(2) V(-1) s(-1) using Al2O3/Ta2O5 bilayer dielectric with significantly lower leakage current and hysteresis. We show that point defects present in ZnO film, particularly VZn, are the main reason for the poor TFT performance with single layer dielectric, although interfacial roughness scattering effects cannot be ruled out. Our approach combines the high dielectric constant of Ta2O5 and the excellent Al2O3/ZnO interface quality, resulting in improved device performance. PMID:27553091

  13. Residual and intentional n-type doping of ZnO thin films grown by metal-organic vapor phase epitaxy on sapphire and ZnO substrates

    NASA Astrophysics Data System (ADS)

    Brochen, Stéphane; Lafossas, Matthieu; Robin, Ivan-Christophe; Ferret, Pierre; Gemain, Frédérique; Pernot, Julien; Feuillet, Guy

    2014-03-01

    ZnO epilayers usually exhibit high n-type residual doping which is one of the reasons behind the difficulties to dope this material p-type. In this work, we aimed at determining the nature of the involved impurities and their potential role as dopant in ZnO thin films grown by metalorganic vapor phase epitaxy (MOVPE) on sapphire and ZnO substrates. In both cases, secondary ion mass spectroscopy (SIMS) measurements give evidence for a strong diffusion of impurities from the substrate to the epilayer, especially for silicon and aluminum. In the case of samples grown on sapphire substrates, aluminum follows Fick's diffusion law on a wide growth temperature range (800-1000°C). Thus, the saturation solubility and the diffusion coefficient of aluminum in ZnO single crystals have been determined. Furthermore, the comparison between SIMS impurity and effective dopant concentrations determined by capacitance-voltage measurements highlights, on one hand a substitutional mechanism for aluminum diffusion, and on the other hand that silicon acts as a donor in ZnO and not as an amphoteric impurity. In addition, photoluminescence spectra exhibit excitonic recombinations at the same energy for aluminum and silicon, indicating that silicon behaves as an hydrogenic donor in ZnO. Based on these experimental observations, ZnO thin films with a controlled n-type doping in the 1016-1019cm-3 range have been carried out. These results show that MOVPE growth is fully compatible with the achievement of highly Al-doped n-type thin films, but also with the growth of materials with low residual doping, which is a crucial parameter to address ZnO p-type doping issues.

  14. Formation and Characteristics of Anatase-Type Titania Solid Solution Nanoparticles Doped with Nb5+ M (M = Ga3+, Al3+, Sc3+)

    NASA Astrophysics Data System (ADS)

    Hirano, Masanori; Ito, Takaharu

    2011-10-01

    Anatase-type titania solid solutions co-doped with Nb5+ and cation M (M = Ga3+, Al3+, Sc3+) with composition Ti1-2XNbXMXO2 were directly formed as nanoparticles from precursor solutions of TiOSO4, NbCl5, and metal salts (Ga(SO4)3, Al(NO3)3, and Sc(NO3)3) under mild hydrothermal conditions at 180 °C for 5 h using the hydrolysis of urea. The effect of co-doped cation M on the formation and properties of anatase-type titania solid solutions was investigated. The region of anatse-type solid solution depended on the co-doped cation M. The composition range of anatase-type titania solid solution in the case of M = Sc3+ was much wider than that in the case of M = Ga3+ and Al3+. The increase in the amount of co-doped cation M = Ga3+, Al3+ enhanced the crystallite growth of anatase solid solutions under the hydrothermal conditions. The solid solutions co-doped with M = Al3+ showed the most improved photocatalytic activity in the three cations. The anatase-to-rutile phase transformation of solid solutions was promoted at lower temperature via the presence of co-doped cation M = Ga3+.

  15. Improvement in the Grain Growth of Plasma-Treated Nano-Sized ZnO Films and Their Characterization.

    PubMed

    Chen, Mi; Chou, Ching-Chuan; Lin, Ching-Cheng; Koo, Horng-Show

    2015-11-01

    The well-aligned ZnO nanorods were rapidly grown on an indium tin oxide (ITO)-coated glass substrate using Al-doped ZnO (AZO) thin film as seed layer by the microwave-assisted hydrothermal chemical route. The optimal growth conditions for the well-aligned ZnO nanorods were obtained by modulating H2 plasma pretreatment time for the seed layer and synthesis time for ZnO nanorods. The H2 plasma effect of the seed layer on the alignment, growth rate and crysallinity of ZnO nanods is also demonstrated. The synthesized ZnO nanorods were annealed in atmosphere of N2, O2 and H2 + N2 mixed gas to improve the related physical characteristics, the ZnO nanorods on grapheme/ITO substrate were also investigated. The results show that the alignment and growth rate of ZnO nanorods depends on the physical characteristics and roughness of the seed layer, which can be improved by H2 plasma pretreatment. The average growth rate of ZnO nanorods synthesized by microwave hydrothermal technique is about 2.2 μm/hr which significantly superior to other conventional techniques. After the appropriate N2 annealing treatment, good quality and well-aligned ZnO nanorods, which are single crystal with stacking defects and pyramid or candle shape, were obtained. A fundamental model of the effect of H2 plasma pretreatment on the surface of seed layer and the growth of ZnO nanorods using a microwave-assisted hydrothermal chemical route is also described. PMID:26726662

  16. Aluminoborosilicate glasses codoped with rare-earth elements as radiation-protective covers for solar cells

    SciTech Connect

    Malchukova, E. V. Abramov, A. S.; Nepomnyashchikh, A. I.; Terukov, E. I.

    2015-06-15

    The radiation hardness of aluminoborosilicate glasses codoped with rare-earth ions of Sm, Gd or Sm, Eu in various ratios is studied. The effect of codoping and β irradiation at a dose of 10{sup 9} Gr on the optical transmission and electron paramagnetic resonance spectra is examined. It is found that the introduction of Sm and Gd codopants in a 1 : 1 ratio reduces the number of radiation defects and raises the transmission of irradiated glasses in the visible spectral range.

  17. Secondary ion mass spectrometry and photoluminescence study on microstructural characteristics of chemically synthesized ZnO nanowalls

    NASA Astrophysics Data System (ADS)

    Bayan, Sayan; Chakraborty, Purushottam

    2014-06-01

    We report on the thermal effect on the microstructural modification of self-assembled ZnO nanowalls grown on Al substrates. The morphology of the as-synthesized nanowalls has been investigated using scanning electron microscopy, while the X-ray diffraction study ensures the formation of hexagonal wurtzite crystal structure of ZnO and also indicates the formation of Al2O3 layer at the interface of Al and ZnO nanowalls. The unidirectional vertical growth of ZnO wire-like network formed at an intermediate stage has been anticipated as the evolution mechanism of the nanowalls. Upon annealing in air and vacuum environment, significant crystallographic modification of the ZnO nanowalls has been observed through X-ray diffraction. The appearance of various native defects (e.g. oxygen vacancies, zinc interstitials, etc.) in the ZnO crystals of the annealed nanowalls has been evidenced through photoluminescence spectroscopy. The luminescence response of the nanowalls is found to be dependent on the surface adsorbant species like OH-, O2-, etc., whose existence on the nanowall surface have been detected through secondary ion mass spectrometry (SIMS). Again the oxygen deficiency in the vacuum-annealed nanowalls has also been confirmed through SIMS measurements. Apart from this microstructural alteration of the nanowalls, annealing also has aggravated the dominance of insulating nature of the Al2O3 interface.

  18. Differential Toxicity of Bare and Hybrid ZnO Nanoparticles in Green Pea (Pisum sativum L.): A Life Cycle Study

    PubMed Central

    Mukherjee, Arnab; Sun, Youping; Morelius, Erving; Tamez, Carlos; Bandyopadhyay, Susmita; Niu, Genhua; White, Jason C.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2016-01-01

    The effect of surface or lattice modification of nanoparticles (NPs) on terrestrial plants is poorly understood. We investigated the impact of different zinc oxide (ZnO) NPs on green pea (Pisum sativum L.), one of the highest consumed legumes globally. Pea plants were grown for 65 d in soil amended with commercially available bare ZnO NPs (10 nm), 2 wt% alumina doped (Al2O3@ZnO NPs, 15 nm), or 1 wt% aminopropyltriethoxysilane coated NPs (KH550@ZnO NP, 20 nm) at 250 and 1000 mg NP/kg soil inside a greenhouse. Bulk (ZnO) and ionic Zn (zinc chloride) were included as controls. Plant fresh and dry biomass, changes in leaf pigment concentrations, elements (Zn, Al, Si), and protein and carbohydrate profile of green pees were quantified upon harvest at 65 days. With the exception of the coated 1000 mg/kg NP treatment, fresh and dry weight were unaffected by Zn exposure. Although, all treated plants showed higher tissue Zn than controls, those exposed to Al2O3@ZnO NPs at 1000 mg/kg had greater Zn concentration in roots and seeds, compared to bulk Zn and the other NP treatments, keeping Al and Si uptake largely unaffected. Higher Zn accumulation in green pea seeds were resulted in coated ZnO at 250 mg/kg treatments. In leaves, Al2O3@ZnO NP at 250 mg/kg significantly increased Chl-a and carotenoid concentrations relative to the bulk, ionic, and the other NP treatments. The protein and carbohydrate profiles remained largely unaltered across all treatments with the exception of Al2O3@ZnO NPs at 1000 mg/kg where sucrose concentration of green peas increased significantly, which is likely a biomarker of stress. Importantly, these findings demonstrate that lattice and surface modification can significantly alter the fate and phytotoxic effects of ZnO NPs in food crops and seed nutritional quality. To the authors' knowledge, this is the first report of a life cycle study on comparative toxicity of bare, coated, and doped ZnO NPs on a soil-grown food crop. PMID:26793219

  19. A Comparison of ZnO and ZnO(-)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James (Technical Monitor)

    1998-01-01

    Ab initio electronic structure calculations are performed to support and to help interpret the experimental work reported in the proceeding manuscript. The CCSD(T) approach, in conjunction with a large basis set, is used to compute spectroscopic constants for the X(exp 1)Epsilon(+) and (3)II states of ZnO and the X(exp 2)Epsilon(+) state of ZnO(-). The spectroscopic constants, including the electron affinity, are in good agreement with experiment. The ZnO EA is significantly larger than that of O, thus relative to the atomic ground state asymptotes, ZnO(-) has a larger D(sub o) than the (1)Epsilon(+) state, despite the fact that the extra electron goes into an antibonding orbital. The changes in spectroscopic constants can be understood in terms of the X(exp 1)Epsilon(+) formally dissociating to Zn (1)S + O (1)D while the (3)II and (2)Epsilon(+) states dissociate to Zn (1)S + O (3)P and Zn (1) and O(-) (2)P, respectively.

  20. Efficiency enhancement in dye-sensitized solar cells with down conversion material ZnO: Eu3+, Dy3+

    NASA Astrophysics Data System (ADS)

    Yao, Nannan; Huang, Jinzhao; Fu, Ke; Liu, Shiyou; E, Dong; Wang, Yanhao; Xu, Xijin; Zhu, Min; Cao, Bingqiang

    2014-12-01

    The down conversion (DC) material ZnO: Eu3+, Dy3+ are synthesized by precipitation method and used to prepare the photo anode of dye-sensitized solar cells (DSSCs). The effects of down conversion material on the photoelectric performance of the DSSC were characterized by the X-ray diffraction (XRD), photoluminescence (PL), scanning electron microscope (SEM), current-voltage (I-V) curve, incident-photon-to-current conversion efficiency (IPCE) and UV-vis-NIR absorption spectroscopy. In this paper, Eu3+, Dy3+ codoped ZnO excited by from UV to blue light converts blue to red light emission, corresponding to the absorption region of the dye (N719). At the concentration 1.75% of ZnO: Eu3+, Dy3+ (weight ratio of DC to TiO2), the short-circuit current density and conversion efficiency of the DSSCs reached to the optimal values: 8.92 mA cm-2 and 4.48%, about 212% and 245% higher than with pure TiO2 and about 91.4% and 105% higher than with TiO2/graphene (G) structure, respectively. The research result reveals that the application of DC material can improve the efficiency of DSSCs.

  1. Study of the wettability of ZnO nanofilms

    NASA Astrophysics Data System (ADS)

    Subedi, Deepak Prasad; Madhup, Dinesh Kumar; Sharma, Ashish; Joshi, Ujjwal Man; Huczko, Andrzej

    2012-04-01

    Al-doped and un-doped ZnO thin films deposited on quartz substrates by the nebulized spray pyrolysis method were studied to investigate the wettability of the surface. The main objective of the present study was to investigate the wettability of ZnO thin film by changing the concentration of Al doping. Microstructure and water contact angles of the films were measured by scanning electron microscopy (SEM) and using a contact angle goniometer. SEM studies revealed that the grain size within the film increases with the doping concentration. The contact angles were studied to see the effect of aluminum doping on the hydrophilicity of the film. ZnO films were found to be hydrophobic in nature. A good correlation was observed between the SEM micrographs and contact angle results. The nature of the film was found to change from being hydrophobic to hydrophilic after the treatment in low-pressure DC glow discharge plasma, which, however, was reversible with the storage time.

  2. Impurity sublattice localization in ZnO revealed by Li marker diffusion.

    PubMed

    Azarov, A Yu; Knutsen, K E; Neuvonen, P T; Vines, L; Svensson, B G; Kuznetsov, A Yu

    2013-04-26

    Sublattice localization of impurities in compound semiconductors, e.g., ZnO, determines their electronic and optical action. Despite that the impurity position may be envisaged based on charge considerations, the actual localization is often unknown, limiting our understanding of the incorporation and possible doping mechanisms. In this study, we demonstrate that the preferential sublattice occupation for a number of impurities in ZnO can be revealed by monitoring Li diffusion. In particular, using ion implantation, the impurity incorporation into the Zn sublattice (holds for, B, Mg, P, Ag, Cd, and Sb) manifests in the formation of Li-depleted regions behind the implanted one, while Li pileups in the region of the implantation peaks for impurities residing on O sites, e.g., N. The behavior appears to be of general validity and the phenomena are explained in terms of the apparent surplus of Zn and O interstitials, related to the lattice localization of the impurities. Furthermore, Cd+O and Mg+O co-doping experiments revealed that implanted O atoms act as an efficient blocking "filter" for fast diffusing Zn interstitials. PMID:23679745

  3. Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Mei; Han, Xianlong; Chang, Xiaoqing; Yin, Wenchao; Ma, Jingyun

    2016-08-01

    d-Methionine and chitosan have been used for fabrication of nitrogen/sulfur-codoped carbon materials by a hydrothermal process followed by carbonization at 750°C for 3 h. The as-prepared carbon materials showed enhanced electrochemical performance, combining electrical double-layer capacitance with pseudocapacitance owing to the doping with sulfur and nitrogen. The specific capacitance of the obtained carbon material reached 135 F g-1 at current density of 1 A g-1, which is much higher than undoped chitosan (67 F g-1). The capacitance retention of the carbon material was almost 97.2% after 5000 cycles at current density of 1 A g-1. With such improved electrochemical performance, the nitrogen/sulfur-codoped carbon material may have promising potential for use in energy-storage electrodes of supercapacitors.

  4. Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Mei; Han, Xianlong; Chang, Xiaoqing; Yin, Wenchao; Ma, Jingyun

    2016-05-01

    uc(d)-Methionine and chitosan have been used for fabrication of nitrogen/sulfur-codoped carbon materials by a hydrothermal process followed by carbonization at 750°C for 3 h. The as-prepared carbon materials showed enhanced electrochemical performance, combining electrical double-layer capacitance with pseudocapacitance owing to the doping with sulfur and nitrogen. The specific capacitance of the obtained carbon material reached 135 F g-1 at current density of 1 A g-1, which is much higher than undoped chitosan (67 F g-1). The capacitance retention of the carbon material was almost 97.2% after 5000 cycles at current density of 1 A g-1. With such improved electrochemical performance, the nitrogen/sulfur-codoped carbon material may have promising potential for use in energy-storage electrodes of supercapacitors.

  5. Nucleation and growth of ZnO on PMMA by low-temperature atomic layer deposition

    SciTech Connect

    Napari, Mari Malm, Jari; Lehto, Roope; Julin, Jaakko; Arstila, Kai; Sajavaara, Timo; Lahtinen, Manu

    2015-01-15

    ZnO films were grown by atomic layer deposition at 35 °C on poly(methyl methacrylate) substrates using diethylzinc and water precursors. The film growth, morphology, and crystallinity were studied using Rutherford backscattering spectrometry, time-of-flight elastic recoil detection analysis, atomic force microscopy, scanning electron microscopy, and x-ray diffraction. The uniform film growth was reached after several hundreds of deposition cycles, preceded by the precursor penetration into the porous bulk and island-type growth. After the full surface coverage, the ZnO films were stoichiometric, and consisted of large grains (diameter 30 nm) with a film surface roughness up to 6 nm (RMS). The introduction of Al{sub 2}O{sub 3} seed layer enhanced the initial ZnO growth substantially and changed the surface morphology as well as the crystallinity of the deposited ZnO films. Furthermore, the water contact angles of the ZnO films were measured, and upon ultraviolet illumination, the ZnO films on all the substrates became hydrophilic, independent of the film crystallinity.

  6. Carrier transport mechanisms of hybrid ZnO nanorod-polymer LEDs

    NASA Astrophysics Data System (ADS)

    Cho, Sungjae; Lee, Kyu Seung; Son, Dong Ick; Oh, Youngjei; Choi, Won Kook; Angadi, Basavaraj

    2014-07-01

    A hybrid polymer-nanorod (NR) light-emitting diode (LED), consisting of a hole-conducting polymer poly (9-vinyl carbazole) (PVK) and ZnO nanorod (NR) composite, with the device structure of glass/indium-tin-oxide (ITO)/PEDOT:PSS/(PVK + ZnO nanorods)/Al is fabricated through a simple spin coating technique. TEM images shows inhomogeneous deposition and the agglomeration of ZnO NRs, which is explained through their low probability of adsorption on PVK due to two-dimensional structural property. In the current-voltage characteristics, negative differential resistance (NDR) phenomenon is observed corresponding to device structure without ZnO NRs. The carrier transport behavior in the LED device is well described by both ohmic and space-chargelimited-current (SCLC) mechanisms. Broad blue electroluminescence (EL) consisting of two sub peaks, are centered at 441 nm and the other at 495 nm, is observed, which indicates that the ZnO nanorod play a role as a recombination center for excitons. The red shift in the position of the EL compared to that photoluminescence is well explained through band offsets at the heterojunction between the PVK and ZnO NRs.

  7. Local structural properties of Co-ion-implanted ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Park, C. I.; Jin, Zhenlan; Jeong, E. S.; Hwang, I. H.; Han, S. W.

    2013-12-01

    We examined the local structural properties around Co and Zn ions in Co-ion-implanted ZnO nanorods by using an X-ray absorption fine structure (XAFS) analysis. Vertically-aligned ZnO nanorods were synthesized on Al2O3 substrates by using a catalyst-free metal-organic chemicalvapor deposition. Co ions (Co+ and Co2+) with energies of 50 and 100 keV and fluxes of 1013 and 1015 particles/cm2 were implanted in the ZnO nanorods, and the ion-implanted ZnO nanorods were annealed at 400-650°C. X-ray absorption near edge structure (XANES) analyses demonstrated that the chemical valence state of the Co ions were mostly 2+. An extended XAFS (EXAFS) analysis revealed that the Co ions were mostly substituted at the Zn sites of ZnO nanorods at a Coion flux of 1015 particles/cm2. However, at a flux of 1013 particles/cm2, Co ions formed Co-O and Co-Co clusters. These results were in contrast to the Co distribution in Co-added ZnO predicted by using a Monte Carlo method.

  8. Low-temperature chemical bath deposition of crystalline ZnO

    NASA Astrophysics Data System (ADS)

    Jacobs, Klaus; Balitsky, Denis; Armand, Pascale; Papet, Philippe

    2010-03-01

    ZnO crystals can be grown from alkaline aqueous solution not only by the standard hydrothermal technique at temperatures between 350 °C and 400 °C, but also by chemical bath deposition (CBD) at temperatures below 100 °C. In the presence of ZnO and ScAlMgO 4 (SCAM) substrates almost all ZnO deposits on the substrate, with different habits, however. Under optimized conditions even homoepitaxial layers can be obtained, while rod-like structures are obtained on SCAM substrates. The chemistry and the driving forces behind the two processes are considered in detail and the temperature dependence of the solution composition has been calculated. The driving force for the ZnO crystal growth in the standard hydrothermal technique is the difference in the ZnO solubility in alkaline solutions at different temperatures. In contrast, the driving force for the chemical bath deposition of ZnO at low temperatures is the decay of zinc ion complex molecules with increasing temperature.

  9. White-light emitting Eu3+ co-doped ZnO/Zn2SiO4:Mn2+ composite microphosphor

    NASA Astrophysics Data System (ADS)

    Ramakrishna, P. V.; Murthy, D. B. R. K.; Sastry, D. L.

    Eu3+ co-doped ZnO/Zn2SiO4:Mn2+ composites were synthesized via conventional solid state reaction route and were characterized by X-ray diffraction (XRD) scanning electron microscopy (SEM) and Fourier transform infra-red (FTIR) techniques. XRD studies reveal the presence of both ZnO and Zn2SiO4 phases. Photoluminescence properties of the samples were studied using 266 Nd-YAG laser excitations. Emission bands observed at ˜400 nm are ascribed to ZnO phosphor. The green emission bands at 530 nm is associated with the presence of Mn2+ ion, while orange (˜583) and red (615 nm) bands are supposed to be due to the presence of Eu3+ doped Zn2SiO4 phosphor. Energy transfer from power dependence of the sample for electric dipole transition (615 nm) was studied under 532 nm excitation by varying the power from 0.1 to 4.5 W. The estimated colour correlated temperature (CCT) values are found to be ˜4875 and 4458 K under 266 nm and 532 nm laser (0.5 W) excitations. These values are close to those of tubular fluorescent or cool white/daylight compact fluorescent (CFL) (˜5000 K) lamps. The present composite phosphor may have potential application in display devices.

  10. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  11. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  12. Effect of thicknesses of copper catalyst and oxide sublayer on morphology of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Lyanguzov, N. V.; Kaydashev, V. E.; Kaidashev, E. M.; Abdulvakhidov, K. G.

    2011-03-01

    The influence of thicknesses of a ZnO sublayer and a copper catalyst film on the morphology of ZnO nanorods grown by carbothermal synthesis on α-Al2O3(11-20) substrates has been studied. An increase in the Cu catalyst film thickness leads to a growth in the diameters, heights, and surface density of nanorods. As the ZnO sublayer thickness is increased, the average diameter of nanorods also increases, while their lengths and surface density decrease. The effect of elevated temperatures on the thermal decomposition of ultrathin Cu films deposited on α-Al2O3 substrates has been studied. The photoluminescence characteristics of nanorod arrays have been measured at high levels of optical pumping. An increase in the pumping level to 250-280 kW/cm2 leads to superluminescence of the nanorods.

  13. NIR luminescence studies on Er3+:Yb3+ co-doped sodium telluroborate glasses for lasers and optical amplifer applications

    NASA Astrophysics Data System (ADS)

    Annapoorani, K.; Murthy, N. Suriya; Marimuthu, K.

    2016-05-01

    Er3+:Yb3+ co-doped Sodium telluroborate glasses were prepared with the chemical composition (49.5-x)B2O3+25TeO2+5Li2CO3+10ZnO+10NaF+0.5Er2O3+xYb2O3 (where x= 0.1, 0.5, 1.0 and 2.0 in mol %) following the melt quenching technique. With the addition of Yb3+ ions into Er3+ ions in the prepared glasses, the absorption cross-section values were found to increase due to the effective energy transfer from 2F5/2 level of Yb3+ ions to the 4I11/2 level of Er3+ ions. The fluorescence around 1550 nm correspond to the 4I13/2→4I15/2 transition was observed under 980 nm pumping. Among the present glasses, integrated intensity was found to be higher for 1.0 mol% Yb3+ ion glass. The parameters such as stimulated emission cross- section, Gain bandwidth and quantum efficiency of the 4I13/2→4I15/2 transition was found to be higher for the NTBE1.0Y glass and the same is suggested for potential NIR lasers and optical amplifier applications.

  14. Preparation of new morphological ZnO and Ce-doped ZnO

    SciTech Connect

    Chelouche, A.; Djouadi, D.; Aksas, A.

    2013-12-16

    ZnO micro-tori and cerium doped hexangulars ZnO have been prepared by the sol-gel method under methanol hypercritical conditions of temperature and pressure. X-ray diffraction (XRD) measurement has revealed the high crystalline quality and the nanometric size of the samples. Scanning electron microscopy (SEM) has shown that the ZnO powder has a torus-like shape while that of ZnO:Ce has a hexangular-like shape, either standing free or inserted into the cores of ZnO tori. Transmission electron microscopy (TEM) has revealed that the ZnO particles have sizes between 25 and 30 nm while Ce-doped ZnO grains have diameters ranging from 75 nm to 100 nm. Photoluminescence spectra at room temperature of the samples have revealed that the introduction of cerium in ZnO reduces the emission intensity lines, particularly the ZnO red and green ones.

  15. Toward a durable superhydrophobic aluminum surface by etching and ZnO nanoparticle deposition.

    PubMed

    Rezayi, Toktam; Entezari, Mohammad H

    2016-02-01

    Fabrication of suitable roughness is a fundamental step for acquiring superhydrophobic surfaces. For this purpose, a deposition of ZnO nanoparticles on Al surface was carried out by simple immersion and ultrasound approaches. Then, surface energy reduction was performed using stearic acid (STA) ethanol solution for both methods. The results demonstrated that ultrasound would lead to more stable superhydrophobic Al surfaces (STA-ZnO-Al-U) in comparison with simple immersion method (STA-ZnO-Al-I). Besides, etching in HCl solution in another sample was carried out before ZnO deposition for acquiring more mechanically stable superhydrophobic surface. The potentiodynamic measurements demonstrate that etching in HCl solution under ultrasound leads to superhydrophobic surface (STA-ZnO-Al(E)-U). This sample shows remarkable decrease in corrosion current density (icorr) and long-term stability improvement versus immersion in NaCl solution (3.5%) in comparison with the sample prepared without etching (STA-ZnO-Al-U). Scanning electron micrograph (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed a more condense and further particle deposition on Al substrate when ultrasound was applied in the system. The crystallite evaluation of deposited ZnO nanoparticles was carried out using X-ray diffractometer (XRD). Finally, for STA grafting verification on Al surface, Fourier transform infrared in conjunction with attenuated total reflection (FTIR-ATR) was used as a proper technique. PMID:26513735

  16. Double Rare-Earth Oxides Co-doped Strontium Zirconate as a New Thermal Barrier Coating Material

    NASA Astrophysics Data System (ADS)

    Ma, Wen; Wang, Dongxing; Dong, Hongying; Lun, Wenshan; He, Weiyan; Zheng, Xuebin

    2013-03-01

    Y2O3 and Yb2O3 co-doped strontium zirconate with chemistry of Sr(Zr0.9Y0.05Yb0.05)O2.95 (SZYY) was synthesized and had a minor second phase of Yb2O3. The SZYY showed good phase stability not only from room temperature to 1400 °C but also at high temperature of 1450 °C for a long period, analyzed by thermogravimetry-differential scanning calorimetry and x-ray diffraction, respectively. The coefficients of thermal expansion (CTEs) of the sintered bulk SZYY were recorded by a high-temperature dilatometer and revealed a positive influence on phase transitions of SrZrO3 by co-doping with Y2O3 and Yb2O3. The thermal conductivities of SZYY were at least ~30% lower in contrast to that of SrZrO3 and 8YSZ in the whole tested temperature range. Good chemical compatibility was observed for SZYY with 8YSZ or Al2O3 powders after a 24 h heat treatment at 1250 °C. The phase stability and the microstructure evolution of the as-sprayed SZYY coating during annealing at 1400 °C were also investigated.

  17. Broadband near-infrared emission from Tm{sup 3+}/Er{sup 3+} co-doped nanostructured glass ceramics

    SciTech Connect

    Chen Daqin; Wang Yuansheng; Bao Feng; Yu Yunlong

    2007-06-01

    Transparent SiO{sub 2}-Al{sub 2}O{sub 3}-NaF-YF{sub 3} glass ceramics co-doped with Er{sup 3+} and Tm{sup 3+} were prepared by melt quenching and subsequent heating. X-ray diffraction and transmission electron microscopy experiments revealed that {beta}-YF{sub 3} nanocrystals incorporated with Er{sup 3+} and Tm{sup 3+} were precipitated homogeneously among the oxide glass matrix. An integrated broad near-infrared emission band in the wavelength region of 1300-1700 nm, consisting of Tm{sup 3+} emissions around 1472 nm ({sup 3}H{sub 4}{yields}{sup 3}F{sub 4}) and 1626 nm ({sup 3}F{sub 4}{yields}{sup 3}H{sub 6}), and Er{sup 3+} emission around 1543 nm ({sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}), was obtained under 792 nm laser excitation. The full width at half maximum of this integrated band increased with the increasing of [Tm]/[Er] ratio, and it reached as large as 175 nm for the 0.1 mol% Er{sup 3+} and 0.8 mol% Tm{sup 3+} co-doped sample. The energy transfers between Er{sup 3+} and Tm{sup 3+} were proposed to play an important role in tailoring the emission bandwidth of the sample.

  18. Er(3)/Yb(3)-codoped phosphate glass for short-length high-gain fiber lasers and amplifiers.

    PubMed

    Wang, Fengxiao; Song, Feng; An, Shuangxin; Wan, Wenshun; Guo, Hao; Liu, Shujing; Tian, Jianguo

    2015-02-10

    Er(3)/Yb(3)-codoped phosphate glass with compositions of (78.2-x)P(2)O(5)-14Al(2)O(3)-5Li(2)O-1K(2)O-1.8Yb(2)O(3)-xEr(2)O(3)(x=0.2,0.4,0.6) in mol. % were investigated. Judd-Ofelt (JO) intensity parameters have been calculated to predict radiative properties based on absorption spectra. The stimulated emission cross section (σ(e)) calculated according to McCumber theory was 1.50×10(-20)  cm(2), almost twice larger than values reported before. The effective line width (Δ(eff)), full width at half-maximum (FWHM) and the quality parameters for designing optical amplifier devices were listed in the table compared with other types of phosphate glass matrices. A theoretical model of a Er(3)/Yb(3)-codoped system based on rate and power propagation equations was put forward to investigate the potential advantages of the materials applied for short-length, high-gain fiber amplifiers. A simulated gain of 32.2 and 2.6  dB/cm per unit length was achieved in 12.5-cm-long fiber. PMID:25968040

  19. Insights into the effect of iron and cobalt doping on the structure of nanosized ZnO.

    PubMed

    Giuli, Gabriele; Trapananti, Angela; Mueller, Franziska; Bresser, Dominic; d'Acapito, Francesco; Passerini, Stefano

    2015-10-01

    Here we report an in-depth structural characterization of transition metal-doped zinc oxide nanoparticles that have recently been used as anode materials for Li-ion batteries. Structural refinement of powder X-ray diffraction (XRD) data allowed the determination of small though reproducible changes in the unit cell dimensions of four ZnO samples (wurtzite structure) prepared with different dopants or different synthesis conditions. Moreover, large variations of the full width at half-maximum of the XRD reflections indicate that the crystallinity of the samples decreases in the order ZnO, Zn0.9Co0.1O, Zn0.9Fe0.1O/C, and Zn0.9Fe0.1O (the crystallite sizes as determined by Williamson-Hall plots are 42, 29, 15, and 13 nm, respectively). X-ray absorption spectroscopy data indicate that Co is divalent, whereas Fe is purely trivalent in Zn0.9Fe0.1O and 95% trivalent (Fe(3+)/(Fe(3+) + Fe(2+)) ratio = 0.95) in Zn0.9Fe0.1O/C. The aliovalent substitution of Fe(3+) for Zn(2+) implies the formation of local defects around Fe(3+) such as cationic vacancies or interstitial oxygen for charge balance. The EXAFS (extended X-ray absorption fine structure) data, besides providing local Fe-O and Co-O bond distances, are consistent with a large amount of charge-compensating defects. The Co-doped sample displays similar EXAFS features to those of pure ZnO, suggesting the absence of a large concentration of defects as found in the Fe-doped samples. These results are of substantial importance for understanding and elucidating the modified electrochemical lithiation mechanism by introducing transition metal dopants into the ZnO structure for the application as lithium-ion anode material. PMID:26375476

  20. Aligned ZnO nanorod arrays growth on GaN QDs for excellent optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sang, Dandan; Li, Hongdong; Wang, Qinglin

    2016-02-01

    Uniformly aligned ZnO nanorod (NR) arrays grown on GaN quantum dots (QDs) as preferred nucleation sites are imperative for designing field emission emitters, ultraviolet photodetectors and light-emitting diodes for a wide range of new optoelectronic applications. In a recent study (2015 Nanotechnology 26 415601), Qi et al reported a novel method of fabricating ZnO NRs arrays with uniform shape, the density of which is easily tunable by adjusting the density of GaN QDs. This approach opens a door to obtaining a combination of 0D and 1D structures for optoelectronic applications.

  1. Many-body electronic structure calculations of Eu-doped ZnO

    NASA Astrophysics Data System (ADS)

    Lorke, M.; Frauenheim, T.; da Rosa, A. L.

    2016-03-01

    The formation energies and electronic structure of europium-doped zinc oxide has been determined using DFT and many-body G W methods. In the absence of intrisic defects, we find that the europium-f states are located in the ZnO band gap with europium possessing a formal charge of 2+. On the other hand, the presence of intrinsic defects in ZnO allows intraband f -f transitions otherwise forbidden in atomic europium. This result corroborates with recently observed photoluminescence in the visible red region S. Geburt et al. [Nano Lett. 14, 4523 (2014), 10.1021/nl5015553].

  2. Evolution of crystal structure during the initial stages of ZnO atomic layer deposition

    DOE PAGESBeta

    Boichot, R.; Tian, L.; Richard, M. -I.; Crisci, A.; Chaker, A.; Cantelli, V.; Coindeau, S.; Lay, S.; Ouled, T.; Guichet, C.; et al

    2016-01-05

    In this study, a complementary suite of in situ synchrotron X-ray techniques is used to investigate both structural and chemical evolution during ZnO growth by atomic layer deposition. Focusing on the first 10 cycles of growth, we observe that the structure formed during the coalescence stage largely determines the overall microstructure of the film. Furthermore, by comparing ZnO growth on silicon with a native oxide with that on Al2O3(001), we find that even with lattice-mismatched substrates and low deposition temperatures, the crystalline texture of the films depend strongly on the nature of the interfacial bonds.

  3. Optical properties of pure and TM-doped single-walled ZnO nanotubes (8,0) (TM = V and Co) by first principles calculations

    NASA Astrophysics Data System (ADS)

    Mendi, R. Taghavi; Sarmazdeh, M. Majidiyan; Boochani, A.; Elahi, S. M.; Naderi, S.

    2016-01-01

    In this paper, some optical properties of pure and transition metal-doped (TM = Co and V) single-walled ZnO nanotubes (8,0) (SWZnONT(8,0)) such as, real and imaginary parts of the dielectric function, optical conductivity, refractive index and optical reflectivity, were investigated. The calculations have been performed within framework of the density functional theory (DFT) using the full potential linearized augmented plane wave (FP-LAPW) and the generalized gradient approximation (GGA). The results show that, optical properties of SWZnONT(8,0) are anisotropic, especially at low energies and this anisotropy at low energies increases with doping of V in SWZnONT(8,0) while the Co-doped SWZnONT(8,0) behaves like pure SWZnONT(8,0). Doping of ZnO nanotubes has a significant impact on the value of the dielectric constant, so that due to the presence of V atom, the dielectric constant is increased up to three times. Study of the imaginary part of the dielectric function and optical conductivity showed that the important energy range for absorption processes and optical transitions is low energy range to 15 eV. The optical transitions have been studied based on band structure and density of states. The results of the optical reflectivity showed that these nanotubes are transparent in a wide energy ranges which provide them for using in transparent coatings. In addition, due to the reported magnetic properties for V- and Co-doped ZnO nanotubes, these nanotubes are suitable for using in spintronics and magneto-optic devices.

  4. Investigation of structural, surface morphological, optical properties and first-principles study on electronic and magnetic properties of (Ce, Fe)-co doped ZnO

    NASA Astrophysics Data System (ADS)

    Arul Mary, J.; Judith Vijaya, J.; Bououdina, M.; John Kennedy, L.; Daie, J. H.; Song, Y.

    2015-01-01

    We report on the synthesis of ((Zn1-2xCexFex) O (x=0.00, 0.01, 0.02, 0.03, 0.04 and 0.05)) nanoparticles via microwave combustion by using urea as a fuel. To understand how the dopant influenced the structural, magnetic and optical properties of nanoparticles, it was characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). The stability and magnetic properties of Ce and Fe co-doped ZnO were probed by first principle calculations. From the analysis of X-ray diffraction, the samples are identified with the wurtzite crystal structure. The change in lattice parameters, micro-strain, and a small shift in XRD peaks confirms the substitution of co dopants into the ZnO lattice. Morphological investigation of the products revealed the existence of irregular shapes, such as spherical, spherodial and hexagonal. DRS measurements showed a decrease in the energy gap with increasing dopants contents, probably due to an increase in the lattice parameters. PL spectra consist of visible emission, due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial zinc (Zni), interstitial oxygen (Oi) and zinc vacancy (VZn). Magnetic measurements showed a ferromagnetic behavior for all the doped samples at room temperature. The first principle calculation results showed that the Ce governs the stability, while the Fe adjusts the magnetic characteristics in the Ce and Fe co-doped ZnO.

  5. Investigation of correlation between the microstructure and electrical properties of sol-gel derived ZnO based thin films

    NASA Astrophysics Data System (ADS)

    Zhu, M. W.; Gong, J.; Sun, C.; Xia, J. H.; Jiang, X.

    2008-10-01

    Pure ZnO and aluminum doped ZnO films (ZAO) were prepared by sol-gel method and the effect of Al doping on the microstructure and electrical properties of the films was investigated. The results showed that the transformation from granular to columnar structure could be observed in pure ZnO films with the increase in heating time while in aluminum doped films little structural changes occurred even after a prolonged heating time. Additionally, measurements of electrical properties showed that both microstructural evolution and doping could significantly improve the conductivity of the films, which could be assigned to an increase both in Hall mobility and carrier concentration. The relationship between microstructure and the electrical properties of the films was discussed, and various scattering mechanisms were proposed for sol-gel derived ZnO and ZAO films as a function of the carrier concentration.

  6. Nanoscale InGaN/GaN on ZnO substrate for LED applications

    NASA Astrophysics Data System (ADS)

    Hung, I.-Hsiang; Lan, You-Ren; Wu, Tsung Han; Feng, Zhe Chuan; Li, Nola; Yu, Hongbo; Ferguson, Ian T.; Lu, Weijie

    2009-08-01

    The challenge of growing GaN and its alloys, In1-xGaxN and Al1-xGaxN, is still formidable because of the lack of close lattice match, stacking order match, and similar thermal expansion coefficient substrates, the same as GaN-based optoelectronic materials. ZnO is the most promising optoelectronic materials in the next generation, with wide band gap of 3.3eV and exciton binding energy of 60meV. In addition, ZnO also has been considered as a substrate for epitaxial growth of III-Nitrides due to its close lattice and stacking order match. Our works cover the growth of n-type InGaN and GaN epitaxial layers on lattice-matched ZnO substrates by metal-organic chemical vapor deposition (MOCVD). Since MOCVD is the dominant growth technology for GaN-based materials and devices, there is a need to more fully explore this technique for ZnO substrates. However, the thermal stability of the ZnO substrate, out-diffusion of Zn from the ZnO into the GaN, and H2 back etching into the substrate can cause growth of poor quality GaN. We use a GaN buffer layer of about 40nm to avoid Zn/O diffusion. We can investigate the Zn/O diffusion in the InGaN epilayers by means of second ion mass spectroscopy (SIMS) depth profiles, and analyze the surface bonding of different elements by x-ray photoelectron spectroscopy (XPS), and investigate optical and structural characterization of InGaN epilayers on ZnO substrates by various angles spectroscopic ellipsometry (VASE). Finally, from the Raman scattering, Photoluminescence (PL) and Photoluminescence excitation (PLE) spectra, we can determine the qualities easily and prove that we have grown the InGaN on ZnO with a GaN buffer layer successfully.

  7. Effect of B{sub 2}O{sub 3}-Bi{sub 2}O{sub 3}-SiO{sub 2}-ZnO glass on the sintering and microwave dielectric properties of 0.83ZnAl{sub 2}O{sub 4}-0.17TiO{sub 2}

    SciTech Connect

    Thomas, Sherin; Sebastian, Mailadil Thomas

    2008-04-01

    The 0.83ZnAl{sub 2}O{sub 4}-0.17TiO{sub 2} (ZAT) ceramics were synthesized by solid state ceramic route. The effect of 27B{sub 2}O{sub 3}-35Bi{sub 2}O{sub 3}-6SiO{sub 2}-32ZnO (BBSZ) glass on the microwave dielectric properties of ZAT was investigated. The crystal structure and the microstructure of the ceramic-glass composites were studied by X-ray diffraction and scanning electron microscopic techniques. The low frequency dielectric loss was measured at 1 MHz. The dielectric properties of the sintered samples were measured in the microwave frequency range by the resonance method. Addition of 0.2 wt% of BBSZ improved the dielectric properties with quality factor (Q{sub u} x f) > 120,000 GHz, temperature coefficient of resonant frequency ({tau}{sub f}) = -7.3 ppm/deg. C and dielectric constant ({epsilon}{sub r}) = 11.7. Addition of 10 wt% of BBSZ lowered the sintering temperature to about 950 deg. C with Q{sub u} x f > 10,000 GHz, {epsilon}{sub r} = 10 and {tau}{sub f} = -23 ppm/deg. C. The reactivity of 10 wt% BBSZ added ZAT with silver was also studied. The results show that ZAT doped with suitable amount of BBSZ glass is a possible material for low-temperature co-fired ceramic (LTCC) application.

  8. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices

    PubMed Central

    Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang

    2016-01-01

    Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers. PMID:27181337

  9. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices.

    PubMed

    Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang

    2016-01-01

    Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers. PMID:27181337

  10. Fabrication of high performance field-effect transistors and practical Schottky contacts using hydrothermal ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Opoku, Charles; Singh Dahiya, Abhishek; Oshman, Christopher; Daumont, Christophe; Cayrel, Frederic; Poulin-Vittrant, Guylaine; Alquier, Daniel; Camara, Nicolas

    2015-09-01

    The production of large quantities of single crystalline semiconducting ZnO nanowires (NWs) at low cost can offer practical solutions to realizing several novel electronic/optoelectronic and sensor applications on an industrial scale. The present work demonstrates high-density single crystalline NWs synthesized by a multiple cycle hydrothermal process at ˜100 °C. The high carrier concentration in such ZnO NWs is greatly suppressed by a simple low cost thermal annealing step in ambient air at ˜450 °C. Single ZnO NW FETs incorporating these modified NWs are characterized, revealing strong metal work function-dependent charge transport, unobtainable with as-grown hydrothermal ZnO NWs. Single ZnO NW FETs with Al as source and drain (s/d) contacts show excellent performance metrics, including low off-state currents (fA range), high on/off ratio (105-107), steep subthreshold slope (<600 mV/dec) and excellent field-effect carrier mobility (5-11 cm2/V-s). Modified ZnO NWs with platinum s/d contacts demonstrate excellent Schottky transport characteristics, markedly different from a reference ZnO NW device with Al contacts. This included abrupt reverse bias current-voltage saturation characteristics and positive temperature coefficient (˜0.18 eV to 0.13 eV). This work is envisaged to benefit many areas of hydrothermal ZnO NW research, such as NW FETs, piezoelectric energy recovery, piezotronics and Schottky diodes.

  11. Dynamics of iron-acceptor-pair formation in co-doped silicon

    SciTech Connect

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F.; Möller, C.; Lauer, K.

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  12. CdS nanoparticles sensitization of Al-doped ZnO nanorod array thin film with hydrogen treatment as an ITO/FTO-free photoanode for solar water splitting

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide (AZO) nanorod array thin film with hydrogen treatment possesses the functions of transparent conducting oxide thin film and 1-D nanostructured semiconductor simultaneously. To enhance the absorption in the visible light region, it is sensitized by cadmium sulfide (CdS) nanoparticles which efficiently increase the absorption around 460 nm. The CdS nanoparticles-sensitized AZO nanorod array thin film with hydrogen treatment exhibits significantly improved photoelectrochemical property. After further heat treatment, a maximum short current density of 5.03 mA cm−2 is obtained under illumination. They not only are much higher than those without CdS nanoparticles sensitization and those without Al-doping and/or hydrogen treatment, but also comparable and even slightly superior to some earlier works for the CdS-sensitized zinc oxide nanorod array thin films with indium tin oxide (ITO) or fluorine-doped tin oxide (FTO) as substrates. This demonstrated successfully that the AZO nanorod array thin film with hydrogen treatment is quite suitable as an ITO/FTO-free photoanode and has great potentials in solar water splitting after sensitization by quantum dots capable of visible light absorption. PMID:23098050

  13. Gold coated ZnO nanorod biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anuradha; Jain, Chhavi; Rao, V. Padmanapan; Banerjee, S.

    2012-06-01

    Gold coated ZnO nanorod based biosensor has been fabricated for its glucose detecting abilities and compared with that of ZnO nanorod based biosensor. SEM images of electrochemically grown ZnO nanorods show hexagonally grown ZnO nanorods on an ITO substrate. Electrochemical analysis show that gold coated ZnO based biosensors have higher sensitivity, lower limit of detection and a wider linear range for glucose detection. The results demonstrate that gold coated ZnO nanorod based biosensors are a promising material for biosensor applications over single component ZnO nanorod based biosensor.

  14. Nitrogen and Phosphorous Co-Doped Graphene Monolith for Supercapacitors.

    PubMed

    Wen, Yangyang; Rufford, Thomas E; Hulicova-Jurcakova, Denisa; Wang, Lianzhou

    2016-03-01

    The co-doping of heteroatoms has been regarded as a promising approach to improve the energy-storage performance of graphene-based materials because of the synergetic effect of the heteroatom dopants. In this work, a single precursor melamine phosphate was used for the first time to synthesise nitrogen/phosphorus co-doped graphene (N/P-G) monoliths by a facile hydrothermal method. The nitrogen contents of 4.27-6.58 at% and phosphorus levels of 1.03-3.00 at% could be controlled by tuning the mass ratio of melamine phosphate to graphene oxide in the precursors. The N/P-G monoliths exhibited excellent electrochemical performances as electrodes for supercapacitors with a high specific capacitance of 183 F g(-1) at a current density of 0.05 A g(-1), good rate performance and excellent cycling performance. Additionally, the N/P-G electrode was stable at 1.6 V in 1 m H2 SO4 aqueous electrolyte and delivered a high energy density of 11.33 Wh kg(-1) at 1.6 V. PMID:26834002

  15. Ce, Gd codoped YAG nanopowder for white light emitting device.

    PubMed

    Schiopu, Vasilica; Matei, Alina; Dinescu, Adrian; Danila, Mihai; Cernica, Ileana

    2012-11-01

    In the last years white light emitting devices have received increased attention and have been used in a wide range of applications due to their long lifetime, high luminescence efficiency, low power consumption and environment friendliness, compared to conventional light sources. The discovery and improvement of inorganic phosphors that can be excited by a GaN chip in the wavelength range 370-470 nm is essential for the efficiency and quality of the emitted light. In the white light emitting device technology, the phosphor preparation step is the most important and it's quality defines the "whiteness". The tunable yellow emission property of YAG:Ce phosphor may be improved by the incorporation of an additional codoping element. Ce, Gd codoped YAG phosphor nanopowder with an average grain size of 40 nm has been synthesized by a sol-gel method. Well-crystallized fine nanoparticles and the formation of the garnet phase have been obtained at 1000 degrees C. The chemical structure and morphology of YAG:Ce, Gd was studied. PMID:23421297

  16. Effects of ZnO Content on Piezoelectric, Dielectric, and Magnetic Properties of Sr-Modified PZT-PMW-PNN/(Ni-Co-Cu) ME Composites

    NASA Astrophysics Data System (ADS)

    Chao, Xiaolian; Wang, Juanjuan; Kang, Chao; Dong, Mingyuan; Yang, Zupei

    2015-10-01

    SrCO3/ZnO-codoped 0.9Pb1- y Sr y [(Zr0.23Ti0.36)-(Mg1/2W1/2)-(Ni1/3Nb2/3)]O3-0.10 Ni0.8Co0.1Cu0.1Fe2O4 + xZnO ceramics have been prepared via a solid-state reaction method. The effects of the SrCO3 and ZnO contents on the phase structure, microstructure, and electrical properties of the ceramics were investigated. The SrCO3 and ZnO contents had a significant effect on the electrical properties of the specimens. The composite with 0.2 mol.% SrCO3 and 0.2 wt.% ZnO content sintered at 1170°C exhibited good performance with d 33 = 332 pC/N, ɛ r = 2433 (1 kHz), ɛ m = 23,787 (1 kHz), T c = 196°C, and d E/d H = 424 μV/cm Oe. The results indicate that this system has potential as a magnetoelectric material for multifunctional applications.

  17. All-inorganic colloidal silicon nanocrystals—surface modification by boron and phosphorus co-doping

    NASA Astrophysics Data System (ADS)

    Fujii, Minoru; Sugimoto, Hiroshi; Imakita, Kenji

    2016-07-01

    Si nanocrystals (Si-NCs) with extremely heavily B- and P-doped shells are developed and their structural and optical properties are studied. Unlike conventional Si-NCs without doping, B and P co-doped Si-NCs are dispersible in alcohol and water perfectly without any surface functionalization processes. The colloidal solution of co-doped Si-NCs is very stable and no precipitates are observed for more than 5 years. The co-doped colloidal Si-NCs exhibit size-controllable photoluminescence (PL) in a very wide energy range covering 0.85 to 1.85 eV. In this paper, we summarize the structural and optical properties of co-doped Si-NCs and demonstrate that they are a new type of environmentally-friendly nano-light emitter working in aqueous environments in the visible and near infrared (NIR) ranges.

  18. Luminescent Enhancement in Mg- and Er-Codoped LiNbO3 Crystals

    NASA Astrophysics Data System (ADS)

    Tang, Li-Qin; Zhao, Li-Juan; Zhang, Xin-Zheng; Yu, Hua; Meng, Jie; Liang, Qin; Xu, Jing-Jun; Kong, Yong-Fa

    2005-03-01

    We investigate the MgO codoping-induced effect on the luminescent properties of Er3+-doped and Er/Mg codoped LiNbO3 crystals. The emission and excitation spectra and the absorption spectra are measured. The results show that the luminescent behaviour of Er3+ ions is very sensitive to the codoping of Mg2+ ions. According to the photorefractive level theory, we propose a quench model for the Er/Mg codoped lithium niobate crystal. The quench centres are suggested to be the bipolaron (NbLi-NbNb), we attribute the luminescent enhancement to the decreasing concentration of these centres. The luminescent enhancement effect is successfully explained.

  19. All-inorganic colloidal silicon nanocrystals-surface modification by boron and phosphorus co-doping.

    PubMed

    Fujii, Minoru; Sugimoto, Hiroshi; Imakita, Kenji

    2016-07-01

    Si nanocrystals (Si-NCs) with extremely heavily B- and P-doped shells are developed and their structural and optical properties are studied. Unlike conventional Si-NCs without doping, B and P co-doped Si-NCs are dispersible in alcohol and water perfectly without any surface functionalization processes. The colloidal solution of co-doped Si-NCs is very stable and no precipitates are observed for more than 5 years. The co-doped colloidal Si-NCs exhibit size-controllable photoluminescence (PL) in a very wide energy range covering 0.85 to 1.85 eV. In this paper, we summarize the structural and optical properties of co-doped Si-NCs and demonstrate that they are a new type of environmentally-friendly nano-light emitter working in aqueous environments in the visible and near infrared (NIR) ranges. PMID:27189818

  20. Luminescence characteristics of ZnS nanoparticles co-doped with Ni 2+ and Mn 2+

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Lü, Mengkai; Xu, Dong; Yuan, Duorong; Song, Chunfeng; Liu, Suwen; Cheng, Xiufeng

    2003-12-01

    ZnS nanoparticles doped with Ni 2+ and Mn 2+ have been prepared by co-precipitation from homogeneous solutions of Zn, Ni and Mn salt compounds, with S 2- as precipitating anion formed by decomposition of thioacetamide (TAA). X-ray diffraction analysis shows that the average crystalline particle size of the doped and undoped ZnS nanometer scale samples is about 2-4 nm. A novel luminescent property has been observed in the photoluminescence (PL) spectra of the ZnS nanoparticles co-doped with Ni 2+ and Mn 2+. The ZnS nanoparticles can be doped with Ni 2+ and Mn 2+ during synthesis without altering the X-ray diffraction pattern. However, the emission wavelengths (with a color range from blue to green, λem=475-540 nm) and PL intensities of the co-doped samples vary with changing the impurity mole ratios of Ni 2+ and Mn 2+ in the co-doped samples. When the mole ratios of Ni 2+ and Mn 2+ in the co-doped sample are 0.3% and 2.0%, respectively, the relative fluorescence intensity of the co-doped samples is about four times of that of un-doped ZnS nanocrystals. The PL properties of the co-doped samples are dramatically different from those of Ni 2+- and Mn 2+-doped ZnS nanocrystals.

  1. Electrical and optical properties of Co-doped and undoped MoS2

    NASA Astrophysics Data System (ADS)

    Ko, Tsung-Shine; Huang, Cheng-Ching; Lin, Der-Yuh; Ruan, Yan-Jia; Huang, Ying Sheng

    2016-04-01

    Co-doped and undoped layered MoS2 crystals were grown by the chemical vapor transport method using iodine as the transport agent. Both reflectance and piezoreflectance measurements reveal two exciton transitions of the direct band edge around 1.86 and 2.06 eV for undoped MoS2 and 1.84 and 2.03 eV for Co-doped MoS2. Hall effect measurements show that the Co-doped MoS2 sample has a lower carrier concentration and mobility than the undoped sample. These differences between undoped and Co-doped MoS2 were attributed to the effect of cobalt atoms causing a small lattice distortion, lattice imperfections and/or impurity states that form trap states between the conduction band and valence band. Furthermore, photoconductivity (PC) and persistent PC results show that Co-doped MoS2 has a longer time constant and better responsivity than undoped MoS2. This work discusses the advantages of Co-doped MoS2 for photodetector applications.

  2. Band engineering of ZnS by codoping for visible-light photocatalysis

    NASA Astrophysics Data System (ADS)

    Wan, Hui; Xu, Liang; Huang, Wei-Qing; Huang, Gui-Fang; He, Chao-Ni; Zhou, Jia-Hui; Peng, P.

    2014-08-01

    Codoping is demonstrated as an efficient approach to narrow the band gap of ZnS and enhance its photocatalytic activity. Herein, we perform the density-function theory calculations of ZnS by codoping of X (N, F) with transition metals (TM = V, Cu). The band gap is reduced in four different types of codoped ZnS. In particular, CuZnFS codoping, a charge-compensated donor-acceptor pair, leads to an about 32 % reduction of the energy gap, thus extending the absorption edge to visible-light region. The band gap reduction is due to the upshift of the top valence band comprised with the delocalized hybridizing levels of Cu 3d and S 3p states, and the downshift of the bottom conduction band consisting of F 2s states. Moreover, the larger value of m e*/ m h* in CuZnFS-ZnS would result in a lower recombination rate of the electron-hole pairs. Both band gap reduction and low recombination rate are critical elements for efficient light-to-current conversion in codoped ZnS. These findings raise the prospect of using codoped ZnS with specifically engineered electronic properties in a variety of photocatalytic applications.

  3. Effect of substrate temperature on residual stress of ZnO thin films prepared by ion beam deposition

    NASA Astrophysics Data System (ADS)

    Jeon, Ju-Won; Kim, Myoung; Jang, Lee-Woon; Hoffman, J. L.; Kim, Nam Soo; Lee, In-Hwan

    2012-02-01

    We have investigated the effect of substrate temperature on micro-structural properties of ZnO thin films prepared by ion beam deposition technique. ZnO thin films were deposited on AlN-buffered Si (111) and sapphire (001) substrates at various substrate temperatures. The structural properties and surface morphologies were examined by high resolution X-ray diffraction (XRD) and field emission scanning electron microscopy, respectively. The RMS roughness was measured by atomic force microscopy. XRD measurements confirmed that the ZnO thin films were grown well on the AlN-buffered Si (111) and sapphire (001) substrates along the c-axis. Minimization of residual stress was carried out by tuning the substrate temperature. The structural properties were notably improved with increasing substrate temperature.

  4. Structural and optical properties of Y, Cu co-doped ZnO nanoparticles by sol-gel method

    NASA Astrophysics Data System (ADS)

    Anandan, S.; Muthukumaran, S.; Ashokkumar, M.

    2014-10-01

    Zn.96-xY.04CuxO (x = 0, 0.05, 0.10 and 0.15) nanoparticles were successfully synthesized employing simple sol-gel method. Hexagonal wurtzite structure of the synthesized samples was not affected by Cu-doping. CuO phase was induced after Cu = 5% and it was increased by Cu-doping. The change in crystal size was discussed based on compressive stress, lattice volume and bond length. The chemical stoichiometry of Zn, Cu, Y and O was confirmed by energy dispersive X-ray spectra. The increased oxygen percentage from 57.88 (Cu = 5%) to 64.53% (Cu = 15%) by Cu-doping proved the existence of CuO and oxygen rich phase. The lower absorption and high transmittance in visible region observed at Cu = 5% described the good optical quality of the sample with low scattering or absorption losses which leads to the industrial applications especially as transparent electrode. The high energy gap at Cu = 5% could be attributed to the poor crystallinity of the sample. The red shift in energy gap after Cu = 5% was explained by the p-d spin-exchange interactions between the band electrons and the localized d electrons of Cu2+ ions. The change in intensity and peak position of infrared (IR) peaks confirmed the presence of Cu in Znsbnd Ysbnd O lattice and also expressed the perturbation generated by Cu in Znsbnd Ysbnd O lattice.

  5. Oxygen vacancies induced Spin polarized current in Co-doped ZnO by Andreev reflection technique

    NASA Astrophysics Data System (ADS)

    Yang, Kung-Shang; Chou, Hsiung; Chan, Wen Ling; Chen, Bo-Yu; Shang-Fan Lee Collaboration

    Dilute magnetic semiconductor (DMO) is a semiconducting system with spin-polarized carriers and magnetic properties. However, since most studies had been focused on existence of FM, the proportion of spin-polarized current (SPC) in DMO is far from being determined. We used Point-contact Andreev reflection measurements on various Zn0.95Co0.05O thin films, with controlled oxygen vacancies by sputtering in various H2 partial pressure with Ar atmosphere. We found that conductance versus voltage (G-V) spectra suppresses as oxygen vacancy concentration increases. It indicates oxygen vacancies play significant role in inducing the SPC. To understand the origin of spin polarized current at the interface of the superconducting tip/CZO system, we use modified Blonder-Tinkham-Klapwijk (MBTK) model in ballistic and diffusive regime to interpret GV curve. The extracted SPC value were up to 70% in ballistic regime and 65% in diffusive regime. The results suggest tiny routes have been formed by oxygen vacancies which are extended throughout the whole films. This result confirmed that MBTK model in ballistic regime is more suitable for our GV spectra and this explains the observation of such a high SPC Institute of Physics, Academia Sinica Taiwan.

  6. Enhancement of photoluminescence properties in ZnO/AlN bilayer heterostructures grown by atomic layer deposition

    SciTech Connect

    Zhu, Shang-Bin; Lu, Hong-Liang Zhang, Yuan; Sun, Qing-Qing; Zhou, Peng; Ding, Shi-Jin; Zhang, David Wei; Zhang, Qiu-Xiang

    2015-01-15

    The AlN/ZnO bilayer heterostructures were deposited on Si (100) substrate by thermal atomic layer deposition. X-ray diffraction results show that the crystallinity of polycrystalline ZnO layer is enhanced by amorphous AlN capping layer. Compared with ZnO thin film, ZnO/AlN bilayer with 10.7 nm AlN capping layer exhibits three times enhanced near band edge (NBE) emission from the photoluminescence measurements. In addition, the near band edge emission from the ZnO can be further increased by ∼10 times through rapid thermal annealing at 600 °C. The underlying mechanisms for the enhancement of the NBE emission after coating AlN capping layer and thermal treatment are discussed. These results suggest that coating of a thin AlN layer and sequential thermal treatments can effectively tailor the luminescence properties of ZnO film.

  7. Direct formation of InN-codoped p-ZnO/n-GaN heterojunction diode by solgel spin-coating scheme.

    PubMed

    Huang, Chun-Ying; Lee, Ya-Ju; Lin, Tai-Yuan; Chang, Shao-Lun; Lian, Jan-Tian; Lin, Hsiu-Mei; Chen, Nie-Chuan; Yang, Ying-Jay

    2014-02-15

    In this work p-ZnO/n-GaN heterojunction diodes were directly formed on the Si substrate by a combination of cost-effective solgel spin-coating and thermal annealing treatment. Spin-coated n-ZnO films on InN/GaN/Si wafers were converted to p-type polarity after thermal treatment of proper annealing durations. X-ray diffraction (XRD) analysis reveals that InN-codoped ZnO films have grown as the standard hexagonal wurtzite structure with a preferential orientation in the (002) direction. The intensity of the (002) peak decreases for a further extended annealing duration, indicating the greater incorporation of dopants, also confirmed by x-ray photoelectron spectroscopy and low-temperature photoluminescence. Hall and resistivity measurements validate that our p-type ZnO film has a high carrier concentration of 3.73×10¹⁷ cm⁻³, a high mobility of 210 cm²/Vs, and a low resistivity of 0.079 Ωcm. As a result, the proposed p-ZnO/n-GaN heterojunction diode displays a well-behaving current rectification of a typical p-n junction, and the measured current versus voltage (I-V) characteristic is hence well described by the modified Shockley equation. The research on the fabrication of p-ZnO/n-GaN heterojunctions shown here generates useful advances in the production of cost-effective ZnO-based optoelectronic devices. PMID:24562211

  8. The nitridation of ZnO nanowires

    PubMed Central

    2012-01-01

    ZnO nanowires (NWs) with diameters of 50 to 250 nm and lengths of several micrometres have been grown by reactive vapour transport via the reaction of Zn with oxygen on 1 nm Au/Si(001) at 550°C under an inert flow of Ar. These exhibited clear peaks in the X-ray diffraction corresponding to the hexagonal wurtzite crystal structure of ZnO and a photoluminescence spectrum with a peak at 3.3 eV corresponding to band edge emission close to 3.2 eV determined from the abrupt onset in the absorption-transmission through ZnO NWs grown on 0.5 nm Au/quartz. We find that the post growth nitridation of ZnO NWs under a steady flow of NH3 at temperatures ≤600°C promotes the formation of a ZnO/Zn3N2 core-shell structure as suggested by the suppression of the peaks related to ZnO and the emergence of new ones corresponding to the cubic crystal structure of Zn3N2 while maintaining their integrity. Higher temperatures lead to the complete elimination of the ZnO NWs. We discuss the effect of nitridation time, flow of NH3, ramp rate and hydrogen on the conversion and propose a mechanism for the nitridation. PMID:22397754

  9. Fabrication of ZnO nanoparticles by laser ablation of sintered ZnO in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kawabata, Keisuke; Nanai, Yasushi; Kimura, Seiji; Okuno, Tsuyoshi

    2012-04-01

    Fabrication of ZnO nanoparticles by laser ablation in liquid medium is reported. The possibility of using a sintered ZnO target for the ablation as well as a Zn plate is demonstrated. The appropriate aqueous solution of sodium dodecyl sulfate is found to be 1 mM for ZnO growing. The shape of ZnO nanoparticles is sphere and its diameter is 30˜60 nm. Fourier transform infrared spectra, Raman scattering spectra, and photoluminescence spectra reveal the optical properties of ZnO nanoparticles. Nanoparticles obtained by using ZnO targets show a smaller defect density compared with those by using Zn targets.

  10. Growth of vertically aligned ZnO nanorods using textured ZnO films

    PubMed Central

    2011-01-01

    A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.) PMID:21899743

  11. Near-infrared multi-wavelengths long persistent luminescence of Nd3+ ion through persistent energy transfer in Ce3+, Cr3+ co-doped Y3Al2Ga3O12 for the first and second bio-imaging windows

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Tanabe, Setsuhisa; Sontakke, Atul D.; Ueda, Jumpei

    2015-08-01

    We developed a persistent phosphor of Y3Al2Ga3O12 doped with Nd3+, Ce3+, Cr3+ ions (YAGG:Nd-Ce-Cr) exhibiting long (>10 h) persistent luminescence at multi-wavelengths of around 880, 1064, and 1335 nm due to f-f transitions of Nd3+ and at 505 nm due to Ce3+:5d1→4f transition. The intense near-infrared (NIR) persistent luminescence bands from Nd3+ match well with the first (650-950 nm) and second (1000-1400 nm) bio-imaging windows. The NIR persistent radiance of the YAGG:Nd-Ce-Cr phosphor (0.33 × 10-1 mW/Sr/m2) at 60 min after ceasing blue light illumination was over 2 times higher than that of the widely used ZnGa2O4:Cr3+ red persistent phosphor (0.15 × 10-1 mW/Sr/m2).

  12. Photovoltaic study of dye sensitized solar cells based on TiO2, ZnO:Al3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Sánchez Godoy, H. E.; Rodríguez-Rojas, R. A.; Castañeda-Contreras, J.; Marañón-Ruiz, V. F.; Pérez-Ladrón de Guevara, H.; López-Luke, T.; De la Rosa-Cruz

    2015-10-01

    A technique to fabricate dye (rhodamine B) sensitized solar cells based on Titanium Oxide (TiO2) and Zinc Oxide (ZnO) nanoparticles are reported. The TiO2 was synthesized using the sol-gel method and the ZnO was synthesized by hydrolysis method to obtain nanoparticles of ~ 5 nm and 150 nm respectively. ZnO was doped with Al3+ in order to enhance the photovoltaic efficiency to promote the electrons mobility. The photovoltaic conversion characterization of films of TiO2, ZnO and ZnO:Al3+ nanoparticles is also reported. The generated photocurrent was measured by two methods; one of those uses a three electrode electrochemical cell and the other use an electronic array where the cells were exposed to UV lamp and the sun light. The role of the TiO2, ZnO and Al3+ doped ZnO nanoparticles is discussed to obtain a better efficiency in the generation of photocurrent (PC). The results exhibited by the electrochemical cell method, efficiencies of 0.55 (PC=187 μA/cm2) and 0.22 (PC=149 μA/cm2) for TiO2 and undoped ZnO respectively. However, when ZnO is doped with Al3+ at the higher concentration the efficiency was 0.44. While using the electronic array the results exhibited efficiencies of 0.31 (PC=45 μA/cm2) and 0.09 (PC=16 μA/cm2) for TiO2 and undoped ZnO respectively. However, when ZnO is doped with Al3+ at the higher concentration the efficiency was 0.44 and 0.48 for electrochemical cell and electronic array respectively. This shows that Al3+ enhances the photogenerated charge carriers increasing the mobility of electrons.

  13. Single ZnO nanocactus gas sensor formed by etching of ZnO nanorod

    NASA Astrophysics Data System (ADS)

    Ryong Ryu, Sung; Ram, S. D. Gopal; Cho, Hak-Dong; Lee, Dong Jin; Won Kang, Tae; Woo, Yongdeuk

    2015-06-01

    Etching of materials on the nanoscale is a challenging but necessary process in nanomaterials science. Gas sensing using a single ZnO nanocactus (NC), which was prepared by facile isotropic nanoetching of zinc oxide nanorods (NR) grown by chemical vapor deposition (CVD) using an organic photoresist (PR) by a thermochemical reaction, is reported in this work. PR consists of carboxylic acid groups (COOH) and cyclopentanone (C5H8O), which can react with zinc and oxygen atoms, respectively, on the surface of a ZnO NR. The thermochemical reaction is controllable by varying the concentration of PR and reaction time. A gas sensor was fabricated using a single NC. Gas sensing was tested using different gases such as CH4, NH3 and carbon monoxide (CO). It was estimated that the surface area of a ZnO NC in the case of 50% PR was found to increase four-fold. When compared with a single ZnO NR gas sensor, the sensitivity of a ZnO NC was found to increase four-fold. This increase in sensitivity is attributed to the increase in surface area of the ZnO NC. The formed single ZnO NC gas sensor has good stability, response and recovery time.Etching of materials on the nanoscale is a challenging but necessary process in nanomaterials science. Gas sensing using a single ZnO nanocactus (NC), which was prepared by facile isotropic nanoetching of zinc oxide nanorods (NR) grown by chemical vapor deposition (CVD) using an organic photoresist (PR) by a thermochemical reaction, is reported in this work. PR consists of carboxylic acid groups (COOH) and cyclopentanone (C5H8O), which can react with zinc and oxygen atoms, respectively, on the surface of a ZnO NR. The thermochemical reaction is controllable by varying the concentration of PR and reaction time. A gas sensor was fabricated using a single NC. Gas sensing was tested using different gases such as CH4, NH3 and carbon monoxide (CO). It was estimated that the surface area of a ZnO NC in the case of 50% PR was found to increase four

  14. Geometric, electronic and optical properties of zinc/tin codoped In2O3 modulated by the bixbyite/corundum phase transition

    NASA Astrophysics Data System (ADS)

    Lu, Ying-Bo; Li, Y. H.; Ling, Z. C.; Cong, Wei-Yan; Zhang, Peng; Xin, Y. Q.; Yang, T. L.

    2016-02-01

    As transparent conducting oxides (TCOs), In2O3 in the high pressure phase attracts extensive research interests. Because physical properties are determined by the geometric structures, we investigate the electronic and optical properties of Zn/Sn codoped In2O3 materials (IZTO) being modulated by the bixbyite/corundum phase transition via Density Functional Theory calculations. For IZTO in high pressure phase, i.e. corundum phase, Sn/Zn dopant pair tends to form face-sharing ZnO6 and SnO6 octahedrons. The radius differences between Zn2+/Sn4+ dopants and In3+ host cations make Jahn-Teller effect occur and IZTO transform from bixbyite to corundum phase under a slight higher pressure than that of pure In2O3. Although Zn/Sn cosubstitution of In ions may increase the free carrier effective mass m * near the band edge, when IZTO crystal transforms to corundum phase, the more dense packing structure results in stronger cation s-orbital overlaps than in bixbyite phase, which makes m * recover to a smaller value. In addition, corundum IZTO has a larger indirect band gap and a high dopant solubility. So these investigations may open a new way to search for TCOs materials with low indium content.

  15. Change in structural morphology on addition of ZnO and its effect on fluorescence of Yb3+/Er3+ doped Y2O3

    NASA Astrophysics Data System (ADS)

    Yadav, R. V.; Verma, R. K.; Kaur, G.; Rai, S. B.

    2013-02-01

    Yb3+/Er3+ codoped Y2O3 phosphor and its composite with ZnO have been synthesized by combustion method. Morphology of the materials has been investigated using X-ray diffraction pattern (XRD) and scanning electron microscopy (SEM) techniques. XRD confirms the constituents as Y2O3 and ZnO, with average crystallite size of 112 nm. On addition of ZnO, a small shifting in XRD pattern of Y2O3 is observed. SEM pattern suggests that the average particle size lies in micro-range (0.5 μm). A dumble like structure is observed for hybrid material on annealing at 1473 K. A strong green (525, 546 nm) with weak blue (411 nm) and red (657 nm) emissions through upconversion has been observed from the phosphor on excitation with 976 nm diode laser. The observed emissions involve 2H9/2 → 4I15/2, 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 electronic transitions, respectively. The upconversion process has been confirmed by power dependence measurements and its slope value was found to be 1.85, 1.72 for green and red emissions, respectively. On addition of ZnO, the intensity of these emissions is enhanced several times. The reason behind the enhancement is discussed with the help of the emitting level lifetime. An interesting dual mode property (upconversion and downconversion) to the same material has been observed on excitation with 532 nm laser source.

  16. Homoepitaxial growth of ZnO films with reduced impurity concentrations by helicon-wave-excited-plasma sputtering epitaxy using a crystalline ZnO target prepared by hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Furusawa, Kentaro; Nakasawa, Hayato; Ishikawa, Yoichi; Chichibu, Shigefusa F.

    2014-10-01

    Homoepitaxial growth of reduced donor concentration ZnO films exhibiting atomically smooth surface is demonstrated by helicon-wave-excited-plasma sputtering epitaxy. Using a crystalline ZnO target prepared by hydrothermal method, concentrations of B, C, Cr, Li, and Si in the films underran the detection limits of secondary-ion-mass spectrometry. Consequently, low temperature photoluminescence spectra were dominated by sharp emission peaks originating from the recombination of excitons bound to a neutral Al donor, of which concentration was 2 × 1016 cm-3. Nonradiative lifetime dominated the recombination process above 50 K, which is most likely due to the presence of lifetime killers such as Ni and Fe.

  17. ZnO nanoparticles embedded in sapphire fabricated by ion implantation and annealing.

    PubMed

    Xiang, X; Zu, X T; Zhu, S; Wei, Q M; Zhang, C F; Sun, K; Wang, L M

    2006-05-28

    ZnO nanoparticles were fabricated in sapphire (α-Al(2)O(3) single crystal) by Zn ion implantation (48 keV) at an ion fluence of 1 × 10(17) cm(-2) and subsequent thermal annealing in a flowing oxygen atmosphere. Transmission electron microscopy (TEM) analysis revealed that metallic Zn nanoparticles of 3-10 nm in dimensions formed in the as-implanted sample and that ZnO nanoparticles of 10-12 nm in dimensions formed after annealing at 600 °C. A broad absorption band, peaked at 280 nm, appeared in the as-implanted crystal, due to surface plasma resonance (SPR) absorption of metallic Zn nanoparticles. After annealing at 600 °C, ZnO nanoparticles resulted in an exciton absorption peak at 360 nm. The photoluminescence (PL) of the as-implanted sample was very weak when using a He-Cd 325 nm line as the excitation source. However, two emission peaks appeared in the PL spectrum of ZnO nanopraticles, i.e., one ultraviolet (UV) peak at 370 nm and the other a green peak at 500 nm. The emission at 500 nm is stronger and has potential applications in green/blue light-emitting devices. PMID:21727517

  18. Acceptor Type Vacancy Complexes In As-Grown ZnO

    SciTech Connect

    Zubiaga, A.; Tuomisto, F.; Zuniga-Perez, J.

    2010-11-01

    One of the many technological areas that ZnO is interesting for is the construction of opto-electronic devices working in the blue-UV range as its large band gap ({approx}3.4 eV at 10 K) makes them suitable for that purpose. As-grown ZnO shows generally n-type conductivity partially due to the large concentration of unintentional shallow donors, like H, but impurities can also form complexes with acceptor type defects (Zn vacancy) leading to the creation of compensating defects. Recently, Li{sub Zn} and Na{sub Zn} acceptors have been measured and H could form similar type of defects. Doppler Broadening Positron Annihilation spectroscopy experimental results on the observation of Zn related vacancy complexes in ZnO thin films, as-grown, O implanted and Al doped will be presented. Results show that as-grown ZnO film show small Zn vacancy related complexed that could be related to presence of H as a unintentional doping element.

  19. Chemically assisted vapour transport for bulk ZnO crystal growth

    NASA Astrophysics Data System (ADS)

    Santailler, Jean-Louis; Audoin, Claire; Chichignoud, Guy; Obrecht, Rémy; Kaouache, Belkhiri; Marotel, Pascal; Pelenc, Denis; Brochen, Stéphane; Merlin, Jérémy; Bisotto, Isabelle; Granier, Carole; Feuillet, Guy; Levy, François

    2010-11-01

    A chemically assisted vapour phase transport (CVT) method is proposed for the growth of bulk ZnO crystals. Thermodynamic computations have confirmed the possibility of using CO as a sublimation activator for enhancing the sublimation rate of the feed material in a large range of pressures (10 -3 to 1 atm) and temperatures (800-1200 °C). Growth runs in a specific and patented design yielded single ZnO crystals up to 46 mm in diameter and 8 mm in thickness, with growth rates up to 400 μm/h. These values are compatible with an industrial production rate. N type ZnO crystals ( μ=182 cm 2/(V s) and n=7 10 15 cm -3) obtained by this CVT method (Chemical Vapour Transport) present a high level of purity (10-30 times better than hydrothermal ZnO crystals), which may be an advantage for obtaining p-type doped layers ([Li] and [Al] <10 +15 cm -3). Structural (HR-XRD), defect density (EPD), electrical (Hall measurements) and optical (photoluminescence) properties are presented.

  20. Development of Solution-Processed ZnO Nanorod Arrays Based Photodetectors and the Improvement of UV Photoresponse via AZO Seed Layers.

    PubMed

    Zhang, Yuzhu; Xu, Jianping; Shi, Shaobo; Gao, Yanyan; Wang, Chang; Zhang, Xiaosong; Yin, Shougen; Li, Lan

    2016-08-31

    Designing a rational structure and developing an efficient fabrication technique for bottom-up devices offer a promising opportunity for achieving high-performance devices. In this work, we studied how Al-doped ZnO (AZO) seed layer films influence the morphology and optical and electrical properties for ZnO aligned nanorod arrays (NRs) and then the performance of ZnO NRs based ultraviolet photodetectors (UV PDs) with Au/ZnO NRs Schottky junctions and p-CuSCN/n-ZnO NRs heterojunctions. The PD with AZO thin film with 0.5 at. % Al doping (named as AZO (0.5%)) exhibited more excellent photoresponse properties than that with pristine ZnO and AZO (1%) thin films. This phenomenon can be ascribed to the good light transmission of the AZO layer, increased density of the NRs, and improved crystallinity of ZnO NRs. The PDs based on CuSCN/ZnO NRs heterojunctions showed good rectification characteristics in the dark and self-powered UV photoresponse properties with excellent stability and reproducibility under low-intensity illumination conditions. A large responsivity located at 365 nm of 22.5 mA/W was achieved for the PD with AZO (0.5%) thin film without applied bias. The internal electric field originated from p-CuSCN/n-ZnO NRs heterojunctions can separate photogenerated carriers in ZnO NRs and drift toward the corresponding electrode. PMID:27500944

  1. Enhance the light-harvesting capability of the ITO-free inverted small molecule solar cell by ZnO nanorods.

    PubMed

    Lin, Ming-Yi; Wu, Shang-Hsuan; Hsiao, Li-Jen; Budiawan, Widhya; Boopathi, Karunakara Moorthy; Tu, Wei-Chen; Chang, Yia-Chung; Chu, Chih-Wei

    2016-08-01

    The ITO-free inverted SMPV1:PC71BM solar cells with an Al doped ZnO (AZO) transparent electrodes are fabricated. The AZO thin film prepared by pulsed laser deposition (PLD) technique exhibits high transmission (>85%) and low sheet resistance (~30 Ω/sq) and the power conversion efficiency (PCE) of devices based on AZO electrode can reach around 4%. To further enhance the light harvesting of the absorption layer of solar cells, ZnO nanorods interlayer is grown on the AZO layer before the deposition the active layer. The absorption spectrums of devices under various conditions are also simulated by RCWA method to identify the optical saturation length of the ZnO nanorods. The PCE of ITO-free inverted small molecule solar cell improved with ZnO nanorods can reach 6.6%. PMID:27505758

  2. Experiments and simulation on diffusion and activation of codoped with arsenic and phosphorous germanium

    SciTech Connect

    Tsouroutas, P.; Tsoukalas, D.; Bracht, H.

    2010-07-15

    We report arsenic and phosphorus diffusion experiments and activation related phenomena in codoped germanium substrates utilizing conventional thermal annealing. Chemical profiles were obtained by secondary ion mass spectroscopy, sheet resistance was estimated by the Van der Pauw method. Our study covers the temperature range from 600 to 750 deg. C. We accurately described the dopant profiles with a quadratic dependence of the dopants diffusion coefficient on the free electron concentration. In our simulations we considered the dopant pile-up near the surface and dopant loss owing to outdiffusion during the annealing. Although the double donor codoping technique exhibited no advantage over monodoping with P concerning the level of activation and junction depth, it was interesting to observe the different diffusion behavior of the two dopants. Whereas the diffusion of As indicates a retardation under codoping the diffusion of P remains either unaffected or is slightly enhanced by codoping. The activation level of the codoped samples remains lower compared to the respective monodoped samples, except for the highest annealing temperature.

  3. Preparation and photocatalytic activity of nonmetal Co-doped titanium dioxide photocatalyst

    NASA Astrophysics Data System (ADS)

    Sun, Xiaogang; Xing, Jun; Qiu, Jingping

    2016-06-01

    A series of boron and sulfur co-doped titanium dioxide (TiO2) photocatalysts were prepared by a sol-gel method using boric acid, thiourea and tetrabutyl titanate [Ti(OC4H9)4] as precursors. The photoabsorbance of as-prepared photocatalysts was measured by UV-Vis diffuse reflectance spectroscopy (DRS), and its microstructure was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and N2 adsorption-desorption measurements. The prepared photocatalysts consisted of the anatase phase mainly in the form of spherical particles. The photocatalytic performance was studied by photodegradation of methyl blue (MB) in water under UV and visible light irradiation. The calcination temperature and the codoping content influenced the photoactivity. The synergistic effect of boron and sulfur co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of codoped TiO2 was also confirmed, the photocatalytic activity of TiO2 remained above 91% of that of the fresh sample after being used four times. It was shown that the co-doped TiO2 could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants.

  4. Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be2+ as co-dopant

    PubMed Central

    Annamalai, Alagappan; Lee, Hyun Hwi; Choi, Sun Hee; Lee, Su Yong; Gracia-Espino, Eduardo; Subramanian, Arunprabaharan; Park, Jaedeuk; Kong, Ki-jeong; Jang, Jum Suk

    2016-01-01

    For ex-situ co-doping methods, sintering at high temperatures enables rapid diffusion of Sn4+ and Be2+ dopants into hematite (α–Fe2O3) lattices, without altering the nanorod morphology or damaging their crystallinity. Sn/Be co-doping results in a remarkable enhancement in photocurrent (1.7 mA/cm2) compared to pristine α–Fe2O3 (0.7 mA/cm2), and Sn4+ mono-doped α-Fe2O3 photoanodes (1.0 mA/cm2). From first-principles calculations, we found that Sn4+ doping induced a shallow donor level below the conduction band minimum, which does not contribute to increase electrical conductivity and photocurrent because of its localized nature. Additionally, Sn4+-doping induce local micro-strain and a decreased Fe-O bond ordering. When Be2+ was co-doped with Sn4+-doped α–Fe2O3 photoanodes, the conduction band recovered its original state, without localized impurities peaks, also a reduction in micro-strain and increased Fe-O bond ordering is observed. Also the sequence in which the ex-situ co-doping is carried out is very crucial, as Be/Sn co-doping sequence induces many under-coordinated O atoms resulting in a higher micro-strain and lower charge separation efficiency resulting undesired electron recombination. Here, we perform a detailed systematic characterization using XRD, FESEM, XPS and comprehensive electrochemical and photoelectrochemical studies, along with sophisticated synchrotron diffraction studies and extended X-ray absorption fine structure. PMID:27005757

  5. Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be(2+) as co-dopant.

    PubMed

    Annamalai, Alagappan; Lee, Hyun Hwi; Choi, Sun Hee; Lee, Su Yong; Gracia-Espino, Eduardo; Subramanian, Arunprabaharan; Park, Jaedeuk; Kong, Ki-Jeong; Jang, Jum Suk

    2016-01-01

    For ex-situ co-doping methods, sintering at high temperatures enables rapid diffusion of Sn(4+) and Be(2+) dopants into hematite (α-Fe2O3) lattices, without altering the nanorod morphology or damaging their crystallinity. Sn/Be co-doping results in a remarkable enhancement in photocurrent (1.7 mA/cm(2)) compared to pristine α-Fe2O3 (0.7 mA/cm(2)), and Sn(4+) mono-doped α-Fe2O3 photoanodes (1.0 mA/cm(2)). From first-principles calculations, we found that Sn(4+) doping induced a shallow donor level below the conduction band minimum, which does not contribute to increase electrical conductivity and photocurrent because of its localized nature. Additionally, Sn(4+)-doping induce local micro-strain and a decreased Fe-O bond ordering. When Be(2+) was co-doped with Sn(4+)-doped α-Fe2O3 photoanodes, the conduction band recovered its original state, without localized impurities peaks, also a reduction in micro-strain and increased Fe-O bond ordering is observed. Also the sequence in which the ex-situ co-doping is carried out is very crucial, as Be/Sn co-doping sequence induces many under-coordinated O atoms resulting in a higher micro-strain and lower charge separation efficiency resulting undesired electron recombination. Here, we perform a detailed systematic characterization using XRD, FESEM, XPS and comprehensive electrochemical and photoelectrochemical studies, along with sophisticated synchrotron diffraction studies and extended X-ray absorption fine structure. PMID:27005757

  6. Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be2+ as co-dopant

    NASA Astrophysics Data System (ADS)

    Annamalai, Alagappan; Lee, Hyun Hwi; Choi, Sun Hee; Lee, Su Yong; Gracia-Espino, Eduardo; Subramanian, Arunprabaharan; Park, Jaedeuk; Kong, Ki-Jeong; Jang, Jum Suk

    2016-03-01

    For ex-situ co-doping methods, sintering at high temperatures enables rapid diffusion of Sn4+ and Be2+ dopants into hematite (α–Fe2O3) lattices, without altering the nanorod morphology or damaging their crystallinity. Sn/Be co-doping results in a remarkable enhancement in photocurrent (1.7 mA/cm2) compared to pristine α–Fe2O3 (0.7 mA/cm2), and Sn4+ mono-doped α-Fe2O3 photoanodes (1.0 mA/cm2). From first-principles calculations, we found that Sn4+ doping induced a shallow donor level below the conduction band minimum, which does not contribute to increase electrical conductivity and photocurrent because of its localized nature. Additionally, Sn4+-doping induce local micro-strain and a decreased Fe-O bond ordering. When Be2+ was co-doped with Sn4+-doped α–Fe2O3 photoanodes, the conduction band recovered its original state, without localized impurities peaks, also a reduction in micro-strain and increased Fe-O bond ordering is observed. Also the sequence in which the ex-situ co-doping is carried out is very crucial, as Be/Sn co-doping sequence induces many under-coordinated O atoms resulting in a higher micro-strain and lower charge separation efficiency resulting undesired electron recombination. Here, we perform a detailed systematic characterization using XRD, FESEM, XPS and comprehensive electrochemical and photoelectrochemical studies, along with sophisticated synchrotron diffraction studies and extended X-ray absorption fine structure.

  7. Enhanced 1.0 μm emission and simultaneously suppressed upconversion emission in Yb:PbF2 laser crystal codoped with NaF

    NASA Astrophysics Data System (ADS)

    Zhang, P. X.; Yin, J. G.; Hang, Y.; Yin, J. P.

    2013-04-01

    Na-codoped and only Yb-doped Yb:PbF2 crystals were successfully grown using the vertical Bridgman method. The influence of the ions codoped with Na+ on the distribution coefficients has been studied. Enhanced ˜1.0 μm emission and simultaneously suppressed upconversion emission was observed for Yb:PbF2 crystals codoped with 2 mol% NaF. A time-resolved spectroscopy study showed that the ions codoped with Na+ lengthen the fluorescence lifetime by 6%. Absorption spectra were also studied and showed that the ions codoped with Na+ can effectively suppress the formation of Yb2+ ions.

  8. Synthesis and antibacterial properties of ZnO brush pens

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zhang, Rong; Li, Yilin; Weng, Yuan; Liang, Weiquan; Zhang, Wenfeng; Zheng, Weitao; Hu, Haimei

    2015-12-01

    In this paper, ZnO with a novel hierarchical nanostructure has been synthesized by a new solution method. The novel hierarchical structure is named a ‘brush pen’. The biocompatibility and antibacterial properties of ZnO brush pens have been evaluated. The results demonstrate that ZnO brush pens show good antibacterial activity against Staphylococcus aureus.

  9. Y2O3 and Yb2O3 Co-doped Strontium Hafnate as a New Thermal Barrier Coating Material

    NASA Astrophysics Data System (ADS)

    Ma, Wen; Li, Peng; Dong, Hongying; Bai, Yu; Zhao, Jinlan; Fan, Xiaoze

    2014-01-01

    Y2O3 and Yb2O3 co-doped strontium hafnate powder with chemistry of Sr(Hf0.9Y0.05Yb0.05)O2.95 (SHYY) was synthesized by a solid-state reaction at 1450 °C. The SHYY showed good phase stability not only from 200 to 1400 °C but also at a high temperature of 1450 °C for a long period, analyzed by differential scanning calorimetry and x-ray diffraction, respectively. The coefficient of thermal expansion of the sintered bulk SHYY was recorded by a high-temperature dilatometer and revealed a positive influence on phase transitions of SrHfO3 by co-doping with Y2O3 and Yb2O3. The thermal conductivity of the bulk SHYY was approximately 16% lower in contrast to that of SrHfO3 at 1000 °C. Good chemical compatibility was observed for SHYY with 8YSZ or Al2O3 powders after a 24 h heat treatment at 1250 °C. The phase stability and the microstructure evolution of the as-sprayed SHYY coating during annealing at 1400 °C were also investigated.

  10. Schottky barrier effect on the electrical properties of Fe3O4/ZnO and Fe3O4/Nb : SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Kiwon; Kim, D. H.; Dho, Joonghoe

    2011-09-01

    The current-voltage (I-V) characteristics of Fe3O4/Nb-doped SrTiO3(Nb : STO) and Fe3O4/ZnO junctions prepared by pulsed laser deposition were investigated as a function of temperature. The rectifying behaviour was more distinctive in Fe3O4/Nb : STO than in the Fe3O4/ZnO. Contrary to Fe3O4/Nb : STO, remarkably, the current flow in Fe3O4/ZnO was slightly larger for negative bias voltages than for positive bias voltages. The threshold voltage in Fe3O4/Nb : STO dramatically shifted to a higher voltage by decreasing the temperature, and hysteresis behaviour with a cyclic voltage sweep appeared below 120 K. Upon cooling, the rectifying behaviour in Fe3O4/ZnO gradually disappeared within the measurement range. The observed difference between Fe3O4/Nb : STO and Fe3O4/ZnO could be explained by the shape and height of the Schottky barrier which was determined by the relative magnitude of the work functions of the two contact materials. The formation of the Schottky barrier presumably resulted from an upward shift of the interface band in Fe3O4/Nb : STO, while a little downward shift of the interface band occurred in Fe3O4/ZnO. In addition, Al-doping into ZnO induced a complete disappearance of the Schottky barrier in the Fe3O4/Al-doped ZnO junction.

  11. Comparative study of pure and Co-doped BaFe2As2

    NASA Astrophysics Data System (ADS)

    Soullard, Jacques; Perez-Enriquez, Raul; Kaplan, Ilya G.

    2015-05-01

    We present a comparative calculation of the electronic structure of the high critical temperature superconductor Co-doped BaFe2As2 and its parent compound at the electron correlation level by the embedded cluster method; the electron correlation is calculated through the second-order Møller-Plesset perturbation theory. The superconducting doped material is represented by the Ba4CoFe4As8 cluster. The analysis of the orbital populations in this cluster reveals the formation of an antiferromagnetic order in the Fe plane with a spin-density increase on the central Co atom with respect to the spin density of the central Fe atom of the undoped case. This increase is associated with an increase of the dz2 orbital population of the central atom. However, the formation mechanism of the local magnetic moment implies also a spin transfer from the nearest-neighbor Fe atoms and from the next-nearest-neighbor As atoms to the central Co atom, and it corresponds to a J1-J2 antiferromagnetic Heisenberg model. Some particular features of dy z and dx2-y2 orbitals in the triplet and in the singlet cluster states are interpreted to correspond to a spinless fermion. This result, as well as the result relative to the formation mechanism of the magnetic moments, can be connected with a model of resonating-valence-bond (RVB) superconductors suggested recently by Poilblanc et al. [Phys. Rev. B 89, 241106 (2014), 10.1103/PhysRevB.89.241106] and based on the Anderson RVB theory.

  12. Pulsed-laser deposition of inclined ZnO, of GaPO4 and of novel composite thin films

    NASA Astrophysics Data System (ADS)

    Pedarnig, J. D.; Peruzzi, M.; Vrejoiu, I.; Matei, D. G.; Dinescu, M.; Bäuerle, D.

    2005-07-01

    Pulsed-laser deposition of different novel thin film materials is reported. Pure ZnO, Al-doped and Li-doped ZnO thin films and double-layers with inclined crystal orientation and very strong texture were achieved. The inclined ZnO heterostructures consisted of pure and doped layers of strongly different electrical resistivity. Polycrystalline GaPO4 thin films were grown by F2-laser ablation of ceramic GaPO4. Layers of a novel composite material were produced from BaTiO3/polytetrafluoroethylene mixed targets. The composite films revealed a giant dielectric permittivity, ɛr’≤ 15000, and a strong dependence of permittivity on the thickness of the layers.

  13. Nanostructured Al-ZnO/CdSe/Cu2O ETA solar cells on Al-ZnO film/quartz glass templates

    PubMed Central

    2011-01-01

    The quartz/Al-ZnO film/nanostructured Al-ZnO/CdSe/Cu2O extremely thin absorber solar cell has been successfully realized. The Al-doped ZnO one-dimensional nanostructures on quartz templates covered by a sputtering Al-doped ZnO film was used as the n-type electrode. A 19- to 35-nm-thin layer of CdSe absorber was deposited by radio frequency magnetron sputtering, coating the ZnO nanostructures. The voids between the Al-ZnO/CdSe nanostructures were filled with p-type Cu2O, and therefore, the entire assembly formed a p-i-n junction. The cell shows the energy conversion efficiency as high as 3.16%, which is an interesting option for developing new solar cell devices. PACS: 88.40.jp; 73.40.Lq; 73.50.Pz. PMID:22136081

  14. Nanostructured Al-ZnO/CdSe/Cu2O ETA solar cells on Al-ZnO film/quartz glass templates.

    PubMed

    Wang, Xianghu; Li, Rongbin; Fan, Donghua

    2011-01-01

    The quartz/Al-ZnO film/nanostructured Al-ZnO/CdSe/Cu2O extremely thin absorber solar cell has been successfully realized. The Al-doped ZnO one-dimensional nanostructures on quartz templates covered by a sputtering Al-doped ZnO film was used as the n-type electrode. A 19- to 35-nm-thin layer of CdSe absorber was deposited by radio frequency magnetron sputtering, coating the ZnO nanostructures. The voids between the Al-ZnO/CdSe nanostructures were filled with p-type Cu2O, and therefore, the entire assembly formed a p-i-n junction. The cell shows the energy conversion efficiency as high as 3.16%, which is an interesting option for developing new solar cell devices.PACS: 88.40.jp; 73.40.Lq; 73.50.Pz. PMID:22136081

  15. Nanostructured Al-ZnO/CdSe/Cu2O ETA solar cells on Al-ZnO film/quartz glass templates

    NASA Astrophysics Data System (ADS)

    Wang, Xianghu; Li, Rongbin; Fan, Donghua

    2011-12-01

    The quartz/Al-ZnO film/nanostructured Al-ZnO/CdSe/Cu2O extremely thin absorber solar cell has been successfully realized. The Al-doped ZnO one-dimensional nanostructures on quartz templates covered by a sputtering Al-doped ZnO film was used as the n-type electrode. A 19- to 35-nm-thin layer of CdSe absorber was deposited by radio frequency magnetron sputtering, coating the ZnO nanostructures. The voids between the Al-ZnO/CdSe nanostructures were filled with p-type Cu2O, and therefore, the entire assembly formed a p-i-n junction. The cell shows the energy conversion efficiency as high as 3.16%, which is an interesting option for developing new solar cell devices. PACS: 88.40.jp; 73.40.Lq; 73.50.Pz.

  16. Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses.

    PubMed

    Zhou, Bo; Lin, Hai; Chen, Baojie; Pun, Edwin Yue-Bun

    2011-03-28

    Superbroadband emission from 1.0 to 1.7 μm wavelength was observed in thulium-bismuth (Tm-Bi) codoped sodium-germanium-gallate (NGG) glasses under 793 nm excitation. Efficient energy transfer process from Bi to Tm ions, with value as high as 67.7%, was achieved which is beneficial in achieving flat broadband lineshape. The large stimulated emission cross-section and measured lifetime confirm the potentials of Tm-Bi codopants as luminescence sources for superbroadband near-infrared (NIR) optical amplifiers and tunable lasers. Planar optical waveguides were fabricated successfully in the codoped NGG glasses using K(+)-Na(+) ion-exchange process. PMID:21451680

  17. Study of the effects of hydroxyapatite nanocrystal codoping by pulsed electron paramagnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Gafurov, M. R.; Biktagirov, T. B.; Mamin, G. V.; Shurtakova, D. V.; Klimashina, E. S.; Putlyaev, V. I.; Orlinskii, S. B.

    2016-03-01

    The effect of codoping of hydroxyapatite (HAP) nanocrystals with average sizes of 35 ± 15 nm during "wet" synthesis by CO 3 2- carbonate anions and Mn2+ cations on relaxation characteristics (for the times of electron spin-spin relaxation) of the NO 3 2- nitrate radical anion has been studied. By the example of HAP, it has been demonstrated that the electron paramagnetic resonance (EPR) is an efficient method for studying anion-cation (co)doping of nanoscale particles. It has been shown experimentally and by quantummechanical calculations that simultaneous introduction of several ions can be energetically more favorable than their separate inclusion. Possible codoping models have been proposed, and their energy parameters have been calculated.

  18. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangfeng; Zhang, Lijuan; Gao, Ziye; Wang, Junli; Wang, Zhaohua; Su, Liangbi; Zheng, Lihe; Wang, Jingya; Xu, Jun; Wei, Zhiyi

    2015-03-01

    A passively mode-locked femtosecond laser based on an Nd, Y-codoped CaF2 disordered crystal was demonstrated. The Y3+-codoping in Nd : CaF2 markedly suppressed the quenching effect and improved the fluorescence quantum efficiency and emission spectra. With a fiber-coupled laser diode as the pump source, the continuous wave tuning range covering from 1042 to 1076 nm was realized, while the mode-locked operation generated 264 fs pulses with an average output power of 180 mW at a repetition rate of 85 MHz. The experimental results show that the Nd, Y-codoped CaF2 disordered crystal has potential in a new generation diode-pumped high repetition rate chirped pulse amplifier.

  19. Magnetic and ferroelectric properties of Zn and Mn co-doped BaTiO3

    NASA Astrophysics Data System (ADS)

    Keshari Das, Sangram; Kumar Roul, Binod

    2015-06-01

    This paper reports an approach to obtaining multiferroic properties in co-doped (Zn:Mn) BaTiO3 near room temperature. Interestingly, an unusual magnetic hysteresis loop is observed in the co-doped compositions in which the central portion of the loop is squeezed. However, in the composition Ba0.9Zn0.1Ti0.9Mn0.1O3, a broad magnetic hysteresis loop is observed. Such a magnetic effect is attributed to the coexistence of antiferromagnetic and ferromagnetic exchange interactions in the system. The observation of the above type of magnetic properties is likely to be due to the presence of exchange interactions between Mn ions. A lossy-type of ferroelectric hysteresis loop is also observed in co-doped ceramic compositions near room temperature. Author S. K. Das supported financially by CSIR, New Delhi (Grant No. 09/750 (0005)/2009-EMR-I).

  20. Eu/Tb codoped spindle-shaped fluorinated hydroxyapatite nanoparticles for dual-color cell imaging

    NASA Astrophysics Data System (ADS)

    Ma, Baojin; Zhang, Shan; Qiu, Jichuan; Li, Jianhua; Sang, Yuanhua; Xia, Haibing; Jiang, Huaidong; Claverie, Jerome; Liu, Hong

    2016-06-01

    Lanthanide doped fluorinated hydroxyapatite (FAp) nanoparticles are promising cell imaging nanomaterials but they are excited at wavelengths which do not match the light sources usually found in a commercial confocal laser scanning microscope (CLSM). In this work, we have successfully prepared spindle-shaped Eu/Tb codoped FAp nanoparticles by a hydrothermal method. Compared with single Eu doped FAp, Eu/Tb codoped FAp can be excited by a 488 nm laser, and exhibit both green and red light emission. By changing the amounts of Eu and Tb peaks, the emission in the green region (500-580 nm) can be decreased to the benefit of the emission in the red region (580-720 nm), thus reaching a balanced dual color emission. Using MC3T3-E1 cells co-cultured with Eu/Tb codoped FAp nanoparticles, it is observed that the nanoparticles are cytocompatible even at a concentration as high as 800 μg ml-1. The Eu/Tb codoped FAp nanoparticles are located in the cytoplasm and can be monitored by dual color--green and red imaging with a single excitation light at 488 nm. At a concentration of 200 μg ml-1, the cytoplasm is saturated in 8 hours, and Eu/Tb codoped FAp nanoparticles retain their fluorescence for at least 3 days. The cytocompatible Eu/Tb codoped FAp nanoparticles with unique dual color emission will be of great use for cell and tissue imaging.Lanthanide doped fluorinated hydroxyapatite (FAp) nanoparticles are promising cell imaging nanomaterials but they are excited at wavelengths which do not match the light sources usually found in a commercial confocal laser scanning microscope (CLSM). In this work, we have successfully prepared spindle-shaped Eu/Tb codoped FAp nanoparticles by a hydrothermal method. Compared with single Eu doped FAp, Eu/Tb codoped FAp can be excited by a 488 nm laser, and exhibit both green and red light emission. By changing the amounts of Eu and Tb peaks, the emission in the green region (500-580 nm) can be decreased to the benefit of the emission in the

  1. Improved electroluminescence of ZnS:Mn thin films by codoping with potassium chloride

    NASA Astrophysics Data System (ADS)

    Waldrip, K. E.; Lewis, J. S.; Zhai, Q.; Puga-Lambers, M.; Davidson, M. R.; Holloway, P. H.; Sun, S.-S.

    2001-02-01

    Alternating current thin film electroluminescent devices have been fabricated using sputter-deposited ZnS:Mn with and without codoped potassium chloride via both in situ and ex situ methods. In situ codoping proved to be difficult due to a memory effect in the deposition chamber. Samples codoped with potassium chloride via an ex situ diffusion method exhibited improvements in brightness of up to 70% (572 vs 337 cd/m2) and efficiency of up to 60% (1.95 vs 1.25 lm/W) over noncodoped samples. The threshold voltage increased by ≈5% (160 vs 168 V), and the brightness-versus-voltage curve stabilized more rapidly for the devices. Several possible mechanisms to explain these effects are discussed. While modest microstructural changes contribute to the improvements, changes in point defects which lead to modification of the space charge in the devices appears to be the dominant mechanism.

  2. Resistance switching behavior of ZnO resistive random access memory with a reduced graphene oxide capping layer

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Li; Chang, Wei-Yi; Huang, Yen-Lun; Juan, Pi-Chun; Wang, Tse-Wen; Hung, Ke-Yu; Hsieh, Cheng-Yu; Kang, Tsung-Kuei; Shi, Jen-Bin

    2015-04-01

    In this work, we investigate the characteristics of ZnO resistive random access memory (RRAM) with a reduced graphene oxide (rGO) capping layer and the polarity effect of the SET/RESET bias on the RRAM. The rGO film insertion enhances the stability of the current-voltage (I-V) switching curve and the superior resistance ratio (˜105) of high-resistance state (HRS) to low-resistance state (LRS). Using the appropriate polarity of the SET/RESET bias applied to the rGO-capped ZnO RRAM enables the oxygen ions to move mainly at the interface of the rGO and ZnO films, resulting in the best performance. Presumably, the rGO film acts as an oxygen reservoir and enhances the easy in and out motion of the oxygen ions from the rGO film. The rGO film also prevents the interaction of oxygen ions and the Al electrode, resulting in excellent performance. In a pulse endurance test, the rGO-capped ZnO RRAM reveals superior endurance of up to 108 cycles over that of the ZnO RRAM without rGO insertion (106 cycles).

  3. Improvement of Charge Collection and Performance Reproducibility in Inverted Organic Solar Cells by Suppression of ZnO Subgap States.

    PubMed

    Wu, Bo; Wu, Zhenghui; Yang, Qingyi; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Cheung, Sin-Hang; So, Shu-Kong

    2016-06-15

    Organic solar cells (OSCs) with inverted structure usually exhibit higher power conversion efficiency (PCE) and are more stable than corresponding devices with regular configuration. Indium tin oxide (ITO) surface is often modified with solution-processed low work function metal oxides, such as ZnO, serving as the transparent cathode. However, the defect-induced subgap states in the ZnO interlayer hamper the efficient charge collection and the performance reproducibility of the OSCs. In this work, we demonstrate that suppression of the ZnO subgap states by modification of its surface with an ultrathin Al layer significantly improves the charge extraction and performance reproducibility, achieving PCE of 8.0%, which is ∼15% higher than that of a structurally identical control cell made with a pristine ZnO interlayer. Light intensity-dependent current density-voltage characteristic, photothermal deflection spectroscopy, and X-ray photoelectron spectroscopy measurements point out the enhancement of charge collection efficiency at the organic/cathode interface, due to the suppression of the subgap states in the ZnO interlayer. PMID:27224960

  4. Two photon processes in ZnO quantum dots

    NASA Astrophysics Data System (ADS)

    Maikhuri, Deepti; Purohit, S. P.; Mathur, K. C.

    2016-01-01

    The two-photon bound-bound (TPBB) and the two-photon bound-free (TPBF) processes are studied for the electron in the initial 1S state in the conduction band of the ZnO quantum dot (QD) embedded in the HfO2 and the AlN matrices. The energy and the wave functions of the QD are obtained by using the effective mass approximation with a finite barrier height at the dot-matrix interface. Using the second order perturbation theory results are obtained for the two-photon absorption coefficient and the photoelectric cross section. The photoelectric cross section ratio for the circularly to the linearly polarized photons is also obtained. It is observed that the two-photon processes depend significantly on the polarization of the incident beam, the dot size, and the surrounding matrix. It is found that the electric quadrupole interaction enhance the TPBF photoelectric cross section.

  5. Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales

    SciTech Connect

    Knoops, Harm C. M. Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish; Kessels, Wilhelmus M. M.; Creatore, Mariadriana

    2015-03-15

    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific

  6. The microstructure of erbium-ytterbium co-doped oxyfluoride glass-ceramic optical fibers

    NASA Astrophysics Data System (ADS)

    Augustyn, Elżbieta; Żelechower, Michał; Stróż, Danuta; Chrapoński, Jacek

    2012-04-01

    Oxyfluoride transparent glass-ceramics combine some features of glasses (easier shaping or lower than single crystals cost of fabrication) and some advantages of rare-earth doped single crystals (narrow absorption/emission lines and longer lifetimes of luminescent levels). Since the material seems to be promising candidate for efficient fiber amplifiers, the manufacturing as well as structural and optical examination of the oxyfluoride glass-ceramic fibers doped with rare-earth ions seems to be a serious challenge. In the first stage oxyfluoride glasses of the following compositions 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-11PbF2-3ErF3 and 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-10PbF2-3YbF3-1ErF3 (in molar%) were fabricated from high purity commercial chemicals (Sigma-Aldrich). The fabricated glass preforms were drawn into glass fibers using the mini-tower. Finally, the transparent Er3+ doped and Er3+/Yb3+ co-doped oxyfluoride glass-ceramic fibers were obtained by controlled heat treatment of glass fibers. The preceding differential thermal analysis (DTA) studies allowed estimating both the fiber drawing temperature and the controlled crystallization temperature of glass fibers. X-ray diffraction examination (XRD) at each stage of the glass-ceramic fibers fabrication confirmed the undesirable crystallization of preforms and glass fibers has been avoided. The fibers shown their mixed amorphous-crystalline microstructure with nano-crystals of size even below 10 nm distributed in the glassy host. The crystal structure of the grown nano-crystals has been determined by XRD and confirmed by electron diffraction (SAED). Results obtained by both techniques seem to be compatible: Er3FO10Si3 (monoclinic; ICSD 92512), Pb5Al3F19 (triclinic; ICSD 91325) and Er4F2O11Si3 (triclinic; ICSD 51510) against to initially expected PbF2 crystals.

  7. Inverse I-V Injection Characteristics of ZnO Nanoparticle-Based Diodes.

    PubMed

    Mundt, Paul; Vogel, Stefan; Bonrad, Klaus; von Seggern, Heinz

    2016-08-10

    Simple Al/ZnO(NP)/Au diodes produced by spin coating of ZnO nanoparticle dispersions (ZnO(NP)) on Al/Al2O3 and Au substrates and subsequent Au deposition have been investigated to understand electron injection properties of more complex devices, incorporating ZnO(NP) as injection layer. Inverse I-V characteristics have been observed compared to conventional Al/ZnO(SP)/Au diodes produced by reactive ion sputtering of ZnO. SEM micrographs reveal that the void-containing contact of ZnO(NP) with the bottom Al electrode and the rough morphology of the top Au electrode are likely to be responsible for the observed injection and ejection probabilities of electrons. A simple tunneling model, incorporating the voids, explains the strongly reduced injection currents from Al whereas the top electrode fabricated by vapor deposition of Au onto the nanoparticle topology adopts the inverse ZnO(NP) morphology leading to enlarged injection areas combined with Au-tip landscapes. These tips in contrast to the smooth sputtered ZnO(SP) lead to electric field enhancement and strongly increased injection of electrons in reverse direction. The injected charge piles up at the barrier generated by voids between ZnO(NP) and the bottom electrode forcing a change in the barrier shape and therefore allowing for higher ejection rates. Both effects in combination explain the inverse I-V characteristic of nanoparticle based diodes. PMID:27443793

  8. ZnO nanolasers on graphene films

    NASA Astrophysics Data System (ADS)

    Baek, Hyeonjun; Park, Jun Beom; Park, Jong-woo; Hyun, Jerome K.; Yoon, Hosang; Oh, Hongseok; Yoon, Jiyoung

    2016-06-01

    We grew and characterized zinc oxide (ZnO) nanolasers on graphene films. By using graphene as a growth medium, we were able to prepare position-controlled and vertically aligned ZnO nanotube lasers. The ZnO nanolasers grown on graphene films showed good optical characteristics, evidenced by a low lasing threshold. Furthermore, the nanolaser/graphene system was easily lifted off the original substrate and transferred onto foreign substrates. The lasing performance was observed to be significantly enhanced by depositing a layer of silver on the back of the graphene film during this transfer process, which was quantitatively investigated using finite-difference time-domain simulations. Due to the wide selection of substrates enabled by the use of graphene films, our results suggest promising strategies for preparing practical nanolasers with improved performance.

  9. Nitrogen-fluorine co-doped titania inverse opals for enhanced solar light driven photocatalysis.

    PubMed

    Rahul, T K; Sandhyarani, N

    2015-11-21

    Three dimensionally ordered nitrogen-fluorine (N-F) co-doped TiO2 inverse opals (IOs) were fabricated by templating with polystyrene (PS) colloidal photonic crystals (CPCs) by infiltration. During preparation, the TiO2 precursor was treated with a mixture of nitric acid and trifluoroacetic acid to facilitate N-F co-doping into the TiO2 lattice. Enhanced solar light absorption was observed in the samples as a consequence of the red shift in the electronic band gap of TiO2 due to N-F co-doping. The photonic band gap (PBG) of these TiO2 IO films was tuned by varying the sphere size of the PS CPC templates. The as-prepared N-F co-doped TiO2 IO films were used as photocatalysts for the degradation of Rhodamine B (RhB) dye under solar light irradiation. A significant enhancement in the photocatalytic activity was observed in N-F co-doped TiO2 IO films prepared using PS spheres of 215 nm as a template, with the red edge of the PBG closer to the electronic band gap (EBG) of TiO2. 100% of the dye molecules were degraded within 2 minutes under direct solar irradiation, which is one of the fastest reaction times ever reported for RhB degradation in the presence of TiO2 photocatalysts. The N-F co-doped TiO2 IO film prepared using PS of 460 nm with its PBG centered at 695 nm also showed good photocatalytic activity. It was found that the IO films displayed improved photocatalytic activity in comparison to ordinary nanocrystalline (nc)-TiO2 films. The enhancement could be attributed to the bandgap scattering effect and the slow photon effect, leading to a significant improvement in solar light harvesting. PMID:26487369

  10. Nitrogen-fluorine co-doped titania inverse opals for enhanced solar light driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Rahul, T. K.; Sandhyarani, N.

    2015-10-01

    Three dimensionally ordered nitrogen-fluorine (N-F) co-doped TiO2 inverse opals (IOs) were fabricated by templating with polystyrene (PS) colloidal photonic crystals (CPCs) by infiltration. During preparation, the TiO2 precursor was treated with a mixture of nitric acid and trifluoroacetic acid to facilitate N-F co-doping into the TiO2 lattice. Enhanced solar light absorption was observed in the samples as a consequence of the red shift in the electronic band gap of TiO2 due to N-F co-doping. The photonic band gap (PBG) of these TiO2 IO films was tuned by varying the sphere size of the PS CPC templates. The as-prepared N-F co-doped TiO2 IO films were used as photocatalysts for the degradation of Rhodamine B (RhB) dye under solar light irradiation. A significant enhancement in the photocatalytic activity was observed in N-F co-doped TiO2 IO films prepared using PS spheres of 215 nm as a template, with the red edge of the PBG closer to the electronic band gap (EBG) of TiO2. 100% of the dye molecules were degraded within 2 minutes under direct solar irradiation, which is one of the fastest reaction times ever reported for RhB degradation in the presence of TiO2 photocatalysts. The N-F co-doped TiO2 IO film prepared using PS of 460 nm with its PBG centered at 695 nm also showed good photocatalytic activity. It was found that the IO films displayed improved photocatalytic activity in comparison to ordinary nanocrystalline (nc)-TiO2 films. The enhancement could be attributed to the bandgap scattering effect and the slow photon effect, leading to a significant improvement in solar light harvesting.

  11. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of ˜20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  12. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  13. Yb3+/Ho3+-codoped antimony-silicate optical fiber

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Jan

    The emission properties of Yb3+/Ho3+-codoped antimony-silicate optical fiber has been investigated. Luminescence at 2.1 μm corresponding to 5I7--> 5I8 transition in holmium was obtained by energy transfer between Yb3+ and Ho3+ ions. According to the Dexter-Miyakawa model, the parameters of energy migration CDD of the 2F5/2 (Yb3+) <--> 2F5/2 (Yb3+) transition and direct energy transfer CDA of the 2F5/2 (Yb3+) --> 5I6 (Ho3+) transition was calculated. The optimization of the activator content and the concentration ratio were conducted with the purpose of maximizing the efficiency of energy transfer. It made possible to select best-suited glass which was used to manufacture double-clad optical fiber. Strong and narrow bands of spontaneous emission which formed as a result of energy transfer between ytterbium and holmium ions were observed in the fiber under exciting with radiation at 978 nm wavelength.

  14. Yb3+/Ho3+-codoped antimony-silicate optical fiber

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Jan

    2012-05-01

    The emission properties of Yb3+/Ho3+-codoped antimony-silicate optical fiber has been investigated. Luminescence at 2.1 μm corresponding to 5I7--> 5I8 transition in holmium was obtained by energy transfer between Yb3+ and Ho3+ ions. According to the Dexter-Miyakawa model, the parameters of energy migration CDD of the 2F5/2 (Yb3+) <--> 2F5/2 (Yb3+) transition and direct energy transfer CDA of the 2F5/2 (Yb3+) --> 5I6 (Ho3+) transition was calculated. The optimization of the activator content and the concentration ratio were conducted with the purpose of maximizing the efficiency of energy transfer. It made possible to select best-suited glass which was used to manufacture double-clad optical fiber. Strong and narrow bands of spontaneous emission which formed as a result of energy transfer between ytterbium and holmium ions were observed in the fiber under exciting with radiation at 978 nm wavelength.

  15. Improvement of Flame-made ZnO Nanoparticulate Thick Film Morphology for Ethanol Sensing

    PubMed Central

    Liewhiran, Chaikarn; Phanichphantandast, Sukon

    2007-01-01

    ZnO nanoparticles were produced by flame spray pyrolysis using zinc naphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%). The particles properties were analyzed by XRD, BET. The ZnO particle size and morphology was observed by SEM and HR-TEM revealing spheroidal, hexagonal, and rod-like morphologies. The crystallite sizes of ZnO spheroidal and hexagonal particles ranged from 10-20 nm. ZnO nanorods were ranged from 10-20 nm in width and 20-50 nm in length. Sensing films were produced by mixing the nanoparticles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed onto Al2O3 substrates interdigitated with Au electrodes. The morphology of the sensing films was analyzed by optical microscopy and SEM analysis. Cracking of the sensing films during annealing process was improved by varying the heating conditions. The gas sensing of ethanol (25-250 ppm) was studied at 400 °C in dry air containing SiC as the fluidized particles. The oxidation of ethanol on the surface of the semiconductor was confirmed by mass spectroscopy (MS). The effect of micro-cracks was quantitatively accounted for as a provider of extra exposed edges. The sensitivity decreased notably with increasing crack of sensing films. It can be observed that crack widths were reduced with decreasing heating rates. Crack-free of thick (5 μm) ZnO films evidently showed higher sensor signal and faster response times (within seconds) than cracked sensor. The sensor signal increased and the response time decreased with increasing ethanol concentration.

  16. Suppression of boron-oxygen defects in Czochralski silicon by carbon co-doping

    SciTech Connect

    Wu, Yichao; Yu, Xuegong He, Hang; Chen, Peng; Yang, Deren

    2015-03-09

    We have investigated the influence of carbon co-doping on the formation of boron-oxygen defects in Czochralski silicon. It is found that carbon can effectively suppress the formation of boron-oxygen defects. Based on our experiments and first-principle theoretical calculations, it is believed that this effect is attributed to the formation of more energetically favorable carbon-oxygen complexes. Moreover, the diffusion of oxygen dimers in carbon co-doped silicon also becomes more difficult. All these phenomena should be associated with the tensile stress field induced by carbon doping in silicon.

  17. Nd3+, Y3+-codoped SrF2 laser ceramics

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Mei, Bingchu; Song, Jinghong

    2015-09-01

    0.15 at.% Nd3+, 5 at.% Y3+-codoped SrF2 laser ceramic based on single crystal was prepared by extensive plastic deformation. Microstructure, optical and laser properties of the Nd3+, Y3+:SrF2 ceramic were investigated. The lasing of Nd3+, Y3+-codoped SrF2 ceramics with diode pumping have been observed and true CW laser operation around 1057 nm and 1050 nm was obtained with a slope efficiency of 31.9%. In particular, the fracture toughness of the ceramic is 0.98 MPa m1/2, which is approximately two times higher than that of single crystal.

  18. Blue Upconversion Luminescence in Tm3+/Yb3+-Codoped Lead Chloride Tellurite Glass

    NASA Astrophysics Data System (ADS)

    Xu, Shi-Qing; Zhang, Jun-Jie; Wang, Guo-Nian; Dai, Shi-Xun; Hu, Li-Li; Jiang, Zhong-Hong

    2004-05-01

    The upconversion properties of Tm3+/Yb3+-codoped lead chloride tellurite glass under 980 nm excitation were investigated. The intense blue (476 nm) emission and weak red (649 nm) emission corresponding to the 1G4rightarrow3H6 and 1G4rightarrow3H4 transitions of Tm3+ ions, respectively, were simultaneously observed at room temperature. The dependence of upconversion intensities on excitation power and the possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Tm3+/Yb3+-codoped lead chloride tellurite glass can be used as potential host material for the development of blue upconversion optical devices.

  19. Characterization of reaction between ZnO and COS

    SciTech Connect

    Sasaoka, Eiji; Taniguchi, Kazuo; Uddin, M.A.; Hirano, Shigeru; Kasaoka, Shigeaki; Sakata, Yusaku

    1996-07-01

    In order to understand the behavior of COS in a ZnO desulfurization reactor, the reaction between ZnO and COS was studied in the presence of gases which compose a coal-derived gas. The behavior of COS in the reaction zone of a ZnO packed bed can be predicted as follows: H{sub 2}S in coal-derived gas reacts more easily with ZnO than COS; most of COS is converted to H{sub 2}S by catalytic hydrolysis and then reacts with ZnO, although a part of COS may react directly with ZnO; H{sub 2} accelerates the conversion of COS to H{sub 2}S; the water-gas shift reaction accelerates the reaction between ZnO and COS; and CO{sub 2} does not affect the reaction.

  20. Controlled doping of graphene using ZnO substrates

    NASA Astrophysics Data System (ADS)

    Si, Misuk; Choi, Won Jin; Jeong, Yoon Jang; Lee, Young Kuk; Kim, Ju-Jin; Lee, Jeong-O.

    2016-06-01

    We show that graphene device could be controllably doped by the bottom substrate by inserting atomic layer deposition grown ZnO between graphene and SiO2 substrate. To clarify the effect of bottom ZnO, length of the graphene transistor channel was varied from 20 to 200 μm, while that of ZnO was fixed to 10 μm. Graphene devices supported on ZnO film show marked difference from those supported on SiO2 substrates; bottom ZnO layer behave as an electron donor. UV illumination experiment on hybrid graphene-ZnO device reveals that the effect of doping from ZnO becomes negligible when the graphene channel length made about four times larger than that of ZnO stripe.