Sample records for al commun pure

  1. Suppressing hillock formation in Si-supported pure Al films

    NASA Astrophysics Data System (ADS)

    Liu, N. Z.; Liu, Y.

    2018-04-01

    To suppress the hillock formation and hence improve the service performance of pure Al thin films deposited on Si substrate, dependence of hillock formation on film thickness and annealing temperature was systematically investigated. Experimental results revealed that the hillock volume increased linearly with both the film thickness and annealing temperature. While the evolution of hillock density with film thickness was complicated, strongly depending on the annealing temperature. It was evident that the hillock formation could be effectively suppressed at a critical annealing temperature especially in thinner thickness, similar to the previous findings in Mo/glass-supported pure Al films. These experimental evidences clearly demonstrated that the hillock formation should be controlled by the plastic deformation in the surrounding film, which was further rationalized by a micromechanics model.

  2. Restricted-Access Al-Mediated Material Transport in Al Contacting of PureGaB Ge-on-Si p + n Diodes

    NASA Astrophysics Data System (ADS)

    Sammak, Amir; Qi, Lin; Nanver, Lis K.

    2015-12-01

    The effectiveness of using nanometer-thin boron (PureB) layers as interdiffusion barrier to aluminum (Al) is studied for a contacting scheme specifically developed for fabricating germanium-on-silicon (Ge-on-Si) p + n photodiodes with an oxide-covered light entrance window. Contacting is achieved at the perimeter of the Ge-island anode directly to an Al interconnect metallization. The Ge is grown in oxide windows to the Si wafer and covered by a B and gallium (Ga) layer stack (PureGaB) composed of about a nanometer of Ga for forming the p + Ge region and 10 nm of B as an interdiffusion barrier to the Al. To form contact windows, the side-wall oxide is etched away, exposing a small tip of the Ge perimeter to Al that from this point travels about 5 μm into the bulk Ge crystal. In this process, Ge and Si materials are displaced, forming Ge-filled V-grooves at the Si surface. The Al coalesces in grains. This process is studied here by high-resolution cross-sectional transmission electron microscopy and energy dispersive x-ray spectroscopy that confirm the purities of the Ge and Al grains. Diodes are fabricated with different geometries and statistical current-voltage characterization reveals a spread that can be related to across-the-wafer variations in the contact processing. The I- V behavior is characterized by low dark current, low contact resistance, and breakdown voltages that are suitable for operation in avalanching modes. The restricted access to the Ge of the Al inducing the Ge and Si material transport does not destroy the very good electrical characteristics typical of PureGaB Ge-on-Si diodes.

  3. Comments on the papers recently published by M.M. Khandpekar et al.

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. M.; Ghazaryan, V. V.; Fleck, M.

    2011-09-01

    It is argued that the existence of the new compounds of glycine recently reported by M.M. Khandpekar et al. (Optics Commun. 284(2011) 1583 and Optics Commun. 284(2011) 1578) is dubious. We argue that these compounds are not what the authors propose. In addition, two more similar cases are indicated.

  4. Casting of Ti-6Al-4V alloy compared with pure Ti in an Ar-arc casting machine.

    PubMed

    Syverud, M; Okabe, T; Herø, H

    1995-10-01

    Dental prostheses of Ti are normally cast in pure Ti. Some appliances, however, require higher yield strength. Casting of Ti alloys is of interest in such cases. The objective of the present work was to study the quality of castings made of Ti-6Al-4V compared with those made of pure Ti. Casting was made into a mold kept at room temperature using a MgO-Al2O3 investment. A standardized five-unit bridge was cast, consisting of two cylindrical crowns with sharp margins and three pontics. The overall mold filling was satisfactory. The margins of the casting alloys were, however, more rugged and incomplete than those of pure Ti. The most likely reason for this difference is the increased formation of dendrites in the alloy and thus more resistance to fluid flow. Furthermore, the sprue of the alloy was also found to contain some spherical, internal pores. Such pores were rare in the pure Ti castings. The surface reactions were found to be minimal for both of the materials. Increased casting deficiencies observed in the cast bridges of the Ti-6Al-4V alloy, compared with pure Ti, were: 1) the margins of the crowns in the bridge were less complete and 2) there was a tendency to an increased internal porosity, particularly in the sprues.

  5. Pure AlN layers in metal-polar AlGaN/AlN/GaN and AlN/GaN heterostructures grown by low-temperature ammonia-based molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kaun, Stephen W.; Mazumder, Baishakhi; Fireman, Micha N.; Kyle, Erin C. H.; Mishra, Umesh K.; Speck, James S.

    2015-05-01

    When grown at a high temperature (820 °C) by ammonia-based molecular beam epitaxy (NH3-MBE), the AlN layers of metal-polar AlGaN/AlN/GaN heterostructures had a high GaN mole fraction (∼0.15), as identified by atom probe tomography in a previous study (Mazumder et al 2013 Appl. Phys. Lett. 102 111603). In the study presented here, growth at low temperature (<740 °C) by NH3-MBE yielded metal-polar AlN layers that were essentially pure at the alloy level. The improved purity of the AlN layers grown at low temperature was correlated to a dramatic increase in the sheet density of the two-dimensional electron gas (2DEG) at the AlN/GaN heterointerface. Through application of an In surfactant, metal-polar AlN(3.5 nm)/GaN and AlGaN/AlN(2.5 nm)/GaN heterostructures grown at low temperature yielded low 2DEG sheet resistances of 177 and 285 Ω/□, respectively.

  6. Effect of Heat Treatment on the Microstructure and Wear Properties of Al-Zn-Mg-Cu/In-Situ Al-9Si-SiCp/Pure Al Composite by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Yu, Byung Chul; Bae, Ki-Chang; Jung, Je Ki; Kim, Yong-Hwan; Park, Yong Ho

    2018-05-01

    This study examined the effects of heat treatment on the microstructure and wear properties of Al-Zn-Mg-Cu/in-situ Al-9Si-SiCp/pure Al composites. Pure Al powder was used to increase densification but it resulted in heterogeneous precipitation as well as differences in hardness among the grains. Heat treatment was conducted to solve this problem. The heat treatment process consisted of three stages: solution treatment, quenching, and aging treatment. After the solution treatment, the main dissolved phases were η'(Mg4Zn7), η(MgZn2), and Al2Cu phase. An aging treatment was conducted over the temperature range, 100-240 °C, for various times. The GP zone and η'(Mg4Zn7) phase precipitated at a low aging temperature of 100-160 °C, whereas the η(MgZn2) phase precipitated at a high aging temperature of 200-240 °C. The hardness of the sample aged at 100-160 °C was higher than that aged at 200-240 °C. The wear test was conducted under various linear speeds with a load of 100 N. The aged composite showed a lower wear rate than that of the as-sintered composite under all conditions. As the linear speed was increased to 1.0 m/s, the predominant wear behavior changed from abrasive to adhesive wear in all composites.

  7. Proton irradiation studies on Al and Al5083 alloy

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, P.; Gayathri, N.; Bhattacharya, M.; Gupta, A. Dutta; Sarkar, Apu; Dhar, S.; Mitra, M. K.; Mukherjee, P.

    2017-10-01

    The change in the microstructural parameters and microhardness values in 6.5 MeV proton irradiated pure Al and Al5083 alloy samples have been evaluated using different model based techniques of X-ray diffraction Line Profile Analysis (XRD) and microindendation techniques. The detailed line profile analysis of the XRD data showed that the domain size increases and saturates with irradiation dose both in the case of Al and Al5083 alloy. The corresponding microstrain values did not show any change with irradiation dose in the case of the pure Al but showed an increase at higher irradiation doses in the case of Al5083 alloy. The microindendation results showed that unirradiated Al5083 alloy has higher hardness value compared to that of unirradiated pure Al. The hardness increased marginally with irradiation dose in the case of Al5083, whereas for pure Al, there was no significant change with dose.

  8. Optical characterization of pure and Al-doped ZnO prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Belka, Radosław; Keczkowska, Justyna; Kasińska, Justyna

    2016-09-01

    In this paper the preparation process and optical characterization of pure and Al3+ doped zinc oxide (Al:ZnO) coatings will be presented. ZnO based materials have been studied extensively due to their potential applications in optoelectronic devices as conductive gas sensors, transparent conductive, electrodes, solar cell windows, varistors, UVfilters or photovoltaic cells. It is II-VI semiconductor with wide-band gap of 3.37 eV and large exciton binding energy of 60meV. It is possible to improve the conductivity of ZnO coating by intentionally doping ZnO with aluminium ions during preparation process. Such transparent and conducting thin films, known as AZO (Aluminium Zinc Oxide) films, are very good candidate for application as transparent conducting materials in many optoelectronic devices. The well-known sol-gel method is used for preparation of solution, coated on glass substrates by dip coating process. Prepared samples were investigated by Raman and UV-VIS spectroscopy. Transmittance as well as specular and diffuse reflectance spectroscopy methods were used for studies of optical parameters. We found that Al admixture influences on optical bandgap of ZnO.

  9. Spherical nanoindentation stress-strain curves of commercially pure titanium and Ti-6Al-4V

    DOE Data Explorer

    Weaver, Jordan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Priddy, Matthew W. [Georgia Inst. of Technology, Atlanta, GA (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); Kalidindi, Surya R. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-07-27

    Spherical nanoindentation combined with electron back-scattered diffraction was employed to characterize the grain-scale elastic and plastic anisotropy of single crystal alpha-Ti for commercially pure (CP-Ti) and alloyed (Ti-64) titanium. In addition, alpha-beta Ti (single colony) grains were characterized. The data set includes the nanoindentation force, displacement, and contact stiffness, the nanoindentation stress-strain analysis, and the alpha-Ti crystal orientations. Details of the samples and experimental protocols can be found in Weaver et al. (2016) Acta Materialia doi:10.1016/j.actamat.2016.06.053.

  10. The mechanism of oxygen isotopic fractionation during fungal denitrification - A pure culture study

    NASA Astrophysics Data System (ADS)

    Wrage-Moennig, Nicole; Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Annette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2014-05-01

    Nitrous oxide (N2O) from soil denitrification originates from bacteria and - to an unknown extent - also from fungi. During fungal denitrification, oxygen (O) exchange takes place between H2O and intermediates of the denitrification process as in bacterial exchange[1,2]. However, information about enzymes involved in fungal O exchanges and the associated fractionation effects is lacking. The objectives of this study were to estimate the O fractionation and O exchange during the fungal denitrifying steps using a conceptual model[2] adapted from concepts for bacterial denitrification[3], implementing controls of O exchange proposed by Aerssens, et al.[4] and using fractionation models by Snider et al.[5] Six different pure fungal cultures (five Hypocreales, one Sordariales) known to be capable of denitrification were incubated under anaerobic conditions, either with nitrite or nitrate. Gas samples were analyzed for N2O concentration and its isotopic signatures (SP, average δ15N, δ18O). To investigate O exchange, both treatments were also established with 18O-labelled water as a tracer in the medium. The Hypocreales strains showed O exchange mainly at NO2- reductase (Nir) with NO2- as electron acceptor and no additional O exchange at NO3- reductase (Nar) with NO3- as electron acceptor. The only Hypocreales species having higher O exchange with NO3- than with NO2- also showed O exchange at Nar. The Sordariales species tested seems capable of O exchange at NO reductase (Nor) additionally to O exchange at Nir with NO2-. The data will help to better interpret stable isotope values of N2O from soils. .[1] D. M. Kool, N. Wrage, O. Oenema, J. Dolfing, J. W. Van Groenigen. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO?3- and N2O: a review. Rapid Commun. Mass Spec. 2007, 21, 3569. [2] L. Rohe, T.-H. Anderson, B. Braker, H. Flessa, A. Giesemann, N. Wrage-Mönnig, R. Well. Fungal Oxygen Exchange between

  11. Quantization of Time-Like Energy for Wave Maps into Spheres

    NASA Astrophysics Data System (ADS)

    Grinis, Roland

    2017-06-01

    In this article we consider large energy wave maps in dimension 2+1, as in the resolution of the threshold conjecture by Sterbenz and Tataru (Commun. Math. Phys. 298(1):139-230, 2010; Commun. Math. Phys. 298(1):231-264, 2010), but more specifically into the unit Euclidean sphere S^{n-1} \\subsetRn with {n≥2}, and study further the dynamics of the sequence of wave maps that are obtained in Sterbenz and Tataru (Commun. Math. Phys. 298(1):231-264, 2010) at the final rescaling for a first, finite or infinite, time singularity. We prove that, on a suitably chosen sequence of time slices at this scaling, there is a decomposition of the map, up to an error with asymptotically vanishing energy, into a decoupled sum of rescaled solitons concentrating in the interior of the light cone and a term having asymptotically vanishing energy dispersion norm, concentrating on the null boundary and converging to a constant locally in the interior of the cone, in the energy space. Similar and stronger results have been recently obtained in the equivariant setting by several authors (Côte, Commun. Pure Appl. Math. 68(11):1946-2004, 2015; Côte, Commun. Pure Appl. Math. 69(4):609-612, 2016; Côte, Am. J. Math. 137(1):139-207, 2015; Côte et al., Am. J. Math. 137(1):209-250, 2015; Krieger, Commun. Math. Phys. 250(3):507-580, 2004), where better control on the dispersive term concentrating on the null boundary of the cone is provided, and in some cases the asymptotic decomposition is shown to hold for all time. Here, however, we do not impose any symmetry condition on the map itself and our strategy follows the one from bubbling analysis of harmonic maps into spheres in the supercritical regime due to Lin and Rivière (Ann. Math. 149(2):785-829, 1999; Duke Math. J. 111:177-193, 2002), which we make work here in the hyperbolic context of Sterbenz and Tataru (Commun. Math. Phys. 298(1), 231-264, 2010).

  12. Microstructure and grain refining performance of equal-channel angular-pressed Al-5%Ti-1%B master alloy on pure aluminum

    NASA Astrophysics Data System (ADS)

    Wei, Kun Xia; Liu, Ping; Wei, Wei; Du, Qing Bo; Alexandrov, Igor V.; Hu, Jing

    2016-12-01

    Al-5%Ti-1%B master alloy was subjected to equal-channel angular pressing (ECAP) by route A at room temperature. The effect of the ECAP on the size and the distribution of Al3Ti and TiB2 particles, the fading resistance of the Al-5%Ti-1%B master alloy and the grain refining performance of pure Al ingots with the addition of the Al-5%Ti-1%B master alloy before and after ECAP have been investigated. The large platelet Al3Ti particles were fragmented into fine blocky Al3Ti particles from 88 to 25 μm after eight ECAP passes, and the TiB2 particles were well dispersed in the Al matrix. It has been revealed that grain refining efficiency was improved by adding the Al-5%Ti-1%B master alloy after ECAP to the Al melt. The mean grain size of α-Al was decreased from 1220 to 70 μm with increasing the number of ECAP passes. It has been proved that the grain size of α-Al could be well fitted by the length of Al3Ti particles and the growth restrict factor. Al-5%Ti-1%B master alloy after four ECAP passes appeared to have a better fading resistance due to fine blocky Al3Ti particles.

  13. Corrosion-fatigue life of commercially pure titanium and Ti-6Al-4V alloys in different storage environments.

    PubMed

    Zavanelli, R A; Pessanha Henriques, G E; Ferreira, I; De Almeida Rollo, J M

    2000-09-01

    Removable partial dentures are affected by fatigue because of the cyclic mechanism of the masticatory system and frequent insertion and removal. Titanium and its alloys have been used in the manufacture of denture frameworks; however, preventive agents with fluorides are thought to attack titanium alloy surfaces. This study evaluated, compared, and analyzed the corrosion-fatigue life of commercially pure titanium and Ti-6Al-4V alloy in different storage environments. For each metal, 33 dumbbell rods, 2.3 mm in diameter at the central segment, were cast in the Rematitan system. Corrosion-fatigue strength test was carried out through a universal testing machine with a load 30% lower than the 0.2% offset yield strength and a combined influence of different environments: in air at room temperature, with synthetic saliva, and with fluoride synthetic saliva. After failure, the number of cycles were recorded, and fracture surfaces were examined with an SEM. ANOVA and Tukey's multiple comparison test indicated that Ti-6Al-4V alloy achieved 21,269 cycles (SD = 8,355) against 19,157 cycles (SD = 3, 624) for the commercially pure Ti. There were no significant differences between either metal in the corrosion-fatigue life for dry specimens, but when the solutions were present, the fatigue life was significantly reduced, probably because of the production of corrosion pits caused by superficial reactions.

  14. Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite

    PubMed Central

    Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Cerantola, Valerio; McCammon, Catherine; Boffa Ballaran, Tiziana; Bobrov, Andrei; Sinmyo, Ryosuke; Dubrovinskaia, Natalia; Glazyrin, Konstantin; Liermann, Hanns-Peter; Kupenko, Ilya; Hanfland, Michael; Prescher, Clemens; Prakapenka, Vitali; Svitlyk, Volodymyr; Dubrovinsky, Leonid

    2016-01-01

    The physical and chemical properties of Earth’s mantle, as well as its dynamics and evolution, heavily depend on the phase composition of the region. On the basis of experiments in laser-heated diamond anvil cells, we demonstrate that Fe,Al-bearing bridgmanite (magnesium silicate perovskite) is stable to pressures over 120 GPa and temperatures above 3000 K. Ferric iron stabilizes Fe-rich bridgmanite such that we were able to synthesize pure iron bridgmanite at pressures between ~45 and 110 GPa. The compressibility of ferric iron–bearing bridgmanite is significantly different from any known bridgmanite, which has direct implications for the interpretation of seismic tomography data. PMID:27453945

  15. Interdiffusion and reaction between pure magnesium and aluminum alloy 6061

    DOE PAGES

    Kammerer, C. C.; Fu, Mian; Zhou, Le; ...

    2015-06-01

    Using solid-to-solid couples investigation, this study characterized the reaction products evolved and quantified the diffusion kinetics when pure Mg bonded to AA6061 is subjected to thermal treatment at 300°C for 720 hours, 350°C for 360 hours, and 400°C for 240 hours. Characterization techniques include optical microscopy, scanning electron microscopy with X-ray energy dispersive spectroscopy, and transmission electron microscopy. Parabolic growth constants were determined for γ-Mg 17Al 12, β-Mg 2Al 3, and the elusive ε-phase. Similarly, the average effective interdiffusion coefficients of major constituents were calculated for Mg (ss), γ-Mg 17Al 12, β-Mg 2Al 3, and AA6061. The activation energies andmore » pre-exponential factors for both parabolic growth constant and average effective interdiffusion coefficients were computed using the Arrhenius relationship. The activation energy for growth of γ-Mg 17Al 12 was significantly higher than that for β-Mg 2Al 3 while the activation energy for interdiffusion of γ-Mg 17Al 12 was only slightly higher than that for β-Mg 2Al 3. As a result, comparisons are made between the results of this study and those of diffusion studies between pure Mg and pure Al to examine the influence of alloying additions in AA6061.« less

  16. Mechanisms of elevated-temperature deformation in the B2 aluminides NiAl and CoAl

    NASA Technical Reports Server (NTRS)

    Yaney, D. L.; Nix, W. D.

    1988-01-01

    A strain rate change technique, developed previously for distinguishing between pure-metal and alloy-type creep behavior, was used to study the elevated-temperature deformation behavior of the intermetallic compounds NiAl and CoAl. Tests on NiAl were conducted at temperatures between 1100 and 1300 K while tests on CoAl were performed at temperatures ranging from 1200 to 1400 K. NiAl exhibits pure-metal type behavior over the entire temperature range studied. CoAl, however, undergoes a transition from pure-metal to alloy-type deformation behavior as the temperature is decreased from 1400 to 1200 K. Slip appears to be inherently more difficult in CoAl than in NiAl, with lattice friction effects limiting the mobility of dislocations at a much higher tmeperature in CoAl than in NiAl. The superior strength of CoAl at elevated temperatures may, therefore, be related to a greater lattice friction strengthening effect in CoAl than in NiAl.

  17. Time-dependent dielectric breakdown in pure and lightly Al-doped Ta2O5 stacks

    NASA Astrophysics Data System (ADS)

    Atanassova, E.; Stojadinović, N.; Spassov, D.; Manić, I.; Paskaleva, A.

    2013-05-01

    The time-dependent dielectric breakdown (TDDB) characteristics of 7 nm pure and lightly Al-doped Ta2O5 (equivalent oxide thickness of 2.2 and 1.5 nm, respectively) with W gate electrodes in MOS capacitor configuration are studied using gate injection and constant voltage stress. The effect of both the process-induced defects and the dopant on the breakdown distribution, and on the extracted Weibull slope values, are discussed. The pre-existing traps which provoke weak spots dictate early breakdowns. Their effect is compounded of both the stress-induced new traps generation (percolation model is valid) and the inevitable lower-k interface layer in the region with long time-to-breakdown. The domination of one of these competitive effects defines the mechanism of degradation: the trapping at pre-existing traps appears to dominate in Ta2O5; Al doping reduces defects in Ta2O5, the generation of new traps prevails over the charge trapping in the doped samples, and the mechanism of breakdown is more adequate to the percolation concept. The doping of high-k Ta2O5 even with small amount (5 at.%) may serve as an engineering solution for improving its TDDB characteristics and reliability.

  18. Effect of surface contamination on adhesive bonding of cast pure titanium and Ti-6Al-4V alloy.

    PubMed

    Watanabe, I; Watanabe, E; Yoshida, K; Okabe, T

    1999-03-01

    There is little information regarding bond strengths of resin cements to cast titanium surfaces contaminated by investment material. This study examined the effect of surface contamination on the shear bond strength of resin cements to cast titanium and Ti-6Al-4V alloy. Two types of disks were cast from commercially pure titanium (CP-Ti) and Ti-6Al-4V alloy ingots using an argon-arc pressure casting unit and a phosphate-bonded Al2 O3 /LiAlSiO6 investment. After casting, disks were subjected to 3 surface treatments: (1) cast surface sandblasted (50 microm-sized Al2 O3 ) for 30 seconds; (2) metal surface sanded with silicon-carbide paper (600 grit) after grinding the contaminated cast surface (approximately 200 microm in thickness); and (3) metal surface sandblasted for 30 seconds after treatment 2. Surface structures were examined after each treatment with SEM and optical microscopy. Each type of disk was then bonded with 2 types of luting materials. Bonded specimens were subjected to thermocycling for up to 50,000 cycles, and shear bond strengths were determined after 0 (baseline) and 50,000 thermocycles. Results were statistically analyzed with 3-way ANOVA (P <.05). Microscopic observation of cast CP-Ti and Ti-6Al-4V exhibited noticeable structures on the cast surfaces apparently contaminated with investment material. However, there were no statistical differences (P >.05) in the bond strengths of both cements between contaminated (treatment 1) and uncontaminated surfaces (treatment 3) for both metals at baseline and after 50,000 thermocycles. The bond strength of specimens sanded with silicon-carbide paper (treatment 2) deteriorated dramatically after 50,000 thermocycles. Contamination of the cast metal surfaces by elements of the investment during casting did not affect bond strengths of the luting materials to CP-Ti and Ti-6Al-4V.

  19. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.

    PubMed

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.

    PubMed

    Liu, B; Zheng, Y F

    2011-03-01

    Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a

  1. Superposing pure quantum states with partial prior information

    NASA Astrophysics Data System (ADS)

    Dogra, Shruti; Thomas, George; Ghosh, Sibasish; Suter, Dieter

    2018-05-01

    The principle of superposition is an intriguing feature of quantum mechanics, which is regularly exploited in many different circumstances. A recent work [M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016), 10.1103/PhysRevLett.116.110403] shows that the fundamentals of quantum mechanics restrict the process of superimposing two unknown pure states, even though it is possible to superimpose two quantum states with partial prior knowledge. The prior knowledge imposes geometrical constraints on the choice of input states. We discuss an experimentally feasible protocol to superimpose multiple pure states of a d -dimensional quantum system and carry out an explicit experimental realization for two single-qubit pure states with partial prior information on a two-qubit NMR quantum information processor.

  2. Microstructures and Dry Sliding Wear Resistance of the Laser Ceramics Composite Coating on Pure Ti

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Yuanbin; Luo, Hui; Huo, Yushuang

    2012-06-01

    In this study, Al-Ti-Co was used to improve the surface performance of pure Ti. Laser cladding is an important surface modification technique, which can be used to improve the surface performance of pure Ti. Laser cladding of the Al-Ti-Co + TiB2 pre-placed powders on pure Ti can form ceramics reinforced the composite coating, which improved the wear resistance of the substrate. Characteristics of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and wear tests. And the laser-cladded coating can also have major dilution from the substrate. Due to the action of the fine grain strengthening and the phase constituent, the wear resistance and microhardness of pure Ti surface were greatly improved.

  3. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  4. High temperature deformation of NiAl and CoAl

    NASA Technical Reports Server (NTRS)

    Nix, W. D.

    1982-01-01

    The high temperature mechanical properties of the aluminides are reviewed with respect to their potential as high temperature structural materials. It is shown that NiAl and CoAl are substantially stronger than the pure metals Ni and Co at high temperatures and approach the strength of some superalloys, particularly when those superalloys are tested in "weak" directions. The factors that limit and control the high temperature strengths of NiAl and CoAl are examined to provide a basis for the development of intermetallic alloys of this type.

  5. Comment on "Applications of homogenous balanced principle on investigating exact solutions to a series of time fractional nonlinear PDEs", [Commun Nonlinear Sci Numer Simulat 47 (2017) 253-266

    NASA Astrophysics Data System (ADS)

    Li, Xiangzheng

    2018-06-01

    A counterexample is given to show that the product rule of the Caputo fractional derivatives does not hold except on a special point. The function-expansion method of separation variable proposed by Rui[Commun Nonlinear Sci Numer Simulat 47 (2017) 253-266] based on the product rule must be modified.

  6. Microstructure and tribological properties of in situ synthesized TiC, TiN, and SiC reinforced Ti 3Al intermetallic matrix composite coatings on pure Ti by laser cladding

    NASA Astrophysics Data System (ADS)

    Pu, Yuping; Guo, Baogang; Zhou, Jiansong; Zhang, Shitang; Zhou, Huidi; Chen, Jianmin

    2008-12-01

    TiC, TiN, and SiC reinforced Ti 3Al intermetallic matrix composite (IMC) coatings were in situ synthesized on a pure Ti substrate by laser cladding. It was found that the surface hardness and the wear resistance of the Ti 3Al coating were improved by the formation of these Ti 3Al IMC coatings. The surface hardness and the wear resistance of the TiC/Ti 3Al IMC coatings increased with the increasing volume fraction of TiC powder. Under the same dry sliding test conditions, the wear resistance of TiC, TiN, and SiC reinforced Ti 3Al IMC coatings with 40 vol.% reinforced powder was in the following order: TiN/Ti 3Al IMC coating > TiC/Ti 3Al IMC coating > SiC/Ti 3Al IMC coating. It should be noted that both the TiC/Ti 3Al IMC coating with 40 vol.% TiC powder and the TiN/Ti 3Al coating with 40 vol.% TiN powder showed excellent wear resistance under 5 N normal load.

  7. Corrosion of pure aluminium and aluminium alloy: a comparative study using a slow positron beam

    NASA Astrophysics Data System (ADS)

    Wu, Y. C.; Li, P. H.; Xue, X. D.; Wang, S. J.; Kallis, A.; Coleman, P. G.; Zhai, T.

    2011-01-01

    Corrosion-related defects in pure Al and AA 2037 Al alloy have been investigated by positron beam-based Doppler broadening energy spectroscopy. Defect profiles have been analyzed by measuring the S parameter as a function of incident positron energy up to 30 keV. When pure Al samples are immersed in 1M NaOH for various times, a significant increase in the S parameter near the surface is observed. This implies that the corrosion process involves the creation of defects and nanometer voids. In contrast, a significant decrease in the S parameter is observed after the corrosion of water-quenched Al alloy by the same method, which is interpreted as being a result of Cu enrichment near the metal-oxide interface layer.

  8. X-ray and optical crystallographic parameters investigations of high frequency induction melted Al-(alpha-Al(2)O(3)) alloys.

    PubMed

    Bourbia, A; Draissia, M; Bedboudi, H; Boulkhessaim, S; Debili, M Y

    2010-01-01

    This article deals with the microstructural strengthening mechanisms of aluminium by means of hard alpha-Al(2)O(3) alumina fine particles. A broad of understanding views covering materials preparations, elaboration process, characterization techniques and associated microstructural characteristic parameters measurements is given. In order to investigate the microstructural characteristic parameters and the mechanical strengthening mechanisms of pure aluminium by hard fine particles, a set of Al-(alpha-Al(2)O(3)) alloys samples were made under vacuum by high fusion temperature melting, the high frequency (HF) process, and rapidly solidified under ambient temperature from a mixture of cold-compacted high-pure fine Al and alpha-Al(2)O(3) powders. The as-solidified Al-(alpha-Al(2)O(3)) alloys were characterized by means of X-ray diffraction (XRD) analyses, optical microscopy observations and Vickers microhardness tests in both brut and heat-treated states. It was found that the as-solidified HF Al-(alpha-Al(2)O(3)) alloys with compositions below 4 wt.% (alpha-Al(2)O(3)) are single-phase microstructures of the solid solution FCC Al phase and over two-phase microstructures of the solid solution FCC Al and the Rhombohedral alpha-Al(2)O(3) phases. The optical micrographs reveal the presence of a grain size refinement in these alloys. Vickers microhardness of the as-solidified Al-(alpha-Al(2)O(3)) is increased by means of pure fine alpha-Al(2)O(3) alumina particles. These combined effects of strengthening and grain size refinement observed in the as-solidified Al-(alpha-Al(2)O(3)) alloys are essentially due to a strengthening of Al by the alpha-Al(2)O(3) alumina particles insertion in the (HF) melted and rapidly solidified alloys.

  9. Carbon Fiber Reinforced Carbon-Al-Cu Composite for Friction Material.

    PubMed

    Cui, Lihui; Luo, Ruiying; Ma, Denghao

    2018-03-31

    A carbon/carbon-Al-Cu composite reinforced with carbon fiber 2.5D-polyacrylonitrile-based preforms was fabricated using the pressureless infiltration technique. The Al-Cu alloy liquids were successfully infiltrated into the C/C composites at high temperature and under vacuum. The mechanical and metallographic properties, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS) of the C/C-Al-Cu composites were analyzed. The results showed that the bending property of the C/C-Al-Cu composites was 189 MPa, whereas that of the pure carbon slide material was only 85 MPa. The compressive strength of C/C-Al-Cu was 213 MPa, whereas that of the pure carbon slide material was only 102 MPa. The resistivity of C/C-Al-Cu was only 1.94 μΩm, which was lower than that of the pure carbon slide material (29.5 μΩm). This finding can be attributed to the "network conduction" structure. Excellent wettability was observed between Al and the carbon matrix at high temperature due to the existence of Al₄C₃. The friction coefficients of the C/C, C/C-Al-Cu, and pure carbon slide composites were 0.152, 0.175, and 0.121, respectively. The wear rate of the C/C-Al-Cu composites reached a minimum value of 2.56 × 10 -7 mm³/Nm. The C/C-Al-Cu composite can be appropriately used as railway current collectors for locomotives.

  10. Les accidents du travail dans le transport urbain en commun de la ville province de Kinshasa, République Démocratique du Congo: une étude transversale descriptive

    PubMed Central

    Wangata, Jemima; Elenge, Myriam; De Brouwer, Christophe

    2014-01-01

    Introduction Le transport en commun urbain constitue un secteur où les travailleurs sont très exposés aux accidents du travail. Cette étude visait une description épidémiologique des accidents du travail dans le secteur informel du transport en commun à Kinshasa en vue d'apporter les pistes d'amélioration de la sécurité des travailleurs dans cette activité. Méthodes Un questionnaire sur les accidents du travail, administré en Décembre 2012 a permis d'explorer les tendances significatives entre les accidents et leurs circonstances, leurs facteurs associés, leurs conséquences au sein d'une population des travailleurs (n = 472) du transport en commun à Kinshasa. Résultats Durant les 12 derniers précédant l’étude 76.5% des travailleurs ont connu au moins un accident du travail, 54,8% ont connu un arrêt d'au moins 1jour. Les accidents liés à la circulation routière étaient plus important suivis des chutes. Les facteurs ayant montré des différences significatives étaient le travail sous l'influence de l'alcool et le port des équipements de protection individuelle. Les plaies (46,3%) et les contusions (39,4%) étaient les lésions les plus courantes. Les membres supérieurs (51,3%) et inférieurs (30,7%) étaient les plus atteints. 76,6% des travailleurs ont assumé seuls leur prise en charge médicale. Conclusion L'incidence des accidents du travail dans ce secteur est très élevée. La mise en place d'une politique de prévention et gestion de différents facteurs associés ainsi qu'un système de déclaration d'accidents est nécessaire dans ce secteur. Les patrons ainsi que les politiques devraient veiller à une prise en charge médicale correcte pour des travailleurs accidentés. PMID:25667703

  11. The black and white coatings on Ti-6Al-4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte

    NASA Astrophysics Data System (ADS)

    Han, Jun-xiang; Cheng, Yu-lin; Tu, Wen-bin; Zhan, Ting-Yan; Cheng, Ying-liang

    2018-01-01

    Black TiO2 has triggered scientific interest due to its unique properties such as enhanced solar-driven photocatalytic activity. In this paper, plasma electrolytic oxidation (PEO) treatment of Ti-6Al-4V alloy has been carried out in concentrated sodium silicate electrolyte. Silica-based black and white TiO2 coatings respectively have been obtained by controlling the oxidation time. The black coating, which was formed with a short treatment time, shows good corrosion resistance and the black appearance can be attributed to the presence of Ti2+ and Ti3+ in the coating. The lower valence titanium ions are absent in the white coatings and they also contain relatively higher Na content compared to the black coatings. The white coatings have great surface roughnesses and super hydrophilicity. The bonding strengths of the black and white coatings on the Ti-6Al-4V alloy are ∼14.4 and 4.3 MPa, respectively. The vanadium contributes little to the black appearance of the coating on Ti6Al4V alloy, since the same phenomena occur for the PEO of a pure titanium substrate.

  12. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants - Is one truly better than the other?

    PubMed

    Shah, Furqan A; Trobos, Margarita; Thomsen, Peter; Palmquist, Anders

    2016-05-01

    Commercially pure titanium (cp-Ti) and titanium alloys (typically Ti6Al4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally, influenced material selection for different clinical applications: predominantly Ti6Al4V in orthopaedics while cp-Ti in dentistry. This paper attempts to address three important questions: (i) To what extent do the surface properties differ when cp-Ti and Ti6Al4V materials are manufactured with the same processing technique?, (ii) Does bone tissue respond differently to the two materials, and (iii) Do bacteria responsible for causing biomaterial-associated infections respond differently to the two materials? It is concluded that: (i) Machined cp-Ti and Ti6Al4V exhibit similar surface morphology, topography, phase composition and chemistry, (ii) Under experimental conditions, cp-Ti and Ti6Al4V demonstrate similar osseointegration and biomechanical anchorage, and (iii) Experiments in vitro fail to disclose differences between cp-Ti and Ti6Al4V to harbour Staphylococcus epidermidis growth. No clinical comparative studies exist which could determine if long-term, clinical differences exist between the two types of bulk materials. It is debatable whether cp-Ti or Ti6Al4V exhibit superiority over the other, and further comparative studies, particularly in a clinical setting, are required. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of Mg or Ag addition on the evaporation field of Al.

    PubMed

    Aruga, Yasuhiro; Nako, Hidenori; Tsuneishi, Hidemasa; Hasegawa, Yuki; Tao, Hiroaki; Ichihara, Chikara; Serizawa, Ai

    2013-09-01

    It is known that the distribution of the charge-states as well as the evaporation field shift to higher values as the specimen temperature is decreased at a constant rate of evaporation. This study has explored the effect of Mg or Ag addition on the evaporation field of Al in terms of the charge state distribution of the field evaporated Al ions. The fractional abundance of Al(2+) ions with respect to the total Al ions in Al-Mg alloy is lower than that in pure Al, whereas it shows higher level in the Al-Ag alloy at lower temperatures. The temperature dependence of the fractional abundance of Al(2+) ions has been also confirmed, suggesting that Al atoms in the Al-Mg alloy need lower evaporation field, while higher field is necessary to evaporate Al atoms in the Al-Ag alloy, compared with pure Al. This tendency is in agreement with that of the evaporation fields estimated theoretically by means of measurements of the work function and calculations of the binding energy of the pure Al, Al-Mg and Al-Ag alloys. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Bulk Al-Al3Zr composite prepared by mechanical alloying and hot extrusion for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Pourkhorshid, E.; Enayati, M. H.; Sabooni, S.; Karimzadeh, F.; Paydar, M. H.

    2017-08-01

    Bulk Al/Al3Zr composite was prepared by a combination of mechanical alloying (MA) and hot extrusion processes. Elemental Al and Zr powders were milled for up to 10 h and heat treated at 600°C for 1 h to form stable Al3Zr. The prepared Al3Zr powder was then mixed with the pure Al powder to produce an Al-Al3Zr composite. The composite powder was finally consolidated by hot extrusion at 550°C. The mechanical properties of consolidated samples were evaluated by hardness and tension tests at room and elevated temperatures. The results show that annealing of the 10-h-milled powder at 600°C for 1 h led to the formation of a stable Al3Zr phase. Differential scanning calorimetry (DSC) results confirmed that the formation of Al3Zr began with the nucleation of a metastable phase, which subsequently transformed to the stable tetragonal Al3Zr structure. The tension yield strength of the Al-10wt%Al3Zr composite was determined to be 103 MPa, which is approximately twice that for pure Al (53 MPa). The yield stress of the Al/Al3Zr composite at 300°C is just 10% lower than that at room temperature, which demonstrates the strong potential for the prepared composite to be used in high-temperature structural applications.

  15. An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Lin, Jason; Tsai, Chia-Wei; Hwang, Tzonelih

    2018-03-01

    In early 2009, Xiu et al. (Opt. Commun. 282(2) 333-337 2009) presented a controlled deterministic secure quantum communication (CDSQC) protocol via a newly constructed five-qubit entangled quantum state. Later, Qin et al. (Opt. Commun. 282(13), 2656-2658 2009) pointed out two security loopholes in Xiu et al.'s protocol: (1) A correlation-elicitation (CE) attack can reveal the entire secret message; (2) A leakage of partial information for the receiver is noticed. Then, Xiu et al. (Opt. Commun. 283(2), 344-347 2010) presented a revised CDSQC protocol to remedy the CE attack problem. However, the information leakage problem still remains open. This work proposes a new CDSQC protocol using the same five-qubit entangled state which can work without the above mentioned security problems. Moreover, the Trojan Horse attacks can be automatically avoided without using detecting devices in the new CDSQC.

  16. An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Lin, Jason; Tsai, Chia-Wei; Hwang, Tzonelih

    2018-06-01

    In early 2009, Xiu et al. (Opt. Commun. 282(2) 333-337 2009) presented a controlled deterministic secure quantum communication (CDSQC) protocol via a newly constructed five-qubit entangled quantum state. Later, Qin et al. (Opt. Commun. 282(13), 2656-2658 2009) pointed out two security loopholes in Xiu et al.'s protocol: (1) A correlation-elicitation (CE) attack can reveal the entire secret message; (2) A leakage of partial information for the receiver is noticed. Then, Xiu et al. (Opt. Commun. 283(2), 344-347 2010) presented a revised CDSQC protocol to remedy the CE attack problem. However, the information leakage problem still remains open. This work proposes a new CDSQC protocol using the same five-qubit entangled state which can work without the above mentioned security problems. Moreover, the Trojan Horse attacks can be automatically avoided without using detecting devices in the new CDSQC.

  17. Epitaxial growth of Al9Ir2 intermetallic compound on Al(100): Mechanism and interface structure

    NASA Astrophysics Data System (ADS)

    Kadok, J.; Pussi, K.; Šturm, S.; Ambrožič, B.; Gaudry, É.; de Weerd, M.-C.; Fournée, V.; Ledieu, J.

    2018-04-01

    The adsorption of Ir adatoms on Al(100) has been investigated under various exposures and temperature conditions. The experimental and theoretical results reveal a diffusion of Ir adatoms within the Al(100) surface selvedge already at 300 K. Above 593 K, two domains of a (√{5 }×√{5 }) R 26 .6∘ phase are identified by low energy electron diffraction (LEED) and scanning tunneling microscopy measurements. This phase corresponds to the initial growth of an Al9Ir2 compound at the Al(100) surface. The Al9Ir2 intermetallic domains are terminated by bulklike pure Al layers. The structural stability of Al9Ir2 (001) grown on Al(100) has been analyzed by density functional theory based calculations. Dynamical LEED analysis is consistent with an Ir adsorption leading to the growth of an Al9Ir2 intermetallic compound. We propose that the epitaxial relationship Al9Ir2(001 ) ∥Al (100) and Al9Ir2[100 ] ∥Al [031 ]/[013 ] originates from a matching of Al atomic arrangements present both on Al(100) and on pure Al(001) layers present in the Al9Ir2 compound. Finally, the interface between Al9Ir2 precipitates and the Al matrix has been characterized by transmission electron microscopy measurements. The cross-sectional observations are consistent with the formation of Al9Ir2 (001) compounds. These measurements indicate an important Ir diffusion within Al(100) near the surface region. The coherent interface between Al9Ir2 and the Al matrix is sharp.

  18. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-04-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  19. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-06-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  20. Well-posedness of the Cauchy problem for models of large amplitude internal waves

    NASA Astrophysics Data System (ADS)

    Guyenne, Philippe; Lannes, David; Saut, Jean-Claude

    2010-02-01

    We consider in this paper the 'shallow-water/shallow-water' asymptotic model obtained in Choi and Camassa (1999 J. Fluid Mech. 396 1-36), Craig et al (2005 Commun. Pure. Appl. Math. 58 1587-641) (one-dimensional interface) and Bona et al (2008 J. Math. Pures Appl. 89 538-66) (two-dimensional interface) from the two-layer system with rigid lid, for the description of large amplitude internal waves at the interface of two layers of immiscible fluids of different densities. For one-dimensional interfaces, this system is of hyperbolic type and its local well-posedness does not raise serious difficulties, although other issues (blow-up, loss of hyperbolicity, etc) turn out to be delicate. For two-dimensional interfaces, the system is nonlocal. Nevertheless, we prove that it conserves some properties of 'hyperbolic type' and show that the associated Cauchy problem is locally well posed in suitable Sobolev classes provided some natural restrictions are imposed on the data. These results are illustrated by numerical simulations with emphasis on the formation of shock waves.

  1. Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations

    NASA Astrophysics Data System (ADS)

    Chiodaroli, Elisabetta; Kreml, Ondřej

    2018-04-01

    We study the Riemann problem for multidimensional compressible isentropic Euler equations. Using the framework developed in Chiodaroli et al (2015 Commun. Pure Appl. Math. 68 1157–90), and based on the techniques of De Lellis and Székelyhidi (2010 Arch. Ration. Mech. Anal. 195 225–60), we extend the results of Chiodaroli and Kreml (2014 Arch. Ration. Mech. Anal. 214 1019–49) and prove that it is possible to characterize a set of Riemann data, giving rise to a self-similar solution consisting of one admissible shock and one rarefaction wave, for which the problem also admits infinitely many admissible weak solutions.

  2. On the zero-Rossby limit for the primitive equations of the atmosphere*

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Zhang, Ping

    2001-09-01

    The zero-Rossby limit for the primitive equations governing atmospheric motions is analysed. The limit is important in geophysics for large-scale models (cf Lions 1996 Int. Conf. IAM 95 (Hamburg 1995) (Math. Res. vol 87) (Berlin: Akademie) pp 177-212) and is in the level of the zero relaxation limit for nonlinear partial differential equations (cf Chen et al 1994 Commun. Pure Appl. Math. 47 787-830). It is proved that, if the initial data appropriately approximate data of geostrophic type, the corresponding solutions of the simplified primitive equations approximate the solutions of the quasigeostrophic equations with order ɛ accuracy as the Rossby number ɛ goes to zero.

  3. Thermodynamics of a pure substance at the triple point

    NASA Astrophysics Data System (ADS)

    Velasco, S.; Fernández-Pineda, C.

    2007-12-01

    A thermodynamic study of a pure substance at the triple point is presented. In particular, we show that the mass fractions of the phases coexisting at the triple point obey lever rules in the specific entropy-specific volume diagram, and the relative changes in the mass fractions present in each phase along reversible isochoric and adiabatic processes of a pure substance at the triple point are governed by the relative sizes of the segments of the triple-point line in the pressure-specific volume diagram and in the temperature-specific entropy diagram. Applications to the ordinary triple point of water and to the triple point of Al2SiO5 polymorphs are presented.

  4. Microstructural, Optical and Dielectric Properties of Al-Incorporated SnO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Ateeq; Tripathi, P.; Naseem Siddique, M.; Ali, Tinku

    2017-08-01

    In this work, Pure SnO2 and Al doped SnO2 nanoparticles with the composition Sn1-xAlxO2 (x = 0, and 0.05) have been successfully prepared using sol-gel technique. The effect of Al dopant on microstructural, optical and dielectric properties has been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Ultraviolet (UV-Visible) absorption spectroscopy andImpedance spectroscopy (LCR meter)respectively. The XRD patterns indicated tetragonal rutile structure with single phase without any detectable impurity for all samples and incorporation of Al ions into the SnO2 lattice. Crystalline size decreased with aluminum content. The results of SEM confirm nanoparticles size decreases with Al dopant. UV-Visible results showed that optical band also decreases when Al is doped into pure SnO2 lattice. Frequency dependent dielectric properties of pure and doped SnO2 nanoparticles have been also studied.

  5. Erratum to "10 Gbit/s mode-multiplexed QPSK transmission using MDM-to-MFDM based single coherent receiver for intra- and inter data center networking" [Opt. Commun. 391 (2017) 106-110

    NASA Astrophysics Data System (ADS)

    Asif, Rameez; Haithem, Mustafa

    2018-03-01

    We revisited our previous work "10 Gbit/s mode-multiplexed QPSK transmission using MDM-to-MFDM based single coherent receiver for intraand inter data center networking" [Opt. Commun. 391 (2017) 106-110] and discover a mistake in the Appendix 'A', i.e. mode-selective coherent detection technique. In this section, the direct referencing of the previous work at appropriate points is not adequate (page no. 109).

  6. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.

    2009-11-01

    Electron Acoustic Waves (EAW) are the low frequency branch of electrostatic plasma waves. These waves exist in neutralized plasmas, pure electron plasmas and in pure ion plasmasfootnotetextF. Anderegg et al., PRL 102, 095001 (2009) and PoP 16, 055705 (2009). (where the name is deceptive). Here, we observe standing mθ= 0 mz= 1 EAWs in a pure ion plasma column. At small amplitude, the EAWs have a phase velocity vph ˜1.4 v, and the frequencies are in close agreement with theory. At moderate amplitudes, waves can be excited over a broad range of frequencies, with observed phase velocities in the range of 1.4 v <=vph <=2.1 v. This frequency variability comes from the plasma adjusting its velocity distribution so as to make the EAW resonant with the drive frequency. Our wave-coherent laser-induced fluorescence diagnostic shows that particles slower than vph oscillate in phase with the wave, while particles moving faster than vph oscillate 180^o out of phase with the wave. From a fluid perspective, this gives an unusual negative dynamical compressibility. That is, the wave pressure oscillations are 180^o out of phase from the density oscillations, almost fully canceling the electrostatic restoring force, giving the low and malleable frequency.

  7. Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments.

    PubMed

    Sittig, C; Textor, M; Spencer, N D; Wieland, M; Vallotton, P H

    1999-01-01

    The biocompatibility of commercially pure titanium and its alloys is closely related to their surface properties, with both the composition of the protecting oxide film and the surface topography playing an important role. Surfaces of commercially pure titanium and of the two alloys Ti-6Al-7Nb and Ti-6Al-4V (wt %) have been investigated following three different pretreatments: polishing, nitric acid passivation and pickling in nitric acid-hydrogen fluoride. Nitric acid treatment is found to substantially reduce the concentration of surface contaminants present after polishing. The natural 4-6 nm thick oxide layer on commercially pure titanium is composed of titanium oxide in different oxidation states (TiO2, Ti2O3 and TiO), while for the alloys, aluminium and niobium or vanadium are additionally present in oxidized form (Al2O3, Nb2O5 or V-oxides). The concentrations of the alloying elements at the surface are shown to be strongly dependent on the pretreatment process. While pickling increases the surface roughness of both commercially pure titanium and the alloys, different mechanisms appear to be involved. In the case of commercially pure titanium, the dissolution rate depends on grain orientation, whereas in the case of the two alloys, selective alpha-phase dissolution and enrichment of the beta-phase appears to occur. Copyright 1999 Kluwer Academic Publishers

  8. Hydroxyl X2Pi pure rotational transitions

    NASA Astrophysics Data System (ADS)

    Goorvitch, D.; Goldman, A.; Dothe, Hoang; Tipping, R. H.; Chackerian, C., Jr.

    1992-12-01

    We present a list of frequencies, term values, Einstein A values, and assignments for the pure rotational transitions of the X2Pi state of the OH molecule. This list includes transitions from 3 to 2015/cm for Delta-v = 0, v-double-prime = 0-4, and J-double-prime = 0.5-49.5. The A values were computed using recent advances in calculating wave functions for a coupled system and an experimentally derived electric dipole moment function (Nelson et al., 1990) which exhibits curvature.

  9. Oxygen adsorption onto pure and doped Al surfaces--the role of surface dopants.

    PubMed

    Lousada, Cláudio M; Korzhavyi, Pavel A

    2015-01-21

    Using density functional theory (DFT) with the PBE0 density functional we investigated the role of surface dopants in the molecular and dissociative adsorption of O2 onto Al clusters of types Al50, Al50Alad, Al50X and Al49X, where X represents a dopant atom of the following elements Si, Mg, Cu, Sc, Zr, and Ti. Each dopant atom was placed on the Al(111) surface as an adatom or as a substitutional atom, in the last case replacing a surface Al atom. We found that for the same dopant geometry, the closer is the ionization energy of the dopant element to that of elemental Al, the more exothermic is the dissociative adsorption of O2 and the stronger are the bonds between the resulting O atoms and the surface. Additionally we show that the Mulliken concept of electronegativity can be applied in the prediction of the dissociative adsorption energy of O2 on the doped surfaces. The Mulliken modified second-stage electronegativity of the dopant atom is proportional to the exothermicity of the dissociative adsorption of O2. For the same dopant element in an adatom position the dissociation of O2 is more exothermic when compared to the case where the dopant occupies a substitutional position. These observations are discussed in view of the overlap population densities of states (OPDOS) computed as the overlap between the electronic states of the adsorbate O atoms and the clusters. It is shown that a more covalent character in the bonding between the Al surface and the dopant atom causes a more exothermic dissociation of O2 and stronger bonding with the O atoms when compared to a more ionic character in the bonding between the dopant and the Al surface. The extent of the adsorption site reconstruction is dopant atom dependent and is an important parameter for determining the mode of adsorption, adsorption energy and electronic structure of the product of O2 adsorption. The PBE0 functional could predict the existence of the O2 molecular adsorption product for many of the cases

  10. Molecular dynamics simulation study of nanoscale passive oxide growth on Ni-Al alloy surfaces at low temperatures

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2008-08-01

    Oxidation kinetics of Ni-Al (100) alloy surface is investigated at low temperatures (300-600 K) and at different gas pressures using molecular dynamics (MD) simulations with dynamic charge transfer between atoms. Monte Carlo simulations employing the bond order simulation model are used to generate the surface segregated minimum energy initial alloy configurations for use in the MD simulations. In the simulated temperature-pressure-composition regime for Ni-Al alloys, we find that the oxide growth curves follow a logarithmic law beyond an initial transient regime. The oxidation rates for Ni-Al alloys were found to decrease with increasing Ni composition. Structure and dynamical correlations in the metal/oxide/gas environments are used to gain insights into the evolution and morphology of the growing oxide film. Oxidation of Ni-Al alloys is characterized by the absence of Ni-O bond formation. Oxide films formed on the various simulated metal surfaces are amorphous in nature and have a limiting thickness ranging from ˜1.7nm for pure Al to 1.1 nm for 15% Ni-Al surfaces. Oxide scale analysis indicates significant charge transfer as well as variation in the morphology and structure of the oxide film formed on pure Al and 5% Ni-Al alloy. For oxide scales thicker than 1 nm, the oxide structure in case of pure Al exhibits a mixed tetrahedral (AlO4˜37%) and octahedral (AlO6˜19%) environment, whereas the oxide scale on Ni-Al alloy surface is almost entirely composed of tetrahedral environment (AlO4˜60%) with very little AlO6 (<1%) . The oxide growth kinetic curves are fitted to Arrhenius-type plots to get an estimate of the activation energy barriers for metal oxidation. The activation energy barrier for oxidation on pure Al was found to be 0.3 eV lower than that on 5% Ni-Al surface. Atomistic observations as well as calculated dynamical correlation functions indicate a layer by layer growth on pure Al, whereas a transition from an initial island growth mode (<75ps) to a

  11. Comparing the Thermodynamic Behaviour of Al(1)+ZrO2(s) to Al(1)+Al2O3(s)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    In an effort to better determine the thermodynamic properties of Al(g) and Al2O(g). the vapor in equilibrium with Al(l)+ZrO2(s) was compared to the vapor in equilibrium with Al(l)+Al2O3(s) over temperature range 1197-to-1509K. The comparison was made directly by Knudsen effusion-cell mass spectrometry with an instrument configured for a multiple effusion-cell vapor source (multi-cell KEMS). Second law enthalpies of vaporization of Al(g) and Al2O(g) together with activity measurements show that Al(l)+ZrO2(s) is thermodynamically equivalent to Al(l)+Al2O3(s), indicating Al(l) remained pure and Al2O3(s) was present in the ZrO2-cell. Subsequent observation of the Al(l)/ZrO2 and vapor/ZrO2 interfaces revealed a thin Al2O3-layer had formed, separating the ZrO2-cell from Al(l) and Al(g)+Al2O(g), effectively transforming it into an Al2O3 effusion-cell. This behavior agrees with recent observations made for Beta-NiAl(Pt) alloys measured in ZrO2 effusion-cell.

  12. Fit of cast commercially pure titanium and Ti-6Al-4V alloy crowns before and after marginal refinement by electrical discharge machining.

    PubMed

    Contreras, Edwin Fernando Ruiz; Henriques, Guilherme Elias Pessanha; Giolo, Suely Ruiz; Nobilo, Mauro Antonio Arruda

    2002-11-01

    Titanium has been suggested as a replacement for alloys currently used in single-tooth restorations and fixed partial dentures. However, difficulties in casting have resulted in incomplete margins and discrepancies in marginal fit. This study evaluated and compared the marginal fit of crowns fabricated from a commercially pure titanium (CP Ti) and from Ti-6Al-4V alloy with crowns fabricated from a Pd-Ag alloy that served as a control. Evaluations were performed before and after marginal refinement by electrical discharge machining (EDM). Forty-five bovine teeth were prepared to receive complete cast crowns. Stone and copper-plated dies were obtained from impressions. Fifteen crowns were cast with each alloy (CP Ti, Ti-6Al-4V, and Pd-Ag). Marginal fit measurements (in micrometers) were recorded at 4 reference points on each casting with a traveling microscope. Marginal refinement with EDM was conducted on the titanium-based crowns, and measurements were repeated. Data were analyzed with the Kruskal-Wallis test, paired t test, and independent t test at a 1% probability level. The Kruskal-Wallis test showed significant differences among mean values of marginal fit for the as-cast CP Ti crowns (mean [SD], 83.9 [26.1] microm) and the other groups: Ti-6Al-4V (50.8 [17.2] microm) and Pd-Ag (45.2 [10.4] microm). After EDM marginal refinement, significant differences were detected among the Ti-6Al-4V crowns (24.5 [10.9] microm) and the other 2 groups: CP Ti (50.6 [20.0] microm) and Pd-Ag (not modified by EDM). Paired t test results indicated that marginal refinement with EDM effectively improved the fit of CP Ti crowns (from 83.9 to 50.6 microm) and Ti-6Al-4V crowns (from 50.8 to 24.5 microm). However, the difference in improvement between the two groups was not significant by t test. Within the limitations of this study, despite the superior results for Ti-6Al-4V, both groups of titanium-based crowns had clinically acceptable marginal fits. After EDM marginal refinement

  13. [Pure Amnesia].

    PubMed

    Tagawa, Koichi; Tokida, Haruki

    2017-06-01

    Pure amnesia (amnesic syndrome) is an organic brain syndrome characterized by impairment in episodic memory, with either an anterograde or sometimes retrograde loss of memories. Although episodic memory is impaired, semantic memory, immediate memory, and procedural memory are preserved. The Papez circuit is a network of nerve fibers and nerve centers that starts and ends in the hippocampus travelling by way of the fornix, mammillary bodies, anterior thalamic nuclei, cingulate gyrus, and parahippocampal gyrus. A lesion restricted to this circuit often produces pure amnesia. Regions concerned with the Yakovlev circuit also have an important role in memory. Clinical cases of pure amnesia caused by cerebrovascular disease presented following brain imaging and resulted from various different lesions. The cases identified were predominantly thalamic amnesia and hippocampal amnesia. Thalamic amnesia often resulted from an infarction in the territory of the thalamotuberal artery and paramedian thalamic artery although thalamic hemorrhage in medial portion of thalamus also produced pure amnesia. Hippocampal amnesia usually occurred following an infarction in the temporal branches of posterior cerebral artery. Cases of retrosplenial amnesia caused by subcortical hematoma and infarction in the retrosplenial region are also described. In addition, cases of pure amnesia resulting from an infarction in the fornix, mammillary body hemorrhage, and caudate hemorrhage are also shown.

  14. Defense Mechanisms in "Pure" Anxiety and "Pure" Depressive Disorders.

    PubMed

    Colovic, Olga; Lecic Tosevski, Dusica; Perunicic Mladenovic, Ivana; Milosavljevic, Maja; Munjiza, Ana

    2016-10-01

    Our study was intended to test whether there are any differences in the way defense mechanisms are used by patients suffering from pure anxiety and those with pure depressive disorders. The sample size was as follows: depressive disorders without psychotic symptoms 30, anxiety disorders 30, and the healthy control group 30. The assessment of defense mechanisms was made using the DSQ-40 questionnaire. Our findings show that "pure" anxiety disorders differ from "pure" depressive disorders only in the use of immature defense mechanisms. The group with depressive disorders was significantly more prone to use immature defense mechanisms than the group with anxiety disorders (p = 0.005), primarily projection (p = 0.001) and devaluation (p = 0.003). These defense mechanisms may therefore be used both to differentiate between anxiety and depressive disorders and also to determine which symptoms (anxiety or depressive disorders) are dominant at any given stage of treatment.

  15. Defect-induced magnetic order in pure ZnO films

    NASA Astrophysics Data System (ADS)

    Khalid, M.; Ziese, M.; Setzer, A.; Esquinazi, P.; Lorenz, M.; Hochmuth, H.; Grundmann, M.; Spemann, D.; Butz, T.; Brauer, G.; Anwand, W.; Fischer, G.; Adeagbo, W. A.; Hergert, W.; Ernst, A.

    2009-07-01

    We have investigated the magnetic properties of pure ZnO thin films grown under N2 pressure on a -, c -, and r -plane Al2O3 substrates by pulsed-laser deposition. The substrate temperature and the N2 pressure were varied from room temperature to 570°C and from 0.007 to 1.0 mbar, respectively. The magnetic properties of bare substrates and ZnO films were investigated by SQUID magnetometry. ZnO films grown on c - and a -plane Al2O3 substrates did not show significant ferromagnetism. However, ZnO films grown on r -plane Al2O3 showed reproducible ferromagnetism at 300 K when grown at 300-400°C and 0.1-1.0 mbar N2 pressure. Positron annihilation spectroscopy measurements as well as density-functional theory calculations suggest that the ferromagnetism in ZnO films is related to Zn vacancies.

  16. Atomistic simulation of Al-graphene thin film growth on polycrystalline Al substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Zhu, Yongchao; Li, Na; Rong, Yan; Xia, Huimin; Ma, Huizhong

    2018-03-01

    The growth of Al-Graphene composite coatings on polycrystalline Al substrate was investigated by using classical molecular dynamics (MD) simulations. Unlike the diffusion behaviors on single crystal surface, most of adatoms were easily bound by the steps on polycrystalline Al surface, owing to the local accelerated energy. Both Ehrlich-Schwoebel (ES) barriers and the steering effect backed up the volmer-weber growth mode, which was consistent with the dynamic growth process observed in the deposit. The morphology of composite coatings was significantly affected by graphene flakes. Enrichment of graphene flakes gave rise to an increase of the local thickness, and graphene flakes only existed in Al grain boundaries. The size of Al grains in the composite coating visibly decreased when compared with that in the pure Al coating. This grain refinement and the mechanical property can be reinforced by the increase of graphene flakes.

  17. Electrodeposition and Characterization of Ni-Al2O3 Nanocomposite Coatings on Steel

    NASA Astrophysics Data System (ADS)

    Akhtar, Khalida; Khan, Zia Ullah; Gul, Muhammad; Zubair, Naila; Shah, Syed Sajjad Ali

    2018-05-01

    Monodispersed alumina particles were synthesized by the homogeneous precipitation under reflux boiling. The particles were employed as reinforcement additives in the electrodeposited Ni-Al2O3 composite coatings on steel. The deposited pure Ni and Ni-Al2O3 composite coatings were analyzed by SEM, XRD, and microhardness tester. The wear resistance and friction coefficient of the coated samples were determined by using a ball-on-disk tribometer. Furthermore, XRD analysis showed that coating temperature and the presence of particles in the deposited coatings had a noticeable effect on the preferred orientation of the crystalline faces of the nickel grains. Significant differences were noted in the texture coefficient of the pure Ni and Ni-Al2O3 composite coatings produced at different temperatures. These differences were attributed to the changes in the microstructure of the matrix caused by the embedded Al2O3 particles. Results revealed that wear resistance and the friction coefficient were turned out to be higher and smaller, respectively, for the composite coatings as compared to pure Ni coating at a given sliding distance. It was noted that the corrosion resistance of these specimens increased in the following order: bare substrate < pure Ni coating < Ni-Al2O3 nanocomposite coatings.

  18. Dual Target Search is Neither Purely Simultaneous nor Purely Successive.

    PubMed

    Cave, Kyle R; Menneer, Tamaryn; Nomani, Mohammad S; Stroud, Michael J; Donnelly, Nick

    2017-08-31

    Previous research shows that visual search for two different targets is less efficient than search for a single target. Stroud, Menneer, Cave and Donnelly (2012) concluded that two target colours are represented separately based on modeling the fixation patterns. Although those analyses provide evidence for two separate target representations, they do not show whether participants search simultaneously for both targets, or first search for one target and then the other. Some studies suggest that multiple target representations are simultaneously active, while others indicate that search can be voluntarily simultaneous, or switching, or a mixture of both. Stroud et al.'s participants were not explicitly instructed to use any particular strategy. These data were revisited to determine which strategy was employed. Each fixated item was categorised according to whether its colour was more similar to one target or the other. Once an item similar to one target is fixated, the next fixated item is more likely to be similar to that target than the other, showing that at a given moment during search, one target is generally favoured. However, the search for one target is not completed before search for the other begins. Instead, there are often short runs of one or two fixations to distractors similar to one target, with each run followed by a switch to the other target. Thus, the results suggest that one target is more highly weighted than the other at any given time, but not to the extent that search is purely successive.

  19. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v < vph< 2.1 v. Here, the final wave frequency may differ from the excitation frequency since the excitation modifies f (v); and recent theory analyzes frequency shifts from ``corners'' of a plateau at vph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  20. Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy

    NASA Astrophysics Data System (ADS)

    Zeng, Xiang; Teng, Jie; Yu, Jin-gang; Tan, Ao-shuang; Fu, Ding-fa; Zhang, Hui

    2018-01-01

    Graphene-reinforced aluminum (Al) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al composite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphologies, chemical compositions, and microstructures of the graphene and the graphene/Al composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.

  1. Generation of a sub-half-wavelength focal spot with purely transverse spin angular momentum

    NASA Astrophysics Data System (ADS)

    Hang, Li; Fu, Jian; Yu, Xiaochang; Wang, Ying; Chen, Peifeng

    2017-11-01

    We theoretically demonstrate that optical focus fields with purely transverse spin angular momentum (SAM) can be obtained when a kind of special incident fields is focused by a high numerical aperture (NA) aplanatic lens (AL). When the incident pupil fields are refracted by an AL, two transverse Cartesian components of the electric fields at the exit pupil plane do not have the same order of sinusoidal or cosinoidal components, resulting in zero longitudinal SAMs of the focal fields. An incident field satisfying above conditions is then proposed. Using the Richard-Wolf vectorial diffraction theory, the energy density and SAM density distributions of the tightly focused beam are calculated and the results clearly validate the proposed theory. In addition, a sub-half-wavelength focal spot with purely transverse SAM can be achieved and a flattop energy density distribution parallel to z-axis can be observed around the maximum energy density point.

  2. Enthalpies of formation of CaAl4O7 and CaAl12O19 (hibonite) by high temperature, alkali borate solution calorimetry

    NASA Technical Reports Server (NTRS)

    Geiger, C. A.; Kleppa, O. J.; Grossman, L.; Mysen, B. O.; Lattimer, J. M.

    1988-01-01

    Enthalpies of formation were determined for two calcium aluminate phases, CaAl4O7 and CaAl12O19, using high-temperature alkali borate solution calorimetry. The aluminates were synthesized by multiple-cycle heating and grinding stoichiometric mixtures of CaCO3 and Al2O3, and the products were characteized by X-ray diffraction and SEM microbeam analysis. The data on impurities (CaAl4O7 was found to be about 89.00 percent pure by weight and the CaAl12O19 samples about 91.48 percent pure) were used to correct the heat of solution values of the synthetic products. The enthalpies of formation, at 1063 K, from oxides, were found to be equal to -(25.6 + or - 4.7) kJ/g.f.w. for CaAl4O7 and -(33.0 + or - 9.7) kJ/g.f.w. for CaAl12O19; the respective standard enthalpies of formation from elements, at 298 K, were estimated to be -4007 + or - 5.2 kJ/g.f.w. and -10,722 + or - 12 kJ/g.f.w.

  3. Geometrical control of pure spin current induced domain wall depinning.

    PubMed

    Pfeiffer, A; Reeve, R M; Voto, M; Savero-Torres, W; Richter, N; Vila, L; Attané, J P; Lopez-Diaz, L; Kläui, Mathias

    2017-03-01

    We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this can be explained by the asymmetry of the pinning potential. By direct comparison of the calculated efficiencies for different external field and spin current directions, we are able to disentangle the different contributions from the spin transfer torque, Joule heating and the Oersted field. The observed high efficiency of the pure spin current induced spin transfer torque allows for a complete depinning of the domain wall at zero external field for a charge current density of [Formula: see text] A m -2 , which is attributed to the optimal control of the position of the domain wall.

  4. Technology for High Pure Aluminum Oxide Production from Aluminum Scrap

    NASA Astrophysics Data System (ADS)

    Ambaryan, G. N.; Vlaskin, M. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2017-10-01

    In this study a simple ecologically benign technology of high purity alumina production is presented. The synthesis process consists of three steps) oxidation of aluminum in water at temperature of 90 °C) calcinations of Al hydroxide in atmosphere at 1100 °C) high temperature vacuum processing of aluminum alpha oxide at 1750 °C. Oxidation of aluminum scrap was carried out under intensive mixing in water with small addition of KOH as a catalyst. It was shown that under implemented experimental conditions alkali was continuously regenerated during oxidation reaction and synergistic effect of low content alkali aqueous solution and intensive mixing worked. The product of oxidation of aluminum scrap is the powder of Al(OH)3. Then it can be preliminary granulated or directly subjected to thermal treatment deleting the impurities from the product (aluminum oxide). It was shown the possibility to produce the high-purity aluminum oxide of 5N grade (99.999 %). Aluminum oxide, synthesized by means of the proposed method, meets the requirements of industrial manufacturers of synthetic sapphire (aluminum oxide monocrystals). Obtained high pure aluminum oxide can be also used for the manufacture of implants, artificial joints, microscalpels, high-purity ceramics and other refractory shapes for manufacture of ultra-pure products.

  5. Combinatorial Study of Gradient Ag-Al Thin Films: Microstructure, Phase Formation, Mechanical and Electrical Properties.

    PubMed

    Mao, Fang; Taher, Mamoun; Kryshtal, Oleksandr; Kruk, Adam; Czyrska-Filemonowicz, Aleksandra; Ottosson, Mikael; Andersson, Anna M; Wiklund, Urban; Jansson, Ulf

    2016-11-09

    A combinatorial approach is applied to rapidly deposit and screen Ag-Al thin films to evaluate the mechanical, tribological, and electrical properties as a function of chemical composition. Ag-Al thin films with large continuous composition gradients (6-60 atom % Al) were deposited by a custom-designed combinatorial magnetron sputtering system. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and four-point electrical resistance screening were employed to characterize the chemical composition, structure, and physical properties of the films in a time-efficient way. For low Al contents (<13 atom %), a highly (111)-textured fcc phase was formed. At higher Al contents, a (002)-textured hcp solid solution phase was formed followed by a fcc phase in the most Al-rich regions. No indication of a μ phase was observed. The Ag-Al films with fcc-Ag matrix is prone to adhesive material transfer leading to a high friction coefficient (>1) and adhesive wear, similar to the behavior of pure Ag. In contrast, the hexagonal solid solution phase (from ca. 15 atom %Al) exhibited dramatically reduced friction coefficients (about 15% of that of the fcc phase) and dramatically reduced adhesive wear when tested against the pure Ag counter surface. The increase in contact resistance of the Ag-Al films is limited to only 50% higher than a pure Ag reference sample at the low friction and low wear region (19-27 atom %). This suggests that a hcp Ag-Al alloy can have a potential use in sliding electrical contact applications and in the future will replace pure Ag in specific electromechanical applications.

  6. The Effect of Premixed Al-Cu Powder on the Stir Zone in Friction Stir Welding of AA3003-H18

    NASA Astrophysics Data System (ADS)

    Abnar, B.; Kazeminezhad, M.; Kokabi, A. H.

    2015-02-01

    In this research, 3-mm-thick AA3003-H18 non-heat-treatable aluminum alloy plates were joined by friction stir welding (FSW). It was performed by adding pure Cu and premixed Cu-Al powders at various rotational speeds of 800, 1000, and 1200 rpm and constant traveling speeds of 100 mm/min. At first, the powder was filled into the gap (0.2 or 0.4 mm) between two aluminum alloy plates, and then the FSW process was performed in two passes. The microstructure, mechanical properties, and formation of intermetallic compounds were investigated in both cases of using pure Cu and premixed Al-Cu powders. The results of using pure Cu and premixed Al-Cu powders were compared in the stir zone at various rotational speeds. The copper particle distribution and formation of Al-Cu intermetallic compounds (Al2Cu and AlCu) in the stir zone were desirable using premixed Al-Cu powder into the gap. The hardness values were significantly increased by formation of Al-Cu intermetallic compounds in the stir zone and it was uniform throughout the stir zone when premixed Al-Cu powder was used. Also, longitudinal tensile strength from the stir zone was higher when premixed Al-Cu powder was used instead of pure Cu powder.

  7. Effect of aluminum contents on sputter deposited CrAlN thin films

    NASA Astrophysics Data System (ADS)

    Vyas, A.; Zhou, Z. F.; Shen, Y. G.

    2018-02-01

    Pure CrN and CrAlN films with varied Al concentrations were prepared onto Si(100) substrates by an unbalanced reactive dc-magnetron sputtering system. The crystal structure, chemical states, and microstructure of the films were characterized by X-ray diffraction, X-ray photoelectron microscopy, transmission electron microscopy whereas mechanical properties were determined by nano-indentation measurements. XRD results showed a prominent (200) reflection in both CrN and CrAlN films. Results demonstrate that CrAlN films formed a solid solution and doping of Al atoms replace the Cr atoms affecting the lattice parameter and crystallization of the films. All Al doped films were of B1 NaCl-type structure, demonstrating that CrAlN films primarily crystallized in cubic structure. Microstructural investigation by TEM for a CrAlN film containing Al content of 24.1 at.%, revealed that there exists an amorphous/nanocrystalline domains (grains of about ∼ 11 nm) and hardness increases 22% when compared with pure CrN film.

  8. Pure-quartic solitons

    PubMed Central

    Blanco-Redondo, Andrea; Martijn, de Sterke C.; Sipe, J.E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad

    2016-01-01

    Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758

  9. Synthesis of core-shell AlOOH hollow nanospheres by reacting Al nanoparticles with water

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, A. S.; Glazkova, E. A.; Bakina, O. V.; Lerner, M. I.; Gotman, I.; Gutmanas, E. Y.; Kazantsev, S. O.; Psakhie, S. G.

    2016-05-01

    A novel route for the synthesis of boehmite nanospheres with a hollow core and the shell composed of highly crumpled AlOOH nanosheets by oxidizing Al nanopowder in pure water under mild processing conditions is described. The stepwise events of Al transformation into boehmite are followed by monitoring the pH in the reaction medium. A mechanism of formation of hollow AlOOH nanospheres with a well-defined shape and crystallinity is proposed which includes the hydration of the Al oxide passivation layer, local corrosion of metallic Al accompanied by hydrogen evolution, the rupture of the protective layer, the dissolution of Al from the particle interior and the deposition of AlOOH nanosheets on the outer surface. In contrast to previously reported methods of boehmite nanoparticle synthesis, the proposed method is simple, and environmentally friendly and allows the generation of hydrogen gas as a by-product. Due to their high surface area and high, slit-shaped nanoporosity, the synthesized AlOOH nanostructures hold promise for the development of more effective catalysts, adsorbents, vaccines and drug carriers.

  10. Relationship between Al content and substitution mechanism of Al-bearing anhydrous bridgmanites

    NASA Astrophysics Data System (ADS)

    Noda, M.; Inoue, T.; Kakizawa, S.

    2017-12-01

    It is considered that two substitution mechanisms, Tschermak substitution and oxygen vacancy substitution, exist in MgSiO3 bridgmanite for the incorporation of Al in anhydrous condition. Kubo and Akaogi (2000) has conducted the phase equilibrium experiment in the system MgSiO3-Al2O3, and established the phase diagram up to 28 GPa. However the careful observation in the bridgmanite shows that the chemical compositions are slightly deviated from Tschermak substitution join. The same tendency can be also observed in the run products by Irifune et al. (1996). This result indicates that pure Tschermak substitution bridgmanite cannot be stable even in the MgSiO3-Al2O3 join experiment. However, the previous studies used powder samples as the starting materials, so the absorbed water may affect the results. Therefore, we tried to conduct the experiment in the join MgSiO3-Al2O3 in extremely anhydrous condition to clarify whether the pure Tschermak substitution bridgmanite can be stable or not. In addition, we also examined the stability of oxygen vacancy bridgmanite in the extremely anhydrous condition for the comparison. The high pressure synthesis experiments were conducted at 28 GPa and 1600-1700° for 1hour using a Kawai-type multi-anvil apparatus. Four different Al content samples were prepared as the starting materials along the ideal substitution line of Tschermak (Al=0.025, 0.05, 0.1, 0.15 mol) and oxygen-vacancy (Al=0.025, 0.05, 0.075, 0.1 mol) substitutions, respectively (when total cation of 2). The glass rods were used as the starting materials to eliminate the absorbed water on the sample surface. The chemical compositions of the synthesized bridgmanite could not be measured by EPMA because of small grain size less than submicron. Therefore the chemical compositions were estimated from the result of the XRD pattern by subtracting the amount of the other phases. The estimated chemical compositions of Tschermak substitution bridgmanites were consistent with the

  11. Mean field limit for bosons with compact kernels interactions by Wigner measures transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liard, Quentin, E-mail: quentin.liard@univ-rennes1.fr; Pawilowski, Boris, E-mail: boris.pawilowski@univ-rennes1.fr

    2014-09-15

    We consider a class of many-body Hamiltonians composed of a free (kinetic) part and a multi-particle (potential) interaction with a compactness assumption on the latter part. We investigate the mean field limit of such quantum systems following the Wigner measures approach. We prove in particular the propagation of these measures along the flow of a nonlinear (Hartree) field equation. This enhances and complements some previous results of the same type shown in Z. Ammari and F. Nier and Fröhlich et al. [“Mean field limit for bosons and propagation of Wigner measures,” J. Math. Phys. 50(4), 042107 (2009); Z. Ammari andmore » F. Nier and Fröhlich et al., “Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states,” J. Math. Pures Appl. 95(6), 585–626 (2011); Z. Ammari and F. Nier and Fröhlich et al., “Mean-field- and classical limit of many-body Schrödinger dynamics for bosons,” Commun. Math. Phys. 271(3), 681–697 (2007)].« less

  12. Steam stable mesoporous silica MCM-41 stabilized by trace amounts of Al.

    PubMed

    Tompkins, Jordan T; Mokaya, Robert

    2014-02-12

    Evaluation of low and ultralow Al content (Si/Al between 50 and 412) aluminosilicate Al-MCM-41 materials synthesized via three contrasting alumination routes, namely, direct mixed-gel synthesis, post-synthesis wet grafting, and post-synthesis dry grafting, indicates that trace amounts of Al introduced via dry grafting can stabilize mesoporous silica MCM-41 to steaming at 900 °C for 4 h. It was found that trace amounts of Al (Si/Al > 400) introduced via so-called dry grafting of Al stabilize the virtually purely siliceous MCM-41 to steaming, whereas Al incorporated via other methods that involve aqueous media such as direct mixed gel synthesis or wet grafting of Al offer only limited protection at low Al content. It is particularly remarkable that a post-synthesis dry grafted Al-MCM-41 material possessing trace amounts of Al (i.e., Si/Al ratio of 412) and surface area and pore volume of 1112 m(2)/g and 1.20 cm(3)/g, respectively, retains 90% (998 m(2)/g) of the surface area and 85% (1.03 cm(3)/g) of the pore volume after exposure to steaming at 900 °C for 4 h. Under similar steam treatment conditions, the mesostructure of pure silica Si-MCM-41 is virtually destroyed and undergoes a 93% reduction in surface area (958 m(2)/g to 69 m(2)/g) and 88% decrease in pore volume (0.97 cm(3)/g to 0.12 cm(3)/g). The steam stable ultralow (i.e., trace) Al containing MCM-41 materials is found to be virtually similar to mesoporous pure silica Si-MCM-41 with hardly any detectable acidity. The improvement in steam stability arises from not only the presence of trace amounts of Al, but also from an apparent increase in the level of silica condensation that is specific to dry grafted alluminosilicate MCM-41 materials. The more highly condensed framework has fewer silanol groups and therefore is more resistant to hydrolysis under steaming conditions.

  13. Pure-tone Audiometer

    NASA Astrophysics Data System (ADS)

    Kapul, A. A.; Zubova, E. I.; Torgaev, S. N.; Drobchik, V. V.

    2017-08-01

    The research focuses on a pure-tone audiometer designing. The relevance of the study is proved by high incidence of an auditory analyser in older people and children. At first, the article provides information about subjective and objective audiometry methods. Secondly, we offer block-diagram and basic-circuit arrangement of device. We decided to base on STM32F407VG microcontroller and use digital pot in the function of attenuator. Third, we implemented microcontroller and PC connection. C programming language is used for microcontroller’s program and PC’s interface. Fourthly, we created the pure-tone audiometer prototype. In the future, we will implement the objective method ASSR in addition to pure-tone audiometry.

  14. Analysis of Optimal Sequential State Discrimination for Linearly Independent Pure Quantum States.

    PubMed

    Namkung, Min; Kwon, Younghun

    2018-04-25

    Recently, J. A. Bergou et al. proposed sequential state discrimination as a new quantum state discrimination scheme. In the scheme, by the successful sequential discrimination of a qubit state, receivers Bob and Charlie can share the information of the qubit prepared by a sender Alice. A merit of the scheme is that a quantum channel is established between Bob and Charlie, but a classical communication is not allowed. In this report, we present a method for extending the original sequential state discrimination of two qubit states to a scheme of N linearly independent pure quantum states. Specifically, we obtain the conditions for the sequential state discrimination of N = 3 pure quantum states. We can analytically provide conditions when there is a special symmetry among N = 3 linearly independent pure quantum states. Additionally, we show that the scenario proposed in this study can be applied to quantum key distribution. Furthermore, we show that the sequential state discrimination of three qutrit states performs better than the strategy of probabilistic quantum cloning.

  15. Auto-combustion synthesis and characterization of Mg doped CuAlO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Naqvi, A. H.

    2015-06-01

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO2nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO2 sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO2 has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  16. Facile Synthesis and Catalysis of Pure-Silica and Heteroatom LTA

    DOE PAGES

    Boal, Ben W.; Schmidt, Joel E.; Deimund, Mark A.; ...

    2015-11-05

    Zeolite A (LTA) has many large-scale uses in separations and ion exchange applications. Because of the high aluminum content and lack of high-temperature stability, applications in catalysis, while highly desired, have been extremely limited. Herein, we report a robust method to prepare pure-silica, aluminosilicate (product Si/Al = 12–42), and titanosilicate LTA in fluoride media using a simple, imidazolium- based organic structure-directing agent. The aluminosilicate material is an active catalyst for the methanol-to-olefins reaction with higher product selectivities to butenes as well as C 5 and C 6 products than the commercialized silicoalumniophosphate or zeolite analogue that both have the chabazitemore » framework (SAPO- 34 and SSZ-13, respectively). Furthermore, the crystal structures of the as-made and calcined pure-silica materials were solved using singlecrystal X-ray diffraction, providing information about the occluded organics and fluoride as well as structural information.« less

  17. Analysis of petroleum contaminated soils by spectral modeling and pure response profile recovery of n-hexane.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Li, Bin; Ali, Md Nasim; Majumdar, K; Ray, D P

    2014-07-01

    This pilot study compared penalized spline regression (PSR) and random forest (RF) regression using visible and near-infrared diffuse reflectance spectroscopy (VisNIR DRS) derived spectra of 164 petroleum contaminated soils after two different spectral pretreatments [first derivative (FD) and standard normal variate (SNV) followed by detrending] for rapid quantification of soil petroleum contamination. Additionally, a new analytical approach was proposed for the recovery of the pure spectral and concentration profiles of n-hexane present in the unresolved mixture of petroleum contaminated soils using multivariate curve resolution alternating least squares (MCR-ALS). The PSR model using FD spectra (r(2) = 0.87, RMSE = 0.580 log10 mg kg(-1), and residual prediction deviation = 2.78) outperformed all other models tested. Quantitative results obtained by MCR-ALS for n-hexane in presence of interferences (r(2) = 0.65 and RMSE 0.261 log10 mg kg(-1)) were comparable to those obtained using FD (PSR) model. Furthermore, MCR ALS was able to recover pure spectra of n-hexane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Evaluation of wrought Zn-Al alloys (1, 3, and 5 wt % Al) through mechanical and in vivo testing for stent applications.

    PubMed

    Bowen, Patrick K; Seitz, Jan-Marten; Guillory, Roger J; Braykovich, Jacob P; Zhao, Shan; Goldman, Jeremy; Drelich, Jaroslaw W

    2018-01-01

    Special high grade zinc and wrought zinc-aluminum (Zn-Al) alloys containing up to 5.5 wt % Al were processed, characterized, and implanted in rats in search of a new family of alloys with possible applications as bioabsorbable endovascular stents. These materials retained roll-induced texture with an anisotropic distribution of the second-phase Al precipitates following hot-rolling, and changes in lattice parameters were observed with respect to Al content. Mechanical properties for the alloys fell roughly in line with strength (190-240 MPa yield strength; 220-300 MPa ultimate tensile strength) and elongation (15-30%) benchmarks, and favorable elastic ranges (0.19-0.27%) were observed. Intergranular corrosion was observed during residence of Zn-Al alloys in the murine aorta, suggesting a different corrosion mechanism than that of pure zinc. This mode of failure needs to be avoided for stent applications because the intergranular corrosion caused cracking and fragmentation of the implants, although the composition of corrosion products was roughly identical between non- and Al-containing materials. In spite of differences in corrosion mechanisms, the cross-sectional reduction of metals in murine aorta was nearly identical at 30-40% and 40-50% after 4.5 and 6 months, respectively, for pure Zn and Zn-Al alloys. Histopathological analysis and evaluation of arterial tissue compatibility around Zn-Al alloys failed to identify areas of necrosis, though both chronic and acute inflammatory indications were present. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 245-258, 2018. © 2017 Wiley Periodicals, Inc.

  19. pureS2HAT: S 2HAT-based Pure E/B Harmonic Transforms

    NASA Astrophysics Data System (ADS)

    Grain, J.; Stompor, R.; Tristram, M.

    2011-10-01

    The pS2HAT routines allow efficient, parallel calculation of the so-called 'pure' polarized multipoles. The computed multipole coefficients are equal to the standard pseudo-multipoles calculated for the apodized sky maps of the Stokes parameters Q and U subsequently corrected by so-called counterterms. If the applied apodizations fullfill certain boundary conditions, these multipoles correspond to the pure multipoles. Pure multipoles of one type, i.e., either E or B, are ensured not to contain contributions from the other one, at least to within numerical artifacts. They can be therefore further used in the estimation of the sky power spectra via the pseudo power spectrum technique, which has to however correctly account for the applied apodization on the one hand, and the presence of the counterterms, on the other. In addition, the package contains the routines permitting calculation of the spin-weighted apodizations, given an input scalar, i.e., spin-0 window. The former are needed to compute the counterterms. It also provides routines for maps and window manipulations. The routines are written in C and based on the S2HAT library, which is used to perform all required spherical harmonic transforms as well as all inter-processor communication. They are therefore parallelized using MPI and follow the distributed-memory computational model. The data distribution patterns, pixelization choices, conventions etc are all as those assumed/allowed by the S2HAT library.

  20. Microstructure of Al2O3 scales formed on NiCrAl alloys. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1981-01-01

    The structure of transient scales formed on pure and Y or Zr-doped Ni-15Cr-13Al alloys oxidized for 0.1 hr at 1100 C was studied by the use of transmission electron microscopy. Crystallographically oriented scales were found on all three alloys, but especially for the Zr-doped NiCrAl. The oriented scales consisted of alpha-(Al,Cr)2O3, Ni(Al,Cr)2O4 and gamma-Al2O3. They were often found in intimate contact with each other such that the close-packed planes and directions of one oxide phase were aligned with those of another. The prominent structural features of the oriented scales were approximately equal to micrometer subgrains; voids, antiphase domain boundaries and aligned precipitates were also prevalent. Randomly oriented alpha-Al2O3 was also found and was the only oxide ever observed at the immediate oxide metal interface. These approximately 0.15 micrometer grains were populated by intragranular voids which decreased in size and number towards the oxide metal interface. A sequence of oxidation was proposed in which the composition of the growing scale changed from oriented oxides rich in Ni and Cr to oriented oxides rich in Al. At the same time the structure changed from cubic spinels to hexagonal corundums with apparent precipitates of one phase in the matrix of the other. Eventually randomly oriented pure alpha-Al2O3 formed as the stable oxide with an abrupt transition: there was no gradual loss of orientation, no gradual compositional change or no gradual decrease in precipitate density.

  1. Mixtures of maximally entangled pure states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores, M.M., E-mail: mflores@nip.up.edu.ph; Galapon, E.A., E-mail: eric.galapon@gmail.com

    We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order tomore » ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.« less

  2. Pure Rotational Spectroscopy of Vinyl Mercaptan

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, Marie-Aline; Zingsheim, Oliver; Thorwirth, Sven; Müller, Holger S. P.; Lewen, Frank; Schlemmer, Stephan

    2014-06-01

    Vinyl mercaptan (ethenethiol, CH_2=CHSH) exists in the gas phase in two distinct rotameric forms, syn (planar) and anti (quasi-planar in the ground vibrational state). The microwave spectra of these two isomers were investigated previously, however not exceeding frequencies of about 65 GHz. In the present investigation, the pure rotational spectra of both species have been investigated at millimeter wavelengths. Vinyl mercaptan was produced in a radiofrequency discharge through a constant flow of ethanedithiol at low pressure. Both syn and anti rotamers were observed and new extensive sets of molecular parameters were obtained. Owing to its close structural relationship to vinyl alcohol and the astronomical abundance of complex sulfur-bearing molecules, vinyl mercaptan is a plausible candidate for future radio astronomical searches. M. Tanimoto et al. J. Mol. Spectrosc. 78, 95--105 & 106--119 (1979)

  3. Reflectionless CMV Matrices and Scattering Theory

    NASA Astrophysics Data System (ADS)

    Chu, Sherry; Landon, Benjamin; Panangaden, Jane

    2015-04-01

    Reflectionless CMV matrices are studied using scattering theory. By changing a single Verblunsky coefficient, a full-line CMV matrix can be decoupled and written as the sum of two half-line operators. Explicit formulas for the scattering matrix associated to the coupled and decoupled operators are derived. In particular, it is shown that a CMV matrix is reflectionless iff the scattering matrix is off-diagonal which in turn provides a short proof of an important result of Breuer et al. (Commun Math Phys 295:531-550, 2010). These developments parallel those recently obtained for Jacobi matrices Jakšić et al. (Commun Math Phys 827-838, 2014).

  4. Corrosion-fatigue of laser-repaired commercially pure titanium and Ti-6Al-4V alloy under different test environments.

    PubMed

    Zavanelli, R A; Guilherme, A S; Pessanha-Henriques, G E; de Arruda Nóbilo, M Antônio; Mesquita, M F

    2004-10-01

    This study evaluated the corrosion-fatigue life of laser-repaired specimens fabricated from commercially pure titanium (CP Ti) and Ti-6Al-4V alloy, tested under different storage conditions. For each metal, 30 dumbbell rods with a central 2.3 mm diameter were prepared by lost-wax casting with the Rematitan System. Simulating the failure after service, corrosion-fatigue life in different media at room temperature (air, synthetic saliva and fluoride synthetic saliva) was determined at a testing frequency of 10 Hz for intact specimens and after laser repairing, using a square waveform with equal maximum tensile and compressive stress that was 30% lower than the 0.2% offset yield strength. For laser welding, the fractured specimens were rejoined using a jig to align the sections invested in type-IV dental stone. The adjacent areas of the gap was air-abraded with 100 microm aluminum oxide, laser welded and retested under the same conditions as the initial intact specimens. The number of cycles at failure was recorded, and the fracture surface was examined with a scanning electron microscope (SEM). The number of cycles for failure of the welded and intact specimens was compared by anova and the Tukey test at a 5% probability level. Within the limitations of this study, the number of cycles required for fracture decreased in wet environments and the laser repairing process adversely affected the life of both metals under the corrosion-fatigue conditions.

  5. Interdiffusion and Intrinsic Diffusion in the Mg-Al System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho

    2012-01-01

    Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electronmore » microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in

  6. Contribution to modeling the viscosity Arrhenius-type equation for saturated pure fluids

    NASA Astrophysics Data System (ADS)

    Tian, Jianxiang; Zhang, Laibin

    2016-09-01

    Recently, Haj-Kacem et al. proposed an equation modeling the relationship between the two parameters of viscosity Arrhenius-type equations [Fluid Phase Equilibria 383, 11 (2014)]. The authors found that the two parameters are dependent upon each other in an exponential function form. In this paper, we reconsidered their ideas and calculated the two parameter values for 49 saturated pure fluids by using the experimental data in the NIST WebBook. Our conclusion is different with the ones of Haj-Kacem et al. We found that (the linearity shown by) the Arrhenius equation stands strongly only in low temperature range and that the two parameters of the Arrhenius equation are independent upon each other in the whole temperature range from the triple point to the critical point.

  7. Simulations of stress evolution and the current density scaling of electromigration-induced failure times in pure and alloyed interconnects

    NASA Astrophysics Data System (ADS)

    Park, Young-Joon; Andleigh, Vaibhav K.; Thompson, Carl V.

    1999-04-01

    An electromigration model is developed to simulate the reliability of Al and Al-Cu interconnects. A polynomial expression for the free energy of solution by Murray [Int. Met. Rev. 30, 211 (1985)] was used to calculate the chemical potential for Al and Cu while the diffusivities were defined based on a Cu-trapping model by Rosenberg [J. Vac. Sci. Technol. 9, 263 (1972)]. The effects of Cu on stress evolution and lifetime were investigated in all-bamboo and near-bamboo stud-to-stud structures. In addition, the significance of the effect of mechanical stress on the diffusivity of both Al and Cu was determined in all-bamboo and near-bamboo lines. The void nucleation and growth process was simulated in 200 μm, stud-to-stud lines. Current density scaling behavior for void-nucleation-limited failure and void-growth-limited failure modes was simulated in long, stud-to-stud lines. Current density exponents of both n=2 for void nucleation and n=1 for void growth failure modes were found in both pure Al and Al-Cu lines. Limitations of the most widely used current density scaling law (Black's equation) in the analysis of the reliability of stud-to-stud lines are discussed. By modifying the input materials properties used in this model (when they are known), this model can be adapted to predict the reliability of other interconnect materials such as pure Cu and Cu alloys.

  8. Nonprotective Alumina Growth in Sulfur-Doped NiAl(Zr)

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2000-01-01

    The 1200 C oxidation behavior of NiAl was examined at various levels of sulfur and zirconium dopants to test the possibility of a critical S/Zr ratio required for adhesion. Cyclic furnace testing for 200 1 -hr cycles and interrupted testing for 500 hr were used as screening tests. Pure NiAl and NiAl(Zr) with 0. 14 at.% Zr were chosen as model base compositions; they exhibited normal, slow-growing scales (3 Mg/sq cm) with excellent adhesion for the Zr-doped alloys. NiAl with about 120 ppma S exhibited a substantial weight loss (-20 Mg/sq cm) in cyclic tests and a very large weight gain (+60 Mg/sq cm) in interrupted tests. The major surface phase remained as alpha -Al2O3. Sulfur doping the NiAl(Zr) alloy caused massive weight gains of 80 - 100 Mg/sq cm, swelling, cracking, and nearly complete conversion into NiAl2O4, and alpha- Al2O3. The initial objective of determining critical S/Zr ratios for adhesion was therefore unattainable. Initiation of the catastrophic attack was examined after a 10 hr exposure, revealing a few sites of broad, raised, and cracked ridges. In cross-section, the ridges appeared as modular intrusions, with a complex, fractal, oxide-metal interface. They were primarily alumina (with occasional entrapped islands of NiAl2O4 or pure Ni metal). They possessed a unique microstructure consisting of 0.3 microns lamellae, separated by 0.1 microns open channels. This allowed for rapid growth controlled by gaseous diffusion. The microstructure is discussed in terms of SO2 evolution and a sulfur-driven de-passivation process.

  9. Decryption of pure-position permutation algorithms.

    PubMed

    Zhao, Xiao-Yu; Chen, Gang; Zhang, Dan; Wang, Xiao-Hong; Dong, Guang-Chang

    2004-07-01

    Pure position permutation image encryption algorithms, commonly used as image encryption investigated in this work are unfortunately frail under known-text attack. In view of the weakness of pure position permutation algorithm, we put forward an effective decryption algorithm for all pure-position permutation algorithms. First, a summary of the pure position permutation image encryption algorithms is given by introducing the concept of ergodic matrices. Then, by using probability theory and algebraic principles, the decryption probability of pure-position permutation algorithms is verified theoretically; and then, by defining the operation system of fuzzy ergodic matrices, we improve a specific decryption algorithm. Finally, some simulation results are shown.

  10. The application of Co-Al-hydrotalcite as a novel additive of positive material for nickel-metal hydride secondary cells

    NASA Astrophysics Data System (ADS)

    Feng, Zhaobin; Yang, Zhanhong; Yang, Bin; Zhang, Zheng; Xie, Xiaoe

    2014-11-01

    Co-Al-CO3 layered double hydroxide (LDH) with the different Co/Al molar ration is synthesized by hydrothermal method and investigated as an additive for positive material of the Ni-MH cells. The Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) show the Co-Al-LDH with Co/Al = 4:1 (molar ration) is well-crystallized and hexagon structure. The electrochemical performances of the nickel electrode added with different Co/Al molar ration Co-Al-LDH, the pure nickel electrode and the nickel electrode added with CoO are investigated by the cyclic voltammograms (CV), galvanostatic charge-discharge measurements, and AC electrochemical impedance spectroscopy (EIS). Compared with the pure nickel electrode and the nickel electrode added with CoO, the nickel electrode added with Co/Al = 4:1 (molar ration) Co-Al-LDH has higher discharge capacity and more stable cycling performances. This cell can undergo at least 400 charge-discharge cycles at constant current of 1 C. The discharge capacity of this cell remains about 287 mAh g-1 after the 400th cycle. Meanwhile, compared with the pure electrode, the nickel electrode added with Co/Al = 4:1 (molar ration) Co-Al-LDH possess a higher rate capability to meet the needs of high-storage applications.

  11. Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Govind, Niranjan; Andersen, Amity

    2016-03-16

    Atomistic on-lattice self-learning kinetic Monte Carlo (SLKMC) method was used to examine the vacancy-mediated diffusion of an Al atom in pure hcp Mg. Local atomic environment dependent activation barriers for vacancy-atom exchange processes were calculated on-the-fly using climbing image nudged-elastic band method (CI-NEB) and using a Mg-Al binary modified embedded-atom method (MEAM) interatomic potential. Diffusivities of vacancy and Al atom in pure Mg were obtained from SLKMC simulations and are compared with values available in the literature that are obtained from experiments and first-principle calculations. Al Diffusivities obtained from SLKMC simulations are lower, due to larger activation barriers and lowermore » diffusivity prefactors, than those available in the literature but have same order of magnitude. We present all vacancy-Mg and vacancy-Al atom exchange processes and their activation barriers that were identified in SLKMC simulations. We will describe a simple mapping scheme to map a hcp lattice on to a simple cubic lattice that would enable hcp lattices to be simulated in an on-lattice KMC framework. We also present the pattern recognition scheme used in SLKMC simulations.« less

  12. Experimentally superposing two pure states with partial prior knowledge

    NASA Astrophysics Data System (ADS)

    Li, Keren; Long, Guofei; Katiyar, Hemant; Xin, Tao; Feng, Guanru; Lu, Dawei; Laflamme, Raymond

    2017-02-01

    Superposition, arguably the most fundamental property of quantum mechanics, lies at the heart of quantum information science. However, how to create the superposition of any two unknown pure states remains as a daunting challenge. Recently, it was proved that such a quantum protocol does not exist if the two input states are completely unknown, whereas a probabilistic protocol is still available with some prior knowledge about the input states [M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016), 10.1103/PhysRevLett.116.110403]. The knowledge is that both of the two input states have nonzero overlaps with some given referential state. In this work, we experimentally realize the probabilistic protocol of superposing two pure states in a three-qubit nuclear magnetic resonance system. We demonstrate the feasibility of the protocol by preparing a families of input states, and the average fidelity between the prepared state and expected superposition state is over 99%. Moreover, we experimentally illustrate the limitation of the protocol that it is likely to fail or yields very low fidelity, if the nonzero overlaps are approaching zero. Our experimental implementation can be extended to more complex situations and other quantum systems.

  13. Rigidity of outermost MOTS: the initial data version

    NASA Astrophysics Data System (ADS)

    Galloway, Gregory J.

    2018-03-01

    In the paper Commun Anal Geom 16(1):217-229, 2008, a rigidity result was obtained for outermost marginally outer trapped surfaces (MOTSs) that do not admit metrics of positive scalar curvature. This allowed one to treat the "borderline case" in the author's work with R. Schoen concerning the topology of higher dimensional black holes (Commun Math Phys 266(2):571-576, 2006). The proof of this rigidity result involved bending the initial data manifold in the vicinity of the MOTS within the ambient spacetime. In this note we show how to circumvent this step, and thereby obtain a pure initial data version of this rigidity result and its consequence concerning the topology of black holes.

  14. Perspectives on the Pure-Tone Audiogram.

    PubMed

    Musiek, Frank E; Shinn, Jennifer; Chermak, Gail D; Bamiou, Doris-Eva

    The pure-tone audiogram, though fundamental to audiology, presents limitations, especially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can provide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement. To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide enhanced diagnostic insight, especially regarding problems of the central auditory system. A systematic review and synthesis of the literature. The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram. The pure-tone audiogram provides information as to hearing sensitivity across a selected frequency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds. In cases of central deafness, depressed pure-tone thresholds may not accurately reflect the status of the peripheral auditory system. Listening difficulties are seen in the presence of normal pure-tone thresholds. Suprathreshold procedures and a variety of other tests can provide information regarding other and often more central functions of the auditory system. The audiogram is a primary tool for determining type

  15. Generalized pure Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Concha, Patrick; Rodríguez, Evelyn

    2017-11-01

    We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  16. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation.

    PubMed

    Duarte, Laís T; Bolfarini, Claudemiro; Biaggio, Sonia R; Rocha-Filho, Romeu C; Nascente, Pedro A P

    2014-08-01

    The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuya; Tsuruta, Hijiri; Watanabe, Asako; Ishimine, Tomoyuki; Ueno, Tomoyuki

    2018-04-01

    We developed Fe/FeSiAl soft magnetic powder cores (SMCs) for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (˜20 kHz). We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k) of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  18. Auto-combustion synthesis and characterization of Mg doped CuAlO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Shraddha, E-mail: shraddhaa32@gmail.com; Parveen, Azra; Naqvi, A. H.

    2015-06-24

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO{sub 2}nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO{sub 2} sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO{sub 2} has been studied over a wide range of frequencies by using complex impedance spectroscopy.Themore » variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.« less

  19. Density, Molar Volume, and Surface Tension of Liquid Al-Ti

    NASA Astrophysics Data System (ADS)

    Wessing, Johanna Jeanette; Brillo, Jürgen

    2017-02-01

    Al-Ti-based alloys are of enormous technical relevance due to their specific properties. For studies in atomic dynamics, surface physics and industrial processing the precise knowledge of the thermophysical properties of the liquid phase is crucial. In the present work, we systematically measure mass density, ρ (g cm-3), and the surface tension, γ (N m-1), as functions of temperature, T, and compositions of binary Al-Ti melts. Electromagnetic levitation in combination with the optical dilatometry method is used for density measurements and the oscillating drop method for surface tension measurements. It is found that, for all compositions, density and surface tension increase linearly upon decreasing temperature in the liquid phase. Within the Al-Ti system, we find the largest values for pure titanium and the smallest for pure aluminum, which amount to ρ(L,Ti) = 4.12 ± 0.04 g cm-3 and γ(L,Ti) = 1.56 ± 0.02 N m-1; and ρ(L,Al) = 2.09 ± 0.01 g cm-3 and γ(L,Al) = 0.87 ± 0.06 N m-1, respectively. The data are analyzed concerning the temperature coefficients, ρ T and γ T, excess molar volume, V E, excess surface tension, γ E, and surface segregation of the surface active component, Al. The results are compared with thermodynamic models. Generally, it is found that Al-Ti is a highly nonideal system.

  20. Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.

    We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less

  1. Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation

    DOE PAGES

    Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.; ...

    2014-03-27

    We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less

  2. A System of ODEs for a Perturbation of a Minimal Mass Soliton

    NASA Astrophysics Data System (ADS)

    Marzuola, Jeremy L.; Raynor, Sarah; Simpson, Gideon

    2010-08-01

    We study soliton solutions to the nonlinear Schrödinger equation (NLS) with a saturated nonlinearity. NLS with such a nonlinearity is known to possess a minimal mass soliton. We consider a small perturbation of a minimal mass soliton and identify a system of ODEs extending the work of Comech and Pelinovsky (Commun. Pure Appl. Math. 56:1565-1607, 2003), which models the behavior of the perturbation for short times. We then provide numerical evidence that under this system of ODEs there are two possible dynamical outcomes, in accord with the conclusions of Pelinovsky et al. (Phys. Rev. E 53(2):1940-1953, 1996). Generically, initial data which supports a soliton structure appears to oscillate, with oscillations centered on a stable soliton. For initial data which is expected to disperse, the finite dimensional dynamics initially follow the unstable portion of the soliton curve.

  3. Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations

    NASA Astrophysics Data System (ADS)

    Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki

    2017-12-01

    We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2} ). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3} ) and the level sets of the Gaussian free field ({d≥ 3} ). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.

  4. Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations

    NASA Astrophysics Data System (ADS)

    Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki

    2018-03-01

    We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2}). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3}) and the level sets of the Gaussian free field ({d≥ 3}). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.

  5. Consolidation of commercial pure aluminum particles by hot ECAP

    NASA Astrophysics Data System (ADS)

    Gudimetla, Kondaiah; Kumar, S. Ramesh; Ravisankar, B.; Prasad Prathipati, R.; Kumaran, S.

    2018-03-01

    In the current study undertaken, aluminum particles of commercial purity grade were compacted using hot ECAP. Investigation of the structural evolution and mechanical properties was done. Measurements of the densities of the samples was done for the purpose of evaluation the performance of the consolidation process. A tensile strength (UTS) of 98 MPa (after first pass) was obtained under tensile loads and the percent elongation to fracture was found to be 5.5%, which indicated good tensile strength and ductility as compared to the commercial pure Al powders consolidated by ambient temperature ECAP and other techniques. The relative density and Rockwell hardness (HRB) of compacts (after first pass) was 99% and 42 respectively. This is indisputable proof for establishing the compatibility of ECAP in the matter of producing bulk materials. Characterization of the material microstructure and fracture behavior was done through use of optical and scanning electron microscopy (SEM). The Al powders consolidated at 400°C through ECAP process, exhibited the best combination of yield strength and ductility and hence hot ECAP is suitable method for consolidation of micro powders.

  6. Improved Energetic-Behaviors of Spontaneously Surface-Mediated Al Particles.

    PubMed

    Kim, Dong Won; Kim, Kyung Tae; Min, Tae Sik; Kim, Kyung Ju; Kim, Soo Hyung

    2017-07-05

    Surface-mediated Al particles are synthesized by incorporating the stable fluoride reaction of Al-F on a pure Al surface in place of natural oxides. Al particles with fluoro-polymer directly adsorbed on the surface show a considerable capability to overcome limitations caused by the surface oxide. Here, we report that Al fluoride when spontaneously formed at the poly(vinylidene fluoride)/Al interface serves as an oxidation-protecting layer while also providing an efficient combustion path along which the internal Al rapidly reacts with external oxygen atoms. Both thermal oxidation and explosion tests of the poly(vinylidene fluoride)/Al particles show superior exothermic enthalpy energy and simultaneously rapid oxidation reactivity compared to those of Al 2 O 3 passivated Al particles. It is clearly elucidated that the enhanced energetic properties of Al particles mediated by poly(vinylidene fluoride) originate from the extraordinary pyrolytic process of Al fluoride occurring at a low temperature compared to Al 2 O 3 passivated Al. Hence, these results clarify that the surface mediation of Al particles can be significantly considered as advanced technology for many energetic applications.

  7. On the Search for Mid-IR and Pure Rotational H3+ Emission in Jupiter's Northern Aurora

    NASA Astrophysics Data System (ADS)

    Trafton, Laurence M.; Miller, Steve; Lacy, John H.; Greathouse, Thomas K.

    2017-06-01

    The first identification of astronomical spectral emission from the H3+ ion was made in Jupiter’s southern auroral region in the first overtone band near 2 μm (Drossart et al. 1989; Nature 340, 539). Trafton et al. (1989; ApJ 343, L73) also detected H3+ emission from this band near each of Jupiter’s auroral poles, but without identifying it. Shortly thereafter, Maillard et al (1990; ApJ 363, L37) detected the fundamental band emission near 4 μm. In order to determine the non-LTE column abundance of H3+, which is Jupiter’s primary ionospheric coolant, we searched in 2001-2002, initially above 10 μm, for emission lines from the H3+ pure rotational and ν1 -> ν2 difference band. This was done near the northern auroral “hot spot” at System III longitude 180 deg based on predicted theoretical frequencies. The results were reported by Trafton et al. (2009; Icarus 203, 189). No pure rotational lines were detected but there were marginal detections of two metastable difference band lines. The IR-inactive ν1 levels are populated in thermal equilibrium so these difference band lines are proxies for the pure rotational lines in establishing the total H3+ column. These marginal results are consistent with a vibrational relaxation of the ν2 level by a factor of ~6, consistent with the non-LTE calculation of Melin et al. (2005; Icarus 178, 97).We report here results from subsequent observations of Jupiter’s H3+ hot spot spectrum below 10 μm, where better detectivity was expected from the lower thermal background. However, this was offset by the reduced availability of emission from known hydrocarbons, leading to acquisition and guiding difficulty, which was resolved by offsetting from a Galilean satellite. The observations were made with the TEXES high-resolution mid-IR spectrograph at the IRTF telescope on Oct 1, 6, and 8 of 2012. Of the 18 lines predicted for this wavelength regime, half avoided blending with lines apparent in Jupiter’s auroral spectrum or

  8. Analysis of pure maple syrup consumers

    Treesearch

    Paul E. Sendak

    1974-01-01

    Virtually all of the pure maple syrup productim in the United States is in the northern states of Maine, Massachusetts, Michigan, New Hampshire, New York, Ohio, Pennsylvania, Vermont, and Wisconsin. Pure maple syrup users living in the maple production area and users living in other areas of the United States were asked a series of questions about their use of pure...

  9. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties.

    PubMed

    Kim, Dae Woong; Lee, Dong Ho; Kim, Jung-Su; Sohn, Seok Su; Kim, Hyoung Seop; Lee, Sunghak

    2017-08-14

    Pure Ti or Ti alloys are recently spot-lighted in construction industries because they have excellent resistance to corrosions, chemicals, and climates as well as various coloring characteristics, but their wide applications are postponed by their expensiveness and poor formability. We present a new fabrication process of Ti/Al clad sheets by bonding a thin Ti sheet on to a 5052 Al alloy melt during vertical-twin-roll casting. This process has merits of reduced production costs as well as improved tensile properties. In the as-twin-roll-cast clad sheet, the homogeneously cast microstructure existed in the Al alloy substrate side, while the Ti/Al interface did not contain any reaction products, pores, cracks, or lateral delamination, which indicated the successful twin-roll casting. When this sheet was annealed at 350 °C~600 °C, the metallurgical bonding was expanded by interfacial diffusion, thereby leading to improvement in tensile properties over those calculated by a rule of mixtures. The ductility was also improved over that of 5052-O Al alloy (25%) or pure Ti (25%) by synergic effect of homogeneous deformation due to excellent Ti/Al bonding. This work provides new applications of Ti/Al clad sheets to lightweight-alloy clad sheets requiring excellent formability and corrosion resistance as well as alloy cost saving.

  10. The electronic structures of AlN and InN wurtzite nanowires

    NASA Astrophysics Data System (ADS)

    Xiong, Wen; Li, Dong-Xiao

    2017-07-01

    We derive the relations between the analogous seven Luttinger-Kohn parameters and six Rashba-Sheka-Pikus parameters for wurtzite semiconductors, which can be used to investigate the electronic structures of some wurtzite semiconductors such as AlN and InN materials, including their low-dimensional structures. As an example, the electronic structures of AlN and InN nanowires are calculated by using the derived relations and six-band effective-mass k · p theory. Interestingly, it is found that the ground hole state of AlN nanowires is always a pure S state whether the radius R is small (1 nm) or large (6 nm), and the ground hole state only contains | Z 〉 Bloch orbital component. Therefore, AlN nanowires is the ideal low-dimensional material for the production of purely linearly polarized π light, unlike ZnO nanowires, which emits plane-polarized σ light. However, the ground hole state of InN nanowires can be tuned from a pure S state to a mixed P state when the radius R is larger than 2.6 nm, which will make the polarized properties of the lowest optical transition changes from linearly polarized π light to plane-polarized σ light. Meanwhile, the valence band structures of InN nanowires will present strong band-crossings when the radius R increases to 6 nm, and through the detail analysis of possible transitions of InN nanowires at the Γ point, we find some of the neighbor optical transitions are almost degenerate, because the spin-orbit splitting energy of InN material is only 0.001 eV. Therefore, it is concluded that the electronic structures and optical properties of InN nanowires present great differences with that of AlN nanowires.

  11. Buchdahl-Vaidya-Tikekar model for stellar interior in pure Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Molina, Alfred; Dadhich, Naresh; Khugaev, Avas

    2017-07-01

    In the paper (Khugaev et al. in Phys Rev D94:064065. arXiv: 1603.07118, 2016), we have shown that for perfect fluid spheres the pressure isotropy equation for Buchdahl-Vaidya-Tikekar metric ansatz continues to have the same Gauss form in higher dimensions, and hence higher dimensional solutions could be obtained by redefining the space geometry characterizing Vaidya-Tikekar parameter K. In this paper we extend this analysis to pure Lovelock gravity; i.e. a (2N+2)-dimensional solution with a given K_{2N+2} can be taken over to higher n-dimensional pure Lovelock solution with K_n=(K_{2N+2}-n+2N+2)/(n-2N-1) where N is degree of Lovelock action. This ansatz includes the uniform density Schwarzshild and the Finch-Skea models, and it is interesting that the two define the two ends of compactness, the former being the densest and while the latter rarest. All other models with this ansatz lie in between these two limiting distributions.

  12. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity

    PubMed Central

    Xu, Yonggang; Yang, Chi; Li, Jun; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-01-01

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity. PMID:29258277

  13. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity.

    PubMed

    Xu, Yonggang; Yang, Chi; Li, Jun; Mao, Xiaojian; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-12-18

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity.

  14. Defect characterization of MOCVD grown AlN/AlGaN films on sapphire substrates by TEM and TKD

    NASA Astrophysics Data System (ADS)

    O'Connell, J. H.; Lee, M. E.; Westraadt, J.; Engelbrecht, J. A. A.

    2018-04-01

    High resolution transmission electron microscopy (TEM) has been used to characterize defects structures in AlN/AlGaN epilayers grown by metal-organic chemical vapour deposition (MOCVD) on c-plane sapphire (Al2O3) substrates. The AlN buffer layer was shown to be epitaxially grown on the sapphire substrate with the two lattices rotated relatively through 30°. The AlN layer had a measured thickness of 20-30 nm and was also shown to contain nano-sized voids. The misfit dislocations in the buffer layer have been shown to be pure edge with a spacing of 1.5 nm. TEM characterization of the AlGaN epilayers was shown to contain a higher than expected threading dislocation density of the order 1010 cm-2 as well as the existence of "nanopipes". TEM analysis of the planar lamella for AlGaN has presented evidence for the possibility of columnar growth. The strain and misorientation mapping in the AlGaN epilayer by transmission Kikuchi diffraction (TKD) using the FIB lamella has also been demonstrated to be complimentary to data obtained by TEM imaging.

  15. Study on biodegradation of the second phase Mg17Al12 in Mg-Al-Zn alloys: in vitro experiment and thermodynamic calculation.

    PubMed

    Liu, Chen; Yang, Huazhe; Wan, Peng; Wang, Kehong; Tan, Lili; Yang, Ke

    2014-02-01

    The in vitro biodegradation behavior of Mg17Al12 as a second phase in Mg-Al-Zn alloys was investigated via electrochemical measurement and immersion test. The Hank's solutions with neutral and acidic pH values were adopted as electrolytes to simulate the in vivo environment during normal and inflammatory response process. Furthermore, the local orbital density functional theory approach was employed to study the thermodynamical stability of Mg17Al12 phase. All the results proved the occurrence of pitting corrosion process with crackings for Mg17Al12 phase in Hank's solution, but with a much lower degradation rate compared with both AZ31 alloy and pure magnesium. Furthermore, a preliminary explanation on the biodegradation behaviors of Mg17Al12 phase was proposed. © 2013.

  16. Factors affecting the microstructure and mechanical properties of Ti-Al3Ti core-shell-structured particle-reinforced Al matrix composites

    NASA Astrophysics Data System (ADS)

    Guo, Baisong; Yi, Jianhong; Ni, Song; Shen, Rujuan; Song, Min

    2016-04-01

    This work studied the effects of matrix powder and sintering temperature on the microstructure and mechanical properties of in situ formed Ti-Al3Ti core-shell-structured particle-reinforced pure Al-based composites. It has been shown that both factors have significant effects on the morphology of the reinforcements and densification behaviour of the composites. Due to the strong interfacial bonding and the limitation of the crack propagation in the intermetallic shell during deformation by soft Al matrix and Ti core, the composite fabricated using fine spherical-shaped Al powder and sintered at 570 °C for 5 h has the optimal combination of the overall mechanical properties. The study provides a direction for the optimum combination of high strength and ductility of the composites by adjusting the fabrication parameters.

  17. Critique of pure free energy principle. Comment on "Answering Schrödinger's question: A free-energy formulation" by Maxwell James Désormeau Ramstead et al.

    NASA Astrophysics Data System (ADS)

    Tozzi, Arturo; Peters, James F.

    2018-03-01

    The paper by Ramstead et al. [1] [in this issue] reminds us the efforts of eminent scientists such as Whitehead and Godel. After having produced influential manuscripts, they turned to more philosophical issues, understanding the need for a larger formalization of their bounteous scientific results [2,3]. In a similar way, the successful free-energy principle has been generalized, in order to encompass not only the brain activity of the original formulation, but also the whole spectrum of life [1]. The final result is of prominent importance, because, in touch with Quine's naturalized epistemology [4] and Badiou's account of set theory [5], provides philosophical significance to otherwise purely scientific matters. The free energy principle becomes a novel paradigm that attempts to explain general physical/biological mechanisms in the light of a novel scientific ontology, the "variational neuroethology". The latter, seemingly grounded in a recursive multilevel reductionistic/emergentistic approach à la Bechtel [6], has also its roots in a rationalistic top-down approach that, starting from mathematical/physical general concepts (von Helmholtz's free energy), formulates experimentally testable (and falsifiable) theories.

  18. Effects of Al2O3-Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime

    NASA Astrophysics Data System (ADS)

    Takabi, Behrouz; Shokouhmand, Hossein

    2015-09-01

    In this paper, forced convection of a turbulent flow of pure water, Al2O3/water nanofluid and Al2O3-Cu/water hybrid nanofluid (a new advanced nanofluid composited of Cu and Al2O3 nanoparticles) through a uniform heated circular tube is numerically analyzed. This paper examines the effects of these three fluids as the working fluids, a wide range of Reynolds number (10 000 ≤ Re ≤ 10 0000) and also the volume concentration (0% ≤ ϕ ≤ 2%) on heat transfer and hydrodynamic performance. The finite volume discretization method is employed to solve the set of the governing equations. The results indicate that employing hybrid nanofluid improves the heat transfer rate with respect to pure water and nanofluid, yet it reveals an adverse effect on friction factor and appears severely outweighed by pressure drop penalty. However, the average increase of the average Nusselt number (when compared to pure water) in Al2O3-Cu/water hybrid nanofluid is 32.07% and the amount for the average increase of friction factor would be 13.76%.

  19. Correction: Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-28

    Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.

  20. Rehabilitation of pure alexia: A review

    PubMed Central

    Starrfelt, Randi; Ólafsdóttir, Rannveig Rós; Arendt, Ida-Marie

    2013-01-01

    Acquired reading problems caused by brain injury (alexia) are common, either as a part of an aphasic syndrome, or as an isolated symptom. In pure alexia, reading is impaired while other language functions, including writing, are spared. Being in many ways a simple syndrome, one would think that pure alexia was an easy target for rehabilitation efforts. We review the literature on rehabilitation of pure alexia from 1990 to the present, and find that patients differ widely on several dimensions, such as alexia severity and associated deficits. Many patients reported to have pure alexia in the reviewed studies, have associated deficits such as agraphia or aphasia and thus do not strictly conform to the diagnosis. Few studies report clear and generalisable effects of training, none report control data, and in many cases the reported findings are not supported by statistics. We can, however, tentatively conclude that Multiple Oral Re-reading techniques may have some effect in mild pure alexia where diminished reading speed is the main problem, while Tacile-Kinesthetic training may improve letter identification in more severe cases of alexia. There is, however, still a great need for well-designed and controlled studies of rehabilitation of pure alexia. PMID:23808895

  1. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation.

    PubMed

    Assad, M; Lemieux, N; Rivard, C H; Yahia, L H

    1999-01-01

    The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.

  2. Formation of "Chemically Pure" Magnetite from Mg-Fe-Carbonates Implications for the Exclusively Inorganic Origin of Magnetite and Sulfides in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Lauer, H. V., Jr.; Morris, R. V.; Trieman, A. H.; McKay, G. A.

    2006-01-01

    Magnetite and sulfides in the black rims of carbonate globules in Martian meteorite ALH84001 have been studied extensively because of the claim by McKay et al. that they are biogenic in origin. However, exclusively inorganic (abiotic) processes are able to account for the occurrence of carbonate-sulfide-magnetite assemblages in the meteorite. We have previously precipitated chemically zoned and sulfide-bearing carbonate globules analogous to those in ALH84001 (at less than or equal to 150 C) from multiple fluxes of variable-composition Ca-Mg-Fe-CO2-S-H2O solutions. Brief heating of precipitated globules to approx. 470 C produced magnetite and pyrrhotite within the globules by thermal decomposition of siderite and pyrite, respectively. We have also shown that morphology of magnetite formed by inorganic thermal decomposition of Fe-rich carbonate is similar to the morphology of so-called biogenic magnetite in the carbonate globules of ALH84001. Magnetite crystals in the rims of carbonate globules in ALH84001 are chemically pure [Note: "Chemically pure" is defined here as magnetite with Mg at levels comparable or lower than Mg detected by [8] in ALH84001 magnetite]. A debate continues on whether or not chemically pure magnetite can form by the thermal decomposition of mixed Mg-Fe-carbonates that have formed under abiotic conditions. Thomas-Keprta et al. argue that it is not possible to form Mg-free magnetite from Mg-Fe-carbonate based on thermodynamic data. We previously suggested that chemically pure magnetite could form by the thermal decomposition of relatively pure siderite in the outer rims of the globules. Mg-Fe-carbonates may also thermally decompose under conditions conducive for formation of chemically pure magnetite. In this paper we show through laboratory experiments that chemically pure magnetite can form by an inorganic process from mixed Mg-Fe-carbonates.

  3. p -n Junction Rectifying Characteristics of Purely n -Type GaN-Based Structures

    NASA Astrophysics Data System (ADS)

    Zuo, P.; Jiang, Y.; Ma, Z. G.; Wang, L.; Zhao, B.; Li, Y. F.; Yue, G.; Wu, H. Y.; Yan, H. J.; Jia, H. Q.; Wang, W. X.; Zhou, J. M.; Sun, Q.; Liu, W. M.; Ji, An-Chun; Chen, H.

    2017-08-01

    The GaN-based p -n junction rectifications are important in the development of high-power electronics. Here, we demonstrate that p -n junction rectifying characteristics can be realized with pure n -type structures by inserting an (In,Ga)N quantum well into the GaN /(Al ,Ga )N /GaN double heterostructures. Unlike the usual barriers, the insertion of an (In,Ga)N quantum well, which has an opposite polarization field to that of the (Al,Ga)N barrier, tailors significantly the energy bands of the system. The lifted energy level of the GaN spacer and the formation of the (In ,Ga )N /GaN interface barrier can improve the reverse threshold voltage and reduce the forward threshold voltage simultaneously, forming the p -n junction rectifying characteristics.

  4. Effect of TiC Nanoparticles Supported by Ti Powders on the Solidification Behavior and Microstructure of Pure Aluminum

    NASA Astrophysics Data System (ADS)

    Zhao, Bingyi; Cai, Qizhou; Li, Xinwei; Li, Bing; Cheng, Jingfan

    2018-03-01

    A novel grain refiner consisting of TiC nanoparticles (NPs) supported by Ti powders (abbr. TiC/Ti refiner) was prepared by high-energy milling. The addition of 0.5 wt% TiC/Ti refiner converted the structure of pure Al from coarse dendrites to fine equiaxed grains with the average grain size of 114.7 μm, and it also increased the nucleation temperature of α(Al) from 656.7 to 664.4 °C. When TiC/Ti refiner was introduced into Al melt, the heat released from the Al-Ti reaction promoted the uniform dispersion of TiC NPs. The dissolution of the reaction product TiAl3 released Ti atoms into the melt and thus formed a "Ti-rich transition region" around TiC NPs. The dispersive TiC NPs could act as the heterogeneous nuclei for α(Al) and the "Ti-rich transition region" further improved the lattice orientation relationship between Al (\\bar{1}1\\bar{1} ) and TiC (11\\bar{1} ) planes, which eventually resulted in the refining of α(Al).

  5. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S.P.; Radha, P.B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra weremore » analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  6. Polarized ensembles of random pure states

    NASA Astrophysics Data System (ADS)

    Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe

    2013-08-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise.

  7. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes.

    PubMed

    Nishizawa, Nozomi; Nishibayashi, Kazuhiro; Munekata, Hiro

    2017-02-21

    We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small schemes in the tested spin-LEDs: first, the stripe-laser-like structure that helps intensify the EL light at the cleaved side walls below the spin injector Fe slab, and second, the crystalline AlO x spin-tunnel barrier that ensures electrically stable device operation. The purity of CP is depressively low in the low current density ( J ) region, whereas it increases steeply and reaches close to the pure CP when J > 100 A/cm 2 There, either right- or left-handed CP component is significantly suppressed depending on the direction of magnetization of the spin injector. Spin-dependent reabsorption, spin-induced birefringence, and optical spin-axis conversion are suggested to account for the observed experimental results.

  8. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes

    PubMed Central

    Nishibayashi, Kazuhiro

    2017-01-01

    We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small schemes in the tested spin-LEDs: first, the stripe-laser-like structure that helps intensify the EL light at the cleaved side walls below the spin injector Fe slab, and second, the crystalline AlOx spin-tunnel barrier that ensures electrically stable device operation. The purity of CP is depressively low in the low current density (J) region, whereas it increases steeply and reaches close to the pure CP when J > 100 A/cm2. There, either right- or left-handed CP component is significantly suppressed depending on the direction of magnetization of the spin injector. Spin-dependent reabsorption, spin-induced birefringence, and optical spin-axis conversion are suggested to account for the observed experimental results. PMID:28174272

  9. Newly discovered orally active pure antiestrogens.

    PubMed

    Kanbe, Yoshitake; Kim, Myung-Hwa; Nishimoto, Masahiro; Ohtake, Yoshihito; Yoneya, Takaaki; Ohizumi, Iwao; Tsunenari, Toshiaki; Taniguchi, Kenji; Kaiho, Shin-ichi; Nabuchi, Yoshiaki; Araya, Hiroshi; Kawata, Setsu; Morikawa, Kazumi; Jo, Jae-Chon; Kwon, Hee-An; Lim, Hyun-Suk; Kim, Hak-Yeop

    2006-09-15

    In order to develop orally active pure antiestrogens, we incorporated the carboxy-containing side chains into the 7alpha-position of the steroid scaffold and found that 17-keto derivative CH4893237 (12b) functioned as a pure antiestrogen with its oral activity much superior to clinically used pure antiestrogen, ICI182,780. Results from the pharmacokinetic evaluation indicated that the potent antiestrogen activity at oral dosing in mice attributed to both improved absorption from the intestinal wall and metabolic stability in liver.

  10. Quasi-additive estimates on the Hamiltonian for the one-dimensional long range Ising model

    NASA Astrophysics Data System (ADS)

    Littin, Jorge; Picco, Pierre

    2017-07-01

    In this work, we study the problem of getting quasi-additive bounds for the Hamiltonian of the long range Ising model, when the two-body interaction term decays proportionally to 1/d2 -α , α ∈(0,1 ) . We revisit the paper by Cassandro et al. [J. Math. Phys. 46, 053305 (2005)] where they extend to the case α ∈[0 ,ln3/ln2 -1 ) the result of the existence of a phase transition by using a Peierls argument given by Fröhlich and Spencer [Commun. Math. Phys. 84, 87-101 (1982)] for α =0 . The main arguments of Cassandro et al. [J. Math. Phys. 46, 053305 (2005)] are based in a quasi-additive decomposition of the Hamiltonian in terms of hierarchical structures called triangles and contours, which are related to the original definition of contours introduced by Fröhlich and Spencer [Commun. Math. Phys. 84, 87-101 (1982)]. In this work, we study the existence of a quasi-additive decomposition of the Hamiltonian in terms of the contours defined in the work of Cassandro et al. [J. Math. Phys. 46, 053305 (2005)]. The most relevant result obtained is Theorem 4.3 where we show that there is a quasi-additive decomposition for the Hamiltonian in terms of contours when α ∈[0,1 ) but not in terms of triangles. The fact that it cannot be a quasi-additive bound in terms of triangles lead to a very interesting maximization problem whose maximizer is related to a discrete Cantor set. As a consequence of the quasi-additive bounds, we prove that we can generalise the [Cassandro et al., J. Math. Phys. 46, 053305 (2005)] result, that is, a Peierls argument, to the whole interval α ∈[0,1 ) . We also state here the result of Cassandro et al. [Commun. Math. Phys. 327, 951-991 (2014)] about cluster expansions which implies that Theorem 2.4 that concerns interfaces and Theorem 2.5 that concerns n point truncated correlation functions in Cassandro et al. [Commun. Math. Phys. 327, 951-991 (2014)] are valid for all α ∈[0,1 ) instead of only α ∈[0 ,ln3/ln2 -1 ) .

  11. Tightness of the Ising-Kac Model on the Two-Dimensional Torus

    NASA Astrophysics Data System (ADS)

    Hairer, Martin; Iberti, Massimo

    2018-05-01

    We consider the sequence of Gibbs measures of Ising models with Kac interaction defined on a periodic two-dimensional discrete torus near criticality. Using the convergence of the Glauber dynamic proven by Mourrat and Weber (Commun Pure Appl Math 70:717-812, 2017) and a method by Tsatsoulis and Weber employed in (arXiv:1609.08447 2016), we show tightness for the sequence of Gibbs measures of the Ising-Kac model near criticality and characterise the law of the limit as the Φ ^4_2 measure on the torus. Our result is very similar to the one obtained by Cassandro et al. (J Stat Phys 78(3):1131-1138, 1995) on Z^2, but our strategy takes advantage of the dynamic, instead of correlation inequalities. In particular, our result covers the whole critical regime and does not require the large temperature/large mass/small coupling assumption present in earlier results.

  12. Tensor modes in pure natural inflation

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Yamazaki, Masahito

    2018-05-01

    We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar ratio r is naturally bounded from below. This bound originates from the finiteness of the number of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by future cosmic microwave background experiments and improved lattice gauge theory calculations of the θ-angle dependence of the vacuum energy.

  13. Patterns of Weakness, Classification of Motor Neuron Disease & Clinical Diagnosis of Sporadic ALS

    PubMed Central

    Statland, Jeffrey M.; Barohn, Richard J.; McVey, April L.; Katz, Jonathan; Dimachkie, Mazen M.

    2015-01-01

    Synopsis When approaching the patient with suspected motor neuron disease (MND) the pattern of weakness on exam helps distinguish MND from other diseases of peripheral nerves, the neuromuscular junction, or muscle. MND is a clinical diagnosis supported by findings on electrodiagnostic testing, in the absence of other abnormalities on neuroimaging or serological testing. MNDs exist on a spectrum: from a pure lower motor neuron; to mixed upper and lower motor neuron; to a pure upper motor neuron variant in addition to regional variants restricted to the arms, legs or bulbar region. Amyotrophic lateral sclerosis (ALS) is a progressive mixed upper and lower motor neuron disorder, most commonly sporadic (~85%), which is invariably fatal. The only FDA approved treatments for ALS are riluzole, which prolongs life by about 3 months, and dextromethorphan/quinidine which provides symptomatic relief for pseudobulbar affect (inappropriate bouts of laughter or crying). Here we describe a pattern approach to identifying motor neuron disease, and clinical features of sporadic ALS. PMID:26515618

  14. Surface doping with Al in Ba-hexaferrite powders (abstract)

    NASA Astrophysics Data System (ADS)

    Turilli, G.; Paoluzi, A.; Lucenti, M.

    1991-04-01

    Barium M-hexaferrites were intensively studied in order to improve their magnetic characteristics for application as permanent magnets using different ion substitutions. However, substitutions that improve the BHmax energy product have not been found. We propose a new method in order to modify the extrinsic magnetic characteristics of Ba-hexaferrite powders without reducing drastically the magnetization and the magnetic anisotropy. This method consists in the surface doping of the hexaferrite particles, giving as a result a modification of the energy pinning of the domain walls at the grain boundary. Ba ferrite powders having a mean diameter of 3.2 μm have been dry mixed with Al2O3 powders with a diameter <0.5 μm. From the mixed powder a series of 10 cylindrically shaped samples was obtained by isostatically pressing the powders. The samples were thermically treated from 900 to 1200 °C, together with 10 cylindrical samples of pure hexaferrite, for 1 h each. For all the samples we have measured the Curie temperature (Tc), the anisotropy field (HA), the coercive field (Hc), and the saturation magnetization σ. The main results are that up to 1000 °C the Al diffusion is mainly localized at the surface of the grain so that the main part of the grain is undoped as confirmed by the Tc and HA values that are the same as those found in pure hexaferrites. From 900 to 1000 °C the saturation magnetization decreases of the 3% while Hc increases of the 9% with respect to the pure hexaferrite. This result seems to confirm the validity of the proposed method. Above 1000 °C Al begin to diffuse in the grain and above 1200 °C it is possible to say, from thermomagnetic analysis, that Al has diffused uniformly throughout the grain. In this last temperature range the Al substitution leads to a 10% reduction in σ as expected1 while Hc only increases 12%. These preliminary results suggest that the method of surface doping of the powders could be used in order to increase or

  15. Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun

    2017-12-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.

  16. Eavesdropping on the improved three-party quantum secret sharing protocol

    NASA Astrophysics Data System (ADS)

    Gao, Gan

    2011-02-01

    Lin et al. [Song Lin, Fei Gao, Qiao-yan Wen, Fu-chen Zhu, Opt. Commun. 281 (2008) 4553] pointed out that the multiparty quantum secret sharing protocol [Zhan-jun Zhang, Gan Gao, Xin Wang, Lian-fang Han, Shou-hua Shi, Opt. Commun. 269 (2007) 418] is not secure and proposed an improved three-party quantum secret sharing protocol. In this paper, we study the security of the improved three-party quantum secret sharing protocol and find that it is still not secure. Finally, a further improved three-party quantum secret sharing protocol is proposed.

  17. Upper bound on three-tangles of reduced states of four-qubit pure states

    NASA Astrophysics Data System (ADS)

    Sharma, S. Shelly; Sharma, N. K.

    2017-06-01

    Closed formulas for upper bounds on three-tangles of three-qubit reduced states in terms of three-qubit-invariant polynomials of pure four-qubit states are obtained. Our results offer tighter constraints on total three-way entanglement of a given qubit with the rest of the system than those used by Regula et al. [Phys. Rev. Lett. 113, 110501 (2014), 10.1103/PhysRevLett.113.110501 and Phys. Rev. Lett. 116, 049902(E) (2016)], 10.1103/PhysRevLett.116.049902 to verify monogamy of four-qubit quantum entanglement.

  18. Annealing Effects on Microstructure and Mechanical Properties of Ultrafine-Grained Al Composites Reinforced with Nano-Al2O3 by Rotary Swaging

    NASA Astrophysics Data System (ADS)

    Chen, Cunguang; Wang, Wenwen; Guo, Zhimeng; Sun, Chunbao; Volinsky, Alex A.; Paley, Vladislav

    2018-03-01

    Microstructure evolution and variations in mechanical properties of Al-Al2O3 nanocomposite produced by powder metallurgy were investigated and compared with commercially pure aluminum (Al-1050) after furnace annealing. Fine gas-atomized Al powder compacts were first sintered in flowing nitrogen, subsequently consolidated into wires by rotary swaging and eventually annealed at 300 and 500 °C for 24 h each. Scanning and transmission electron microscopy with energy-dispersive spectroscopy was utilized to document the microstructure evolution. Rotary swaging was proven to lead to a marked decrease in grain size. After heavy swaging to true deformation degree of φ = 6 and annealing at 500 °C, obvious recrystallization was observed at Al-1050's existing grain boundaries and the crystals began to grow perpendicular to the flow direction. In the Al-Al2O3 nanocomposite, fabricated from d 50 = 6 μm Al powder, recrystallization partially occurred, while grains were still extremely fine. Due to the dual role of fine-grained Al2O3 dispersion strengthening, the nanocomposite showed improved mechanical performance in terms of tensile strength, approximately twice higher than Al-1050 after annealing at 500 °C.

  19. Gate-driven pure spin current in graphene

    NASA Astrophysics Data System (ADS)

    Lin, Xiaoyang; Su, Li; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Zhao, Weisheng; Fert, Albert

    An important challenge of spin current based devices is to realize long-distance transport and efficient manipulation of pure spin current without frequent spin-charge conversions. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of conductivity and spin diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with Elliot-Yafet spin relaxation mechanism, D'yakonov-Perel spin relaxation mechanism results in more appreciable demultiplexing performance, which also implies a feasible strategy to characterize the spin relaxation mechanisms. The unique feature of the pure spin current demultiplexing operation would pave a way for ultra-low power spin logic beyond CMOS. Supported by the NSFC (61627813, 51602013) and the 111 project (B16001).

  20. Interference of qubits in pure dephasing and almost pure dephasing environments

    NASA Astrophysics Data System (ADS)

    Łobejko, Marcin; Mierzejewski, Marcin; Dajka, Jerzy

    2015-07-01

    Two-path interference of quantum particles with internal spin (qubits) interacting on one arm of the interferometer with bosonic environment is studied. It is assumed that the energy exchange between the qubit and its environment is either absent, which is a pure dephasing (decoherence) model, or very weak. Both the amplitude and the position of maximum of an output intensity discussed as a function of a phase shift can serve as a quantifier of parameters describing coupling between qubit and its environment. The time evolution of the qubit-environment system is analyzed in the Schrödinger picture and the output intensity for qubit-environment interaction close to pure decoherence is analyzed by means of perturbation theory. Quality of the applied approximation is verified by comparison with numerical results.

  1. Effect of Al substitution on the microstructure and lithium storage performance of nickel hydroxide

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Pan, Guanlin; Xu, Wenqiang; Yao, Jinhuan; Zhang, Lingzhi

    2016-03-01

    Al-substituted Ni(OH)2 samples with Al3+/Ni2+ mole ratio of 0%, 10% and 20% have been prepared by a very facile chemical co-precipitation method. The microstructure of the prepared samples are analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), and Field emission scanning electron microscopy (FESEM). The results reveal that the pure Ni(OH)2 sample is β-Ni(OH)2 with nanosheets hierarchical structure; the sample with 10% Al is mixed phase α/β-Ni(OH)2 with hybrid nanosheets/nanoparticles hierarchical structure; the sample with 20% Al is α-Ni(OH)2 with irregular nanoparticles hierarchical structure. The lithium storage performances of the prepared samples are characterized by cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge tests. The results demonstrate that Al substitution could improve the lithium storage performances of nickel hydroxide. In particular, the mixed phase α/β-Ni(OH)2 with 10% Al exhibited the highest electrochemical activity, the best rate performance, and superior cycling stability. For example, after 30 charge/discharge cycles under a current density of 200 mA g-1, the mixed phase α/β-Ni(OH)2 with 10% Al can still deliver a specific discharge capacity of 964 mAh g-1, much higher than of for the α-Ni(OH)2 with 20% Al (681 mAh g-1) and the pure Ni(OH)2 (419 mAh g-1).

  2. Thermally Induced Interdiffusion and Precipitation in a Ni/Ni 3 Al System

    DOE PAGES

    Sun, C.; Martinez, E.; Aguiar, J. A.; ...

    2015-05-20

    Ordered Ni 3Al intermetallic precipitates constitute the main hardening sources of Ni-based superalloys. Here, we report the interdiffusion and precipitation behavior in a Ni/Ni3Al model system. The deposition of Ni3Al on a pure Ni layer at 500°C generated L12-structured γ' (Ni3Al) precipitates, preferentially at the interface. After annealing at 800°C for 1 h, interdiffusion between Ni and Ni3Al layers occurred, and the γ' precipitates that grew near the parent Ni/Ni 3Al interface are ~2.8 times larger in size than those formed in the matrix. In conclusion, Monte Carlo simulations indicate that vacancies preferentially diffuse along the Ni/Ni 3Al interface, increasingmore » the probability of precipitation.« less

  3. The effect of 0.025 Al-doped in Li4Ti5O12 material on the performance of half cell lithium ion battery

    NASA Astrophysics Data System (ADS)

    Priyono, Slamet; Triwibowo, Joko; Prihandoko, Bambang

    2016-02-01

    The effect of 0.025 Al-doped Li4Ti5O12 as anode material for Lithium Ion battery had been studied. The pure and 0.025 Al-doped Li4Ti5O12 were synthesized through solid state process in air atmosphere. Physical characteristics of all samples were observed by XRD, FTIR, and PSA. The XRD analysis revealed that the obtained particle was highly crystalline and had a face-centered cubic spinel structure. The XRD pattern also showed that the 0.025 Al-doped on the Li4Ti5O12 did not change crystal structure of Li4Ti5O12. FTIR analysis confirmed that the spinel structure in fingerprint region was unchanged when the structure was doped by 0.025 Al. However the doping of 0.025 Al increased particle size significantly. The electrochemical performance was studied by using cyclic voltammetry (CV) and charge-discharge (CD) curves. Electrochemical analysis showed that pure Li4Ti5O12 has higher capacity than 0.025 Al-doped Li4Ti5O12 had. But 0.025 Al-doped Li4Ti5O12 possesses a better cycling stability than pure Li4Ti5O12.

  4. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction

    NASA Astrophysics Data System (ADS)

    Ahmed, Nesreen S.; Menzel, Robert; Wang, Yifan; Garcia-Gallastegui, Ainara; Bawaked, Salem M.; Obaid, Abdullah Y.; Basahel, Sulaiman N.; Mokhtar, Mohamed

    2017-02-01

    Two efficient catalyst based on CuAl and CoAl layered double hydroxides (LDHs) supported on graphene oxide (GO) for the carbon-carbon coupling (Classic Ullmann Homocoupling Reaction) are reported. The pure and hybrid materials were synthesised by direct precipitation of the LDH nanoparticles onto GO, followed by a chemical, structural and physical characterisation by electron microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area measurements and X-ray photoelectron spectroscopy (XPS). The GO-supported and unsupported CuAl-LDH and CoAl-LDH hybrids were tested over the Classic Ullman Homocoupling Reaction of iodobenzene. In the current study CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH.

  5. Characterizing commercial pureed foods: sensory, nutritional, and textural analysis.

    PubMed

    Ettinger, Laurel; Keller, Heather H; Duizer, Lisa M

    2014-01-01

    Dysphagia (swallowing impairment) is a common consequence of stroke and degenerative diseases such as Parkinson's and Alzheimer's. Limited research is available on pureed foods, specifically the qualities of commercial products. Because research has linked pureed foods, specifically in-house pureed products, to malnutrition due to inferior sensory and nutritional qualities, commercial purees also need to be investigated. Proprietary research on sensory attributes of commercial foods is available; however direct comparisons of commercial pureed foods have never been reported. Descriptive sensory analysis as well as nutritional and texture analysis of commercially pureed prepared products was performed using a trained descriptive analysis panel. The pureed foods tested included four brands of carrots, of turkey, and two of bread. Each commercial puree was analyzed for fat (Soxhlet), protein (Dumas), carbohydrate (proximate analysis), fiber (total fiber), and sodium content (Quantab titrator strips). The purees were also texturally compared with a line spread test and a back extrusion test. Differences were found in the purees for sensory attributes as well as nutritional and textural properties. Findings suggest that implementation of standards is required to reduce variability between products, specifically regarding the textural components of the products. This would ensure all commercial products available in Canada meet standards established as being considered safe for swallowing.

  6. Pure natural inflation

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Watari, Taizan; Yamazaki, Masahito

    2018-01-01

    We point out that a simple inflationary model in which the axionic inflaton couples to a pure Yang-Mills theory may give the scalar spectral index (ns) and tensor-to-scalar ratio (r) in complete agreement with the current observational data.

  7. Grain Refinement Efficiency in Commercial-Purity Aluminum Influenced by the Addition of Al-4Ti Master Alloys with Varying TiAl3 Particles

    PubMed Central

    Zhao, Jianhua; He, Jiansheng; Tang, Qi; Wang, Tao; Chen, Jing

    2016-01-01

    A series of Al-4Ti master alloys with various TiAl3 particles were prepared via pouring the pure aluminum added with K2TiF6 or sponge titanium into three different molds made of graphite, copper, and sand. The microstructure and morphology of TiAl3 particles were characterized and analyzed by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The microstructure of TiAl3 particles in Al-4Ti master alloys and their grain refinement efficiency in commercial-purity aluminum were investigated in this study. Results show that there were three different morphologies of TiAl3 particles in Al-4Ti master alloys: petal-like structures, blocky structures, and flaky structures. The Al-4Ti master alloy with blocky TiAl3 particles had better and more stable grain refinement efficiency than the master alloys with petal-like and flaky TiAl3 particles. The average grain size of the refined commercial-purity aluminum always hereditarily followed the size of the original TiAl3 particles. In addition, the grain refinement efficiency of Al-4Ti master alloys with the same morphology, size, and distribution of TiAl3 particles prepared through different processes was almost identical. PMID:28773987

  8. Wear Resistance Properties Reinforcement Using Nano-Al/Cu Composite Coating in Sliding Bearing Maintenance.

    PubMed

    Liu, Hongtao; Li, Zhixiong; Wang, Jianmei; Sheng, Chenxing; Liu, Wanli

    2018-03-01

    Sliding bearing maintenance is crucial for reducing the cost and extending the service life. An efficient and practical solution is to coat a restorative agent onto the worn/damaged bearings. Traditional pure-copper (Cu) coating results in a soft surface and poor abrasion resistance. To address this issue, this paper presents a nano-composite repairing coating method. A series of nano-Al/Cu coatings were prepared on the surface of 45 steel by composite electro-brush plating (EBP). Their micro-hardness was examined by a MHV-2000 Vickers hardness tester, and tribological properties by a UMT-2M Micro-friction tester, 3D profiler and SEM. Then, the influence of processing parameters such as nano-particle concentration and coating thickness on the micro-hardness of nano-Al/Cu coating was analyzed. The experimental analysis results demonstrate that, when the nano-Al particle concentration in electrolyte was 10 g/L, the micro-hardness of the composite coating was 1.1 times as much as that of pure-Cu coating. When the Al nano-particle concentration in electrolyte was 20 g/L, the micro-hardness of the composite coating reached its maximum value (i.e., 231.6 HV). Compared with the pure-Cu coating, the hardness and wear resistance of the nano-composite coating were increased, and the friction coefficient and wear volume were decreased, because of the grain strengthening and dispersion strengthening. The development in this work may provide a feasible and effective nano-composite EBP method for sliding bearing repair.

  9. Method of preparing pure fluorine gas

    DOEpatents

    Asprey, Larned B.

    1976-01-01

    A simple, inexpensive system for purifying and storing pure fluorine is described. The method utilizes alkali metal-nickel fluorides to absorb tank fluorine by forming nickel complex salts and leaving the gaseous impurities which are pumped away. The complex nickel fluoride is then heated to evolve back pure gaseous fluorine.

  10. Multi-Party Quantum Private Comparison Protocol Based on Entanglement Swapping of Bell Entangled States

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Yu

    2016-09-01

    Recently, Liu et al. proposed a two-party quantum private comparison (QPC) protocol using entanglement swapping of Bell entangled state (Commun. Theor. Phys. 57 (2012) 583). Subsequently Liu et al. pointed out that in Liu et al.'s protocol, the TP can extract the two users' secret inputs without being detected by launching the Bell-basis measurement attack, and suggested the corresponding improvement to mend this loophole (Commun. Theor. Phys. 62 (2014) 210). In this paper, we first point out the information leakage problem toward TP existing in both of the above two protocols, and then suggest the corresponding improvement by using the one-way hash function to encrypt the two users' secret inputs. We further put forward the three-party QPC protocol also based on entanglement swapping of Bell entangled state, and then validate its output correctness and its security in detail. Finally, we generalize the three-party QPC protocol into the multi-party case, which can accomplish arbitrary pair's comparison of equality among K users within one execution. Supported by the National Natural Science Foundation of China under Grant No. 61402407

  11. Testing effects in mixed- versus pure-list designs.

    PubMed

    Rowland, Christopher A; Littrell-Baez, Megan K; Sensenig, Amanda E; DeLosh, Edward L

    2014-08-01

    In the present study, we investigated the role of list composition in the testing effect. Across three experiments, participants learned items through study and initial testing or study and restudy. List composition was manipulated, such that tested and restudied items appeared either intermixed in the same lists (mixed lists) or in separate lists (pure lists). In Experiment 1, half of the participants received mixed lists and half received pure lists. In Experiment 2, all participants were given both mixed and pure lists. Experiment 3 followed Erlebacher's (Psychological Bulletin, 84, 212-219, 1977) method, such that mixed lists, pure tested lists, and pure restudied lists were given to independent groups. Across all three experiments, the final recall results revealed significant testing effects for both mixed and pure lists, with no reliable difference in the magnitude of the testing advantage across list designs. This finding suggests that the testing effect is not subject to a key boundary condition-list design-that impacts other memory phenomena, including the generation effect.

  12. Pure Maple Syrup: Nutritive Value.

    PubMed

    Leaf, A L

    1964-02-28

    Variations in concentrations of sugar, nitrogen, phosphorus, potassium, calcium, and magnesium of sap from sugar maple (Acer saccharum, Marsh.) trees are related to the time of sap collection and result in variation of the same components in pure maple syrup. Thirty milliliters (one fluid ounce) of pure maple syrup may contain 3 to 6 mg of phosphorus, 10 to 30 mg of potassium, 40 to 80 mg of calcium, and 4 to 25 mg of magnesium.

  13. Similarities and differences between learning abilities, "pure" learning disabilities, "pure" ADHD and comorbid ADHD with learning disabilities.

    PubMed

    Mangina, Constantine A; Beuzeron-Mangina, Helen

    2009-08-01

    This research pursues the crucial question of the differentiation of preadolescents with "Pure" ADHD, comorbid ADHD with learning disabilities, "Pure" learning disabilities and age-matched normal controls. For this purpose, Topographic Mapping of Event-Related Brain Potentials (ERPs) to a Memory Workload Paradigm with visually presented words, Bilateral Electrodermal Activity during cognitive workload and Mangina-Test performance were used. The analysis of Topographic distribution of amplitudes revealed that normal preadolescents were significantly different from "Pure" ADHD (P<0.0001), "Pure" learning disabilities (P<0.0001), and comorbid ADHD with learning disabilities (P<0.0009), by displaying enhanced prefrontal and frontal negativities (N450). In contrast, preadolescents with "Pure" ADHD and comorbid ADHD with learning disabilities have shown a marked reduction of prefrontal and frontal negativities (N450). As for the "Pure" Learning Disabled preadolescents, very small positivities (P450) in prefrontal and frontal regions were obtained as compared to the other pathological groups. Bilateral Electrodermal Activity during cognitive workload revealed a significant main effect for groups (P<0.00001), Left versus Right (P=0.0029) and sessions (P=0.0136). A significant main effect for the Mangina-Test performance which separated the four groups was found (P<0.000001). Overall, these data support the existence of clear differences and similarities between the pathological preadolescent groups as opposed to age-matched normal controls. The psychophysiological differentiation of these groups, provides distinct biological markers which integrate central, autonomic and neuropsychometric variables by targeting the key features of these pathologies for diagnosis and intervention strategies and by providing knowledge for the understanding of normal neurocognitive processes and functions.

  14. The Usability of Boric Acid as an Alternative Foaming Agent on the Fabrication of Al/Al2O3 Composite Foams

    NASA Astrophysics Data System (ADS)

    Yaman, Bilge; Onuklu, Eren; Korpe, Nese O.

    2017-09-01

    Pure Al and alumina (2, 5, 10 wt.% Al2O3)-added Al composite foams were fabricated through powder metallurgy technique, where boric acid (H3BO3) is employed as a new alternative foaming agent. It is aimed to determine the effects of boric acid on the foaming behavior and cellular structure and also purposed to develop the mechanical properties of Al foams by addition of Al2O3. Al and Al composite foams with porosity fraction in the range of 46-53% were achieved by sintering at 620 °C for 2 h. Cell morphology was characterized using a combination of stereomicroscope equipped with image analyzer and scanning electron microscopy. Microhardness values were measured via using Vickers indentation technique. Quasi-static compression tests were performed at strain rate of 10-3 s-1. Compressive strength and energy absorption of the composite foams enhanced not only by the increasing weight fraction of alumina, but also by the usage of boric acid which leads to formation of boron oxide (B2O3) acting as a binder in obtaining dense cell walls. The results revealed that the boric acid has outstanding potential as foaming agent in the fabrication of Al and Al composite foams by providing improved mechanical properties.

  15. An aluminum - ionic liquid interface sustaining a durable Al-air battery

    NASA Astrophysics Data System (ADS)

    Gelman, Danny; Shvartsev, Boris; Wallwater, Itamar; Kozokaro, Shahaf; Fidelsky, Vicky; Sagy, Adi; Oz, Alon; Baltianski, Sioma; Tsur, Yoed; Ein-Eli, Yair

    2017-10-01

    A thorough study of a unique aluminum (Al)-air battery utilizing a pure Al anode, an air cathode, and hydrophilic room temperature ionic liquid electrolyte 1-ethyl-3-methylimidazolium oligofluorohydrogenate [EMIm(HF)2.3F] is reported. The effects of various operation conditions, both at open circuit potential and under discharge modes, on the battery components were discussed. A variety of techniques were utilized to investigate and study the interfaces and processes involved, including electrochemical studies, electron microscopy, spectroscopy and diffraction. As a result of this intensive study, the upon-operation voltage drop (;dip;) obstacle, occurring in the initial stages of the Al-air battery discharge, has been resolved. In addition, the interaction of the Al anode with oligofluorohydrogenate electrolyte forms an Al-O-F layer on the Al surface, which allows both activation and low corrosion rates of the Al anode. The evolution of this layer has been studied via impedance spectroscopy genetic programming enabling a unique model of the Al-air battery.

  16. Correction: A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    PubMed

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-12-22

    Correction for 'A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide' by Chee Koon Ng et al., Chem. Commun., 2016, 52, 11842-11845.

  17. Correction: An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells.

    PubMed

    Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C

    2017-09-21

    Correction for 'An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells' by Abby-Jo Payne et al., Chem. Commun., 2017, 53, 10168-10171.

  18. Microstructural Evolution at Micro/Meso-Scale in an Ultrafine-Grained Pure Aluminum Processed by Equal-Channel Angular Pressing with Subsequent Annealing Treatment.

    PubMed

    Xu, Jie; Li, Jianwei; Zhu, Xiaocheng; Fan, Guohua; Shan, Debin; Guo, Bin

    2015-11-04

    Micro-forming with ultrafine-grained (UFG) materials is a promising direction for the fabrication of micro-electro-mechanical systems (MEMS) components due to the improved formability, good surface quality, and excellent mechanical properties it provides. In this paper, micro-compression tests were performed using UFG pure aluminum processed by equal-channel angular pressing (ECAP) with subsequent annealing treatment. Microstructural evolution was investigated by electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that microstructural evolutions during compression tests at the micro/meso-scale in UFG pure Al are absolutely different from the coarse-grained (CG) materials. A lot of low-angle grain boundaries (LAGBs) and recrystallized fine grains are formed inside of the original large grains in CG pure aluminum after micro-compression. By contrast, ultrafine grains are kept with few sub-grain boundaries inside the grains in UFG pure aluminum, which are similar to the original microstructure before micro-compression. The surface roughness and coordinated deformation ability can be signmicrostructure; micro/meso-forming; ultrafine grains; ECAP; aluminumificantly improved with UFG pure aluminum, which demonstrates that the UFG materials have a strong potential application in micro/meso-forming.

  19. Gate-Driven Pure Spin Current in Graphene

    NASA Astrophysics Data System (ADS)

    Lin, Xiaoyang; Su, Li; Si, Zhizhong; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Fert, Albert; Zhao, Weisheng

    2017-09-01

    The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.

  20. Electromigration in Cu(Al) and Cu(Mn) damascene lines

    NASA Astrophysics Data System (ADS)

    Hu, C.-K.; Ohm, J.; Gignac, L. M.; Breslin, C. M.; Mittal, S.; Bonilla, G.; Edelstein, D.; Rosenberg, R.; Choi, S.; An, J. J.; Simon, A. H.; Angyal, M. S.; Clevenger, L.; Maniscalco, J.; Nogami, T.; Penny, C.; Kim, B. Y.

    2012-05-01

    The effects of impurities, Mn or Al, on interface and grain boundary electromigration (EM) in Cu damascene lines were investigated. The addition of Mn or Al solute caused a reduction in diffusivity at the Cu/dielectric cap interface and the EM activation energies for both Cu-alloys were found to increase by about 0.2 eV as compared to pure Cu. Mn mitigated and Al enhanced Cu grain boundary diffusion; however, no significant mitigation in Cu grain boundary diffusion was observed in low Mn concentration samples. The activation energies for Cu grain boundary diffusion were found to be 0.74 ± 0.05 eV and 0.77 ± 0.05 eV for 1.5 μm wide polycrystalline lines with pure Cu and Cu (0.5 at. % Mn) seeds, respectively. The effective charge number in Cu grain boundaries Z*GB was estimated from drift velocity and was found to be about -0.4. A significant enhancement in EM lifetimes for Cu(Al) or low Mn concentration bamboo-polycrystalline and near-bamboo grain structures was observed but not for polycrystalline-only alloy lines. These results indicated that the existence of bamboo grains in bamboo-polycrystalline lines played a critical role in slowing down the EM-induced void growth rate. The bamboo grains act as Cu diffusion blocking boundaries for grain boundary mass flow, thus generating a mechanical stress-induced back flow counterbalancing the EM force, which is the equality known as the "Blech short length effect."

  1. Properties of Lu3Al5O12, Lu3Al5O12:Pr, Lu3Al5O12:Pr,Mo, and (Lu1-x Y x )3Al5O12:Pr scintillator crystals

    NASA Astrophysics Data System (ADS)

    Talik, E.; Kusz, J.; Guzik, A.; Szubka, M.; Balin, K.; Kisielewski, J.; Wierzchowski, W.; Malinowska, A.; Strojny-Nedza, A.; Pajaczkowska, A.; Drozdowski, W.

    2017-05-01

    Lattice parameters, magnetic susceptibility, electronic structure, distribution of the elements and thermal properties were examined for single crystals of Lu3Al5O12 (LuAG) and (Lu1-x Y x )3Al5O12 (LuYAG) (x  =  0.25, 0.50, 0.75), either pure or doped with Pr and optionally co-doped with Mo, which are predicted as potential fast and efficient scintillators. It was indicated that specific cage-like surrounding of rare earth and aluminum ions built from oxygen ions and proper doping can influence the thermal conductivity and the emission process. Maximum light emission (LY) was observed at praseodymium concentration about 0.3 at.%. The growth atmosphere (Ar or N2) influences the crystal quality. Additional molybdenum doping below 0.01 at% concentration increases LY.

  2. Pure chiral optical fibres.

    PubMed

    Poladian, L; Straton, M; Docherty, A; Argyros, A

    2011-01-17

    We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.

  3. Czochralski growth of LaPd2Al2 single crystals

    NASA Astrophysics Data System (ADS)

    Doležal, P.; Rudajevová, A.; Vlášková, K.; Kriegner, D.; Václavová, K.; Prchal, J.; Javorský, P.

    2017-10-01

    The present study is focused on the preparation of single crystalline LaPd2Al2 by the Czochralski method. Differential scanning calorimetry (DSC) and energy dispersive X-ray spectroscopy (EDX) analyses reveal that LaPd2Al2 is an incongruently melting phase which causes difficulties for the preparation of single crystalline LaPd2Al2 by the Czochralski method. Therefore several non-stoichiometric polycrystalline samples were studied for its preparation. Finally the successful growth of LaPd2Al2 without foreign phases has been achieved by using a non-stoichiometric precursor with atomic composition 22:39:39 (La:Pd:Al). X-ray powder diffraction, EDX analysis and DSC were used for the characterisation. A single crystalline sample was separated from the ingot prepared by the Czochralski method using the non-stoichiometric precursor. The presented procedure for the preparation of pure single phase LaPd2Al2 could be modified for other incongruently melting phases.

  4. Physical and Microstructure Properties of MgAl2C2 Matrix Composite Coating on Titanium

    NASA Astrophysics Data System (ADS)

    Li, Peng

    2014-12-01

    This work is based on the dry sliding wear of the MgAl2C2-TiB2-FeSi composite coating deposited on a pure Ti using a laser cladding technique. Scanning electron microscope images indicate that the nanocrystals and amorphous phases are produced in such coating. X-ray diffraction result indicated that such coating mainly consists of MgAl2C2, Ti-B, Ti-Si, Fe-Al, Ti3SiC2, TiC and amorphous phases. The high resolution transmission electron microscope image indicated that the TiB nanorods were produced in the coating, which were surrounded by other fine precipitates, favoring the formation of a fine microstructure. With increase of the laser power from 0.85 kW to 1.00 kW, the micro-hardness decreased from 1350 1450 HV0.2 to 1200 1300 HV0.2. The wear volume loss of the laser clad coating was 1/7 of pure Ti.

  5. Interfacial Microstructure and Mechanical Properties of Friction Stir Welded Joints of Commercially Pure Aluminum and 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Murugan, Balamagendiravarman; Thirunavukarasu, Gopinath; Kundu, Sukumar; Kailas, Satish V.; Chatterjee, Subrata

    2018-05-01

    In the present investigation, friction stir welding of commercially pure aluminum and 304 stainless steel was carried out at varying tool rotational speeds from 200 to 1000 rpm in steps of 200 rpm using 60 mm/min traverse speed at 2 (degree) tool tilt angle. Microstructural characterization of the interfacial zone was carried out using optical microscope and scanning electron microscope. Energy-dispersive spectroscopy indicated the presence of FeAl3 intermetallic phase. Thickness of the intermetallic layer increased with the increase in tool rotational speed. X-ray diffraction studies indicated the formation of intermetallic phases like FeAl2, Fe4Al13, Fe2Al5, and FeAl3. A maximum tensile strength of 90% that of aluminum along with 4.5% elongation was achieved with the welded sample at tool rotational speed of 400 rpm. The stir zone showed higher hardness as compared to base metals, heat affected zone, and thermo-mechanically affected zone due to the presence of intermetallics. The maximum hardness value at the stir zone was achieved at 1000 rpm tool rotational speed.

  6. Matrix effects in ion-induced emission as observed in Ne collisions with Cu-Mg and Cu-Al alloys

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Pepper, S. V.

    1983-01-01

    Ion induced Auger electron emission is used to study the surfaces of Al, Mg, Cu - 10 at. % Al, Cu - 19.6 at. % Al, and Cu - 7.4 at. % Mg. A neon (Ne) ion beam whose energy is varied from 0.5 to 3 keV is directed at the surface. Excitation of the lighter Ne occurs by the promotion mechanism of Barat and Lichten in asymmetric collisions with Al or Mg atoms. Two principal Auger peaks are observed in the Ne spectrum: one at 22 eV and one at 25 eV. Strong matrix effects are observed in the alloys as a function of energy in which the population of the second peak is greatly enhanced relative to the first over the pure materials. For the pure material over this energy range this ratio is 1.0. For the alloys it can rise to the electronic structure of alloys and to other surface tools such as secondary ion mass spectroscopy.

  7. Microstructure and tribological properties of TiCu2Al intermetallic compound coating

    NASA Astrophysics Data System (ADS)

    Guo, Chun; Zhou, Jiansong; Zhao, Jierong; Wang, Linqian; Yu, Youjun; Chen, Jianmin; Zhou, Huidi

    2011-04-01

    TiCu2Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu2Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu2Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu2Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  8. Precision Half-life Measurement of 25Al

    NASA Astrophysics Data System (ADS)

    Long, Jacob; Ahn, Tan; Allen, Jacob; Bardayan, Daniel; Becchetti, Fredrich; Blankstein, Drew; Brodeur, Maxime; Burdette, Daniel; Frentz, Bryce; Hall, Matthew; Kelly, James; Kolata, James; O'Malley, Patrick; Schultz, Bradley; Strauss, Sabrina; Valverde, Adrian; TwinSol Collaboration

    2017-09-01

    In recent years, precision measurements have led to considerable advances in several areas of physics, including fundamental symmetry. Precise determination of ft values for superallowed mixed transitions between mirror nuclides could provide an avenue to test the theoretical corrections used to extract the Vud matrix element from superallowed pure Fermi transitions. Calculation of the ft value requires the half-life, branching ratio, and Q value. 25Al decay is of particular interest as its half-life is derived from a series of conflicting measurements, and the largest uncertainty on the ft value stems from the half-life uncertainty. The life-time was determined by the β counting of implanted 25Al on a Ta foil that was removed from the beam for counting. The 25Al beam was produced by a transfer reaction and separated by the TwinSol facility of the Nuclear Science Laboratory of the University of Notre Dame. The 25Al results will be presented with preliminary results of more recent half-life measurements. The National Science Foundation.

  9. [The left central gyral lesion and pure anarthria].

    PubMed

    Tabuchi, M; Odashima, K; Fujii, T; Suzuki, K; Saitou, J; Yamadori, A

    2000-05-01

    We report a very rare case of pure anarthria with lesion analysis. A 44-year-old right-handed man suffered from a cerebral infarction with a mild right hemiparesis and speech disturbance. An MRI of the brain 1.5 months post onset revealed a lesion confined to the left central gyrus. One month after the onset, his spontaneous speech was dysprosodic and laborious. It was contaminated with dysarthria and phonological paraphasias. However, language comprehension, repetition and naming abilities were normal. Most remarkably he showed no impairment in writing with his left hand. Over the following months, his difficulties in verbal output showed general amelioration, but the isolated impairment in the domain of articulation characterized by dysprosody, dysarthria, and phonological paraphasia persisted. As for the symptomatology of pure anarthria resulting from precentral gyral lesions, there have been controversies about its pureness. Some argue that the so called pure anarthria always shows some degree of writing disturbances, albeit mild in degree. Others maintain there certainly exists the pure type without any signs of agraphia. In the present case lesions were limited to the central gyrus but spared the lowest opercular portion. The previous reports of pure anarthria that had mild agraphia all had lesions involving the opercular portion. We conclude the sparing of this area is most likely related with sparing of writing capacity in pure anarthria.

  10. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S. P.; Radha, P. B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectramore » were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  11. T-Duality in an H-Flux: Exchange of Momentum and Winding

    NASA Astrophysics Data System (ADS)

    Han, Fei; Mathai, Varghese

    2018-02-01

    Using our earlier proposal for Ramond-Ramond fields in an H-flux on loop space (Han et al. in Commun Math Phys 337(1):127-150, 2015. arXiv:1405.1320), we extend the Hori isomorphism in Bouwknegt et al. (Commun Math Phys 249:383-415, 2004. arXiv:hep-th/0306062; Phys Rev Lett 92:181601, 2004. arXiv:hep-th/0312052) from invariant differential forms, to invariant exotic differential forms such that the momentum and winding numbers are exchanged, filling in a gap in the literature. We also extend the compatibility of the action of invariant exact Courant algebroids on the T-duality isomorphism in Cavalcanti and Gualtieri (in: CRM proceedings of lecture notes, vol 50, pp 341-365, American Mathematical Society, Providence, 2010 ), to the T-duality isomorphism on exotic invariant differential forms.

  12. Influence of different aluminum salts on the photocatalytic properties of Al doped TiO2 nanoparticles towards the degradation of AO7 dye.

    PubMed

    Luo, Jin-Ling; Wang, Shi-Fa; Liu, Wei; Tian, Cheng-Xiang; Wu, Ju-Wei; Zu, Xiao-Tao; Zhou, Wei-Lie; Yuan, Xiao-Dong; Xiang, Xia

    2017-08-14

    Three kinds of Al-TiO 2 samples and pure TiO 2 samples were synthesized via a modified polyacrylamide gel route using different aluminum salts, including Al 2 (SO 4 ) 3 ∙18H 2 O, AlCl 3 , and Al(NO 3 ) 3 ∙9H 2 O under identical conditions. The influence of different aluminum salts on the phase purity, morphologies, thermal stability of anatase and photocatalytic properties of the as-prepared Al-TiO 2 nanoparticles were studied. The energy gap (Eg) of Al-TiO 2 nanoparticles decreases due to Al ion doping into TiO 2 . The photocatalytic activities of the Al-TiO 2 samples were investigated by the degradation of acid orange 7 dye in aqueous solution under simulated solar irradiation. The Al-TiO 2 nanoparticles prepared from Al(NO 3 ) 3 ∙9H 2 O exhibit the best photocatalytic activity among the four kinds of samples, followed in turn by the Al-TiO 2 nanoparticles prepared with AlCl 3 , Al 2 (SO 4 ) 3 ∙18H 2 O and pure TiO 2 . The different performances are attributed to complex effects of Eg, particle size, surface morphology, phase purity and the defect sites of the Al-TiO 2 nanoparticles.

  13. Al decorated ZnO thin-film photoanode for SPR-enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Li, Hongxia; Li, Xin; Dong, Wei; Xi, Junhua; Wu, Xin

    2018-06-01

    Photoelectrochemical (PEC) water splitting has been considered to be a promising approach to ease the energy and environmental crisis. Herein, Al decorated ZnO thin films are successfully achieved through a facile dc magnetron-sputtering method followed with Al evaporation for further enhanced PEC performance. The Al/ZnO thin film with 60 s Al evaporating time exhibits the highest photocurrent density under AM1.5G and visible light irradiation, which are more than 5 and 3 times as the pure ZnO film, respectively. Such surface modification by Al not only enlarges the visible light absorption based on surface plasmonic resonance effect, but facilitates the charge separation and transportation at the electrode/electrolyte interface. Finally, a possible mechanism is proposed for the photocatalytic activity enhancement of Al/ZnO thin film photoanode.

  14. PSYCHE Pure Shift NMR Spectroscopy.

    PubMed

    Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias

    2018-03-13

    Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy

    NASA Astrophysics Data System (ADS)

    Pascuet, M. I.; Fernández, J. R.

    2015-12-01

    Interaction for both pure Al and Al-U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al-U interaction fits various properties of the Al2U, Al3U and Al4U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al3U intermetallic in the Al/U interface in agreement with experimental evidence.

  16. Enhanced sheet carrier densities in polarization controlled AlInN/AlN/GaN/InGaN field-effect transistor on Si (111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennig, J., E-mail: jonas.hennig@ovgu.de; Dadgar, A.; Witte, H.

    2015-07-15

    We report on GaN based field-effect transistor (FET) structures exhibiting sheet carrier densities of n = 2.9 10{sup 13} cm{sup −2} for high-power transistor applications. By grading the indium-content of InGaN layers grown prior to a conventional GaN/AlN/AlInN FET structure control of the channel width at the GaN/AlN interface is obtained. The composition of the InGaN layer was graded from nominally x{sub In} = 30 % to pure GaN just below the AlN/AlInN interface. Simulations reveal the impact of the additional InGaN layer on the potential well width which controls the sheet carrier density within the channel region of the devices.more » Benchmarking the In{sub x}Ga{sub 1−x}N/GaN/AlN/Al{sub 0.87}In{sub 0.13}N based FETs against GaN/AlN/AlInN FET reference structures we found increased maximum current densities of I{sub SD} = 1300 mA/mm (560 mA/mm). In addition, the InGaN layer helps to achieve broader transconductance profiles as well as reduced leakage currents.« less

  17. Nano-Al Reaction with Nitrogen in the Burn Front of Oxygen-Free Energetic Materials

    NASA Astrophysics Data System (ADS)

    Tappan, Bryce

    2005-07-01

    Nano-particulate aluminum metal was added to the high nitrogen energetic materials dihydrazinotetrazine (DHT) and triaminoguanidium azotetrazolate (TAGzT) in order to determine the effects on decomposition behavior. Standard safety testing (sensitivity to impact, spark and friction) are reported, show that the addition of nano-Al actually decreases the sensitivity of the pure DHT and TAGzT. Thermo-equilibrium calculations (Cheetah) indicate that the all of the Al reacts to form AlN in both materials at the levels of interest, and the calculated specific impulses are reported. Emission spectra were collected to determine AlN formation in combustion. Burning rates were also collected, and the effects of nano-Al on rates are discussed.

  18. Formation Mechanism of CuAlO2 Prepared by Rapid Thermal Annealing of Al2O3/Cu2O/Sapphire Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Shih, C. H.; Tseng, B. H.

    Single-phase CuAlO2 films were successfully prepared by thin-film reaction of an Al2O3/Cu2O/sapphire sandwich structure. We found that the processing parameters, such as heating rate, holding temperature and annealing ambient, were all crucial to form CuAlO2 without second phases. Thermal annealing in pure oxygen ambient with a lower temperature ramp rate might result in the formation of CuAl2O4 in addition to CuAlO2, since part of Cu2O was oxidized to form CuO and caused the change in reaction path, i.e. CuO + Al2O3 → CuAl2O4. Typical annealing conditions successful to prepare single-phase CuAlO2 would be to heat the sample with a temperature rampt rate higher than 7.3 °C/sec and hold the temperature at 1100 °C in air ambient. The formation mechanism of CuAlO2 has also been studied by interrupting the reaction after a short period of annealing. TEM observations showed that the top Al2O3 layer with amorphous structure reacted immediately with Cu2O to form CuAlO2 in the early stage and then the remaining Cu2O reacted with the sapphire substrate.

  19. Self-Propagating Combustion Synthesis, Luminescent Properties and Photocatalytic Activities of Pure Ca12Al14O33: Tb3+(Sm3+)

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Yan, Yongsheng; Ma, Changchang

    2018-03-01

    The dual-functional Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ materials were prepared by the Self-Propagating Combustion Synthesis (SPCS) technology. The structure, morphology and light absorption property were investigated by XRD、FT-IR、UV-Vis DRS and SEM etc.. The doping of Tb3+ and Sm3+ ions had not changed cubic structure of Ca12Al14O33 but leaded to the slight lattice dilatation and the red-shifts of absorption peaks/edges. The excitation and emission spectra indicated that Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ are superior green and red luminescent materials, respectively, and displayed the distinctly refined structure characteristics which had importantly reference value for the energy level investigation of Tb3+ and Sm3+ ions. Meanwhile, Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ also exhibited the improved photocatalytic degradation for removing dye MB compared with bare Ca12Al14O33.

  20. Random Initialisation of the Spectral Variables: an Alternate Approach for Initiating Multivariate Curve Resolution Alternating Least Square (MCR-ALS) Analysis.

    PubMed

    Kumar, Keshav

    2017-11-01

    Multivariate curve resolution alternating least square (MCR-ALS) analysis is the most commonly used curve resolution technique. The MCR-ALS model is fitted using the alternate least square (ALS) algorithm that needs initialisation of either contribution profiles or spectral profiles of each of the factor. The contribution profiles can be initialised using the evolve factor analysis; however, in principle, this approach requires that data must belong to the sequential process. The initialisation of the spectral profiles are usually carried out using the pure variable approach such as SIMPLISMA algorithm, this approach demands that each factor must have the pure variables in the data sets. Despite these limitations, the existing approaches have been quite a successful for initiating the MCR-ALS analysis. However, the present work proposes an alternate approach for the initialisation of the spectral variables by generating the random variables in the limits spanned by the maxima and minima of each spectral variable of the data set. The proposed approach does not require that there must be pure variables for each component of the multicomponent system or the concentration direction must follow the sequential process. The proposed approach is successfully validated using the excitation-emission matrix fluorescence data sets acquired for certain fluorophores with significant spectral overlap. The calculated contribution and spectral profiles of these fluorophores are found to correlate well with the experimental results. In summary, the present work proposes an alternate way to initiate the MCR-ALS analysis.

  1. Effect of process parameters on microstructure and electrical conductivity during FSW of Al-6101 and Pure Copper

    NASA Astrophysics Data System (ADS)

    Sharma, Nidhi; Khan, Zahid A.; Siddiquee, Arshad Noor; Shihab, Suha K.; Atif Wahid, Mohd

    2018-04-01

    Copper (Cu) is predominantly used material as a conducting element in electrical and electronic components due to its high conductivity. Aluminum (Al) being lighter in weight and more conductive on weight basis than that of Cu is able to replace or partially replace Cu to make lighter and cost effective electrical components. Conventional methods of joining Al to Cu, such as, fusion welding process have many shortcomings. Friction Stir Welding (FSW) is a solid state welding process which overcomes the shortcoming of the fusion welding. FSW parameters affect the mechanical and electrical properties of the joint. This study aims to evaluate the effect of different process parameters such as shoulder diameter, pin offset, welding and rotational speed on the microstructure and electrical conductivity of the dissimilar Al-Cu joint. FSW is performed using cylindrical pin profile, and four process parameters. Each parameter at different levels is varied according to Taguchi’s L18 standard orthogonal array. It is found that the electrical conductivity of the FSWed joints are equal to that of aluminum at all the welded sections. FSW is found to be an effective technique to join Al to Cu without compromising with the electrical properties. However, the electrical conductivity gets influenced by the process parameters in the stir zone. The optimal combination of the FSW parameters for maximum electrical conductivity is determined. The analysis of variance (ANOVA) technique applied on stir zone suggests that the rotational speed and tool pin offset are the significant parameters to influence the electrical conductivity.

  2. The HigB/HigA Toxin/Antitoxin System of Pseudomonas aeruginosa Influences the Virulence Factors Pyochelin, Pyocyanin, and Biofilm Formation

    DTIC Science & Technology

    2016-08-24

    its persistence in vitro, its survival in macrophages, and its cell numbers in the spleen and lungs of guinea pigs (Tiwari et al. 2015). Similarly...O. P. Narayan, and R. Singh. 2015. MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs . Nat. Commun... production (Kwan et al. 2013; Wood et al. 2013). The first TA operons were discovered over 30 years ago (Ogura and Hiraga 1983) for stabilizing low

  3. Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Brenier, Yann

    2009-10-01

    We establish a connection between optimal transport theory (see Villani in Topics in optimal transportation. Graduate studies in mathematics, vol. 58, AMS, Providence, 2003, for instance) and classical convection theory for geophysical flows (Pedlosky, in Geophysical fluid dynamics, Springer, New York, 1979). Our starting point is the model designed few years ago by Angenent, Haker, and Tannenbaum (SIAM J. Math. Anal. 35:61-97, 2003) to solve some optimal transport problems. This model can be seen as a generalization of the Darcy-Boussinesq equations, which is a degenerate version of the Navier-Stokes-Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized hydrostatic-Boussinesq equations) to various models involving optimal transport (and the related Monge-Ampère equation, Brenier in Commun. Pure Appl. Math. 64:375-417, 1991; Caffarelli in Commun. Pure Appl. Math. 45:1141-1151, 1992). This includes the 2D semi-geostrophic equations (Hoskins in Annual review of fluid mechanics, vol. 14, pp. 131-151, Palo Alto, 1982; Cullen et al. in SIAM J. Appl. Math. 51:20-31, 1991, Arch. Ration. Mech. Anal. 185:341-363, 2007; Benamou and Brenier in SIAM J. Appl. Math. 58:1450-1461, 1998; Loeper in SIAM J. Math. Anal. 38:795-823, 2006) and some fully nonlinear versions of the so-called high-field limit of the Vlasov-Poisson system (Nieto et al. in Arch. Ration. Mech. Anal. 158:29-59, 2001) and of the Keller-Segel for Chemotaxis (Keller and Segel in J. Theor. Biol. 30:225-234, 1971; Jäger and Luckhaus in Trans. Am. Math. Soc. 329:819-824, 1992; Chalub et al. in Mon. Math. 142:123-141, 2004). Mathematically speaking, we establish some existence theorems for local smooth, global smooth or global weak solutions of the different models. We also justify that the inertia terms can be rigorously neglected under appropriate scaling assumptions in the generalized Navier-Stokes-Boussinesq equations

  4. Unusual Oxidative Limitations for Al-MAX Phases

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2017-01-01

    Alumina-forming MAX phases are well-known for their excellent oxidation resistance, rivaling many metallic NiAl, NiCrAl, and FeCrAl counterparts and with upper temperature capability possible to approximately1400C. However a number of limitations have been emerging that need to be acknowledged to permit robust performance in demanding applications. Ti2AlC and Ti3AlC2 possess excellent scale adhesion, cyclic oxidation/moisture/volatility resistance, and TBC compatibility. However they are very sensitive to Al content and flux in order to maintain an exclusive Al2O3 scale without runaway oxidation of ubiquitous TiO2 transient scales. Accelerated oxidation has been shown to occur for Al-depleted, damaged, or roughened surfaces at temperatures less than 1200C. Conversely, Cr2AlC is less sensitive to transients, but exhibits volatile losses at 1200C or above if common Cr7C3 impurity phases are present. Poor scale adhesion is exhibited after oxidation at 1150C or above, where spallation occurs at the Cr7C3 (depletion zone) interface. Delayed spallation is significant and suggests a moisture-induced phenomenon similar to non-adherent metallic systems. Re-oxidation of this surface does not reproduce the initial pure Al2O3 behavior, but initiates a less-protective scale. Cr2AlC has also been shown to have good long term bonding with superalloys at 800C, but exhibits significant Beta-NiAl + Cr7C3 diffusion zones at 1100C and above. This may set limits on Cr2AlC as a high temperature TBC bond coat on Ni-based superalloys, while improving corrosion resistance in lower temperature applications.

  5. β decay of proton-rich nucleus Al23 and astrophysical consequences

    NASA Astrophysics Data System (ADS)

    Iacob, V. E.; Zhai, Y.; Al-Abdullah, T.; Fu, C.; Hardy, J. C.; Nica, N.; Park, H. I.; Tabacaru, G.; Trache, L.; Tribble, R. E.

    2006-10-01

    We present the first study of the β decay of Al23 undertaken with pure samples. The study was motivated by nuclear astrophysics questions. Pure samples of Al23 were obtained from the momentum achromat recoil separator (MARS) of Texas A&M University, collected on a fast tape-transport system, and moved to a shielded location where β and β-γ coincidence measurements were made. We deduced β branching ratios and log ft values for transitions to states in Mg23, and from them determined unambiguously the spin and parity of the Al23 ground state to be Jπ=5/2+. We discuss how this excludes the large increases in the radiative proton capture cross section for the reaction Mg22(p,γ)Al23 at astrophysical energies, which were implied by claims that the spin and parity is Jπ=1/2+. The log ft for the Fermi transition to its isobaric analog state (IAS) in Mg23 is also determined for the first time. This IAS and a state 16 keV below it are observed, well separated in the same experiment for the first time. We can now solve a number of inconsistencies in the literature, exclude strong isospin mixing claimed before, and obtain a new determination of the resonance strength. Both states are resonances in the Na22(p,γ)Mg23 reaction at energies important in novae. The reactions Mg22(p,γ)Al23 and Na22(p,γ)Mg23 have both been suggested as possible candidates for diverting some of the flux in oxygen-neon novae explosions from the A=22 into the A=23 mass chain.

  6. Pure Electron Plasmas near Thermal Equilibrium

    DTIC Science & Technology

    1990-11-01

    I University of California, San Diego Institute of Pure and Applied Physical Sciences La Jolla, CA 92093 N 0 (V) Final Technical Report N "Pure...Research/code -..... " 1112AI. VC 1/8/91 ’ , .... i ; () -ii- r INTRODUCTION Since 1982 the plasma group at UCSD has been conducting an experimental and...scale. We have also observed an unusual I = 1 instability which the previously published theoretical literature stated unconditionally was stable. The

  7. 7 CFR 201.64 - Pure live seed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... applying the respective tolerances to the germination plus the hard seed and the pure seed. [5 FR 35, Jan... 7 Agriculture 3 2010-01-01 2010-01-01 false Pure live seed. 201.64 Section 201.64 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT...

  8. 7 CFR 201.64 - Pure live seed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... applying the respective tolerances to the germination plus the hard seed and the pure seed. [5 FR 35, Jan... 7 Agriculture 3 2011-01-01 2011-01-01 false Pure live seed. 201.64 Section 201.64 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT...

  9. New Bell inequalities for three-qubit pure states

    NASA Astrophysics Data System (ADS)

    Das, Arpan; Datta, Chandan; Agrawal, Pankaj

    2017-12-01

    We introduce a set of Bell inequalities for a three-qubit system. Each inequality within this set is violated by all generalized GHZ states. The more entangled a generalized GHZ state is, the more will be the violation. This establishes a relation between nonlocality and entanglement for this class of states. Certain inequalities within this set are violated by pure biseparable states. We also provide numerical evidence that at least one of these Bell inequalities is violated by a pure genuinely entangled state. These Bell inequalities can distinguish between separable, biseparable and genuinely entangled pure three-qubit states. We also generalize this set to n-qubit systems and may be suitable to characterize the entanglement of n-qubit pure states.

  10. Precision measurement of ^23Al beta-decay

    NASA Astrophysics Data System (ADS)

    Zhai, Yongjun; Iacob, V. E.; Hardy, J. C.; Al-Abdullah, T.; Banu, A.; Fu, C.; Golovko, V. V.; McCleskey, M.; Nica, N.; Park, H. I.; Tabacaru, G.; Tribble, R. E.; Trache, L.

    2007-10-01

    The beta-decay of ^23Al (See [1]) was re-measured with higher statistics and better accuracy at Texas A&M University. Using MARS we produced and separated pure ^23Al at 4000 pps, with a 48 MeV/u ^24Mg beam via the ^24Mg (p, 2n)^ 23Al reaction on a H2 cryogenic target. New β and β-γ coincidence measurements were made with a scintillator, an HPGe detector with BGO shielding and the fast tape transport system. The BGO Compton shield very much improved the quality of the γ spectra around the transition from the IAS state at 7803 keV. From the measured β singles and β-γ coincidence decay spectra we obtained an improved β-decay scheme and a more precise lifetime: t=447(4) ms. We use the method of detailed balance to obtain absolute β-branching ratios and absolute logft values for transitions to final states in ^23Mg. For this method, precise efficiency calibration of the HPGe detector up to about 8 MeV is needed. We extended our previous efficiency calibration to the range Eγ=3.5-8 MeV using the β-decay of ^24Al. [1] V.E. Iacob, Y. Zhai et al., Phys. Rev. C 74, 045810 (2006).

  11. The Recrystallization Behavior of Unalloyed Mg and a Mg-Al Alloy

    NASA Astrophysics Data System (ADS)

    Murphy, Aeriel D.; Allison, John E.

    2018-02-01

    The static recrystallization behavior of pure Mg and Mg-4Al was characterized over a range of annealing temperatures. The electron backscatter diffraction grain orientation spread technique was used to quantify the level of recrystallization at various annealing times. Recrystallization kinetics were characterized using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) relationship and it was found that two sequential annealing stages exist. Stage 1 involves heterogeneous nucleation of recrystallization in regions with a high stored energy, including twins and grain boundaries, and can be represented by an Avrami exponent of n 1 ranging from 0.35 to 0.6. During Stage 2, recrystallization occurred predominately in the interior of deformed grains with incomplete recrystallization generally observed even at annealing times in excess of two weeks. The second recrystallization stage exhibited a much lower Avrami exponent, n 2, ranging from 0.02 to 0.2. Increasing the starting grain size in the pure Mg condition led to a significant delay in recrystallization. The addition of Al had a minimal effect on the recrystallization kinetics of Mg.

  12. Science: Pure or Applied?

    ERIC Educational Resources Information Center

    Evans, Peter

    1980-01-01

    Through a description of some of the activities which take place in his science classroom, the author makes a strong case for the inclusion of technology, or applied science, rather than pure science in the primary curriculum. (KC)

  13. Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System

    PubMed Central

    Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan

    2016-01-01

    Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected the bionic design and fabrication. TiC-TiB2 reinforced Al matrix composites fabricated from Al-Ti-B4C system with 40 wt. %, 50 wt. % and 30 wt. % Al contents were treated as an outer layer, middle layer and inner layer in hard layers. Pure Al matrix was regarded as a soft layer. Compared with traditional homogenous Al-Ti-B4C composite, bionic layered composite exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The intercoupling effect of layered structure and combination model of hard and soft played a key role in high impact resistance of the bionic layered composite, proving the feasibility and practicability of the bionic model of a white clam shell. PMID:28773827

  14. Role of Si on the Diffusional Interactions Between U-Mo and Al-Si Alloys at 823 K (550 °C)

    NASA Astrophysics Data System (ADS)

    Perez, Emmanuel; Sohn, Yong-Ho; Keiser, Dennis D.

    2013-01-01

    U-Mo dispersions in Al-alloy matrix and monolithic fuels encased in Al-alloy are under development to fulfill the requirements for research and test reactors to use low-enriched molybdenum stabilized uranium alloy fuels. Significant interaction takes place between the U-Mo fuel and Al during manufacturing and in-reactor irradiation. The interaction products are Al-rich phases with physical and thermal characteristics that adversely affect fuel performance and result in premature failure. Detailed analysis of the interdiffusion and microstructural development of this system was carried through diffusion couples consisting of U-7 wt pct Mo, U-10 wt pct Mo and U-12 wt pct Mo in contact with pure Al, Al-2 wt pct Si, and Al-5 wt pct Si, annealed at 823 K (550 °C) for 1, 5 and 20 hours. Scanning electron microscopy and transmission electron microscopy were employed for the analysis. Diffusion couples consisting of U-Mo in contact with pure Al contained UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases. Additions of Si to the Al significantly reduced the thickness of the interdiffusion zone. The interdiffusion zones developed Al- and Si-enriched regions, whose locations and size depended on the Si and Mo concentrations in the terminal alloys. In these couples, the (U,Mo)(Al,Si)3 phase was observed throughout the interdiffusion zone, and the U6Mo4Al43 and UMo2Al20 phases were observed only where the Si concentrations were low.

  15. ThermoData Engine Database - Pure Compounds and Binary Mixtures

    National Institute of Standards and Technology Data Gateway

    SRD 103b NIST ThermoData Engine Version 6.0 - Pure CompoThermoData Engine Database - Pure Compounds and Binary Mixtures (PC database for purchase)   This database contains property data for more than 21,000 pure compounds, 37,500 binary mixtures, 10,000 ternary mixtures, and 6,000 chemical reactions.

  16. Neural network potential for Al-Mg-Si alloys

    NASA Astrophysics Data System (ADS)

    Kobayashi, Ryo; Giofré, Daniele; Junge, Till; Ceriotti, Michele; Curtin, William A.

    2017-10-01

    The 6000 series Al alloys, which include a few percent of Mg and Si, are important in automotive and aviation industries because of their low weight, as compared to steels, and the fact their strength can be greatly improved through engineered precipitation. To enable atomistic-level simulations of both the processing and performance of this important alloy system, a neural network (NN) potential for the ternary Al-Mg-Si has been created. Training of the NN uses an extensive database of properties computed using first-principles density functional theory, including complex precipitate phases in this alloy. The NN potential accurately reproduces most of the pure Al properties relevant to the mechanical behavior as well as heat of solution, solute-solute, and solute-vacancy interaction energies, and formation energies of small solute clusters and precipitates that are required for modeling the early stage of precipitation and mechanical strengthening. This success not only enables future detailed studies of Al-Mg-Si but also highlights the ability of NN methods to generate useful potentials in complex alloy systems.

  17. Correction: All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel.

    PubMed

    Li, Ping; Zhou, Yong; Li, Haijin; Xu, Qinfeng; Meng, Xianguang; Wang, Xiaoyong; Xiao, Min; Zou, Zhigang

    2015-01-31

    Correction for 'All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel' by Ping Li et al., Chem. Commun., 2015, 51, 800-803.

  18. Designing for Compressive Sensing: Compressive Art, Camouflage, Fonts, and Quick Response Codes

    DTIC Science & Technology

    2018-01-01

    an example where the signal is non-sparse in the standard basis, but sparse in the discrete cosine basis . The top plot shows the signal from the...previous example, now used as sparse discrete cosine transform (DCT) coefficients . The next plot shows the non-sparse signal in the standard...Romberg JK, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math . 2006;59(8):1207–1223. 3. Donoho DL

  19. Internal oxidation phenomenon in pure copper

    NASA Astrophysics Data System (ADS)

    Rudolf, Rebeka; Anžel, Ivan

    2009-04-01

    This paper presents two special kinds of internal oxidation phenomenon that can take place in pure metals containing a high concentration of non-equilibrium defects. These processes are Internal Oxidation (IO) and Internal Carbonisation (IC). Both processes start with the dissolution of oxidant (O or C) into the pure metal at the free surfaces, and continue with the diffusion of oxidant atoms into the metal matrix volume, where they are trapped at numerous defects within the crystal lattice. Increasing oxidant activity at these places causes local oxidation of the matrix and, consequently, precipitation of fine oxide or graphite particles. The IO and IC processes were tested on the rapidly solidified pure copper which was produced by the Chill-Block Melt Spinning Technique. Analysis of the IO process showed the formation of Cu-Cu2O, and the formation of Cu-C composite from the IC process.

  20. Miso. III. Pure culture fermentation with Saccharomyces rouxii.

    PubMed

    HESSELTINE, C W; SHIBASAKI, K

    1961-11-01

    Excellent miso has been prepared with soybean grits inoculated with a pure culture of Saccharomyces rouxii strain NRRL Y-2547. Pure culture inoculum of this osmophilic yeast was prepared by growing the culture in aerated flasks on a yeast extract medium with a salt concentration equal to that used in the manufacture of miso. It has also been found possible to make miso from whole beans with the above culture. The advantages of pure culture fermentation in producing miso are discussed.

  1. Pure science and the problem of progress.

    PubMed

    Douglas, Heather

    2014-06-01

    How should we understand scientific progress? Kuhn famously discussed science as its own internally driven venture, structured by paradigms. He also famously had a problem describing progress in science, as problem-solving ability failed to provide a clear rubric across paradigm change--paradigm changes tossed out problems as well as solving them. I argue here that much of Kuhn's inability to articulate a clear view of scientific progress stems from his focus on pure science and a neglect of applied science. I trace the history of the distinction between pure and applied science, showing how the distinction came about, the rhetorical uses to which the distinction has been put, and how pure science came to be both more valued by scientists and philosophers. I argue that the distinction between pure and applied science does not stand up to philosophical scrutiny, and that once we relinquish it, we can provide Kuhn with a clear sense of scientific progress. It is not one, though, that will ultimately prove acceptable. For that, societal evaluations of scientific work are needed.

  2. PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats.

    PubMed

    Yu, Zhenming; Zhu, Yongqing; Chen-Plotkin, Alice S; Clay-Falcone, Dana; McCluskey, Leo; Elman, Lauren; Kalb, Robert G; Trojanowski, John Q; Lee, Virginia M-Y; Van Deerlin, Vivianna M; Gitler, Aaron D; Bonini, Nancy M

    2011-03-29

    Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive disease leading to paralysis and death. Recently, intermediate length polyglutamine (polyQ) repeats of 27-33 in ATAXIN-2 (ATXN2), encoding the ATXN2 protein, were found to increase risk for ALS. In ATXN2, polyQ expansions of ≥ 34, which are pure CAG repeat expansions, cause spinocerebellar ataxia type 2. However, similar length expansions that are interrupted with other codons, can present atypically with parkinsonism, suggesting that configuration of the repeat sequence plays an important role in disease manifestation in ATXN2 polyQ expansion diseases. Here we determined whether the expansions in ATXN2 associated with ALS were pure or interrupted CAG repeats, and defined single nucleotide polymorphisms (SNPs) rs695871 and rs695872 in exon 1 of the gene, to assess haplotype association. We found that the expanded repeat alleles of 40 ALS patients and 9 long-repeat length controls were all interrupted, bearing 1-3 CAA codons within the CAG repeat. 21/21 expanded ALS chromosomes with 3CAA interruptions arose from one haplotype (GT), while 18/19 expanded ALS chromosomes with <3CAA interruptions arose from a different haplotype (CC). Moreover, age of disease onset was significantly earlier in patients bearing 3 interruptions vs fewer, and was distinct between haplotypes. These results indicate that CAG repeat expansions in ATXN2 associated with ALS are uniformly interrupted repeats and that the nature of the repeat sequence and haplotype, as well as length of polyQ repeat, may play a role in the neurological effect conferred by expansions in ATXN2.

  3. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    NASA Astrophysics Data System (ADS)

    Jorgensen, David J.; Titus, Michael S.; Pollock, Tresa M.

    2015-10-01

    The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm2 and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm2. Two sizes of nanoparticles consisting of Al, NiAl, Ni3Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1-30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm2 pulse, one hundred 1.7 J/cm2 pulses, or one thousand 250 mJ/cm2 pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  4. "ALS reversals": demographics, disease characteristics, treatments, and co-morbidities.

    PubMed

    Harrison, Daniel; Mehta, Paul; van Es, Michael A; Stommel, Elijah; Drory, Vivian E; Nefussy, Beatrice; van den Berg, Leonard H; Crayle, Jesse; Bedlack, Richard

    2018-04-02

    To identify differences in demographics, disease characteristics, treatments, and co-morbidities between patients with "amyotrophic lateral sclerosis (ALS) reversals" and those with typically progressive ALS. Cases of possible ALS reversals were found in prior publications, in the Duke ALS clinic, through self-referral or referral from other Neurologists, and on the internet. Of 89 possible reversals identified, 36 cases were included because chart or literature review confirmed their diagnosis and a robust, sustained improvement in at least one objective measure. Controls were participants in the Pooled Resource Open-Access ALS Clinical Trials database and the National ALS Registry. Cases and controls were compared using descriptive statistics. ALS reversals were more likely to be male, have limb onset disease, and initially progress faster. The prevalences of myasthenia gravis (MG) and purely lower motor neuron disease in cases were higher than estimates of these prevalences in the general population. The odds of taking curcumin, luteolin, cannabidiol, azathioprine, copper, glutathione, vitamin D, and fish oil were greater for cases than controls. When compared to patients with typically progressive ALS, patients with reversals differed in their demographics, disease characteristics, and treatments. While some of these patients may have had a rare antibody-mediated ALS mimicker, such as atypical myasthenia gravis, details of their exams, EMGs and family histories argue that this was unlikely. Instead, our data suggest that ALS reversals warrant evaluation for mechanisms of disease resistance and that treatments associated with multiple ALS reversals deserve further study.

  5. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy

    PubMed Central

    Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly

    2017-01-01

    The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al2O3 (Al-5Al2O3) has been investigated. Al-5Al2O3 nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al2O3 nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness (HV), nano-hardness (HN), and Young’s modulus (E) of Al-5Al2O3 nanocomposites. HV, HN, and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively. PMID:29072632

  6. [Ni(cod) 2][Al(OR F) 4], a Source for Naked Nickel(I) Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwab, Miriam M.; Himmel, Daniel; Kacprzak, Sylwia

    The straightforward synthesis of the cationic, purely organometallic Ni I salt [Ni(cod) 2] +[Al(OR F) 4] - was realized through a reaction between [Ni(cod) 2] and Ag[Al(OR F) 4] (cod=1,5-cyclooctadiene). Crystal-structure analysis and EPR, XANES, and cyclic voltammetry studies confirmed the presence of a homoleptic NiI olefin complex. Weak interactions between the metal center, the ligands, and the anion provide a good starting material for further cationic NiI complexes.

  7. Pulling of 3 mm diameter AlSb rods by micro-pulling down method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourret-Courchesne Ph.D., Edith; Perrodin, Didier

    2009-05-14

    We designed and supplied special crucibles for AlSb material. Thermal insulation and limitation of Sb losses were our first work. The protection of the growth environment was also one of our priority to avoid any pollution of the Fibercryst {mu}PD facility. When this work was achieved, the next step was the calibration of the heating power for these new crucibles. Then, it was the definition of single crystal growth conditions that oriented our research. Following our proposal, many growths attempts were performed. We started from Al & Sb pure powder or from LBNL AlSb crystal as expected. We used differentmore » crucibles and different seeds.« less

  8. Full-dispersion Monte Carlo simulation of phonon transport in micron-sized graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, S., E-mail: smei4@wisc.edu; Knezevic, I., E-mail: knezevic@engr.wisc.edu; Maurer, L. N.

    2014-10-28

    We simulate phonon transport in suspended graphene nanoribbons (GNRs) with real-space edges and experimentally relevant widths and lengths (from submicron to hundreds of microns). The full-dispersion phonon Monte Carlo simulation technique, which we describe in detail, involves a stochastic solution to the phonon Boltzmann transport equation with the relevant scattering mechanisms (edge, three-phonon, isotope, and grain boundary scattering) while accounting for the dispersion of all three acoustic phonon branches, calculated from the fourth-nearest-neighbor dynamical matrix. We accurately reproduce the results of several experimental measurements on pure and isotopically modified samples [S. Chen et al., ACS Nano 5, 321 (2011);S. Chenmore » et al., Nature Mater. 11, 203 (2012); X. Xu et al., Nat. Commun. 5, 3689 (2014)]. We capture the ballistic-to-diffusive crossover in wide GNRs: room-temperature thermal conductivity increases with increasing length up to roughly 100 μm, where it saturates at a value of 5800 W/m K. This finding indicates that most experiments are carried out in the quasiballistic rather than the diffusive regime, and we calculate the diffusive upper-limit thermal conductivities up to 600 K. Furthermore, we demonstrate that calculations with isotropic dispersions overestimate the GNR thermal conductivity. Zigzag GNRs have higher thermal conductivity than same-size armchair GNRs, in agreement with atomistic calculations.« less

  9. Investigation of the wett-ability of various pure metals and alloys and beryllium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliland, Ralph Gerald

    1963-06-13

    Thesis submitted to University of Tennessee, Knoxville. Activities in a program to determine the wetting behavior of pure metals such as Au, Ag, Ge, Al, and Cu on solid Be are reported. Results of similar investigations of binary alloys such as Be--Ti, Be-Zr, and Be--Pd are also included. The contact angles of the molten metals on Be as a function of temperature, exposure time, and atmosphere were measured. The solid-liquid interfacial reactions occurring as a function of test temperature and atmosphere were investigated, and the liquid- vapor and internal surface tensions for those systems in which interfacial reactions did notmore » appear to occur were calculated.« less

  10. HABIT CHANGES OF Y3Al5O12 AND Y3Ga5O12 GROWN FROM A PbO-PbF2 FLUX,

    DTIC Science & Technology

    Al2O3 or - Ga2O3 ratio in the melt. Y3Ga5O12 crystals have a pure (211) habit when grown from either a Y2O3- or PbO-rich melt. The crystals develop...small (110) faces when grown from a Ga2O3 - or PbF2-rich melt. Y3Al5O12 crystals have a pure (110) when grown from either a PbF2- or Al2O3-rich melt... Ga2O3 -rich melts. It is believed that the habit variations are caused by changes in either the surface diffusion or step propagation, due to Pb

  11. Measuring the entanglement of bipartite pure states

    NASA Astrophysics Data System (ADS)

    Sancho, J. M.; Huelga, S. F.

    2000-04-01

    The problem of the experimental determination of the amount of entanglement of a bipartite pure state is addressed. We show that measuring a single observable does not suffice to determine the entanglement of a given unknown pure state of two particles. Possible minimal local measuring strategies are discussed, and a comparison is made on the basis of their best achievable precision.

  12. Hydrogen permeation characteristics of some Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Van Deventer, E. H.; Maroni, V. A.

    1983-01-01

    Hydrogen permeation data are reported for two Fe-Cr-Al alloys, Type-405 SS (Cr 14-A1 0.2) and a member of the Fecralloy family of alloys (Cr 16-A1 5). The hydrogen permeability of each alloy (in a partially oxidized condition) was measured over a period of several weeks at randomly selected temperatures (between 150 and 850°C) and upstream H 2 pressures (between 2 and 1.5 × 10 4 Pa). The permeabilities showed considerable scatter with both time and temperature and were 10 2 to 10 3 times lower than those of pure iron, even in strongly reducing environments. The exponent, n, for the relationship between upstream H 2 pressure, P, and permeability, φ, ( φ ~ Pn) was closer to 0.7 than to the expected 0.5, indicating a process limited by surface effects (e.g., surface oxide films) as opposed to bulk material effects. Comparison of these results with prior permeation measurements on other Fe-Cr-Al alloys, on Fe-Cr alloys, and on pure iron shows that the presence of a few weight percent aluminum offers the best prospects for achieving low tritium permeabilities with martensitic and ferritic steels used in fusion-reactor first wall and blanket applications.

  13. Band gap tuning of amorphous Al oxides by Zr alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J.; Jones, N. C.

    2016-08-29

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearlymore » as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.« less

  14. Using the Lewis Acid Me3 Si-F-Al(ORF )3 To Prepare Phosphino-Phosphonium Cations with the Least-Coordinating Anion [(RF O)3 Al-F-Al(ORF )3 ].

    PubMed

    Possart, Josephine; Martens, Arthur; Schleep, Mario; Ripp, Alexander; Scherer, Harald; Kratzert, Daniel; Krossing, Ingo

    2017-09-07

    By reaction of two equivalents of Me 3 Si-F-Al(OR F ) 3 1 with an equimolar amount of PPh 2 Cl, the salt [Ph 2 P-PPh 2 Cl] + [(R F O) 3 Al-F-Al(OR F ) 3 ] - 2 is prepared smoothly in 91 % yield (NMR, XRD). The synthesis of [Ph 2 P-PPh 3 ] + [(R F O) 3 Al-F-Al(OR F ) 3 ] - 3 is best achieved by a two-step reaction: first, two equivalents of 1 react with one PPh 3 to give [Me 3 Si-PPh 3 ] + [(R F O) 3 Al-F-Al(OR F ) 3 ] - 4 (NMR, XRD), which, upon reaction with PPh 2 Cl, yields pure 3 and Me 3 SiCl (NMR, XRD). Typically, a stoichiometry of two equivalents of 1 with respect to one equivalent of the chloride donor should be used. Otherwise, the residual strong Lewis acidity of the [(R F O) 3 Al-F-Al(OR F ) 3 ] - anion in the presence of the [F-Al(OR F ) 3 ] - anion-that forms with less than two equivalents of 1-leads to further chloride exchange reactions that complicate work-up. This route presents the easiest way to introduce the least-coordinating [(R F O) 3 Al-F-Al(OR F ) 3 ] - anion into a system. We expect a wide use of this route in all areas, in which chloride-bond heterolysis in combination with very weakly coordinating anions is desirable. Additionally, we performed calculations on the bond dissociation mechanisms of [R 2 P-PMe 3 ] + and the isoelectronic Me 2 P-SiMe 3 and Me 2 Si-PMe 3 in dependence of the solvent permittivity. These calculations show, especially for the neutral reference compounds, a heavy influence of the solvent on the dissociation mechanism, which is why we suggest investigating these properties in solution instead of gas phase. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Structural and mechanical characterization of Al/Al2O3 nanotube thin film on TiV alloy

    NASA Astrophysics Data System (ADS)

    Sarraf, M.; Zalnezhad, E.; Bushroa, A. R.; Hamouda, A. M. S.; Baradaran, S.; Nasiri-Tabrizi, B.; Rafieerad, A. R.

    2014-12-01

    In this study, the fabrication and characterization of Al/Al2O3 nanotubular arrays on Ti-6Al-4V substrate were carried out. To this end, aluminum thin films were deposited as a first coating layer by direct current (DC) magnetron sputtering with the coating conditions of 300 W, 150 °C and 75 V substrate bias voltage. Al2O3 nanotube array as a second layer was grown on the Al layer by electrochemical anodisation at the constant potential of 20 V within different time periods in an electrolyte solution. For annealing the coated substrates, plasma treatment (PT) technique was utilized under various conditions to get the best adhesion strength of coating to the substrate. To characterize the coating layers, micro scratch test, Vickers hardness and field emission of scanning electron microscopy (FESEM) were used. Results show that after the deposition of pure aluminum on the substrate the scratch length, load and failure point were 794.37 μm, 1100 mN and 411.43 μm, respectively. After PT, the best adhesion strength (2038 mN) was obtained at RF power of 60 W. With the increase of the RF power up to 80 W, a reduction in adhesion strength was observed (1525.22 mN). From the microstructural point of view, a homogenous porous structure with an average pore size of 40-60 nm was formed after the anodisation for 10-45 min. During PT, the porous structure was converted to dense alumina layer when the RF power rose from 40 to 80 W. This led to an increase in hardness value from 2.7 to 3.4 GPa. Based on the obtained data, the RF power of 60 W was the optimum condition for plasma treatment of Al/Al2O3 nanotubular arrays on Ti-6Al-4V substrate.

  16. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenjin; Peng, Yufeng; Liu, Zhongli, E-mail: zhongliliu@yeah.net

    2014-05-15

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801){sup 0.298} (one-phase approach), 1850(1 + P/12.806){sup 0.357} (two-phase approach).more » The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 ± 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment.« less

  17. Processing of transparent polycrystalline AlON:Ce 3+ scintillators

    DOE PAGES

    Chen, Ching -Fong; Yang, Pin; King, Graham; ...

    2015-10-23

    A new polycrystalline ceramic scintillator is reported for potential use in radiation detection and medical imaging applications. The goal was to develop cerium-activated aluminum oxynitride (AlON:Ce 3+) ceramics, which can be produced using ceramic processes in comparison to the high-cost, low-yield single-crystal growth technique. A phase pure AlON:Ce 3+ powder with cubic symmetry was successfully synthesized at high temperature under a reducing atmosphere to convert Ce 4+ to Ce 3+ in the solid solution. We explored two different activator concentrations (0.5 and 1.0 mol%). Fully dense and transparent AlON:Ce 3+ ceramics were produced by a liquid-phase-assisted pressureless sintering. The crystalmore » field splitting around the Ce 3+ activator in the AlON was comparable to the splitting induced by Br₋ and the Cl₋ ligands, which produced an emission spectrum perfectly matching the maximum quantum efficiency range of the photomultiplier tube for radiation detection. Both optical excitation and radiation ionizations in AlON:Ce 3+ were demonstrated. Lastly, challenges and mechanisms related to the radioluminescence efficiency are discussed.« less

  18. (Nbx, Zr1-x)4AlC3 MAX Phase Solid Solutions: Processing, Mechanical Properties, and Density Functional Theory Calculations.

    PubMed

    Lapauw, Thomas; Tytko, Darius; Vanmeensel, Kim; Huang, Shuigen; Choi, Pyuck-Pa; Raabe, Dierk; Caspi, El'ad N; Ozeri, Offir; To Baben, Moritz; Schneider, Jochen M; Lambrinou, Konstantina; Vleugels, Jozef

    2016-06-06

    The solubility of zirconium (Zr) in the Nb4AlC3 host lattice was investigated by combining the experimental synthesis of (Nbx, Zr1-x)4AlC3 solid solutions with density functional theory calculations. High-purity solid solutions were prepared by reactive hot pressing of NbH0.89, ZrH2, Al, and C starting powder mixtures. The crystal structure of the produced solid solutions was determined using X-ray and neutron diffraction. The limited Zr solubility (maximum of 18.5% of the Nb content in the host lattice) in Nb4AlC3 observed experimentally is consistent with the calculated minimum in the energy of mixing. The lattice parameters and microstructure were evaluated over the entire solubility range, while the chemical composition of (Nb0.85, Zr0.15)4AlC3 was mapped using atom probe tomography. The hardness, Young's modulus, and fracture toughness at room temperature as well as the high-temperature flexural strength and E-modulus of (Nb0.85, Zr0.15)4AlC3 were investigated and compared to those of pure Nb4AlC3. Quite remarkably, an appreciable increase in fracture toughness was observed from 6.6 ± 0.1 MPa/m(1/2) for pure Nb4AlC3 to 10.1 ± 0.3 MPa/m(1/2) for the (Nb0.85, Zr0.15)4AlC3 solid solution.

  19. No oral-cavity-only discrimination of purely olfactory odorants.

    PubMed

    Stephenson, Dejaimenay; Halpern, Bruce P

    2009-02-01

    The purely olfactory odorants coumarin, octanoic acid, phenylethyl alcohol, and vanillin had been found to be consistently identified when presented retronasally but could not be identified when presented oral-cavity only (OCO). However, OCO discrimination of these odorants was not tested. Consequently, it remained possible that the oral cavity trigeminal system might provide sufficient information to differentiate these purely olfactory odorants. To evaluate this, 20 participants attempted to discriminate vapor-phase coumarin, octanoic acid, phenylethyl alcohol, and vanillin and, as a control, the trigeminal stimulus peppermint extract, from their glycerin solvent, all presented OCO. None of the purely olfactory odorants could be discriminated OCO, but, as expected, peppermint extract was consistently discriminated. This inability to discriminate clarifies and expands the previous report of lack of OCO identification of purely olfactory odorants. Taken together with prior data, these results suggest that the oral cavity trigeminal system is fully unresponsive to these odorants in vapor phase and that coumarin, octanoic acid, phenylethyl alcohol, and vanillin are indeed purely olfactory stimuli. The OCO discrimination of peppermint extract demonstrated that the absence of discrimination for the purely olfactory odorants was odorant dependent and confirmed that the oral cavity trigeminal system will provide differential response information to some vapor-phase stimuli.

  20. Separated Component-Based Restoration of Speckled SAR Images

    DTIC Science & Technology

    2013-01-01

    unsupervised change detection from SAR amplitude imagery,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2972–2982, Oct. 2006. [5] F. Argenti , T...Sens., vol. 40, no. 10, pp. 2196–2212, Oct. 2002. [13] F. Argenti and L. Alparone, “Speckle removal from SAR images in the undecimated wavelet domain...iterative thresh- olding algorithm for linear inverse problems with a sparsity con- straint,” Commun . Pure Appl. Math., vol. 57, no. 11, pp. 1413

  1. Magnetic properties of mechanically alloyed Mn-Al-C powders

    NASA Astrophysics Data System (ADS)

    Kohmoto, O.; Kageyama, N.; Kageyama, Y.; Haji, H.; Uchida, M.; Matsushima, Y.

    2011-01-01

    We have prepared supersaturated-solution Mn-Al-C alloy powders by mechanical alloying using a planetary high-energy mill. The starting materials were pure Mn, Al and C powers. The mechanically-alloyed powders were subjected to a two-step heating. Although starting particles are Al and Mn with additive C, the Al peak disappears with MA time. With increasing MA time, transition from α-Mn to β-Mn does not occur; the α-Mn structure maintains. At 100 h, a single phase of supersaturated-solution α-Mn is obtained. The lattice constant of α-Mn decreases with increasing MA time. From the Scherrer formula, the crystallite size at 500 h is obtained as 200Å, which does not mean amorphous state. By two-step heating, high magnetization (66 emu/g) was obtained from short-time-milled powders (t=10 h). The precursor of the as-milled powder is not a single phase α-Mn but contains small amount of fcc Al. After two-step heating, the powder changes to τ-phase. Although the saturation magnetization increases, the value is less than that by conventional bulk MnAl (88 emu/g). Meanwhile, long-time-milled powder of single α-Mn phase results in low magnetization (5.2 emu/g) after two-step heating.

  2. Optimal ancilla-free Pauli+V circuits for axial rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blass, Andreas; Bocharov, Alex; Gurevich, Yuri

    We address the problem of optimal representation of single-qubit rotations in a certain unitary basis consisting of the so-called V gates and Pauli matrices. The V matrices were proposed by Lubotsky, Philips, and Sarnak [Commun. Pure Appl. Math. 40, 401–420 (1987)] as a purely geometric construct in 1987 and recently found applications in quantum computation. They allow for exceptionally simple quantum circuit synthesis algorithms based on quaternionic factorization. We adapt the deterministic-search technique initially proposed by Ross and Selinger to synthesize approximating Pauli+V circuits of optimal depth for single-qubit axial rotations. Our synthesis procedure based on simple SL{sub 2}(ℤ) geometrymore » is almost elementary.« less

  3. Morphology and microstructure evolution of Ti-50 at.% Al cathodes during cathodic arc deposition of Ti-Al-N coatings

    NASA Astrophysics Data System (ADS)

    Syed, Bilal; Zhu, Jianqiang; Polcik, Peter; Kolozsvari, Szilard; Hâkansson, Greger; Johnson, Lars; Ahlgren, Mats; Jöesaar, Mats; Odén, Magnus

    2017-06-01

    Today's research on the cathodic arc deposition technique and coatings therefrom primarily focuses on the effects of, e.g., nitrogen partial pressure, growth temperature, and substrate bias. Detailed studies on the morphology and structure of the starting material—the cathode—during film growth and its influence on coating properties at different process conditions are rare. This work aims to study the evolution of the converted layer, its morphology, and microstructure, as a function of the cathode material grain size during deposition of Ti-Al-N coatings. The coatings were reactively grown in pure N2 discharges from powder metallurgically manufactured Ti-50 at.% Al cathodes with grain size distribution averages close to 1800, 100, 50, and 10 μm, respectively, and characterized with respect to microstructure, composition, and mechanical properties. The results indicate that for the cathode of 1800 μm grain size the disparity in the work function among parent phases plays a dominant role in the pronounced erosion of Al, which yields the coatings rich in macro-particles and of high Al content. We further observed that a reduction in the grain size of Ti-50 at.% Al cathodes to 10 μm provides favorable conditions for self-sustaining reactions between Ti and Al phases upon arcing to form γ phase. The combination of self-sustaining reaction and the arc process not only result in the formation of hole-like and sub-hole features on the converted layer but also generate coatings of high Al content and laden with macro-particles.

  4. Effects of Al3(Sc,Zr) and Shear Band Formation on the Tensile Properties and Fracture Behavior of Al-Mg-Sc-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Huang, Hongfeng; Jiang, Feng; Zhou, Jiang; Wei, Lili; Qu, Jiping; Liu, Lele

    2015-11-01

    The mechanical properties and microstructures of Al-6Mg-0.25Sc-0.1Zr alloy (wt.%) during annealing were investigated by means of uniaxial tensile testing, optical microscope, scanning electron microscope, transmission electron microscope, and high-resolution transmission electron microscope. The results show that a large number of micro and grain-scale shear bands form in this alloy after cold rolling. As the tensile-loading force rises, strain softening would generate in shear bands, resulting in the occurrence of shear banding fracture in cold-rolled Al-Mg-Sc-Zr alloys. Recrystallization takes place preferentially in shear bands during annealing. Due to the formation of coarse-grain bands constructed by new subgrains, recrystallization softening tends to occur in these regions. During low-temperature annealing, recrystallization is inhibited by nano-scale Al3(Sc,Zr) precipitates which exert significant coherency strengthening and modulus hardening. However, the strengthening effect of Al3(Sc,Zr) decreases with the increasing of particle diameter at elevated annealing temperature. The mechanical properties of the recrystallized Al-Mg-Sc-Zr alloy decrease to a minimum level, and the fracture plane exhibits pure ductile fracture characteristics.

  5. Language as Pure Potential

    ERIC Educational Resources Information Center

    Park, Joseph Sung-Yul

    2016-01-01

    Language occupies a crucial position in neoliberalism, due to the reimagination of language as commodified skill. This paper studies the role of language ideology in this transformation by identifying a particular ideology that facilitates this process, namely the ideology which views language as pure potential. Neoliberalism treats language as a…

  6. Dahlbeck and Pure Ontology

    ERIC Educational Resources Information Center

    Mackenzie, Jim

    2016-01-01

    This article responds to Johan Dahlbeck's "Towards a pure ontology: Children's bodies and morality" ["Educational Philosophy and Theory," vol. 46 (1), 2014, pp. 8-23 (EJ1026561)]. His arguments from Nietzsche and Spinoza do not carry the weight he supposes, and the conclusions he draws from them about pedagogy would be…

  7. Terahertz characterization of Y2O3-added AlN ceramics

    NASA Astrophysics Data System (ADS)

    Kang, Seung Beom; Chung, Dong Chul; Kim, Sung-Jin; Chung, Jun-Ki; Park, Sang-Yeup; Kim, Ki-Chul; Kwak, Min Hwan

    2016-12-01

    Terahertz optical and dielectric properties of AlN ceramics fabricated by hot pressed sintering are investigated by THz time-domain spectroscopy in the frequency range of 0.2-3.5 THz. The measured properties of the pure AlN ceramic are compared with those of Y2O3-added AlN ceramic. Two prominent resonance modes, which are essentially responsible for the dielectric properties of the Y2O3-added AlN in terahertz regime, are characterized at ωTO1/(2π) = 2.76 THz (92 cm-1) and ωTO2/(2π) = 18.2 THz (605 cm-1) and are well described by the pseudo-harmonic oscillator model through theoretical fitting. The resonance ωTO1 at 2.76 THz is proposed to be due to the formation of a YAG (Y3Al5O12) secondary phase in Y2O3-added AlN ceramic. From the experimental results, good correlation is observed between the prominent peak of YAG secondary phase at 2.76 THz and thermal conductivity. Additionally, there is a high correlation between densification and refractive index of AlN ceramics fabricated by hot pressed sintering.

  8. Structural Evolution and Atom Clustering in β-SiAlON: β-Si 6–z Al z O z N 8–z

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzan, Clayton; Griffith, Kent J.; Laurita, Geneva

    2017-02-06

    SiAlON ceramics, solid solutions based on the Si 3N 4 structure, are important, lightweight structural materials with intrinsically high strength, high hardness, and high thermal and chemical stability. Described by the chemical formula β-Si 6–zAl zO zN 8–z, from a compositional viewpoint, these materials can be regarded as solid solutions between Si 3N 4 and Al 3O 3N. A key aspect of the structural evolution with increasing Al and O (z in the formula) is to understand how these elements are distributed on the β-Si 3N 4 framework. The average and local structural evolution of highly phase-pure samples of β-Simore » 6–zAl zO zN 8–z with z = 0.050, 0.075, and 0.125 are studied here, using a combination of X-ray diffraction, NMR studies, and density functional theory calculations. Synchrotron X-ray diffraction establishes sample purity and indicates subtle changes in the average structure with increasing Al content in these compounds. Solid-state magic-angle-spinning 27Al NMR experiments, coupled with detailed ab initio calculations of NMR spectra of Al in different AlO qN 4–q tetrahedra (0 ≤ q ≤ 4), reveal a tendency of Al and O to cluster in these materials. Independently, the calculations suggest an energetic preference for Al–O bond formation, instead of a random distribution, in the β-SiAlON system.« less

  9. W:Al 2O 3 nanocomposite thin films with tunable optical properties prepared by atomic layer deposition

    DOE PAGES

    Babar, Shaista; Mane, Anil U.; Yanguas-Gil, Angel; ...

    2016-06-17

    Here, a systematic alteration in the optical properties of W:Al 2O 3 nanocomposite films is demonstrated by precisely varying the W cycle percentage (W%) from 0 to 100% in Al 2O 3 during atomic layer deposition. The direct and indirect band energies of the nanocomposite materials decrease from 5.2 to 4.2 eV and from 3.3 to 1.8 eV, respectively, by increasing the W% from 10 to 40. X-ray absorption spectroscopy reveals that, for W% < 50, W is present in both metallic and suboxide states, whereas, for W% ≥ 50, only metallic W is seen. This transition from dielectric tomore » metallic character at W% ~ 50 is accompanied by an increase in the electrical and thermal conductivity and the disappearance of a clear band gap in the absorption spectrum. The density of the films increases monotonically from 3.1 g/cm 3 for pure Al 2O 3 to 17.1 g/cm 3 for pure W, whereas the surface roughness is greatest for the W% = 50 films. The W:Al 2O 3 nanocomposite films are thermally stable and show little change in optical properties upon annealing in air at 500 °C. These W:Al 2O 3 nanocomposite films show promise as selective solar absorption coatings for concentrated solar power applications.« less

  10. Production of pure metals

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)

    1974-01-01

    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.

  11. Surface Properties of Al-Functionalized Mesoporous MCM-41 and the Melting Behavior of Water in Al-MCM-41 Nanopores.

    PubMed

    Sterczyńska, Angelina; Deryło-Marczewska, Anna; Zienkiewicz-Strzałka, Małgorzata; Śliwińska-Bartkowiak, Małgorzata; Domin, Kamila

    2017-10-24

    We report an experimental investigation of structural and adhesive properties for Al-containing mesoporous MCM-41 and MCM-41 surfaces. In this work, highly ordered hexagonal mesoporous structures of aluminosilica with two different Si/Al molar ratios equal to 50 and 80 and silica samples were studied; Al was incorporated into the MCM-41 structures using the direct synthesis method, with CTAB as a surfactant. The incorporation of aluminum was evidenced simultaneously without any change in the hexagonal arrangement of cylindrical mesopores. The porous materials were examined by techniques such as low-temperature nitrogen sorption, energy-dispersive spectroscopy, and scanning and transmission electron microscopy. Surface properties were determined through X-ray photoelectron spectroscopy, potentiometric titration, and static contact angle measurements. It was shown that an increase in surface acidity leads to an increase in the wetting energy of the surface. To investigate the influence of acidity on the confinement effects, the melting behavior of water in Al-MCM-41 and MCM-41 with the same pore size was determined by using dielectric relaxation spectroscopy and differential scanning calorimetry methods. We found that the melting-point depression of water in pores is larger in the functionalized pores than in pure silica pores of the same pore diameter.

  12. Fracture behaviors under pure shear loading in bulk metallic glasses.

    PubMed

    Chen, Cen; Gao, Meng; Wang, Chao; Wang, Wei-Hua; Wang, Tzu-Chiang

    2016-12-23

    Pure shear fracture test, as a special mechanical means, had been carried out extensively to obtain the critical information for traditional metallic crystalline materials and rocks, such as the intrinsic deformation behavior and fracture mechanism. However, for bulk metallic glasses (BMGs), the pure shear fracture behaviors have not been investigated systematically due to the lack of a suitable test method. Here, we specially introduce a unique antisymmetrical four-point bend shear test method to realize a uniform pure shear stress field and study the pure shear fracture behaviors of two kinds of BMGs, Zr-based and La-based BMGs. All kinds of fracture behaviors, the pure shear fracture strength, fracture angle and fracture surface morphology, are systematically analyzed and compared with those of the conventional compressive and tensile fracture. Our results indicate that both the Zr-based and La-based BMGs follow the same fracture mechanism under pure shear loading, which is significantly different from the situation of some previous research results. Our results might offer new enlightenment on the intrinsic deformation and fracture mechanism of BMGs and other amorphous materials.

  13. Fracture behaviors under pure shear loading in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Chen, Cen; Gao, Meng; Wang, Chao; Wang, Wei-Hua; Wang, Tzu-Chiang

    2016-12-01

    Pure shear fracture test, as a special mechanical means, had been carried out extensively to obtain the critical information for traditional metallic crystalline materials and rocks, such as the intrinsic deformation behavior and fracture mechanism. However, for bulk metallic glasses (BMGs), the pure shear fracture behaviors have not been investigated systematically due to the lack of a suitable test method. Here, we specially introduce a unique antisymmetrical four-point bend shear test method to realize a uniform pure shear stress field and study the pure shear fracture behaviors of two kinds of BMGs, Zr-based and La-based BMGs. All kinds of fracture behaviors, the pure shear fracture strength, fracture angle and fracture surface morphology, are systematically analyzed and compared with those of the conventional compressive and tensile fracture. Our results indicate that both the Zr-based and La-based BMGs follow the same fracture mechanism under pure shear loading, which is significantly different from the situation of some previous research results. Our results might offer new enlightenment on the intrinsic deformation and fracture mechanism of BMGs and other amorphous materials.

  14. Purely electromagnetic spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, B. V.

    The Rainich's program of describing metrics induced by pure electromagnetic fields is implemented in a simpler way by using the Ernst formalism and increasing the symmetry of spacetime. Stationary metrics possessing one, two or three Killing vectors are studied and classified. Three branches of solutions exist. Electromagnetically induced mass terms appear in two of them, including a class of solutions in harmonic functions. The static subcase is discussed too. Relations to other well-known electrovacuum metrics are elucidated.

  15. Investigation on the solidification course of Al-Si alloys by using a numerical Newtonian thermal analysis method

    NASA Astrophysics Data System (ADS)

    Tang, Peng; Hu, Zhiliu; Zhao, Yanjun; Huang, Qingbao

    2017-12-01

    A numerical Newtonian thermal analysis (NTA) method was carried out for online monitoring the solidification course of commercial Al-Si alloys. The solidification paths of different molten Al-Si alloys were characterized by the fraction solid curves. The variation of heat capacity of Al and Si were concerned in the determination of baseline evaluation of latent heat. In this experiment, the pure Al, Al-1Si, Al-5Si, Al-9Si, Al-13Si and Al-18Si alloys were molten at 800 °C and cooled at room temperature, respectively. The cooling curves of these alloys were measured by using K-type thermocouples. The liquidus temperatures of these alloys decreased with the increase of Si %. An obvious stage occurred at about 580 °C, which was closely related to Al-Si eutectic reaction. Different phase fractions of these alloys were supported by the microstructure observation.

  16. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  17. Preparation and characterization of polyaniline-containing Na-AlMCM-41 as composite material with semiconductor behavior.

    PubMed

    Anunziata, Oscar A; Gómez Costa, Marcos B; Sánchez, Rodolfo D

    2005-12-15

    Composite material formed from a mesoporous aluminosilicate, Na-AlMCM-41, with conducting polyaniline (PANI) has been synthesized by an in situ polymerization technique. Studies of aniline adsorption over mesoporous Na-AlMCM-41 synthesized in our laboratory allowed us to find the modes in which aniline interacts with the active sites of Na-AlMCM-41. In order to obtain the best reaction conditions to polymerize aniline onto Na-AlMCM-41, aniline was first polymerized to produce pure PANI. Hence, the oxidative in situ polymerization was carried out by two procedures, differing in the polymerization time and in static or stirring conditions. Studies of infrared spectroscopy and UV-vis spectroscopy indicated that higher polymerization time and static conditions allowed us to obtain mainly polyaniline in emeraldine form on the host. The N(2) isotherm of the polyaniline/Na-AlMCM-41 composite (PANI/MCM) indicated that the shape was similar to that of MCM, but the shift to saturation transition to lower partial pressure shows that the channels are occupied by PANI and they are now narrowed. The thermal properties of PANI, Na-AlMCM-41, and composite were investigated by TGA analyses and we found that the polymer shows higher thermal stability when it is forming the composite. Scanning electron microscopy indicated that PANI is not on the outer surface of the host. Conductivity studies show that PANI/Na-AlMCM-41 exhibits semiconductor behavior at room temperature and its conductivity was 7.0 x 10(-5) S/cm, smaller than that of pure polyaniline. PANI/Na-AlMCM-41 conductivity shows an increase as temperature increases. Magnetic measurements at room temperature confirmed that the composite has paramagnetic behavior; at lower temperatures the composite became diamagnetic.

  18. De-Excitation of High-Rydberg Antihydrogen in a Strongly Magnetized Pure Positron Plasma

    NASA Astrophysics Data System (ADS)

    Bass, E. M.

    2005-10-01

    The rate at which highly excited atoms relax to deeper binding is found with classical theories and simulations. This rate relates to antihydrogen formation experiments where such atoms are formed in pure-positron, Penning trap plasmas.ootnotetextG.Gabrielse, N.S. Bowden, P. Oxley, et al., Phys. Rev. Lett. 89, 213401 (2002); M. Amoretti, C. Amsler, G. Bonomi, et al., Nature (London) 419, 456 (2002). The analysis concerns atoms that have passed the kinetic bottleneck at binding energy ɛ 4kT.ootnotetextM.E. Glinsky and T.M. O'Neil, Phys. Fluids B 3, 1279 (1991). Energy loss caused by collisions between atoms and plasma positrons is calculated in two ways: For close collisions, a molecular dynamics simulation gives the energy loss; for large-impact parameter collisions, theoretical expressions based on Fokker-Planck theory are employed.ootnotetextEric M. Bass and Daniel H.E. Dubin, Phys. Plasmas 11, 1240 (2004). For a finite magnetic field, the energy loss rate scales as 1/ɛ, just as for infinite field,^2 but with a larger coefficient. A statistical description of energy loss by radiation and Stark mixing will also be discussed.

  19. Clinical features of pure obsessive-compulsive disorder.

    PubMed

    Torres, Albina R; Shavitt, Roseli G; Torresan, Ricardo C; Ferrão, Ygor A; Miguel, Euripedes C; Fontenelle, Leonardo F

    2013-10-01

    Psychiatric comorbidity is the rule in obsessive-compulsive disorder (OCD); however, very few studies have evaluated the clinical characteristics of patients with no co-occurring disorders (non-comorbid or "pure" OCD). The aim of this study was to estimate the prevalence of pure cases in a large multicenter sample of OCD patients and compare the sociodemographic and clinical characteristics of individuals with and without any lifetime axis I comorbidity. A cross-sectional study with 955 adult patients of the Brazilian Research Consortium on Obsessive-Compulsive Spectrum Disorders (C-TOC). Assessment instruments included the Yale-Brown Obsessive-Compulsive Scale, the Dimensional Yale-Brown Obsessive-Compulsive Scale, The USP-Sensory Phenomena Scale and the Brown Assessment of Beliefs Scale. Comorbidities were evaluated using the Structured Clinical Interview for DSM-IV Axis I Disorders. Bivariate analyses were followed by logistic regression. Only 74 patients (7.7%) presented pure OCD. Compared with those presenting at least one lifetime comorbidity (881, 92.3%), non-comorbid patients were more likely to be female and to be working, reported less traumatic experiences and presented lower scores in the Y-BOCS obsession subscale and in total DY-BOCS scores. All symptom dimensions except contamination-cleaning and hoarding were less severe in non-comorbid patients. They also presented less severe depression and anxiety, lower suicidality and less previous treatments. In the logistic regression, the following variables predicted pure OCD: sex, severity of depressive and anxious symptoms, previous suicidal thoughts and psychotherapy. Pure OCD patients were the minority in this large sample and were characterized by female sex, less severe depressive and anxious symptoms, less suicidal thoughts and less use of psychotherapy as a treatment modality. The implications of these findings for clinical practice are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Melting Behavior of Al/Pb/Sn/Al Multilayered Thin Films

    NASA Astrophysics Data System (ADS)

    Khan, Patan Yousaf; Devi, M. Manolata; Biswas, Krishanu

    2015-09-01

    Metals or alloy nanoparticles (NPs) have been reported to exhibit superheating on melting when coated with higher melting point material or embedded in a matrix. This is due to the suppression of the heterogeneous nucleation of the melt at the epitaxial interface. For 2D thin films, this necessary condition is not feasible because even if a thin film is sandwiched between higher melting temperature materials with coherent interfaces, the heterogeneous nucleation of melt is possible at various detects. However, it has earlier been reported that 2D thin films of the pure metal sandwiched by other materials can exhibit superheating by suppression of melt growth. In order to probe this effect in case of alloy thin films, the present investigation has been carried out on Pb/Sn multilayers sandwiched between Al layers. The present study shows that such sandwiched thin films prepared by accumulative roll bonding process cause the formation of biphasic NPs in the intermixed region of Pb and Sn. Al layers undergo severe plastic deformation, leading to the generation of dislocations and sub-grain boundaries. DSC (differential canning calorimeter) thermograms of the films indicate superheating of 3 K to 6 K (or 3 °C to 6 °C). Theoretical analysis using currently available literatures has been carried out to justify the finding in the present investigation.

  1. Sodium Aluminate Concentration Effects on Microstructure and Corrosion Behavior of the Plasma Electrolytic Oxidation Coatings on Pure Titanium

    NASA Astrophysics Data System (ADS)

    Molaei, Maryam; Fattah-Alhosseini, Arash; Gashti, Seyed Omid

    2018-01-01

    Sodium aluminate (NaAlO2) concentration was varied in order to understand the influence of the chemical composition of electrolyte on the spark characteristics, microstructure, and corrosion behavior of plasma electrolytic oxidation (PEO) coatings. For this purpose, PEO coatings were formed on the pure titanium substrate surface using solutions of four diverse sodium aluminate concentrations (6, 8, 10, and 12 g/L). The PEO process was carried out at constant time and voltage (180 seconds and 420 V). Studying the microstructures of samples by scanning electron microscope (SEM) and their corrosion behavior in 3.5 wt pct NaCl solutions indicated that the increase in NaAlO2 concentration (up to 10 g/L) led to an increase in uniformity and compactness, thus decreasing the size of micro-pores and increment of corrosion resistance. However, at a certain level of NaAlO2 concentration (12 g/L), large and severe sparks were created on the surface of the sample during the process, worsening the corrosion resistance and microstructure of coating.

  2. A determination of the external forces required to move the benchmark active controls testing model in pure plunge and pure pitch

    NASA Technical Reports Server (NTRS)

    Dcruz, Jonathan

    1993-01-01

    In view of the strong need for a well-documented set of experimental data which is suitable for the validation and/or calibration of modern Computational Fluid Dynamics codes, the Benchmark Models Program was initiated by the Structural Dynamics Division of the NASA Langley Research Center. One of the models in the program, the Benchmark Active Controls Testing Model, consists of a rigid wing of rectangular planform with a NACA 0012 profile and three control surfaces (a trailing-edge control surface, a lower-surface spoiler, and an upper-surface spoiler). The model is affixed to a flexible mount system which allows only plunging and/or pitching motion. An approximate analytical determination of the forces required to move this model, with its control surfaces fixed, in pure plunge and pure pitch at a number of test conditions is included. This provides a good indication of the type of actuator system required to generate the aerodynamic data resulting from pure plunging and pure pitching motion, in which much interest was expressed. The analysis makes use of previously obtained numerical results.

  3. [Clinical aspects, imaging and neuropathology of Kii ALS/PDC].

    PubMed

    Kokubo, Yasumasa

    2007-11-01

    During 1996 and 2006, we examined clinically 37 patients and neuropathologically 13 autopsy cases with amyotrophic lateral sclerosis/parkinsonism-dementia complex of the Kii peninsula (Kii ALS/PDC). The ages of onset were between 52 years and 74 years (mean age: 65.3 years). The male to female ratio was 1:1.85. The ratio of positive family history where ALS or PDC occurred within the fourth degree of the relatives was 78.4% in the patients with Kii ALS/PDC. The average duration of the illness was 6.47 years. Kii ALS/PDC was divided into five clinical subtypes, pure ALS form, ALS with dementia form, PDC with parkinsonism predominant form, PDC with dementia predominant form (that is called late-life dementia in Guam) and PDC with ALS features form. Unique pigmentary retinopathy was found in 33.3% of the patients with Kii ALS/PDC. CT/MRI images showed atrophy of the frontal and temporal lobes and SPECT images showed a decrease in the blood flow of the frontal and temporal lobes. The cardiac 123I-MIBG uptake was decreased in 4 out of 8 patients with ALS/PDC and the decrease in uptake correlated with the modified Hoehn-Yahr staging. The cardinal neuropathological features of Kii ALS/PDC were abundant neurofibrillary tangles (NFTs) associated with loss of nerve cells in the cerebral cortex and the brain stem, and findings of ALS neuropathology. Ultrastructurally, NFTs consisted of paired helical filaments. Tau protein, a main component of NFTs, was consisted of 3R and 4R tau isoforms, and phosphoryrated at 18 sites of tau phosphoryrated sites. The neurons of dentate gyrus of hippocampus and anterior horn cells were stained with anti-TDP-43 antibody. The clinical and neuropathological aspects of Kii ALS/PDC are regarded as being identical with those of Guam ALS/PDC.

  4. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  5. Shunting arc plasma source for pure carbon ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koguchi, H.; Sakakita, H.; Kiyama, S.

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  6. Influence of the parallel nonlinearity on zonal flows and heat transport in global gyrokinetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Hatzky, R.; Bottino, A.; Angelino, P.

    2009-07-01

    In this paper, the influence of the parallel nonlinearity on zonal flows and heat transport in global particle-in-cell ion-temperature-gradient simulations is studied. Although this term is in theory orders of magnitude smaller than the others, several authors [L. Villard, P. Angelino, A. Bottino et al., Plasma Phys. Contr. Fusion 46, B51 (2004); L. Villard, S. J. Allfrey, A. Bottino et al., Nucl. Fusion 44, 172 (2004); J. C. Kniep, J. N. G. Leboeuf, and V. C. Decyck, Comput. Phys. Commun. 164, 98 (2004); J. Candy, R. E. Waltz, S. E. Parker et al., Phys. Plasmas 13, 074501 (2006)] found different results on its role. The study is performed using the global gyrokinetic particle-in-cell codes TORB (theta-pinch) [R. Hatzky, T. M. Tran, A. Könies et al., Phys. Plasmas 9, 898 (2002)] and ORB5 (tokamak geometry) [S. Jolliet, A. Bottino, P. Angelino et al., Comput. Phys. Commun. 177, 409 (2007)]. In particular, it is demonstrated that the parallel nonlinearity, while important for energy conservation, affects the zonal electric field only if the simulation is noise dominated. When a proper convergence is reached, the influence of parallel nonlinearity on the zonal electric field, if any, is shown to be small for both the cases of decaying and driven turbulence.

  7. Wettability of MnxSiyOz by Liquid Zn-Al Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yunkyum; Shin, Minsoo; Tang, Chengying; Lee, Joonho

    2010-08-01

    The wettability of MnxSiyOz by liquid Zn-Al alloys was investigated to obtain basic information on the coating properties of high-strength steels with surface oxides in the hot-dip galvanizing process. In this study, the contact angles of liquid Zn-Al alloys (Al concentrations were 0.12 and 0.23 wt pct) on four different MnxSiyOz oxides, namely MnO, MnSiO3, Mn2SiO4, and SiO2, were measured with the dispensed drop method. The contact angle did not change across time. With an increasing Al concentration, the contact angle was slightly decreased for MnO and Mn2SiO4, but there was no change for MnSiO3 and SiO2. With an increasing SiO2 content, the contact angle gradually increased by 54 wt pct to form MnSiO3, and for pure SiO2 substrate, the contact angle decreased again. Consequently, the MnSiO3 substrate showed the worst wettability among the four tested oxide substrates.

  8. Graphene-like Networks in the lattice of Ag, Cu and Al metals

    NASA Astrophysics Data System (ADS)

    Salamanca-Riba, Lourdes; Ge, Xiaoxiao; Isaacs, Romaine; Jaim, Hm Iftekar; Wuttig, Manfred; Rashkeev, Sergey; Kuklja, Maija; Hu, Lianbing; Covetics Team Team

    Graphene-like networks form in the lattice of metals such as silver, copper and aluminum via an electrocharging assisted process. In this process a high current of >80A is applied to the liquid metal containing particles of activated carbon. The resulting material is called M covetic (M =Al, Ag Cu). We have previously reported that this process gives rise to carbon nanostructures with sp2 bonding embedded in the lattice of the metal. The carbon bonds to the metal as evidenced by Raman scattering and first principles simulation of the phonon density of states. With this process we have observed that graphene nanoribbons form along preferential crystalline directions and form 3D epitaxial structures with Al and Ag hosts. Bulk Cu covetic was used to deposit films by e-beam deposition and PLD. The PLD films contain higher C content and show higher transmittance (~90%) and resistance to oxidation than pure copper films of the same thickness. We compare the electrical and mechanical properties of covetics containing C in the 0 to 10 wt % and the transmittance of Cu covetic films compared to pure Cu films of the same thickness. Supported by ONR Grant N000141410042

  9. KSOS Computer Program Development Specifications (Type B-5). (Kernelized Secure Operating System). I. Security Kernel (CDRL 0002AF). II. UNIX Emulator (CDRL 0002AG). III. Security-Related Software (CDRL 0002AH).

    DTIC Science & Technology

    1980-12-01

    Commun- ications Corporation, Palo Alto, CA (March 1978). g. [Walter at al. 74] Walter, K.G. et al., " Primitive Models for Computer .. Security", ESD-TR...discussion is followed by a presenta- tion of the Kernel primitive operations upon these objects. All Kernel objects shall be referenced by a common...set of sizes. All process segments, regardless of domain, shall be manipulated by the same set of Kernel segment primitives . User domain segments

  10. Fisher-Symmetric Informationally Complete Measurements for Pure States.

    PubMed

    Li, Nan; Ferrie, Christopher; Gross, Jonathan A; Kalev, Amir; Caves, Carlton M

    2016-05-06

    We introduce a new kind of quantum measurement that is defined to be symmetric in the sense of uniform Fisher information across a set of parameters that uniquely represent pure quantum states in the neighborhood of a fiducial pure state. The measurement is locally informationally complete-i.e., it uniquely determines these parameters, as opposed to distinguishing two arbitrary quantum states-and it is maximal in the sense of a multiparameter quantum Cramér-Rao bound. For a d-dimensional quantum system, requiring only local informational completeness allows us to reduce the number of outcomes of the measurement from a minimum close to but below 4d-3, for the usual notion of global pure-state informational completeness, to 2d-1.

  11. Faithful Transfer Arbitrary Pure States with Mixed Resources

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Li, Lin; Ma, Song-Ya; Chen, Xiu-Bo; Yang, Yi-Xian

    2013-09-01

    In this paper, we show that some special mixed quantum resource experience the same property of pure entanglement such as Bell state for quantum teleportation. It is shown that one mixed state and three bits of classical communication cost can be used to teleport one unknown qubit compared with two bits via pure resources. The schemes are easily implement with model physical techniques. Moreover, these resources are also optimal and typical for faithfully remotely prepare an arbitrary qubit, two-qubit and three-qubit states with mixed quantum resources. Our schemes are completed as same as those with pure quantum entanglement resources except only 1 bit additional classical communication cost required. The success probability is independent of the form of the mixed resources.

  12. Electrical Resistance of the Low Dimensional Critical Branching Random Walk

    NASA Astrophysics Data System (ADS)

    Járai, Antal A.; Nachmias, Asaf

    2014-10-01

    We show that the electrical resistance between the origin and generation n of the incipient infinite oriented branching random walk in dimensions d < 6 is O( n 1- α ) for some universal constant α > 0. This answers a question of Barlow et al. (Commun Math Phys 278:385-431, 2008).

  13. Thermal Decomposition of an Impure (Roxbury) Siderite: Relevance to the Presence of Chemically Pure Magnetite Crystals in ALH84001 Carbonate Disks

    NASA Technical Reports Server (NTRS)

    McKay, D.S.; Gibson, E.K.; Thomas-Keprta, K.L.; Clemett, S.J.; Wentworth, S.J.

    2009-01-01

    The question of the origin of nanophase magnetite in Martian meteorite ALH84001 has been widely debated for nearly a decade. Golden et al. have reported producing nearly chemically pure magnetite from thermal decomposition of chemically impure siderite [(Fe, Mg, Mn)CO3]. This claim is significant for three reasons: first, it has been argued that chemically pure magnetite present in the carbonate disks in Martian meteorite ALH84001 could have formed by the thermal decomposition of the impure carbonate matrix in which they are embedded; second, the chemical purity of magnetite has been previously used to identify biogenic magnetite; and, third, previous studies of thermal decomposition of impure (Mg,Ca,Mn)-siderites, which have been investigated under a wide variety of conditions by numerous researchers, invariably yields a mixed metal oxide phase as the product and not chemically pure magnetite. The explanation for this observation is that these siderites all possess the same crystallographic structure (Calcite; R3c) so solid solutions between these carbonates are readily formed and can be viewed on an atomic scale as two chemically different but structurally similar lattices.

  14. Pure Air`s Bailly scrubber: A four-year retrospective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manavi, G.B.; Vymazal, D.C.; Sarkus, T.A.

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project has completed four highly successful years of operation at NIPSCO`s Bailly Station. As part of their program, Pure Air has concluded a six-part study of system performance. This paper summarizes the results of the demonstration program, including AFGD performance on coals ranging from 2.0--2.4% sulfur. The paper highlights novel aspects of the Bailly facility, including pulverized limestone injection, air rotary sparger for oxidation, wastewater evaporation system and the production of PowerChip{reg_sign} gypsum. Operations and maintenance which have led to the facility`s notable 99.47% availability record are also discussed. A projectmore » company, Pure Air on the Lake Limited Partnership, owns the AFGD facility. Pure Air was the turn key contractor and Air Products and Chemicals, Inc. is the operator of the AFGD system.« less

  15. Production of substantially pure fructose

    DOEpatents

    Hatcher, Herbert J.; Gallian, John J.; Leeper, Stephen A.

    1990-01-01

    A process is disclosed for the production of substantially pure fructose from sucrose-containing substrates. The process comprises converting the sucrose to levan and glucose, purifying the levan by membrane technology, hydrolyzing the levan to form fructose monomers, and recovering the fructose.

  16. Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchheim,, A. P.; Dal Molin, D.C.; Emwas, Abdul-Hamid

    2010-12-01

    This study details the differences in real-time hydration between pure tricalcium aluminate (cubic C{sub 3}A or 3CaO {center_dot} Al{sub 2}O{sub 3}) and Na-doped tricalcium aluminate (orthorhombic C{sub 3}A or Na{sub 2}Ca{sub 8}Al{sub 6}O{sub 18}), in aqueous solutions containing sulfate ions. Pure phases were synthesized in the laboratory to develop an independent benchmark for the reactions, meaning that their reactions during hydration in a simulated early age cement pore solution (saturated with respect to gypsum and lime) were able to be isolated. Because the rate of this reaction is extremely rapid, most microscopy methods are not adequate to study the earlymore » phases of the reactions in the early stages. Here, a high-resolution full-field soft X-ray imaging technique operating in the X-ray water window, combined with solution analysis by {sup 27}Al nuclear magnetic resonance (NMR) spectroscopy, was used to capture information regarding the mechanism of C{sub 3}A hydration during the early stages. There are differences in the hydration mechanism between the two types of C{sub 3}A, which are also dependent on the concentration of sulfate ions in the solution. The reactions with cubic C{sub 3}A (pure) seem to be more influenced by higher concentrations of sulfate ions, forming smaller ettringite needles at a slower pace than the orthorhombic C{sub 3}A (Na-doped) sample. The rate of release of aluminate species into the solution phase is also accelerated by Na doping.« less

  17. Compact objects in pure Lovelock theory

    NASA Astrophysics Data System (ADS)

    Dadhich, Naresh; Hansraj, Sudan; Chilambwe, Brian

    For static fluid interiors of compact objects in pure Lovelock gravity (involving only one Nth order term in the equation), we establish similarity in solutions for the critical odd and even d = 2N + 1, 2N + 2 dimensions. It turns out that in critical odd d = 2N + 1 dimensions, there cannot exist any bound distribution with a finite radius, while in critical even d = 2N + 2 dimensions, all solutions have similar behavior. For exhibition of similarity, we would compare star solutions for N = 1, 2 in d = 4 Einstein and d = 6 in Gauss-Bonnet theory, respectively. We also obtain the pure Lovelock analogue of the Finch-Skea model.

  18. Experimental and Theoretical Studies of the Pure Rotational Spectra of Lead Halides: PbF and PbCl

    NASA Astrophysics Data System (ADS)

    Norman, Spencer; Dawes, Richard; Grubbs, G. S., II; Cooke, S. A.; Long, B. E.; Dewberry, Chris

    2014-06-01

    The pure rotational spectrum of lead monochloride, PbCl, has been measured and analyzed using chirped pulse and cavity Fourier transform microwave (CP-FTMW and FTMW) spectrometers equipped with an ablation source. Refined parameters of an effective Hamiltonian including fine and hyperfine interactions similar to those previously reported by Fink et al. [1] were determined. Dynamically-weighted, explicitly-correlated MRCI-F12 calculations [2] were performed for both PbF and the valence isoelectronic PbCl to predict potential energy curves (PEC). Spin-orbit coupling was included in the calculations, which is known to split the X12Π1/2 and X22Π3/2 components of the ground electronic state by roughly 8280 wn in both lead halide systems. Calculated rotational levels were obtained using the PECs and compared with experiment including previously published results for PbF [3]. References: 1- K. Ziebarth, K. D. Setzer, O. Shestakov,1 and E. H. Fink, J. Mol. Spec. 191, 108 (1998). 2- B. J. Barker et al. J. Chem. Phys. 137, 214313 (2012). 3- R. J. Mawhorter et al. Phys. Rev. A 84, 022508 (2011).

  19. Pure akinesia: an atypical manifestation of progressive supranuclear palsy.

    PubMed Central

    Matsuo, H; Takashima, H; Kishikawa, M; Kinoshita, I; Mori, M; Tsujihata, M; Nagataki, S

    1991-01-01

    Two patients with "pure akinesia" who showed the characteristic changes of progressive supranuclear palsy (PSP) at necropsy are described. They had akinesia but no rigidity or tremor, and ophthalmoplegia was not observed during the course of illness. The symptoms of "pure akinesia" was not improved by levodopa therapy but was considerably improved by L-threo-3,4-dihydroxy-phenylserine. At necropsy, pathological findings were not different from those reported for PSP. It is suggested that "pure akinesia" is an atypical manifestation of PSP, and that norepinephrinergic neurons may be involved in some types of PSP. Images PMID:1865200

  20. Enhanced Piezoelectric Response of AlN via CrN Alloying

    NASA Astrophysics Data System (ADS)

    Manna, Sukriti; Talley, Kevin R.; Gorai, Prashun; Mangum, John; Zakutayev, Andriy; Brennecka, Geoff L.; Stevanović, Vladan; Ciobanu, Cristian V.

    2018-03-01

    Since AlN has emerged as an important piezoelectric material for a wide variety of applications, efforts have been made to increase its piezoelectric response via alloying with transition metals that can substitute for Al in the wurtzite lattice. We report on density functional theory calculations of structure and properties of the Crx Al1 -x N system for Cr concentrations ranging from zero to beyond the wurtzite-rocksalt transition point. By studying the different contributions to the longitudinal piezoelectric coefficient, we propose that the physical origin of the enhanced piezoelectricity in Crx Al1 -x N alloys is the increase of the internal parameter u of the wurtzite structure upon substitution of Al with the larger Cr ions. Among a set of wurtzite-structured materials, we find that Crx Al1 -x N has the most sensitive piezoelectric coefficient with respect to alloying concentration. Based on these results, we propose that Crx Al1 -x N is a viable piezoelectric material whose properties can be tuned via Cr composition. We support this proposal by combinatorial synthesis experiments, which show that Cr can be incorporated in the AlN lattice up to 30% before a detectable transition to rocksalt occurs. At this Cr content, the piezoelectric modulus d33 is approximately 4 times larger than that of pure AlN. This finding, combined with the relative ease of synthesis under nonequilibrium conditions, may position Crx Al1 -x N as a prime piezoelectric material for applications such as resonators and acoustic wave generators.

  1. Enhanced Piezoelectric Response of AlN via CrN Alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manna, Sukriti; Talley, Kevin R.; Gorai, Prashun

    2018-03-01

    Since AlN has emerged as an important piezoelectric material for a wide variety of applications, efforts have been made to increase its piezoelectric response via alloying with transition metals that can substitute for Al in the wurtzite lattice. We report on density functional theory calculations of structure and properties of the CrxAl1-xN system for Cr concentrations ranging from zero to beyond the wurtzite-rocksalt transition point. By studying the different contributions to the longitudinal piezoelectric coefficient, we propose that the physical origin of the enhanced piezoelectricity in CrxAl1-xN alloys is the increase of the internal parameter u of the wurtzite structuremore » upon substitution of Al with the larger Cr ions. Among a set of wurtzite-structured materials, we find that CrxAl1-xN has the most sensitive piezoelectric coefficient with respect to alloying concentration. Based on these results, we propose that CrxAl1-xN is a viable piezoelectric material whose properties can be tuned via Cr composition. We support this proposal by combinatorial synthesis experiments, which show that Cr can be incorporated in the AlN lattice up to 30% before a detectable transition to rocksalt occurs. At this Cr content, the piezoelectric modulus d33 is approximately 4 times larger than that of pure AlN. This finding, combined with the relative ease of synthesis under nonequilibrium conditions, may position CrxAl1-xN as a prime piezoelectric material for applications such as resonators and acoustic wave generators.« less

  2. Magnetic nano-oscillator driven by pure spin current.

    PubMed

    Demidov, Vladislav E; Urazhdin, Sergei; Ulrichs, Henning; Tiberkevich, Vasyl; Slavin, Andrei; Baither, Dietmar; Schmitz, Guido; Demokritov, Sergej O

    2012-12-01

    With the advent of pure-spin-current sources, spin-based electronic (spintronic) devices no longer require electrical charge transfer, opening new possibilities for both conducting and insulating spintronic systems. Pure spin currents have been used to suppress noise caused by thermal fluctuations in magnetic nanodevices, amplify propagating magnetization waves, and to reduce the dynamic damping in magnetic films. However, generation of coherent auto-oscillations by pure spin currents has not been achieved so far. Here we demonstrate the generation of single-mode coherent auto-oscillations in a device that combines local injection of a pure spin current with enhanced spin-wave radiation losses. Counterintuitively, radiation losses enable excitation of auto-oscillation, suppressing the nonlinear processes that prevent auto-oscillation by redistributing the energy between different modes. Our devices exhibit auto-oscillations at moderate current densities, at a microwave frequency tunable over a wide range. These findings suggest a new route for the implementation of nanoscale microwave sources for next-generation integrated electronics.

  3. Production of fermented chestnut purees by lactic acid bacteria.

    PubMed

    Blaiotta, G; Di Capua, M; Coppola, R; Aponte, M

    2012-09-03

    The objective of this study was to develop a new chestnut-based puree, in order to seasonally adjust the offer and use the surplus of undersized production, providing, at the same time, a response to the growing demand for healthy and environmentally friendly products. Broken dried chestnuts have been employed to prepare purees to be fermented with six different strains of Lactobacillus (Lb.) rhamnosus and Lactobacillus casei. The fermented purees were characterized by a technological and sensorial point of view, while the employed strains were tested for their probiotic potential. Conventional in vitro tests have indicated the six lactobacilli strains as promising probiotic candidates; moreover, being the strains able to grow and to survive in chestnut puree at a population level higher than 8 log₁₀ CFU/mL along 40 days of storage at 4 °C, the bases for the production of a new food, lactose-free and with reduced fat content, have been laid. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Optimization of hydrothermal synthesis of pure phase zeolite Na-P1 from South African coal fly ashes.

    PubMed

    Musyoka, Nicholas M; Petrik, Leslie F; Gitari, Wilson M; Balfour, Gillian; Hums, Eric

    2012-01-01

    This study was aimed at optimizing the synthesis conditions for pure phase zeolite Na-P1 from three coal fly ashes obtained from power stations in the Mpumalanga province of South Africa. Synthesis variables evaluated were: hydrothermal treatment time (12-48 hours), temperature (100-160°C) and varying molar quantities of water during the hydrothermal treatment step (H(2)O:SiO(2) molar ratio ranged between 0-0.49). The optimum synthesis conditions for preparing pure phase zeolite Na-P1 were achieved when the molar regime was 1 SiO(2): 0.36 Al(2)O(3): 0.59 NaOH: 0.49 H(2)O and ageing was done at 47°C for 48 hours. The optimum hydrothermal treatment time and temperature was 48 hours and 140°C, respectively. Fly ashes sourced from two coal-fired power plants (A, B) were found to produce nearly same high purity zeolite Na-P1 under identical conditions whereas the third fly ash (C) lead to a low quality zeolite Na-P1 under these conditions. The cation exchange capacity for the high pure phase was found to be 4.11 meq/g. These results highlight the fact that adjustment of reactant composition and presynthesis or synthesis parameters, improved quality of zeolite Na-P1 can be achieved and hence an improved potential for application of zeolites prepared from coal fly ash.

  5. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection

    NASA Astrophysics Data System (ADS)

    Sestoft, Joachim E.; Kanne, Thomas; Gejl, Aske Nørskov; von Soosten, Merlin; Yodh, Jeremy S.; Sherman, Daniel; Tarasinski, Brian; Wimmer, Michael; Johnson, Erik; Deng, Mingtang; Nygârd, Jesper; Jespersen, Thomas Sand; Marcus, Charles M.; Krogstrup, Peter

    2018-04-01

    The combination of strong spin-orbit coupling, large g factors, and the coupling to a superconductor can be used to create a topologically protected state in a semiconductor nanowire. Here we report on growth and characterization of hybrid epitaxial InAsSb/Al nanowires, with varying composition and crystal structure. We find the strongest spin-orbit interaction at intermediate compositions in zinc-blende InAs1 -xSbx nanowires, exceeding that of both InAs and InSb materials, confirming recent theoretical studies. We show that the epitaxial InAsSb/Al interface allows for a hard induced superconducting gap and 2 e transport in Coulomb charging experiments, similarly to experiments on InAs/Al and InSb/Al materials, and find measurements consistent with topological phase transitions at low magnetic fields due to large effective g factors. Finally we present a method to grow pure wurtzite InAsSb nanowires which are predicted to exhibit even stronger spin-orbit coupling than the zinc-blende structure.

  6. A Short Note on the Scaling Function Constant Problem in the Two-Dimensional Ising Model

    NASA Astrophysics Data System (ADS)

    Bothner, Thomas

    2018-02-01

    We provide a simple derivation of the constant factor in the short-distance asymptotics of the tau-function associated with the 2-point function of the two-dimensional Ising model. This factor was first computed by Tracy (Commun Math Phys 142:297-311, 1991) via an exponential series expansion of the correlation function. Further simplifications in the analysis are due to Tracy and Widom (Commun Math Phys 190:697-721, 1998) using Fredholm determinant representations of the correlation function and Wiener-Hopf approximation results for the underlying resolvent operator. Our method relies on an action integral representation of the tau-function and asymptotic results for the underlying Painlevé-III transcendent from McCoy et al. (J Math Phys 18:1058-1092, 1977).

  7. Band Offset Measurements in Atomic-Layer-Deposited Al2O3/Zn0.8Al0.2O Heterojunction Studied by X-ray Photoelectron Spectroscopy.

    PubMed

    Yan, Baojun; Liu, Shulin; Heng, Yuekun; Yang, Yuzhen; Yu, Yang; Wen, Kaile

    2017-12-01

    Pure aluminum oxide (Al 2 O 3 ) and zinc aluminum oxide (Zn x Al 1-x O) thin films were deposited by atomic layer deposition (ALD). The microstructure and optical band gaps (E g ) of the Zn x Al 1-x O (0.2 ≤ x ≤ 1) films were studied by X-ray diffractometer and Tauc method. The band offsets and alignment of atomic-layer-deposited Al 2 O 3 /Zn 0.8 Al 0.2 O heterojunction were investigated in detail using charge-corrected X-ray photoelectron spectroscopy. In this work, different methodologies were adopted to recover the actual position of the core levels in insulator materials which were easily affected by differential charging phenomena. Valence band offset (ΔE V ) and conduction band offset (ΔE C ) for the interface of the Al 2 O 3 /Zn 0.8 Al 0.2 O heterojunction have been constructed. An accurate value of ΔE V  = 0.82 ± 0.12 eV was obtained from various combinations of core levels of heterojunction with varied Al 2 O 3 thickness. Given the experimental E g of 6.8 eV for Al 2 O 3 and 5.29 eV for Zn 0.8 Al 0.2 O, a type-I heterojunction with a ΔE C of 0.69 ± 0.12 eV was found. The precise determination of the band alignment of Al 2 O 3 /Zn 0.8 Al 0.2 O heterojunction is of particular importance for gaining insight to the design of various electronic devices based on such heterointerface.

  8. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Nesreen S.; Surface Chemistry and Catalytic Studies Group, King Abdulaziz University; Menzel, Robert

    Two efficient catalyst based on CuAl and CoAl layered double hydroxides (LDHs) supported on graphene oxide (GO) for the carbon-carbon coupling (Classic Ullmann Homocoupling Reaction) are reported. The pure and hybrid materials were synthesised by direct precipitation of the LDH nanoparticles onto GO, followed by a chemical, structural and physical characterisation by electron microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area measurements and X-ray photoelectron spectroscopy (XPS). The GO-supported and unsupported CuAl-LDH and CoAl-LDH hybrids were tested over the Classic Ullman Homocoupling Reaction of iodobenzene. In the current study CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%,more » respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH. - Graphical abstract: CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary, two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. - Highlights: • CuAl LDH/GO and CoAl LDH/GO hybrid materials with different LDH compositions were prepared. • Hybrids were fully characterised and their catalytic efficiency over the Classic Ullman Reaction was studied. • CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) in 25 min reaction times. • GO provides a light-weight, charge complementary, two-dimensional material that interacts effectively with the 2D LDHs. • After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH.« less

  9. Development of interatomic potentials appropriate for simulation of devitrification of Al 90Sm 10 alloy

    DOE PAGES

    Mendelev, M. I.; Zhang, F.; Ye, Z.; ...

    2015-04-23

    In this study, a semi-empirical potential for the Al 90Sm 10 alloy is presented. The potential provides satisfactory reproduction of pure Al properties, the formation energies of a set of Al–Sm crystal phases with Sm content about 10%, and the structure of the liquid Al 90Sm 10 alloy. During molecular dynamics simulation in which the liquid alloy is cooled at a rate of 10 10 K/s, the developed potential produces a glass structure with lower ab initio energy than that produced by ab initio molecular dynamics (AIMD) itself using a typical AIMD cooling rate of 8 ∙10 13 K/s. Basedmore » on these facts the developed potential should be suitable for simulations of phase transformations in the Al 90Sm 10 alloy.« less

  10. Carbon fibers coated with graphene reinforced TiAl alloy composite with high strength and toughness.

    PubMed

    Cui, Sen; Cui, Chunxiang; Xie, Jiaqi; Liu, Shuangjin; Shi, Jiejie

    2018-02-05

    To meet the more rigorous requirement in aerospace industry, recent studies on strengthening and toughening TiAl alloys mostly focus on high Nb addition, which inevitably bring in an increasing of density. In this study, a carbon fibers coated with graphene reinforced TiAl alloy composite was fabricated by powder metallurgy, melt spun and vacuum melting. This composite got remarkable mechanical properties combined with a prominent density reduction. In contrast with pure TiAl ingots, this sample exhibits an average fracture strain from 16% up to 26.27%, and an average strength from 1801 MPa up to 2312 MPa. Thus, we can achieve a new method to fabricate this low-density, good mechanical performance TiAl composite which could bring in more opportunities for application in aerospace industry.

  11. Enhanced Electron Injection and Exciton Confinement for Pure Blue Quantum-Dot Light-Emitting Diodes by Introducing Partially Oxidized Aluminum Cathode.

    PubMed

    Wang, Zhibin; Cheng, Tai; Wang, Fuzhi; Bai, Yiming; Bian, Xingming; Zhang, Bing; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2018-05-31

    Stable and efficient red (R), green (G), and blue (B) light sources based on solution-processed quantum dots (QDs) play important roles in next-generation displays and solid-state lighting technologies. The brightness and efficiency of blue QDs-based light-emitting diodes (LEDs) remain inferior to their red and green counterparts, due to the inherently unfavorable energy levels of different colors of light. To solve these problems, a device structure should be designed to balance the injection holes and electrons into the emissive QD layer. Herein, through a simple autoxidation strategy, pure blue QD-LEDs which are highly bright and efficient are demonstrated, with a structure of ITO/PEDOT:PSS/Poly-TPD/QDs/Al:Al2O3. The autoxidized Al:Al2O3 cathode can effectively balance the injected charges and enhance radiative recombination without introducing an additional electron transport layer (ETL). As a result, high color-saturated blue QD-LEDs are achieved with a maximum luminance over 13,000 cd m -2 , and a maximum current efficiency of 1.15 cd A -1 . The easily controlled autoxidation procedure paves the way for achieving high-performance blue QD-LEDs.

  12. Diversifying Selection Between Pure-Breed and Free-Breeding Dogs Inferred from Genome-Wide SNP Analysis.

    PubMed

    Pilot, Małgorzata; Malewski, Tadeusz; Moura, Andre E; Grzybowski, Tomasz; Oleński, Kamil; Kamiński, Stanisław; Fadel, Fernanda Ruiz; Alagaili, Abdulaziz N; Mohammed, Osama B; Bogdanowicz, Wiesław

    2016-08-09

    Domesticated species are often composed of distinct populations differing in the character and strength of artificial and natural selection pressures, providing a valuable model to study adaptation. In contrast to pure-breed dogs that constitute artificially maintained inbred lines, free-ranging dogs are typically free-breeding, i.e., unrestrained in mate choice. Many traits in free-breeding dogs (FBDs) may be under similar natural and sexual selection conditions to wild canids, while relaxation of sexual selection is expected in pure-breed dogs. We used a Bayesian approach with strict false-positive control criteria to identify FST-outlier SNPs between FBDs and either European or East Asian breeds, based on 167,989 autosomal SNPs. By identifying outlier SNPs located within coding genes, we found four candidate genes under diversifying selection shared by these two comparisons. Three of them are associated with the Hedgehog (HH) signaling pathway regulating vertebrate morphogenesis. A comparison between FBDs and East Asian breeds also revealed diversifying selection on the BBS6 gene, which was earlier shown to cause snout shortening and dental crowding via disrupted HH signaling. Our results suggest that relaxation of natural and sexual selection in pure-breed dogs as opposed to FBDs could have led to mild changes in regulation of the HH signaling pathway. HH inhibits adhesion and the migration of neural crest cells from the neural tube, and minor deficits of these cells during embryonic development have been proposed as the underlying cause of "domestication syndrome." This suggests that the process of breed formation involved the same genetic and developmental pathways as the process of domestication. Copyright © 2016 Pilot et al.

  13. Solid, liquid, and interfacial properties of TiAl alloys: parameterization of a new modified embedded atom method model.

    PubMed

    Sun, Shoutian; Ramachandran, Bala Ramu; Wick, Collin D

    2018-02-21

    New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl's surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.

  14. Pure field theories and MACSYMA algorithms

    NASA Technical Reports Server (NTRS)

    Ament, W. S.

    1977-01-01

    A pure field theory attempts to describe physical phenomena through singularity-free solutions of field equations resulting from an action principle. The physics goes into forming the action principle and interpreting specific results. Algorithms for the intervening mathematical steps are sketched. Vacuum general relativity is a pure field theory, serving as model and providing checks for generalizations. The fields of general relativity are the 10 components of a symmetric Riemannian metric tensor; those of the Einstein-Straus generalization are the 16 components of a nonsymmetric. Algebraic properties are exploited in top level MACSYMA commands toward performing some of the algorithms of that generalization. The light cone for the theory as left by Einstein and Straus is found and simplifications of that theory are discussed.

  15. Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.

    PubMed

    Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo

    2016-11-14

    We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.

  16. A Simple Protein Synthesis Model for the PURE System Operation.

    PubMed

    Mavelli, Fabio; Marangoni, Roberto; Stano, Pasquale

    2015-06-01

    The encapsulation of transcription-translation (TX-TL) cell-free machinery inside lipid vesicles (liposomes) is a key element in synthetic cell technology. The PURE system is a TX-TL kit composed of well-characterized parts, whose concentrations are fine tunable, which works according to a modular architecture. For these reasons, the PURE system perfectly fulfils the requirements of synthetic biology and is widely used for constructing synthetic cells. In this work, we present a simplified mathematical model to simulate the PURE system operations. Based on Michaelis-Menten kinetics and differential equations, the model describes protein synthesis dynamics by using 9 chemical species, 6 reactions and 16 kinetic parameters. The model correctly predicts the time course for messenger RNA and protein production and allows quantitative predictions. By means of this model, it is possible to foresee how the PURE system species affect the mechanism of proteins synthesis and therefore help in understanding scenarios where the concentration of the PURE system components has been modified purposely or as a result of stochastic fluctuations (for example after random encapsulation inside vesicles). The model also makes the determination of response coefficients for all species involved in the TX-TL mechanism possible and allows for scrutiny on how chemical energy is consumed by the three PURE system modules (transcription, translation and aminoacylation).

  17. Auditory Repetition Priming Is Impaired in Pure Alexic Patients

    ERIC Educational Resources Information Center

    Swick, Diane; Miller, Kimberly M.; Larsen, Jary

    2004-01-01

    Alexia without agraphia, or ''pure'' alexia, is an acquired impairment in reading that leaves writing skills intact. Repetition priming for visually presented words is diminished in pure alexia. However, it is not possible to verify whether this priming deficit is modality-specific or modality independent because reading abilities are compromised.…

  18. Effect of electrode materials on the space charge distribution of an Al2O3 nano-modified transformer oil under impulse voltage conditions

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Liu, Mengna; Sima, Wenxia; Jin, Yang

    2017-11-01

    The combined effect mechanism of electrode materials and Al2O3 nanoparticles on the insulating characteristics of transformer oil was investigated. Impulse breakdown tests of pure transformer oil and Al2O3 nano-modified transformer oil of varying concentrations with different electrode materials (brass, aluminum and stainless steel) showed that the breakdown voltage of Al2O3 nano-modified transformer oil is higher than that of pure transformer oil and there is a there is an optimum concentration for Al2O3 nanoparticles when the breakdown voltage reaches the maximum. In addition, the breakdown voltage was highest with the brass electrode, followed by that with stainless steel and then aluminum, irrespective of the concentration of nanoparticles in the transformer oil. This is explained by the charge injection patterns from different electrode materials according to the results of space charge measurements in pure and nano-modified transformer oil using the Kerr electro-optic system. The test results indicate that there are electrode-dependent differences in the charge injection patterns and quantities and then the electric field distortion, which leads to the difference breakdown strength in result. As for the nano-modified transformer oil, due to the Al2O3 nanoparticle’s ability of shielding space charges of different polarities and the charge injection patterns of different electrodes, these two factors have different effects on the electric field distribution and breakdown process of transformer oil between different electrode materials. This paper provides a feasible approach to exploring the mechanism of the effect of the electrode material and nanoparticles on the breakdown strength of liquid dielectrics and analyzing the breakdown process using the space charge distribution.

  19. Revisiting the Al/Al₂O₃ interface: coherent interfaces and misfit accommodation.

    PubMed

    Pilania, Ghanshyam; Thijsse, Barend J; Hoagland, Richard G; Lazić, Ivan; Valone, Steven M; Liu, Xiang-Yang

    2014-03-27

    We study the coherent and semi-coherent Al/α-Al2O3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions at the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. Our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al2O3 composite heterostructures.

  20. Self-esteem in pure bullies and bully/victims: a longitudinal analysis.

    PubMed

    Pollastri, Alisha R; Cardemil, Esteban V; O'Donnell, Ellen H

    2010-08-01

    Past research on the self-esteem of bullies has produced equivocal results. Recent studies have suggested that the inconsistent findings may be due, in part, to the failure to account for bully/victims: those children who both bully and are victims of bullying. In this longitudinal study, we examined the distinctions among pure bullies, pure victims, bully/victims, and noninvolved children in a sample of 307 middle school students. Analyses of cross-sectional and longitudinal results supported the importance of distinguishing between pure bullies and bully/victims. In addition, results revealed some interesting sex differences: girls in the pure bully and bully/victim groups reported significant increases in self-esteem over time, with girls in the pure bully group reporting the greatest increase, whereas boys in these groups reported no significant changes in self-esteem over time.

  1. Uniform and accelerated degradation of pure iron patterned by Pt disc arrays

    PubMed Central

    Huang, Tao; Zheng, Yufeng

    2016-01-01

    Pure iron has been confirmed as a promising biodegradable metal. However, the degradation rate of pure iron should be accelerated to meet the clinical requirements. In this work, two different designs of platinum disc arrays, including sizes of Φ20 μm × S5 μm and Φ4 μm × S4 μm, have been coated on the surface of pure iron. Corrosion tests showed the platinum discs formed plenty of galvanic cells with the iron matrix which significantly accelerated the degradation of pure iron. Simultaneously, due to the designability of the shape, size as well as distribution of Pt discs, the degradation rate as well as degradation uniformity of pure iron can be effectively controlled by coating with platinum discs. The cytotoxicity test results unveiled that Pt discs patterned pure iron exhibited almost no toxicity to human umbilical vein endothelial cells, but a significant inhibition on proliferation of vascular smooth muscle cells. In addition, the hemolysis rate of Pt discs patterned pure iron was lower than 1%. Moreover, Pt discs also effectively reduced the number of adhered platelets. All these results indicated that Pt discs patterning is an effective way to accelerate degradation and improve biocompatibility of pure iron. PMID:27033380

  2. Making Pure Fine-Grained Inorganic Powder

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1985-01-01

    Sustained arc plasma chemical reactor fabricates very-fine-grained inorganic solids having low thermal conductivity. Powder fabrication method, based on plasma tube technique produces pure solids without contamination commonly produced by grinding.

  3. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrantoni, M.; Rossi, C.; Salvagnac, L.

    2010-10-15

    Multilayered Al/CuO thermite was deposited by a dc reactive magnetron sputtering method. Pure Al and Cu targets were used in argon-oxygen gas mixture plasma and with an oxygen partial pressure of 0.13 Pa. The process was designed to produce low stress (<50 MPa) multilayered nanoenergetic material, each layer being in the range of tens nanometer to one micron. The reaction temperature and heat of reaction were measured using differential scanning calorimetry and thermal analysis to compare nanostructured layered materials to microstructured materials. For the nanostructured multilayers, all the energy is released before the Al melting point. In the case ofmore » the microstructured samples at least 2/3 of the energy is released at higher temperatures, between 1036 and 1356 K.« less

  4. Research on the Applicable Method of Valuation of Pure Electric Used vehicles

    NASA Astrophysics Data System (ADS)

    Cai, yun; Tan, zhengping; Wang, yidong; Mao, pan

    2018-03-01

    With the rapid growth in the ownership of pure electric vehicles, the research on the valuation of used electric vehicles has become the key to the development of the pure electric used vehicle market. The paper analyzed the application of the three value assessment methods, current market price method, capitalized earning method and replacement cost method, in pure electric used vehicles, and draws a conclusion that the replacement cost method is more suitable for pure electric used car. At the same time, the article also conducted a parametric correction exploration research, aiming at the characteristics of pure electric vehicles and replacement cost of the constituent factors. Through the analysis of the applicability parameters of physical devaluation, functional devaluation and economic devaluation, the revised replacement cost method can be used for the valuation of purely used electric vehicles for private use.

  5. [Pure akinesia presenting with antecollis].

    PubMed

    Ota, Satoru; Tsuchiya, Kuniaki

    2005-10-01

    We reported a 77-year-old woman having pure akinesia who presented with antecollis induced by L-threo-3, 4-dihydroxyphenylserine (L-DOPS). At the age of 70, she noticed increasing difficulty in standing up from a seat and moving. Afterward, she developed gait disturbance with difficulty in initiating walking, frozen gait, and postural instability. At 73 years of age, she came to our hospital, because she gradually fell down easily. Neurological examination disclosed mild akinesia with freezing symptom and kinésie paradoxale. No evidence of dementia, supranuclear gaze palsy, pseudobulbar palsy, rigidity, or tremor were present. As she developed akinesia, of which L-dopa therapy achieved little improvement, we clinically diagnosed as having pure akinesia. At age 74, L-DOPS was administered at a dose of 300mg per day and gradually increased up to 900mg per day, because her postural reflex was markedly disturbed and gait showed severe unsteadiness. Amelioration of frozen gait and unsteadiness were recognized, but efficacy of L-DOPS was temporal. It is well known that reported cases of pure akinesia were pathologically diagnosed as having progressive supranuclear palsy (PSP) or pallido-nigro-luysian atrophy. Therefore, the present case was suspected as having pathological changes which involved degeneration of the substantia nigra and globus pallidus. After three years of treatment with L-DOPS, at age 77, she was admitted to our hospital for abrupt onset of her dropped head. Hematological examinations were normal, cervical MRI showed no evidence of paracervical muscular atrophy, and electromyography did not demonstrate any abnormal change. In addition, her posterior cervical muscles showed abnormally high tension, so the dropped head was considered due to antecollis. After admission, antecollis disappeared rapidly following discontinuation of L-DOPS. However the mechanism of drug induced dystonia is imperfectly understood on the basis of the clinical course, L-DOPS was

  6. Electron traps in Gd3Ga3Al2O12:Ce garnets doped with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Khanin, V. M.; Rodnyi, P. A.; Wieczorek, H.; Ronda, C. R.

    2017-05-01

    The curves of thermally stimulated luminescence of Gd3Ga3Al2O12:Ce3+ ceramics (a nominally pure sample and samples doped with rare-earth ions) are measured in the temperature range of 80-550 K. The depth and the frequency factor of electron traps established by Eu and Yb impurities are determined. An energy-level diagram of rare-earth ions in the bandgap of Gd3Ga3Al2O12 is presented.

  7. Entropy for quantum pure states and quantum H theorem

    NASA Astrophysics Data System (ADS)

    Han, Xizhi; Wu, Biao

    2015-06-01

    We construct a complete set of Wannier functions that are localized at both given positions and momenta. This allows us to introduce the quantum phase space, onto which a quantum pure state can be mapped unitarily. Using its probability distribution in quantum phase space, we define an entropy for a quantum pure state. We prove an inequality regarding the long-time behavior of our entropy's fluctuation. For a typical initial state, this inequality indicates that our entropy can relax dynamically to a maximized value and stay there most of time with small fluctuations. This result echoes the quantum H theorem proved by von Neumann [Zeitschrift für Physik 57, 30 (1929), 10.1007/BF01339852]. Our entropy is different from the standard von Neumann entropy, which is always zero for quantum pure states. According to our definition, a system always has bigger entropy than its subsystem even when the system is described by a pure state. As the construction of the Wannier basis can be implemented numerically, the dynamical evolution of our entropy is illustrated with an example.

  8. Pure E and B polarization maps via Wiener filtering

    NASA Astrophysics Data System (ADS)

    Bunn, Emory F.; Wandelt, Benjamin

    2017-08-01

    In order to draw scientific conclusions from observations of cosmic microwave background (CMB) polarization, it is necessary to separate the contributions of the E and B components of the data. For data with incomplete sky coverage, there are ambiguous modes, which can be sourced by either E or B signals. Techniques exist for producing "pure" E and B maps, which are guaranteed to be free of cross-contamination, although the standard method, which involves constructing an eigenbasis, has a high computational cost. We show that such pure maps can be thought of as resulting from the application of a Wiener filter to the data. This perspective leads to far more efficient methods of producing pure maps. Moreover, by expressing the idea of purification in the general framework of Wiener filtering (i.e., maximization of a posterior probability), it leads to a variety of generalizations of the notion of pure E and B maps, e.g., accounting for noise or other contaminants in the data as well as correlations with temperature anisotropy.

  9. Pure state `really' informationally complete with rank-1 POVM

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Shang, Yun

    2018-03-01

    What is the minimal number of elements in a rank-1 positive operator-valued measure (POVM) which can uniquely determine any pure state in d-dimensional Hilbert space H_d? The known result is that the number is no less than 3d-2. We show that this lower bound is not tight except for d=2 or 4. Then we give an upper bound 4d-3. For d=2, many rank-1 POVMs with four elements can determine any pure states in H_2. For d=3, we show eight is the minimal number by construction. For d=4, the minimal number is in the set of {10,11,12,13}. We show that if this number is greater than 10, an unsettled open problem can be solved that three orthonormal bases cannot distinguish all pure states in H_4. For any dimension d, we construct d+2k-2 adaptive rank-1 positive operators for the reconstruction of any unknown pure state in H_d, where 1≤ k ≤ d.

  10. Transport mechanism of lipid covered saquinavir pure drug nanoparticles in intestinal epithelium.

    PubMed

    Xia, Dengning; He, Yuan; Li, Qiuxia; Hu, Cunde; Huang, Wei; Zhang, Yunhai; Wan, Feng; Wang, Chi; Gan, Yong

    2018-01-10

    Pure drug nanoparticles (NPs) represent a promising formulation for improved drug solubility and controlled dissolution velocity. However, limited absorption by the intestinal epithelium remains challenge to their clinical application, and little is known about how these NPs within the cells are transported. To improve cellular uptake and transport of pure nanodrug in cells, here, a lipid covered saquinavir (SQV) pure drug NP (Lipo@nanodrug) was designed by modifying a pure SQV NP (nanodrug) with a phospholipid bilayer. We studied their endocytosis, intracellular trafficking mechanism using Caco-2 cell model. Uptake of Lipo@nanodrug by Caco-2 cells was 1.91-fold greater than that of pure nanodrug via processes involving cell lipid raft. The transcellular transport of Lipo@nanodrug across Caco-2 monolayers was 3.75-fold and 1.92-fold higher than that of coarse crystals and pure nanodrug, respectively. Within cells, Lipo@nanodrug was mainly localized in the endoplasmic reticulum and Golgi apparatus, leading to transcytosis of Lipo@nanodrug across intestinal epithelial cells, whereas pure nanodrug tended to be retained and to dissolve in cell and removed by P-gp-mediated efflux. In rats, the oral bioavailability of the model drug SQV after Lipo@nanodrug administration was 4.29-fold and 1.77-fold greater than after coarse crystal and pure nanodrug administration, respectively. In conclusion, addition of a phospholipid bilayer to pure drug NP increased their cellular uptake and altered their intracellular processing, helping to improve drug transport across intestinal epithelium. To our knowledge, this is the first presentation of the novel phospholipid bilayer covered SQV pure drug NP design, and a mechanistic study on intracellular trafficking in in vitro cell models has been described. The findings provide a new platform for oral delivery of poorly water-soluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Mechanical and physicochemical properties of AlN thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Cibert, C.; Tétard, F.; Djemia, P.; Champeaux, C.; Catherinot, A.; Tétard, D.

    2004-10-01

    AlN thin films have been deposited on Si(100) substrates by a pulsed laser deposition method. The deposition parameters (pressure, temperature, purity of target) play an important role in the mechanical and physicochemical properties. The films have been characterized using X-ray diffraction, atomic force microscopy, Brillouin light scattering, Fourier transform infrared spectroscopy and wettability testing. With a high purity target of AlN and a temperature deposition of 750 ∘C, the measured Rayleigh wave velocity is close to the one previously determined for AlN films grown at high temperature by metal-organic chemical vapour deposition. Growth of nanocrystalline AlN at low temperature and of AlN film with good crystallinity for samples deposited at higher temperature is confirmed by infrared spectroscopy, as it was by atomic force microscopy, in agreement with X-ray diffraction results. A high hydrophobicity has been measured with zero polar contribution for the surface energy. These results confirm that films made by pulsed laser deposition of pure AlN at relatively low temperature have good prospects for microelectromechanical systems applications.

  12. The behavior of N2 and O2 in pure, mixed or layered CO ices

    NASA Astrophysics Data System (ADS)

    Bisschop, Suzanne E.; Fraser, Helen J.; Fuchs, Guido; Öberg, Karin I.; Acharyya, Kinsuk; van Broekhuizen, Fleur; Schlemmer, Stephan; van Dishoeck, Ewine F.

    N2 and O2 are molecules that are predicted to be abundant in dense molecular clouds. Both molecules are difficult to detect as neither has a dipole moment. The chemical abundance of N2 is mostly inferred from its daughter species N2H+, but was recently detected in the ISM for the first time, with an abundance of 3.3 × 10-7 (Knauth et al 2004). Searches for the submillimeter lines of O2 have given upper limits for the abundance of ≤ 2.6 10-7 for star forming clouds and ≤ 3 10-6 for cold dark clouds (Goldsmith et al. 2000). Pontoppidan et al. (2003) deduced from the CO line profile that CO is present in both H2O poor and H2O rich ice layers, so it follows that N2 is likely to be present in a H2O poor ice layer. In many cold and protostellar cores N2H+ is found to anti-correlate with HCO+ and CO (Bergin et al. 2001; Jørgensen et al. 2004). Models by, for example Bergin & Langer (1997), assume this is due to the balance between freeze-out and evaporation, where ratios for the binding energy for N2 compared to CO of 0.50-0.70 are used. To model these processes, and reproduce the observed abundances of each species it is important to determine empirically the binding energies, sticking probabilities and desorption kinetics of model ice systems containing CO, N2 and O2. It seems that these quantities depend on the degree to which N2 and O2 mix with CO. Therefore, CO and N2 ices were studied extensively in a Ultra High Vacuum (UHV) experiment (P ~ 1 × 10-10 Torr) (Oberg et al. 2005; Bisschop et al submitted)). Ice samples were deposited at 14 K on a polycrystalline gold sample, mounted in the UHV chamber, covering morphologies from pure CO and N2, and 1:1 mixtures, to 1/1 layers of both CO over N2 and N2 over CO, and layers of 40 L of CO (1 L ≈ 1 monolayer) covered with 5 to 50 L of N2. The ices were studied using a combination of Reflection Absorption Infrared Spectroscopy (RAIRS) and Temperature Programmed Desorption (TPD), at a ramp-rate of 0.1 K min-1. The TPD

  13. Purely hopping conduction in c-axis oriented LiNbO3 thin films

    NASA Astrophysics Data System (ADS)

    Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay

    2009-05-01

    Dielectric constant and ac conductivity of highly c-axis oriented LiNbO3 thin film grown by pulsed laser deposition were studied in a metal-insulator-metal configuration over a wide temperature (200 to 450 K) and frequency (100 Hz to 1 MHz) range. The preferred oriented Al (1%) doped ZnO film with electrical conductivity 1.1×103 Ω-1 cm-1 was deposited for dual purpose: (1) to serve as nucleating center for LiNbO3 crystallites along preferred c-axis growth direction, and (2) to act as a suitable bottom electrode for electrical studies. The room temperature dc conductivity (σdc) of LiNbO3 film was about 5.34×10-10 Ω-1 cm-1 with activation energy ˜0.3 eV, indicating extrinsic conduction. The ac conductivity σac was found to be much higher in comparison to σdc in the low temperature region (<300 K) and exhibits a power law behavior due to the hopping of charge carriers. In higher temperature region (>300 K), σac shows a weak frequency dependence, whereas dielectric constant exhibits a strong frequency dispersion. The dielectric dispersion data has been discussed in the light of theoretical models based on Debye type mixed conduction and purely hopping conduction. The dominant conduction in c-axis oriented LiNbO3 thin film is attributed to the purely hopping where both σdc and σac arise due to same mechanism.

  14. Investigating compositional effects of atomic layer deposition ternary dielectric Ti-Al-O on metal-insulator-semiconductor heterojunction capacitor structure for gate insulation of InAlN/GaN and AlGaN/GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colon, Albert; Stan, Liliana; Divan, Ralu

    Gate insulation/surface passivation in AlGaN/GaN and InAlN/GaN heterojunction field-effect transistors is a major concern for passivation of surface traps and reduction of gate leakage current. However, finding the most appropriate gate dielectric materials is challenging and often involves a compromise of the required properties such as dielectric constant, conduction/valence band-offsets, or thermal stability. Creating a ternary compound such as Ti-Al-O and tailoring its composition may result in a reasonably good gate material in terms of the said properties. To date, there is limited knowledge of the performance of ternary dielectric compounds on AlGaN/GaN and even less on InAlN/GaN. To approachmore » this problem, the authors fabricated metal-insulator-semiconductor heterojunction (MISH) capacitors with ternary dielectrics Ti-Al-O of various compositions, deposited by atomic layer deposition (ALD). The film deposition was achieved by alternating cycles of TiO2 and Al2O3 using different ratios of ALD cycles. TiO2 was also deposited as a reference sample. The electrical characterization of the MISH capacitors shows an overall better performance of ternary compounds compared to the pure TiO2. The gate leakage current density decreases with increasing Al content, being similar to 2-3 orders of magnitude lower for a TiO2:Al2O3 cycle ratio of 2:1. Although the dielectric constant has the highest value of 79 for TiO2 and decreases with increasing the number of Al2O3 cycles, it is maintaining a relatively high value compared to an Al2O3 film. Capacitance voltage sweeps were also measured in order to characterize the interface trap density. A decreasing trend in the interface trap density was found while increasing Al content in the film. In conclusion, our study reveals that the desired high-kappa properties of TiO2 can be adequately maintained while improving other insulator performance factors. The ternary compounds may be an excellent choice as a gate material

  15. Mechanochemical synthesis of dodecyl sulfate anion (DS-) intercalated Cu-Al layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Qu, Jun; He, Xiaoman; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-12-01

    Dodecyl sulfate anion (DS-) was successfully intercalated into the gallery space of Cu-Al layered double hydroxides (LDH) by a non-heating mechanochemical route, in which basic cupric carbonate (Cu2(OH)2CO3) and aluminum hydroxide (Al(OH)3) were first dry ground and then agitated in SDS solution under ambient environment. The organics modified Cu-Al LDH showed good adsorption ability toward 2,4-dichlorophenoxyacetic acid (2, 4-D). The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), CHS elemental analysis and Scanning electron microscopy (SEM). The LDH precursor prepared by ball-milling could directly react with SDS molecules forming a pure phase of DS- pillared Cu-Al LDH, which was not observed with the LDH product through the ion-exchange of DS- at room temperature. The process introduced here may be applied to manufacture other types of organic modified composites for pollutants removal and other applications.

  16. Nitrogen-Polar (000 1 ¯ ) GaN Grown on c-Plane Sapphire with a High-Temperature AlN Buffer.

    PubMed

    Song, Jie; Han, Jung

    2017-03-02

    We demonstrate growing nitrogen-polar (N-polar) GaN epilayer on c-plane sapphire using a thin AlN buffer layer by metalorganic chemical vapor deposition. We have studied the influence of the AlN buffer layer on the polarity, crystalline quality, and surface morphology of the GaN epilayer and found that the growth temperature of the AlN buffer layer played a critical role in the growth of the GaN epilayer. The low growth temperature of the AlN buffer results in gallium-polar GaN. Even a nitridation process has been conducted. High growth temperature for an AlN buffer layer is required to achieve pure N-polarity, high crystalline quality, and smooth surface morphology for a GaN epilayer.

  17. Mechanical properties and microstructures of Al-Cu Thin films with various heat treatments

    NASA Astrophysics Data System (ADS)

    Joo, Young-Chang

    1998-10-01

    The relationship between microstructure and mechanical properties has been investigated in Al-Cu thin films. The Cu content in Al-Cu samples used in this study ranges from 0 to 2 wt.% and substrate curvature measurement was used to measure film stress. In thin films, the constraints on the film by the substrate influence the microstructure and mechanical properties. Al-Cu thin films cooled from high temperatures have a large density of dislocations due to the plastic deformation caused by the thermal mismatch between the film and substrate. The high density of dislocations in the thin film enables precipitates to form inside the grain even during a very rapid quenching. The presence of a large density of dislocations and precipitates will in turn cause precipitation hardening of the Al-Cu films. The precipitation hardening is dominant at lower temperatures, and solid solution hardening is observed at higher temperatures in the tensile regime. Pure Al films showed the same values of tensile and compressive yield stresses at a given temperature during stress-temperature cycling.

  18. Mechanical and morphological properties of polypropylene/nano α-Al2O3 composites.

    PubMed

    Mirjalili, F; Chuah, L; Salahi, E

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼ 16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt.

  19. Solid, liquid, and interfacial properties of TiAl alloys: parameterization of a new modified embedded atom method model

    NASA Astrophysics Data System (ADS)

    Sun, Shoutian; Ramu Ramachandran, Bala; Wick, Collin D.

    2018-02-01

    New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl’s surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.

  20. Can a pure vector gravitational wave mimic a pure tensor one?

    NASA Astrophysics Data System (ADS)

    Allen, Bruce

    2018-06-01

    In the general theory of relativity, gravitational waves have two possible polarizations, which are transverse and traceless with helicity ±2 . Some alternative theories contain additional helicity 0 and helicity ±1 polarization modes. Here, we consider a hypothetical "pure vector" theory in which gravitational waves have only two possible polarizations, with helicity ±1 . We show that if these polarizations are allowed to rotate as the wave propagates, then for certain source locations on the sky, the strain outputs of three ideal interferometric gravitational wave detectors can exactly reproduce the strain outputs predicted by general relativity.

  1. Crack Formation in Powder Metallurgy Carbon Nanotube (CNT)/Al Composites During Post Heat-Treatment

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Imai, Hisashi; Li, Shufeng; Jia, Lei; Umeda, Junko; Kondoh, Katsuyoshi

    2015-12-01

    After the post heat-treatment (PHT) process of powder metallurgy carbon nanotubes (CNT)/Al composites, micro-cracks were observed in the composites, leading to greatly degraded mechanical properties. To understand and suppress the crack formation, an in situ observation of CNT/Al composites was performed at elevated temperatures. PHT was also applied to various bulk pure Al and CNT/Al composites fabricated under different processes. It was observed that the composites consolidated by hot-extrusion might form micro-cracks, but those consolidated by spark plasma sintering (SPS) showed no crack after PHT. A high-temperature SPS process before hot-extrusion was effective to prevent crack formation. The release of residual stress in severe plastic deformed (SPD) materials was responsible for the cracking phenomena during the PHT process. Furthermore, a good particle bonding was essential and effective to suppress cracks for SPD materials in the PHT process.

  2. Mg-hydrogen interaction in AlGaN alloys

    NASA Astrophysics Data System (ADS)

    Zvanut, M. E.; Sunay, Ustun R.; Dashdorj, J.; Willoughby, W. R.; Allerman, A. A.

    2012-03-01

    It is well known that hydrogen passivation of Mg in Mg-doped GaN reduces free hole concentrations. While there are numerous studies of passivation of Mg in GaN, little work has been reported concerning passivation rates in AlGaN alloys. We investigated the hydrogen interaction with Mg in nitrides by measuring the intensity of the electron paramagnetic resonance (EPR) signal associated with the acceptor. The samples were isothermally annealed in sequential steps ranging from 5 min - 6.6 h between 300 and 700 oC in H2:N2 (7%: 92%) or pure N2. The signal intensity decreased during the H2N2 anneal and was revived by the N2 anneal as expected; however, the rate at which the intensity changed was shown to depend on Al concentration. In addition, while all signals were quenched at 700 oC in H2:N2, a 750 oC N2 anneal reactivated only about 30% of the Mg in the alloys and 80% of the intensity in the GaN film. These data suggest that the rate of passivation and activation of Mg by hydrogen is dependent on the concentration of Al in the AlxGa-1xN layer. The EPR annealing data could prove to be beneficial in improving p-type optimization in AlGaN alloys.

  3. Effects of Al-Impurity Type on Formation Energy, Crystal Structure, Electronic Structure, and Optical Properties of ZnO by Using Density Functional Theory and the Hubbard-U Method.

    PubMed

    Wu, Hsuan-Chung; Chen, Hsing-Hao; Zhu, Yu-Ren

    2016-08-01

    We systematically investigated the effects of Al-impurity type on the formation energy, crystal structure, charge density, electronic structure, and optical properties of ZnO by using density functional theory and the Hubbard-U method. Al-related defects, such as those caused by the substitution of Zn and O atoms by Al atoms (Al s(Zn) and Al s(O) , respectively) and the presence of an interstitial Al atom at the center of a tetrahedron (Al i(tet) ) or an octahedron (Al i(oct) ), and various Al concentrations were evaluated. The calculated formation energy follows the order E f (Al s(Zn) ) < E f (Al i(tet) ) < E f (Al i(oct) ) < E f (Al s(O) ). Electronic structure analysis showed that the Al s(Zn) , Al s(O) , Al i(tet) , and Al i(oct) models follow n -type conduction, and the optical band gaps are higher than that of pure ZnO. The calculated carrier concentrations of the Al s(O) and Al i(tet) /Al i(oct) models are higher than that of the Al s(Zn) model. However, according to the curvature of the band structure, the occurrence of interstitial Al atoms or the substitution of O atoms by Al atoms results in a high effective mass, possibly reducing the carrier mobility. The average transmittance levels in the visible light and ultraviolet (UV) regions of the Al s(Zn) model are higher than those of pure ZnO. However, the presence of an interstitial Al atom within the ZnO crystal reduces transmittance in the visible light region; Al s(O) substantially reduces the transmittance in the visible light and UV regions. In addition, the properties of ZnO doped with various Al s(Zn) concentrations were analyzed.

  4. Debye temperatures and magnetic structures of UFe xAl 12- x (3.6⩽ x⩽5) intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Rećko, K.; Dobrzyński, L.; Szymański, K.; Hoser, A.

    2000-03-01

    Uranium ternary compounds UFe xAl 12- x crystallize in a body-centred tetragonal structure ThMn 12 (I 4/mmm No.139). The neutron powder diffraction, magnetization measurements as well as Mössbauer investigations clearly indicate the magnetic ordering within the iron sites. The rearrangement of iron magnetic moments from uncompensated antiferromagnetic system in UFe xAl 12- x with x<4, through coexistence of antiferro- and ferromagnetic iron components (4⩽ x<5) to pure ferromagnetic ordering for alloy with x=5 is observed. The neutron diffraction studies of magnetic structures of the aforementioned powder samples show a very rich world of possible uranium-iron magnetic interactions. For all these alloys the magnetic neutron scattering is generally weak in comparison to the nuclear one. Because of identical chemical and magnetic unit cells there are no pure magnetic reflections. Therefore, in order to extract magnetic part of the scattering one should be particularly careful in taking proper account of the thermal vibration effects.

  5. Effect of humidity on fretting wear of several pure metals

    NASA Technical Reports Server (NTRS)

    Goto, H.; Buckley, D. H.

    1984-01-01

    Fretting wear experiments with several pure metals were conducted in air at various relative humidity levels. The materials used were iron, aluminum, copper, silver, chromium, titanium, and nickel. Each pure metal had a maximum fretting wear volume at a specific humidity level RH sub max that was not dependent on mechanical factors such as contact load, fretting amplitude, and frequency in the ranges studied. The weight loss due to fretting wear at RH sub max for each pure metal decreased with increasing heat of oxygen adsorption on the metal, indicating that adhesive wear dominated at RH sub max.

  6. UV-induced lethal sectoring and pure mutant clones in yeast.

    PubMed

    Hannan, M A; Duck, P; Nasim, A

    1976-08-01

    The induction of lethal sectoring and pure mutant clones by ultraviolet light has been studied in a homogeneous G1 population of Saccharomyces cerevisiae grown in a normal growth medium. At the lowest UV dose of 250 ergs, which corresponds to a shoulder in the survival curve, all mutants appeared as pure clones. At higher doses the frequency of mosaic mutants progressively increased. These results indicate a relationship between the highest frequency of complete mutants and the maximum repair activity. In addition, the frequency of lethal sectoring at all doses tested was too low to account for the origin of pure mutant clones.

  7. Attachment of Porphyromonas gingivalis to corroded commercially pure titanium and titanium-aluminum-vanadium alloy.

    PubMed

    Barão, Valentim A R; Yoon, Cheon Joo; Mathew, Mathew T; Yuan, Judy Chia-Chun; Wu, Christine D; Sukotjo, Cortino

    2014-09-01

    Titanium dental material can become corroded because of electrochemical interaction in the oral environment. The corrosion process may result in surface modification. It was hypothesized that a titanium surface modified by corrosion may enhance the attachment of periodontal pathogens. This study evaluates the effects of corroded titanium surfaces on the attachment of Porphyromonas gingivalis. Commercially pure titanium (cp-Ti) and titanium-aluminum-vanadium alloy (Ti-6Al-4V) disks were used. Disks were anodically polarized in a standard three-electrode setting in a simulated oral environment with artificial saliva at pH levels of 3.0, 6.5, or 9.0. Non-corroded disks were used as controls. Surface roughness was measured before and after corrosion. Disks were inoculated with P. gingivalis and incubated anaerobically at 37°C. After 6 hours, the disks with attached P. gingivalis were stained with crystal violet, and attachment was expressed based on dye absorption at optical density of 550 nm. All assays were performed independently three times in triplicate. Data were analyzed by two-way analysis of variance, the Tukey honestly significant difference test, t test, and Pearson's correlation test (α = 0.05). Both cp-Ti and Ti-6Al-4V alloy-corroded disks promoted significantly more bacterial attachment (11.02% and 41.78%, respectively; P <0.0001) than did the non-corroded controls. Significantly more (11.8%) P. gingivalis attached to the cp-Ti disks than to the Ti-6Al-4V alloy disks (P <0.05). No significant difference in P. gingivalis attachment was noted among the corroded groups for both cp-Ti and Ti-6Al-4V alloy (P >0.05). There was no significant correlation between surface roughness and P. gingivalis attachment. A higher degree of corrosion on the titanium surface may promote increased bacterial attachment by oral pathogens.

  8. Electrophoretic deposition of double-layer HA/Al composite coating on NiTi.

    PubMed

    Karimi, Esmaeil; Khalil-Allafi, Jafar; Khalili, Vida

    2016-01-01

    In order to improve the bioactivity of NiTi alloys, which are being known as the suitable materials for biomedical applications, numerous NiTi disks were electrophoretically coated by hetero-coagulated hydroxyapatite/aluminum composite coatings in three main voltages from suspensions with different Al concentrations. In this paper, the amount of Ni ions release and bioactivity of prepared samples as well as bonding strength of the coating to substrate were investigated. The surface characterization of the coating by XRD, EDX, SEM, and FTIR showed that HA particles bonded by Al particles. It caused the formation of a free crack coating on NiTi disks. Moreover, the bonding strength of HA/Al coatings to NiTi substrate were improved by two times as compared to that of the pure HA coatings. Immersing of coated samples in SBF for 1 week showed that apatite formation ability was improved on HA/Al composite coating and Ni ions release from the surface of composite coating decreased. These results induce the appropriate bioactivity and biocompatibility of the deposited HA/Al composite coatings on NiTi disks. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A regularity condition and temporal asymptotics for chemotaxis-fluid equations

    NASA Astrophysics Data System (ADS)

    Chae, Myeongju; Kang, Kyungkeun; Lee, Jihoon; Lee, Ki-Ahm

    2018-02-01

    We consider two dimensional chemotaxis equations coupled to the Navier-Stokes equations. We present a new localized regularity criterion that is localized in a neighborhood at each point. Secondly, we establish temporal decays of the regular solutions under the assumption that the initial mass of biological cell density is sufficiently small. Both results are improvements of previously known results given in Chae et al (2013 Discrete Continuous Dyn. Syst. A 33 2271-97) and Chae et al (2014 Commun. PDE 39 1205-35)

  10. Optical and electrical properties of p-type transparent conducting CuAlO2 thin film synthesized by reactive radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Saha, B.; Thapa, R.; Jana, S.; Chattopadhyay, K. K.

    2010-10-01

    Thin films of p-type transparent conducting CuAlO2 have been synthesized through reactive radio frequency magnetron sputtering on silicon and glass substrates at substrate temperature 300°C. Reactive sputtering of a target fabricated from Cu and Al powder (1:1.5) was performed in Ar+O2 atmosphere. The deposition parameters were optimized to obtain phase pure, good quality CuAlO2 thin films. The films were characterized by studying their structural, morphological, optical and electrical properties.

  11. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    NASA Astrophysics Data System (ADS)

    Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.

    2018-03-01

    Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.

  12. Primary pure choriocarcinoma of the liver.

    PubMed

    Fernández Alonso, J; Sáez, C; Pérez, P; Montaño, A; Japón, M A

    1992-04-01

    We report a pure choriocarcinoma of the liver studied at necropsy. The tumour was diagnosed ante-mortem and treated by chemotherapy with no satisfactory response. Previous cases of hepatic choriocarcinoma are reviewed and criteria to diagnose this extragonadal neoplasm are recommended.

  13. ESEEM of industrial quartz powders: insights into crystal chemistry of Al defects

    NASA Astrophysics Data System (ADS)

    Romanelli, Maurizio; Di Benedetto, Francesco; Bartali, Laura; Innocenti, Massimo; Fornaciai, Gabriele; Montegrossi, Giordano; Pardi, Luca A.; Zoleo, Alfonso; Capacci, Fabio

    2012-06-01

    A set of raw industrial materials, that is, pure quartz and quartz-rich mixtures, were investigated through electron paramagnetic resonance and electron spin echo-envelope modulation spectroscopies, with the aim of evaluating the effective role played by defect centres and of assessing whether they can be used to monitor changes in the physical properties of quartz powders with reference to their health effects. The obtained results point to two interactions of the Al defect centres with H+, hosted in sites within the channels parallel and perpendicular to the c axis of quartz, respectively. These two Al/H+ (hAl) centres exhibit a weak chemical bond, and their relative amounts appear to be modified/controlled by the thermo-mechanical processes underwent by powders. Indeed, a mechanically promoted inter-conversion between the two kinds of site is suggested. As a consequence, the hAl centres are effective in monitoring even modest activations of powders, through thermal or mechanical processes, and they are also supposed to play a specific, relevant role in quartz reactivity during the considered industrial processes.

  14. Comment on Pisarenko et al., "Characterization of the Tail of the Distribution of Earthquake Magnitudes by Combining the GEV and GPD Descriptions of Extreme Value Theory"

    NASA Astrophysics Data System (ADS)

    Raschke, Mathias

    2016-02-01

    In this short note, I comment on the research of Pisarenko et al. (Pure Appl. Geophys 171:1599-1624, 2014) regarding the extreme value theory and statistics in the case of earthquake magnitudes. The link between the generalized extreme value distribution (GEVD) as an asymptotic model for the block maxima of a random variable and the generalized Pareto distribution (GPD) as a model for the peaks over threshold (POT) of the same random variable is presented more clearly. Inappropriately, Pisarenko et al. (Pure Appl. Geophys 171:1599-1624, 2014) have neglected to note that the approximations by GEVD and GPD work only asymptotically in most cases. This is particularly the case with truncated exponential distribution (TED), a popular distribution model for earthquake magnitudes. I explain why the classical models and methods of the extreme value theory and statistics do not work well for truncated exponential distributions. Consequently, these classical methods should be used for the estimation of the upper bound magnitude and corresponding parameters. Furthermore, I comment on various issues of statistical inference in Pisarenko et al. and propose alternatives. I argue why GPD and GEVD would work for various types of stochastic earthquake processes in time, and not only for the homogeneous (stationary) Poisson process as assumed by Pisarenko et al. (Pure Appl. Geophys 171:1599-1624, 2014). The crucial point of earthquake magnitudes is the poor convergence of their tail distribution to the GPD, and not the earthquake process over time.

  15. Optimising the Number of Replicate- Versus Standard Measurements for Carbonate Clumped Isotope Thermometry

    NASA Astrophysics Data System (ADS)

    Kocken, I.; Ziegler, M.

    2017-12-01

    Clumped isotope measurements on carbonates are a quickly developing and promising palaeothermometry proxy1-3. Developments in the field have brought down the necessary sample amount and improved the precision and accuracy of the measurements. The developments have included inter-laboratory comparison and the introduction of an absolute reference frame4, determination of acid fractionation effects5, correction for the pressure baseline6, as well as improved temperature calibrations2, and most recently new approaches to improve efficiency in terms of sample gas usage7. However, a large-scale application of clumped isotope thermometry is still hampered by required large sample amounts, but also the time-consuming analysis. In general, a lot of time is goes into the measurement of standards. Here we present a study on the optimal ratio between standard- and sample measurements using the Kiel Carbonate Device method. We also consider the optimal initial signal intensity. We analyse ETH-standard measurements from several months to determine the measurement regime with the highest precision and optimised measurement time management.References 1. Eiler, J. M. Earth Planet. Sci. Lett. 262, 309-327 (2007).2. Kelson, J. R., et al. Geochim. Cosmochim. Acta 197, 104-131 (2017).3. Kele, S. et al. Geochim. Cosmochim. Acta 168, 172-192 (2015).4. Dennis, K. J. et al. Geochim. Cosmochim. Acta 75, 7117-7131 (2011).5. Müller, I. A. et al. Chem. Geol. 449, 1-14 (2017).6. Meckler, A. N. et al. Rapid Commun. Mass Spectrom. 28, 1705-1715 (2014).7. Hu, B. et al. Rapid Commun. Mass Spectrom. 28, 1413-1425 (2014).

  16. Porosity localizing instability in a compacting porous layer in a pure shear flow and the evolution of porosity band wavelength

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2010-09-01

    A porosity localizing instability occurs in compacting porous media that are subjected to shear if the viscosity of the solid matrix decreases with porosity ( Stevenson, 1989). This instability may have significant consequences for melt transport in regions of partial melt in the mantle and may significantly modify the effective viscosity of the asthenosphere ( Kohlstedt and Holtzman, 2009). Most analyses of this instability have been carried out assuming an imposed simple shear flow (e.g., Spiegelman, 2003; Katz et al., 2006; Butler, 2009). Pure shear can be realized in laboratory experiments and studying the instability in a pure shear flow allows us to test the generality of some of the results derived for simple shear and the flow pattern for pure shear more easily separates the effects of deformation from rotation. Pure shear flows may approximate flows near the tops of mantle plumes near earth's surface and in magma chambers. In this study, we present linear theory and nonlinear numerical model results for a porosity and strain-rate weakening compacting porous layer subjected to pure shear and we investigate the effects of buoyancy-induced oscillations. The linear theory and numerical model will be shown to be in excellent agreement. We will show that melt bands grow at the same angles to the direction of maximum compression as in simple shear and that buoyancy-induced oscillations do not significantly inhibit the porosity localizing instability. In a pure shear flow, bands parallel to the direction of maximum compression increase exponentially in wavelength with time. However, buoyancy-induced oscillations are shown to inhibit this increase in wavelength. In a simple shear flow, bands increase in wavelength when they are in the orientation for growth of the porosity localizing instability. Because the amplitude spectrum is always dominated by bands in this orientation, band wavelengths increase with time throughout simple shear simulations until the

  17. Generic pure quantum states as steady states of quasi-local dissipative dynamics

    NASA Astrophysics Data System (ADS)

    Karuvade, Salini; Johnson, Peter D.; Ticozzi, Francesco; Viola, Lorenza

    2018-04-01

    We investigate whether a generic pure state on a multipartite quantum system can be the unique asymptotic steady state of locality-constrained purely dissipative Markovian dynamics. In the tripartite setting, we show that the problem is equivalent to characterizing the solution space of a set of linear equations and establish that the set of pure states obeying the above property has either measure zero or measure one, solely depending on the subsystems’ dimension. A complete analytical characterization is given when the central subsystem is a qubit. In the N-partite case, we provide conditions on the subsystems’ size and the nature of the locality constraint, under which random pure states cannot be quasi-locally stabilized generically. Also, allowing for the possibility to approximately stabilize entangled pure states that cannot be exact steady states in settings where stabilizability is generic, our results offer insights into the extent to which random pure states may arise as unique ground states of frustration-free parent Hamiltonians. We further argue that, to a high probability, pure quantum states sampled from a t-design enjoy the same stabilizability properties of Haar-random ones as long as suitable dimension constraints are obeyed and t is sufficiently large. Lastly, we demonstrate a connection between the tasks of quasi-local state stabilization and unique state reconstruction from local tomographic information, and provide a constructive procedure for determining a generic N-partite pure state based only on knowledge of the support of any two of the reduced density matrices of about half the parties, improving over existing results.

  18. The thermal expansion and thermophysical properties of an aluminum and Al/B4C composite

    NASA Astrophysics Data System (ADS)

    Gladkovsky, S. V.; Kamantsev, I. S.; Kuteneva, S. V.; Veselova, V. E.; Ryzhkov, M. A.

    2017-12-01

    The paper presents results of experimental studies of the thermal expansion and thermophysical properties of an Al/B4C composite with a boron carbide content of 20 wt% and technically pure aluminum in the temperature range from 100 to 600°C to evaluate the possible use of this composite as a neutron-protective material in the nuclear industry.

  19. Effect of Discharge Time on Plasma Electrolytic Borocarbonitriding of Pure Iron

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoyue; Wu, Jie; Wang, Bin; Yang, Xuan; Chen, Lin; Qu, Yao; Xue, Wenbin

    The plasma electrolytic borocarbonitriding (PEB/C/N) process on pure iron was carried out in 25% borax solution with glycerine and carbamide additives under different discharge time at 360V. The morphology and structure of PEB/C/N hardened layers were analyzed by SEM and XRD. The hardness profiles of hardened layers were measured by microhardness test. Corrosion behavior of PEB/C/N layers was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Their wear performance was carried out using a pin-disc friction and wear tester under dry sliding test. The PEB/C/N samples mainly consisted of α-Fe, Fe2B, Fe3C, FeN, FeB, Fe2O3 and Fe4N phases, and the Fe2B phase was the dominant phase in the boride layer. It was found that the thickness of boride layer increased with the discharge time and reached 14μm after 60min treatment. The microhardness of the boride layer was up to 2100HV, which was much higher than that of the bare pure iron (about 150HV). After PEB/C/N treatment, the corrosion resistance of pure iron was slightly improved. The friction coefficient of PEB/C/N treated pure iron decreased to 0.129 from 0.556 of pure iron substrate. The wear rate of the PEB/C/N layer after 60min under dry sliding against ZrO2 ball was only 1/10 of that of the bare pure iron. The PEB/C/N treatment is an effective way to improve the wear behavior of pure iron.

  20. Thermally stable and high reflectivity Al-doped silver thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Loka, Chadrasekhar; Lee, Kwang; Joo, Sin Yong; Lee, Kee-Sun

    2018-03-01

    Thermally stable, high reflectance thin film coatings are indispensable in optoelectronic devices, especially as a potential back reflector for LEDs and solar cells. The silver has the drawback of agglomerating easily and poor thermal stability, which is limiting its application as a highly reflective coating in various optoelectronic applications. In this study, improved thermal stability by modification of the Ag film into an Ag/Al-doped Ag structure has been confirmed. In this paper, the surface morphology, optical reflectance, and thermal stability of the Ag/Al-doped Ag are investigated. The Ag/Al-doped Ag/sapphire films showed excellent thermal stability after annealing the films at 523 K with the highest reflectance about ∼86% as compared to the pure Ag films. The grain growth analysis results revealed that the Al-doping is effective to restrain the severe grain growth of silver films. The Auger electron spectroscopy results revealed that the outer diffusion of aluminum and the formation of Al-O bond at the outermost silver layer which is beneficial to retard the Ag grain growth.

  1. CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route

    PubMed Central

    Huo, Chengli; Ouyang, Jing; Yang, Huaming

    2014-01-01

    Highly ordered aluminum-containing mesoporous silica (Al-MCM-41) was prepared using attapulgite clay mineral as a Si and Al source. Mesoporous complexes embedded with CuO nanoparticles were subsequently prepared using various copper sources and different copper loadings in a direct synthetic route. The resulting CuO/Al-MCM-41 composite possessed p6mm hexagonally symmetry, well-developed mesoporosity, and relatively high BET surface area. In comparison to pure silica, these mesoporous materials embedded with CuO nanoparticles exhibited smaller pore diameter, thicker pore wall, and enhanced thermal stability. Long-range order in the aforementioned samples was observed for copper weight percentages as high as 30%. Furthermore, a significant blue shift of the absorption edge for the samples was observed when compared with that of bulk CuO. H2-TPR measurements showed that the direct-synthesized CuO/Al-MCM-41 exhibited remarkable redox properties compared to the post-synthesized samples, and most of the CuO nanoparticles were encapsulated within the mesoporous structures. The possible interaction between CuO and Al-MCM-41 was also investigated. PMID:24419589

  2. Wetting of TiC by Al-Cu alloys and interfacial characterization.

    PubMed

    Contreras, A

    2007-07-01

    The wetting behavior and the interfacial reactions that occurred between molten Al-Cu alloys (1, 4, 8, 20, 33, and 100 wt% Cu) and solid TiC substrates were studied by the sessile drop technique in the temperature range of 800-1130 degrees C. The effect of wetting behavior on the interfacial reaction layer was studied. All the Al-Cu alloys react with TiC at the interface forming an extensive reaction layer. The interface thickness varied with the samples, and depends on the temperature, chemical composition of the alloy and the time of the test. Wetting increases with increasing concentration of copper in the Al-Cu alloy at 800 and 900 degrees C. In contrast, at higher temperature such as 1000 degrees C wetting decreases with increasing copper content. The spreading kinetics and the work of adhesion were evaluated. The high values of activation energies indicated that spreading is not a simple viscosity controlled phenomenon but is a chemical reaction process. The spreading of the aluminum drop is observed to occur according to the formation of Al4C3, CuAl2O4, CuAl2, TiCux mainly, leading to a decreases in the contact angle. As the contact angle decreases the work of adhesion increases with increasing temperature. Al-Cu/TiC assemblies showed cohesive fracture corresponding to a strong interface. However, using pure Cu the adhesion work is poor, and the percentage of cohesion work is also too low (27-34%).

  3. Endoscopic Endonasal Surgery for Purely Intrathird Ventricle Craniopharyngioma.

    PubMed

    Nishioka, Hiroshi; Fukuhara, Noriaki; Yamaguchi-Okada, Mitsuo; Yamada, Shozo

    2016-07-01

    Extended endoscopic transsphenoidal surgery (EETS) is a safe and effective treatment for many suprasellar craniopharyngiomas, including those with third-ventricle involvement. Craniopharyngioma entirely within the third ventricle (purely intraventricular type), however, is generally regarded unsuitable for treatment with EETS. Three patients underwent total removal of a purely intraventricular craniopharyngioma with inferior extension via EETS by direct incision of the bulging, stretched ventricular floor and fine dissection from the ventricular wall. In 2 patients with an anteriorly displaced chiasm, the space between the chiasm and pituitary stalk created a wide corridor to the ventricle, whereas in the third case, in which the infrachiasmal space was somewhat narrowed, partial sacrifice of the pituitary gland was necessary to obtain sufficient space. Despite preservation of the stalk in 2 patients, hypopituitarism and diabetes insipidus developed after surgery. There was no other complication including obesity. Selected patients with purely intraventricular craniopharyngioma can be treated effectively and safely with EETS. Those with inferior extension in the interpeduncular fossa and anterior displacement of the chiasm may be suitable candidates. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Ab initio studies on the adsorption and implantation of Al and Fe to nitride materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riedl, H., E-mail: helmut.riedl@tuwien.ac.at; Zálešák, J.; Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben

    2015-09-28

    The formation of transfer material products on coated cutting and forming tools is a major failure mechanism leading to various sorts of wear. To describe the atomistic processes behind the formation of transfer materials, we use ab initio to study the adsorption energy as well as the implantation barrier of Al and Fe atoms for (001)-oriented surfaces of TiN, Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, CrN, and Cr{sub 0.90}Si{sub 0.10}N. The interactions between additional atoms and nitride-surfaces are described for pure adhesion, considering no additional stresses, and for the implantation barrier. The latter, we simplified to the stress required tomore » implant Al and Fe into sub-surface regions of the nitride material. The adsorption energies exhibit pronounced extrema at high-symmetry positions and are generally highest at nitrogen sites. Here, the binary nitrides are comparable to their ternary counterparts and the average adhesive energy is higher (more negative) on CrN than TiN based systems. Contrary, the implantation barrier for Al and Fe atoms is higher for the ternary systems Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, and Cr{sub 0.90}Si{sub 0.10}N than for their binary counterparts TiN and CrN. Based on our results, we can conclude that TiN based systems outperform CrN based systems with respect to pure adhesion, while the Si-containing ternaries exhibit higher implantation barriers for Al and Fe atoms. The data obtained are important to understand the atomistic interaction of metal atoms with nitride-based materials, which is valid not just for machining operations but also for any combination such as interfaces between coatings and substrates or multilayer and phase arrangements themselves.« less

  5. A composite of complex and chemical hydrides yields the first Al-based amidoborane with improved hydrogen storage properties.

    PubMed

    Dovgaliuk, Iurii; Jepsen, Lars H; Safin, Damir A; Łodziana, Zbigniew; Dyadkin, Vadim; Jensen, Torben R; Devillers, Michel; Filinchuk, Yaroslav

    2015-10-05

    The first Al-based amidoborane Na[Al(NH2 BH3 )4 ] was obtained through a mechanochemical treatment of the NaAlH4 -4 AB (AB=NH3 BH3 ) composite releasing 4.5 wt % of pure hydrogen. The same amidoborane was also produced upon heating the composite at 70 °C. The crystal structure of Na[Al(NH2 BH3 )4 ], elucidated from synchrotron X-ray powder diffraction and confirmed by DFT calculations, contains the previously unknown tetrahedral ion [Al(NH2 BH3 )4 ](-) , with every NH2 BH3 (-) ligand coordinated to aluminum through nitrogen atoms. Combination of complex and chemical hydrides in the same compound was possible due to both the lower stability of the AlH bonds compared to the BH ones in borohydride, and due to the strong Lewis acidity of Al(3+) . According to the thermogravimetric analysis-differential scanning calorimetry-mass spectrometry (TGA-DSC-MS) studies, Na[Al(NH2 BH3 )4 ] releases in two steps 9 wt % of pure hydrogen. As a result of this decomposition, which was also supported by volumetric studies, the formation of NaBH4 and amorphous product(s) of the surmised composition AlN4 B3 H(0-3.6) were observed. Furthermore, volumetric experiments have also shown that the final residue can reversibly absorb about 27 % of the released hydrogen at 250 °C and p(H2 )=150 bar. Hydrogen re-absorption does not regenerate neither Na[Al(NH2 BH3 )4 ] nor starting materials, NaAlH4 and AB, but rather occurs within amorphous product(s). Detailed studies of the latter one(s) can open an avenue for a new family of reversible hydrogen storage materials. Finally, the NaAlH4 -4 AB composite might become a starting point towards a new series of aluminum-based tetraamidoboranes with improved hydrogen storage properties such as hydrogen storage density, hydrogen purity, and reversibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. "Vague and artificial": the historically elusive distinction between pure and applied science.

    PubMed

    Gooday, Graeme

    2012-09-01

    This essay argues for the historicity of applied science as a contested category within laissez-faire Victorian British science. This distinctively pre-twentieth-century notion of applied science as a self-sustaining, autonomous enterprise was thrown into relief from the 1880s by a campaign on the part of T. H. Huxley and his followers to promote instead the primacy of "pure" science. Their attempt to relegate applied science to secondary status involved radically reconfiguring it as the mere application of pre-existing pure science. This new notion of extrinsically funded pure science that would produce only contingently future social benefits as a mere by-product came under pressure during World War I, when military priorities focused attention once again on science for immediate utility. This threatened the Cambridge-based promoters of self-referential pure science who collectively published Science and the Nation in 1917. Yet most contributors to this work discussed forms of "applied" science that had no prior "pure" form. Even the U.K.'s leading government scientist, Lord Moulton, dismissed the book's provocative distinction between pure and applied science as unhelpfully "vague and artificial."

  7. Importance of doping and frustration in itinerant Fe-doped Cr 2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr 2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr 1-xFe x) 2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing T N to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which T N gradually decreases followed by the appearance ofmore » a ferromagnetic state. Theoretical calculations explain that the Cr 2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr 2Al. In pure-phase Cr 2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr 2Al and Fe-doped Cr 2Al.« less

  8. Effect of carbon nanotube addition on the thermite reaction in the Al/CuO energetic nanocomposite

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula; Sharma, Vimal

    2017-08-01

    In this work, the Al/CNT/CuO nano-thermite samples are prepared by ultrasonic mixing with variable CNT content. The morphology of nano-thermites analysed by electron microscopy revealed that the CNTs are dispersed and there are intimate contacts between fuels (Al and CNT) and oxidiser (CuO) constituents of the nano-thermite. Raman spectroscopy technique is used to analyse the structural integrity of the CNTs in the nano-thermite. The thermite reaction characteristics are evaluated by simultaneous thermogravimetric analysis/differential scanning calorimetry technique. The exothermic enthalpy of the Al/CNT/CuO nano-thermite samples increased with increasing CNT content. The effect of Al particle size and Al/Cu molar ratio variation on the thermite reaction enthalpy is also analysed. The ignition temperature of the thermite reaction is also lowered by 71 °C than that of Al/CuO nano-thermite. The activation energy for thermite reaction of Al/CNT/CuO nano-thermite is also lowered by 23% to that of pure Al/CuO. The residues of the nano-thermites after the thermite reaction at 1010 °C are collected and analysed by the X-ray diffraction.

  9. Soldering of Mg Joints Using Zn-Al Solders

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Berent, Katarzyna; Skuza, Wojciech; Janik, Katarzyna

    2018-07-01

    Magnesium has applications in the automotive and aerospace industries that can significantly contribute to greater fuel economy and environmental conservation. The Mg alloys used in the automotive industry could reduce mass by up to 70 pct, providing energy savings. However, alongside the advantages there are limitations and technological barriers to use Mg alloys. One of the advantages concerns phenomena occurring at the interface when joining materials investigated in this study, in regard to the effect of temperature and soldering time for pure Mg joints. Eutectic Zn-Al and Zn-Al alloys with 0.05 (wt pct) Li and 0.2 (wt pct) Na were used in the soldering process. The process was performed for 3, 5, and 8 minutes of contact, at temperatures of 425 °C, 450 °C, 475 °C, and 500 °C. Selected, solidified solder-substrate couples were cross-sectioned, and their interfacial microstructures were investigated by scanning electron microscopy. The experiment was designed to demonstrate the effect of time, temperature, and the addition of Li and Na on the kinetics of the dissolving Mg substrate. The addition of Li and Na to eutectic Zn-Al caused to improve mechanical properties. Higher temperatures led to reduced joint strength, which is caused by increased interfacial reaction.

  10. Soldering of Mg Joints Using Zn-Al Solders

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Berent, Katarzyna; Skuza, Wojciech; Janik, Katarzyna

    2018-04-01

    Magnesium has applications in the automotive and aerospace industries that can significantly contribute to greater fuel economy and environmental conservation. The Mg alloys used in the automotive industry could reduce mass by up to 70 pct, providing energy savings. However, alongside the advantages there are limitations and technological barriers to use Mg alloys. One of the advantages concerns phenomena occurring at the interface when joining materials investigated in this study, in regard to the effect of temperature and soldering time for pure Mg joints. Eutectic Zn-Al and Zn-Al alloys with 0.05 (wt pct) Li and 0.2 (wt pct) Na were used in the soldering process. The process was performed for 3, 5, and 8 minutes of contact, at temperatures of 425 °C, 450 °C, 475 °C, and 500 °C. Selected, solidified solder-substrate couples were cross-sectioned, and their interfacial microstructures were investigated by scanning electron microscopy. The experiment was designed to demonstrate the effect of time, temperature, and the addition of Li and Na on the kinetics of the dissolving Mg substrate. The addition of Li and Na to eutectic Zn-Al caused to improve mechanical properties. Higher temperatures led to reduced joint strength, which is caused by increased interfacial reaction.

  11. Structural, optical, morphological and electrical properties of undoped and Al-doped ZnO thin films prepared using sol—gel dip coating process

    NASA Astrophysics Data System (ADS)

    Boukhenoufa, N.; Mahamdi, R.; Rechem, D.

    2016-11-01

    In this work, sol—gel dip-coating technique was used to elaborate ZnO pure and ZnO/Al films. The impact of Al-doped concentration on the structural, optical, surface morphological and electrical properties of the elaborated samples was investigated. It was found that better electrical and optical performances have been obtained for an Al concentration equal to 5%, where the ZnO thin films exhibit a resistivity value equal to 1.64104 Ω·cm. Moreover, highest transparency has been recorded for the same Al concentration value. The obtained results from this investigation make the developed thin film structure a potential candidate for high optoelectronic performance applications.

  12. Characterization of pure and composite resorcinol formaldehyde aerogels doped with silver

    NASA Astrophysics Data System (ADS)

    Attia, S. M.; Abdelfatah, M. S.; Mossad, M. M.

    2017-07-01

    A series of Resorcinol Formaldehyde (RF) aerogels composites with nanoparticles of sliver were prepared by the sol-gel method at different concentrations doped silver. FTIR spectra of pure and composite RF aerogels show six absorption bands attributed to -OH groups bonded to the benzene ring, stretching of -CH2- bonds and aromatic ring stretching. FTIR results ensured that sliver particles do not interact with aerogel network. UV-visible spectrum of pure silver show an absorbance peak at 420 nm attributed to the surface plasmon excitation of sliver Nano spheres. UV-visible spectral of pure and composite RF aerogels shows a steep decrease of absorption with wavelength after 500 nm, making sample’s color reddish brown. TEM and SEM images of pure and composite RF aerogels revealed that the textural arrangement of RF aerogels can be described as densely packed small nodules.

  13. Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system

    PubMed Central

    Li, Jun; Zhang, Chi; Huang, Poyi; Kuru, Erkin; Forster-Benson, Eliot T. C.; Church, George M.

    2017-01-01

    ABSTRACT Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ∼6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ∼2/3rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batch systems suffer from low ribosome recycling efficiency when translating proteins from 82 kD to 224 kD. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ∼1.5 to ∼2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion. PMID:28702280

  14. Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Zhang, Chi; Huang, Poyi

    Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ~6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ~2/3 rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batchmore » systems suffer from low ribosome recycling efficiency when translating proteins from 82 k D to 224 k D. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ~1.5 to ~2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion.« less

  15. Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system

    DOE PAGES

    Li, Jun; Zhang, Chi; Huang, Poyi; ...

    2017-05-09

    Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ~6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ~2/3 rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batchmore » systems suffer from low ribosome recycling efficiency when translating proteins from 82 k D to 224 k D. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ~1.5 to ~2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion.« less

  16. Microstructural Evolution of Al-1Fe (Weight Percent) Alloy During Accumulative Continuous Extrusion Forming

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Guan, Ren-Guo; Tie, Di; Shang, Ying-Qiu; Jin, Hong-Mei; Li, Hong-Chao

    2018-04-01

    As a new microstructure refining method, accumulative continuous extrusion forming (ACEF) cannot only refine metal matrix but also refine the phases that exist in it. In order to detect the refinements of grain and second phase during the process, Al-1Fe (wt pct) alloy was processed by ACEF, and the microstructural evolution was analyzed by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results revealed that the average grain size of Al-1Fe (wt pct) alloy decreased from 13 to 1.2 μm, and blocky Al3Fe phase with an average length of 300 nm was granulated to Al3Fe particle with an average diameter of 200 nm, after one pass of ACEF. Refinement of grain was attributed to continuous dynamic recrystallization (CDRX), and the granulation of Al3Fe phase included the spheroidization resulting from deformation heat and the fragmentation caused by the coupling effects of strain and thermal effect. The spheroidization worked in almost the entire deformation process, while the fragmentation required strain accumulation. However, fragmentation contributed more than spheroidization. Al3Fe particle stimulated the formation of substructure and retarded the migration of recrystallized grain boundary, but the effect of Al3Fe phase on refinement of grain could only be determined by the contrastive investigation of Al-1Fe (wt pct) alloy and pure Al.

  17. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    PubMed

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Concurrence of assistance and Mermin inequality on three-qubit pure states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Dong Pyo; Kim, Taewan; Lee, Kyungjin

    2010-04-15

    We study a relation between the concurrence of assistance and the Mermin inequality on three-qubit pure states and claim that if a three-qubit pure state has a minimal concurrence of assistance greater than 1/2 then the state violates some Mermin inequality. In this work, we analytically show that our claim holds for several classes and also find that it can be generalized to the set of all three-qubit pure states by exploiting previous numerical work [C. Emary and C. W. J. Beenakker, Phys. Rev. A 69, 032317 (2004)].

  19. Mechanical and Morphological Properties of Polypropylene/Nano α-Al2O3 Composites

    PubMed Central

    Mirjalili, F.; Chuah, L.; Salahi, E.

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt. PMID:24688421

  20. Microstructure and Mechanical Properties of Zn-Ni-Al2O3 Composite Coatings

    PubMed Central

    Bai, Yang; Wang, Zhenhua; Li, Xiangbo; Huang, Guosheng; Li, Caixia

    2018-01-01

    Zn-Ni-Al2O3 composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS) technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al2O3. The energy-dispersive spectroscopy results show that the Al2O3 content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al2O3 particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al2O3 and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear. PMID:29883391

  1. A Multinomial Model for Identifying Significant Pure-Tone Threshold Shifts

    ERIC Educational Resources Information Center

    Schlauch, Robert S.; Carney, Edward

    2007-01-01

    Purpose: Significant threshold differences on retest for pure-tone audiometry are often evaluated by application of ad hoc rules, such as a shift in a pure-tone average or in 2 adjacent frequencies that exceeds a predefined amount. Rules that are so derived do not consider the probability of observing a particular audiogram. Methods: A general…

  2. Synthesis and equation of state of post-perovskites in the (Mg,Fe)[subscript 3]Al[subscript 2]Si[subscript 3]O[subscript 12] system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, Sean R.; Dorfman, Susannah M.; Kubo, Atsushi

    The formation and properties of the post-perovskite (CaIrO{sub 3}-type) phase were studied in Fe-rich compositions along the pyrope-almandine ((Mg,Fe){sub 3}Al{sub 2}Si{sub 3}O{sub 12}) join. Natural and synthetic garnet starting materials with almandine fractions from 38 to 90 mol% were studied using synchrotron X-ray diffraction in the laser-heated diamond anvil cell. Single-phase post-perovskite could be successfully synthesized from garnet compositions at pressures above 148 GPa and temperatures higher than 1600 K. In some cases, evidence for a minor amount of Al{sub 2}O{sub 3} post-perovskite was observed for Alm38 and Alm54 compositions in the perovskite + post-perovskite two-phase region. Pressure-volume data formore » the post-perovskite phases collected during decompression show that incorporation of Fe leads to a systematic increase of unit cell volume broadly similar to the variation observed in the (Mg,Fe)SiO{sub 3} system. The presence of Al{sub 2}O{sub 3} increases the stability of perovskite relative to post-perovskite, requiring higher pressures (> 148 GPa) for synthesis of pure post-perovskites. Our data together with those of Tateno et al. (2005) also suggest that in the Al-rich system the presence of Fe has no strong effect on the pressure required to synthesize the pure post-perovskite phase, but the two-phase perovskite and post-perovskite region may be broad and its width dependent on Fe content. Our results suggest that any regions highly enriched in Al{sub 2}O{sub 3} may consist of either the perovskite phase or a mixture of perovskite and post-perovskite phases throughout the entire thickness of the D* region. The observed synthesis pressures (> 148 GPa) for a pure post-perovskite phase are beyond that at the Earth's core-mantle boundary ({approx} 135 GPa).« less

  3. General entanglement-assisted transformation for bipartite pure quantum states

    NASA Astrophysics Data System (ADS)

    Song, Wei; Huang, Yan; Nai-LeLiu; Chen, Zeng-Bing

    2007-01-01

    We introduce the general catalysts for pure entanglement transformations under local operations and classical communications in such a way that we disregard the profit and loss of entanglement of the catalysts per se. As such, the possibilities of pure entanglement transformations are greatly expanded. We also design an efficient algorithm to detect whether a k × k general catalyst exists for a given entanglement transformation. This algorithm can also be exploited to witness the existence of standard catalysts.

  4. Visibility in a pure model of golden spiral phyllotaxis.

    PubMed

    Herrmann, Burghard

    2018-07-01

    This paper considers the geometry of plants with golden spiral phyllotaxis, i.e. growing leaf by leaf on a spiral with golden divergence angle, via the simplest mathematical model, a cylinder with regular arrangement of points on its surface. As is well-known, Fibonacci numbers appear by means of the order of parastichies. This fact is shown to be a straightforward application of logical consequences to a particular model with respect to pure visibility. This notion is very similar to that of contact parastichies. The 3-D cylindrical model of golden spiral phyllotaxis abstracts from the form of leaves and identifies them with points. Pure visibility is specified in the 2-D representation so that common sense parastichies can be scrutinized. The main Theorem states that the orders of the purely most visible parastichies are Fibonacci numbers. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Influence of nitrogen-doping concentration on the electronic structure of CuAlO2 by first-principles studies

    NASA Astrophysics Data System (ADS)

    Liu, Wei-wei; Chen, Hong-xia; Liu, Cheng-lin; Wang, Rong

    2017-02-01

    Effect of N doping concentration on the electronic structure of N-doped CuAlO2 was investigated by density functional theory based on generalized-gradient approximation plus orbital potential. Lattice parameters a and c both increase with increasing N-doping concentration. Formation energies increase with increasing N doping concentration and all N-doped CuAlO2 were structurally stable. The calculated band gaps for N-doped CuAlO2 narrowed compared to pure CuAlO2, which was attributed to the stronger hybridization between Cu-3d and N-2p states and the downward shift of Cu-3p states in conduction bands. The higher the N-doping concentration is, the narrower the band gap. N-doped CuAlO2 shows a typical p-type semiconductor. The band structure changed from indirect to direct after N doping which will benefit the application of the CuAlO2 materials in optoelectronic and electronic devices.

  6. Assessment of semen quality in pure and crossbred Jersey bulls

    PubMed Central

    Kumar, Umesh; Gawande, Ajay P.; Sahatpure, Sunil K.; Patil, Manoj S.; Lakde, Chetan K.; Bonde, Sachin W.; Borkar, Pradnyankur L.; Poharkar, Ajay J.; Ramteke, Baldeo R.

    2015-01-01

    Aim: To compare the seminal attributes of neat, pre-freeze (at equilibration), and post-freeze (24 h after freezing) semen in pure and crossbred Jersey bulls. Materials and Methods: Total 36 ejaculates (3 ejaculates from each bull) were collected from 6 pure Jersey and 6 crossbred Jersey bulls and evaluated for various seminal attributes during neat, pre-freeze, and post-freeze semen. Results: The mean (±standard error [SE]) values of neat semen characteristics in pure and crossbred Jersey bulls were recorded such as volume (ml), color, consistency, mass activity (scale: 0-5), and sperm concentration (millions/ml). The extended semen was further investigated at pre-freeze and post-freeze stages and the mean (±SE) values recorded at neat, pre-freeze, and post-freeze semen were compared between pure and crossbred Jersey bulls; sperm motility (80.55±1.70%, 62.77±1.35%, 46.11±1.43% vs. 80.00±1.80%, 65.00±1.66%, 47.22±1.08%), live sperm count (83.63±1.08%, 71.72±1.09%, 58.67±1.02% vs. 80.00±1.08%, 67.91±1.20%, 51.63±0.97%), total abnormal sperm count (8.38±0.32%, 12.30±0.39%, 16.75±0.42% vs. 9.00±0.45%, 12.19±0.48%, 18.11±0.64%), hypo-osmotic swelling (HOS) reacted spermatozoa (71.88±0.77%, 62.05±0.80%, 47.27±1.05% vs. 72.77±1.02%, 62.11±0.89%, 45.94±1.33%), acrosome integrity (89.05±0.83%, 81.33±0.71%, 71.94±0.86% vs. 86.55±0.57%, 78.66±0.42%, 69.38±0.53%), and DNA integrity (99.88±0.07%, 100, 99.66±0.11% vs. 99.94±0.05%, 100, 99.44±0.18%,). The volume, color, consistency, sperm concentration, and initial motility in pure and crossbred Jersey bulls did not differ significantly (p>0.05). The mass activity was significantly (p<0.05) higher in pure Jersey as compare to crossbred Jersey bulls. Live sperm percentage and acrosome integrity was significantly (p<0.01) higher in pure Jersey bulls as compared to crossbred Jersey bulls. However, no statistical difference (p>0.05) was observed in abnormal sperm; HOS reacted spermatozoa and DNA

  7. A new nanospray drying method for the preparation of nicergoline pure nanoparticles

    NASA Astrophysics Data System (ADS)

    Martena, Valentina; Censi, Roberta; Hoti, Ela; Malaj, Ledjan; Di Martino, Piera

    2012-06-01

    Three different batches of pure nanoparticles (NPs) of nicergoline (NIC) were prepared by spray drying a water:ethanol solution by a new Nano Spray Dryer Büchi B-90. Spherical pure NPs were obtained, and several analytical techniques such as differential scanning calorimetry and X-ray powder diffractometry permitted to assess their amorphous character. A comparison of the solubility, intrinsic dissolution, and drug release of original particles and pure amorphous NPs were determined, revealing an interesting improvement of biopharmaceutical properties of amorphous NPs, due to both amorphous properties and nanosize dimensions. Since in a previous work, the high-thermodynamic stability of amorphous NIC was demonstrated, this study is addressed toward the formulation of NIC as pure amorphous NPs.

  8. The Riemann Problem for the Multidimensional Isentropic System of Gas Dynamics is Ill-Posed if It Contains a Shock

    NASA Astrophysics Data System (ADS)

    Markfelder, Simon; Klingenberg, Christian

    2018-03-01

    In this paper we consider the isentropic compressible Euler equations in two space dimensions together with particular initial data. This data consists of two constant states, where one state lies in the lower and the other state in the upper half plane. The aim is to investigate whether there exists a unique entropy solution or if the convex integration method produces infinitely many entropy solutions. For some initial states this question has been answered by Feireisl and Kreml (J Hyperbolic Differ Equ 12(3):489-499, 2015), and also Chen and Chen (J Hyperbolic Differ Equ 4(1):105-122, 2007), where there exists a unique entropy solution. For other initial states Chiodaroli and Kreml (Arch Ration Mech Anal 214(3):1019-1049, 2014) and Chiodaroli et al. (Commun Pure Appl Math 68(7):1157-1190, 2015), showed that there are infinitely many entropy solutions. For still other initial states the question on uniqueness remained open and this will be the content of this paper. This paper can be seen as a completion of the aforementioned papers by showing that the solution is non-unique in all cases (except if the solution is smooth).

  9. Catalytic removal of sulfur dioxide from dibenzothiophene sulfone over Mg-Al mixed oxides supported on mesoporous silica.

    PubMed

    You, Nansuk; Kim, Min Ji; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Jeon, Jong-Ki

    2010-05-01

    Dibenzothiophene sulfone (DBTS), one of the products of the oxidative desulfurization of heavy oil, can be removed through extraction as well as by an adsorption process. It is necessary to utilize DBTS in conjunction with catalytic cracking. An object of the present study is to provide an Mg-Al-mesoporous silica catalyst for the removal of sulfur dioxide from DBTS. The characteristics of the Mg-Al-mesoporous silica catalyst were investigated through N2 adsorption, XRD, ICP, and XRF. An Mg-Al-mesoporous silica catalyst formulated in a direct incorporation method showed higher catalytic performance compared to pure MgO during the catalytic removal of sulfur dioxide from DBTS. The higher dispersion of Mg as well as the large surface area of the Mg-Al-mesoporous silica catalyst strongly influenced the catalyst basicity in DBTS cracking.

  10. In vitro apatite formation on nano-crystalline titania layer aligned parallel to Ti6Al4V alloy substrates with sub-millimeter gap.

    PubMed

    Hayakawa, Satoshi; Matsumoto, Yuko; Uetsuki, Keita; Shirosaki, Yuki; Osaka, Akiyoshi

    2015-06-01

    Pure titanium substrates were chemically oxidized with H2O2 and subsequent thermally oxidized at 400 °C in air to form anatase-type titania layer on their surface. The chemically and thermally oxidized titanium substrate (CHT) was aligned parallel to the counter specimen such as commercially pure titanium (cpTi), titanium alloy (Ti6Al4V) popularly used as implant materials or Al substrate with 0.3-mm gap. Then, they were soaked in Kokubo's simulated body fluid (SBF, pH 7.4, 36.5 °C) for 7 days. XRD and SEM analysis showed that the in vitro apatite-forming ability of the contact surface of the CHT specimen decreased in the order: cpTi > Ti6Al4V > Al. EDX and XPS surface analysis showed that aluminum species were present on the contact surface of the CHT specimen aligned parallel to the counter specimen such as Ti6Al4V and Al. This result indicated that Ti6Al4V or Al specimens released the aluminum species into the SBF under the spatial gap. The released aluminum species might be positively or negatively charged in the SBF and thus can interact with calcium or phosphate species as well as titania layer, causing the suppression of the primary heterogeneous nucleation and growth of apatite on the contact surface of the CHT specimen under the spatial gap. The diffusion and adsorption of aluminum species derived from the half-sized counter specimen under the spatial gap resulted in two dimensionally area-selective deposition of apatite particles on the contact surfaces of the CHT specimen.

  11. Computational materials design of attractive Fermion system with large negative effective Ueff in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2: Charge-excitation induced Ueff < 0

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Fukushima, T.; Uede, H.; Katayama-Yoshida, H.

    2015-12-01

    On the basis of general design rules for negative effective U(Ueff) systems by controlling purely-electronic and attractive Fermion mechanisms, we perform computational materials design (CMD®) for the negative Ueff system in hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 by ab initio calculations with local density approximation (LDA) and self-interaction corrected-LDA (SIC-LDA). It is found that the large negative Ueff in the hole-doped attractive Fermion systems for CuAlO2 (UeffLDA = - 4.53 eV and UeffSIC-LDA = - 4.20 eV), AgAlO2 (UeffLDA = - 4.88 eV and UeffSIC-LDA = - 4.55 eV) and AuAlO2 (UeffLDA = - 4.14 eV and UeffSIC-LDA = - 3.55 eV). These values are 10 times larger than that in hole-doped three-dimensional (3D) CuFeS2 (Ueff = - 0.44 eV). For future calculations of Tc and phase diagram by quantum Monte Carlo simulations, we propose the negative Ueff Hubbard model with the anti-bonding single π-band model for CuAlO2, AgAlO2 and AuAlO2 using the mapped parameters obtained from ab initio electronic structure calculations. Based on the theory of negative Ueff Hubbard model (Noziéres and Schmitt-Rink, 1985), we discuss |Ueff| dependence of superconducting critical temperature (Tc) in the 2D Delafossite of CuAlO2, AgAlO2 and AuAlO2 and 3D Chalcopyrite of CuFeS2, which shows the interesting chemical trend, i.e., Tc increases exponentially (Tc ∝ exp [ - 1 / | Ueff | ]) in the weak coupling regime | Ueff(- 0.44 eV) | < W(∼ 2 eV) (where W is the band width of the negative Ueff Hubbard model) for the hole-doped CuFeS2, and then Tc goes through a maximum when | Ueff(- 4.88 eV , - 4.14 eV) | ∼ W(2.8 eV , 3.5 eV) for the hole-doped AgAlO2 and AuAlO2, and finally Tc decreases with increasing |Ueff| in the strong coupling regime, where | Ueff(- 4.53 eV) | > W(1.7 eV) , for the hole-doped CuAlO2.

  12. Physical and Spiritual Education within the Framework of Pure Life

    ERIC Educational Resources Information Center

    Bagheri Noaparast, Khosrow

    2013-01-01

    This paper aims at showing the dimensions of spirituality in childhood education by suggesting a new analysis of the concept of "pure life" used in the Qur'an. Putting spirituality in the framework of the pure life provides us with a rich framework in dealing with spirituality as the latter will be extended to all dimensions of a life. In the…

  13. Heat engine driven by purely quantum information.

    PubMed

    Park, Jung Jun; Kim, Kang-Hwan; Sagawa, Takahiro; Kim, Sang Wook

    2013-12-06

    The key question of this Letter is whether work can be extracted from a heat engine by using purely quantum mechanical information. If the answer is yes, what is its mathematical formula? First, by using a bipartite memory we show that the work extractable from a heat engine is bounded not only by the free energy change and the sum of the entropy change of an individual memory but also by the change of quantum mutual information contained inside the memory. We then find that the engine can be driven by purely quantum information, expressed as the so-called quantum discord, forming a part of the quantum mutual information. To confirm it, as a physical example we present the Szilard engine containing a diatomic molecule with a semipermeable wall.

  14. Quantum gravity in the Eddington purely affine picture

    NASA Astrophysics Data System (ADS)

    Martellini, M.

    1984-06-01

    It was shown by Kijowski and Tulczjew that pure gravity with a cosmological constant can be obtained by a covariant Legendre transformation of a purely affine Lagrangian "in the manner of Eddington" constructed from a symmetric linear connection. In this paper I prove by explicit calculations that the Eddington Lagrangian is equivalent, in the sense which gives the same field equations, to a polynomial effective Lagrangian which turns out to be power-counting renormalizable. Then a formal proof of the unitarity of this theory is stated in the Kugo-Ojima formalism on the basis of the existence of two local Becchi-Rouet-Stora symmetries. These supertransformations are related to the algebra of the diffeomorphisms of the space-time, as well as to that of the volume-preserving space-time transformations which are not fixed by the gauge fixing used for the diffeomorphism group itself. Furthermore, I find that in the purely affine picture quantum gravity exhibits an infrared freedom. Since now the self-coupling constant is given by the cosmological constant, such a property could explain the observed almost zero value of the cosmological term at very large distances, i.e., to very low energies.

  15. Understanding the effects of process parameters on the properties of cold gas dynamic sprayed pure titanium coatings

    NASA Astrophysics Data System (ADS)

    Wong, Wilson

    their corresponding coatings. For all feedstock powder morphologies, it was observed that the larger the particle size, the higher the temperature generated on impact. For the spherical powders, the higher the temperature generated on impact, the lower the stress needed to deform the particle. In addition, as the kinetic energy of the impacting particle increased, the flow peak stress decreased while the final strain increased. Furthermore, higher final flow strains were associated with higher coating DeltaHV 10 (between the coatings and the feedstock powders). Similar relationships are expected to exist for the sponge and irregular feedstock powders. Based on porosity, the spherical medium powder was found to have the best cold sprayability. The final part of the investigation focussed on the effect of substrate surface roughness and coating thickness on the adhesion strength of commercially pure titanium cold sprayed coatings onto Steel 1020, Al 6061, and Ti substrates. Adhesion strength was measured by tensile/pull tests according to ASTM C-633-01 standard. Through-thickness residual stresses of selected coatings were measured using the modified layer removal method (MLRM). In addition, mean coating residual stresses were calculated from MLRM results. It was found that adhesion strength increases with increasing substrate surface roughness and decreases with increasing coating thickness. Furthermore, mean coating residual stresses were correlated with adhesion strength and it was suggested that higher adhesion strengths are associated with higher mean compressive stresses and a higher probability for adiabatic shear instability to occur due to the higher particle impact velocities. In general, it was found that under similar cold spray conditions and substrate surface preparation method, adhesion strength was strongest for commercially pure titanium coatings deposited onto Al 6061, followed by Ti, then Steel 1020.

  16. Diagnosing pure-electron plasmas with internal particle flux probes.

    PubMed

    Kremer, J P; Pedersen, T Sunn; Marksteiner, Q; Lefrancois, R G; Hahn, M

    2007-01-01

    Techniques for measuring local plasma potential, density, and temperature of pure-electron plasmas using emissive and Langmuir probes are described. The plasma potential is measured as the least negative potential at which a hot tungsten filament emits electrons. Temperature is measured, as is commonly done in quasineutral plasmas, through the interpretation of a Langmuir probe current-voltage characteristic. Due to the lack of ion-saturation current, the density must also be measured through the interpretation of this characteristic thereby greatly complicating the measurement. Measurements are further complicated by low densities, low cross field transport rates, and large flows typical of pure-electron plasmas. This article describes the use of these techniques on pure-electron plasmas in the Columbia Non-neutral Torus (CNT) stellarator. Measured values for present baseline experimental parameters in CNT are phi(p)=-200+/-2 V, T(e)=4+/-1 eV, and n(e) on the order of 10(12) m(-3) in the interior.

  17. Fast word reading in pure alexia: "fast, yet serial".

    PubMed

    Bormann, Tobias; Wolfer, Sascha; Hachmann, Wibke; Neubauer, Claudia; Konieczny, Lars

    2015-01-01

    Pure alexia is a severe impairment of word reading in which individuals process letters serially with a pronounced length effect. Yet, there is considerable variation in the performance of alexic readers with generally very slow, but also occasionally fast responses, an observation addressed rarely in previous reports. It has been suggested that "fast" responses in pure alexia reflect residual parallel letter processing or that they may even be subserved by an independent reading system. Four experiments assessed fast and slow reading in a participant (DN) with pure alexia. Two behavioral experiments investigated frequency, neighborhood, and length effects in forced fast reading. Two further experiments measured eye movements when DN was forced to read quickly, or could respond faster because words were easier to process. Taken together, there was little support for the proposal that "qualitatively different" mechanisms or reading strategies underlie both types of responses in DN. Instead, fast responses are argued to be generated by the same serial-reading strategy.

  18. Hydrogen isotope trapping in Al-Cu binary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Paul; Karnesky, Richard A.

    In this study, the trapping mechanisms for hydrogen isotopes in Al–X Cu (0.0 at. % < X < 3.5 at. %) alloys were investigated using thermal desorption spectroscopy (TDS), electrical conductivity, and differential scanning calorimetry. Constant heating rate TDS was used to determine microstructural trap energies and occupancies. In addition to the trapping states in pure Al reported in the literature (interstitial lattice sites, dislocations, and vacancies), a trap site due to Al–Cu intermetallic precipitates is observed. The binding energy of this precipitate trap is (18 ± 3) kJ•mol –1 (0.19 ± 0.03 eV). Typical occupancy of this trap ismore » high; for Al–2.6 at. % Cu (a Cu composition comparable to that in AA2219) charged at 200 °C with 130 MPa D 2 for 68 days, there is ca. there is 3.15×10 –7 mol D bound to the precipitate trap per mol of Al, accounting for a third of the D in the charged sample.« less

  19. Hydrogen isotope trapping in Al-Cu binary alloys

    DOE PAGES

    Chao, Paul; Karnesky, Richard A.

    2016-01-01

    In this study, the trapping mechanisms for hydrogen isotopes in Al–X Cu (0.0 at. % < X < 3.5 at. %) alloys were investigated using thermal desorption spectroscopy (TDS), electrical conductivity, and differential scanning calorimetry. Constant heating rate TDS was used to determine microstructural trap energies and occupancies. In addition to the trapping states in pure Al reported in the literature (interstitial lattice sites, dislocations, and vacancies), a trap site due to Al–Cu intermetallic precipitates is observed. The binding energy of this precipitate trap is (18 ± 3) kJ•mol –1 (0.19 ± 0.03 eV). Typical occupancy of this trap ismore » high; for Al–2.6 at. % Cu (a Cu composition comparable to that in AA2219) charged at 200 °C with 130 MPa D 2 for 68 days, there is ca. there is 3.15×10 –7 mol D bound to the precipitate trap per mol of Al, accounting for a third of the D in the charged sample.« less

  20. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing.

    PubMed

    Krakhmalev, Pavel; Yadroitsev, Igor; Yadroitsava, Ina; de Smidt, Olga

    2017-10-03

    The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone-implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus.

  1. [A study on the bond interface between low-fusing dental porcelain and pure titanium].

    PubMed

    Mo, A; Cen, Y; Liao, Y; Wang, J; Shi, X

    2001-09-01

    To evaluate the bond interface between low fusing dental porcelain and pure titanium by observing the topography and detecting the ionic diffusion in the interface area. The low fusing-porcelain La-porcelain produced by the authors or Vita Titankeramik porcelain was fused to the surfaces of pure titanium. The topography of the interface between pure titanium and porcelain, and the structure of experimental materials were observed with SEM. The state of ionic diffusion in the interface area was investigated with EPMA. Excellent permeation and diffusion of La-porcelain were observed on the surfaces of pure titanium. The diffusion of ions of stannum and silicon was discovered in the interface area. The microstructure of La-porcelain to pure titanium bond interface was finer than that of Vita Titankeramik porcelain. Excellent bond can be produced in the interface between La-porcelain and pure titanium. The bonding mechanism may involve mechanical bond and chemical bond. The ionic diffusion of stannum plays an important role in the bonding of porcelain to pure titanium.

  2. Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Yang, Gang; Wu, Ke; Li, Weiyue; Zhang, Dianfa

    2017-09-01

    A robust kernel archetypoid analysis (RKADA) method is proposed to extract pure endmembers from hyperspectral imagery (HSI). The RKADA assumes that each pixel is a sparse linear mixture of all endmembers and each endmember corresponds to a real pixel in the image scene. First, it improves the re8gular archetypal analysis with a new binary sparse constraint, and the adoption of the kernel function constructs the principal convex hull in an infinite Hilbert space and enlarges the divergences between pairwise pixels. Second, the RKADA transfers the pure endmember extraction problem into an optimization problem by minimizing residual errors with the Huber loss function. The Huber loss function reduces the effects from big noises and outliers in the convergence procedure of RKADA and enhances the robustness of the optimization function. Third, the random kernel sinks for fast kernel matrix approximation and the two-stage algorithm for optimizing initial pure endmembers are utilized to improve its computational efficiency in realistic implementations of RKADA, respectively. The optimization equation of RKADA is solved by using the block coordinate descend scheme and the desired pure endmembers are finally obtained. Six state-of-the-art pure endmember extraction methods are employed to make comparisons with the RKADA on both synthetic and real Cuprite HSI datasets, including three geometrical algorithms vertex component analysis (VCA), alternative volume maximization (AVMAX) and orthogonal subspace projection (OSP), and three matrix factorization algorithms the preconditioning for successive projection algorithm (PreSPA), hierarchical clustering based on rank-two nonnegative matrix factorization (H2NMF) and self-dictionary multiple measurement vector (SDMMV). Experimental results show that the RKADA outperforms all the six methods in terms of spectral angle distance (SAD) and root-mean-square-error (RMSE). Moreover, the RKADA has short computational times in offline

  3. A protective factors model for alcohol abuse and suicide prevention among Alaska Native youth.

    PubMed

    Allen, James; Mohatt, Gerald V; Fok, Carlotta Ching Ting; Henry, David; Burkett, Rebekah

    2014-09-01

    This study provides an empirical test of a culturally grounded theoretical model for prevention of alcohol abuse and suicide risk with Alaska Native youth, using a promising set of culturally appropriate measures for the study of the process of change and outcome. This model is derived from qualitative work that generated an heuristic model of protective factors from alcohol (Allen et al. in J Prev Interv Commun 32:41-59, 2006; Mohatt et al. in Am J Commun Psychol 33:263-273, 2004a; Harm Reduct 1, 2004b). Participants included 413 rural Alaska Native youth ages 12-18 who assisted in testing a predictive model of Reasons for Life and Reflective Processes about alcohol abuse consequences as co-occurring outcomes. Specific individual, family, peer, and community level protective factor variables predicted these outcomes. Results suggest prominent roles for these predictor variables as intermediate prevention strategy target variables in a theoretical model for a multilevel intervention. The model guides understanding of underlying change processes in an intervention to increase the ultimate outcome variables of Reasons for Life and Reflective Processes regarding the consequences of alcohol abuse.

  4. Alveolar gas composition during maximal and interrupted apnoeas in ambient air and pure oxygen.

    PubMed

    Fagoni, Nazzareno; Taboni, Anna; Vinetti, Giovanni; Bottarelli, Sara; Moia, Christian; Bringard, Aurélién; Ferretti, Guido

    2017-01-01

    We tested the hypothesis that the alveolar gas composition at the transition between the steady phase II (φ2) and the dynamic phase III (φ3) of the cardiovascular response to apnoea may lay on the physiological breaking point curve (Lin et al., 1974). Twelve elite divers performed maximal and φ2-interrupted apnoeas, in air and pure oxygen. We recorded beat-by-beat arterial blood pressure and heart rate; we measured alveolar oxygen and carbon dioxide pressures (P A O 2 and P A CO 2 , respectively) before and after apnoeas; we calculated the P A CO 2 difference between the end and the beginning of apnoeas (ΔP A CO 2 ). Cardiovascular responses to apnoea were similar compared to previous studies. P A O 2 and P A CO 2 at the end of φ2-interrupted apnoeas, corresponded to those reported at the physiological breaking point. For maximal apnoeas, P A CO 2 was less than reported by Lin et al. (1974). ΔP A CO 2 was higher in oxygen than in air. The transition between φ2 and φ3 corresponds indeed to the physiological breaking point. We attribute this transition to ΔP A CO 2 , rather than the absolute P A CO 2 values, both in air and oxygen apnoeas. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. chemf: A purely functional chemistry toolkit.

    PubMed

    Höck, Stefan; Riedl, Rainer

    2012-12-20

    Although programming in a type-safe and referentially transparent style offers several advantages over working with mutable data structures and side effects, this style of programming has not seen much use in chemistry-related software. Since functional programming languages were designed with referential transparency in mind, these languages offer a lot of support when writing immutable data structures and side-effects free code. We therefore started implementing our own toolkit based on the above programming paradigms in a modern, versatile programming language. We present our initial results with functional programming in chemistry by first describing an immutable data structure for molecular graphs together with a couple of simple algorithms to calculate basic molecular properties before writing a complete SMILES parser in accordance with the OpenSMILES specification. Along the way we show how to deal with input validation, error handling, bulk operations, and parallelization in a purely functional way. At the end we also analyze and improve our algorithms and data structures in terms of performance and compare it to existing toolkits both object-oriented and purely functional. All code was written in Scala, a modern multi-paradigm programming language with a strong support for functional programming and a highly sophisticated type system. We have successfully made the first important steps towards a purely functional chemistry toolkit. The data structures and algorithms presented in this article perform well while at the same time they can be safely used in parallelized applications, such as computer aided drug design experiments, without further adjustments. This stands in contrast to existing object-oriented toolkits where thread safety of data structures and algorithms is a deliberate design decision that can be hard to implement. Finally, the level of type-safety achieved by Scala highly increased the reliability of our code as well as the productivity of

  6. Eco-Cities: Possible or Purely Utopian?

    DTIC Science & Technology

    2009-12-01

    00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Eco-Cities: Possible or Purely Utopian? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...2005, Disney modified their building plans for Hong Kong Disneyland by shifting the angle of the front gate by twelve degrees in order to abide by

  7. Purely electronic mechanism of electrolyte gating of indium tin oxide thin films

    DOE PAGES

    Leng, X.; Bozovic, I.; Bollinger, A. T.

    2016-08-10

    Epitaxial indium tin oxide films have been grown on both LaAlO 3 and yttria-stabilized zirconia substrates using RF magnetron sputtering. Electrolyte gating causes a large change in the film resistance that occurs immediately after the gate voltage is applied, and shows no hysteresis during the charging/discharging processes. When two devices are patterned next to one another and the first one gated through an electrolyte, the second one shows no changes in conductance, in contrast to what happens in materials (like tungsten oxide) susceptible to ionic electromigration and intercalation. These findings indicate that electrolyte gating in indium tin oxide triggers amore » pure electronic process (electron depletion or accumulation, depending on the polarity of the gate voltage), with no electrochemical reactions involved. Electron accumulation occurs in a very thin layer near the film surface, which becomes highly conductive. These results contribute to our understanding of the electrolyte gating mechanism in complex oxides and may be relevant for applications of electric double layer transistor devices.« less

  8. Relations among pure-tone sound stimuli, neural activity, and the loudness sensation

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1972-01-01

    Both the physiological and psychological responses to pure-tone sound stimuli are used to derive formulas which: (1) relate the loudness, loudness level, and sound-pressure level of pure tones; (2) apply continuously over most of the acoustic regime, including the loudness threshold; and (3) contain no undetermined coefficients. Some of the formulas are fundamental for calculating the loudness of any sound. Power-law formulas relating the pure-tone sound stimulus, neural activity, and loudness are derived from published data.

  9. Pure akinesia: a kinematic analysis in a case responsive to rotigotine

    PubMed Central

    Di Fabio, Roberto; Serrao, Mariano; Pierelli, Francesco; Fragiotta, Gaia; Sandrini, Giorgio

    2013-01-01

    Summary A patient with pure akinesia is described. This rare gait disorder, poorly responsive to therapy, is characterized by gait impairment which may be associated with handwriting and speech difficulties, in the absence of further signs of extrapyramidal involvement. Here, we report the improvement in a patient suffering from pure akinesia after low doses of rotigotine, a non-ergolinic dopamine agonist, detailing the kinematic analysis before and after the treatment. After therapy, an improvement in all of the gait parameters, particularly gait speed, was observed with a trend toward normalization. Our case report suggests that rotigotine may be a therapeutic option in cases of pure akinesia. PMID:24125564

  10. Grindability of cast Ti-6Al-4V alloyed with copper.

    PubMed

    Watanabe, Ikuya; Aoki, Takayuki; Okabe, Toru

    2009-02-01

    This study investigated the grindability of cast Ti-6Al-4V alloyed with copper. The metals tested were commercially pure titanium (CP Ti), Ti-6Al-4V, experimental Ti-6Al-4V-Cu (1, 4, and 10 wt% Cu), and Co-Cr alloy. Each metal was cast into five blocks (3.0 x 8.0 x 30.0 mm(3)). The 3.0-mm wide surface of each block was ground using a hand-piece engine with an SiC wheel at four circumferential speeds (500, 750, 1000, and 1250 m/min) at a grinding force of 100 g. The grindability index (G-index) was determined as volume loss (mm(3)) calculated from the weight loss after 1 minute of grinding and the density of each metal. The ratio of the metal volume loss and the wheel volume loss was also calculated (G-ratio, %). Data (n = 5) were statistically analyzed using ANOVA (alpha= 0.05). Ti-6Al-4V and the experimental Ti-6Al-4V-Cu alloys exhibited significantly (p < 0.05) higher G-indexes compared with CP Ti and Co-Cr at any rotational speed except for the lowest speed (500 m/min). At 500 m/min, the G-index of Ti-6Al-4V-Cu increased as the amount of alloyed copper increased. The 4% Cu and 10% Cu alloys had significantly greater G-indexes than did 1% Cu and Ti-6Al-4V at the highest rotational speed (1250 m/min). Increasing the percentage of alloyed copper and the circumferential speed also increased the G-ratio. A slight reduction in ductility due to alloying Ti-6Al-4V with copper improved the grindability of some of the resultant Ti-6Al-4V-Cu alloys.

  11. Tailoring properties of commercially pure titanium by gradation extrusion

    NASA Astrophysics Data System (ADS)

    Bergmann, Markus; Rautenstrauch, Anja; Selbmann, René; de Oliveira, Raoni Barreto; Coelho, Rodrigo Santiago; Landgrebe, Dirk

    2016-10-01

    Commercially pure titanium (CP Ti) is of great importance in medical applications due to its attractive properties, such as high biocompatibility, excellent corrosion resistance and relatively low density and suitable stiffness. Compared to the commonly used Ti-6Al-4V alloy, its lower strength has to be increased. The most attractive approach is to subject CP Ti to severe plastic deformation (SPD) processes such as Equal Channel Angular Pressing (ECAP). The resulting decreased grain size in CP Ti yields a significant increase in hardness and strength. Common SPD-processes typically provide a uniform modification of the material. Their material efficiency and productivity are critical and limiting factors. A new approach is to tailor the material properties by using Gradation Extrusion, which produces a distinct gradient in microstructure and strength. The forming process combines a regular impact extrusion process and severe plastic deformation in the lateral area of the material. This efficient process can be integrated easily into forming process chains, for instance for dental implants. This paper presents the forming process and the applied die geometry. The results of numerical simulations are used to illustrate the potential of the process to modify and strengthen the titanium material. Experiments show that the material is successfully processed by gradation extrusion. By characterizing the hardness and its distribution within the formed parts the effects of the process are investigated.

  12. Implicit Reading in Chinese Pure Alexia

    ERIC Educational Resources Information Center

    Shan, Chunlei; Zhu, Renjing; Xu, Mingwei; Luo, Benyan; Weng, Xuchu

    2010-01-01

    A number of recent studies have shown that some patients with pure alexia display evidence of implicit access to lexical and semantic information about words that they cannot read explicitly. This phenomenon has not been investigated systematically in Chinese patients. We report here a case study of a Chinese patient who met the criteria for pure…

  13. Synthesis and photoluminescence of ultra-pure germanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Chivas, R.; Yerci, S.; Li, R.; Dal Negro, L.; Morse, T. F.

    2011-09-01

    We have used aerosol deposition to synthesize defect and micro-strain free, ultra-pure germanium nanoparticles. Transmission electron microscopy images show a core-shell configuration with highly crystalline core material. Powder X-ray diffraction measurements verify the presence of highly pure, nano-scale germanium with average crystallite size of 30 nm and micro-strain of 0.058%. X-ray photoelectron spectroscopy demonstrates that GeO x ( x ⩽ 2) shells cover the surfaces of the nanoparticles. Under optical excitation, these nanoparticles exhibit two separate emission bands at room temperature: a visible emission at 500 nm with 0.5-1 ns decay times and an intense near-infrared emission at 1575 nm with up to ˜20 μs lifetime.

  14. Lattice modes of the chirally pure and racemic phases of tyrosine crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyanchikov, M. A.; Gorelik, V. S., E-mail: gorelik@sci.lebedev.ru; Gorshunov, B. P.

    High-Q librational modes have been found to be present in the infrared absorption and Raman spectra of chirally pure L-tyrosine. Such modes can serve as terahertz radiation detectors and generators in chirally pure biostructures.

  15. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.

    PubMed

    Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng

    2017-02-08

    Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.

  16. Dissolution Behavior of Mg from Magnesia-Chromite Refractory into Al-killed Molten Steel

    NASA Astrophysics Data System (ADS)

    Liu, Chunyang; Yagi, Motoki; Gao, Xu; Kim, Sun-Joong; Huang, Fuxiang; Ueda, Shigeru; Kitamura, Shin-ya

    2018-06-01

    Magnesia-chromite refractory materials are widely employed in steel production, and are considered a potential MgO source for the generation of MgO·Al2O3 spinel inclusions in steel melts. In this study, a square magnesia-chromite refractory rod was immersed into molten steel of various compositions held in an Al2O3 crucibles. As the immersion time was extended, Mg and Cr gradually dissolved from the magnesia-chromite refractory, and the Mg and Cr contents of the steel melts increased. However, it was found that the inclusions in the steel melts remained as almost pure Al2O3 because the Mg content of the steel melts was low, approximately 1 ppm. On the surface of the magnesia-chromite refractory, an MgO·Al2O3 spinel layer with a variable composition was formed, and the thickness of the MgO·Al2O3 spinel layer increased with the immersion time and the Al content of the steel melts. At the rod interface, the formed layer consisted of MgO-saturated MgO·Al2O3 spinel. The MgO content decreased along the thickness direction of the layer, and at the steel melts interface, the formed layer consisted of Al2O3-saturated MgO·Al2O3 spinel. Therefore, the low content of Mg in steel melts and the unchanged inclusions were because of the equilibrium between Al2O3-saturated MgO·Al2O3 layer and Al2O3. In addition, the effects of the Al and Cr contents of the steel melts on the dissolution of Mg from the magnesia-chromite refractory are insignificant.

  17. Surfing surface gravity waves

    NASA Astrophysics Data System (ADS)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  18. Global stability of steady states in the classical Stefan problem for general boundary shapes

    PubMed Central

    Hadžić, Mahir; Shkoller, Steve

    2015-01-01

    The classical one-phase Stefan problem (without surface tension) allows for a continuum of steady-state solutions, given by an arbitrary (but sufficiently smooth) domain together with zero temperature. We prove global-in-time stability of such steady states, assuming a sufficient degree of smoothness on the initial domain, but without any a priori restriction on the convexity properties of the initial shape. This is an extension of our previous result (Hadžić & Shkoller 2014 Commun. Pure Appl. Math. 68, 689–757 (doi:10.1002/cpa.21522)) in which we studied nearly spherical shapes. PMID:26261359

  19. Singularity formations for a surface wave model

    NASA Astrophysics Data System (ADS)

    Castro, Angel; Córdoba, Diego; Gancedo, Francisco

    2010-11-01

    In this paper we study the Burgers equation with a nonlocal term of the form Hu where H is the Hilbert transform. This system has been considered as a quadratic approximation for the dynamics of a free boundary of a vortex patch (see Biello and Hunter 2010 Commun. Pure Appl. Math. LXIII 0303-36 Marsden and Weinstein 1983 Physica D 7 305-23). We prove blowup in finite time for a large class of initial data with finite energy. Considering a more general nonlocal term, of the form ΛαHu for 0 < α < 1, finite time singularity formation is also shown.

  20. Pure drug nanoparticles in tablets: what are the dissolution limitations?

    NASA Astrophysics Data System (ADS)

    Heng, Desmond; Ogawa, Keiko; Cutler, David J.; Chan, Hak-Kim; Raper, Judy A.; Ye, Lin; Yun, Jimmy

    2010-06-01

    There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 ± 2.7% to 72.3 ± 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.

  1. Tribological Properties of Surface-Textured and Plasma-Nitrided Pure Titanium Under Oil Lubrication Condition

    NASA Astrophysics Data System (ADS)

    Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting

    2018-01-01

    Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.

  2. In vitro degradation of pure Mg in response to glucose

    NASA Astrophysics Data System (ADS)

    Zeng, Rong-Chang; Li, Xiao-Ting; Li, Shuo-Qi; Zhang, Fen; Han, En-Hou

    2015-08-01

    Magnesium and its alloys are promising biodegradable biomaterials but are still challenging to be used in person with high levels of blood glucose or diabetes. To date, the influence of glucose on magnesium degradation has not yet been elucidated, this issue requires more attention. Herein, we present pure Mg exhibiting different corrosion responses to saline and Hank’s solutions with different glucose contents, and the degradation mechanism of pure Mg in the saline solution with glucose in comparison with mannitol as a control. On one hand, the corrosion rate of pure Mg increases with the glucose concentration in saline solutions. Glucose rapidly transforms into gluconic acid, which attacks the oxides of the metal and decreases the pH of the solution; it also promotes the absorption of chloride ions on the Mg surface and consequently accelerates corrosion. On the other hand, better corrosion resistance is obtained with increasing glucose content in Hank’s solution due to the fact that glucose coordinates Ca2+ ions in Hank’s solution and thus improves the formation of Ca-P compounds on the pure Mg surface. This finding will open up new avenues for research on the biodegradation of bio-Mg materials in general, which could yield many new and interesting results.

  3. In vitro degradation of pure Mg in response to glucose

    PubMed Central

    Zeng, Rong-Chang; Li, Xiao-Ting; Li, Shuo-Qi; Zhang, Fen; Han, En-Hou

    2015-01-01

    Magnesium and its alloys are promising biodegradable biomaterials but are still challenging to be used in person with high levels of blood glucose or diabetes. To date, the influence of glucose on magnesium degradation has not yet been elucidated, this issue requires more attention. Herein, we present pure Mg exhibiting different corrosion responses to saline and Hank’s solutions with different glucose contents, and the degradation mechanism of pure Mg in the saline solution with glucose in comparison with mannitol as a control. On one hand, the corrosion rate of pure Mg increases with the glucose concentration in saline solutions. Glucose rapidly transforms into gluconic acid, which attacks the oxides of the metal and decreases the pH of the solution; it also promotes the absorption of chloride ions on the Mg surface and consequently accelerates corrosion. On the other hand, better corrosion resistance is obtained with increasing glucose content in Hank’s solution due to the fact that glucose coordinates Ca2+ ions in Hank’s solution and thus improves the formation of Ca-P compounds on the pure Mg surface. This finding will open up new avenues for research on the biodegradation of bio-Mg materials in general, which could yield many new and interesting results. PMID:26264413

  4. A Hybrid Sensing Approach for Pure and Adulterated Honey Classification

    PubMed Central

    Subari, Norazian; Saleh, Junita Mohamad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2012-01-01

    This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data. PMID:23202033

  5. A hybrid sensing approach for pure and adulterated honey classification.

    PubMed

    Subari, Norazian; Mohamad Saleh, Junita; Md Shakaff, Ali Yeon; Zakaria, Ammar

    2012-10-17

    This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data.

  6. Spread Spectrum Visual Sensor Network Resource Management Using an End-to-End Cross-Layer Design

    DTIC Science & Technology

    2011-02-01

    Coding In this work, we use rate compatible punctured convolutional (RCPC) codes for channel coding [11]. Using RCPC codes al- lows us to utilize Viterbi’s...11] J. Hagenauer, “ Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE Trans. Commun., vol. 36, no. 4, pp. 389...source coding rate , a channel coding rate , and a power level to all nodes in the

  7. Comments on "Optical properties of borate crystals in the terahertz domain"

    NASA Astrophysics Data System (ADS)

    Svetlichnyi, V. A.; Naftaly, M.; Molloy, J. F.; Andreev, Yu. M.; Kokh, K. A.; Lanskii, G. V.; Kononova, N. G.; Kokh, A. E.

    2016-04-01

    We comment on the recent paper by V.D. Antsygin et al. [Opt. Commun. 309 (2013) 333-337], in which for the first time dispersions of refractive indices nx,z in lithium triborate (LBO) were presented for the THz domain. Their claim of "nx>nz", based on measurements by THz time-domain spectroscopy (TDS), is contrary to the well-known relationship for the maximum transparency region.

  8. A density functional theory study of the structure of pure-silica and aluminium-substituted MFI nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Tamargo, Carlos E.; Roldan, Alberto; School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT

    The layered MFI zeolite allows a straightforward hierarchization of the pore system which accelerates mass transfer and increases its lifetime as a catalyst. Here, we present a theoretical study of the structural features of the pure-silica and aluminium-substituted MFI nanosheets. We have analysed the effects of aluminium substitution on the vibrational properties of silanols as well as the features of protons as counter-ions. The formation of the two-dimensional system did not lead to appreciable distortions within the framework. Moreover, the effects on the structure due to the aluminium dopants were the same in both the bulk and the slab. Themore » principal differences were related to the silanol groups that form hydrogen-bonds with neighbouring aluminium-substituted silanols, whereas intra-framework hydrogen-bonds increase the stability of aluminium-substituted silanols toward dehydration. Thus, we have complemented previous experimental and theoretical studies, showing the lamellar MFI zeolite to be a very stable material of high crystallinity regardless of its very thin structure. - Graphical abstract: The structure of MFI zeolite nanosheet was investigated using Density Functional Theory. The results showed no differences against the bulk-type material upon aluminium doping. The aluminium-substituted silanol dehydrates toward a more stable configuration composed by a water molecule adsorbed on a Lewis centre. - Highlights: • MFI nanosheets with variable thicknesses were characterised using DFT calculations. • The distortions in the nanosheets after Al substitution reproduced those of the bulk. • H-bonds were only observed between silanol groups when the Al substitution took place. • The kinetic of the Al-silanol dehydration is dependent on intra-framework H-bonds. • Lewis acids with adsorbed water are more stable than Al-silanols. • The proton accessibility was related to the framework O atom binding the proton.« less

  9. Too little, too late: reduced visual span and speed characterize pure alexia.

    PubMed

    Starrfelt, Randi; Habekost, Thomas; Leff, Alexander P

    2009-12-01

    Whether normal word reading includes a stage of visual processing selectively dedicated to word or letter recognition is highly debated. Characterizing pure alexia, a seemingly selective disorder of reading, has been central to this debate. Two main theories claim either that 1) Pure alexia is caused by damage to a reading specific brain region in the left fusiform gyrus or 2) Pure alexia results from a general visual impairment that may particularly affect simultaneous processing of multiple items. We tested these competing theories in 4 patients with pure alexia using sensitive psychophysical measures and mathematical modeling. Recognition of single letters and digits in the central visual field was impaired in all patients. Visual apprehension span was also reduced for both letters and digits in all patients. The only cortical region lesioned across all 4 patients was the left fusiform gyrus, indicating that this region subserves a function broader than letter or word identification. We suggest that a seemingly pure disorder of reading can arise due to a general reduction of visual speed and span, and explain why this has a disproportionate impact on word reading while recognition of other visual stimuli are less obviously affected.

  10. Too Little, Too Late: Reduced Visual Span and Speed Characterize Pure Alexia

    PubMed Central

    Habekost, Thomas; Leff, Alexander P.

    2009-01-01

    Whether normal word reading includes a stage of visual processing selectively dedicated to word or letter recognition is highly debated. Characterizing pure alexia, a seemingly selective disorder of reading, has been central to this debate. Two main theories claim either that 1) Pure alexia is caused by damage to a reading specific brain region in the left fusiform gyrus or 2) Pure alexia results from a general visual impairment that may particularly affect simultaneous processing of multiple items. We tested these competing theories in 4 patients with pure alexia using sensitive psychophysical measures and mathematical modeling. Recognition of single letters and digits in the central visual field was impaired in all patients. Visual apprehension span was also reduced for both letters and digits in all patients. The only cortical region lesioned across all 4 patients was the left fusiform gyrus, indicating that this region subserves a function broader than letter or word identification. We suggest that a seemingly pure disorder of reading can arise due to a general reduction of visual speed and span, and explain why this has a disproportionate impact on word reading while recognition of other visual stimuli are less obviously affected. PMID:19366870

  11. Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Anwar, S.; Waheed, A.; Maraj, M.

    2016-04-01

    Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm-1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm-1 for pure soybean oil, 1461 cm-1 for soybean oil based biodiesel, 1670 cm-1 for pure olive oil, 1666 cm-1 for olive oil based biodiesel, 1461 cm-1 for pure coconut oil, and 1460 cm-1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel.

  12. Atypical titration curves for GaAl12 Keggin-ions explained by a joint experimental and simulation approach

    NASA Astrophysics Data System (ADS)

    Sulpizi, Marialore; Lützenkirchen, Johannes

    2018-06-01

    Although they have been widely used as models for oxide surfaces, the deprotonation behaviors of the Keggin-ions (MeAl127+) and typical oxide surfaces are very different. On Keggin-ions, the deprotonation occurs over a very narrow pH range at odds with the broad charging curve of larger oxide surfaces. Depending on the Me concentration, the deprotonation curve levels off sooner (high Me concentration) or later (for low Me concentration). The leveling off shows the onset of aggregation before which the Keggin-ions are present as individual units. We show that the atypical titration data previously observed for some GaAl12 solutions in comparison to the originally reported data can be explained by the presence of Ga2Al11 ions. The pKa value of aquo-groups bound to octahedral Ga was determined from ab initio molecular dynamics simulations relative to the pure GaAl12 ions. Using these results within a surface complexation model, the onset of deprotonation of the crude solution is surprisingly well predicted and the ratio between the different species is estimated to be in the proportion 20 (Ga2Al11) : 20 (Al13) : 60 (GaAl12).

  13. Regulation mechanisms in mixed and pure culture microbial fermentation.

    PubMed

    Hoelzle, Robert D; Virdis, Bernardino; Batstone, Damien J

    2014-11-01

    Mixed-culture fermentation is a key central process to enable next generation biofuels and biocommodity production due to economic and process advantages over application of pure cultures. However, a key limitation to the application of mixed-culture fermentation is predicting culture product response, related to metabolic regulation mechanisms. This is also a limitation in pure culture bacterial fermentation. This review evaluates recent literature in both pure and mixed culture studies with a focus on understanding how regulation and signaling mechanisms interact with metabolic routes and activity. In particular, we focus on how microorganisms balance electron sinking while maximizing catabolic energy generation. Analysis of these mechanisms and their effect on metabolism dynamics is absent in current models of mixed-culture fermentation. This limits process prediction and control, which in turn limits industrial application of mixed-culture fermentation. A key mechanism appears to be the role of internal electron mediating cofactors, and related regulatory signaling. This may determine direction of electrons towards either hydrogen or reduced organics as end-products and may form the basis for future mechanistic models. © 2014 Wiley Periodicals, Inc.

  14. Purely temporal figure-ground segregation.

    PubMed

    Kandil, F I; Fahle, M

    2001-05-01

    Visual figure-ground segregation is achieved by exploiting differences in features such as luminance, colour, motion or presentation time between a figure and its surround. Here we determine the shortest delay times required for figure-ground segregation based on purely temporal features. Previous studies usually employed stimulus onset asynchronies between figure- and ground-containing possible artefacts based on apparent motion cues or on luminance differences. Our stimuli systematically avoid these artefacts by constantly showing 20 x 20 'colons' that flip by 90 degrees around their midpoints at constant time intervals. Colons constituting the background flip in-phase whereas those constituting the target flip with a phase delay. We tested the impact of frequency modulation and phase reduction on target detection. Younger subjects performed well above chance even at temporal delays as short as 13 ms, whilst older subjects required up to three times longer delays in some conditions. Figure-ground segregation can rely on purely temporal delays down to around 10 ms even in the absence of luminance and motion artefacts, indicating a temporal precision of cortical information processing almost an order of magnitude lower than the one required for some models of feature binding in the visual cortex [e.g. Singer, W. (1999), Curr. Opin. Neurobiol., 9, 189-194]. Hence, in our experiment, observers are unable to use temporal stimulus features with the precision required for these models.

  15. Multiple pure tone noise prediction

    NASA Astrophysics Data System (ADS)

    Han, Fei; Sharma, Anupam; Paliath, Umesh; Shieh, Chingwei

    2014-12-01

    This paper presents a fully numerical method for predicting multiple pure tones, also known as “Buzzsaw” noise. It consists of three steps that account for noise source generation, nonlinear acoustic propagation with hard as well as lined walls inside the nacelle, and linear acoustic propagation outside the engine. Noise generation is modeled by steady, part-annulus computational fluid dynamics (CFD) simulations. A linear superposition algorithm is used to construct full-annulus shock/pressure pattern just upstream of the fan from part-annulus CFD results. Nonlinear wave propagation is carried out inside the duct using a pseudo-two-dimensional solution of Burgers' equation. Scattering from nacelle lip as well as radiation to farfield is performed using the commercial solver ACTRAN/TM. The proposed prediction process is verified by comparing against full-annulus CFD simulations as well as against static engine test data for a typical high bypass ratio aircraft engine with hardwall as well as lined inlets. Comparisons are drawn against nacelle unsteady pressure transducer measurements at two axial locations as well as against near- and far-field microphone array measurements outside the duct. This is the first fully numerical approach (no experimental or empirical input is required) to predict multiple pure tone noise generation, in-duct propagation and far-field radiation. It uses measured blade coordinates to calculate MPT noise.

  16. Noni puree (Morinda citrifolia) mixed in beef patties enhanced color stability.

    PubMed

    Tapp, W Nathan; Yancey, Janeal W S; Apple, Jason K; Dikeman, Michael E; Godbee, Richard G

    2012-06-01

    Ground beef, mixed with 0, 2, 4, and 6% Noni puree, was formed into 150-g patties, aerobically packaged, and displayed in retail for 5d. After 2 and 3d, patties with higher concentrations of Noni were perceived as redder and less discolored (P<0.05) by visual panelists. Noni patties were found to have greater (P<0.05) a* values than controls, even though all patties became less red during display. After 3 and 5d of retail display, patties with higher concentrations of Noni puree also had lower TBARS (were less oxidized; P<0.05). In fresh taste panels, panelists perceived the patties to have less beef flavor and greater incidence of off-flavors (P<0.05) as Noni puree concentration increased. The potential of Noni puree to improve the color stability and shelf life of fresh ground beef is very promising, but the flavors produced by the addition of Noni in ground beef may be detrimental to its use. Copyright © 2012. Published by Elsevier Ltd.

  17. Assessing the microstructural and rheological changes induced by food additives on potato puree.

    PubMed

    Dankar, Iman; Haddarah, Amira; El Omar, Fawaz; Sepulcre, Francesc; Pujolà, Montserrat

    2018-02-01

    The effects of agar, alginate, lecithin and glycerol on the rheological properties of commercial potato puree were investigated and interpreted in terms of starch microstructural changes, and the applicability of the Cox-Merz rule was evaluated. Each additive was applied separately at two concentrations (0.5 and 1%). Microscopic observations revealed more swollen starch aggregations in lecithin and glycerol compared with those of potato puree and agar, consequently affecting the rheological properties of potato puree. All samples exhibited shear thinning non-Newtonian behaviour. Rheological measurements were strongly concentration dependent. At 0.5% concentration, additives exerted decreases in all the rheological properties of potato puree in the order of glycerol>alginate>lecithin>agar, while at 1% concentration, the order changed to glycerol>lecithin>alginate, whereas 1% agar behaved differently, increasing all rheological values. This study also showed that agar and alginate in addition to potato puree could be valuable and advantageous for further technological processes, such as 3D printing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. What lies beneath: A comparison of reading aloud in pure alexia and semantic dementia

    PubMed Central

    Hoffman, Paul; Roberts, Daniel J.; Ralph, Matthew A. Lambon; Patterson, Karalyn E.

    2014-01-01

    Exaggerated effects of word length upon reading-aloud performance define pure alexia, but have also been observed in semantic dementia. Some researchers have proposed a reading-specific account, whereby performance in these two disorders reflects the same cause: impaired orthographic processing. In contrast, according to the primary systems view of acquired reading disorders, pure alexia results from a basic visual processing deficit, whereas degraded semantic knowledge undermines reading performance in semantic dementia. To explore the source of reading deficits in these two disorders, we compared the reading performance of 10 pure alexic and 10 semantic dementia patients, matched in terms of overall severity of reading deficit. The results revealed comparable frequency effects on reading accuracy, but weaker effects of regularity in pure alexia than in semantic dementia. Analysis of error types revealed a higher rate of letter-based errors and a lower rate of regularization responses in pure alexia than in semantic dementia. Error responses were most often words in pure alexia but most often nonwords in semantic dementia. Although all patients made some letter substitution errors, these were characterized by visual similarity in pure alexia and phonological similarity in semantic dementia. Overall, the data indicate that the reading deficits in pure alexia and semantic dementia arise from impairments of visual processing and knowledge of word meaning, respectively. The locus and mechanisms of these impairments are placed within the context of current connectionist models of reading. PMID:24702272

  19. The structure of Al-23 and astrophysical consequences

    NASA Astrophysics Data System (ADS)

    Zhai, Yongjun

    Motivated by existing nuclear astrophysics problems, the b-decay of the proton rich nucleus 23 Al was studied for the first time with pure samples which were obtained by using the 1 H( 24 Mg, 23 Al)2n reaction and the MARS recoil separator at Texas A&M University. b and b-g coincidence measurements were made with a fast tape-transport system, scintillator, BGO and HPGe g detectors. The experiment allowed us to measure absolute b branching ratios and to determine log ft values for transitions to final states in 23 Mg, including the isobaric analog state (IAS), and, therefore, to determine unambiguously the spin and parity of the 23 Al ground state to be J p = 5/2 + . This work excludes the large increases in the radiative proton capture cross section for the reaction 22 Mg(p,g) 23 Al at astrophysical energies, which were implied by claims that the spin and parity of the 23 Al ground state were J p = 1/2 + . More precise half life and mass determinations of 23 Al were obtained from the experimental data. The log ft for the Fermi transition to its isobaric analog state in 23 Mg was also determined for the first time. This IAS and a state 16 keV below it were observed, well separated in the same experiment for the first time. The b- decay scheme of the proton rich nucleus 23 Al was established. We can now solve a number of inconsistencies in the literature, exclude strong isospin mixing claimed before, and obtain a new determination of the resonance strength. The IAS and the state 16 keV below it are resonances in the 22 Na(p,g) 23 Mg reaction at energies that are important in novae. This second state turns out to be the resonance that gives the most important contribution in the depletion of 22Na from novae. Both of the reactions of 22 Mg(p,g) 23 Al and 22 Na(p,g) 23 Mg have been suggested as possible candidates for diverting some of the flux in oxygen-neon novae explosions from the A=22 into the A=23 mass chain.

  20. Advanced Mechanical Properties of a Powder Metallurgy Ti-Al-N Alloy Doped with Ultrahigh Nitrogen Concentration

    NASA Astrophysics Data System (ADS)

    Shen, J.; Chen, B.; Umeda, J.; Kondoh, K.

    2018-03-01

    Titanium and its alloys are recognized for their attractive properties. However, high-performance Ti alloys are often alloyed with rare or noble-metal elements. In the present study, Ti alloys doped with only ubiquitous elements were produced via powder metallurgy. The experimental results showed that pure Ti with 1.5 wt.% AlN incorporated exhibited excellent tensile properties, superior to similarly extruded Ti-6Al-4V. Further analysis revealed that its remarkably advanced strength could primarily be attributed to nitrogen solid-solution strengthening, accounting for nearly 80% of the strength increase of the material. In addition, despite the ultrahigh nitrogen concentration up to 0.809 wt.%, the Ti-1.5AlN sample showed elongation to failure of 10%. This result exceeds the well-known limitation for nitrogen (over 0.45 wt.%) that causes embrittlement of Ti alloys.

  1. Angels and demons are among us: assessing individual differences in belief in pure evil and belief in pure good.

    PubMed

    Webster, Russell J; Saucier, Donald A

    2013-11-01

    We conducted five studies to demonstrate that individuals' beliefs in pure evil (BPE) and in pure good (BPG) are valid and important psychological constructs. First, these studies together demonstrated that BPE and BPG are reliable, unitary, and stable constructs each composed of eight theoretically interdependent dimensions. Second, these studies showed that across a wide variety of different measures, higher BPE consistently related to greater intergroup aggression (e.g., supporting the death penalty and preemptive military aggression) and less intergroup prosociality (e.g., opposing criminal rehabilitation, proracial policies, and beneficial social programs), while higher BPG consistently related to less intergroup aggression (e.g., opposing proviolent foreign relations and torture) and greater intergroup prosociality (e.g., supporting criminal rehabilitation and support for diplomacy). In sum, these studies evidence that BPE and BPG relate to aggressive and prosocial orientations toward others and have strong potential to advance current theories on prejudice, aggression, and prosociality.

  2. Universality in volume-law entanglement of scrambled pure quantum states.

    PubMed

    Nakagawa, Yuya O; Watanabe, Masataka; Fujita, Hiroyuki; Sugiura, Sho

    2018-04-24

    A pure quantum state can fully describe thermal equilibrium as long as one focuses on local observables. The thermodynamic entropy can also be recovered as the entanglement entropy of small subsystems. When the size of the subsystem increases, however, quantum correlations break the correspondence and mandate a correction to this simple volume law. The elucidation of the size dependence of the entanglement entropy is thus essentially important in linking quantum physics with thermodynamics. Here we derive an analytic formula of the entanglement entropy for a class of pure states called cTPQ states representing equilibrium. We numerically find that our formula applies universally to any sufficiently scrambled pure state representing thermal equilibrium, i.e., energy eigenstates of non-integrable models and states after quantum quenches. Our formula is exploited as diagnostics for chaotic systems; it can distinguish integrable models from non-integrable models and many-body localization phases from chaotic phases.

  3. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    PubMed Central

    Krakhmalev, Pavel; Yadroitsev, Igor; Yadroitsava, Ina; de Smidt, Olga

    2017-01-01

    The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus. PMID:28972546

  4. Squashed Entanglement, k-Extendibility, Quantum Markov Chains, and Recovery Maps

    NASA Astrophysics Data System (ADS)

    Li, Ke; Winter, Andreas

    2018-02-01

    Squashed entanglement (Christandl and Winter in J. Math. Phys. 45(3):829-840, 2004) is a monogamous entanglement measure, which implies that highly extendible states have small value of the squashed entanglement. Here, invoking a recent inequality for the quantum conditional mutual information (Fawzi and Renner in Commun. Math. Phys. 340(2):575-611, 2015) greatly extended and simplified in various work since, we show the converse, that a small value of squashed entanglement implies that the state is close to a highly extendible state. As a corollary, we establish an alternative proof of the faithfulness of squashed entanglement (Brandão et al. Commun. Math. Phys. 306:805-830, 2011). We briefly discuss the previous and subsequent history of the Fawzi-Renner bound and related conjectures, and close by advertising a potentially far-reaching generalization to universal and functorial recovery maps for the monotonicity of the relative entropy.

  5. Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium

    DTIC Science & Technology

    2011-09-01

    nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3

  6. Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops

    NASA Astrophysics Data System (ADS)

    Murphy, Andrew; Averin, Dmitri V.; Bezryadin, Alexey

    2017-06-01

    The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore’s law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation.

  7. Highly Al-doped TiO{sub 2} nanoparticles produced by Ball Mill Method: structural and electronic characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Desireé M. de los, E-mail: desire.delossantos@uca.es; Navas, Javier, E-mail: javier.navas@uca.es; Sánchez-Coronilla, Antonio

    2015-10-15

    Highlights: • Highly Al-doped TiO{sub 2} nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO{sub 2} nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy.more » The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti{sup 4+} ions by Al{sup 3+} in the TiO{sub 2} lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature.« less

  8. Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using Lagrange's identity and wedge product

    NASA Astrophysics Data System (ADS)

    Bhaskara, Vineeth S.; Panigrahi, Prasanta K.

    2017-05-01

    Concurrence, introduced by Hill and Wootters (Phys Rev Lett 78:5022, 1997), provides an important measure of entanglement for a general pair of qubits that is faithful: strictly positive for entangled states and vanishing for all separable states. Such a measure captures the entire content of entanglement, providing necessary and sufficient conditions for separability. We present an extension of concurrence to multiparticle pure states in arbitrary dimensions by a new framework using the Lagrange's identity and wedge product representation of separability conditions, which coincides with the "I-concurrence" of Rungta et al. (Phys Rev A 64:042315, 2001) who proposed by extending Wootters's spin-flip operator to a so-called universal inverter superoperator. Our framework exposes an inherent geometry of entanglement and may be useful for the further extensions to mixed and continuous variable states.

  9. The machinability of cast titanium and Ti-6Al-4V.

    PubMed

    Ohkubo, C; Watanabe, I; Ford, J P; Nakajima, H; Hosoi, T; Okabe, T

    2000-02-01

    This study investigated the machinability (ease of metal removal) of commercially pure (CP) titanium and Ti-6Al-4V alloy. Both CP Ti and Ti-6Al-4V were cast into magnesia molds. Two types of specimens (with alpha-case and without alpha-case) were made for CP Ti and Ti-6Al-4V. Machinability (n = 5) was evaluated as volume loss (mm3) by cutting/grinding the 3.0 mm surface using fissure burs and silicon carbide (SiC) under two machining conditions: (1) two machining forces (100 or 300 gf) at two rotational speeds (15000 or 30000 rpm) for 1 min, and (2) constant machining force of 100 gf and rotational speed of 15000 rpm for 1, 2, 5, 10, and 30 min. As controls, conventionally cast Co-Cr and Type IV gold alloys were evaluated in the same manner as the titanium. When fissure burs were used, there was a significant difference in the machinability between CP titanium with alpha-case and without alpha-case. On the other hand, there was no appreciable difference in the amount of metal removed for each tested metal when using the SiC points.

  10. Binge eating disorder should be included in DSM-IV: a reply to Fairburn et al.'s "the classification of recurrent overeating: the binge eating disorder proposal".

    PubMed

    Spitzer, R L; Stunkard, A; Yanovski, S; Marcus, M D; Wadden, T; Wing, R; Mitchell, J; Hasin, D

    1993-03-01

    Extensive recent research supports a proposal that a new eating disorder, binge eating disorder (BED), be included in DSM-IV. BED criteria define a relatively pure group of individuals who are distressed by recurrent binge eating who do not exhibit the compensatory features of bulimia nervosa. This large number of patients currently can only be diagnosed as eating disorder not otherwise specified (EDNOS). Recognizing this new disorder will help stimulate research and clinical programs for these patients. Fairburn et al.'s critique of BED fails to acknowledge the large body of knowledge that indicates that BED represents a distinct and definable subgroup of eating disordered patients and that the diagnosis provides useful information about psychopathology, prognosis, and outcome (Fairburn, Welch, & Hay [in press]. The classification of recurrent overeating: The "binge eating disorder" proposal. International Journal of Eating Disorders.) Against any reasonable standard for adding a new diagnosis to DSM-IV, BED meets the test.

  11. Radiation Resistance of the U(Al, Si)3 Alloy: Ion-Induced Disordering

    PubMed Central

    Yaniv, Gili; Horak, Pavel; Vacik, Jiri; Mykytenko, Natalia; Rafailov, Gennady; Dahan, Itzchak; Fuks, David; Kiv, Arik

    2018-01-01

    During the exploitation of nuclear reactors, various U-Al based ternary intermetallides are formed in the fuel-cladding interaction layer. Structure and physical properties of these intermetallides determine the radiation resistance of cladding and, ultimately, the reliability and lifetime of the nuclear reactor. In current research, U(Al, Si)3 composition was studied as a potential constituent of an interaction layer. Phase content of the alloy of an interest was ordered U(Al, Si)3, structure of which was reported earlier, and pure Al (constituting less than 20 vol % of the alloy). This alloy was investigated prior and after the irradiation performed by Ar ions at 30 keV. The irradiation was performed on the transmission electron microscopy (TEM, JEOL, Japan) samples, characterized before and after the irradiation process. Irradiation induced disorder accompanied by stress relief. Furthermore, it was found that there is a dose threshold for disordering of the crystalline matter in the irradiated region. Irradiation at doses equal or higher than this threshold resulted in almost solely disordered phase. Using the program “Stopping and Range of Ions in Matter” (SRIM), the parameters of penetration of Ar ions into the irradiated samples were estimated. Based on these estimations, the dose threshold for ion-induced disordering of the studied material was assessed. PMID:29393870

  12. Radiation Resistance of the U(Al, Si)₃ Alloy: Ion-Induced Disordering.

    PubMed

    Meshi, Louisa; Yaniv, Gili; Horak, Pavel; Vacik, Jiri; Mykytenko, Natalia; Rafailov, Gennady; Dahan, Itzchak; Fuks, David; Kiv, Arik

    2018-02-02

    During the exploitation of nuclear reactors, various U-Al based ternary intermetallides are formed in the fuel-cladding interaction layer. Structure and physical properties of these intermetallides determine the radiation resistance of cladding and, ultimately, the reliability and lifetime of the nuclear reactor. In current research, U(Al, Si)₃ composition was studied as a potential constituent of an interaction layer. Phase content of the alloy of an interest was ordered U(Al, Si)₃, structure of which was reported earlier, and pure Al (constituting less than 20 vol % of the alloy). This alloy was investigated prior and after the irradiation performed by Ar ions at 30 keV. The irradiation was performed on the transmission electron microscopy (TEM, JEOL, Japan) samples, characterized before and after the irradiation process. Irradiation induced disorder accompanied by stress relief. Furthermore, it was found that there is a dose threshold for disordering of the crystalline matter in the irradiated region. Irradiation at doses equal or higher than this threshold resulted in almost solely disordered phase. Using the program "Stopping and Range of Ions in Matter" (SRIM), the parameters of penetration of Ar ions into the irradiated samples were estimated. Based on these estimations, the dose threshold for ion-induced disordering of the studied material was assessed.

  13. Augmenting The HST Pure Parallel Observations

    NASA Astrophysics Data System (ADS)

    Patterson, Alan; Soutchkova, G.; Workman, W.

    2012-05-01

    Pure Parallel (PP) programs, designated GO/PAR, are a subgroup of General Observer (GO) programs. PP execute simultaneously with prime GO observations to which they are "attached". The PP observations can be performed with ACS/WFC, WFC3/UVIS or WFC3/IR and can be attached only to GO visits in which the instruments are either COS or STIS. The current HST Parallel Observation Processing System (POPS) was introduced after the Servicing Mission 4. It increased the HST productivity by 10% in terms of the utilization of HST prime orbits and was highly appreciated by the HST observers, allowing them to design efficient, multi-orbit survey projects for collecting large amounts of data on identifiable targets. The results of the WFC3 Infrared Spectroscopic Parallel Survey (WISP), Hubble Infrared Pure Parallel Imaging Extragalactic Survey (HIPPIES), and The Brightest-of-Reionizing Galaxies Pure Parallel Survey (BoRG) exemplify this benefit. In Cycle 19, however, the full advantage of GO/PARs came under risk. Whereas each of the previous cycles provided over one million seconds of exposure time for PP, in Cycle 19 that number reduced to 680,000 seconds. This dramatic decline occurred because of fundamental changes in the construction of COS prime observations. To preserve the science output of PP, the PP Working Group was tasked to find a way to recover the lost time and maximize the total time available for PP observing. The solution was to expand the definition of a PP opportunity to allow PP exposures to span one or more primary exposure readouts. So starting in HST Cycle 20, PP opportunities will no longer be limited to GO visits with a single uninterrupted exposure in an orbit. The resulting enhancements in HST Cycle 20 to the PP opportunity identification and matching process are expected to restore the PP time to previously achieved and possibly even greater levels.

  14. chemf: A purely functional chemistry toolkit

    PubMed Central

    2012-01-01

    Background Although programming in a type-safe and referentially transparent style offers several advantages over working with mutable data structures and side effects, this style of programming has not seen much use in chemistry-related software. Since functional programming languages were designed with referential transparency in mind, these languages offer a lot of support when writing immutable data structures and side-effects free code. We therefore started implementing our own toolkit based on the above programming paradigms in a modern, versatile programming language. Results We present our initial results with functional programming in chemistry by first describing an immutable data structure for molecular graphs together with a couple of simple algorithms to calculate basic molecular properties before writing a complete SMILES parser in accordance with the OpenSMILES specification. Along the way we show how to deal with input validation, error handling, bulk operations, and parallelization in a purely functional way. At the end we also analyze and improve our algorithms and data structures in terms of performance and compare it to existing toolkits both object-oriented and purely functional. All code was written in Scala, a modern multi-paradigm programming language with a strong support for functional programming and a highly sophisticated type system. Conclusions We have successfully made the first important steps towards a purely functional chemistry toolkit. The data structures and algorithms presented in this article perform well while at the same time they can be safely used in parallelized applications, such as computer aided drug design experiments, without further adjustments. This stands in contrast to existing object-oriented toolkits where thread safety of data structures and algorithms is a deliberate design decision that can be hard to implement. Finally, the level of type-safety achieved by Scala highly increased the reliability of our code

  15. [Effects of laser welding on bond of porcelain fused cast pure titanium].

    PubMed

    Zhu, Juan-fang; He, Hui-ming; Gao, Bo; Wang, Zhong-yi

    2006-04-01

    To investigate the influence of the laser welding on bond of porcelain fused to cast pure titanium. Twenty cast titanium plates were divided into two groups: laser welded group and control group. The low-fusing porcelain was fused to the laser welded cast pure titanium plates at fusion zone. The bond strength of the porcelain to laser welded cast pure titanium was measured by the three-point bending test. The interface of titanium and porcelain was investigated by scanning electron microscopy (SEM) and energy depressive X-ray detector (EDX). The non-welded titanium plates were used as comparison. No significant difference of the bond strength was found between laser-welded samples [(46.85 +/- 0.76) MPa] and the controls [(41.71 +/- 0.55) MPa] (P > 0.05). The SEM displayed the interface presented similar irregularities with a predominance. The titanium diffused to low-fusing porcelain, while silicon and aluminum diffused to titanium basement. Laser welding does not affect low-fusing porcelain fused to pure titanium.

  16. Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3

    NASA Astrophysics Data System (ADS)

    Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.

    2016-05-01

    An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.

  17. Investigations in Pure Mathematics: A Constructivist Perspective.

    ERIC Educational Resources Information Center

    Hirst, Keith; Shiu, Christine

    1995-01-01

    Discusses an investigative, constructivist approach in the context of undergraduate mathematics, with particular reference to pure mathematics, general aims and objectives, assessment strategies, and problems of supervision that affect tutors and lecturers using this approach. Gives students' views on their experiences in this mode of working. (19…

  18. Noninformative prior in the quantum statistical model of pure states

    NASA Astrophysics Data System (ADS)

    Tanaka, Fuyuhiko

    2012-06-01

    In the present paper, we consider a suitable definition of a noninformative prior on the quantum statistical model of pure states. While the full pure-states model is invariant under unitary rotation and admits the Haar measure, restricted models, which we often see in quantum channel estimation and quantum process tomography, have less symmetry and no compelling rationale for any choice. We adopt a game-theoretic approach that is applicable to classical Bayesian statistics and yields a noninformative prior for a general class of probability distributions. We define the quantum detection game and show that there exist noninformative priors for a general class of a pure-states model. Theoretically, it gives one of the ways that we represent ignorance on the given quantum system with partial information. Practically, our method proposes a default distribution on the model in order to use the Bayesian technique in the quantum-state tomography with a small sample.

  19. Fundamental data on the desorption of pure interstellar ices

    NASA Astrophysics Data System (ADS)

    Brown, Wendy A.; Bolina, Amandeep S.

    2007-01-01

    The desorption of molecular ices from grain surfaces is important in a number of astrophysical environments including dense molecular clouds, cometary nuclei and the surfaces and atmospheres of some planets. With this in mind, we have performed a detailed investigation of the desorption of pure water, pure methanol and pure ammonia ices from a model dust-grain surface. We have used these results to determine the desorption energy, order of desorption and the pre-exponential factor for the desorption of these molecular ices from our model surface. We find good agreement between our desorption energies and those determined previously; however, our values for the desorption orders, and hence also the pre-exponential factors, are different to those reported previously. The kinetic parameters derived from our data have been used to model desorption on time-scales relevant to astrophysical processes and to calculate molecular residence times, given in terms of population half-life as a function of temperature. These results show the importance of laboratory data for the understanding of astronomical situations whereby icy mantles are warmed by nearby stars and by other dynamical events.

  20. Fabrication of hierarchical porous ZnO-Al2O3 microspheres with enhanced adsorption performance

    NASA Astrophysics Data System (ADS)

    Lei, Chunsheng; Pi, Meng; Xu, Difa; Jiang, Chuanjia; Cheng, Bei

    2017-12-01

    Hierarchical porous ZnO-Al2O3 microspheres were fabricated through a simple hydrothermal route. The as-prepared hierarchical porous ZnO-Al2O3 composites were utilized as adsorbents to remove organic dye Congo red (CR) from water. The ZnO-Al2O3 composites had morphology of microspheres with diameters in the range of 12-16 μm, which were assembled by nanosheets with thicknesses of approximately 60 nm. The adsorption kinetics of CR onto the ZnO-Al2O3 composites was properly fitted by the pseudo-second-order kinetic model. The equilibrium adsorption data were perfectly described by the Langmuir isotherm and had a maximum adsorption capacity that reached 397 mg/g, which was significantly higher than the value of the pure alumina (Al2O3) and zinc oxide (ZnO) samples. The superior CR removal efficiency of the ZnO-Al2O3 composites was attributed to its well-developed hierarchical porous structures and larger specific surface area (201 m2/g), which were conducive to the diffusion and adsorption of CR molecules. Moreover, the regeneration study reveals that the ZnO-Al2O3 composites have suitable stability and reusability. The results also indicate that the as-prepared sample can act as a highly effective adsorbent in anionic dye removal from wastewater.

  1. Grain boundary imaging, gallium diffusion and the fracture behavior of Al-Zn Alloy - An in situ study

    NASA Astrophysics Data System (ADS)

    Tsai, W. L.; Hwu, Y.; Chen, C. H.; Chang, L. W.; Je, J. H.; Lin, H. M.; Margaritondo, G.

    2003-01-01

    Phase contrast radiology using unmonochromatic synchrotron X-ray successfully imaged the grain boundaries of Al and AlZn alloy without contrast agent. Combining the high penetration of X-ray and the possibility of 3D reconstruction by tomorgraphy or stereography method, this approach can be very used for nondestructive characterization of polycrystalline materials. By examine the images with 3D perspective, we were able locate the observed void-like defects which lies exclusively on the grain boundary and identify their origin from last stage of the rolling process. We studied the Ga Liquid metal diffusion in the AlZn alloy, under different temperature and stress conditions. High resolution images, ˜2 μm, of Ga liquid metal diffusion in AlZn were obtained in real time and diffusion paths alone grain boundaries and surfaces were clearly identified. Embrittled AlZn responses to the tensile stress and fractures in a drastic different manner than the pure AlZn. These results, although very much expected from the known weakening effect of the liquid metal embrittlement demonstrated, however, that this particular radiology method is fully capable of dynamic study in the micrometer scale.

  2. B(H) has a pure state that is not multiplicative on any masa.

    PubMed

    Akemann, Charles; Weaver, Nik

    2008-04-08

    Assuming the continuum hypothesis, we prove that Bernoulli function(H) has a pure state whose restriction to any masa is not pure. This resolves negatively old conjectures of Kadison and Singer and of Anderson.

  3. Calibration of Al/Si order variations in anorthite

    NASA Astrophysics Data System (ADS)

    Carpenter, M. A.; Angel, R. J.; Finger, L. W.

    1990-07-01

    New single crystal diffraction data for natural and heat-treated anorthite crystals (Angel et al. 1990) allow the determination of their states of Al/Si order in terms of a macroscopic order parameter, Q OD , for the MediaObjects/410_2005_BF01575624_f1.tif transition. Numerical values of Q OD obtained from estimates of site occupancies are shown to vary with the scalar spontaneous strain, ɛ s , as ɛ s ∝ Q {/OD 2}, and with the ratio of the sums of type b (superlattice) reflections and type a (sublattice) reflections as ΣI b/ ΣI a ∝ Q {/OD 2}. An empirical calibration for pure anorthite is obtained givingQ_{OD} = 10.1left( 5 right)sqrt {\\varepsilon _s } varies between ˜ 0.92 and ˜ 0.87 in samples equilibrated at T≤1300° C, but then falls off relatively rapidly with increasing temperature, reaching ˜ 0.7 near the melting point (˜ 1557° C). The observed temperature dependence does not conform to the predictions of the simplest single order parameter models; coupling of Q OD with Q of the MediaObjects/410_2005_BF01575624_f2.tif transition is suspeeted.

  4. Thermal inactivation of Botrytis cinerea conidia in synthetic medium and strawberry puree.

    PubMed

    Villa-Rojas, R; Sosa-Morales, M E; López-Malo, A; Tang, J

    2012-04-16

    Botrytis cinerea is one of the most important post-harvest molds that cause quality deterioration of strawberries and other fruits even during refrigeration storage. This research studied the effects of thermal inactivation of B. cinerea in synthetic medium and strawberry puree using hot water baths at different temperatures. These media were studied in order to determine if results obtained in a solution with the major components of the fruit (synthetic media), are comparable to the ones obtained in fruit purees. The results demonstrated that B. cinerea spores can be inactivated by heat treatments using relatively low temperatures (42-46 °C). Inactivation curves were well described by first order kinetics (R² 0.91-0.99). B. cinerea conidia inoculated in synthetic medium required less time to achieve one log reduction in population than those inoculated in the fruit puree. D values were 22, 8.5, 4 and 1.4 min at 42, 44, 46 and 48 °C, respectively, in synthetic medium; while D values in strawberry puree were 44.9, 13.8, 4.7 and 1.4 min at 42, 44, 46 and 48 °C, respectively. The z values obtained were 4.15 and 5.08 °C for the strawberry puree and synthetic medium respectively, showing higher sensitivity of B. cinerea in fruit purees than in the synthetic medium. Thus, a change in the medium composition had a marked difference in the heat inactivation of B. cinerea conidia, and the results obtained in synthetic medium are not accurate to describe the behavior of the microorganism in the fruit. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Analysis of pure and malachite green doped polysulfone sample using FT-IR technique

    NASA Astrophysics Data System (ADS)

    Nayak, Rashmi J.; Khare, P. K.; Nayak, J. G.

    2018-05-01

    The sample of pure and malachite green doped Polysulfone in the form of foil was prepared by isothermal immersion technique. For the preparation of pure sample 4 gm of Polysulfone was dissolved in 50 ml of Dimethyl farmamide (DMF) solvent, while for the preparation of doped sample 10 mg, 50 mg and 100 mg Malachite Green was mixed with 4 gm of Polysulfone respectively. For the study of structural characterization of these pure and doped sample, Fourier Transform Infra-Red Spectroscopy (FT-IR) technique was used. This study shows that the intensity of transmittance decreases as the ratio of doping increases in pure polysulfone. The reduction in intensity of transmittance is clearly apparent in the present case more over the bands were broader which indicates towards charge transfer interaction between the donar and acceptor molecule.

  6. The origins of pure and applied science in Gilded Age America.

    PubMed

    Lucier, Paul

    2012-09-01

    "Pure science" and "applied science" have peculiar histories in the United States. Both terms were in use in the early part of the nineteenth century, but it was only in the last decades that they took on new meanings and became commonplace in the discourse of American scientists. The rise in their currency reflected an acute concern about the corruption of character and the real possibilities of commercializing scientific knowledge. "Pure" was the preference of scientists who wanted to emphasize their nonpecuniary motives and their distance from the marketplace. "Applied" was the choice of scientists who accepted patents and profits as other possible returns on their research. In general, the frequent conjoining of "pure" and "applied" bespoke the inseparable relations of science and capitalism in the Gilded Age.

  7. Generalized Gödel universes in higher dimensions and pure Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Dadhich, Naresh; Molina, Alfred; Pons, Josep M.

    2017-10-01

    The Gödel universe is a homogeneous rotating dust with negative Λ which is a direct product of a three-dimensional pure rotation metric with a line. We would generalize it to higher dimensions for Einstein and pure Lovelock gravity with only one N th-order term. For higher-dimensional generalization, we have to include more rotations in the metric, and hence we shall begin with the corresponding pure rotation odd (d =2 n +1 )-dimensional metric involving n rotations, which eventually can be extended by a direct product with a line or a space of constant curvature for yielding a higher-dimensional Gödel universe. The considerations of n rotations and also of constant curvature spaces is a new line of generalization and is being considered for the first time.

  8. Silicon isotope fractionations in pure Si and Fe-Si systems and their geological implications

    NASA Astrophysics Data System (ADS)

    Zheng, X. Y.; Beard, B. L.; Reddy, T. R.; Roden, E. E.; Johnson, C.

    2016-12-01

    Amorphous Si or Si-bearing materials are ubiquitous in nature, and are likely precursors to various rock types, such as cherts and banded iron formations (BIFs). Si isotope exchange kinetics and fractionation factors between these materials and aqueous Si, however, are poorly constrained, preventing a mechanistic or quantitative understanding of geological δ30Si records. A series of laboratory experiments were conducted to provide better estimates on Si isotope exchange kinetics and fractionation factors. Equilibrium Si isotope fractionation factors between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aq) in artificial Archean seawater (AAS), determined by a three-isotope method with a 29Si tracer, are -2.3‰ where Fe2+ is absent from the solution, and -3.2‰ where Fe2+ is present in the solution[1]. Aqueous Fe2+ catalyzes Si isotope exchange, and causes larger Si isotope fractionation due to incorporation into the solid that may have changed Si bonding. In contrast, our preliminary results show that Δ30Sigel-aq between pure Si gel and aqueous Si at equilibrium is -0.13‰. Ongoing experiments are intended to approach the isotope equilibrium from multiple directions to resolve potential kinetic effects, and to explore temperature dependence. Nonetheless, the contrast in Δ30Sigel-aq between Fe-Si and pure Si systems highlights a significant impact of Fe on Si isotope fractionations. These results have important implications for Si isotopes in Precambrian cherts and BIFs, as well as in weathering systems in general. Silicon isotope fractionation was also studied in experiments that involved dissimilatory iron reduction of Fe(III)-Si gel by Desulfuromonas acetoxidans in AAS[2], and was found to become larger with progression of Fe reduction. A Δ30Sigel-aq of -3.5‰ was observed at 32% reduction of Fe3+. This result explains lower δ30Si values in magnetite-associated quartz that those in hematite-associated quartz in some BIFs. The large Si isotope fractionation

  9. Doping the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage.

    PubMed

    Niu, Min; Yu, Guangtao; Yang, Guanghui; Chen, Wei; Zhao, Xingang; Huang, Xuri

    2014-01-06

    Under ab initio computations, several new inorganic electride compounds with high stability, M@x-Al12N12 (M = Li, Na, and K; x = b66, b64, and r6), were achieved for the first time by doping the alkali metal atom M on the fullerene-like Al12N12 nanocage, where the alkali atom is located over the Al-N bond (b66/b64 site) or six-membered ring (r6 site). It is revealed that independent of the doping position and atomic number, doping the alkali atom can significantly narrow the wide gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) (EH-L = 6.12 eV) of the pure Al12N12 nanocage in the range of 0.49-0.71 eV, and these doped AlN nanocages can exhibit the intriguing n-type characteristic, where a high energy level containing the excess electron is introduced as the new HOMO orbital in the original gap of pure Al12N12. Further, the diffuse excess electron also brings these doped AlN nanostructures the considerable first hyperpolarizabilities (β0), which are 1.09 × 10(4) au for Li@b66-Al12N12, 1.10 × 10(4), 1.62 × 10(4), 7.58 × 10(4) au for M@b64-Al12N12 (M = Li, Na, and K), and 8.89 × 10(5), 1.36 × 10(5), 5.48 × 10(4) au for M@r6-Al12N12 (M = Li, Na, and K), respectively. Clearly, doping the heavier Na/K atom over the Al-N bond can get the larger β0 value, while the reverse trend can be observed for the series with the alkali atom over the six-membered ring, where doping the lighter Li atom can achieve the larger β0 value. These fascinating findings will be advantageous for promoting the potential applications of the inorganic AlN-based nanosystems in the new type of electronic nanodevices and high-performance nonlinear optical (NLO) materials.

  10. Alcohol-dependent patients with comorbid phobic disorders: a comparison between comorbid patients, pure alcohol-dependent and pure phobic patients.

    PubMed

    Schadé, Annemiek; Marquenie, Loes A; Van Balkom, Anton J L M; Koeter, Maarten W J; De Beurs, Edwin; Van Den Brink, Wim; Van Dyck, Richard

    2004-01-01

    Patients with a double diagnosis of alcohol dependence and phobic disorders are a common phenomenon in both alcohol and anxiety disorder clinics. If we are to provide optimum treatment we need to know more about the clinical characteristics of this group of comorbid patients. To answer the following questions. (1). What are the clinical characteristics of treatment-seeking alcohol-dependent patients with a comorbid phobic disorder? (2). Are alcohol dependence and other clinical characteristics of comorbid patients different from those of 'pure' alcohol-dependent patients? (3). Are the anxiety symptoms and other clinical characteristics of comorbid patients different from those of 'pure' phobic patients? Three groups of treatment-seeking patients were compared on demographic and clinical characteristics: alcohol dependent patients with a comorbid phobic disorder (n = 110), alcohol-dependent patients (n = 148) and patients with social phobia or agoraphobia (n = 106). In order to diagnose the comorbid disorders validly, the assessment took place at least 6 weeks after detoxification. Comorbid patients have high scores on depressive symptoms and general psychopathology: 25% of patients have a current and 52% a lifetime depressive disorder. The majority have no partner and are unemployed, they have a high incidence of other substance use (benzodiazepine, cocaine, cannabis) and a substantial proportion of comorbid patients have been emotionally, physically and sexually abused. They do not have a more severe, or different type of alcohol dependence or anxiety disorder than 'pure' alcohol-dependent patients and phobic patients respectively. Comorbid patients constitute a complex part of the treatment-seeking population in alcohol clinics and psychiatric hospitals. These findings should be taken into account when diagnosing and treating alcohol-dependent patients with a comorbid phobic disorder.

  11. Totally Asymmetric Limit for Models of Heat Conduction

    NASA Astrophysics Data System (ADS)

    De Carlo, Leonardo; Gabrielli, Davide

    2017-08-01

    We consider one dimensional weakly asymmetric boundary driven models of heat conduction. In the cases of a constant diffusion coefficient and of a quadratic mobility we compute the quasi-potential that is a non local functional obtained by the solution of a variational problem. This is done using the dynamic variational approach of the macroscopic fluctuation theory (Bertini et al. in Rev Mod Phys 87:593, 2015). The case of a concave mobility corresponds essentially to the exclusion model that has been discussed in Bertini et al. (J Stat Mech L11001, 2010; Pure Appl Math 64(5):649-696, 2011; Commun Math Phys 289(1):311-334, 2009) and Enaud and Derrida (J Stat Phys 114:537-562, 2004). We consider here the convex case that includes for example the Kipnis-Marchioro-Presutti (KMP) model and its dual (KMPd) (Kipnis et al. in J Stat Phys 27:6574, 1982). This extends to the weakly asymmetric regime the computations in Bertini et al. (J Stat Phys 121(5/6):843-885, 2005). We consider then, both microscopically and macroscopically, the limit of large externalfields. Microscopically we discuss some possible totally asymmetric limits of the KMP model. In one case the totally asymmetric dynamics has a product invariant measure. Another possible limit dynamics has instead a non trivial invariant measure for which we give a duality representation. Macroscopically we show that the quasi-potentials of KMP and KMPd, which are non local for any value of the external field, become local in the limit. Moreover the dependence on one of the external reservoirs disappears. For models having strictly positive quadratic mobilities we obtain instead in the limit a non local functional having a structure similar to the one of the boundary driven asymmetric exclusion process.

  12. Pure spinor superspace action for D = 6, N = 1 super-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Cederwall, Martin

    2018-05-01

    A Batalin-Vilkovisky action for D = 6, N = 1 super-Yang-Mills theory, including coupling to hypermultiplets, is given. The formalism involves pure spinor superfields. The geometric properties of the D = 6, N = 1 pure spinors (which differ from Cartan pure spinors) are examined. Unlike the situation for maximally supersymmetric models, the fields and antifields (including ghosts) of the vector multiplet reside in separate superfields. The formalism provides an off-shell superspace formulation for matter hypermultiplets, which in a traditional treatment are on-shell.

  13. Do all pure entangled states violate Bell's inequalities for correlation functions?

    PubMed

    Zukowski, Marek; Brukner, Caslav; Laskowski, Wiesław; Wieśniak, Marcin

    2002-05-27

    Any pure entangled state of two particles violates a Bell inequality for two-particle correlation functions (Gisin's theorem). We show that there exist pure entangled N>2 qubit states that do not violate any Bell inequality for N particle correlation functions for experiments involving two dichotomic observables per local measuring station. We also find that Mermin-Ardehali-Belinskii-Klyshko inequalities may not always be optimal for refutation of local realistic description.

  14. 76 FR 69284 - Pure Magnesium From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... China Determination On the basis of the record \\1\\ developed in the subject five-year review, the United... China would be likely to lead to continuation or recurrence of material injury to an industry in the...), entitled Pure Magnesium from China: Investigation No. 731-TA-696 (Third Review). Issued: November 2, 2011...

  15. Number Reading in Pure Alexia--A Review

    ERIC Educational Resources Information Center

    Starrfelt, Randi; Behrmann, Marlene

    2011-01-01

    It is commonly assumed that number reading can be intact in patients with pure alexia, and that this dissociation between letter/word recognition and number reading strongly constrains theories of visual word processing. A truly selective deficit in letter/word processing would strongly support the hypothesis that there is a specialized system or…

  16. Development and evaluation of 'Pure Rush': An online serious game for drug education.

    PubMed

    Stapinski, Lexine A; Reda, Bill; Newton, Nicola C; Lawler, Siobhan; Rodriguez, Daniel; Chapman, Catherine; Teesson, Maree

    2018-04-01

    Learning is most effective when it is active, enjoyable and incorporates feedback. Past research demonstrates that serious games are prime candidates to utilise these principles, however the potential benefits of this approach for delivering drug education are yet to be examined in Australia, a country where drug education in schools is mandatory. The serious game 'Pure Rush' was developed across three stages. First, formative consultation was conducted with 115 students (67% male, aged 15-17 years), followed by feasibility and acceptability testing of a prototype of the game (n = 25, 68% male). In the final stage, 281 students (62% female, aged 13-16 years) were randomly allocated to receive a lesson involving Pure Rush or an active control lesson. The lessons were compared in terms of learning outcomes, lesson engagement and future intentions to use illicit drugs. Students enjoyed playing Pure Rush, found the game age-appropriate and the information useful to them. Both the Pure Rush and the active control were associated with significant knowledge increase from pre to post-test. Among females, multi-level mixed-effects regression showed knowledge gain was greater in the Pure Rush condition compared to control (β = 2.36, 95% confidence interval 0.36-4.38). There was no evidence of between condition differences in lesson engagement or future intentions to use illicit drugs. Pure Rush is an innovative online drug education game that is well received by students and feasible to implement in schools. [Stapinski LA, Reda B, Newton NC, Lawler S, Rodriguez D, Chapman C, Teesson M. Development and evaluation of 'Pure Rush': An online serious game for drug education. Drug Alcohol Rev 2017]. © 2017 Australasian Professional Society on Alcohol and other Drugs.

  17. Study on the Mechanical Properties of Bionic Coupling Layered B4C/5083Al Composite Materials

    PubMed Central

    Zhao, Qian; Liang, Yunhong; Liu, Qingping; Zhang, Zhihui; Yu, Zhenglei; Ren, Luquan

    2018-01-01

    Based on microstructure characteristics of Meretrix lusoria shell and Rapana venosa shell, bionic coupling layered B4C/5083Al composites with different layered structures and hard/soft combination models were fabricated via hot pressed sintering. The simplified bionic coupling models with hard and soft layers were similar to layered structure and hardness tendency of shells, guiding the bionic design and fabrication. B4C/5083Al composites with various B4C contents and pure 5083Al were treated as hard and soft layers, respectively. Hot pressed sintering maintained the designed bionic structure and enhanced high bonding strength between ceramics and matrix. Compared with B4C/5083Al composites, bionic layered composites exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The hard layers absorbed applied loads in the form of intergranular fracture. Besides connection role, soft layers restrained slabbing phenomenon and reset extension direction of cracks among layers. The coupling functions of bionic composites proved the feasibility and practicability of bionic fabrication, providing a new method for improvement of ceramic/Al composite with properties of being lightweight and high mechanical strength. PMID:29701707

  18. First principles study of the ground state properties of Si, Ga, and Ge doped Fe50Al50

    NASA Astrophysics Data System (ADS)

    Pérez, Carlos Ariel Samudio; dos Santos, Antonio Vanderlei

    2018-06-01

    The first principles calculation of the structural, electronic and associated properties of the Fe50Al50 alloy (B2 phase) doped by s-p elements (Im = Si, Ga, and Ge) are performed as a function of the atomic concentration on the basis of the Full Potential Linear Augmented Plane Wave (FP-LAPW) method as implemented in the WIEN2k code. The Al substitution by Im (Si and Ge) atoms (principally at a concentration of 6.25 at%) induces a pronounced redistribution of the electronic charge leading to a strong Fe-Im interaction with covalent bonding character. At the same time, decrease the lattice volume (V) while increase the bulk modulus (B). For the alloys containing Ga, the Fe-Ga interaction is also observed but the V and B of the alloy are very near to that of pure Fe-Al alloy. The magnetic moment and hyperfine parameters observed at the lattice sites of studied alloys also show variations, they increase or decrease in relation to that in Fe50Al50 according to the Im that substitutes Al.

  19. Notes on two multiparty quantum secret sharing schemes

    NASA Astrophysics Data System (ADS)

    Gao, Gan

    In the paper [H. Abulkasim et al., Int. J. Quantum Inform. 15 (2017) 1750023], Abulkasim et al. proposed a quantum secret sharing scheme based on Bell states. We study the security of the multiparty case in the proposed scheme and detect that it is not secure. In the paper [Y. Du and W. Bao, Opt. Commun. 308 (2013) 159], Du and Bao listed Gao’s scheme and gave a attack strategy on the listed scheme. We point out that their listing scheme is not the genuine Gao’s scheme and their research method is not advisable.

  20. Modeling pure culture heterotrophic production of polyhydroxybutyrate (PHB).

    PubMed

    Mozumder, Md Salatul Islam; Goormachtigh, Laurens; Garcia-Gonzalez, Linsey; De Wever, Heleen; Volcke, Eveline I P

    2014-03-01

    In this contribution a mechanistic model describing the production of polyhydroxybutyrate (PHB) through pure-culture fermentation was developed, calibrated and validated for two different substrates, namely glucose and waste glycerol. In both cases, non-growth-associated PHB production was triggered by applying nitrogen limitation. The occurrence of some growth-associated PHB production besides non-growth-associated PHB production was demonstrated, although it is inhibited in the presence of nitrogen. Other phenomena observed experimentally and described by the model included biomass growth on PHB and non-linear product inhibition of PHB production. The accumulated impurities from the waste substrate negatively affected the obtained maximum PHB content. Overall, the developed mathematical model provided an accurate prediction of the dynamic behavior of heterotrophic biomass growth and PHB production in a two-phase pure culture system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Improving quality of an innovative pea puree by high hydrostatic pressure.

    PubMed

    Klug, Tâmmila Venzke; Martínez-Sánchez, Ascensión; Gómez, Perla A; Collado, Elena; Aguayo, Encarna; Artés, Francisco; Artés-Hernández, Francisco

    2017-10-01

    The food industry is continuously innovating to fulfill consumer demand for new, healthy, ready-to-eat products. Pea purees could satisfy this trend by increasing the intake of legumes, which are an important source of nutrients. Moreover, sensorial properties like viscosity could be improved by high hydrostatic pressure (HHP). In this study the effect of a boiling treatment (10 min) followed by HHP at 550 kPa (0, 5 or 10 min) on the rheological properties, associated with enzymatic activity and particle size, as well as on the microbial and sensory quality of a pea-based puree stored for 36 days at 5 °C, has been assessed. The particle size of pea puree decreased after all processing treatments, but increased during storage in HHP-treated samples. Conversely, boiling treatment showed an increase in polygalacturonase activity at the end of the storage period, with a decrease in particle size, viscosity and stability. However, 5 min of 550 kPa HHP showed the highest mean particle size, mean surface diameter and viscosity regarding the remaining treatments. The microbial load remained low during storage. HHP treatment can be used by the food industry to improve the rheological properties, viscosity and stability of pea purees. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Effect of P impurity on mechanical properties of NiAl Σ5 grain boundary: From perspectives of stress and energy

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Lan; Zhao, Ruo-Xi; Deng, Jiang-Ge; Hu, Yan-Min; Song, Qing-Gong

    2018-03-01

    In this paper, we employ the first-principle total energy method to investigate the effect of P impurity on mechanical properties of NiAl grain boundary (GB). According to “energy”, the segregation of P atom in NiAlΣ5 GB reduces the cleavage energy and embrittlement potential, demonstrating that P impurity embrittles NiAlΣ5 GB. The first-principle computational tensile test is conducted to determine the theoretical tensile strength of NiAlΣ5 GB. It is demonstrated that the maximum ideal tensile strength of NiAlΣ5 GB with P atom segregation is 144.5 GPa, which is lower than that of the pure NiAlΣ5 GB (164.7 GPa). It is indicated that the segregation of P weakens the theoretical strength of NiAlΣ5 GB. The analysis of atomic configuration shows that the GB fracture is caused by the interfacial bond breaking. Moreover, P is identified to weaken the interactions between Al–Al bonds and enhance Ni–Ni bonds. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404396 and 51201181) and the Subject Construction Fund of Civil Aviation University of China (Grant No. 000032041102).

  3. Degradability Enhancement of Poly(Lactic Acid) by Stearate-Zn3Al LDH Nanolayers

    PubMed Central

    Eili, Mahboobeh; Shameli, Kamyar; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan

    2012-01-01

    Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn3Al LDH. A solution casting method was used to prepare PLA/stearate-Zn3Al LDH nanocomposites. The anionic clay Zn3Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn3Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn3Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn3Al LDH nanocomposites showed that the presence of around 1.0–3.0 wt % of the stearate-Zn3Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn3Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA. PMID:22942682

  4. Degradability enhancement of poly(lactic acid) by stearate-Zn(3)Al LDH nanolayers.

    PubMed

    Eili, Mahboobeh; Shameli, Kamyar; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan

    2012-01-01

    Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn(3)Al LDH. A solution casting method was used to prepare PLA/stearate-Zn(3)Al LDH nanocomposites. The anionic clay Zn(3)Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn(3)Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn(3)Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn(3)Al LDH nanocomposites showed that the presence of around 1.0-3.0 wt % of the stearate-Zn(3)Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn(3)Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA.

  5. The Work Softening Behavior of Pure Mg Wire during Cold Drawing.

    PubMed

    Sun, Liuxia; Bai, Jing; Xue, Feng; Chu, Chenglin; Meng, Jiao

    2018-04-13

    We performed multiple-pass cold drawing for pure Mg wire which showed excellent formability (~138% accumulative true strain) at room temperature. Different from the continuous work hardening occurring during cold drawing of Mg alloy wires, for pure Mg, an initially rapid increase in hardness and strength was followed by significant work softening and finally reached a steady-state level, approximately 40~45 HV. The work softening can be attributed to the dynamic recovery and recrystallization of pure Mg at room temperature. Meanwhile, an abrupt change in texture component also was detected with the transition from work hardening to softening in the strain range of 28~34%. During the whole drawing, the strongest texture component gradually transformed from as-extruded basal to <10 1 ¯ 0> fiber (~28% accumulative true strain), and then rapidly returned to the weak basal texture.

  6. Analysis of corneal topography in patients with pure microphthalmia in Eastern China.

    PubMed

    Hu, Pei-Hong; Gao, Gui-Ping; Yu, Yao; Pei, Chong-Gang; Zhou, Qiong; Huang, Xin; Zhang, Ying; Shao, Yi

    2015-12-01

    To determine the typical corneal changes in pure microphthalmia using a corneal topography system and identify characteristics that may assist in early diagnosis. Patients with pure microphthalmia and healthy control subjects underwent corneal topography analysis (Orbscan IIZ® Corneal Topography System; Bausch and Lomb, Bridgewater, NJ, USA) to determine degree of corneal astigmatism (mean A), simulation of corneal astigmatism (sim A), mean keratometry (mean K), simulated keratometry (sim K), irregularities in the 3 - and 5-mm zone, and mean thickness of nine distinct corneal regions. Patients with pure microphthalmia (n = 12) had significantly higher mean K, sim K, mean A, sim A, 3.0 mm irregularity and 5.0 mm irregularity, and exhibited significantly more false keratoconus than controls (n = 12). There was a significant between-group difference in the morphology of the anterior corneal surface and the central curvature of the cornea. Changes in corneal morphology observed in this study could be useful in borderline situations to confirm the diagnosis of pure microphthalmia. © The Author(s) 2015.

  7. Temporal Ventriloquism in a Purely Temporal Context

    ERIC Educational Resources Information Center

    Hartcher-O'Brien, Jessica; Alais, David

    2011-01-01

    This study examines how audiovisual signals are combined in time for a temporal analogue of the ventriloquist effect in a purely temporal context, that is, no spatial grounding of signals or other spatial facilitation. Observers were presented with two successive intervals, each defined by a 1250-ms tone, and indicated in which interval a brief…

  8. Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial.

    PubMed

    Zhang, Erlin; Chen, Haiyan; Shen, Feng

    2010-07-01

    Biocorrosion properties and blood- and cell compatibility of pure iron were studied in comparison with 316L stainless steel and Mg-Mn-Zn magnesium alloy to reveal the possibility of pure iron as a biodegradable biomaterial. Both electrochemical and weight loss tests showed that pure iron showed a relatively high corrosion rate at the first several days and then decreased to a low level during the following immersion due to the formation of phosphates on the surface. However, the corrosion of pure iron did not cause significant increase in pH value to the solution. In comparison with 316L and Mg-Mn-Zn alloy, the pure iron exhibited biodegradable property in a moderate corrosion rate. Pure iron possessed similar dynamic blood clotting time, prothrombin time and plasma recalcification time to 316L and Mg-Mn-Zn alloy, but a lower hemolysis ratio and a significant lower number density of adhered platelets. MTT results revealed that the extract except the one with 25% 24 h extract actually displayed toxicity to cells and the toxicity increased with the increasing of the iron ion concentration and the incubation time. It was thought there should be an iron ion concentration threshold in the effect of iron ion on the cell toxicity.

  9. Formability behavior studies on CP-Al sheets processed through the helical tool path of incremental forming process

    NASA Astrophysics Data System (ADS)

    Markanday, H.; Nagarajan, D.

    2018-02-01

    Incremental sheet forming (ISF) is a novel die-less sheet metal forming process, which can produce components directly from the CAD geometry using a CNC milling machine at less production time and cost. The formability of the sheet material used is greatly affected by the process parameters involved and tool path adopted, and the present study is aimed to investigate the influence of different process parameter values using the helical tool path strategy on the formability of a commercial pure Al and to achieve maximum formability in the material. ISF experiments for producing an 80 mm diameter axisymmetric dome were carried out on 2 mm thickness commercially pure Al sheets for different tool speeds and feed rates in a CNC milling machine with a 10 mm hemispherical forming tool. The obtained parts were analyzed for springback, amount of thinning and maximum forming depth. The results showed that when the tool speed was increased by keeping the feed rate constant, the forming depth and thinning were also increased. On contrary, when the feed rate was increased by keeping the tool speed constant, the forming depth and thinning were decreased. Springback was found to be higher when the feed rate was increased rather than the tool speed was increased.

  10. Changes in carotenoids during processing and storage of pumpkin puree.

    PubMed

    Provesi, João Gustavo; Dias, Carolinne Odebrecht; Amante, Edna Regina

    2011-09-01

    Changes in the contents of carotenoids and their true retentions (% TR) during the production of puree of Cucurbita moschata 'Menina Brasileira' and of Cucurbita maxima 'Exposição' pumpkins and the stability of such compounds during 180days of storage were monitored by liquid chromatography coupled with a photodiode array detector. Cooking caused higher losses than commercial sterilisation. High losses of xanthophylls such as lutein and violaxanthin were noted during processing and storage of pumpkin puree. Such losses show the low stability of these compounds. The major carotenoids, pro-vitamin A carotenes, namely, α-carotene and all-trans-β-carotene for C. moschata 'Menina Brasileira' and all-trans-β-carotene for C. maxima 'Exposição' obtained high retentions (>75%) after processing. A slight degree of isomerisation of β-carotene was noted in the puree samples, but with low concentrations of cis-isomers. Storage for 180days did not significantly affect (P⩽0.05) the concentrations of these carotenoids. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Techno-functional properties of tomato puree fortified with anthocyanin pigments.

    PubMed

    Gerardi, C; Albano, C; Calabriso, N; Carluccio, M A; Durante, M; Mita, G; Renna, M; Serio, F; Blando, F

    2018-02-01

    This study investigates the effects of tomato puree fortification with several anthocyanin-rich food colorants on bioactive compound content (phenolics, isoprenoids), antioxidant capacity, in vitro biological activities and consumer acceptance. Tomato puree (tp) was added with different anthocyanin extracts from black carrot (Anthocarrot), grape fruit skins (Enocolor), elderberry fruits (Elderberry) or mahaleb cherry fruits (Mahaleb), thus obtaining a 'functional tomato puree' (ftp). The consumer acceptance (colour, flavor, taste, visual appearance) was at high level, except for Mahaleb-added ftp. Compared to the control (tp), the addition of colouring extracts increased significantly the total phenolic content, before pasteurization, in addition to the expected anthocyanin content. However, after pasteurization, mostly Anthocarrot-ftp preserved an increased phenolic (+53%) content, as well as a higher antioxidant capacity (50%), more than the other added-extracts. Consistently, against tp, Anthocarrot-ftp exhibited an increased anti-inflammatory capacity as showed by the reduced expression of vascular cell adhesion molecule (VCAM)-1 in human cultured endothelial cells, under inflammatory conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of impurities on the biodegradation behavior of pure magnesium

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Young; Han, Gilsoo; Kim, Yu-Chan; Byun, Ji-Young; Jang, Jae-il; Seok, Hyun-Kwang; Yang, Seok-Jo

    2009-12-01

    The corrosion behavior of pure magnesium that has different content ratio of impurities (such as Fe/Mn ratio) in Hanks' solution was investigated in order to tailor the lifetime of biodegradable implant made of pure magnesium. Two distinct stages of corrosion were observed: a slow corrosion rate stage and a subsequent fast corrosion rate stage. The first stage was characterized by uniform corrosion that produced magnesium hydroxide and calcium phosphate film on a magnesium surface, resulting in a slow corrosion rate. The second stage with an abrupt increase in the corrosion rate was induced by Fe precipitates and was stimulated by an increase in the Fe/Mn ratio. This corrosion was developed to a preferred crystallographic pitting corrosion where the pits propagated along the preferred crystallographic plane and several layers of Mg planes with narrow interplanar space remained uncorroded. From this study, it is expected that the lifetime of the biodegradable implant made of pure Mg can be tailored by controlling the amount and ratio of the impurities.

  13. Surface and cut-edge corrosion behavior of Zn-Mg-Al alloy-coated steel sheets as a function of the alloy coating microstructure

    NASA Astrophysics Data System (ADS)

    Oh, Min-Suk; Kim, Sang-Heon; Kim, Jong-Sang; Lee, Jae-Won; Shon, Je-Ha; Jin, Young-Sool

    2016-01-01

    The effects of Mg and Al content on the microstructure and corrosion resistance of hot-dip Zn-Mg-Al alloycoated steel sheets were investigated. Pure Zn and Zn-based alloy coatings containing Mg (0-5 wt%) and Al (0.2-55 wt%) were produced by a hot-dip galvanizing method. Mg and Al addition induced formation of intermetallic microstructures, like primary Zn, Zn/MgZn2 binary eutectic, dendric Zn/Al eutectoid, and Zn/Al/MgZn2/ternary eutectic structures in the coating layer. MgZn2-related structures (Zn/MgZn2, Zn/Al/MgZn2, MgZn2) played an important role in increasing the corrosion resistance of Zn-Mg-Al alloy-coated steel sheets. Zn-3%Mg-2.5%Al coating layer containing a large volume of lamellar-shaped Zn/MgZn2 binary eutectic structures showed the best cut-edge corrosion resistance. The analysis indicated that Mg dissolved from MgZn2 in the early stage of corrosion and migrated to the cathodic region of steel-exposed cut-edge area to form dense and ordered protective corrosion products, leading to prolonged cathodic protection of Zn-Mg-Al alloy-coated steel sheets.

  14. Fabrication of ZnAl mixed metal-oxides/RGO nanohybrid composites with enhanced photocatalytic activity under visible light

    NASA Astrophysics Data System (ADS)

    Ni, Jie; Xue, Jinjuan; Shen, Jing; He, Guangyu; Chen, Haiqun

    2018-05-01

    The ZnAl mixed metal-oxides (MMOs)/graphene nanocomposites were successfully fabricated by a facile hydrothermal method combined with a calcination process. The thermal treatment enables simultaneously the formation of ZnO/ZnAl2O4 heterogeneous structure, which are uniformly decorated on the surface of graphene, accompanying with the reduction of graphene oxide. The as-prepared heterostructure photocatalysts were well characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (DRS) to conduct investigations into the phase structures, microstructure and optical capability. The ZnAl MMO/RGO20 composite displayed favorable adsorption property and photo-degradation efficiency for Ciprofloxacin (CIP) aqueous solution under visible light. The photo-degradation efficiency of the as-prepared ZnAl MMO/RGO20 was 3.0 and even 4.6 times higher than that of ZnAl MMO and pure ZnAl LDH, respectively. The improvement of photocatalytic performance is ascribed to the synergistic effect of heterogeneous structure coupled with graphene, which realizes efficient charge separation efficiency, enlarged visible light adsorption range, and chemical stability of hybrid nanocomposite. The results of EIS, PL and photocurrent response also explained the best performance of ZnAl MMO/RGO20 nanocomposite. Besides, the mechanism of ZnAl MMO/RGO20 photocatalytic system was proposed and analyzed in detail.

  15. Enhancing the Electrochemical Behavior of Pure Copper by Cyclic Potentiodynamic Passivation: A Comparison between Coarse- and Nano-Grained Pure Copper

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Imantalab, Omid; Attarzadeh, Farid Reza

    2016-10-01

    Electrochemical behavior of coarse- and nano-grained pure copper were modified and improved to a large extent by the application of cyclic potentiodynamic passivation. The efficacy of this method was evaluated on the basis of grain size which is of great importance in corrosion studies. In this study, the eight passes of accumulative roll bonding process at room temperature were successfully performed to produce nano-grained pure copper. Transmission electron microscopy image indicated that the average grain size reached below 100 nm after eight passes. On the basis of cyclic voltammetry and also the electrochemical tests performed after that, it was revealed that cyclic potentiodynamic passivation had a significant improving effect on the passive behavior of both coarse- and nano-grained samples. In addition, a superior behavior of nano-grained sample in comparison to coarse-grained one was distinguished by its smaller cyclic voltammogram loops, nobler free potentials, larger capacitive arcs in the Nyquist plots, and less charge carrier densities within the passive film.

  16. Enhanced bactericidal activity against Escherichia coli in calves fed Morinda citrifolia (Noni) puree.

    PubMed

    Schäfer, M; Sharp, P; Brooks, V J; Xu, J; Cai, J; Keuler, N S; Peek, S F; Godbee, R G; Schultz, R D; Darien, B J

    2008-01-01

    Although adequate colostrum intake and properly used antibiotics can provide much protection for the bovine neonate, increased antibiotic scrutiny and consumer demand for organic products have prompted investigations of natural immunomodulators for enhancing calf health. One plant-based immunomodulator, Morinda citrifolia (noni) fruit, is a well-recognized natural product that has a broad range of immunomodulatory effects. Neonatal calves fed noni puree would demonstrate whole blood phagocytic capacity in Gram-negative and Gram-positive in vitro assays. Blood samples from 18 neonatal Holstein bull calves. Calves were divided into 2 groups: Group 1 comprised control calves, whereas Group 2 received 30 mL of noni puree twice a day in milk replacer. Day 0 blood samples were obtained between 36 and 48 hours of age before the first feeding of puree. Ethylenediaminetetraacetic acid anticoagulated blood was collected from each calf on days 0, 3, 7, and 14. Bactericidal assays were performed to estimate the percentage killing of Escherichia coli and Staphylococcus epidermidis. Blood samples from noni puree-fed calves displayed significantly more E. coli bacterial killing than did controls on day 14, and although differences were not significant on days 0, 3, and 7, bacterial killing progressively increased over time. There was no significant difference between the groups for S. epidermidis killing. The immunomodulatory effect of noni puree may prove valuable in the future as production animal antibiotic use becomes more restricted. Additional clinical trials are warranted to investigate the clinical application of noni puree in promoting calf health.

  17. Corrosion resistance and blood compatibility of lanthanum ion implanted pure iron by MEVVA

    NASA Astrophysics Data System (ADS)

    Zhu, Shengfa; Huang, Nan; Shu, Hui; Wu, Yanping; Xu, Li

    2009-10-01

    Pure iron is a potential material applying for coronary artery stents based on its biocorrodible and nontoxic properties. However, the degradation characteristics of pure iron in vivo could reduce the mechanical stability of iron stents prematurely. The purpose of this work was to implant the lanthanum ion into pure iron specimens by metal vapor vacuum arc (MEVVA) source at an extracted voltage of 40 kV to improve its corrosion resistance and biocompatibility. The implanted fluence was up to 5 × 10 17 ions/cm 2. The X-ray photoelectron spectroscopy (XPS) was used to characterize the chemical state and depth profiles of La, Fe and O elements. The results showed lanthanum existed in the +3 oxidation state in the surface layer, most of the oxygen combined with lanthanum and form a layer of oxides. The lanthanum ion implantation layer could effectively hold back iron ions into the immersed solution and obviously improved the corrosion resistance of pure iron in simulated body fluids (SBF) solution by the electrochemical measurements and static immersion tests. The systematic evaluation of blood compatibility, including in vitro platelets adhesion, prothrombin time (PT), thrombin time (TT), indicated that the number of platelets adhesion, activation, aggregation and pseudopodium on the surface of the La-implanted samples were remarkably decreased compared with pure iron and 316L stainless steel, the PT and TT were almost the same as the original plasma. It was obviously showed that lanthanum ion implantation could effectively improve the corrosion resistance and blood compatibility of pure iron.

  18. Investigation on the Enhanced Oxidation of Ferritic/Martensitic Steel P92 in Pure Steam

    PubMed Central

    Yuan, Juntao; Wu, Ximao; Wang, Wen; Zhu, Shenglong; Wang, Fuhui

    2014-01-01

    Oxidation of ferritic/martensitic steel P92 was investigated in pure oxygen and in pure steam at 600–800 °C by thermogravimetric analysis (TGA), optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results showed that the oxidation of P92 was significantly enhanced and multilayer scale with an outer iron oxides layer formed in pure steam. At 700 °C, the gas switch markedly influenced the scaling kinetics and scale microstructure. It was supposed that the higher affinity of iron to steam would be attributed to the enhanced oxidation of P92 in pure steam, and the much easier transport of hydroxyl would account for the significant difference induced by gas switch. PMID:28788592

  19. Inner-shell photoionization of atomic chlorine near the 2p-1 edge: a Breit-Pauli R-matrix calculation

    NASA Astrophysics Data System (ADS)

    Felfli, Z.; Deb, N. C.; Manson, S. T.; Hibbert, A.; Msezane, A. Z.

    2009-05-01

    An R-matrix calculation which takes into account relativistic effects via the Breit-Pauli (BP) operator is performed for photoionization cross sections of atomic Cl near the 2p threshold. The wavefunctions are constructed with orbitals generated from a careful large scale configuration interaction (CI) calculation with relativistic corrections using the CIV3 code of Hibbert [1] and Glass and Hibbert [2]. The results are contrasted with the calculation of Martins [3], which uses a CI with relativistic corrections, and compared with the most recent measurements [4]. [1] A. Hibbert, Comput. Phys. Commun. 9, 141 (1975) [2] R. Glass and A. Hibbert, Comput. Phys. Commun. 16, 19 (1978) [3] M. Martins, J. Phys. B 34, 1321 (2001) [4] D. Lindle et al (private communication) Research supported by U.S. DOE, Division of Chemical Sciences, NSF and CAU CFNM, NSF-CREST Program. Computing facilities at Queen's University of Belfast, UK and of DOE Office of Science, NERSC are appreciated.

  20. Optical quasi-soliton solutions for higher-order nonlinear Schrödinger equation with variable coefficients

    NASA Astrophysics Data System (ADS)

    Zhang, Jiefang; Yang, Qin; Dai, Chaoqing

    2005-04-01

    Optical quasi-soliton solutions for higher-order nonlinear Schrödinger equation (HNLS) with variable coefficients are considered. Based on the extended tanh-function method, we successfully obtained bright and dark quasi-soliton solutions under certain parametric conditions. We conclude that the parameter k(z) is unnecessary to be zero compared with [R. Yang et al., Opt. Commun. 242 (2004) 285]. Furthermore, we choose appropriate optical fiber parameters D2(z) and D3(z) to control the velocity of quasi-soliton and time shift, and discuss the evolution behavior of the special quasi-soliton. For D3(z) = α(z) = f(z) = 0, that is to say, under the absence of the higher order terms, we give same results as early reported in [R.Y. Hao, L. Li, Z.H. Li, W.R. Xue, G.S. Zhou, Opt. Commun. 236 (2004) 79]. As discussed examples, we also analyze three optical systems with real physical significance and obtain results which can be recovered in earlier papers.

  1. Theory of Direct Optical Measurement of Pure Spin Currents in Direct-gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Ren-Bao; Zhu, Bang-Fen

    2010-01-01

    We predict that a pure spin current in a semiconductor may lead to the optical circular birefingence effect without invoking magnetization. This effect may be exploited for a direct, non-destructive measurement of the pure spin current. We derive the effective coupling between a pure spin current and a polarized light beam, and point out that it originates from the inherent spin-orbit coupling in the valence bands, rather than the Rashba or Dresselhaus effects due to inversion asymmetries. The Faraday rotation angle in GaAs is estimated, which indicates that this spin current optical birefringence is experimentally observable.

  2. Effect of laser soldering irradiation on covalent bonds of pure collagen.

    PubMed

    Constantinescu, Mihai A; Alfieri, Alex; Mihalache, George; Stuker, Florian; Ducray, Angélique; Seiler, Rolf W; Frenz, Martin; Reinert, Michael

    2007-03-01

    Laser tissue welding and soldering is being increasingly used in the clinical setting for defined surgical procedures. The exact induced changes responsible for tensile strength are not yet fully investigated. To further improve the strength of the bonding, a better understanding of the laser impact at the subcellular level is necessary. The goal of this study was to analyze whether the effect of laser irradiation on covalent bonding in pure collagen using irradiances typically applied for tissue soldering. Pure rabbit and equine type I collagen were subjected to laser irradiation. In the first part of the study, rabbit and equine collagen were compared using identical laser and irradiation settings. In the second part of the study, equine collagen was irradiated at increasing laser powers. Changes in covalent bonding were studied indirectly using the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Tensile strengths of soldered membranes were measured with a calibrated tensile force gauge. In the first experiment, no differences between the species-specific collagen bands were noted, and no changes in banding were found on SDS-PAGE after laser irradiation. In the second experiment, increasing laser irradiation power showed no effect on collagen banding in SDS-PAGE. Finally, the laser tissue soldering of pure collagen membranes showed virtually no determinable tensile strength. Laser irradiation of pure collagen at typical power settings and exposure times generally used in laser tissue soldering does not induce covalent bonding between collagen molecules. This is true for both rabbit and equine collagen proveniences. Furthermore, soldering of pure collagen membranes without additional cellular components does not achieve the typical tensile strength reported in native, cell-rich tissues. This study is a first step in a better understanding of laser impact at the molecular level and might prove useful in engineering of combined

  3. Strength tests of thin-walled elliptic duralumin cylinders in pure bending and in combined pure bending and torsion

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Stowell, Elbridge Z

    1942-01-01

    An analysis is presented of the results of tests made by the Massachusetts Institute of Technology and by the National Advisory Committee for Aeronautics on an investigation of the strength of thin-walled circular and elliptic cylinders in pure bending and in combined torsion and bending. In each of the loading conditions, the bending moments were applied in the plane of the major axis of the ellipse.

  4. Non-Born-Oppenheimer calculations of the pure vibrational spectrum of HeH+.

    PubMed

    Pavanello, Michele; Bubin, Sergiy; Molski, Marcin; Adamowicz, Ludwik

    2005-09-08

    Very accurate calculations of the pure vibrational spectrum of the HeH(+) ion are reported. The method used does not assume the Born-Oppenheimer approximation, and the motion of both the electrons and the nuclei are treated on equal footing. In such an approach the vibrational motion cannot be decoupled from the motion of electrons, and thus the pure vibrational states are calculated as the states of the system with zero total angular momentum. The wave functions of the states are expanded in terms of explicitly correlated Gaussian basis functions multipled by even powers of the internuclear distance. The calculations yielded twelve bound states and corresponding eleven transition energies. Those are compared with the pure vibrational transition energies extracted from the experimental rovibrational spectrum.

  5. Radiation effects on beta /10.6/ of pure and europium doped KCl

    NASA Technical Reports Server (NTRS)

    Grimes, H. H.; Maisel, J. E.; Hartford, R. H.

    1975-01-01

    Changes in the optical absorption coefficient as the result of X-ray and electron bombardment of pure monocrystalline and polycrystalline KCl and of divalent europium doped polycrystalline KCl were determined. A constant heat flow calorimetric method was used to measure the optical absorption coefficients. Both 300 kV X-ray irradiation and 2 MeV electron irradiation produced increases in the optical absorption coefficient at room temperature. X-ray irradiation produced more significant changes in pure monocrystalline KCl than equivalent amounts of electron irradiation. Electron irradiation of pure and Eu-doped polycrystalline KCl produced increases in the absorption by as much as a factor of 20 over untreated material. Bleaching of the electron-irradiated doped KCl with 649 millimicron light produced a further increase.

  6. Numerical Analysis of Temperature Gradients and Interface Shape During Directional Solidification of Al and Al-Cu Alloy Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.

    1999-01-01

    Numerical modeling was undertaken to analyze the influence of radial thermal gradient on solid/liquid (s/1) interface shape and convection patterns during solidification of pure Al and Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a s/l interface. These predictions would then be used to define the minimum gravity level (g) required to investigate the fundamental physics of interaction between a particle and a s/I interface. To satisfy this objective, steady state calculations were performed for different gravity levels and orientations with the gravity vector. ne furnace configuration used in this analysis is the proposed International Space Station Furnace, Quench Module Insert (QMI) 1. Results from a thermal model of the furnace core were used as initial boundary conditions for solidification modeling. General model of binary alloy solidification was based on the finite element code FIDAP. It was found that for the worst case orientation of 90 degrees with the gravity vector and a g level of 10(exp -4)g(sub o) (g(sub o) = 9.8 m/s(exp 2)) the dominant forces acting on the particle would be the fundamental drag and interfacial forces.

  7. Indirect synthesis of Al{sub 2}O{sub 3}via radiation- or photochemical formation of its hydrated precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barta, Jan, E-mail: jan.barta@fjfi.cvut.cz; Pospisil, Milan; Cuba, Vaclav

    Graphical abstract: - Highlights: • Al{sub 2}O{sub 3} precursors were produced by UV/e-beam irradiation of aqueous solutions. • Depending on the aluminium salt (Cl{sup −} or NO{sub 3}{sup −}), either γ-AlOOH or Al(OH){sub 3} is formed. • The mechanism involved strongly depends on the presence of formate anion. • Prepared mesoporous solid phase has high specific surface area (<190 m{sup 2} g{sup −1}). • Calcination of the precursor leads to the formation of γ-/η-, θ- and α-Al{sub 2}O{sub 3}. - Abstract: γ-, θ- and α-modifications of aluminium oxide (alumina) were successfully prepared by calcination of precursor solid phase obtained bymore » irradiation of clear aqueous solutions by UV light or electron beam. For the precipitate to form, formate anion must be present in the solution in sufficient concentration. According to X-ray diffraction, the precipitate was found to consist of γ-AlOOH or a mixture of γ- and α-Al(OH){sub 3}, when aluminium chloride or aluminium nitrate was used, respectively. The addition of hydrogen peroxide as a ·OH radical source and sensitizer markedly improved the efficiency of the preparation. Some hints for the apparently very complex mechanism involved were listed and discussed. Calcination of the dried precipitate at 500–800 °C produced highly porous γ-alumina with high specific surface area (ca. 150 m{sup 2} g{sup −1}). Mixture of γ- and θ-transition aluminas was obtained at 1000 °C and pure, stable corundum α-Al{sub 2}O{sub 3} formed at 1200 °C. Samples were further investigated by means of scanning electron microscopy and specific surface area or porosity measurement. According to N{sub 2} adsorption isotherm, the precipitate contains mostly mesopores with average pore size 7 nm with specific surface area of ca. 100 m{sup 2} g{sup −1}. Possible applications of the material as sorbent or catalyst as well as a pure matrix for thermoluminescence dosimetry were briefly contemplated. Strong light

  8. Strong temperature-dependent crystallization, phase transition, optical and electrical characteristics of p-type CuAlO2 thin films.

    PubMed

    Liu, Suilin; Wu, Zhiheng; Zhang, Yake; Yao, Zhiqiang; Fan, Jiajie; Zhang, Yiqiang; Hu, Junhua; Zhang, Peng; Shao, Guosheng

    2015-01-07

    We report here a reliable and reproducible single-step (without post-annealing) fabrication of phase-pure p-type rhombohedral CuAlO2 (r-CuAlO2) thin films by reactive magnetron sputtering. The dependence of crystallinity and phase compositions of the films on the growth temperature was investigated, revealing that highly-crystallized r-CuAlO2 thin films could be in situ grown in a narrow temperature window of ∼940 °C. Optical and electrical property studies demonstrate that (i) the films are transparent in the visible light region, and the bandgaps of the films increased to ∼3.86 eV with the improvement of crystallinity; (ii) the conductance increased by four orders of magnitude as the film was evolved from the amorphous-like to crystalline structure. The predominant role of crystallinity in determining CuAlO2 film properties was demonstrated to be due to the heavy anisotropic characteristics of the O 2p-Cu 3d hybridized valence orbitals.

  9. The Vlasov-Poisson-Boltzmann System for a Disparate Mass Binary Mixture

    NASA Astrophysics Data System (ADS)

    Duan, Renjun; Liu, Shuangqian

    2017-11-01

    The Vlasov-Poisson-Boltzmann system is often used to govern the motion of plasmas consisting of electrons and ions with disparate masses when collisions of charged particles are described by the two-component Boltzmann collision operator. The perturbation theory of the system around global Maxwellians recently has been well established in Guo (Commun Pure Appl Math 55:1104-1135, 2002). It should be more interesting to further study the existence and stability of nontrivial large time asymptotic profiles for the system even with slab symmetry in space, particularly understanding the effect of the self-consistent potential on the non-trivial long-term dynamics of the binary system. In this paper, we consider the problem in the setting of rarefaction waves. The analytical tool is based on the macro-micro decomposition introduced in Liu et al. (Physica D 188(3-4):178-192, 2004) that we have been able to develop for the case of the two-component Boltzmann equations around local bi-Maxwellians. Our focus is to explore how the disparate masses and charges of particles play a role in the analysis of the approach of the complex coupling system time-asymptotically toward a non-constant equilibrium state whose macroscopic quantities satisfy the quasineutral nonisentropic Euler system.

  10. Effect of sulfur removal on Al2O3 scale adhesion

    NASA Astrophysics Data System (ADS)

    Smialek, James L.

    1991-03-01

    If the role of reactive element dopants in producing A12O3 scale adhesion on NiCrAl alloys is to getter sulfur and prevent interfacial segregation, then eliminating sulfur from undoped alloys should also produce adherence. Four experiments successfully produced scale adhesion by sulfur removal alone. (1) Repeated oxidation and polishing of a pure NiCrAl alloy lowered the sulfur content from 10 to 2 parts per million by weight (ppmw), presumably by removing the segregated interfacial layer after each cycle. Total scale spallation changed to total retention after 13 such cycles, with no changes in the scale or interfacial morphology. (2) Thinner samples became adherent after fewer oxidation polishing cycles because of a more limited supply of sulfur. (3) Spalling in subsequent cyclic oxidation tests of samples from experiment (1) was a direct function of the initial sulfur content. (4) Desulfurization to 0.1 ppmw levels was accomplished by annealing melt-spun foil in 1 arm H2. These foils produced oxidation weight change curves for 500 1-hour cycles at 1100 °C similar to those for Y- or Zr-doped NiCrAl. The transition between adherent and nonadherent behavior was modeled in terms of sulfur flux, sulfur content, and sulfur segregation.

  11. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    DOEpatents

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  12. Classification of quantum groups and Belavin–Drinfeld cohomologies for orthogonal and symplectic Lie algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadets, Boris; Karolinsky, Eugene; Pop, Iulia

    2016-05-15

    In this paper we continue to study Belavin–Drinfeld cohomology introduced in Kadets et al., Commun. Math. Phys. 344(1), 1-24 (2016) and related to the classification of quantum groups whose quasi-classical limit is a given simple complex Lie algebra #Mathematical Fraktur Small G#. Here we compute Belavin–Drinfeld cohomology for all non-skewsymmetric r-matrices on the Belavin–Drinfeld list for simple Lie algebras of type B, C, and D.

  13. [Inhibition of Bacillus coagulans growth in laboratory media and in fruit purees].

    PubMed

    Cerrutti, P; Alzamora, S M; de Huergo, M S

    2000-01-01

    The growth of two strains of B. coagulans was inhibited in laboratory media at pH < or = 4.5, and at water activity (aw) levels of 0.96 for B. coagulans NRS 609 and 0.95 for B. coagulans ATCC 803. The growth of both strains was also inhibited in apple and strawberry purees (pH = 3.5) stored at 37 degrees C for over two months. B. coagulans was able to grow in banana puree (pH approximately equal to 5.0) but acidification of the puree at pH = 3.5 was enough to prevent growth. The addition of up to 3,000 ppm vainillin ("natural" preservative) or 1,000 ppm potassium sorbate (traditional preservative) at pH higher than the inhibitory level previously determined could not prevent growth of B. coagulans in laboratory or in fruits, but 100 ppm lysozyme retarded growth in laboratory media at different pH levels (from 4.5 to 6.7) and in banana puree. As lysozyme showed to be effective at pH < or = 6.7, it might be used to prevent growth of B. coagulans at an eventual increment of pH during storage.

  14. Pasteurization of strawberry puree using a pilot plant pulsed electric fields (PEF) system

    USDA-ARS?s Scientific Manuscript database

    The processing of strawberry puree by pulsed electric fields (PEF) in a pilot plant system has never been evaluated. In addition, a method does not exist to validate the exact number and shape of the pulses applied during PEF processing. Both buffered peptone water (BPW) and fresh strawberry puree (...

  15. Simulation and analysis of stress in a Li-ion battery with a blended LiMn2O4 and LiNi0.8Co0.15Al0.05O2 cathode

    NASA Astrophysics Data System (ADS)

    Dai, Yiling; Cai, Long; White, Ralph E.

    2014-02-01

    Stress generation due to Li ion insertion into/extraction from LiMn2O4 particles is studied with a mathematical model for a lithium ion battery with pure LiMn2O4 or mixed LiMn2O4 and LiNi0.8Co0.15Al0.05O2 cathode. The simulated stress profile in a pure LiMn2O4 electrode shows nonuniformity across the positive electrode. The cathode blended model predicts that the stress generated in the LiMn2O4 particles is reduced at the end of discharge due to adding LiNi0.8Co0.15Al0.05O2 to the cathode. The effect of the variation in the blend ratio on the stress generation is also investigated.

  16. Social phobia, panic disorder and suicidality in subjects with pure and depressive mania.

    PubMed

    Dilsaver, Steven C; Chen, Yuan-Who

    2003-11-01

    The objective of this study is to ascertain the rates of social phobia, panic disorder and suicidality in the midst of the manic state among subjects with pure and depressive mania. Subjects received evaluations entailing the use of serial standard clinical interviews, the Schedule for Affective Disorders and Schizophrenia (SADS) and a structured interview to determine whether they met the criteria for intra-episode social phobia (IESP) and panic disorder (IEPD). The diagnoses of major depressive disorder and mania were rendered using the Research Diagnostic Criteria. The diagnoses of IESP and IEPD were rendered using DSM-III-R criteria. Categorization as being suicidal was based on the SADS suicide subscale score. Twenty-five (56.8%) subjects had pure and 19 (43.2%) subjects had depressive mania. None of the subjects with pure and 13 (68.4%) with depressive mania had IESP (P<0.0001). One (4.0%) subject with pure and 16 (84.2%) subjects with depressive mania had IEPD (P<0.0001). One (4.0%) subject with pure and 12 (63.2%) subjects with depressive were suicidal. Twelve of 13 (92.3%) subjects with depressive mania met the criteria for IESP and IEPD concurrently (P<0.0001). All were suicidal. The study suffers limitations imposed by small sample sizes and non-blind methods of identifying subjects with IESP, IEPD and who were suicidal. Subjects with depressive but not pure mania exhibited high rates of both IESP and IEPD. Concurrence of the disorders is the rule. The findings suggest that databases disclosing a relationship between panic disorder and suicidality merit, where possible, reanalysis directed at controlling for the effect of social phobia.

  17. Synthesis and luminescent properties of Tb3Al5O12:Ce3+ phosphors for warm white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Meng, Qinghuan; Liu, Ying; Fu, Yujie; Zu, Yuangang; Zhou, Zhenbao

    2018-01-01

    A series of Tb3Al5O12:Ce3+ phosphors were successfully synthesized by a precipitation method. The pure Tb3Al5O12 phase was obtained in the synthesized Tb3Al5O12:Ce3+ phosphors after heat treatments at 500 °C in air for 3 h. The excitation spectra of Tb3Al5O12:Ce3+ phosphors include excitation bands corresponding to Tb3+ and Ce3+ ions. Under the excitation at 455 nm, Tb3Al5O12:Ce3+ phosphors show emission band at around 553 nm. The critical doping concentration of Ce3+ in Tb3Al5O12 is 6mol%, which shows the highest emission intensity. White light-emitting diodes were fabricated by combining InGaN-based blue light-emitting diodes with Tb3Al5O12:Ce3+ and Y3Al5O12:Ce3+ phosphors. The Tb3Al5O12:Ce3+ based white light-emitting diode shows a lower color temperature than that of Y3Al5O12:Ce3+ based white light-emitting diode. The experimental results clearly indicate that the prepared Tb3Al5O12:Ce3+ has potential applications in white light emitting diodes.

  18. Structure, optical and phonon properties of bulk and nanocrystalline Al2-xScx(WO4)3 solid solutions doped with Cr3+

    NASA Astrophysics Data System (ADS)

    Mączka, M.; Hermanowicz, K.; Pietraszko, A.; Yordanova, A.; Koseva, I.

    2014-01-01

    Pure and Cr3+ doped nanosized Al2-xScx(WO4)3 solid solutions were prepared by co-precipitation method as well as Al2-xScx(WO4)3 single crystals were grown by high-temperature flux method. The obtained samples were characterized by X-ray, Raman, IR, absorption and luminescence methods. Single crystal X-ray diffraction showed that AlSc(WO4)3 is orthorhombic at room temperature with space group Pnca and trivalent cations are statistically distributed. Raman and IR studies showed that Al2-xScx(WO4)3 solid solutions show "two mode" behavior. They also showed that vibrational properties of nanosized samples have been weakly modified in comparison with the bulk materials. The luminescence and absorption spectra revealed that chromium ions occupy two sites of weak and strong crystal field strength.

  19. About being pure and natural: understandings of pre-service primary teachers

    NASA Astrophysics Data System (ADS)

    Lake, David

    2005-04-01

    In an investigation of 149 pre-service primary teachers' understanding of the terms pure and natural, the participants were asked to provide definitions of the two words, and classify various substances including drugs of abuse, pharmaceuticals, nutriceuticals, and household substances as either natural or not natural, and as pure or not pure. A common scale of purity and naturalness could be constructed consistent with the Rasch model, suggesting that the participants conflate the two terms. This conflation is consistent with the qualitative data that suggested participants associated both concepts within a common spiritual metaphor, heavily laden with emotive content. Purity was not seen as relating to the composition of a substance, but to its history. The findings may help explain the development of persistent non-scientific chemical taxonomies observed in secondary students. Furthermore, as health educators, the participants may become the source of inappropriate messages about the use of medicines, or the abuse of drugs.

  20. Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    NASA Astrophysics Data System (ADS)

    Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.

    2018-03-01

    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.

  1. Metastable growth of pure wurtzite InGaAs microstructures.

    PubMed

    Ng, Kar Wei; Ko, Wai Son; Lu, Fanglu; Chang-Hasnain, Connie J

    2014-08-13

    III-V compound semiconductors can exist in two major crystal phases, namely, zincblende (ZB) and wurtzite (WZ). While ZB is thermodynamically favorable in conventional III-V epitaxy, the pure WZ phase can be stable in nanowires with diameters smaller than certain critical values. However, thin nanowires are more vulnerable to surface recombination, and this can ultimately limit their performances as practical devices. In this work, we study a metastable growth mechanism that can yield purely WZ-phased InGaAs microstructures on silicon. InGaAs nucleates as sharp nanoneedles and expand along both axial and radial directions simultaneously in a core-shell fashion. While the base can scale from tens of nanometers to over a micron, the tip can remain sharp over the entire growth. The sharpness maintains a high local surface-to-volume ratio, favoring hexagonal lattice to grow axially. These unique features lead to the formation of microsized pure WZ InGaAs structures on silicon. To verify that the WZ microstructures are truly metastable, we demonstrate, for the first time, the in situ transformation from WZ to the energy-favorable ZB phase inside a transmission electron microscope. This unconventional core-shell growth mechanism can potentially be applied to other III-V materials systems, enabling the effective utilization of the extraordinary properties of the metastable wurtzite crystals.

  2. Tunable optical properties of some rare earth elements-doped mayenite Ca12Al14O33 nanopowders elaborated by oxalate precursor route

    NASA Astrophysics Data System (ADS)

    Rashad, Mohamed M.; Mostafa, Ahmed G.; Mwakikunga, Bonex W.; Rayan, Diaa A.

    2017-01-01

    Rare earth (RE) ions-doped mayenite Ca12Al14- x RE x O33 nanopowders (where RE = La and Gd and x = 0-1.0) were synthesized using the oxalate precursor technique. The as-prepared precursors were calcined at 800 °C for 2 h. Obviously, all RE-doped Ca12Al14- x RE x O33 possessed a well-crystalline cubic mayenite phase till RE content of 0.8. The crystallo-chemical aspects including crystallite size, lattice parameters, theoretical X-ray density and bulk density were robustly on RE nature and ratio. The microstructure and the average grain size were significantly influenced by the RE kind and content. The high transparency of Ca12Al14- x RE x O33 over 80% was found to be evinced in the visible wavelength range of 400-800 nm. Besides, the incorporation of RE cation minimized the direct band gap energy from 4.42 eV for pure mayenite to 3.85 and 3.59 eV with x value 1.0 of La3+ and Gd3+ ions. The photoluminescence spectra of pure mayenite nanoparticles showed that the band edge emission ( λ exc = 248 nm) with an intense visible emission band at 360 nm was detected. Otherwise, the band edge emission showed a slight shift toward short wavelength due to the substitution Al3+ by RE3+ ions. Such results open a new avenue for application of mayenite as a good candidate for transparent low-temperature electron conductor for optoelectronics applications.

  3. Trapped charge densities in Al{sub 2}O{sub 3}-based silicon surface passivation layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Paul M., E-mail: Paul.Jordan@namlab.com; Simon, Daniel K.; Dirnstorfer, Ingo

    2016-06-07

    In Al{sub 2}O{sub 3}-based passivation layers, the formation of fixed charges and trap sites can be strongly influenced by small modifications in the stack layout. Fixed and trapped charge densities are characterized with capacitance voltage profiling and trap spectroscopy by charge injection and sensing, respectively. Al{sub 2}O{sub 3} layers are grown by atomic layer deposition with very thin (∼1 nm) SiO{sub 2} or HfO{sub 2} interlayers or interface layers. In SiO{sub 2}/Al{sub 2}O{sub 3} and HfO{sub 2}/Al{sub 2}O{sub 3} stacks, both fixed charges and trap sites are reduced by at least a factor of 5 compared with the value measured inmore » pure Al{sub 2}O{sub 3}. In Al{sub 2}O{sub 3}/SiO{sub 2}/Al{sub 2}O{sub 3} or Al{sub 2}O{sub 3}/HfO{sub 2}/Al{sub 2}O{sub 3} stacks, very high total charge densities of up to 9 × 10{sup 12} cm{sup −2} are achieved. These charge densities are described as functions of electrical stress voltage, time, and the Al{sub 2}O{sub 3} layer thickness between silicon and the HfO{sub 2} or the SiO{sub 2} interlayer. Despite the strong variation of trap sites, all stacks reach very good effective carrier lifetimes of up to 8 and 20 ms on p- and n-type silicon substrates, respectively. Controlling the trap sites in Al{sub 2}O{sub 3} layers opens the possibility to engineer the field-effect passivation in the solar cells.« less

  4. Pure Gaussian state generation via dissipation: a quantum stochastic differential equation approach.

    PubMed

    Yamamoto, Naoki

    2012-11-28

    Recently, the complete characterization of a general Gaussian dissipative system having a unique pure steady state was obtained. This result provides a clear guideline for engineering an environment such that the dissipative system has a desired pure steady state such as a cluster state. In this paper, we describe the system in terms of a quantum stochastic differential equation (QSDE) so that the environment channels can be explicitly dealt with. Then, a physical meaning of that characterization, which cannot be seen without the QSDE representation, is clarified; more specifically, the nullifier dynamics of any Gaussian system generating a unique pure steady state is passive. In addition, again based on the QSDE framework, we provide a general and practical method to implement a desired dissipative Gaussian system, which has a structure of quantum state transfer.

  5. Use of pure glycerol in fattening heavy pigs.

    PubMed

    Della Casa, G; Bochicchio, D; Faeti, V; Marchetto, G; Poletti, E; Rossi, A; Garavaldi, A; Panciroli, A; Brogna, N

    2009-01-01

    Eighty Italian Duroc×Italian Large White pigs (BW 42.6±3.37kg) were used to determine the effects of pure glycerol on growth performance and meat quality of heavy pigs. Pigs were divided into five groups receiving 0% (control), 5% or 10% during the growing and finishing phases (42.6-160kg BW) (G+F5,G+F10) or 5% or 10% during the finishing period (100-160kg BW) (FIN5,FIN10) of pure glycerol in substitution for maize meal (on a dry matter basis). The pigs were slaughtered at approximately 160kg BW. The growth performance of pigs fed 5% glycerol did not differ from controls regardless of feeding duration, whereas those fed 10% glycerol showed reduced growth and poorer feed:gain ratio. Fat quality and meat suitability for raw ham curing were not affected by dietary treatment. Differences were not consistent enough to draw any conclusion about the effects of feeding glycerol on sensory characteristics.

  6. Preparation and physical characterization of pure beta-carotene.

    PubMed

    Laughlin, Robert G; Bunke, Gregory M; Eads, Charles D; Laidig, William D; Shelley, John C

    2002-05-01

    Pure all-trans beta-carotene has been prepared on the 10's of grams scale by isothermal Fractional Dissolution (FD) of commercial laboratory samples in tetrahydrofuran (THF). beta-Carotene purified in this way is black, with a faint brownish tinge. The electronic spectra of black samples extend into the near infrared, with end-absorption past 750 nm. Black samples react directly with dioxygen under mild conditions to yield the familiar orange or red powders. Pure beta-carotene rigorously obeys Beer's Law in octane over the entire UV-Vis spectral range, while commercial laboratory samples and recrystallized samples do not. NMR self-diffusion coefficient data demonstrate that beta-carotene exists as simple molecular solutions in octane and toluene. The anomalously high crystallinity of beta-carotene can be attributed (from analysis using molecular mechanics) to the facts that: (1) the number of theoretically possible conformers of beta-carotene is extremely small, and (2) only a small fraction of these (ca. 12%, or 127) may actually exist in fluid phases.

  7. Electronic transport in pure and doped UO2

    NASA Astrophysics Data System (ADS)

    Massih, A. R.

    2017-12-01

    The thermoelectric properties of pure and doped UO2, namely the thermal and electrical conductivities and the thermopower, are assessed. We adopt the small polaron theory of the Mott type insulators, wherein the charge carriers, the electron and hole on the U3+ and U5+ ions, are treated as small polarons. For the thermal conductivity, the small polaron theory is applicable at temperatures above 1500 K. A review of the experimental data on the temperature dependence of the aforementioned transport properties is made. The data include UO2 with dopants such as Cr2O3, Gd2O3, Y2O3 and Nb2O5. We compare the applications of the theory with the data. Two limiting regimes, adiabatic and nonadiabatic, with the ensuing expressions for the conductivities and the thermoelectric power are considered. We discuss both the merits and shortcomings of the putative small polaron model and the simplification thereof as applied to pure and doped uranium dioxide.

  8. Altered soleus responses to magnetic stimulation in pure cerebellar ataxia.

    PubMed

    Kurokawa-Kuroda, Tomomi; Ogata, Katsuya; Suga, Rie; Goto, Yoshinobu; Taniwaki, Takayuki; Kira, Jun-Ichi; Tobimatsu, Shozo

    2007-06-01

    Transcranial magnetic stimulation (TMS) over the leg motor area elicits a soleus primary response (SPR) and a soleus late response (SLR). We evaluated the influence of the cerebellofugal pathway on the SPR and SLR in patients with 'pure' cerebellar ataxia. SPRs and SLRs were recorded from 11 healthy subjects and 9 patients with 'pure' cerebellar cortical degeneration; 5 with spinocerebellar ataxia type 6 (SCA6), and 4 with late cortical cerebellar ataxia (LCCA). In addition, three patients with localized cerebellar lesions were tested. The SPR latency was significantly longer in patients than in controls, but primary responses in the tibialis anterior muscle were normal. The frequency of abnormal SLR was 38.9% in the supine position and 83.3% in the standing position. Two out of three patients with localized cerebellar lesions also showed abnormal SLR. Altered SPRs in patients may result from a dysfunction of the primary motor cortex caused by crossed cerebello-cerebral diaschisis. In addition, our results suggest that 'pure' cerebellar degeneration involves the mechanism responsible for evoking SLR which is related to the control of posture. SLR can be a useful neurophysiological parameter for evaluating cerebellofugal function.

  9. Behavior of pure gallium in water and various saline solutions.

    PubMed

    Horasawa, N; Nakajima, H; Takahashi, S; Okabe, T

    1997-12-01

    This study investigated the chemical stability of pure gallium in water and saline solutions in order to obtain fundamental knowledge about the corrosion mechanism of gallium-based alloys. A pure gallium plate (99.999%) was suspended in 50 mL of deionized water, 0.01%, 0.1% or 1% NaCl solution at 24 +/- 2 degrees C for 1, 7, or 28 days. The amounts of gallium released into the solutions were determined by atomic absorption spectrophotometry. The surfaces of the specimens were examined after immersion by x-ray diffractometry (XRD) and x-ray photoelectron spectroscopy (XPS). In the solutions containing 0.1% or more NaCl, the release of gallium ions into the solution was lowered when compared to deionized water after 28-day immersion. Gallium oxide monohydroxide was found by XRD on the specimens immersed in deionized water after 28-day immersion. XPS indicated the formation of gallium oxide/hydroxide on the specimens immersed in water or 0.01% NaCl solution. The chemical stability of pure solid gallium was strongly affected by the presence of Cl- ions in the aqueous solution.

  10. Synthesis of Enantiomerically Pure Anthracyclinones

    NASA Astrophysics Data System (ADS)

    Achmatowicz, Osman; Szechner, Barbara

    The anthracycline antibiotics are among the most important clinical drugs used in the treatment of human cancer. The search for new agents with improved therapeutic efficacy and reduced cardiotoxicity stimulated considerable efforts in the synthesis of new analogues. Since the biological activity of anthracyclines depends on their natural absolute configuration, various strategies for the synthesis of enantiomerically pure anthracyclinones (aglycones) have been developed. They comprise: resolution of racemic intermediate, incorporation of a chiral fragment derived from natural and non-natural chiral pools, asymmetric synthesis with the use of a chiral auxiliary or a chiral reagent, and enantioselective catalysis. Synthetic advances towards enantiopure anthracyclinones reported over the last 17 years are reviewed.

  11. Cu-Al-Ni-SMA-Based High-Damping Composites

    NASA Astrophysics Data System (ADS)

    López, Gabriel A.; Barrado, Mariano; San Juan, Jose; Nó, María Luisa

    2009-08-01

    Recently, absorption of vibration energy by mechanical damping has attracted much attention in several fields such as vibration reduction in aircraft and automotive industries, nanoscale vibration isolations in high-precision electronics, building protection in civil engineering, etc. Typically, the most used high-damping materials are based on polymers due to their viscoelastic behavior. However, polymeric materials usually show a low elastic modulus and are not stable at relatively low temperatures (≈323 K). Therefore, alternative materials for damping applications are needed. In particular, shape memory alloys (SMAs), which intrinsically present high-damping capacity thanks to the dissipative hysteretic movement of interfaces under external stresses, are very good candidates for high-damping applications. A completely new approach was applied to produce high-damping composites with relatively high stiffness. Cu-Al-Ni shape memory alloy powders were embedded with metallic matrices of pure In, a In-10wt.%Sn alloy and In-Sn eutectic alloy. The production methodology is described. The composite microstructures and damping properties were characterized. A good particle distribution of the Cu-Al-Ni particles in the matrices was observed. The composites exhibit very high damping capacities in relatively wide temperature ranges. The methodology introduced provides versatility to control the temperature of maximum damping by adjusting the shape memory alloy composition.

  12. Comparing pure-tone audiometry and auditory steady state response for the measurement of hearing loss.

    PubMed

    Ahn, Joong Ho; Lee, Hyo-Sook; Kim, Young-Jin; Yoon, Tae Hyun; Chung, Jong Woo

    2007-06-01

    To compare pure-tone audiometry and auditory steady state response (ASSR) to measure hearing loss based on the severity of hearing loss in frequencies. A total of 105 subjects (168 ears, 64 male and 41 female) were enrolled in this study. We determined hearing level by measurement of pure-tone audiometry and ASSR on the same day for each subject. Pure-tone audiometry and ASSR were highly correlated (r=0.96). The relationship is described by the equation PTA=1.05 x mean ASSR - 7.6. When analyzed according to the frequencies, the correlation coefficients were 0.94, 0.95, 0.94, and 0.92 for 0.5, 1, 2, and 4 kHz, respectively. From this study, authors could conclude that pure-tone audiometry and ASSR showed very similar results and indicated that ASSR may be a good alternative method for the measurement of hearing level in infants and children, for whom pure-tone audiometry is not appropriate.

  13. The effect of Al2O3, CaO, Cr2O3 and MgO on devitrification of silica

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1988-01-01

    The effect of doping on devitrification of vitreous silica was studied at 1100, 1200, and 1300 C. Dispersion of dopants on a molecular scale was accomplished via a sol-gel technique. All dopants accelerated the devitrification of silica but to different degrees. The most active was CaO followed by MgO, Al2O3, and Cr2O3. Pure silica and silica containing Cr2O3 and Al2O3 devitrified to alpha-cristobalite only, whereas silica doped with CaO and MgO produced alpha-quartz and alpha-cristobalite. It appears that prolonged heat treatment would cause alpha-quartz to transform to alpha-cristobalite.

  14. Coherent perfect absorber and laser modes in purely imaginary metamaterials

    NASA Astrophysics Data System (ADS)

    Fu, Yangyang; Cao, Yanyan; Cummer, Steven A.; Xu, Yadong; Chen, Huanyang

    2017-10-01

    Conjugate metamaterials, in which the permittivity and the permeability are complex conjugates of each other, possess the elements of loss and gain simultaneously. By employing a conjugate metamaterial with a purely imaginary form, we propose a mechanism for realizing both coherent perfect absorber (CPA) and laser modes. Moreover, the general conditions for obtaining CPA and laser modes, including obtaining them simultaneously, are revealed by analyzing the wave scattering properties of a slab made of purely imaginary metamaterials (PIMs). Specifically, in a PIM slab with a subunity effective refractive index, the CPA mode can be simplified as a perfect absorption mode and the incident wave from one side could be perfectly absorbed.

  15. Pure versus mixed electrosurgical current for endoscopic biliary sphincterotomy: a meta-analysis of adverse outcomes.

    PubMed

    Verma, Dharmendra; Kapadia, Asha; Adler, Douglas G

    2007-08-01

    Endoscopic biliary sphincterotomy (ES) can cause bleeding, pancreatitis, and perforation. This has, in part, been attributed to the type of electrosurgical current used for ES. No consensus exists on the optimal type of electrosurgical current for ES to maximize safety. To compare the rates of complications in patients undergoing ES via pure current versus mixed current. A systematic review of published, prospective, randomized trials that compared pure current with mixed current for ES. Patients undergoing ES, with random assignment to either current group. Data were standardized for pancreatitis and postsphincterotomy bleeding. There were insufficient data to analyze perforation risk. A random-effects model was used. Bleeding, pancreatitis, and perforation. A total of 804 patients from 4 trials that compared pure current to mixed current were analyzed. The aggregated rate of pancreatitis was 3.8%, 95% confidence interval (CI) 1.0%-6.6%, for the pure-current group versus 7.9%, 95% CI 3.1%-12.7%, for the mixed-current group; the difference was not statistically significant. The rate of bleeding (all severity groups) for the pure-current group was 37.3% (95% CI 27.3%, 47.3%), which was significantly higher than that of the mixed-current group (12.2% [95% CI 4.1%, 20.3%]). Mild bleeding was significantly more frequent with pure current (28.9% [95% CI 16.3, 41.4]) compared with mixed current (9.4% [95% CI 2.1%, 16.8%]). Variables, including endoscopist skill and cannulation difficulty, were difficult to measure. The rate of pancreatitis in patients who underwent ES when using pure current was not significantly different from those when using mixed current. Pure current was associated with more episodes of bleeding, primarily mild bleeding. Data were insufficient to analyze the perforation risk.

  16. The future of 'pure' medical science: the need for a new specialist professional research system.

    PubMed

    Charlton, Bruce G; Andras, Peter

    2005-01-01

    Over recent decades, medical research has become mostly an 'applied' science which implicitly aims at steady progress by an accumulation of small improvements, each increment having a high probability of validity. Applied medical science is, therefore, a social system of communications for generating pre-publication peer-reviewed knowledge that is ready for implementation. However, the need for predictability makes modern medical science risk-averse and this is leading to a decline in major therapeutic breakthroughs where new treatments for new diseases are required. There is need for the evolution of a specialized professional research system of pure medial science, whose role would be to generate and critically evaluate radically novel and potentially important theories, techniques, therapies and technologies. Pure science ideas typically have a lower probability of being valid, but the possibility of much greater benefit if they turn out to be true. The domination of medical research by applied criteria means that even good ideas from pure medical science are typically ignored or summarily rejected as being too speculative. Of course, radical and potentially important ideas may currently be published, but at present there is no formal mechanism by which pure science publications may be received, critiqued, evaluated and extended to become suitable for 'application'. Pure medical science needs to evolve to constitute a typical specialized scientific system of formal communications among a professional community. The members of this putative profession would interact via close research groupings, journals, meetings, electronic and web communications--like any other science. Pure medical science units might arise as elite grouping linked to existing world-class applied medical research institutions. However, the pure medical science system would have its own separate aims, procedures for scientific evaluation, institutional organization, funding and support

  17. [The corrosion of pure iron in five different mediums].

    PubMed

    Xu, Li; Zhu, Shengfa; Huang, Nan; Li, Xinchang; Zhang, Yu

    2009-08-01

    The sectional test was adopted in this study to investigate the corrosion of pure iron in 0.15 mol/L NaCl solution, Ringer solution, PBS(-) solution, SBF solution and M199 cell culture medium at three different times. The result shows that different mediums have different corrosion effects on pure iron. The arrangement according to the medium's corrosion ability from the strongest to weakest is 0.15 mol/L NaCl solution (Ringer solution), PBS(-) solution, SBF solution and M199 cell culture medium. The results of scanning electron microscopy and energy dispersive X-ray spectrum analyses show that the addition of HPO4(2-), H2POC4-, Ca2+, Mg2+, SO4(2-) and the organic component can inhibit the corrosion to some degree.

  18. Faithful teleportation with arbitrary pure or mixed resource states

    NASA Astrophysics Data System (ADS)

    Zhao, Ming-Jing; Li, Zong-Guo; Fei, Shao-Ming; Wang, Zhi-Xi; Li-Jost, Xianqing

    2011-05-01

    We study faithful teleportation systematically with arbitrary entangled states as resources. The necessary conditions of mixed states to complete perfect teleportation are proved. Based on these results, the necessary and sufficient conditions of faithful teleportation of an unknown state |phirang in { C}^d with an entangled resource ρ in { C}^m \\otimes { C}^d and { C}^d \\otimes { C}^n are derived. It is shown that for ρ in { C}^m \\otimes { C}^d, ρ must be a maximally entangled state, while for ρ in { C}^d \\otimes { C}^n, ρ must be a pure maximally entangled state. Moreover, we show that the sender's measurements must be all projectors of maximally entangled pure states. The relations between the entanglement of the formation of the resource states and faithful teleportation are also discussed.

  19. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    PubMed Central

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-01-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on. PMID:26853810

  20. Developmental and Individual Differences in Pure Numerical Estimation

    ERIC Educational Resources Information Center

    Booth, Julie L.; Siegler, Robert S.

    2006-01-01

    The authors examined developmental and individual differences in pure numerical estimation, the type of estimation that depends solely on knowledge of numbers. Children between kindergarten and 4th grade were asked to solve 4 types of numerical estimation problems: computational, numerosity, measurement, and number line. In Experiment 1,…