Science.gov

Sample records for al cr ga

  1. Observation of ferromagnetism above 900 K in Cr-GaN and Cr-AlN

    NASA Astrophysics Data System (ADS)

    Liu, H. X.; Wu, Stephen Y.; Singh, R. K.; Gu, Lin; Smith, David J.; Newman, N.; Dilley, N. R.; Montes, L.; Simmonds, M. B.

    2004-11-01

    We report ferromagnetism at over 900K in Cr-GaN and Cr-AlN thin films. The magnetic properties vary as a function of Cr concentration with 60%, and 20%, of the Cr being magnetically active at 3% doping in GaN, and 7% in AlN, respectively. In the GaN sample with the highest magnetically active Cr (60%), channeling Rutherford backscattering indicates that over 70% of Cr impurities are located on substitutional sites. These results give indisputable evidence that substitutional Cr defects are involved in the magnetic behavior. While Cr-AlN is highly resistive, Cr-GaN exhibits properties characteristic of hopping conduction including T-1/2 resistivity dependence and small Hall mobility (0.06cm2/Vs). A large negative magnetoresistance is attributed to the influence of the magnetic field on the quantum interference between the many paths linking two hopping sites. The results strongly suggest that ferromagnetism in Cr-GaN and Cr-AlN can be attributed to the double exchange mechanism as a result of hopping between near-midgap substitutional Cr impurity bands.

  2. Electronic, magnetic and Fermi properties investigates on quaternary Heusler NiCoCrAl, NiCoCrGa and NiFeCrGa

    NASA Astrophysics Data System (ADS)

    Wei, Xiao-Ping; Zhang, Ya-Ling; Chu, Yan-Dong; Sun, Xiao-Wei; Sun, Ting; Guo, Peng; Deng, Jian-Bo

    2015-07-01

    Using the full-potential local-orbital minimum-basis method within the framework of density functional theory, we study the electronic, magnetic and Fermi properties of three quaternary Heusler compounds: NiCoCrAl, NiCoCrGa and NiFeCrGa. Results identify that these compounds are half-metallic ferromagnets with integer spin magnetic moment, and their spin moments follow the Slater-Pauling rule. Accordingly, the origin of gap and magnetic moment are also discussed. In addition, the Fermi surface is further plotted to explore the behavior of electronic states in the vicinity of Fermi level for these compounds. Finally, we argue the influence of tetragonal deformation on electronic and magnetic properties. Meanwhile, the possible L21 disorder is also discussed for NiCoCrAl and NiCoCrGa.

  3. Electronic structure, magnetism and stability of Co2CrX (X =Al, Ga, In) ab initio study

    NASA Astrophysics Data System (ADS)

    Dahmane, F.; Mesri, D.; Tadjer, A.; Khenata, R.; Benalia, S.; Djoudi, L.; Doumi, B.; Boumia, L.; Aourag, H.

    2016-01-01

    The structural, electronic as well as the magnetic properties of the Co2CrX (X =Al, Ga and In) full-Heusler alloy have been studied using first-principles calculations performed in the framework of density functional theory (DFT) within the generalized gradient approximation (GGA). It was taken into account both possible L21 structures (i.e. Hg2CuTi- and Cu2MnAl-type). Basically, for all compounds, the Cu2MnAl-type structure is energetically more stable than Hg2CuTi-type structure at the equilibrium volume. The electronic structure calculations for Co2CrAl reveal that half-metallic (HM) character in Cu2MnAl-type structure, Co2CrGa show nearly HM behavior and Co2CrIn has a metallic character. The predicted total magnetic moment is 3μB for Co2CrX (X =Al, Ga) which is in good convergence with the Slater-Pauling (SP) rule.

  4. Comparative studies for Cr4+:YAG crystal and AlGaInAs semiconductor used as a saturable absorber in Q-switched Yb-doped fiber lasers.

    PubMed

    Huang, J Y; Zhuang, W Z; Huang, W C; Su, K W; Hu, C; Huang, K F; Chen, Y F

    2009-11-09

    We demonstrate comparative studies for Cr(4+):YAG crystal and AlGaInAs quantum-well (QW) used as a saturable absorbers in passively Q-switched Yb-doped fiber lasers. Both saturable absorbers were designed to be possessed of nearly the same initial transmission. Under a pump power of 24 W, the average output powers were up to 14.4 W and 13.8 W obtained with the AlGaInAs QWs and with the Cr(4+):YAG crystal, respectively. The maximum pulse energies obtained with the Cr(4+):YAG crystal and with the AlGaInAs QWs were found to be 0.35 mJ and 0.45 mJ, respectively.

  5. Half-metallicity at the Heusler alloy Co(2)Cr(0.5)Fe(0.5)Al(001) surface and its interface with GaAs(001).

    PubMed

    Zarei, Sareh; Javad Hashemifar, S; Akbarzadeh, Hadi; Hafari, Zohre

    2009-02-04

    Electronic and magnetic properties of the Heusler alloy Co(2)Cr(0.5)Fe(0.5)Al(001) surfaces and its interfaces with GaAs(001) are studied within the framework of density functional theory by using the plane-wave pseudopotential approach. The phase diagram obtained by ab initio atomistic thermodynamics shows that the CrAl surface is the most stable (001) termination of this Heusler alloy. We discuss that, at the ideal surfaces and interfaces with GaAs, half-metallicity of the alloy is lost, although the CrAl surface keeps high spin polarization. The energy band profile of the stable interface is investigated and a negative p Schottky barrier of -0.78 eV is obtained for this system.

  6. Trap depth and color variation of Ce3+-Cr3+ co-doped Gd3(Al,Ga)5O12 garnet persistent phosphors

    NASA Astrophysics Data System (ADS)

    Asami, Kazuki; Ueda, Jumpei; Tanabe, Setsuhisa

    2016-12-01

    Persistent luminescent properties in Ce3+-Cr3+ codoped Gd3Al5-xGaxO12 garnet (GAGG:Ce-Cr) solid solution have been investigated. The persistent luminescent color is shifted from orange to yellowish green with increasing Ga content because Ce3+: 5d level splitting becomes much weaker. The depth of electron trap introduced by Cr codoping was estimated from the intense thermoluminescence glow peak by the initial rise method. The trap depth decreases from 0.56 eV to 0.29 eV with increasing Ga content. The shift can be explained by downshift of bottom of conduction band. From the persistent luminescence decay curve measurement after ceasing 450 nm blue illumination, the samples with x = 2.5 exhibited the longest persistent luminescence for 405 min until the luminance becomes 2 mcd/m2 in GAGG:Ce-Cr phosphors.

  7. A critical evaluation of GGA + U modeling for atomic, electronic and magnetic structure of Cr2AlC, Cr2GaC and Cr2GeC.

    PubMed

    Dahlqvist, M; Alling, B; Rosen, J

    2015-03-11

    In this work we critically evaluate methods for treating electron correlation effects in multicomponent carbides using a GGA + U framework, addressing doubts from previous works on the usability of density functional theory in the design of magnetic MAX phases. We have studied the influence of the Hubbard U-parameter, applied to Cr 3d orbitals, on the calculated lattice parameters, magnetic moments, magnetic order, bulk modulus and electronic density of states of Cr2AlC, Cr2GaC and Cr2GeC. By considering non-, ferro-, and five different antiferromagnetic spin configurations, we show the importance of including a broad range of magnetic orders in the search for MAX phases with finite magnetic moments in the ground state. We show that when electron correlation is treated on the level of the generalized gradient approximation (U = 0 eV), the magnetic ground state of Cr2AC (A = Al, Ga, Ge) is in-plane antiferromagnetic with finite Cr local moments, and calculated lattice parameters and bulk modulus close to experimentally reported values. By comparing GGA and GGA + U results with experimental data we find that using a U-value larger than 1 eV results in structural parameters deviating strongly from experimentally observed values. Comparisons are also done with hybrid functional calculations (HSE06) resulting in an exchange splitting larger than what is obtained for a U-value of 2 eV. Our results suggest caution and that investigations need to involve several different magnetic orders before lack of magnetism in calculations are blamed on the exchange-correlation approximations in this class of magnetic MAX phases.

  8. Structural and magnetic properties of epitaxial L2{sub 1}-structured Co{sub 2}(Cr,Fe)Al films grown on GaAs(001) substrates

    SciTech Connect

    Hirohata, A.; Kurebayashi, H.; Okamura, S.; Kikuchi, M.; Masaki, T.; Nozaki, T.; Tezuka, N.; Inomata, K.

    2005-05-15

    We have successfully grown both L2{sub 1} polycrystalline Co{sub 2}CrAl and epitaxial L2{sub 1}-structured Co{sub 2}FeAl films onto GaAs(001) substrates under an optimized condition. Both structural and magnetic analyses reveal the detailed growth mechanism of the alloys, and suggest that the Co{sub 2}CrAl film contains atomically disordered phases, which decreases the magnetic moment per f.u., while the Co{sub 2}FeAl film satisfies the generalized Slater-Pauling behavior. By using these films, magnetic tunnel junctions (MTJs) have been fabricated, showing 2% tunnel magnetoresistance (TMR) for the Co{sub 2}CrAl MTJ at 5 K and 9% for the Co{sub 2}FeAl MTJ at room temperature (RT). Even though the TMR ratio still needs to be improved for future device applications, these results explicitly include that the Co{sub 2}(Cr,Fe)Al full Heusler alloy is a promising compound to achieve half-metallicity at RT by controlling both disorder and surface structures in the atomic level by manipulating the Fe concentration.

  9. Optical properties and storage capabilities in AB2O4:Cr3+ (A=Zn, Mg, B=Ga, Al)

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Bessiere, A.; Gourier, D.; Sraiki, G.; Viana, B.; Dereń, P. J.; Rudnicka, D.; Watras, A.; Basavaraju, N.; Priolkar, K. R.; Maldiney, T.; Scherman, D.; Richard, C.

    2014-03-01

    Red emitting long-lasting phosphorescence (LLP) material, are useful biomarker for small animal in vivo imaging. We report here our investigations on the optical features of chromium doped AB2O4 spinels (A=Zn, Mg and B=Ga, Al…) suitable for such applications. It is possible to tune the emission wavelengths of Cr3+ by a crystal field variation to be well centered in the biological window and it is also possible to adjust the traps depth in order to better control the release of the traps. These traps are therefore stable at room temperature and could be emptied by thermal or near infrared source making this material a potential new photostimulated/optically compound. Photoluminescence (PL) and thermally stimulated luminescence (TSL) studies are reported.

  10. Persistent luminescence of AB2O4:Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: New biomarkers for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Gourier, D.; Viana, B.; Maldiney, T.; Teston, E.; Scherman, D.; Richard, C.

    2014-09-01

    Recently red emitting long-lasting phosphorescence (LLP) materials have been demonstrated to be useful biomarkers for small animal in vivo imaging. We report here our investigations on the optical properties of chromium doped AB2O4 spinels (with A = Zn, Mg and B = Ga, Al) suitable for such applications. It is possible to tune the absorption wavelengths of Cr3+ by a crystal field variation and also slightly vary the emission to be better centered in the biological window and to adjust the trap depth in order to better control the release of the charges. These traps are therefore stable at room temperature and could be emptied by thermal or near infrared source, which makes these materials potential new optically photo-storage compounds.

  11. Investigation of structural, electronic and magnetic properties of 1:1:1:1 stoichiometric quaternary Heusler alloys YCoCrZ (Z=Si, Ge, Ga, Al): An ab-initio study

    NASA Astrophysics Data System (ADS)

    Rasool, M. Nasir; Mehmood, Salman; Sattar, M. Atif; Khan, Muhammad Azhar; Hussain, Altaf

    2015-12-01

    Full potential linearized augmented plane wave method (FPLAPW) has been employed to probe the structural, electronic and magnetic properties of equiatomic yttrium based quaternary Heusler alloys YCoCrZ (Z=Si, Ge, Ga, Al). These calculations have been carried out via ab -initio simulations based on density functional theory (DFT) approach coded by Wien2K. The generalized gradient approximation of Perdew-Burke-Ernzerhof 96 scheme is engaged for calculations in all alloys under investigation. Equilibrium lattice constants are studied by structural optimization performed by computing total energies versus volumes. Structural optimization demonstrates that Y(3/4,3/4,3/4)Co(0,0,0)Cr(1/2,1/2,1/2)Z(1/4,1/4,1/4) (Type-1) configuration is the most stable one. The calculated electronic and magnetic properties based on type-1, indicate that YCoCrZ alloys are half-metallic ferromagnetic. The calculation of spin polarization is also made and further their total magnetic moments follow the Slater Pauling rule of Mtot=NVE-18 conceding the integer value i.e. 4.00μB and 3.00μB for YCoCrSi, Ge and YCoCrGa, Al respectively. The results of density of states (DOS) revealed that yttrium based quaternary Heusler alloys exhibit excellent band gaps i.e. 0.70, 0.65, 0.46 and 0.35 eV for YCoCrSi, Ge, Ga and Al respectively. The formation of band gaps owing to hybridization effect is also described. The half-metallic gaps of these compounds comprising the order YCoCrGa>YCoCrSi>YCoCrAl>YCoCrGe by size, is also manipulated. The incredible spin gapless semiconductor (SGS) type character of YCoCrGa and YCoCrAl having bantam DOS in spin up version is also discoursed. The optimised results of these compounds signpost that these are suitable candidates for spintronics applications.

  12. The structural, electronic, magnetic and mechanical properties of quaternary Heusler alloys ZrTiCrZ (Z  =  Al, Ga, In, Si, Ge, Sn): a first-principles study

    NASA Astrophysics Data System (ADS)

    Yan, Peng-Li; Zhang, Jian-Min; Zhou, Bo; Xu, Ke-Wei

    2016-06-01

    The structural, electronic, magnetic and mechanical properties of the quaternary Heusler alloys ZrTiCrZ (Z  =  Al, Ga, In, Si, Ge, Sn) have been investigated firstly by using the first-principles calculations. The preferred configurations of the ZrTiCrZ alloys are all Y-type (I). At their equilibrium lattice constants, the ZrTiCrZ alloys are half-metallic (HM) ferrimagnets for Z  =  Al, Ga and In, while spin-gapless semiconductor (SGS) antiferromagnets (AFM) for Z  =  Si, Ge and Sn. The total magnetic moments {μt} of the ZrTiCrZ alloys are  -1 {μ\\text{B}}/\\text{f}\\text{.u}\\text{.} for Z  =  Al, Ga and In, while 0 {μ\\text{B}}/\\text{f}\\text{.u}\\text{.} for Z  =  Si, Ge and Sn, both linearly scaled with the total number of valence electrons {{Z}\\text{t}} by Slater-Pauling rule {μ\\text{t}}={{Z}\\text{t}}-18 . The elastic constants {{C}11} , {{C}12} and {{C}44} of the single crystal and the related elastic moduli G , B , E , \\upsilon and A of the polycrystalline aggregates are also calculated and used to study the mechanical stability of these alloys. Although the Curie temperatures {{T}\\text{C}} of the ZrTiCrZ alloys are overestimated by using the mean field approximation (MFA), they can be better estimated by including the exchange interactions. Finally, the HM stabilities as well as the total and atomic magnetic moments of the ZrTiCrZ alloys (Z  =  Al, Ga, In) under either hydrostatic strain or tetragonal strain are also discussed.

  13. Perpendicular magnetic properties of CoCr films on GaAs

    NASA Astrophysics Data System (ADS)

    Manago, T.; Kuramochi, H.; Akinaga, H.

    2005-01-01

    CoCr films were deposited on three types of GaAs substrates, GaAs(001), GaAs(111), and Al oxide/GaAs(001). The perpendicular magnetic properties were investigated by magneto-optical Kerr-effect measurements. The direct deposition of the CoCr film on the GaAs substrate did not show any perpendicular magnetic properties. This fact indicates that the lattice distortion influenced by the GaAs lattice suppresses the perpendicular magnetism. The CoCr film on the Al oxide layer showed a tilted squarelike hysteresis loop. The thickness dependence of the hysteresis loop and the magnetic force microscopy showed that the onset thickness of ferromagnetism was 6.5nm. The domain size of the CoCr films monotonously decreases with the increasing thickness (6.5-75nm).

  14. High-Temperature Ferromagnetism in Cr- and Mn-Implanted Al(sub x)Ga(sub 1-x)N

    DTIC Science & Technology

    2007-09-23

    films of AlxGa1-xN that display ferromagnetism. Although recent advances in ion-implantation doping of group-III nitrides with Cr and Mn are making...annealed from 675 to 775 oC at AFIT in an Oxy -Gon furnace using the rapid thermal annealing method in an N2 environment for 5 min to anneal out the...layer). After implantation, the samples were annealed in an Oxy -Gon annealing furnace at temperatures between 650 and 775 oC for 5 min. Before

  15. Ohmic contact formation between metal and AlGaN/GaN heterostructure via graphene insertion

    NASA Astrophysics Data System (ADS)

    Sung Park, Pil; Reddy, Kongara M.; Nath, Digbijoy N.; Yang, Zhichao; Padture, Nitin P.; Rajan, Siddharth

    2013-04-01

    A simple method for the creation of Ohmic contact to 2D electron gas in AlGaN/GaN high electron-mobility transistors using Cr/graphene layer is demonstrated. A weak temperature dependence of this Ohmic contact observed in the range 77 to 300 K precludes thermionic emission or trap-assisted hopping as possible carrier-transport mechanisms. It is suggested that the Cr/graphene combination acts akin to a doped n-type semiconductor in contact with AlGaN/GaN heterostructure, and promotes carrier transport along percolating Al-lean paths through the AlGaN layer. This use of graphene offers a simple method for making Ohmic contacts to AlGaN/GaN heterostructures, circumventing complex additional processing steps involving high temperatures. These results could have important implications for the fabrication and manufacturing of AlGaN/GaN-based microelectronic and optoelectronic devices/sensors of the future.

  16. Vibrational analysis of the elpasolites Cs{sub 2}NaAlF{sub 6} and Cs{sub 2}NaGaF{sub 6} doped with Cr{sup 3+} ions by fluorescence spectroscopy.

    SciTech Connect

    Bordallo, H. N.; Sosman, L. P.; Tavares, A. D., Jr.; da Fonseca, R. J. M.

    1999-09-07

    Interest in 3d transition metal impurities in ionic crystals has increased due to their important role in the laser activity of these materials. Moreover, recent advances in tunable solid-state lasers and high-power semiconductor laser diode arrays have generated a strong interest in investigating new compounds that emit in the visible and near-infrared spectral regions. In particular, many optical studies have been devoted to Cr{sup 3+}-doped fluoride crystals as a consequence of the high quality of some Cr{sup 3+}-based laser materials. In the present investigation, the low temperature emission spectra of Cr{sup 3+} ions in the hexagonal elpasolites Cs{sub 2}NaAlF{sub 6} and Cs{sub 2}NaGaF{sub 6} have been measured. Each compound has two crystallographically inequivalent octahedral sites for the Al{sup 3+} and Ga{sup 3+} ions that can be occupied by Cr{sup 3+} ions. For both materials, the luminescence spectrum presents two zero-phonon lines accompanied by a well-defined vibrational structure. The different peaks of the emission broadband are described in terms of phonons of the lattice and normal modes of the octahedral complex [CrF{sub 6}]{sup 3{minus}}. A detailed analysis of the vibrational structure observed leads to the conclusion that the {sup 2}E and {sup 4}T{sub 2} excited states of the [CrF{sub 6}]{sup 3{minus}} ions are displaced along the e{sub g}, a{sub 1g} and probably the t{sub 2g} coordinates.

  17. Preparation and characterization of (Ba,Cs)(M,Ti) 8O 16 (M = Al 3+, Fe 3+, Ga 3+, Cr 3+, Sc 3+, Mg 2+) hollandite ceramics developed for radioactive cesium immobilization

    NASA Astrophysics Data System (ADS)

    Aubin-Chevaldonnet, V.; Caurant, D.; Dannoux, A.; Gourier, D.; Charpentier, T.; Mazerolles, L.; Advocat, T.

    2007-06-01

    Among the different matrices proposed for selective and durable immobilization of radioactive cesium, (Ba x,Cs y)(M,Ti) 8O 16 hollandite ceramics, with x + y < 2 and M = divalent or trivalent cation appeared as the best candidates. In this study, hollandite ceramics were prepared using oxide route from oxide, carbonate and nitrate powders with and without Cs for different cations M (Al 3+, Cr 3+, Ga 3+, Fe 3+, Mg 2+, Sc 3+) of increasing size, in order to evaluate the effect of composition on ceramics microstructure and structure and on cesium incorporation. To reduce the risks of Cs vaporization during synthesis, calcined powders were sintered in air at moderate temperature (1200 °C). This oxide route appeared as an alternative to the alkoxide route generally proposed to prepare hollandite waste form. For y = 0, single phase Ba x(M,Ti) 8O 16 was obtained only for M 3+ = Al 3+, Cr 3+ and Fe 3+. For y ≠ 0 and Fe 3+, all cesium was incorporated in hollandite and ceramic was well densified. For Cr 3+ and Ga 3+, only 46% and 63%, respectively, of Cs were retained in hollandite phase. For these samples, a high fraction of Cs was either evaporated and/or concentrated in a Cs-rich parasitic phase. Mixed hollandite samples with M 3+ = Ga 3+ + Al 3+ and M 3+ = Fe 3+ + Al 3+ were also synthesized and the best results regarding Cs immobilization and ceramic density were obtained with iron + aluminum but the sample porosity was higher than that of the sample containing only iron. All results were discussed by considering cations size and refractory character of oxides and hollandite ceramics.

  18. Controllable growth of Ga wires from Cr2GaC-Ga and its mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Liu, Y.; Ding, J.; Zhang, Y. M.; Yan, J. L.; An, B.; Iijima, T.; Sun, Z. M.

    2015-10-01

    The controllable growth behavior of Ga wires from Cr2GaC-Ga composite is presented and interpreted. The wire growth behavior was found to be modulated by forming pressure which tunes the connectivity between free Ga and Cr2GaC grains, the growth direction and the barrier force. Among the samples formed under 0 MPa to 900 MPa, the one (sample S4) formed under 500 MPa grew densest Ga wires, because the pressure of 500 MPa produced optimum connectivity between free Ga and Cr2GaC grains, aligned 53% of Cr2GaC basal planes near the surface of the sample parallel to its surface, and at the same time the barrier force was not too big to suppress wires to sprout. A Ga wire growth mechanism based on a catalysis model proposed in our prior work is employed and further developed herein to interpret the experimental observations of wires' size, morphologies and growth behavior.

  19. Impurity cyclotron resonance in InGaAs/GaAs superlattice and InGaAs/AlAs superlattice grown on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Momose, H.; Okai, H.; Deguchi, H.; Mori, N.; Takeyama, S.

    2006-05-01

    Various temperature measurements of cyclotron resonance (CR) under pulsed ultra-high magnetic field up to 160 T were carried out in InGaAs/GaAs superlattice (SL) and InGaAs/AlAs SL samples grown by molecular beam epitaxy on GaAs substrates. Clear free-electron CR and impurity CR signals were observed in transmission of CO 2 laser with wavelength of 10.6 μm. A binding energy of impurities in these SLs was roughly estimated based on the experiment as result, and we found it was smaller than the previous experimental result of GaAs/AlAs SLs and theoretical calculation with a simple model.

  20. LiCaAl/sub 6/:Cr/sup 3+/

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Smith, L.K.; Krupke, W.F. )

    1988-11-01

    The authors report the discovery of a new laser, LiCaAIF/sub 6/:Cr/sup 3/ (Cr/sup 3+/ :LiCAF). The intrinsic (extrapolated maximum) slope efficiency was found to be 67 percent. For comparison, they also measured the intrinsic slope efficiencies of BeAl/sub 2/O/sub 4/:Cr/sup 3+/ (alexandrite), Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, and ScBO/sub 3/:Cr/sup 3+/, and obtained values of 65,28, and 26 percent, respectively. The tuning range of LiCaAIF/sub 6/:Cr/sup 3+/ was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well.

  1. AlGaAs diode pumped tunable chromium lasers

    DOEpatents

    Krupke, William F.; Payne, Stephen A.

    1992-01-01

    An all-solid-state laser system is disclosed wherein the laser is pumped in the longwave wing of the pump absorption band. By utilizing a laser material that will accept unusually high dopant concentrations without deleterious effects on the crystal lattice one is able to compensate for the decreased cross section in the wing of the absorption band, and the number of pump sources which can be used with such a material increases correspondingly. In a particular embodiment a chromium doped colquiriite-structure crystal such as Cr:LiSrAlF.sub.6 is the laser material. The invention avoids the problems associated with using AlGaInP diodes by doping the Cr:LiSrAlF.sub.6 heavily to enable efficient pumping in the longwave wing of the absorption band with more practical AlGaAs diodes.

  2. Impurity cyclotron resonance in InGaAs/AlAs superlattice under ultra high magnetic fields

    NASA Astrophysics Data System (ADS)

    Momose, H.; Deguchi, H.; Okai, H.; Mori, N.; Takeyama, S.

    2005-11-01

    We have carried out cyclotron resonance (CR) measurements of (InGaAs) 8/(AlAs) 8 superlattice (SL) to investigate electronic properties of the SL under pulsed ultra-high magnetic fields. The magnetic fields up to 160 T were generated by using the single-turn-coil technique. Clear CR signals were obtained in the transmission of far-infrared laser through the SL at room temperature and lower temperature. We observed a shift of CR peak to lower magnetic field caused by transition from free-electron CR to impurity CR below ∼90 K. Compared with the previous works of GaAs/AlAs SL, the peak shift was small and the transition temperature was low. This result suggests that a binding energy of the impurity in the InGaAs/AlAs SL is smaller than the GaAs/AlAs SL.

  3. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    SciTech Connect

    Feng, Wuwei Wang, Weihua; Zhao, Chenglong; Van Quang, Nguyen; Cho, Sunglae; Dung, Dang Duc

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.

  4. Terahertz Generation in GaN/AlGaN Superlattices

    DTIC Science & Technology

    2009-02-28

    Morkoc, hmorkoc@vcu.edu Organization: Title: Program manager: Virginia Commonwealth University Terahertz generation in GaN /AlGaN superlattices...Final 3. DATES COVERED (From - To) 08/01/07-11/30/08 4. TITLE AND SUBTITLE THZ-OSCILLATIONS IN GAN /ALUMINUM GAN SUPERLATTICES 5a. CONTRACT NUMBER...that we learned in structures grown on GaN substrates which we believe will give way to tunneling dominated current at resonant states. Once we

  5. AlGaAs-GaAs cascade solar cell

    NASA Technical Reports Server (NTRS)

    Lamorte, M. F.; Abbott, D. H.

    1980-01-01

    Computer modeling studies are reported for a monolithic, two junction, cascade solar cell using the AlGaAs GaAs materials combination. An optimum design was obtained through a serial optimization procedure by which conversion efficiency is maximized for operation at 300 K, AM 0, and unity solar concentration. Under these conditions the upper limit on efficiency was shown to be in excess of 29 percent, provided surface recombination velocity did not exceed 10,000 cm/sec.

  6. A GaAs-AlGaAs Based Thyristor

    DTIC Science & Technology

    1989-06-01

    Levinshtein and V . E . Chelnokov , "Subnanosecond tum-on of gallium arsenide thyristors," Sov. Tech. Phys. Lett., vol. 12, pp. 383-384, 1986; and...Angeles, California 90024 Abstract: A study of bipolar junction thyristors based on GaAs and AlGaAs materials for pulsed power switching applications is...related III- V heterostructures can be made to exhibit subnanosecond current rise-times under pulse power conditions, and thus should be considered

  7. Reverse bias leakage current mechanism of AlGaN/InGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Chakraborty, Apurba; Ghosh, Saptarsi; Mukhopadhyay, Partha; Jana, Sanjay K.; Dinara, Syed Mukulika; Bag, Ankush; Mahata, Mihir K.; Kumar, Rahul; Das, Subhashis; Das, Palash; Biswas, Dhrubes

    2016-03-01

    The reverse bias leakage current mechanism of AlGaN/InGaN/GaN heterostructure is investigated by current-voltage measurement in temperature range from 298 K to 423 K. The Higher electric field across the AlGaN barrier layer of AlGaN/InGaN/GaN double heterostructure due to higher polarization charge is found to be responsible for strong Fowler-Nordheim (FN) tunnelling in the electric field higher than 3.66 MV/cm. For electric field less than 3.56 MV/cm, the reverse bias leakage current is also found to follow the trap assisted Frenkel-Poole (FP) emission in low negative bias region. Analysis of reverse FP emission yielded the barrier height of trap energy level of 0.34 eV with respect to Fermi level. [Figure not available: see fulltext.

  8. Structure, magnetism, and electron-transport properties of Mn2CrGa-based nanomaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyong; Kharel, Parashu; Skomski, Ralph; Valloppilly, Shah; Li, Xingzhong; Sellmyer, David J.

    2016-05-01

    Mn2CrGa in the disordered cubic structure has been synthesized using rapid quenching and subsequent annealing. The cubic phase transforms to a stable tetragonal phase when a fraction of Cr or Ga is replaced by Pt or Al, respectively. All samples are ferrimagnetic with high Curie temperatures (Tc); Mn2CrGa exhibits the highest Tc of about 813 K. The tetragonal samples have appreciable values of magnetocrystalline anisotropy energy, which leads to an increase in coercivity (Hc) that approaches about 10 kOe in the Pt-doped sample. The Hc linearly increases with a decrease of temperature, concomitant with the anisotropy change with temperature. All samples are metallic and show negative magnetoresistance with room-temperature resistivities on the order of 1 mΩcm. The magnetic properties including high Tc and low magnetic moment suggest that these tetragonal materials have potential for spin-transfer-torque-based devices.

  9. Surface half-metallicity of half-Heusler compound FeCrSe and interface half-metallicity of FeCrSe/GaP

    NASA Astrophysics Data System (ADS)

    Khalaf Al-zyadi, Jabbar M.; Jolan, Mudhahir H.; Yao, Kai-Lun

    2016-04-01

    Recent studies showed that half-Heusler FeCrSe exhibits half-metallic ferromagnetism (Huang et al. [20]). In this paper, we investigate extensively the electronic, magnetic, and half-metallic properties of the half-Heusler alloy FeCrSe (111) and (001) surfaces and the interface with GaP (111) substrate by using the first-principles calculations within the density functional theory. The atomic density of states demonstrates that the half-me tallicity verified in the bulk FeCrSe is maintained at the CrSe-terminated (001) and Se-terminated (111) surfaces, but lost at both Cr- and Fe-terminated (111) surfaces and the Fe-terminated (001) surface. Alternatively, for the interface of FeCrSe/GaP (111), the bulk half-metallicity is destroyed at Se-P configuration while Se-Ga interface and subinterface show nearly 100% spin polarization. Moreover, the calculated interfacial adhesion energies exhibit that Se-Ga shape is more stable than the Se-P one. The calculated magnetic moments of Se, Ga at the Se-Ga (111) interface and P at the Se-P (111) interface increase with respect to the corresponding bulk values while the atomic magnetic moment of Se atom at the Se-P (111) interface decreases. We also notice that the magnetic moments of subinterface Fe at both Se-Ga and Se-P (111) interfaces decrease compared to the bulk values.

  10. AlGaN-Cladding-Free m-Plane InGaN/GaN Laser Diodes with p-Type AlGaN Etch Stop Layers

    NASA Astrophysics Data System (ADS)

    Farrell, Robert M.; Haeger, Daniel A.; Hsu, Po Shan; Hardy, Matthew T.; Kelchner, Kathryn M.; Fujito, Kenji; Feezell, Daniel F.; Mishra, Umesh K.; DenBaars, Steven P.; Speck, James S.; Nakamura, Shuji

    2011-09-01

    We present a new method of improving the accuracy and reproducibility of dry etching processes for ridge waveguide InGaN/GaN laser diodes (LDs). A GaN:Al0.09Ga0.91N etch rate selectivity of 11:1 was demonstrated for an m-plane LD with a 40 nm p-Al0.09Ga0.91N etch stop layer (ESL) surrounded by Al-free cladding layers, establishing the effectiveness of AlGaN-based ESLs for controlling etch depth in ridge waveguide InGaN/GaN LDs. These results demonstrate the potential for integrating AlGaN ESLs into commercial device designs where accurate control of the etch depth of the ridge waveguide is necessary for stable, kink-free operation at high output powers.

  11. Growth and photoluminescence characteristics of AlGaAs nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Z. H.; Sun, M.; Mei, X. Y.; Ruda, H. E.

    2004-07-01

    Growth of high-quality single-crystal AlGaAs nanowires was demonstrated using the vapor-liquid-solid (VLS) mechanism with molecular-beam epitaxy (MBE). Highly ordered AlGaAs nanowire arrays and GaAs /AlGaAs multilayer nanowires were also prepared. Photoluminescence (PL) from homogeneous AlGaAs and GaAs /AlGaAs multilayer nanowires was measured. The Al composition of the AlGaAs nanowires was found to be significantly lower than that for planar MBE films grown under the same conditions, as determined from PL and energy-dispersive x-ray spectroscopy measurements. This is explained in terms of the different growth mechanisms for VLS and normal MBE. Such AlGaAs nanowires are expected to have a wide range of applications in electronic and photonic devices.

  12. Reduction in leakage current in AlGaN/GaN HEMT with three Al-containing step-graded AlGaN buffer layers on silicon

    NASA Astrophysics Data System (ADS)

    Yu, Xinxin; Ni, Jinyu; Li, Zhonghui; Zhou, Jianjun; Kong, Cen

    2014-05-01

    AlGaN/GaN high-electron-mobility transistor (HEMT) structures with two and three Al-containing step-graded AlGaN buffer layers (BLs) were grown on silicon (111) substrates by metal organic chemical vapor deposition. Considerable tensile stress was observed in the GaN grown with only two 0.8 µm AlGaN BLs, while a large in-plane compression in GaN grown with three 2.3 µm AlGaN BLs. The reverse gate leakage current in the HEMT with three AlGaN BLs was approximately 0.1 µA/mm, which was more than one order of magnitude smaller than that for the HEMT with two AlGaN BLs. A three-terminal off-state breakdown voltage of 265 V and a vertical gate-to-substrate breakdown voltage of 510 V were obtained in the HEMT with three AlGaN BLs. Detailed analysis was performed on the basis of the structural properties of AlGaN/GaN heterostructures.

  13. Multicharacterization approach for studying InAl(Ga)N/Al(Ga)N/GaN heterostructures for high electron mobility transistors

    SciTech Connect

    Naresh-Kumar, G. Trager-Cowan, C.; Vilalta-Clemente, A.; Morales, M.; Ruterana, P.; Pandey, S.; Cavallini, A.; Cavalcoli, D.; Skuridina, D.; Vogt, P.; Kneissl, M.; Behmenburg, H.; Giesen, C.; Heuken, M.; Gamarra, P.; Di Forte-Poisson, M. A.; Patriarche, G.; Vickridge, I.

    2014-12-15

    We report on our multi–pronged approach to understand the structural and electrical properties of an InAl(Ga)N(33nm barrier)/Al(Ga)N(1nm interlayer)/GaN(3μm)/ AlN(100nm)/Al{sub 2}O{sub 3} high electron mobility transistor (HEMT) heterostructure grown by metal organic vapor phase epitaxy (MOVPE). In particular we reveal and discuss the role of unintentional Ga incorporation in the barrier and also in the interlayer. The observation of unintentional Ga incorporation by using energy dispersive X–ray spectroscopy analysis in a scanning transmission electron microscope is supported with results obtained for samples with a range of AlN interlayer thicknesses grown under both the showerhead as well as the horizontal type MOVPE reactors. Poisson–Schrödinger simulations show that for high Ga incorporation in the Al(Ga)N interlayer, an additional triangular well with very small depth may be exhibited in parallel to the main 2–DEG channel. The presence of this additional channel may cause parasitic conduction and severe issues in device characteristics and processing. Producing a HEMT structure with InAlGaN as the barrier and AlGaN as the interlayer with appropriate alloy composition may be a possible route to optimization, as it might be difficult to avoid Ga incorporation while continuously depositing the layers using the MOVPE growth method. Our present work shows the necessity of a multicharacterization approach to correlate structural and electrical properties to understand device structures and their performance.

  14. Asymmetric quantum-well structures for AlGaN/GaN/AlGaN resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    Yang, Lin'an; Li, Yue; Wang, Ying; Xu, Shengrui; Hao, Yue

    2016-04-01

    Asymmetric quantum-well (QW) structures including the asymmetric potential-barrier and the asymmetric potential-well are proposed for AlGaN/GaN/AlGaN resonant tunneling diodes (RTDs). Theoretical investigation gives that an appropriate decrease in Al composition and thickness for emitter barrier as well as an appropriate increase of both for collector barrier can evidently improve the negative-differential-resistance characteristic of RTD. Numerical simulation shows that RTD with a 1.5-nm-thick GaN well sandwiched by a 1.3-nm-thick Al0.15Ga0.85N emitter barrier and a 1.7-nm-thick Al0.25Ga0.75N collector barrier can yield the I-V characteristic having the peak current (Ip) and the peak-to-valley current ratio (PVCR) of 0.39 A and 3.6, respectively, about double that of RTD with a 1.5-nm-thick Al0.2Ga0.8N for both barriers. It is also found that an introduction of InGaN sub-QW into the diode can change the tunneling mode and achieve higher transmission coefficient of electron. The simulation demonstrates that RTD with a 2.8-nm-thick In0.03Ga0.97N sub-well in front of a 2.0-nm-thick GaN main-well can exhibit the I-V characteristic having Ip and PVCR of 0.07 A and 11.6, about 7 times and double the value of RTD without sub-QW, respectively. The purpose of improving the structure of GaN-based QW is to solve apparent contradiction between the device structure and the device manufacturability of new generation RTDs for sub-millimeter and terahertz applications.

  15. First-principles study of the new compounds CrGa2Sb2 and CrGaSb synthesized under high pressure

    NASA Astrophysics Data System (ADS)

    Kulatov, E.; Magnitskaya, M.; Maksimov, E.; Titov, A.; Uspenskii, Yu.

    2011-10-01

    We present the density-functional calculations of the compounds CrGa2Sb2 and CrGaSb synthesized recently under high pressure. Calculation reproduces well all details of the crystal structure of these compounds, their spin ordering, and a larger metallicity of CrGaSb comparing to CrGa2Sb2. Particular attention is given to the room temperature ferromagnetic compound CrGa2Sb2, where the huge resistivity hinting at the possible semiconducting properties was measured. To understand the mechanism of its anisotropic conductivity, we analyze the band structure, calculated kinetic and optical characteristics of this compound. It is found that the density of states of CrGa2Sb2 has a pseudogap near the Fermi level, where the Cr atoms do not dominate, but contribute even less than the atoms of Ga and Sb. This explains a very high calculated resistivity of CrGa2Sb2, which can be characterized as a ferromagnetic compound with a low metallic conductivity. This type of conductivity remains unchanged, when a possible Cr-deficiency of CrGa2Sb2 is taken into account or the MBJ-LDA exchange-correlation potential is used instead of the GGA-LDA one in calculation. The potential of this compound for the development of spintronic materials is discussed.

  16. Excitonic localization at macrostep edges in AlGaN/AlGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Hou, Mengjun; Qin, Zhixin; Zhang, Lisheng; Han, Tianyang; Wang, Mingxing; Xu, Fujun; Wang, Xinqiang; Yu, Tongjun; Fang, Zheyu; Shen, Bo

    2017-04-01

    Double peaks at wavelength of 276 and 290 nm are observed for AlGaN/AlGaN multiple quantum wells (MQWs). Cathodoluminescence (CL) mappings identify that the emission at 290 nm originates from the macrostep edges. Potential minima induced by local variation of QW thickness and Ga incorporation are found along the step edges, where quantum wires (QWRs) are formed. The lateral advance rate of macrostep (∼310 nm/h) is obtained by investigating the distribution of QWRs. Temperature-dependent CL spectrum suggest that thermal quenching for 290 nm emission is dramatically suppressed compared with that for conventional QWs emission, which shows excitonic localization characteristics of QWRs.

  17. Fine structure of Fe-Co-Ga and Fe-Cr-Ga alloys with low Ga content

    SciTech Connect

    Kleinerman, Nadezhda M. Serikov, Vadim V. Vershinin, Aleksandr V. Mushnikov, Nikolai V. Stashkova, Liudmila A.

    2014-10-27

    Investigation of Ga influence on the structure of Fe-Cr and Fe-Co alloys was performed with the use of {sup 57}Fe Mössbauer spectroscopy and X-ray diffraction methods. In the alloys of the Fe-Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to enter the nearest surroundings of iron atoms, thus forming binary Fe-Ga regions (or phases)

  18. Development of GaN/AlGaN Terahertz Quantum Cascade Laser

    DTIC Science & Technology

    2008-11-19

    AFOSR-Taiwan Nanoscience Initiative Project Final Report Project Title Development of GaN /AlGaN Terahertz Quantum Cascade Laser...DATES COVERED 14-06-2007 to 13-06-2008 4. TITLE AND SUBTITLE Development of GaN -Based Terahertz Quantum Cascade Laser 5a. CONTRACT NUMBER...the GaN /AlGaN active region for terahertz quantum cascade lasers using MOCVD system based on the quantum cascade structure proposed by Prof. Greg Sun

  19. Long-period ordered superstructures that appear in an (Al,Ga)-rich (Al,Ga)Ti system

    NASA Astrophysics Data System (ADS)

    Nakano, Takayoshi; Hagihara, Koji; Hata, Satoshi; Shigyo, Hajime; Nakashima, Hideharu; Umakoshi, Yukichi; Arya, Ashok; Kulkarni, Ulhas D.

    2013-01-01

    Long-period ordered superstructures in an (Al,Ga)-rich (Al,Ga)Ti system composed of (Al,Ga) x Ti100- x (x = 50-65 at. %) were investigated by using melt-spun ribbons, focusing on the ordering process of the superstructural phases. Compositional regions in which h-(Al,Ga)2Ti (Ga2Zr-type), (Al,Ga)5Ti3 and (Al,Ga)3Ti2 with threefold, fourfold and fivefold periodicity, respectively, appeared coherently in the L10 matrix were identified by electron diffraction patterns in two different temperature conditions of as-spun (a relatively high-temperature state) and heat-treatment at 700°C (a relatively low-temperature state). The (Al,Ga)5Ti3 superstructural phase always existed between the compositional region where h-(Al,Ga)2Ti and (Al,Ga)3Ti2 dominantly appear. Therefore, periodical ordering proceeds following the periodicity of the concentration wave of pure (Al,Ga) layers parallel to {310) in the Ti (002) layers from threefold to fivefold periodicity via fourfold periodicity. We found that the (Al,Ga)3Ti2 long-period superstructural phase preferentially appeared with increasing Ga concentration in the melt-spun ribbon annealed at 700°C. In other words, the h-(Al,Ga)2Ti superstructure with threefold periodicity preferentially appeared at the high temperature and a low Ga concentration. Thus, the (Al,Ga)3Ti2-type superstructure was never produced without the addition of Ga in the present study. The long-period ordered superstructures were composed of three pairs of primitive cells, (Al,Ga)Ti2, (Al,Ga)Ti3 and (Al,Ga)Ti4, with periodic atomic arrangements corresponding to lean rhombus, fat rhombus and square, respectively. We discuss the ordering process throughout the (Al,Ga)5 ? superstructure based on the periodic concentration wave and exchange of atoms. The effect of long-period ordered superstructures on hardness is also mentioned.

  20. Reactive codoping of GaAlInP compound semiconductors

    DOEpatents

    Hanna, Mark Cooper; Reedy, Robert

    2008-02-12

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  1. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin; Masson, Denis; Riel, Bruno; Fafard, Simon; Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent

    2010-10-14

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  2. Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT

    SciTech Connect

    Lenka, T. R. Panda, A. K.

    2011-05-15

    Growth of wide bandgap material over narrow bandgap material, results into a two dimensional electron gas (2DEG) at the heterointerface due to the conduction band discontinuity. In this paper the 2DEG transport properties of AlGaN/GaN-based high electron mobility transistor (HEMT) is discussed and its effect on various characteristics such as 2DEG density, C-V characteristics and Sheet resistances for different mole fractions are presented. The obtained results are also compared with AlGaAs/GaAs-based HEMT for the same structural parameter as like AlGaN/GaN-based HEMT. The calculated results of electron sheet concentration as a function of the Al mole fraction are in excellent agreement with some experimental data available in the literature.

  3. Elimination of AlGaN epilayer cracking by spatially patterned AlN mask

    NASA Astrophysics Data System (ADS)

    Sarzyński, Marcin; Kryśko, Marcin; Targowski, Grzegorz; Czernecki, Robert; Sarzyńska, Agnieszka; Libura, Adam; Krupczyński, Wiktor; Perlin, Piotr; Leszczyński, Michał

    2006-03-01

    The inherent problem in III-nitride technology is the cracking of AlGaN layers that results from lattice mismatch between AlGaN and GaN. In case of thin substrates (30-90μm), such as, bulk GaN grown by the high-pressure/high-temperature method, the bowing of AlGaN /GaN strained structures becomes an additional problem. To eliminate cracking and bowing, AlGaN layers were grown on GaN substrates with an AlN mask patterned to form 3-15μm wide windows. In the 3μm window, the AlGaN layer was not cracked, although its thickness and Al composition exceeded critical values for growth on nonpatterned substrates. Dislocation density in the windows was of 5×106/cm2.

  4. Growth and Optical Properties of Al rich AlN/AlGaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Tahtamouni, T. M. Al; Nepal, N.; Nakarmi, M. L.; Lin, J. Y.; Jiang, H. X.

    2006-03-01

    Al rich AlGaN alloys are promising materials for the applications in the optoelectronic devices such as deep ultraviolet (UV) emitters and detectors in the spectral range down to 200 nm. AlGaN based UV emitters (λ<340nm) has applications in bio-chemical agent detection and medical research/ health care. To realize deep UV emission (λ< 280 nm) Al rich AlGaN based quantum wells (QWs) are required. We report here the growth of AlN/AlxGa1-xNQWs (x>0.65) on AlN/sapphire templates by metalorganic chemical vapor deposition (MOCVD). Deep UV photoluminescence (PL) was employed to study the optical properties of the QWs. Well width (Al composition) dependence was studied by varying the QW thickness (Al composition) with fixed x ˜ 0.65 (well width at 3 nm). Optical properties of these QWs such as the effects of alloy fluctuation, temperature, strain and piezoelectric field, carrier and exciton localizations on the quantum efficiency have been studied. Carrier and exciton dynamics were probed. Implications of our findings on the applications of Al rich AlN/AlGaN QWs for UV emitters and detectors will also be discussed.

  5. Wurtzite GaAs/AlGaAs core-shell nanowires grown by molecular beam epitaxy.

    PubMed

    Zhou, H L; Hoang, T B; Dheeraj, D L; van Helvoort, A T J; Liu, L; Harmand, J C; Fimland, B O; Weman, H

    2009-10-14

    We report the growth of GaAs/AlGaAs core-shell nanowires (NWs) on GaAs(111)B substrates by Au-assisted molecular beam epitaxy. Electron microscopy shows the formation of a wurtzite AlGaAs shell structure both in the radial and the axial directions outside a wurtzite GaAs core. With higher Al content, a lower axial and a higher radial growth rate of the AlGaAs shell were observed. Room temperature and low temperature (4.4 K) micro-photoluminescence measurements show a much higher radiative efficiency from the GaAs core after the NW is overgrown with a radial AlGaAs shell.

  6. Creep and Toughness of Cryomilled NiAl Containing Cr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Aikin, Beverly; Salem, Jon

    2000-01-01

    NiAl-AlN + Cr composites were produced by blending cryomilled NiAl powder with approx. 10 vol % Cr flakes. In comparison to the as-consolidated matrices, hot isostatically pressed Cr-modified materials did not demonstrate any significant improvement in toughness. Hot extruded NiAl-AlN+10.5Cr, however, possessed a toughness twice that determine for the base NiAl-AlN alloy. Measurement of the 1200 to 1400 K plastic flow properties revealed that the strength of the composites was completely controlled by the properties of the NiAl-AlN matrices. This behavior could be successfully modeled by the Rule-of-Mixtures, where load is shed from the weak Cr to the strong matrix.

  7. AlGaN/InGaN Photocathode Development

    SciTech Connect

    Buckley, J. H.; Leopold, D. J.

    2008-12-24

    An increase in quantum efficiency in photodetectors could result in a proportional reduction in the area of atmospheric Cherenkov telescopes and an even larger reduction in cost. We report on the development of high quantum efficiency, high gain, UV/blue photon-counting detectors based on AlGaN/InGaN photocathode heterostructures grown by molecular beam epitaxy. This research could eventually result in nearly ideal light detectors with a number of distinct advantages over existing technologies for numerous applications in high-energy physics and particle astrophysics. Potential advantages include much lower noise detection, better stability and radiation resistance than other cathode structures, high VUV sensitivity and very low radioactive background levels for deep underground experiments, and high detection efficiency for the detection of individual VUV-visible photons. We are also developing photocathodes with intrinsic gain, initially improving the detection efficiency of hybrid semiconductor-vacuum tube devices and eventually leading to a new type of all-solid-state photomultiplier device.

  8. Effect of buffer structures on AlGaN/GaN high electron mobility transistor reliability

    SciTech Connect

    Liu, L.; Xi, Y. Y.; Ren, F.; Pearton, S. J.; Laboutin, O.; Cao, Yu; Johnson, Wayne J.; Kravchenko, Ivan I

    2012-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) with three different types of buffer layers, including a GaN/AlGaN composite layer, or 1 or 2 lm GaN thick layers, were fabricated and their reliability compared. The HEMTs with the thick GaN buffer layer showed the lowest critical voltage (Vcri) during off-state drain step-stress, but this was increased by around 50% and 100% for devices with the composite AlGaN/GaN buffer layers or thinner GaN buffers, respectively. The Voff - state for HEMTs with thin GaN and composite buffers were 100 V, however, this degraded to 50 60V for devices with thick GaN buffers due to the difference in peak electric field near the gate edge. A similar trend was observed in the isolation breakdown voltage measurements, with the highest Viso achieved based on thin GaN or composite buffer designs (600 700 V), while a much smaller Viso of 200V was measured on HEMTs with the thick GaN buffer layers. These results demonstrate the strong influence of buffer structure and defect density on AlGaN/GaN HEMT performance and reliability.

  9. AlGaAs/InGaAsN/GaAs PnP double heterojunction bipolar transistor

    SciTech Connect

    Chang, P.C.; Baca, A.G.; Li, N.Y.; Sharps, P.R.; Hou, H.Q.; Laroche, J.R.; Ren, F.

    2000-01-04

    The authors demonstrated a functional PnP double heterojunction bipolar transistor (DHBT) using AlGaAs, InGaAsN, and GaAs. The band alignment between InGaAsN and GaAs has a large {triangle}E{sub c} and negligible {triangle}E{sub v}, this unique characteristic is very suitable for PnP DHBT applications. The metalorganic vapor phase epitaxy (MOCVD) grown Al{sub 0.3}Ga{sub 0.7}As/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs PnP DHBT is lattice matched to GaAs and has a peak current gain of 25. Because of the smaller bandgap (E{sub g}=1.20eV) of In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} used for the base layer, this device has a low V{sub ON} of 0.79 V, which is 0.25 V lower than in a comparable Pnp AlGaAs/GaAs HBT. And because GaAs is used for the collector, its BV{sub CEO} is 12 V, consistent with BV{sub CEO} of AlGaAs/GaAs HBTs.

  10. Anomalous DC and RF behavior of virgin AlGaN/AlN/GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Sánchez-Martín, H.; García-Pérez, Ó.; Pérez, S.; Altuntas, P.; Hoel, V.; Rennesson, S.; Cordier, Y.; González, T.; Mateos, J.; Íñiguez-de-la-Torre, I.

    2017-03-01

    The performance of gallium nitride transistors is still limited by technological problems often related to defects and traps. In this work, virgin AlGaN/AlN/GaN HEMTs exhibiting an anomalous DC behavior accompanied by frequency dispersion in the microwave range, both in the transconductance and output conductance, are analyzed. This anomalous response, which is mitigated by high-bias conditions, is attributed to the presence of traps and defects both in the volume of the GaN channel and in the source and drain contacts. A simple equivalent circuit model is proposed to replicate the dispersive response of the transistor, achieving an excellent agreement with the measured S–parameters and thus providing relevant information about its characteristic frequency.

  11. Magnetic properties of Al/57Fe/Cr multilayers

    NASA Astrophysics Data System (ADS)

    Jani, Snehal; Lakshmi, N.; Jain, Vishal; Reddy, V. R.; Gupta, Ajay; Venugopalan, K.

    2013-06-01

    Conversion Electron Mössbauer Spectroscopy (CEMS) and DC magnetization are used to compare magnetic properties of as-deposited multilayer (MLS) and Fe2CrAl thin film made from Al/57Fe/Cr MLS deposited by ion beam sputtering and then annealed in UHV. Interdiffusion of elements on annealing sample-1 at 500°C leads to formation of a single, disordered film of Fe2CrAl as evidenced by hyperfine field values obtained by CEMS in the film which compares well with that in bulk Fe2CrAl. CEMS also shows contributions from Fe, Fe/Cr and Fe/Al interfaces in the MLS. Saturation magnetization of as-deposited sample-1 is much less than pure Fe due to reduced Fe thickness because of interface formation and also reduction in Fe-Fe interaction due to intervening Al and Cr layers.

  12. Radiation Hard AlGaN Detectors and Imager

    SciTech Connect

    2012-05-01

    Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

  13. Automated conductivity profiler for multilayer GaAs-(AlGa)As structures

    NASA Astrophysics Data System (ADS)

    Stiles, K. R.; Lee, J. W.

    1982-09-01

    An apparatus for automatic conductivity profiling of GaAs-(AlGa)As multilayer structures is described. The apparatus includes a microprocessor which controls a solenoid valve sequence in order to chemically etch the sample, and a programmable calculator which calculates sample conductance versus number of etch steps from which layer conductivities are calculated. Conductivity profiles of multilayer GaAs-(AlGa)As heterostructure laser material are presented and compared to profiles done by an earlier manual technique.

  14. Photoluminescence studies on Al and Ga interdiffusion across (Al,Ga)Sb/GaSb quantum well interfaces.

    SciTech Connect

    Gonzales-Debs, M.; Cederberg, Jeffrey George; Kuech, T. F.; Biefeld, Robert Malcolm

    2005-01-01

    The thermal interdiffusion of AlSb/GaSb multiquantum wells was measured and the intrinsic diffusivities of Al and Ga determined over a temperature range of 823-948 K for 30-9000 s. The 77-K photoluminescence (PL) was used to monitor the extent of interdiffusion through the shifts in the superlattice luminescence peaks. The chemical diffusion coefficient was quantitatively determined by fitting the observed PL peak shifts to the solution of the Schroedinger equation, using a potential derived from the solution of the diffusion equation. The value of the interdiffusion coefficient ranged from 5.2 x 10{sup -4} to 0.06 nm{sup 2}/s over the conditions studied and was characterized by an activation energy of 3.0 {+-} 0.1 eV. The intrinsic diffusion coefficients for Al and Ga were also determined with higher values for Al than for Ga, described by activation energies of 2.8 {+-} 0.4 and 1.1 {+-} 0.1 eV, respectively.

  15. Differences in stability and repeatability between GaAs and GaAlAs photocathodes

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Zhang, Yijun; Feng, Cheng; Shi, Feng; Zou, Jijun; Chen, Xinlong; Chang, Benkang

    2016-12-01

    For the applications in vacuum photodetectors and photoinjectors, a crucial limiting factor for conventional GaAs photocathodes is the limited lifetime, depending on the Cs-O activation layer vulnerable to the harmful residual gases. In order to develop a type of GaAs-based photocathode with good stability and repeatability, Cs/O activation and multiple recesiation experiments under the same preparation condition were performed on reflection-mode exponential-doped GaAs and GaAlAs photocathodes grown by metalorganic vapor phase epitaxy, and quantum efficiency and photocurrent decay were measured after activation and recesiation. The experimental results show that the photoemission characteristics on cathode degradation and repeatability are different between GaAs and GaAlAs photocathodes. In an unsatisfactory vacuum system, the operational lifetime for GaAlAs photocathode is nearly twice longer than that for GaAs photocathode after Cs/O activation under a high intensity illumination. After multiple recesiations, the quantum efficiency and operational lifetime for GaAlAs photocathode remain nearly unchanged, while those for GaAs photocathode become lower and lower with the increase of recesiation cycles, which reflects the superiority in stability and repeatability for GaAlAs photocathode in contrast to GaAs photocathode operating in the poor vacuum environment.

  16. Effects of surface barrier layer in AlGaAs/GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Urabe, Hiroyuki; Kuramoto, Makoto; Nakano, Tomohiro; Kawaharazuka, Atsushi; Makimoto, Toshiki; Horikoshi, Yoshiji

    2015-09-01

    In this paper, we report the effects of surface barrier layers on the characteristics of AlGaAs/GaAs solar cells. The external quantum efficiency (EQE) spectra for AlGaAs barrier samples with different barrier layer AlAs fractions and thickness of the surface barrier layer were measured to increase the solar cell efficiency. The results show that the surface barrier layer is effective to block diffusing photoexcited electrons to the surface while the thicker barrier layer absorbs higher energy photons to generate carriers which recombine at the surface. The optimal surface barrier structure is a 50 nm thick Al0.7Ga0.3As.

  17. Cathodoluminescence of Al/x/Ga/1-x/As grown by liquid-phase epitaxy

    NASA Technical Reports Server (NTRS)

    Levin, E. R.; Ladany, I.

    1978-01-01

    Small-area contrast fluctuations observed in cathodoluminescence-mode SEM images of thin Al(x)Ga(1-x)As layers grown by liquid-phase epitaxy on GaAs:Cr substrates are attributed to local variations in alloy composition. Quantitative estimates of the composition excursions are obtained from the variations in CL intensity by calibration against compositions known from electron-probe microanalysis. In a typical sample, the CL variations are shown to correspond to peak-to-peak fluctuations of about 1 at. % of Al and occur over irregular regions generally in the range 6-20 microns in diameter.

  18. Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes

    PubMed Central

    Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng

    2017-01-01

    We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10–25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm. PMID:28294166

  19. Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng

    2017-03-01

    We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10–25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm.

  20. On the AlGaInP-bulk and AlGaInP/GaAs-superlattice confinement effects for heterostructure-emitter bipolar transistors

    SciTech Connect

    Tsai, Jung-Hui

    2015-02-09

    The confinement effect and electrical characteristics of heterostructure-emitter bipolar transistors with an AlGaInP bulk-confinement layer and an AlGaInP/GaAs superlattice-confinement layer are first demonstrated and compared by experimentally results. In the two devices, the relatively large valence band discontinuity at AlGaInP/GaAs heterojunction provides excellent confinement effect for holes to enhance current gain. As to the AlGaInP/GaAs superlattice-confinement device, part of thermionic-emission electrons will be trapped in the GaAs quantum wells of the superlattice. This will result in lower collector current and current gain as compared with the bulk-confinement device. Nevertheless, the superlattice-confinement device exhibits a larger current-gain cutoff frequency, which can be attributed that the tunneling behavior is included in the carrier transportation and transporting time across the emitter region could be substantially reduced.

  1. Medium energy proton radiation damage to (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R. Y.; Kamath, G. S.; Knechtli, R. C.

    1982-01-01

    The performance of (AlGa)As-GaAs solar cells irradiated by medium energy 2, 5, and 10 MeV protons was evaluated. The Si cells without coverglass and a number of GaAs solar cells with 12 mil coverglass were irradiated simultaneously with bare GaAs cells. The cell degradation is directly related to the penetration of depth of protons with GaAs. The influence of periodic and continuous thermal annealing on the GaAs solar cells was investigated.

  2. High-power UV InGaN/AlGaN double-heterostructure LEDs

    NASA Astrophysics Data System (ADS)

    Mukai, Takashi; Morita, Daisuke; Nakamura, Shuji

    1998-06-01

    Ultraviolet (UV) InGaN/AlGaN double-heterostructure (DH) light-emitting diodes (LEDs) with an external quantum efficiency of 7.5%, an output power of 5 mW and an emission wavelength of 371 nm were developed. High-power UV LEDs are obtained using an InGaN active layer with a thickness of 400 Å instead of a GaN active layer. The localized energy states caused by In composition fluctuation in the InGaN active layer are related to the high efficiency of the InGaN-based LEDs.

  3. Analysis of critical melt supercooling for heteroepitaxy of Al/sub x/Ga/sub 1-x/Sb by GaSb

    SciTech Connect

    Germogenov, V.P.; Pozolotin, V.A.

    1988-08-01

    Thermodynamic computations of the critical supercooling of a melt are performed for the case of heteroepitaxy of a solid Al/sub x/Ga/sub 1-x/Sb solution on a GaSb substrate for which there should be no substrate etching. Three kinds of supercoolings are examined, where ..delta..T/sub cr//sup (1)/ is the supercooling for which they change in the system Gibbs energy should equal zero because of dissolution, ..delta..T/sub cr//sup (2)/ is the supercooling for which the diminution in the system Gibbs energy due to substrate dissolution equals the energy being liberated during crystallization of the Al/sub x/Ga/sub 1-x/Sb solid solutions layer. Finally, the influence of the specific free interphasal energy of the substrate-melt interface on the result of computing the critical supercooling (the supercooling ..delta..T/sub cr//sup (3)/) is considered.

  4. Interaction of terahertz radiation with surface and interface plasmon-phonons in AlGaAs/GaAs and GaN/Al2O3 heterostructures

    NASA Astrophysics Data System (ADS)

    Požela, J.; Požela, K.; Šilėnas, A.; Širmulis, E.; Jucienė, V.

    2013-01-01

    Surface phonon and plasmon-phonon polariton characteristics of GaAs, Al x Ga1- x As/GaAs, and GaN/Al2O3 layered structures are investigated by means of terahertz radiation reflection spectroscopy. The strong resonant absorption peaks and selective emission of the THz radiation dependent upon the lattice composition and free electron density in these layered structures are experimentally observed and analyzed.

  5. Comparison of Intersubband GaAs/AlGaAs Multiple Quantum Well Infrared Photodetectors on GaAs and GaAs-on-Si Subtrates

    NASA Technical Reports Server (NTRS)

    Sengupta, D.; Gunapala, S.; George, T.; Bandara, S.; Chang-Chien, C. N.; Leon, R.; Kayali, S.; Kuo, H.; Fang, W.; Liu, H.; Stillman, G.

    1998-01-01

    We have successfully fabricated intersubband GaAs/AlGaAs quantum well infrared photodetectors grown on GaAs-on-Si substrate and evaluated their structural, electrical, and optical characteristics. We have found that the performance is comparable to a similar detector structure grown on a semi-insulating GaAs substrate.

  6. Impact of wet-oxidized Al2O3/AlGaN interface on AlGaN/GaN 2-DEGs

    NASA Astrophysics Data System (ADS)

    Meer, Mudassar; Majety, Sridhar; Takhar, Kuldeep; Ganguly, Swaroop; Saha, Dipankar

    2017-04-01

    We investigated the impact of wet-oxidation of AlGaN in an AlGaN/GaN heterostructure by selectively probing the metal/AlGaN interface. The two-dimensional electron gas (2-DEG) characteristics show improved mobility with increasing oxidation time and Al2O3 thickness. The change is attributed to an interplay of the interface trap density (D it) and the oxide thickness. D it is found to reduce progressively for thicker gate oxides as determined by selectively probing the Al2O3/AlGaN interface and employing frequency dependent capacitance and conductance spectroscopy on these devices. The energies of the interface traps are found to be in the range of 0.35–0.45 eV below the conduction band edge. The D it is found to reduce from 2 × 1013 cm‑2 eV‑1 for 2.3 nm of Al2O3 to 5 × 1012 cm‑2 eV‑1 for 16 nm of Al2O3. Contrary to the earlier reports of increased 2-DEG electron density, the primary advantage is found to be a reduction in Dit leading to an increased electron mobility from 1730 to 2800 cm2V‑1s‑1.

  7. 2.4 Micrometer Cutoff Wavelength AlGaAsSb/InGaAsSb Phototransistors

    NASA Technical Reports Server (NTRS)

    Sulima, O. V.; Swaminathan, K.; Refaat, T. F.; Faleev, N. N.; Semenov, A. N.; Solov'ev, V. A.; Ivanov, S. V.; Abedin, M. N.; Singh, U. N.; Prather, D.

    2006-01-01

    We report the first AlGaAsSb/InGaAsSb phototransistors with a cutoff wavelength (50% of peak responsivity) of 2.4 micrometers operating in a broad range of temperatures. These devices are also the first AlGaAsSb/InGaAsSb heterojunction phototransistors (HPT) grown by molecular beam epitaxy (MBE). This work is a continuation of a preceding study, which was carried out using LPE (liquid phase epitaxy)-grown AlGaAsSb/InGaAsSb/GaSb heterostructures. Although the LPE-related work resulted in the fabrication of an HPT with excellent parameters [1-4], the room temperature cutoff wavelength of these devices (approximately 2.15 micrometers) was determined by fundamental limitations implied by the close-to-equilibrium growth from Al-In-Ga-As-Sb melts. As the MBE technique is free from the above limitations, AlGaAsSb/InGaAsSb/GaSb heterostructures for HPT with a narrower bandgap of the InGaAsSb base and collector - and hence sensitivity at longer wavelengths (lambda) - were grown in this work. Moreover, MBE - compared to LPE - provides better control over doping levels, composition and width of the AlGaAsSb and InGaAsSb layers, compositional and doping profiles, especially with regard to abrupt heterojunctions. The new MBE-grown HPT exhibited both high responsivity R (up to 2334 A/W for lambda=2.05 micrometers at -20 deg C.) and specific detectivity D* (up to 2.1 x 10(exp 11) cmHz(exp 1/2)/W for lambda=2.05 micrometers at -20 deg C).

  8. Multi-bands photoconductive response in AlGaN/GaN multiple quantum wells

    SciTech Connect

    Chen, G.; Rong, X.; Xu, F. J.; Tang, N.; Wang, X. Q. Shen, B.; Fu, K.; Zhang, B. S.; Hashimoto, H.; Yoshikawa, A.; Ge, W. K.

    2014-04-28

    Based on the optical transitions among the quantum-confined electronic states in the conduction band, we have fabricated multi-bands AlGaN/GaN quantum well infrared photodetectors. Crack-free AlGaN/GaN multiple quantum wells (MQWs) with atomically sharp interfaces have been achieved by inserting an AlN interlayer, which releases most of the tensile strain in the MQWs grown on the GaN underlayer. With significant reduction of dark current by using thick AlGaN barriers, photoconductive responses are demonstrated due to intersubband transition in multiple regions with center wavelengths of 1.3, 2.3, and 4 μm, which shows potential applications on near infrared detection.

  9. Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures

    SciTech Connect

    Kuppulingam, B. Singh, Shubra Baskar, K.

    2014-04-24

    Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

  10. InGaAsN/AlGaAs Pnp Heterojunction Bipolar Transistor

    SciTech Connect

    BACA,ALBERT G.; CHANG,PING-CHIH; HOU,H.Q.; LAROCHE,J.R.; LI,N.Y.; REN,F.; SHARPS,P.R.

    1999-11-03

    The authors have demonstrated a functional Pnp heterojunction bipolar transistor (HBT) using InGaAsN. The metalorganic vapor phase epitaxy (MOCVD) grown Al{sub 0.3}Ga{sub 0.7}As/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} HBT takes advantage of the narrower bandgap energy (E{sub g} = 1.25eV) of In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}, which is lattice matched to GaAs. Compared with the Al{sub 0.3}Ga{sub 0.7}As/GaAs material system, the Al{sub 0.3}Ga{sub 0.7}As/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} material system has a larger conduction band offset, while the valence band offset remains comparable. This characteristic band alignment is very suitable for Pnp HBT applications. The device's peak current gain is 23 and it has a turn on voltage of 0.77V, which is 0.25V lower than in a comparable Pnp Al{sub 0.3}Ga{sub 0.7}As/GaAs HBT.

  11. Current transport in graphene/AlGaN/GaN vertical heterostructures probed at nanoscale

    NASA Astrophysics Data System (ADS)

    Fisichella, Gabriele; Greco, Giuseppe; Roccaforte, Fabrizio; Giannazzo, Filippo

    2014-07-01

    Vertical heterostructures combining two or more graphene (Gr) layers separated by ultra-thin insulating or semiconductor barriers represent very promising systems for next generation electronics devices, due to the combination of high speed operation with wide-range current modulation by a gate bias. They are based on the specific mechanisms of current transport between two-dimensional-electron-gases (2DEGs) in close proximity. In this context, vertical devices formed by Gr and semiconductor heterostructures hosting an ``ordinary'' 2DEG can be also very interesting. In this work, we investigated the vertical current transport in Gr/Al0.25Ga0.75N/GaN heterostructures, where Gr is separated from a high density 2DEG by a ~24 nm thick AlGaN barrier layer. The current transport from Gr to the buried 2DEG was characterized at nanoscale using conductive atomic force microscopy (CAFM) and scanning capacitance microscopy (SCM). From these analyses, performed both on Gr/AlGaN/GaN and on AlGaN/GaN reference samples using AFM tips with different metal coatings, the Gr/AlGaN Schottky barrier height ΦB and its lateral uniformity were evaluated, as well as the variation of the carrier densities of graphene (ngr) and AlGaN/GaN 2DEG (ns) as a function of the applied bias. A low Schottky barrier (~0.40 eV) with excellent spatial uniformity was found at the Gr/AlGaN interface, i.e., lower compared to the measured values for metal/AlGaN contacts, which range from ~0.6 to ~1.1 eV depending on the metal workfunction. The electrical behavior of the Gr/AlGaN contact has been explained by Gr interaction with AlGaN donor-like surface states located in close proximity, which are also responsible of high n-type Gr doping (~1.3 × 1013 cm-2). An effective modulation of ns by the Gr Schottky contact was demonstrated by capacitance analysis under reverse bias. From this basic understanding of transport properties in Gr/AlGaN/GaN heterostructures, novel vertical field effect transistor concepts

  12. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    SciTech Connect

    Das, Palash Biswas, Dhrubes

    2014-04-24

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT.

  13. Electronic optical bistability in a GaAs/AlGaAs strip-loaded waveguide

    NASA Astrophysics Data System (ADS)

    Warren, M.; Gibbons, W.; Komatsu, K.; Sarid, D.; Hendricks, D.

    1987-10-01

    Optical bistability of electronic origin has been observed in strip-loaded waveguides in a GaAs/AlGaAs multiple quantum well structure. Single-mode waveguides were fabricated by reactive ion etching of an epitaxial AlGaAs layer above the quantum wells. The waveguides were operated as nonlinear Fabry-Perot etalons with 30 percent reflectors provided by the cleaved ends. Phase shifts of 2 pi were observed in some devices.

  14. GaN and AlGaN/GaN heterostructures grown on two dimensional BN templates

    NASA Astrophysics Data System (ADS)

    Snure, Michael; Siegel, Gene; Look, David C.; Paduano, Qing

    2017-04-01

    Two dimension materials, like BN and graphene, have been shown to be excellent templates for the growth and fabrication of freestanding III-nitride materials. In this paper we study the effects of BN morphology on GaN and AlGaN/GaN heterostructures grown on these templates. The crystallinity, transport, and optical properties of the GaN layer are examined and found to be well correlated to the BN template. The self-separation of GaN from the BN/sapphire template is also connected to morphology, resulting in freestanding GaN layers. Transport properties of Si doped GaN and AlGaN/GaN heterostructures were examined for different BN templates. The bulk GaN mobility was closely linked to the morphology of the BN template resulting in room temperature mobility from 395 to 520 cm2/Vs. The range in 3D mobility can be linked to increased dislocation densities in GaN grown on rougher BN templates. High 2DEG mobility ( 2000 cm2/Vs at 300 K) is achieved in AlGaN/GaN grown on atomically smooth BN templates, with a sheet electron density of 1×1013 cm-2, comparable to values obtained on conventional substrates. Samples grown on BN/sapphire showed mobilities (at 9 K) from 33000 cm2/Vs to 15200 cm2/Vs depending on BN roughness. The differences are associated with variations in AlGaN/GaN interface-roughness scattering and dislocation density due to the BN template morphology.

  15. High temperature electron transport properties in AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Tokuda, H.; Yamazaki, J.; Kuzuhara, M.

    2010-11-01

    Hall electron mobility (μH) and sheet concentration (ns) in AlGaN/GaN heterostructures have been measured from 77 to 1020 K. The effect of the deposited Al2O3 layer is also investigated with varying its thickness. It is found that μH decreases monotonously with the temperature (T) and its dependence is well approximated with the function of μH=4.5×103 exp(-0.004T) in the temperatures over 350 K. The function is different from the commonly used one of μH=AT-α (α ˜1.5), which indicates that the mobility is not only governed by the polar optical phonon scattering but also the deformation potential scattering plays a role. The sheet electron concentration (ns) has a weak dependence on the temperature, that is, slightly decreases with temperature in 300-570 K and increases gradually up to 1020 K. The decrease is explained by considering the reduction in the polarization (probably both spontaneous and piezoelectric) charge and the increase seems to be due to the parallel conduction through the interface between GaN buffer layer and sapphire substrate. The dependence of sheet resistance (Rsh) in AlGaN/GaN is compared with that of n-GaN. In the low temperatures, AlGaN/GaN shows a lower Rsh due to its high mobility, however, at the temperatures higher than 350 K, Rsh of AlGaN/GaN becomes higher than that of n-GaN. This result implies that AlGaN/GaN high-electron-mobility-transistors are inferior to GaN metal-semiconductor field-effect transistors in terms of higher source, drain, and channel resistances at high temperature operations, although further investigations on other performances such as output power and reliability are needed. The Al2O3 deposited AlGaN/GaN shows about 15% higher ns than without Al2O3 layer for the whole temperatures. On the contrary, μH at 77 K shows a slight decrease with Al2O3 deposition, which degree is not affected by the layer thickness. In the temperatures higher than 400 K, μH is almost the same for with and without Al2O3 layer.

  16. Hot Corrosion Performance of AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa Coatings Deposited by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Tao, Chong; Wang, Lei; Cheng, Nailiang; Hu, Hengfa; Liu, Yang; Song, Xiu

    2016-04-01

    AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa coatings were deposited on 316L stainless steel substrate using atmospheric plasma spraying, respectively, in order to improve the oxidation and corrosion resistance. The hot corrosion performance of the coatings at 700 and 900 °C were studied, and the detailed microstructures and phase composition of the coatings were analyzed using x-ray diffraction, scanning electron microscope with energy dispersive spectrometer, and transmission electron microscope. The results show that both coatings are structurally featured by slatted layers, consisting of amorphous phase, Cr2O3, Ni3Al, and Al2O3. The hot corrosion resistance of AlO-CrO/NiCoCrAlYTa coating is better than that of AlO/NiCoCrAlYTa coating. This improvement is attributed to lower porosity and more compact Cr2O3 in AlO-CrO/NiCoCrAlYTa coating which performs better than Al2O3 in blocking further inward progress of corrosion and oxidization.

  17. From Schottky to Ohmic graphene contacts to AlGaN/GaN heterostructures: Role of the AlGaN layer microstructure

    SciTech Connect

    Fisichella, G.; Greco, G.; Roccaforte, F.; Giannazzo, F.

    2014-08-11

    The electrical behaviour of graphene (Gr) contacts to Al{sub x}Ga{sub 1−x}N/GaN heterostructures has been investigated, focusing, in particular, on the impact of the AlGaN microstructure on the current transport at Gr/AlGaN interface. Two Al{sub 0.25}Ga{sub 0.75}N/GaN heterostructures with very different quality in terms of surface roughness and defectivity, as evaluated by atomic force microscopy (AFM) and transmission electron microscopy, were compared in this study, i.e., a uniform and defect-free sample and a sample with a high density of typical V-defects, which locally cause a reduction of the AlGaN thickness. Nanoscale resolution current voltage (I-V) measurements by an Au coated conductive AFM tip were carried out at several positions both on the bare and Gr-coated AlGaN surfaces. Rectifying contacts were found onto both bare AlGaN surfaces, but with a more inhomogeneous and lower Schottky barrier height (Φ{sub B} ≈ 0.6 eV) for AlGaN with V-defects, with respect to the case of the uniform AlGaN (Φ{sub B} ≈ 0.9 eV). Instead, very different electrical behaviours were observed in the presence of the Gr interlayer between the Au tip and AlGaN, i.e., a Schottky contact with reduced barrier height (Φ{sub B} ≈ 0.4 eV) for the uniform AlGaN and an Ohmic contact for the AlGaN with V-defects. Interestingly, excellent lateral uniformity of the local I-V characteristics was found in both cases and can be ascribed to an averaging effect of the Gr electrode over the AlGaN interfacial inhomogeneities. Due to the locally reduced AlGaN layer thickness, V defect act as preferential current paths from Gr to the 2DEG and can account for the peculiar Ohmic behaviour of Gr contacts on defective AlGaN.

  18. Time-Resolved Photoluminescence Studies of InGaN/AlGaN Multiple Quantum Wells

    NASA Astrophysics Data System (ADS)

    Zeng, K. C.; Smith, M.; Lin, J. Y.; Jiang, H. X.; Robert, J. C.; Piner, E. L.; McIntosh, F. G.; Bahbahani, M.; Bedair, S. M.; Zavada, J.

    1997-03-01

    Picosecond time-resolved photoluminescence (PL) spectroscopy has been employed to study the dynamic processes of optical transitions in InGaN/AlGaN multiple quantum wells (MQW) grown by metal-organic chemical vapor deposition (MOCVD). The dynamical behavior of the PL emission reveals that the main emission line in these MQW is the combination of the localized exciton and a band-to-impurity emission lines. The spectral lineshape and the recombination dynamics of the localized exciton and of the band-to-impurity transitions have been systematically investigated at different temperatures and excitation intensities and for MQW with different structures and growth conditions. From these studies, important parameters, including the localization energy and the recombination lifetimes of the localized excitons in InGaN/AlGaN quantum wells, the well width fluctuation, alloy compositions in the well and the barrier materials, and the band offset between InGaN and AlGaN can be deduced. Comparing with time-resolved PL results of InGaN/GaN and GaN/AlGaN MQW, important effects of interface on the optical properties of the III-nitride MQW have been evaluated. Implications of our results to device applications will be discussed.

  19. Selective thermal terahertz emission from GaAs and AlGaAs

    SciTech Connect

    Požela, K. Širmulis, E.; Kašalynas, I.; Šilėnas, A.; Požela, J.; Jucienė, V.

    2014-09-01

    The selective thermally stimulated terahertz (THz) radiation emission from GaAs and AlGaAs alloys are experimentally observed at frequencies of coupled oscillations of free electron plasma and different branches of interface AlGaAs optical phonons. The effect of strong absorption of incident radiation with large oblique angle (26°) by heated GaAs and AlGaAs is revealed. The coherent THz radiation emission with the frequency of 7.6 THz from the heated high conductivity GaAs (n = 4 × 10{sup 18 }cm{sup −3}) layer is observed. The results are highly relevant to application in optoelectronic THz devices.

  20. Mid-infrared Photoconductive Response in AlGaN/GaN Step Quantum Wells

    PubMed Central

    Rong, X.; Wang, X. Q.; Chen, G.; Zheng, X. T.; Wang, P.; Xu, F. J.; Qin, Z. X.; Tang, N.; Chen, Y. H.; Sang, L. W.; Sumiya, M.; Ge, W. K.; Shen, B.

    2015-01-01

    AlGaN/GaN quantum structure is an excellent candidate for high speed infrared detectors based on intersubband transitions. However, fabrication of AlGaN/GaN quantum well infrared detectors suffers from polarization-induced internal electric field, which greatly limits the carrier vertical transport. In this article, a step quantum well is proposed to attempt solving this problem, in which a novel spacer barrier layer is used to balance the internal electric field. As a result, a nearly flat band potential profile is obtained in the step barrier layers of the AlGaN/GaN step quantum wells and a bound-to-quasi-continuum (B-to-QC) type intersubband prototype device with detectable photocurrent at atmosphere window (3–5 μm) is achieved in such nitride semiconductors. PMID:26395756

  1. An optically pumped GaN/AlGaN quantum well intersubband terahertz laser

    NASA Astrophysics Data System (ADS)

    Fu, Ai-Bing; Hao, Ming-Rui; Yang, Yao; Shen, Wen-Zhong; Liu, Hui-Chun

    2013-02-01

    We propose an optically pumped nonpolar GaN/AlGaN quantum well (QW) active region design for terahertz (THz) lasing in the wavelength range of 30 μm ~ 40 μm and operating at room temperature. The fast longitudinal optical (LO) phonon scattering in GaN/AlGaN QWs is used to depopulate the lower laser state, and more importantly, the large LO phonon energy is utilized to reduce the thermal population of the lasing states at high temperatures. The influences of temperature and pump intensity on gain and electron densities are investigated. Based on our simulations, we predict that with a sufficiently high pump intensity, a room temperature operated THz laser using a nonpolar GaN/AlGaN structure is realizable.

  2. Photonic crystal nanocavities in GaAs/AlGaAs with oxidised bottom cladding

    NASA Astrophysics Data System (ADS)

    Welna, Karl; Hugues, Maxime; Reardon, Christopher P.; O'Faolain, Liam; Hopkinson, Mark; Krauss, Thomas F.

    2013-05-01

    We present a solution to the difficult task of removing an oxide-based hard mask from a photonic crystal fabricated in the GaAs/AlGaAs system. We use a polymer backfill technique to seal the AlGaAs layer, thereby making it inaccessible to the wet-etch solution. This allows us to use a GaAs active layer for the photonic crystal placed on an oxidised AlGaAs layer which provides mechanical and thermal support. Using this technique, we fabricated GaAs-based photonic crystal cavities and measured respectable quality factors (Q ≈ 2200) despite the intrinsic asymmetry of the system. The technique presents a viable method for producing electrically injected photonic crystal cavities for operation on a mechanically stable and thermally conducting buffer layer.

  3. Botulinum toxin detection using AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Lin; Chu, B. H.; Chen, K. H.; Chang, C. Y.; Lele, T. P.; Tseng, Y.; Pearton, S. J.; Ramage, J.; Hooten, D.; Dabiran, A.; Chow, P. P.; Ren, F.

    2008-12-01

    Antibody-functionalized, Au-gated AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect botulinum toxin. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when the target toxin in a buffer was added to the antibody-immobilized surface. We could detect a range of concentrations from 1to10ng/ml. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN /GaN HEMTs for botulinum toxin detection.

  4. Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures

    SciTech Connect

    Ngo, Thi Huong; Gil, Bernard; Valvin, Pierre; Damilano, Benjamin; Lekhal, Kaddour; De Mierry, Philippe

    2015-09-21

    We determine the internal quantum efficiency of strain-balanced AlGaN-InGaN-GaN hetero-structures designed for yellow-amber light emission, by using a recent model based on the kinetics of the photoluminescence decay initiated by Iwata et al. [J. Appl. Phys. 117, 075701 (2015)]. Our results indicate that low temperature internal quantum efficiencies sit in the 50% range and we measure that adding an AlGaN layer increases the internal quantum efficiency from 50% up to 57% with respect to the GaN-InGaN case. More dramatic, it almost doubles from 2.5% up to 4.3% at room temperature.

  5. Magnetic Properties of Cr-based Ternary Compound CrAlGe

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Soshi; Mitsui, Yoshifuru; Umetsu, Rie Y.; Koyama, Keiichi

    Structural and magnetic properties of Cr-based compound CrAlGe were investigated. The crystal structure was found to be an orthorhombic TiSi2-type with lattice parameters a = 0.4770 nm, b = 0.8254 nm and c = 0.8725 nm at room temperature. Magnetization curve of CrAlGe showed the ferromagnetic behavior. The saturation magnetic moment, spontaneous magnetic moment and Curie temperature of CrAlGe were determined to be 0.45 μB/f.u., 0.41 μB/f.u. and TC = 80 K, respectively. For the temperature T below 30 K, the decrease in the square of the spontaneous magnetization M0(T)2 was proportional to T2. However, for 30 CrAlGe is a weak itinerant electron ferromagnet.

  6. Stabilization of itinerant (band) magnetism in FeAl by Ga substitution for Al

    NASA Astrophysics Data System (ADS)

    Papaconstantopoulos, D. A.; Mazin, I. I.; Hathaway, K. B.

    2001-06-01

    Band structure calculations of FeGa1-xAlx have been performed, to further investigate the stability of ferromagnetism in FeAl. The Stoner parameter increases by about 20% at the FeGa end. This is also confirmed by our spin-polarized calculations. We conclude that Ga substitution for Al is likely to stabilize the elusive (or illusive) ferromagnetic state in FeAl.

  7. Laser diode bars based on strain-compensated AlGaPAs/GaAs heterostructures

    SciTech Connect

    Marmalyuk, Aleksandr A; Ladugin, M A; Yarotskaya, I V; Panarin, V A; Mikaelyan, G T

    2012-01-31

    Traditional (in the AlGaAs/GaAs system) and phosphorus-compensated (in the AlGaAs/AlGaPAs/GaAs system) laser heterostructures emitting at a wavelength of 850 nm are grown by MOVPE and studied. Laser diode bars are fabricated and their output characteristics are studied. The method used to grow heterolayers allowed us to control (minimise) mechanical stresses in the AlGaPAs/GaAs laser heterostructure, which made it possible to keep its curvature at the level of the initial curvature of the substrate. It is shown that the use of a compensated AlGaPAs/GaAs heterostructure improves the linear distribution of emitting elements in the near field of laser diode arrays and allows the power - current characteristic to retain its slope at high pump currents owing to a uniform contact of all emitting elements with the heat sink. The radius of curvature of the grown compensated heterostructures turns out to be smaller than that of traditional heterostructures.

  8. Improved mobility of AlGaN channel heterojunction material using an AlGaN/GaN composite buffer layer

    NASA Astrophysics Data System (ADS)

    Wen, Hui-Juan; Zhang, Jin-Cheng; Lu, Xiao-Li; Wang, Zhi-Zhe; Ha, Wei; Ge, Sha-Sha; Cao, Rong-Tao; Hao, Yue

    2014-03-01

    The quality of an AlGaN channel heterojunction on a sapphire substrate is massively improved by using an AlGaN/GaN composite buffer layer. We demonstrate an Al0.4Ga0.5N/Al0.18Ga0.82N heterojunction with a state-of-the-art mobility of 815 cm2/(V·s) and a sheet resistance of 890 Ω/□ under room temperature. The crystalline quality and the electrical properties of the AlGaN heterojunction material are analyzed by atomic force microscopy, high-resolution X-ray diffraction, and van der Pauw Hall and capacitance—voltage (C—V) measurements. The results indicate that the improved electrical properties should derive from the reduced surface roughness and low dislocation density.

  9. Effect of high density H 2 plasmas on InGaP/GaAs and AlGaAs/GaAs HEMTs

    NASA Astrophysics Data System (ADS)

    Ren, F.; Kopf, R. F.; Kuo, J. M.; Lothian, J. R.; Lee, J. W.; Pearton, S. J.; Shul, R. J.; Constantine, C.; Johnson, D.

    1998-05-01

    InGaP/GaAs and AlGaAs/GaAs high electron mobility transistors have been exposed to inductively coupled plasma or electron cyclotron resonance H 2 plasmas as a function of pressure, source power and rf chuck power. The transconductance, gate ideality factor and saturated drain-source current are all degraded by the plasma treatment. Two mechanisms are identified: passivation of Si dopants in the InGaP or AlGaAs donor layers by H 0 and lattice disorder created by H + and H 2+ ion bombardment. HEMTs are found to be more susceptible to plasma-induced degradation than heterojunction bipolar transistors.

  10. Impact ionization in N-polar AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Killat, N. E-mail: Martin.Kuball@bristol.ac.uk; Uren, M. J.; Kuball, M. E-mail: Martin.Kuball@bristol.ac.uk; Keller, S.; Kolluri, S.; Mishra, U. K.

    2014-08-11

    The existence of impact ionization as one of the open questions for GaN device reliability was studied in N-polar AlGaN/GaN high electron mobility transistors. Electroluminescence (EL) imaging and spectroscopy from underneath the device gate contact revealed the presence of hot electrons in excess of the GaN bandgap energy even at moderate on-state bias conditions, enabling impact ionization with hole currents up to several hundreds of pA/mm. The detection of high energy luminescence from hot electrons demonstrates that EL analysis is a highly sensitive tool to study degradation mechanisms in GaN devices.

  11. Growth of wurtzite Al x Ga1-x P nanowire shells and characterization by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Berg, Alexander; Heurlin, Magnus; Tsopanidis, Stylianos; Pistol, Mats-Erik; Borgström, Magnus T.

    2017-01-01

    The phonon energies of AlGaP in wurtzite crystal structure are generally not known, as opposed to their zincblende counterparts, because AlGaP crystallizes in zincblende phase in bulk and thin films structures. However, in nanowires AlGaP can be grown in wurtzite crystal structure. In this work we have grown wurtzite GaP/AlGaP/GaP core-shell nanowires by use of MOVPE. After developing suitable growth conditions, the Al composition was determined by STEM-EDX measurements and the wurtzite AlGaP phonon energies by Raman spectroscopy. Raman measurements show a peak shift with increasing Al composition in the AlGaP shell. We find that the phonon energies for wurtzite AlGaP are slightly lower than for zincblende AlGaP. Our results can be used to determine the Al composition in wurtzite AlGaP by Raman scattering.

  12. Thermodynamic Modeling of the Al-Cr-Mn Ternary System

    NASA Astrophysics Data System (ADS)

    Cui, Senlin; Jung, In-Ho

    2017-03-01

    The phase diagram information available in the literature on the Al-Cr-Mn system was comprehensively evaluated and optimized for the first time to obtain a set of Gibbs energies of all the solid and liquid phases in the Al-Cr-Mn system. The Modified Quasi-chemical Model (MQM) was utilized to describe the Gibbs energy of the liquid phase of the Al-Cr-Mn system. The Compound Energy Formalism (CEF) was used to model the solid solution phases. A revision of the Al-Mn system was simultaneously conducted to consider the γ_H (Al8Mn5) phase. The liquid Cr-Mn phase was also remodeled using the Modified Quasi-chemical Model (MQM) to obtain a consistent description of the ternary Al-Cr-Mn liquid phase. Accurate description of the phase diagram of the entire Al-Cr-Mn system was obtained from the thermodynamic models with optimized parameters in the present study, and the model parameters can be used to predict the thermodynamic properties of the ternary system.

  13. Electron dynamics at GaAs-AlGaAs heterojunction studied by ultrafast spectroscopy

    NASA Astrophysics Data System (ADS)

    Leontyev, A. V.; Ivanin, K. V.; Mitrofanova, T. G.; Lobkov, V. S.; Samartsev, V. V.

    2013-12-01

    In this letter the electron and spin dynamics at GaAs/AlGaAs heterojunction was studied by ultrafast spectroscopy techniques (photon echo and transient grating studies). Relaxation times and diffusion coefficients of photoexcited electrons and spins were obtained using pure optical setup. The estimated spin diffusion coefficient value of 160 cm2/s is relatively high and comparable to the electron diffusion coefficient of 200 cm2/s. This feature makes GaAs/AlGaAs heterosructure a promising material for practical application in semiconductor spintronics.

  14. Magnetic coupling in ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers

    SciTech Connect

    Wang, M.; Wadley, P.; Campion, R. P.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Charlton, T. R.; Kinane, C. J.; Langridge, S.

    2015-08-07

    We report on a study of ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers using magnetometry and polarized neutron reflectivity (PNR). From depth-resolved characterization of the magnetic structure obtained by PNR, we concluded that the (Ga,Mn)As and (Al,Ga,Mn)As layers have in-plane and perpendicular-to-plane magnetic easy axes, respectively, with weak interlayer coupling. Therefore, the layer magnetizations align perpendicular to each other under low magnetic fields and parallel at high fields.

  15. Photogalvanic effects for interband absorption in AlGaN /GaN superlattices

    NASA Astrophysics Data System (ADS)

    Cho, K. S.; Chen, Y. F.; Tang, Y. Q.; Shen, B.

    2007-01-01

    The linear and circular photogalvanic effects (CPGEs), induced by ultraviolet (325nm) radiation, have been observed in the (0001)-oriented Al0.15Ga0.85N/GaN superlattices. The CPGE current changes sign upon reversing the radiation helicity, and it is up to two orders of magnitude larger than that obtained by far-infrared radiation. This result suggests the existence of a sizeable Rashba spin splitting in AlGaN /GaN superlattices. It also provides a possibility for the generation of spin orientation-induced current at room temperature.

  16. Ga/1-x/Al/x/As LED structures grown on GaP substrates.

    NASA Technical Reports Server (NTRS)

    Woodall, J. M.; Potemski, R. M.; Blum, S. E.; Lynch, R.

    1972-01-01

    Ga(1-x)Al(x)As light-emitting diode structures have been grown on GaP substrates by the liquid-phase-epitaxial method. In spite of the large differences in lattice constants and thermal-expansion coefficients, room-temperature efficiencies up to 5.5% in air have been observed for a peak emission of 8500 A. Using undoped GaP substrates, which are transparent to the infrared and red portions of the spectrum, thin structures of Ga(1-x)Al(x)As with large external efficiencies can now be made.

  17. Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata

    2005-01-01

    A proposed hybrid ultraviolet (UV) image sensor would comprise a planar membrane array of face-up AlGaN/GaN photodiodes integrated with a complementary metal oxide/semiconductor (CMOS) readout-circuit chip. Each pixel in the hybrid image sensor would contain a UV photodiode on the AlGaN/GaN membrane, metal oxide/semiconductor field-effect transistor (MOSFET) readout circuitry on the CMOS chip underneath the photodiode, and a metal via connection between the photodiode and the readout circuitry (see figure). The proposed sensor design would offer all the advantages of comparable prior CMOS active-pixel sensors and AlGaN UV detectors while overcoming some of the limitations of prior (AlGaN/sapphire)/CMOS hybrid image sensors that have been designed and fabricated according to the methodology of flip-chip integration. AlGaN is a nearly ideal UV-detector material because its bandgap is wide and adjustable and it offers the potential to attain extremely low dark current. Integration of AlGaN with CMOS is necessary because at present there are no practical means of realizing readout circuitry in the AlGaN/GaN material system, whereas the means of realizing readout circuitry in CMOS are well established. In one variant of the flip-chip approach to integration, an AlGaN chip on a sapphire substrate is inverted (flipped) and then bump-bonded to a CMOS readout circuit chip; this variant results in poor quantum efficiency. In another variant of the flip-chip approach, an AlGaN chip on a crystalline AlN substrate would be bonded to a CMOS readout circuit chip; this variant is expected to result in narrow spectral response, which would be undesirable in many applications. Two other major disadvantages of flip-chip integration are large pixel size (a consequence of the need to devote sufficient area to each bump bond) and severe restriction on the photodetector structure. The membrane array of AlGaN/GaN photodiodes and the CMOS readout circuit for the proposed image sensor would

  18. Influence of AlN thickness on AlGaN epilayer grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Jayasakthi, M.; Juillaguet, S.; Peyre, H.; Konczewicz, L.; Baskar, K.; Contreras, S.

    2016-10-01

    AlGaN/AlN layers were grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. The AlN buffer thickness was varied from 400 nm to 800 nm. The AlGaN layer thickness was 1000 nm. The crystalline quality, thickness and composition of AlGaN were determined using high resolution X-ray diffraction (HRXRD). The threading dislocation density (TDD) was found to decrease with increase of AlN layer thickness. Reciprocal space mapping (RSM) was used to estimate the strain and relaxation between AlGaN and AlN. The optical properties of AlGaN layers were investigated by temperature dependent photoluminescence (PL). PL intensities of AlGaN layers increases with increasing the AlN thickness. The surface morphology of AlGaN was studied by atomic force microscopy (AFM). Root mean square (RMS) roughness values were found to be decreased while increase of AlN thickness.

  19. Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Duan, Xiao-Ling; Zhang, Jin-Cheng; Xiao, Ming; Zhao, Yi; Ning, Jing; Hao, Yue

    2016-08-01

    A novel groove-type channel enhancement-mode AlGaN/GaN MIS high electron mobility transistor (GTCE-HEMT) with a combined polar and nonpolar AlGaN/GaN heterostucture is presented. The device simulation shows a threshold voltage of 1.24 V, peak transconductance of 182 mS/mm, and subthreshold slope of 85 mV/dec, which are obtained by adjusting the device parameters. Interestingly, it is possible to control the threshold voltage accurately without precisely controlling the etching depth in fabrication by adopting this structure. Besides, the breakdown voltage (V B) is significantly increased by 78% in comparison with the value of the conventional MIS-HEMT. Moreover, the fabrication process of the novel device is entirely compatible with that of the conventional depletion-mode (D-mode) polar AlGaN/GaN HEMT. It presents a promising way to realize the switch application and the E/D-mode logic circuits. Project supported by the National Science and Technology Major Project, China (Grant No. 2013ZX02308-002) and the National Natural Science Foundation of China (Grant Nos. 11435010, 61474086, and 61404099).

  20. TI--CR--AL--O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  1. Large magnetostriction in directionally solidified FeGa and FeGaAl alloys

    NASA Astrophysics Data System (ADS)

    Srisukhumbowornchai, N.; Guruswamy, S.

    2001-12-01

    The magnetostriction of Fe-x at. % Ga (x=15, 20, and 27.5) was measured, for alloys processed under different directional solidification conditions, and the effect of partial substitution of Ga with Al on the magnetostriction of the alloys was examined. Magnetostriction measurements were carried out at different prestress levels varying from 0 to 55 MPa. Ga additions in the range of 15-27.5 at. % Ga in Fe were found to improve the magnetostriction of the disordered bcc phase of Fe by as much as 1 order of magnitude. The applied fields for saturation magnetostriction and the hysteresis observed were small. Magnetostriction values as high as 271×10-6 were obtained in polycrystalline Fe-27.5 at. % Ga rods prepared using a directional growth (DG) process at a growth rate of 22.5 mm/h. This process, which is essentially a seedless vertical Bridgman technique, resulted in near [001] textured polycrystalline Fe-Ga alloys. The preferred [001] crystallographic orientation of the DG alloys was approximately 14° away from the rod direction. For Ga contents between 15 and 27.5 at. % in Fe, the Ga atoms increase the Fe-Fe spacing in the disordered bcc (A2) phase and reduce the magnetic moment of Fe. Substitution of Ga with Al has a significant effect on the magnetostriction of the Fe-Ga alloys. Small substitution of 5 at. % Al for Ga in the Fe-20 at. % Ga alloy increases the magnetostriction in Fe, and the value is slightly larger than that of the Fe-20 at. % Ga alloy. A higher substitution amount of Al tends to decrease the magnetostriction.

  2. Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs

    NASA Astrophysics Data System (ADS)

    Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.

    Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.

  3. AlGaN/GaN high electron mobility transistors with selective area grown p-GaN gates

    NASA Astrophysics Data System (ADS)

    Yuliang, Huang; Lian, Zhang; Zhe, Cheng; Yun, Zhang; Yujie, Ai; Yongbing, Zhao; Hongxi, Lu; Junxi, Wang; Jinmin, Li

    2016-11-01

    We report a selective area growth (SAG) method to define the p-GaN gate of AlGaN/GaN high electron mobility transistors (HEMTs) by metal-organic chemical vapor deposition. Compared with Schottky gate HEMTs, the SAG p-GaN gate HEMTs show more positive threshold voltage (V th) and better gate control ability. The influence of Cp2Mg flux of SAG p-GaN gate on the AlGaN/GaN HEMTs has also been studied. With the increasing Cp2Mg from 0.16 μmol/min to 0.20 μmol/min, the V th raises from -0.67 V to -0.37 V. The maximum transconductance of the SAG HEMT at a drain voltage of 10 V is 113.9 mS/mm while that value of the Schottky HEMT is 51.6 mS/mm. The SAG method paves a promising way for achieving p-GaN gate normally-off AlGaN/GaN HEMTs without dry etching damage. Project supported by the National Natural Sciences Foundation of China (Nos. 61376090, 61306008) and the National High Technology Program of China (No. 2014AA032606).

  4. Engineering of electric field distribution in GaN(cap)/AlGaN/GaN heterostructures: theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, M.; Janicki, L.; Misiewicz, J.; Sobanska, M.; Klosek, K.; Zytkiewicz, Z. R.; Kudrawiec, R.

    2016-09-01

    Polarization engineering of GaN-based heterostructures opens a way to develop advanced transistor heterostructures, although measurement of the electric field in such heterostructures is not a simple task. In this work, contactless electroreflectance (CER) spectroscopy has been applied to measure the electric field in GaN-based heterostructures. For a set of GaN(d  =  0, 5, 15, and 30 nm)/AlGaN(20 nm)/GaN(buffer) heterostructures a decrease of electric field in the GaN(cap) layer from 0.66 MV cm-1 to 0.27 MV cm-1 and an increase of the electric field in the AlGaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 have been observed with the increase in the GaN(cap) thickness from 5-30 nm. For a set of GaN(20 nm)/AlGaN(d  =  10, 20, 30, and 40 nm)/GaN(buffer) heterostructures a decrease of the electric field in the AlGaN layer from 1.77 MV cm-1 to 0.64 MV cm-1 and an increase of the electric field in the GaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 were observed with the increase in the AlGaN thickness from 10-40 nm. To determine the distribution of the electric field in these heterostructures the Schrödinger and Poisson equations are solved in a self-consistent manner and matched with experimental data. It is shown that the built-in electric field in the GaN(cap) and AlGaN layers obtained from measurements does not reach values of electric field resulting only from polarization effects. The measured electric fields are smaller due to a screening of polarization effects by free carriers, which are inhomogeneously distributed across the heterostructure and accumulate at interfaces. The results clearly demonstrate that CER measurements supported by theoretical calculations are able to determine the electric field distribution in GaN-based heterostructures quantitatively, which is very important for polarization engineering in this material system.

  5. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  6. Graded-bandgap AlGaAs solar cells for AlGaAs/Ge cascade cells

    NASA Technical Reports Server (NTRS)

    Timmons, M. L.; Venkatasubramanian, R.; Colpitts, T. S.; Hills, J. S.; Hutchby, J. A.; Iles, P. A.; Chu, C. L.

    1991-01-01

    Some p/n graded-bandgap Al(x)Ga(1-x)As solar cells were fabricated and show AMO conversion efficiencies in excess of 15 percent without antireflection (AR) coatings. The emitters of these cells are graded between 0.008 is less than or equal to x is less than or equal to 0.02 during growth of 0.25 to 0.30 micron thick layers. The keys to achieving this performance were careful selection of organometallic sources and scrubbing oxygen and water vapor from the AsH3 source. Source selection and growth were optimized using time-resolved photoluminescence. Preliminary radiation-resistance measurements show AlGaAs cells degraded less than GaAs cells at high 1 MeV electron fluences, and AlGaAs cells grown on GaAs and Ge substrates degrade comparably.

  7. Excitonic complexes in GaN/(Al,Ga)N quantum dots

    NASA Astrophysics Data System (ADS)

    Elmaghraoui, D.; Triki, M.; Jaziri, S.; Muñoz-Matutano, G.; Leroux, M.; Martinez-Pastor, J.

    2017-03-01

    Here we report a theoretical investigation of excitonic complexes in polar GaN/(Al,Ga)N quantum dots (QDs). A sum rule between the binding energies of charged excitons is used to calculate the biexciton binding energy. The binding energies of excitonic complexes in GaN/AlN are shown to be strongly correlated to the QD size. Due to the large hole localization, the positively charged exciton energy is found to be always blueshifted compared to the exciton one. The negatively charged exciton and the biexciton energy can be blueshifted or redshifted according to the QD size. Increasing the size of GaN/AlN QDs makes the identification of charged excitons difficult, and the use of an Al0.5Ga0.5N barrier can be advantageous for clear identification. Our theoretical results for the binding energy of exciton complexes are also confronted with values deduced experimentally for InAs/GaAs QDs, confirming our theoretical prediction for charged excitonic complexes in GaN/(Al,Ga)N QDs. Finally, we realize that the trends of excitonic complexes in QDs are significantly related to competition between the local charge separation (whatever its origin) and the correlation effect. Following our findings, entangled photons pairs can be produced in QDs with careful control of their size in order to obtain zero exciton–biexciton energy separation.

  8. All-optical modulator cells based on AlGaAs/GaAs/InGaAs 905-nm laser heterostructures

    NASA Astrophysics Data System (ADS)

    Podoskin, A. A.; Shashkin, I. S.; Slipchenko, S. O.; Pikhtin, N. A.; Tarasov, I. S.

    2017-01-01

    All-optical cells based on AlGaAs/GaAs/InGaAs laser heterostructures for a 905-nm wavelength have been developed, which operate in the regime of optical-power modulation by means of controlled generation switching between the Fabry-Perot cavity modes and high-Q closed mode. At a modulated power of 1.6 W, a mode-switching time of 1.2 ns and smaller is achieved.

  9. Voltage sensitivity of a point-contact GaAs/AlGaAs heterojunction microwave detector

    NASA Astrophysics Data System (ADS)

    Sužiedėlis, A.; Ašmontas, S.; Kundrotas, J.; Nargelienė, V.; Gradauskas, J.

    2012-03-01

    The detection properties of a microwave detector containing a point-contact GaAs/AlGaAs heterojunction were investigated in the X to Ka frequency range. The detector had a small-area GaAs/AlGaAs heterojunction connected in series with small- and large-area n-n+ homojunctions. Both theoretically and experimentally, the frequency dependence of the voltage sensitivity of the microwave detector was established, which we relate with the intervalley electromotive force arising in Al0.3Ga0.7As. The intervalley electromotive force is expressed using phenomenological electron transport theory in a many-valley semiconductor, and an intervalley relaxation time of 20 ps is estimated using the frequency dependence of the detector voltage sensitivity.

  10. Effect of nitrogen incorporation into Al-based gate insulators in AlON/AlGaN/GaN metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Asahara, Ryohei; Nozaki, Mikito; Yamada, Takahiro; Ito, Joyo; Nakazawa, Satoshi; Ishida, Masahiro; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2016-10-01

    The superior physical and electrical properties of aluminum oxynitride (AlON) gate dielectrics on AlGaN/GaN substrates in terms of thermal stability, reliability, and interface quality were demonstrated by direct AlON deposition and subsequent annealing. Nitrogen incorporation into alumina was proven to be beneficial both for suppressing intermixing at the insulator/AlGaN interface and reducing the number of electrical defects in Al2O3 films. Consequently, we achieved high-quality AlON/AlGaN/GaN metal-oxide-semiconductor capacitors with improved stability against charge injection and a reduced interface state density as low as 1.2 × 1011 cm-2 eV-1. The impact of nitrogen incorporation into the insulator will be discussed on the basis of experimental findings.

  11. Investigation of the hole resonant energies in GaAs-AlGaAs double-barrier

    NASA Astrophysics Data System (ADS)

    Sekkal, N.; Zitouni, K.; Kadri, A.

    1994-12-01

    A rigorous calculation of the resonant energies corresponding to valence sub-band hold transmission maxima is presented for GaAs/AlGaAs double-barrier heterostructures, employing the k.p method, the envelope-function approximation, and transfer matrix techniques. Incident waves associated with both the two light-hole and two heavy-hole bands are treated explicitly.

  12. Micro-photoluminescence of GaAs/AlGaAs triple concentric quantum rings.

    PubMed

    Abbarchi, Marco; Cavigli, Lucia; Somaschini, Claudio; Bietti, Sergio; Gurioli, Massimo; Vinattieri, Anna; Sanguinetti, Stefano

    2011-10-31

    A systematic optical study, including micro, ensemble and time resolved photoluminescence of GaAs/AlGaAs triple concentric quantum rings, self-assembled via droplet epitaxy, is presented. Clear emission from localized states belonging to the ring structures is reported. The triple rings show a fast decay dynamics, around 40 ps, which is expected to be useful for ultrafast optical switching applications.

  13. Influence of internal electric fields on band gaps in short period GaN/GaAlN and InGaN/GaN polar superlattices

    SciTech Connect

    Gorczyca, I. Skrobas, K.; Suski, T.; Christensen, N. E.; Svane, A.

    2015-08-21

    The electronic structures of short period mGaN/nGa{sub y}Al{sub 1−y}N and mIn{sub y}Ga{sub 1-y}N/nGaN superlattices grown along the wurtzite c axis have been calculated for different alloy compositions y and various small numbers m of well- and n of barrier-monolayers. The general trends in gap behavior can, to a large extent, be related to the strength of the internal electric field, E, in the GaN and InGaN quantum wells. In the GaN/GaAlN superlattices, E reaches 4 MV/cm, while in the InGaN/GaN superlattices, values as high as E ≈ 6.5 MV/cm are found. The strong electric fields are caused by spontaneous and piezoelectric polarizations, the latter contribution dominating in InGaN/GaN superlattices. The influence of different arrangements of In atoms (indium clustering) on the band gap values in InGaN/GaN superlattices is examined.

  14. Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single AlGaN layer with low Al composition

    PubMed Central

    Cheng, Jianpeng; Yang, Xuelin; Sang, Ling; Guo, Lei; Zhang, Jie; Wang, Jiaming; He, Chenguang; Zhang, Lisheng; Wang, Maojun; Xu, Fujun; Tang, Ning; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-01-01

    By employing a single AlGaN layer with low Al composition, high quality and uniformity AlGaN/GaN heterostructures have been successfully grown on Si substrates by metal-organic chemical vapor deposition (MOCVD). The heterostructures exhibit a high electron mobility of 2150 cm2/Vs with an electron density of 9.3 × 1012 cm−2. The sheet resistance is 313 ± 4 Ω/◻ with ±1.3% variation. The high uniformity is attributed to the reduced wafer bow resulting from the balance of the compressive stress induced and consumed during the growth, and the thermal tensile stress induced during the cooling down process. By a combination of theoretical calculations and in situ wafer curvature measurements, we find that the compressive stress consumed by the dislocation relaxation (~1.2 GPa) is comparable to the value of the thermal tensile stress (~1.4 GPa) and we should pay more attention to it during growth of GaN on Si substrates. Our results demonstrate a promising approach to simplifying the growth processes of GaN-on-Si to reduce the wafer bow and lower the cost while maintaining high material quality. PMID:26960730

  15. Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single AlGaN layer with low Al composition

    NASA Astrophysics Data System (ADS)

    Cheng, Jianpeng; Yang, Xuelin; Sang, Ling; Guo, Lei; Zhang, Jie; Wang, Jiaming; He, Chenguang; Zhang, Lisheng; Wang, Maojun; Xu, Fujun; Tang, Ning; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-03-01

    By employing a single AlGaN layer with low Al composition, high quality and uniformity AlGaN/GaN heterostructures have been successfully grown on Si substrates by metal-organic chemical vapor deposition (MOCVD). The heterostructures exhibit a high electron mobility of 2150 cm2/Vs with an electron density of 9.3 × 1012 cm‑2. The sheet resistance is 313 ± 4 Ω/◻ with ±1.3% variation. The high uniformity is attributed to the reduced wafer bow resulting from the balance of the compressive stress induced and consumed during the growth, and the thermal tensile stress induced during the cooling down process. By a combination of theoretical calculations and in situ wafer curvature measurements, we find that the compressive stress consumed by the dislocation relaxation (~1.2 GPa) is comparable to the value of the thermal tensile stress (~1.4 GPa) and we should pay more attention to it during growth of GaN on Si substrates. Our results demonstrate a promising approach to simplifying the growth processes of GaN-on-Si to reduce the wafer bow and lower the cost while maintaining high material quality.

  16. Process dependency on threshold voltage of GaN MOSFET on AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Qingpeng; Jiang, Ying; Miyashita, Takahiro; Motoyama, Shin-ichi; Li, Liuan; Wang, Dejun; Ohno, Yasuo; Ao, Jin-Ping

    2014-09-01

    GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with recessed gate on AlGaN/GaN heterostructure are reported in which the drain and source ohmic contacts were fabricated on the AlGaN/GaN heterostructure and the electron channel was formed on the GaN buffer layer by removing the AlGaN barrier layer. Negative threshold voltages were commonly observed in all devices. To investigate the reasons of the negative threshold voltages, different oxide thickness, etching gas and bias power of inductively-coupled plasma (ICP) system were utilized in the fabrication process of the GaN MOSFETs. It is found that positive charges of around 1 × 1012 q/cm2 exist near the interface at the just threshold condition in both silane- and tetraethylorthosilicate (TEOS)-based devices. It is also found that the threshold voltages do not obviously change with the different etching gas (SiCl4, BCl3 and two-step etching of SiCl4/Cl2) at the same ICP bias power level (20-25 W) and will become deeper when higher bias power is used in the dry recess process which may be related to the much serious ion bombardment damage. Furthermore, X-ray photoelectron spectroscopy (XPS) experiments were done to investigate the surface conditions. It is found that N 1s peaks become lower with higher bias power of the dry etching process. Also, silicon contamination was found and could be removed by HNO3/HF solution. It indicates that the nitrogen vacancies are mainly responsible for the negative threshold voltages rather than the silicon contamination. It demonstrates that optimization of the ICP recess conditions and improvement of the surface condition are still necessary to realize enhancement-mode GaN MOSFETs on AlGaN/GaN heterostructure.

  17. Identification of photoluminescence bands in AlGaAs/InGaAs/GaAs PHEMT heterostructures with donor-acceptor-doped barriers

    SciTech Connect

    Gulyaev, D. V. Zhuravlev, K. S.; Bakarov, A. K.; Toropov, A. I.

    2015-02-15

    The photoluminescence of AlGaAs/InGaAs/GaAs pseudomorphic high-electron mobility transistor heterostructures with donor-acceptor-doped AlGaAs barriers is studied. It is found that the introduction of additional p{sup +}-doped AlGaAs layers into the design brings about the appearance of new bands in the photoluminescence spectra. These bands are identified as resulting from transitions (i) in donor-acceptor pairs in doped AlGaAs layers and (ii) between the conduction subband and acceptor levels in the undoped InGaAs quantum well.

  18. Analytical modeling of AlGaN/AlN/GaN heterostructures including effects of distributed surface donor states

    SciTech Connect

    Goyal, Nitin; Fjeldly, Tor A.

    2014-07-14

    In this paper, a physics based analytical model is presented for calculation of the two-dimensional electron gas density and the bare surface barrier height of AlGaN/AlN/GaN material stacks. The presented model is based on the concept of distributed surface donor states and the self-consistent solution of Poisson equation at the different material interfaces. The model shows good agreement with the reported experimental data and can be used for the design and characterization of advanced GaN devices for power and radio frequency applications.

  19. AlGaAs/GaAs photovoltaic converters for high power narrowband radiation

    SciTech Connect

    Khvostikov, Vladimir; Kalyuzhnyy, Nikolay; Mintairov, Sergey; Potapovich, Nataliia; Shvarts, Maxim; Sorokina, Svetlana; Andreev, Viacheslav; Luque, Antonio

    2014-09-26

    AlGaAs/GaAs-based laser power PV converters intended for operation with high-power (up to 100 W/cm{sup 2}) radiation were fabricated by LPE and MOCVD techniques. Monochromatic (λ = 809 nm) conversion efficiency up to 60% was measured at cells with back surface field and low (x = 0.2) Al concentration 'window'. Modules with a voltage of 4 V and the efficiency of 56% were designed and fabricated.

  20. Interface states at the SiN/AlGaN interface on GaN heterojunctions for Ga and N-polar material

    NASA Astrophysics Data System (ADS)

    Yeluri, Ramya; Swenson, Brian L.; Mishra, Umesh K.

    2012-02-01

    Dielectric passivation is important to improve the stability and reliability of gallium nitride based semiconductor devices. We need to characterize various dielectrics and their interfaces to nitrides accurately to be able to exploit the benefits efficiently. Earlier, B. L. Swenson and U. K. Mishra [J. Appl. Phys. 106, 064902 (2009)] have detailed a photo-assisted high frequency CV characterization technique for the Ga-polar SiN/GaN interface that gives an accurate value of interface state density (Dit) across the bandgap of the dielectric. In this work, we extend the technique to study the interface states at the SiN/AlGaN interface on GaN for Ga and N polar material. This simulates the AlGaN/GaN HEMT structure. A MIS-type structure comprised of a metal on SiN on an AlGaN/GaN heterojunction was used for the study. For a structure with 1 nm AlGaN interlayer, a peak interface state density of 2.8 × 1012 cm-2 eV-1 was measured. For Ga polar devices, the measured Dit decreases with increasing AlGaN thickness. In the N-polar case, the measured Dit increases with increasing AlGaN thickness. The variations of measured Dit with AlGaN thickness, in both cases, can be explained by screening from the accumulation charge at the AlGaN/GaN interface.

  1. Energies and configurations of defects in Ga, Cr, and In-doped CoO

    SciTech Connect

    Chen, S.P.; Yan, M.; Grimes, R.W.; Vyas, S.

    1997-12-31

    Atomistic simulation methods have been used to investigate the properties of point defects in CoO. The defects are substitutional ions Ga, Cr, In, and Co{sup 3+} holes and associated charge compensating cation vacancies. We find that while Ga, Cr and Co{sup 3+} ions energetically prefer to occupy second neighbor sites with respect to the vacancy, In ions sit immediately adjacent in 1st neighbor sites.

  2. On the optimization of asymmetric barrier layers in InAlGaAs/AlGaAs laser heterostructures on GaAs substrates

    SciTech Connect

    Zhukov, A. E.; Asryan, L. V.; Semenova, E. S.; Zubov, F. I.; Kryzhanovskaya, N. V.; Maximov, M. V.

    2015-07-15

    Band offsets at the heterointerface are calculated for various combinations of InAlGaAs/AlGaAs heteropairs that can be synthesized on GaAs substrates in the layer-by-layer pseudomorphic growth mode. Patterns which make it possible to obtain an asymmetric barrier layer providing the almost obstruction-free transport of holes and the highest possible barrier height for electrons are found. The optimal compositions of both compounds (In{sup 0.232}Al{sup 0.594}Ga{sup 0.174}As/Al{sup 0.355}Ga{sup 0.645}As) at which the flux of electrons across the barrier is at a minimum are determined with consideration for the critical thickness of the indium-containing quaternary solid solution.

  3. Statistical nanoscale study of localised radiative transitions in GaN/AlGaN quantum wells and AlGaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Rigutti, L.; Mancini, L.; Lefebvre, W.; Houard, J.; Hernàndez-Maldonado, D.; Di Russo, E.; Giraud, E.; Butté, R.; Carlin, J.-F.; Grandjean, N.; Blavette, D.; Vurpillot, F.

    2016-09-01

    Compositional disorder has important consequences on the optical properties of III-nitride ternary alloys. In AlGaN epilayers and AlGaN-based quantum heterostructures, the potential fluctuations induced by such disorder lead to the localisation of carriers at low temperature, which affects their transition energies. Using the correlations between micro-photoluminescence, scanning transmission electron microscopy and atom probe tomography we have analysed the optical behaviour of Al0.25Ga0.75N epilayers and that of GaN/AlGaN quantum wells, and reconstructed in three dimensions the distribution of chemical species with sub-nanometre spatial resolution. These composition maps served as the basis for the effective mass calculation of electrons and holes involved in radiative transitions. Good statistical predictions were subsequently obtained for the above-mentioned transition and localisation energies by establishing a link with their microstructural properties.

  4. Photocorrosion metrology of photoluminescence emitting GaAs/AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Aithal, Srivatsa; Liu, Neng; Dubowski, Jan J.

    2017-01-01

    High sensitivity of the photoluminescence (PL) effect to surface states and chemical reactions on surfaces of PL emitting semiconductors has been attractive in monitoring photo-induced microstructuring of such materials. To address the etching at nano-scale removal rates, we have investigated mechanisms of photocorrosion of GaAs/Al0.35Ga0.65As heterostructures immersed either in deionized water or aqueous solution of NH4OH and excited with above-bandgap radiation. The difference in photocorrosion rates of GaAs and Al0.35Ga0.65As appeared weakly dependent on the bandgap energy of these materials, and the intensity of an integrated PL signal from GaAs quantum wells or a buried GaAs epitaxial layer was found dominated by the surface states and chemical reactivity of heterostructure surfaces revealed during the photocorrosion process. Under optimized photocorrosion conditions, the method allowed resolving a 1 nm thick GaAs sandwiched between Al0.35Ga0.65As layers. We demonstrate that this approach can be used as an inexpensive, and simple room temperature tool for post-growth diagnostics of interface locations in PL emitting quantum wells and other nano-heterostructures.

  5. Crystalline and electronic energy structure of OMVPE-grown AlGaInP/GaAs

    NASA Astrophysics Data System (ADS)

    Kondow, M.; Kakibayashi, H.; Minagawa, S.; Inoue, Y.; Nishino, T.; Hamakawa, Y.

    1988-12-01

    The crystalline and electronic energy structure of AlGaInP/GaAs grown by organometallic vapor phase epitaxy (OMVPE) is investigated using transmission electron microscopy (TEM) and electroreflectance (ER), as well as photoluminescence (PL) and Raman scattering measurements. In TEM observation, sharp superstructure spots at the h+ {1}/{2}, k- {1}/{2}, l± {1}/{2} position, corresponding to CuPt type structure, are present in the (110) diffraction pattern. Based on this observation, the relationship between the bond and the ordered structure configuration on 9001) growth surface is discussed. It is also found by photoluminescence and Raman scattering measurements that the GaInP grown on (111)B is in a disordered state. Photoluminescence measurement for AlGaInP grown under various conditions shows that an ordered structure exists not only in GaInP but throughout the entire compositional range of the AlGaInP/GaAs. The electroreflectance spectrum shows anomalous structures specific to OMVPE-grown GaInP. The structures around 2.2 and 2.4 eV suggest that there exist additional interband transition edges caused possibly by zone-folding from the L point to the Γ point.

  6. Theoretical and experimental studies of electric field distribution in N-polar GaN/AlGaN/GaN heterostructures

    SciTech Connect

    Gladysiewicz, M. Janicki, L.; Kudrawiec, R.; Siekacz, M.; Cywinski, G.

    2015-12-28

    Electric field distribution in N-polar GaN(channel)/AlGaN/GaN(buffer) heterostructures was studied theoretically by solving Schrodinger and Poisson equations in a self-consistent manner for various boundary conditions and comparing results of these calculations with experimental data, i.e., measurements of electric field in GaN(channel) and AlGaN layers by electromodulation spectroscopy. A very good agreement between theoretical calculations and experimental data has been found for the Fermi-level located at ∼0.3 eV below the conduction band at N-polar GaN surface. With this surface boundary condition, the electric field distribution and two dimensional electron gas concentration are determined for GaN(channel)/AlGaN/GaN(buffer) heterostructures of various thicknesses of GaN(channel) and AlGaN layers.

  7. Raman scattering from confined phonons in GaAs/AlGaAs quantum wires

    NASA Astrophysics Data System (ADS)

    Bairamov, B. H.; Aydinli, A.; Tanatar, B.; Güven, K.; Gurevich, S.; Mel'tser, B. Ya.; Ivanov, S. V.; Kop'ev, P. S.; Smirnitskii, V. B.; Timofeev, F. N.

    1998-10-01

    We report on photoluminescence and Raman scattering performed at low temperature (T = 10 K) on GaAs/Al0.3Ga0.7As quantum-well wires with effective wire widths ofL = 100.0 and 10.9 nm prepared by molecular beam epitaxial growth followed by holographic patterning, reactive ion etching, and anodic thinning. We find evidence for the existence of longitudinal optical phonon modes confined to the GaAs quantum wire. The observed frequency at οL10 = 285.6 cm-1forL = 11.0 nm is in good agreement with that calculated on the basis of the dispersive dielectric continuum theory of Enderleinas applied to the GaAs/Al0.3Ga0.7As system. Our results indicate the high crystalline quality of the quantum-well wires fabricated using these techniques.

  8. Space concentrator solar cells based on multilayer LPE grown AlGaAs/GaAs heterostructure

    NASA Technical Reports Server (NTRS)

    Khvostikov, V. P.; Larionov, V. R.; Paleeva, E. V.; Sorokina, S. V.; Chosta, O. I.; Shvarts, M. Z.; Zimogorova, N. S.

    1995-01-01

    The high efficiency solar cells based on multilayer AlGaAs/GaAs heterostructures, prepared by low temperature liquid phase epitaxy (LPE), were developed and tested. An investigation of the low temperature LPE process for the crystallization of AlGaAs heterostructures of as high as 24.0 to 24.7 percent under AMO conditions at concentration ratios of 20 to 100x, were reached. Developed solar cells show substantial radiation resistance to the damage induced by 3.75 MeV electrons.

  9. Theoretical investigation of spin-filtering in CrAs/GaAs heterostructures

    SciTech Connect

    Stickler, B. A.; Ertler, C.; Pötz, W.; Chioncel, L.

    2013-12-14

    The electronic structure of bulk zinc-blende GaAs, zinc-blende and tetragonal CrAs, and CrAs/GaAs supercells, computed within linear muffin-tin orbital (LMTO) local spin-density functional theory, is used to extract the band alignment for the [1,0,0] GaAs/CrAs interface in dependence of the spin orientation. With the lateral lattice constant fixed to the experimental bulk GaAs value, a local energy minimum is found for a tetragonal CrAs unit cell with a longitudinal ([1,0,0]) lattice constant reduced by ≈2%. Due to the identified spin-dependent band alignment, half-metallicity of CrAs no longer is a key requirement for spin-filtering. Based on these findings, we study the spin-dependent tunneling current in [1,0,0] GaAs/CrAs/GaAs heterostructures within the non-equilibrium Green's function approach for an effective tight-binding Hamiltonian derived from the LMTO electronic structure. Results indicate that these heterostructures are promising candidates for efficient room-temperature all-semiconductor spin-filtering devices.

  10. InGaP/GaAs Dual-Junction Solar Cell with AlGaAs/GaAs Tunnel Diode Grown on 10° off Misoriented GaAs Substrate

    NASA Astrophysics Data System (ADS)

    Yu, Hung Wei; Chung, Chen Chen; Te Wang, Chin; Nguyen, Hong Quan; Tinh Tran, Binh; Lin, Kung Liang; Dee, Chang Fu; Yeop Majlis, Burhanuddin; Chang, Edward Yi

    2012-08-01

    InGaP/GaAs dual-junction solar cells with different tunnel diodes (TDs) grown on misoriented GaAs substrates are investigated. It is demonstrated that the solar cells with P++-AlGaAs/N++-GaAs TDs grown on 10° off GaAs substrates not only show a higher external quantum efficiency (EQE) but also generate a higher peak current density (Jpeak) at higher concentration ratios (185×) than the solar cells with P++-GaAs/N++-InGaP TDs grown on 6° off GaAs substrates. Furthermore, the cell design with P++-AlGaAs/N++-GaAs TDs grown on 10° off GaAs substrates does not generate a disordered InGaP epitaxial layer during material growth, and thus shows superior current-voltage characteristics.

  11. Fabrication and characterization of graphene/AlGaN/GaN ultraviolet Schottky photodetector

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Jeong, H.; Polat, K.; Okyay, A. K.; Lee, D.

    2016-07-01

    We report on the fabrication and characterization of a Schottky ultraviolet graphene/AlGaN/GaN photodetector (PD). The fabricated device clearly exhibits rectification behaviour, indicating that the Schottky barrier is formed between the AlGaN and the mechanically transferred graphene. The Schottky parameters are evaluated using an equivalent circuit with two diodes connected back-to-back in series. The PD shows a low dark current of 4.77  ×  10-12 A at a bias voltage of  -2.5 V. The room temperature current-voltage (I-V) measurements of the graphene/AlGaN/GaN Schottky PD exhibit a large photo-to-dark contrast ratio of more than four orders of magnitude. Furthermore, the device shows peak responsivity at a wavelength of 350 nm, corresponding to GaN band edge and a small hump at 300 nm associated to the AlGaN band edge. In addition, we examine the behaviour of Schottky PDs with responsivities of 0.56 and 0.079 A W-1 at 300 and 350 nm, respectively, at room temperature.

  12. Hydrogenation of GaAs covered by GaAlAs and subgrain boundary passivation

    NASA Astrophysics Data System (ADS)

    Djemel, A.; Castaing, J.; Chevallier, J.; Henoc, P.

    1992-12-01

    Cathodoluminescence (CL) has been performed to study the influence of hydrogen on electronic properties of GaAs with and without a GaAlAs layer. Recombination at sub-boundaries has been examined. These extended defects have been introduced by high temperature plastic deformation. The results show that they are passivated by hydrogen. The penetration of hydrogen is slowed down by the GaAlAs layer. La cathodoluminescence (CL) a été utilisée pour étudier l'influence de l'hydrogène sur les propriétés électroniques de GaAs nu et recouvert d'une couche de GaAlAs. Le caractère recombinant des sous-joints de grains a été examiné. Ces défauts étendus ont été introduits par déformation plastique à chaud. Les résultats montrent que l'hydrogène passive ces défauts. La pénétration de l'hydrogène à l'intérieur de GaAs est retardée par la présence de la couche de GaAlAs.

  13. Surface potential measurements on GaN and AlGaN/GaN heterostructures by scanning Kelvin probe microscopy

    SciTech Connect

    Koley, G.; Spencer, M. G.

    2001-07-01

    Surface potentials on GaN epilayers and Al{sub 0.35}Ga{sub 0.65}N/GaN heterostructures have been studied by scanning Kelvin probe microscopy (SKPM) in conjunction with noncontact atomic force microscopy. The dependence of the surface potential on doping in GaN films, as well as the variation of surface potential with Al{sub 0.35}Ga{sub 0.65}N barrier layer thickness has been investigated. The bare surface barrier height (BSBH), as measured by SKPM, is observed to decrease from {similar_to}1. 40{+-}0.1 eV to {similar_to}0.60{+-}0.1 eV with increasing doping in the GaN epilayers. Schottky barrier height calculated from the measurements of BSBH on n-GaN agrees very well with results from previous studies. We have also estimated the surface state density for GaN based on the measured values of BSBH. The semiconductor {open_quotes}work function{close_quotes} at the Al{sub 0.35}Ga{sub 0.65}N surface (in heterostructure samples) is observed to decrease by {similar_to}0.60 eV with increase in barrier layer thickness from {similar_to}50 to {similar_to}440 Aa. A simple model considering the presence of a uniform density of charged acceptors in the Al{sub 0.35}Ga{sub 0.65}N layer is proposed to explain the observed decreasing trend in work function. {copyright} 2001 American Institute of Physics.

  14. MOCVD growth of AlGaN UV LEDs

    SciTech Connect

    Han, J.; Crawford, M.H.

    1998-09-01

    Issues related to the MOCVD growth of AlGaN, specifically the gas-phase parasitic reactions among TMG, TMA, and NH{sub 3}, are studied using an in-situ optical reflectometer. It is observed that the presence of the well-known gas phase adduct (TMA: NH{sub 3}) could seriously hinder the incorporation behavior of TMGa. Relatively low reactor pressures (30--50 Torr) are employed to grow an AlGaN/GaN SCH QW p-n diode structure. The UV emission at 360 nm (FWHM {approximately} 10 nm) represents the first report of LED operation from an indium-free GaN QW diode.

  15. Electron microscopy characterization of AlGaN/GaN heterostructures grown on Si (111) substrates

    NASA Astrophysics Data System (ADS)

    Gkanatsiou, A.; Lioutas, Ch. B.; Frangis, N.; Polychroniadis, E. K.; Prystawko, P.; Leszczynski, M.

    2017-03-01

    AlGaN/GaN buffer heterostructures were grown on ;on axis; and 4 deg off Si (111) substrates by MOVPE. The electron microscopy study reveals the very good epitaxial growth of the layers. Almost c-plane orientated nucleation grains are achieved after full AlN layer growth. Step-graded AlGaN layers were introduced, in order to prevent the stress relaxation and to work as a dislocation filter. Thus, a crack-free smooth surface of the final GaN epitaxial layer is achieved in both cases, making the buffer structure ideal for the forthcoming growth of the heterostructure (used for HEMT device applications). Finally, the growth of the AlGaN/GaN heterostructure on top presents characteristic and periodic undulations (V-pits) on the surface, due to strain relaxation reasons. The AlN interlayer grown in between the heterostructure demonstrates an almost homogeneous thickness, probably reinforcing the 2DEG electrical characteristics.

  16. Comparison of degradation and recaesiation between GaAs and AlGaAs photocathodes in an unbaked vacuum system.

    PubMed

    Feng, Cheng; Zhang, Yijun; Shi, Feng; Qian, Yunsheng; Cheng, Hongchang; Zhang, Junju; Liu, Xinxin; Zhang, Xiang

    2017-03-20

    The lifetime and reliability of a photocathode during operation are always raised problems and the photocathode performance depends on the vacuum condition. With the purpose of investigating the stability and reliability of a GaAs-based photocathode in a harsher vacuum environment, reflection-mode exponential-doped GaAs and AlGaAs photocathodes are metalorganic vapor-phase epitaxial grown and then (Cs, O) activated inside an unbaked vacuum chamber. The degraded photocurrents are compared after activation and recaesiations between GaAs and AlGaAs photocathdoes under illumination with an equal initial photocurrent and an equal optical flux, respectively. It is found that the performance on degradation and recaesiations between GaAs and AlGaAs photocathodes are different. In the unbaked vacuum system, the stability of an AlGaAs photocathode after (Cs, O) activation is always better than that of a GaAs photocathode. After multiple recaesiations, the photocurrent decay curves of the AlGaAs photocathode are nearly coincident, which means a nearly constant operational lifetime. Moreover, operational lifetime of an AlGaAs photocathode is longer than that of a GaAs photocathode, which further illuminates that AlGaAs photocathodes are superior to GaAs photocathodes in stability and repeatability under markedly harsher vacuum conditions.

  17. Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Lu, Shen; Hirahara, Sota; Niwa, Kazumasa; Kamiyama, Satoshi; Ohkawa, Kazuhiro

    2016-08-01

    We investigated the effect of a combined AlN/Al0.03Ga0.97N barrier on InGaN-based amber light-emitting diodes (LEDs) grown by metalorganic vapor-phase epitaxy. InGaN-based multiple quantum wells with a combined AlN/Al0.03Ga0.97N barrier showed intense photoluminescence with a narrow full-width at half-maximum. The amber LEDs with a combined AlN/Al0.03Ga0.97N barrier achieved a light output power enhanced approximately 2.5-fold at 20 mA compared to that of the LED with a combined AlN/GaN barrier, owing to the reduction of defects in InGaN active layers. Thus, the efficiency of high-In-content InGaN-based LEDs can be improved in the spectrum range of amber.

  18. Sheet resistance under Ohmic contacts to AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Hajłasz, M.; Donkers, J. J. T. M.; Sque, S. J.; Heil, S. B. S.; Gravesteijn, D. J.; Rietveld, F. J. R.; Schmitz, J.

    2014-06-01

    For the determination of specific contact resistance in semiconductor devices, it is usually assumed that the sheet resistance under the contact is identical to that between the contacts. This generally does not hold for contacts to AlGaN/GaN structures, where an effective doping under the contact is thought to come from reactions between the contact metals and the AlGaN/GaN. As a consequence, conventional extraction of the specific contact resistance and transfer length leads to erroneous results. In this Letter, the sheet resistance under gold-free Ti/Al-based Ohmic contacts to AlGaN/GaN heterostructures on Si substrates has been investigated by means of electrical measurements, transmission electron microscopy, and technology computer-aided design simulations. It was found to be significantly lower than that outside of the contact area; temperature-dependent electrical characterization showed that it exhibits semiconductor-like behavior. The increase in conduction is attributed to n-type activity of nitrogen vacancies in the AlGaN. They are thought to form during rapid thermal annealing of the metal stack when Ti extracts nitrogen from the underlying semiconductor. The high n-type doping in the region between the metal and the 2-dimensional electron gas pulls the conduction band towards the Fermi level and enhances horizontal electron transport in the AlGaN. Using this improved understanding of the properties of the material underneath the contact, accurate values of transfer length and specific contact resistance have been extracted.

  19. Growth of Cr2CoGa and inverse Heusler thin films using Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle; Decapua, Matthew; Player, Gabriel; Heiman, Don

    Theoretical calculations have predicted the existence of inverse Heusler compounds that exhibit zero-moment magnetization while retaining their half-metallicity. These unique compounds have been labeled spin gapless semiconductors (SGS), where the density of states (DOS) can behave as a half-metal or gapless semiconductor. There is a special interest for zero-moment SGS compounds since traditional antiferromagnets cannot be spin-polarized. Such compounds are experimentally attractive for future spintronic devices due to their large magnetic transition temperature (400-800 K). This work focuses on zero-moment inverse Heusler compounds including Cr2CoGa and Mn3Al. Thin films have been grown using MBE and their magnetic, structural, and electrical properties of these compounds have been characterized by various techniques, including XMCD and magnetometry. The atomic moments are found to be large, but significant cancellations lead to small average moments. Supported by NSF Grant ECCS-1402738.

  20. Normally-off p-GaN/AlGaN/GaN high electron mobility transistors using hydrogen plasma treatment

    NASA Astrophysics Data System (ADS)

    Hao, Ronghui; Fu, Kai; Yu, Guohao; Li, Weiyi; Yuan, Jie; Song, Liang; Zhang, Zhili; Sun, Shichuang; Li, Xiajun; Cai, Yong; Zhang, Xinping; Zhang, Baoshun

    2016-10-01

    In this letter, we report a method by introducing hydrogen plasma treatment to realize normally-off p-GaN/AlGaN/GaN HEMT devices. Instead of using etching technology, hydrogen plasma was adopted to compensate holes in the p-GaN above the two dimensional electron gas (2DEG) channel to release electrons in the 2DEG channel and form high-resistivity area to reduce leakage current and increase gate control capability. The fabricated p-GaN/AlGaN/GaN HEMT exhibits normally-off operation with a threshold voltage of 1.75 V, a subthreshold swing of 90 mV/dec, a maximum transconductance of 73.1 mS/mm, an ON/OFF ratio of 1 × 107, a breakdown voltage of 393 V, and a maximum drain current density of 188 mA/mm at a gate bias of 6 V. The comparison of the two processes of hydrogen plasma treatment and p-GaN etching has also been made in this work.

  1. The form of the profile of heterointerfaces in (311)Ga GaAs/AlAs structures

    SciTech Connect

    Gulyaev, D. V. Zhuravlev, K. S.

    2010-03-15

    The steady-state photoluminescence and kinetics of photoluminescence of the (100)-oriented and (311)Ga-oriented type II GaAs/AlAs superlattices are studied under the effect of the electric field of the surface acoustic wave. It is found that, in the (100)-oriented structures, the drop of intensity of steady-state photoluminescence and acceleration of photoluminescence kinetics are independent of the direction of the electric field of the surface acoustic wave with respect to crystallographic directions, while in the (311)Ga-oriented structures these effects are anisotropic. It is shown that all variations in the steady-state photoluminescence and in kinetics of photoluminescence of (100)-oriented and (311)Ga-oriented structures under the effect of the electric field of the acoustic wave are associated with transfer and capture by the nonradiative recombination centers of nonequilibrium charge carriers, which are initially localized in wide quantum wells formed by fluctuations of the thickness of the layers of the structures. From the obtained experimental data, the parameters of the profile of heterointerfaces of the (311)Ga GaAs/AlAs superlattices are determined. It is established that the lateral sizes of microgrooves in the [011] direction on the direct and inverse heterointerfaces of the (311)Ga superlattices exceed 3.2 nm, while the modulation of the thickness of the AlAs layers is from 0.8 to 1.2 nm.

  2. AlGaN/GaN based field effect transistors for terahertz detection and imaging

    NASA Astrophysics Data System (ADS)

    Sakowicz, M.; Lifshits, M. B.; Klimenko, O. A.; Coquillat, D.; Dyakonova, N.; Teppe, F.; Gaquière, C.; Poisson, M. A.; Delage, S.; Knap, W.

    2012-03-01

    AlGaN/GaN based FETs have great potential as sensitive and fast operating detectors because of their material advantages such as high breakdown voltage, high electron mobility, and high saturation velocity. These advantages could be exploited for resonant and non-resonant terahertz detection. We have designed, fabricated, and characterized AlGaN/GaN based FETs as single pixel terahertz detectors. This work focuses on non-resonant detection and imaging using GaN field plate FETs. To evaluate their performances as terahertz detectors, we have measured the responsivity as a function of gate voltage, the azimuthal angle between the terahertz electric field, the source-to-drain direction, and the temperature. A simple analytical model of the response is developed. It is based on plasma density perturbation in the transistor channel by the incoming terahertz radiation. The model shows how the non-resonant detection signal is related to static (dc) transistor characteristics and it fully describes the experimental results on the non-resonant sub-terahertz detection by the AlGaN/GaN based FETs. The imaging performances are evaluated by scanning objects in transmission mode and an example of application of terahertz imaging as new non-destructive technique for the quality control of materials is given. Results indicate that these FETs can be considered as promising devices for terahertz detection and imaging applications.

  3. A gate current 1/f noise model for GaN/AlGaN HEMTs

    NASA Astrophysics Data System (ADS)

    Yu'an, Liu; Yiqi, Zhuang

    2014-12-01

    This work presents a theoretical and experimental study on the gate current 1/f noise in AlGaN/GaN HEMTs. Based on the carrier number fluctuation in the two-dimensional electron gas channel of AlGaN/GaN HEMTs, a gate current 1/f noise model containing a trap-assisted tunneling current and a space charge limited current is built. The simulation results are in good agreement with the experiment. Experiments show that, if Vg < Vx (critical gate voltage of dielectric relaxation), gate current 1/f noise comes from the superimposition of trap-assisted tunneling RTS (random telegraph noise), while Vg > Vx, gate current 1/f noise comes from not only the trap-assisted tunneling RTS, but also the space charge limited current RTS. This indicates that the gate current 1/f noise of the GaN-based HEMTs device is sensitive to the interaction of defects and the piezoelectric relaxation. It provides a useful characterization tool for deeper information about the defects and their evolution in AlGaN/GaN HEMTs.

  4. Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Lin; Chu, B. H.; Chen, K. H.; Chang, C. Y.; Lele, T. P.; Papadi, G.; Coleman, J. K.; Sheppard, B. J.; Dungen, C. F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.; Ren, F.

    2009-06-01

    Antibody-functionalized, Au-gated AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect Perkinsus marinus. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN/GaN HEMT drain-source current showed a rapid response of less than 5 s when the infected solution was added to the antibody-immobilized surface. The sensor can be recycled with a phosphate buffered saline wash. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN/GaN HEMTs for Perkinsus marinus detection.

  5. HgNO3 sensitivity of AlGaN/GaN field effect transistors functionalized with phytochelating peptides

    NASA Astrophysics Data System (ADS)

    Rohrbaugh, Nathaniel; Hernandez-Balderrama, Luis; Kaess, Felix; Kirste, Ronny; Collazo, Ramon; Ivanisevic, Albena

    2016-06-01

    This study examined the conductance sensitivity of AlGaN/GaN field effect transistors in response to varying Hg/HNO3 solutions. FET surfaces were covalently functionalized with phytochelatin-5 peptides in order to detect Hg in solution. Results showed a resilience of peptide-AlGaN/GaN bonds in the presence of strong HNO3 aliquots, with significant degradation in FET ID signal. However, devices showed strong and varied response to Hg concentrations of 1, 10, 100, and 1000 ppm. The gathered statistically significant results indicate that peptide terminated AlGaN/GaN devices are capable of differentiating between Hg solutions and demonstrate device sensitivity.

  6. Back-illuminated GaN/AlGaN visible-blind photodiodes

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Chen, Jun; Bai, Yun; Guo, Liwei; Zhang, Yan; Li, Xiangyang; Gong, Haimei

    2007-12-01

    In recent years, AlGaN semiconductor alloys, with a direct bandgap tunable between 3.4eV and 6.2eV, become the most suitable material for fabricating UV detectors. In this paper, a backside-illuminated visible-blind UV detector based on a GaN/AlGaN p-i-n heterostructure has been successfully fabricated and tested. The p-i-n photodiode structure consists of a 0.7um n-type Al 0.33Ga 0.67N:Si layer grown by metal-organic chemical vapor deposition (MOCVD) onto a low temperature AlN buffer layer on a polished sapphire substrate. On the top of this layer there is a 0.18um undoped GaN active layer and a 0.15um p-type GaN:Mg top layer. Square mesas of area A=1.70×10 -3cm2 were obtained by inductively coupled plasma etching using BCl 3, Ar and Cl II. Standard photolithographic and metallization procedures were also employed to fabricate the devices. The visible blind photodiode exhibits a narrow UV spectral responsibility band peaked at 360nm, with maximum responsibility R=0.21A/W, corresponding to an internal quantum efficiency of 82%. R 0A values up to 2.64×10 8Ω•cm2 were obtained, corresponding to D*=2.65×10 13 cmHz 1/2W -1 at 360nm. The leakage current at zero bias is 5.20×10 -13A. We also examined GaN/AlGaN epitaxial layers by high resolution X-ray diffraction (HRXRD). The rocking curve indicates the multiple layers including p-type layer are in good state, which indicates that the crystalline quality of films is the key of device performances.

  7. Strain-compensated AlGaN /GaN/InGaN cladding layers in homoepitaxial nitride devices

    NASA Astrophysics Data System (ADS)

    Czernecki, R.; Krukowski, S.; Targowski, G.; Prystawko, P.; Sarzynski, M.; Krysko, M.; Kamler, G.; Grzegory, I.; Leszczynski, M.; Porowski, S.

    2007-12-01

    One of the most important problems in III-nitride violet laser diode technology is the lattice mismatch between the AlGaN cladding layers and the rest of the epitaxial structure. For efficiently working devices, it is necessary to have both a high Al content and thick claddings. This leads, however, to severe sample bowing and even cracking of the upper layer. In this work, we propose a cladding structure of strain-compensated AlGaN /GaN/InGaN superlattice grown by metal-organic vapor phase epitaxy on bulk GaN substrates. Various thicknesses and compositions of the layers were employed. We measured the radius of bowing, lattice mismatches, aluminum and indium contents, and densities of threading dislocations. The proposed cladding structures suppress bowing and cracking, which are the two parasitic effects commonly experienced in laser diodes with bulk AlGaN claddings. The suppression of cracking and bowing is shown to occur due to modified strain energy distribution of the superlattices structure.

  8. Long-lasting luminescence in ZnGa2O4: Cr3+ through persistent energy transfer

    NASA Astrophysics Data System (ADS)

    Li, Lei; Wang, Yinhai; Huang, Haiju; Li, Hong; Zhao, Hui

    2016-01-01

    Cr3+-doped zinc gallate (ZnGa2O4) near-infrared (NIR) phosphors were synthesized via a high temperature solid state method. The luminescence properties of the phosphors were studied systematically. A significant spectra overlap between the emission of ZnGa2O4 and the absorption of Cr3+ was observed and 300 nm excitation exhibited the most excellent long-lasting luminescence properties among the three main excitation bands. Luminescence intensity was changed with the ratio of Ga3+/Cr3+ and the blue host emission of ZnGa2O4 was suppressed when doping Cr3+ into ZnGa2O4. The fluorescence decay curves of blue emission of ZnGa2O4 with different Cr3+ doping concentrations indicated that the lifetime of ZnGa2O4 at 505 nm become shorter with the increase of the Cr3+ concentration. Herein, a possible mechanism of long-lasting luminescence in ZnGa2O4: Cr3+ was proposed that the NIR long-lasting luminescence in ZnGa2O4: Cr3+ comes from the persistent energy transfer from ZnGa2O4 to Cr3+.

  9. Influence of thermal stress on the relative permittivity of the AlGaN barrier layer in an AlGaN/GaN heterostructure Schottky contacts

    NASA Astrophysics Data System (ADS)

    Lü, Yuan-Jie; Lin, Zhao-Jun; Zhang, Yu; Meng, Ling-Guo; Cao, Zhi-Fang; Luan, Chong-Biao; Chen, Hong; Wang, Zhan-Guo

    2011-09-01

    Ni Schottky contacts on AlGaN/GaN heterostructures were fabricated. Some samples were thermally treated in a furnace with N2 ambience at 600 °C for different times (0.5 h, 4.5 h, 10.5 h, 18 h, 33 h, 48 h, and 72 h), the others were thermally treated for 0.5 h at different temperatures (500 °C, 600 °C, 700 °C, and 800 °C). With the measured current—voltage (I—V) and capacitance—voltage (C—V) curves and by self-consistently solving Schrodinger's and Poisson's equations, we found that the relative permittivity of the AlGaN barrier layer was related to the piezoelectric and the spontaneous polarization of the AlGaN barrier layer. The relative permittivity was in proportion to the strain of the AlGaN barrier layer. The relative permittivity and the strain reduced with the increased thermal stress time until the AlGaN barrier totally relaxed (after 18 h at 600 °C in the current study), and then the relative permittivity was almost a constant with the increased thermal stress time. When the sample was treated at 800 °C for 0.5 h, the relative permittivity was less than the constant due to the huge diffusion of the contact metal atoms. Considering the relation between the relative permittivity of the AlGaN barrier layer and the converse piezoelectric effect, the conclusion can be made that a moderate thermal stress can restrain the converse piezoelectric effect and can improve the stability of AlGaN/GaN heterostructure devices.

  10. Room-Temperature Photocurrent Spectroscopy of GaAs/GaAlAs Multiple Quantum Wells,

    DTIC Science & Technology

    1994-11-15

    Hailong , Wang Qiuning, et al. DO..... ... . .I C- DTIC ~ELECTIEE 199|11O9034 19950109 034Ditiuinnlmed NAIC- ID(RS)T-0385-94 AOSSI.O •z [ A Si8 eol1Y de...MULTIPLE QUANTUM WELLS 5y: Duan Hailong , Wang Qiuning, et al. English pages: 12 Source: Bandaoti Xuebao, Vol. 12, Nr. 7, July 1991, pp. 399-4O4...TEMPERATURE PHOTOCURRENT SPECTROSCOPY OF GaAs/GaAlAs MULTIPLE QUANTUM WELLS DUAN HAILONG , WANG QIUNING, WU RONGHAN, ZENG YIPING and KONG MEIYING

  11. Device Performance and Reliability Improvements of AlGaBN/GaN/Si MOSFET

    DTIC Science & Technology

    2016-02-04

    states of nitrogen clearly, the N 1s and Ga LMM spectra after annealing and after 20 cycles of PEALD Al2O3 are shown in Fig. 1.2 (b). There is no evidence...SUPPLEMENTARY NOTES 14. ABSTRACT A half cycle study of plasma enhanced atomic layer deposited (PEALD) Al2O3 on AlGaN is investigated using in situ X-ray...Dec-2015 Executive Summary This program provided a follow-on extension to FA2386-11-1-4077. A half cycle study of plasma enhanced atomic layer

  12. InAlN/AlN/GaN heterostructures for high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Usov, S. O.; Sakharov, A. V.; Tsatsulnikov, A. F.; Lundin, V. W.; Zavarin, E. E.; Nikolaev, A. E.; Yagovkina, M. A.; Zemlyakov, V. E.; Egorkin, V. I.; Ustinov, V. M.

    2016-08-01

    The results of development of InAlN/AlN/GaN heterostructures, grown on sapphire substrates by metal-organic chemical vapour deposition, and high electron mobility transistors (HEMTs) based on them are presented. The dependencies of the InAlN/AlN/GaN heterostructure properties on epitaxial growth conditions were investigated. The optimal indium content and InAlN barrier layer thicknesses of the heterostructures for HEMT s were determined. The possibility to improve the characteristics of HEMTs by in-situ passivation by Si3N4 thin protective layer deposited in the same epitaxial process was demonstrated. The InAlN/AlN/GaN heterostructure grown on sapphire substrate with diameter of 100 mm were obtained with sufficiently uniform distribution of sheet resistance. The HEMTs with saturation current of 1600 mA/mm and transconductance of 230 mS/mm are demonstrated.

  13. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice.

    PubMed

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-14

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  14. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  15. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    PubMed Central

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-01-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN. PMID:28290480

  16. Height stabilization of GaSb/GaAs quantum dots by Al-rich capping

    SciTech Connect

    Smakman, E. P. Koenraad, P. M.; DeJarld, M.; Martin, A. J.; Millunchick, J.; Luengo-Kovac, M.; Sih, V.

    2014-09-01

    GaSb quantum dots (QDs) in a GaAs matrix are investigated with cross-sectional scanning tunneling microscopy (X-STM) and photoluminescence (PL). We observe that Al-rich capping materials prevent destabilization of the nanostructures during the capping stage of the molecular beam epitaxy (MBE) growth process and thus preserves the QD height. However, the strain induced by the absence of destabilization causes many structural defects to appear around the preserved QDs. These defects originate from misfit dislocations near the GaSb/GaAs interface and extend into the capping layer as stacking faults. The lack of a red shift in the QD PL suggests that the preserved dots do not contribute to the emission spectra. We suggest that a better control over the emission wavelength and an increase of the PL intensity is attainable by growing smaller QDs with an Al-rich overgrowth.

  17. High absorption efficiency of AlGaAs/GaAs superlattice solar cells

    NASA Astrophysics Data System (ADS)

    Nishinaga, Jiro; Kawaharazuka, Atsushi; Horikoshi, Yoshiji

    2015-05-01

    The effects of excitonic absorption on the solar cell efficiency have been investigated in solar cells with AlGaAs/GaAs superlattice absorption layers. Numerical calculations reveal that excitonic absorption considerably enhances the overall absorption coefficient. The excitonic absorption shows strong peaks at the absorption edge and in the energy region above the band gap. Absorption enhancement is also achieved in the AlGaAs/GaAs superlattice. The measured quantum efficiency spectra of superlattice solar cells at room temperature are reasonably well reproduced by simulations taking excitonic effects into account. The superlattice solar cells are confirmed to have a high absorbance and good temperature stability. The theoretical analysis of the experimental results confirms that the enhanced excitonic absorption in the superlattice absorption layers survives even at 100 °C, which is considered as the actual device temperature under realistic device operations.

  18. Composition profiling of GaAs/AlGaAs quantum dots grown by droplet epitaxy

    SciTech Connect

    Bocquel, J.; Koenraad, P. M.; Giddings, A. D.; Prosa, T. J.; Larson, D. J.; Mano, T.

    2014-10-13

    Droplet epitaxy (DE) is a growth method which can create III-V quantum dots (QDs) whose optoelectronic properties can be accurately controlled through the crystallisation conditions. In this work, GaAs/AlGaAs DE-QDs have been analyzed with the complimentary techniques of cross-sectional scanning tunneling microscopy and atom probe tomography. Structural details and a quantitative chemical analysis of QDs of different sizes are obtained. Most QDs were found to be pure GaAs, while a small proportion exhibited high intermixing caused by a local etching process. Large QDs with a high aspect ratio were observed to have an Al-rich crown above the GaAs QD. This structure is attributed to differences in mobility of the cations during the capping phase of the DE growth.

  19. A highly selective, chlorofluorocarbon-free GaAs on AlGaAs etch

    SciTech Connect

    Smith, L.E. . Solid State Technology Center)

    1993-07-01

    A highly selective reactive ion etching process using SiCl[sub 4], CF[sub 4], O[sub 2], and He is reported. The selectivity of the etch, which is adjustable, ranges from 308:1 to 428:1 for GaAs to Al[sub 0.11]Ga[sub 0.89]As. This variability in selectivity is achieved by adjusting the helium flow rate. One very attractive feature of this etch is that it uses no chlorofluorocarbons and therefore complies with future bans on these substances imposed at both federal and corporate levels. The etch is demonstrated on a GaAs field effect transistor structure with an underlying Al[sub 0.11]Ga[sub 0.89]As stop-etch layer. The etch can be used for both anisotropic and isotropic applications.

  20. Infrared radiation transmission through GaAs/AlGaAs quantum well infrared photodetector

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Bagge, S.; Gustavsson, M.; Haglund, Å.; Willander, M.; Li, Na; Li, Ning; Lu, W.; Liu, X. Q.; Yuan, X. Z.; Li, Z. F.; Dou, H. F.; Shen, S. C.

    2001-04-01

    This paper discusses experimental and theoretical studies of the efficiency of optical coupling in GaAs/AlGaAs multiple-quantum-well-infrared photodetectors (QWIPs) via optical diffraction grating. Optical responsivity has been studied to compare the effectiveness of different grating structures fabricated by chemical wet and reactive ion etching (RIE) methods. By the unique measurement of infrared radiation transmission spectrum of the QWIP system, we have clearly demonstrated the optical interference effect in the GaAs/ AlGaAs active MQW layer and the potential utilization of the interference effect in designing and optimizing QWIP systems has been discussed. An optical grating processed by the RIE technique is advantageous due to its accurate control over the feature size of optical apertures.

  1. Stresses in Selectively Oxidized GaAs/(AlGa){sub x}O{sub y} Structures

    SciTech Connect

    Blokhin, S.A.; Smirnov, A.N.; Sakharov, A.V.; Gladyshev, A.G.; Kryzhanovskaya, N.V.; Maleev, N.A.; Zhukov, A.E.; Semenova, E.S.; Bedarev, D.A.; Nikitina, E.V.; Kulagina, M.M.; Maksimov, M.V.; Ledentsov, N.N.; Ustinov, V.M.

    2005-07-15

    Raman scattering spectroscopy is used to study the process of selective oxidation of Al{sub 0.97}Ga{sub 0.03}As layers. Stresses arising in GaAs/(AlGa){sub x}O{sub y} layers as a result of selective oxidation under different conditions are determined. The effects of local heating of the samples with laser radiation during measurements of the Raman signals, photoresist hardening resulting from the oxidation, and overoxidation are analyzed. The instrumentation and method of selective oxidation are optimized; as a result, arrays of vertical-cavity surface-emitting lasers are fabricated. The active region of these lasers is based on two InGaAs quantum wells with top oxidized and bottom semiconductor distributed Bragg reflectors.

  2. Theoretical study of electrolyte gate AlGaN /GaN field effect transistors

    NASA Astrophysics Data System (ADS)

    Bayer, M.; Uhl, C.; Vogl, P.

    2005-02-01

    We predict the sensitivity of solution gate AlGaN /GaN field effect transistors to pH values of the electrolyte and to charged adsorbates at the semiconductor-electrolyte interface. Invoking the site-binding model for the chemical reactions at the oxidic semiconductor-electrolyte interface and taking into account the large polarization fields within the nitride heterostructure, the spatial charge and potential distribution have been calculated self-consistently both in the semiconductor and the electrolyte. In addition, the source-drain current is calculated and its sensitivity to the electrolyte's pH value is studied systematically. Comparison with experiment shows good agreement. A significantly enhanced resolution is predicted for AlGaN /GaN structures of N-face polarity.

  3. Fabrication and characterization of an undoped GaAs/AlGaAs quantum dot device

    SciTech Connect

    Li, Hai-Ou; Cao, Gang; Xiao, Ming You, Jie; Wei, Da; Tu, Tao; Guo, Guang-Can; Guo, Guo-Ping; Jiang, Hong-Wen

    2014-11-07

    We demonstrate the development of a double quantum dot with an integrated charge sensor fabricated in undoped GaAs/AlGaAs heterostructures using a double top-gated design. Based on the evaluation of the integrated charge sensor, the double quantum dot can be tuned to a few-electron region. Additionally, the inter-dot coupling of the double quantum dot can be tuned to a large extent according to the voltage on the middle gate. The quantum dot is shown to be tunable from a single dot to a well-isolated double dot. To assess the stability of such design, the potential fluctuation induced by 1/f noise was measured. Based on the findings herein, the quantum dot design developed in the undoped GaAs/AlGaAs semiconductor shows potential for the future exploitation of nano-devices.

  4. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    SciTech Connect

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T.; Martinez, Julio A.

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  5. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    DOE PAGES

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; ...

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN coremore » of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.« less

  6. AlGaAs-GaAs quantum-well lasers for direct solar photopumping

    NASA Technical Reports Server (NTRS)

    Unnikrishnan, Sreenath; Anderson, Neal G.

    1991-01-01

    The paper theoretically examines the solar power requirements for low-threshold AlGaAs-GaAs quantum-well lasers directly photopumped by focused sunlight. A model of separate-confinement quantum-well-heterostructure (SCQWH) lasers was developed, which explicitly treats absorption and transport phenomena relevant to solar pumping. The model was used to identify separate-confinement single-quantum-well laser structures which should operate at photoexcitation intensities of less than 10,000 suns.

  7. Room temperature spin diffusion in (110) GaAs/AlGaAs quantum wells

    PubMed Central

    2011-01-01

    Transient spin grating experiments are used to investigate the electron spin diffusion in intrinsic (110) GaAs/AlGaAs multiple quantum well at room temperature. The measured spin diffusion length of optically excited electrons is about 4 μm at low spin density. Increasing the carrier density yields both a decrease of the spin relaxation time and the spin diffusion coefficient Ds. PMID:21711662

  8. Electrical tunability of infrared detectors using compositionally asymmetric GaAs/AlGaAs multiquantum wells

    NASA Astrophysics Data System (ADS)

    Martinet, E.; Luc, F.; Rosencher, E.; Bois, Ph.; Delaitre, S.

    1992-02-01

    For the first time, an electrically tunable infrared photoconductor is made with GaAs/AlGaAs asymmetric step multiquantum wells, using the linear Stark shift of the intersubband transition. An applied electric field excursion of +/- 40 kV/cm is sufficient to shift the peak responsivity wavelength from 8.5 to 13.5 micron. The photoresponse tunability is studied by comparing photocurrent and absorption spectra for different applied electric fields.

  9. Nanoscale conductive pattern of the homoepitaxial AlGaN/GaN transistor.

    PubMed

    Pérez-Tomás, A; Catalàn, G; Fontserè, A; Iglesias, V; Chen, H; Gammon, P M; Jennings, M R; Thomas, M; Fisher, C A; Sharma, Y K; Placidi, M; Chmielowska, M; Chenot, S; Porti, M; Nafría, M; Cordier, Y

    2015-03-20

    The gallium nitride (GaN)-based buffer/barrier mode of growth and morphology, the transistor electrical response (25-310 °C) and the nanoscale pattern of a homoepitaxial AlGaN/GaN high electron mobility transistor (HEMT) have been investigated at the micro and nanoscale. The low channel sheet resistance and the enhanced heat dissipation allow a highly conductive HEMT transistor (Ids > 1 A mm(-1)) to be defined (0.5 A mm(-1) at 300 °C). The vertical breakdown voltage has been determined to be ∼850 V with the vertical drain-bulk (or gate-bulk) current following the hopping mechanism, with an activation energy of 350 meV. The conductive atomic force microscopy nanoscale current pattern does not unequivocally follow the molecular beam epitaxy AlGaN/GaN morphology but it suggests that the FS-GaN substrate presents a series of preferential conductive spots (conductive patches). Both the estimated patches density and the apparent random distribution appear to correlate with the edge-pit dislocations observed via cathodoluminescence. The sub-surface edge-pit dislocations originating in the FS-GaN substrate result in barrier height inhomogeneity within the HEMT Schottky gate producing a subthreshold current.

  10. High temperature properties of GaAlAs/GaAs heteroface solar cells

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Conway, E. J.; Hong, K. H.; Heinbockel, J. H.

    1980-01-01

    The properties of p-GaAlAs/p-GaAs/n-GaAs heteroface solar cells were determined in the temperature range from 25 C to 350 C. Illumination air mass zero (AM0) current-voltage measurements show that the short circuit current increases as a function of temperature up to 210 C and then decreases up to 350 C. The open circuit voltage and fill factor decrease linearly with increasing temperature. The spectral response shifts toward higher wavelengths with increasing temperature.

  11. Stimulated emission from an InGaAs/GaAs/AlGaAs heterostructure grown on a Si substrate

    NASA Astrophysics Data System (ADS)

    Aleshkin, V. Ya.; Dikareva, N. V.; Dubinov, A. A.; Denisov, S. A.; Krasil'nik, Z. F.; Kudryavtsev, K. E.; Matveev, S. A.; Nekorkin, S. M.; Shengurov, V. G.

    2015-02-01

    High-perfection artificial Ge/Si substrates are created by hot-wire chemical-vapor deposition, and InGaAs/GaAs/AlGaAs quantum-well heterostructures are grown on these substrates by metalorganic chemical-vapor deposition. Photoluminescence spectra of these heterostructures are investigated. Stimulated emission in the near-infrared spectral range under optical pumping is observed. Threshold pump powers for the onset of stimulated emission are determined and the variation of the emission spectra with the optical-pump power is examined.

  12. Local stress-induced effects on AlGaAs/AlOx oxidation front shape

    SciTech Connect

    Chouchane, F.; Almuneau, G. Arnoult, A.; Lacoste, G.; Fontaine, C.; Cherkashin, N.

    2014-07-28

    The lateral oxidation of thick AlGaAs layers (>500 nm) is studied. An uncommon shape of the oxide tip is evidenced and attributed to the embedded stress distribution, inherent to the oxidation reaction. Experimental and numerical studies of the internal strain in oxidized Al{sub x}Ga{sub 1−x}As/GaAs structures were carried out by dark-field electron holography and finite element methods. A mapping of the strain distribution around the AlGaAs/oxide interface demonstrates the main role of internal stress on the shaping of the oxide front. These results demonstrate the high relevance of strain in oxide-confined III-V devices, in particular, with over-500-nm thick AlOx confinement layers.

  13. Performance improvement of GaN-based near-UV LEDs with InGaN/AlGaN superlattices strain relief layer and AlGaN barrier

    NASA Astrophysics Data System (ADS)

    Jia, Chuanyu; Yu, Tongjun; Feng, Xiaohui; Wang, Kun; Zhang, Guoyi

    2016-09-01

    The carrier confinement effect and piezoelectric field-induced quantum-confined stark effect of different GaN-based near-UV LED samples from 395 nm to 410 nm emission peak wavelength were investigated theoretically and experimentally. It is found that near-UV LEDs with InGaN/AlGaN multiple quantum wells (MQWs) active region have higher output power than those with InGaN/GaN MQWs for better carrier confinement effect. However, as emission peak wavelength is longer than 406 nm, the output power of the near-UV LEDs with AlGaN barrier is lower than that of the LEDs with GaN barrier due to more serious spatial separation of electrons and holes induced by the increase of piezoelectric field. The N-doped InGaN/AlGaN superlattices (SLs) were adopted as a strain relief layer (SRL) between n-GaN and MQWs in order to suppress the polarization field. It is demonstrated the output power of near-UV LEDs is increased obviously by using SLs SRL and AlGaN barrier for the discussed emission wavelength range. Besides, the forward voltage of near-UV LEDs with InGaN/AlGaN SLs SRL is lower than that of near-UV LEDs without SRL.

  14. High efficient radiation stable AlGaAs/GaAs solar cells with internal Bragg reflector

    NASA Technical Reports Server (NTRS)

    Andreev, V. M.; Kalinovsky, V. S.; Komin, V. V.; Kochnev, I. V.; Lantratov, V. M.; Shvarts, M. Z.

    1995-01-01

    An investigation of solar cells based on AlGaAs/GaAs heterostructures with an internal Bragg reflector as the back-surface reflector is presented. The Bragg reflector is grown by low pressure metalorganic chemical vapor deposition on n-GaAs substrates in a horizontal resistively heated reactor. The Bragg reflector with its maximum reflectance centered at a wavelength of 860 nm consists of 12 pairs of AlAs/GaAs layers. The resulting Bragg reflector has a thickness of 0.072 micrometers for AlAs and 0.059 micrometers for GaAs. The multi-layered quasi-dielectric stack selectively reflects weakly absorbed photons with energies near to the GaAs band gap for a second pass through the photoactive region, thus increasing the photocurrent. The use of the Bragg reflector allows the external quantum efficiency to be increased in the long wavelength of the spectrum. The use of the Bragg reflector and an antireflective coating and prismatic cover allowed an efficiency of 23.4 percent to be obtained.

  15. Contactless Mobility, Carrier Density, and Sheet Resistance Measurements on Si, GaN, and AlGaN/GaN High Electron Mobility Transistor (HEMT) Wafers

    DTIC Science & Technology

    2015-02-01

    structures grown on SiC substrates; and an unintentionally doped (UID) GaN on sapphire template. 15. SUBJECT TERMS Hall effect, high electron mobility...2. Experiment 2 3. Results 4 3.1 Standard n-type Si Sample 4 3.2 AlGaN/GaN HEMTs on SiC Sample Series 5 3.3 Si and UID GaN on Sapphire Pieces 12...AlGaN/GaN high electron mobility transistors (HEMTs) grown on SiC substrates, an unintentionally doped (UID) GaN epi layer on a sapphire substrate

  16. Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires

    SciTech Connect

    Baird, Lee; Ong, C. P.; Cole, R. Adam; Haegel, N. M.; Talin, A. Alec; Li, Qiming; Wang, George T.

    2011-03-28

    Minority carrier diffusion lengths Ld are calculated for GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires using a procedure based on imaging of recombination luminescence. The result of shell material on conveyance properties is recorded. An AlGaN shell produces Ld values in surplus of 1μm and a relative insensitivity to wire diameter. An InGaN shell reduces effective diffusion length, while a dependence of Ld on diameter is observed for unshielded nanowires.

  17. Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating

    NASA Astrophysics Data System (ADS)

    Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong

    2017-03-01

    The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating < the stainless steel with Al-Si coating < the stainless steel without any coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.

  18. Luminescence Properties of GaN:Tb, GaN/AlGaN:Eu Superlattice, and AlN:Tb and Eu.

    NASA Astrophysics Data System (ADS)

    Lozykowski, H. J.; Jadwisienczak, W. M.; Brown, I. G.

    2001-03-01

    We report on recent progress in the investigation of cathodoluminescence (CL) of GaN doped with Tb, the visible photoluminescence (PL) and CL of GaN and Al_0.14Ga_0.86N /GaN superlattice doped with Eu, and the CL from AlN doped with Eu and Tb. The CL of GaN:Tb shows sharp emission lines corresponding to Tb^3+ ions transitions resolved in the spectral range from 350 nm to 750 nm, and observed over the temperature range of 7 - 330 K. The luminescence exhibits transitions which originate in the ^5D3 and ^5D4 levels and terminate in the ^7F manifolds. The depth resolved CL spectra analysis show a luminescence surface dead layer thickness of ~20 nm. The decay times for ^5D_3-->^7F5 (423.4nm) and ^5D_4-->^7F5 (551.6nm) transitions at 7 K are ~0.7 and ~1.8 ms, with little change with temperature. The visible PL and CL of GaN and Al_0.14Ga_0.86N/GaN superlattice doped with Eu ions, show sharp characteristic emission lines corresponding to Eu^3+ intra-4f^6-shell transitions. The luminescence shows dominant ^5D_0-->^7F_1,2,3 and weaker ^5D_0-->^7F_4,5,6 and ^5D_1-->^7F1 transitions. The intensity of Eu emission from Al_0.14Ga_0.86N/GaN superlattice annealed in N2 is ~58% stronger than from Eu in the GaN epilayer. Strong CL was observed from AlN thin single crystal films doped with Eu^3+ and Tb^3+ ions. The space group symmetry of the wurtzite AlN is C-P6_3mc and the Al cation occupies the site of point group symmetry C_3v. We assume that those implanted RE ions in AlN occupy relaxed substitutional Al-sites with hexagonal C_3v crystal symmetry. Emission lines corresponding to Eu^3+ and Tb^3+ intra-4f^n-shell transitions are resolved in the spectral range from 300 to 900 nm. The CL kinetics for several transitions of Eu^3+ (^5D_0), Tb^3+ (^5D_3,4) were analyzed. (Electronic mail: lozykows/@bobcat.ent.ohiou.edu)

  19. Optical and electron paramagnetic resonance studies of Cr doped Ga{sub 2}O{sub 3} nanoparticles

    SciTech Connect

    Popa, A. Toloman, D.; Stan, M.; Silipas, T. D.; Biris, A. R.

    2015-12-23

    In the present work we report the experimental results obtained on Ga{sub 2}O{sub 3} nanoparticles doped with Cr ions. X-ray diffraction analysis confirms the substitution of Ga ions with Cr ions. A secondary phase of Cr{sub 2}O{sub 5} oxides was evidence at high doping Cr concentration by Raman spectroscopy. Different valence state of Cr ions was highlighted by UV-VIS spectroscopy. EPR spectroscopy data show the presence of different environments for Cr ions, depending on the Cr addition.

  20. GaAs/AlGaAs quantum wells with indirect-gap AlGaAs barriers for solar cell applications

    SciTech Connect

    Noda, T. Otto, L. M.; Elborg, M.; Jo, M.; Mano, T.; Kawazu, T.; Han, L.; Sakaki, H.

    2014-03-24

    We have fabricated GaAs/AlGaAs quantum well (QW) solar cells in which 3 nm-thick QWs and indirect-gap Al{sub 0.78}Ga{sub 0.22}As barriers are embedded, and we studied extraction processes of photogenerated carriers in this QW system. The photocurrent under 700 nm light illumination at voltages close to the open-circuit voltage shows only a small reduction, indicating that the carrier recombination inside QWs is largely suppressed. We attribute this result to an efficient extraction of electrons from the QWs through the X-valley of AlGaAs. The insertion of QWs is shown to be effective in extending the absorption wavelengths and in enhancing the photocurrent. The use of indirect-gap materials as barriers is found to enhance carrier extraction processes, and result in an improved performance of QW solar cells.

  1. Enhanced output power of GaN-based LEDs with embedded AlGaN pyramidal shells.

    PubMed

    Tu, Shang-Ju; Sheu, Jinn-Kong; Lee, Ming-Lun; Yang, Chih-Ciao; Chang, Kuo-Hua; Yeh, Yu-Hsiang; Huang, Feng-Wen; Lai, Wei-Chih

    2011-06-20

    In this article, the characteristics of GaN-based LEDs grown on Ar-implanted GaN templates to form inverted Al0.27Ga0.83N pyramidal shells beneath an active layer were investigated. GaN-based epitaxial layers grown on the selective Ar-implanted regions had lower growth rates compared with those grown on the implantation-free regions. This resulted in selective growth, and formation of V-shaped concaves in the epitaxial layers. Accordingly, the inverted Al0.27Ga0.83N pyramidal shells were formed after the Al0.27Ga0.83N and GaN layers were subsequently grown on the V-shaped concaves. The experimental results indicate that the light-output power of LEDs with inverted AlGaN pyramidal shells was higher than those of conventional LEDs. With a 20 mA current injection, the output power was enhanced by 10% when the LEDs were embedded with inverted Al0.27Ga0.83N pyramidal shells. The enhancement in output power was primarily due to the light scattering at the Al0.27Ga0.83N/GaN interface, which leads to a higher escape probability for the photons, that is, light-extraction efficiency. Based on the ray tracing simulation, the output power of LEDs grown on Ar-implanted GaN templates can be enhanced by over 20% compared with the LEDs without the embedded AlGaN pyramidal shells, if the AlGaN layers were replaced by Al0.5Ga0.5N layers.

  2. Tetragonal magnetostriction and magnetoelastic coupling in Fe-Al, Fe-Ga, Fe-Ge, Fe-Si, Fe-Ga-Al, and Fe-Ga-Ge alloys

    NASA Astrophysics Data System (ADS)

    Restorff, J. B.; Wun-Fogle, M.; Hathaway, K. B.; Clark, A. E.; Lograsso, T. A.; Petculescu, G.

    2012-01-01

    This paper presents a comparative study on the tetragonal magnetostriction constant, λγ,2, [ = (3/2)λ100] and magnetoelastic coupling, b1, of binary Fe100-xZx (0 < x < 35, Z = Al, Ga, Ge, and Si) and ternary Fe-Ga-Al and Fe-Ga-Ge alloys. The quantities are corrected for magnetostrains due to sample geometry (the magnetostrictive form effect). Recently published elastic constant data along with magnetization measurements at both room temperature and 77 K make these corrections possible. The form effect correction lowers the magnetostriction by ˜10 ppm for high-modulus alloys and by as much as 30 ppm for low-modulus alloys. The elastic constants are also used to determine the values of the magnetoelastic coupling constant, b1. With the new magnetostriction data on the Fe-Al-Ga alloy, it is possible to show how the double peak magnetostriction feature of the binary Fe-Ga alloy flows into the single peak binary Fe-Al alloy. The corrected magnetostriction and magnetoelastic coupling data for the various alloys are also compared using the electron-per-atom ratio, e/a, as the common variable. The Hume-Rothery rules link the e/a ratio to the regions of phase stability, which appear to be intimately related to the magnetostriction versus the solute concentration curve in these alloys. Using e/a as the abscissa tends to align the peaks in the magnetostriction and magnetoelastic coupling for the Fe-Ga, Fe-Ge, Fe-Al, Fe-Ga-Al, and Fe-Ga-Ge alloys, but not for the Fe-Si alloys for which the larger atomic size difference may play a greater role in phase stabilization. Corrections for the form effect are also presented for the rhombohedral magnetostriction, λɛ,2, and the magnetoelastic coupling, b2, of Fe100-xGax (0 < x < 35) alloys.

  3. Pseudo-square AlGaN/GaN quantum wells for terahertz absorption

    NASA Astrophysics Data System (ADS)

    Beeler, M.; Bougerol, C.; Bellet-Amalric, E.; Monroy, E.

    2014-09-01

    THz intersubband transitions are reported down to 160 μm within AlGaN/GaN heterostructures following a 4-layer quantum well design. In such a geometry, the compensation of the polarization-induced internal electric field is obtained through creating a gradual increase in polarization field throughout the quantum "trough" generated by three low-Al-content layers. The intersubband transitions show tunable absorption with respect to doping level as well as geometrical variations which can be regulated from 53 to 160 μm. They also exhibit tunnel-friendly designs which can be easily integrated into existing intersubband device architectures.

  4. Enhanced sheet carrier densities in polarization controlled AlInN/AlN/GaN/InGaN field-effect transistor on Si (111)

    SciTech Connect

    Hennig, J. Dadgar, A.; Witte, H.; Bläsing, J.; Lesnik, A.; Strittmatter, A.; Krost, A.

    2015-07-15

    We report on GaN based field-effect transistor (FET) structures exhibiting sheet carrier densities of n = 2.9 10{sup 13} cm{sup −2} for high-power transistor applications. By grading the indium-content of InGaN layers grown prior to a conventional GaN/AlN/AlInN FET structure control of the channel width at the GaN/AlN interface is obtained. The composition of the InGaN layer was graded from nominally x{sub In} = 30 % to pure GaN just below the AlN/AlInN interface. Simulations reveal the impact of the additional InGaN layer on the potential well width which controls the sheet carrier density within the channel region of the devices. Benchmarking the In{sub x}Ga{sub 1−x}N/GaN/AlN/Al{sub 0.87}In{sub 0.13}N based FETs against GaN/AlN/AlInN FET reference structures we found increased maximum current densities of I{sub SD} = 1300 mA/mm (560 mA/mm). In addition, the InGaN layer helps to achieve broader transconductance profiles as well as reduced leakage currents.

  5. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  6. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids have been observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. It was postulated that the voids resulted from an excess number of oxygen vacancies near the oxide-metal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidations of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al,Cr)2O3 and Ni(Al,Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationships between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  7. Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe-Ga alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu

    2017-02-01

    Alloys of Fe82Ga18-xAlx (x=0, 4.5, 6, 9, 12, 13.5) were prepared by directional solidification technique and exhibited a <001> preferred orientation along the axis of alloy rods. The saturation magnetostriction value of the Fe82Ga13.5Al4.5 alloy was 247 ppm under no pre-stress. The tensile properties of alloys of Fe82Ga18-xAlx at room temperature were investigated. The results showed that tensile ductility of binary Fe-Ga alloy was significantly improved with Al addition. The fracture elongation of the Fe82Ga18 alloy was only 1.3%, while that of the Fe82Ga9Al9 alloy increased up to 16.5%. Addition of Al increased the strength of grain boundary and cleavage, resulting in the enhancement of tensile ductility of the Fe-Ga-Al alloys. Analysis of deformation microstructure showed that a great number of deformation twins formed in the Fe-Ga-Al alloys, which were thought to be the source of serrated yielding in the stress-strain curves. The effect of Al content in the Fe-Ga-Al alloys on tensile ductility was also studied by the analysis of deformation twins. It indicated that the joint effect of slip and twinning was beneficial to obtain the best ductility in the Fe82Ga9Al9 alloy.

  8. Bulk modulus and specific heat of B-site doped (La{sub 0.3}Pr{sub 0.7}){sub 0.65}Ca{sub 0.35}Mn{sub 1−x}B{sub x}O{sub 3} (B=Fe, Cr, Ru, Al, Ga)

    SciTech Connect

    Srivastava, Archana; Thakur, Rasna; Gaur, N. K.

    2014-04-24

    Specific heat (C{sub p}) thermal expansion (α) and Bulk modulus (B{sub T}) of lightly doped Rare Earth manganites (La{sub 0.3}Pr{sub 0.7}){sub 0.65}Ca{sub 0.35}Mn{sub 1−x}B{sub x}O{sub 3} (B{sup 3+} = Fe{sup 3+},Cr{sup 3+},Ga{sup 3+},Al{sup 3+},Ru4+); (0.3

  9. Electron and proton degradation in /AlGa/As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R.; Knechtli, R. C.; Kamath, G. S.; Goldhammer, L.; Anspaugh, B.

    1978-01-01

    Results on radiation damage in (AlGa)As-GaAs solar cells by 1 MeV electron fluences up to 10 to the 16th electrons/sq cm and by 15, 20, 30 and 40 MeV proton fluences up to 5 times 10 to the 11th protons/sq cm are presented. The damage is compared with data on state-of-the-art silicon cells which were irradiated along with the gallium arsenide cells. The theoretical expectation that the junction depth has to be kept relatively shallow, to minimize radiation damage has been verified experimentally. The damage to the GaAs cells as a function of irradiation, is correlated with the change in their spectral response and dark I-V characteristics. The effect of thermal annealing on the (AlGa)As-GaAs solar cells was also investigated. This data is used to predict further avenues of optimization of the GaAs cells.

  10. Recent advancements in monolithic AlGaAs/GaAs solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Wickham, K. R.; Chung, B.-C.; Klausmeier-Brown, M.; Kuryla, M. S.; Ristow, M. Ladle; Virshup, G. F.; Werthen, J. G.

    1991-01-01

    High efficiency, two terminal, multijunction AlGaAs/GaAs solar cells were reproducibly made with areas of 0.5 sq cm. The multiple layers in the cells were grown by Organo Metallic Vapor Phase Epitaxy (OMVPE) on GaAs substrates in the n-p configuration. The upper AlGaAs cell has a bandgap of 1.93 eV and is connected in series to the lower GaAs cell (1.4 eV) via a metal interconnect deposited during post-growth processing. A prismatic coverglass is installed on top of the cell to reduce obscuration caused by the gridlines. The best 0.5 sq cm cell has a two terminal efficiency of 23.0 pct. at 1 sun, air mass zero (AM0) and 25 C. To date, over 300 of these cells were grown and processed for a manufacturing demonstration. Yield and efficiency data for this demonstration are presented. As a first step toward the goal of a 30 pct. efficient cell, a mechanical stack of the 0.5 sq cm cells described above, and InGaAsP (0.95 eV) solar cells was made. The best two terminal measurement to date yields an efficiency of 25.2 pct. AM0. This is the highest reported efficiency of any two terminal, 1 sun space solar cell.

  11. Finite element analysis of AlGaN/GaN micro-diaphragms with diamond coating

    NASA Astrophysics Data System (ADS)

    Dzuba, J.; Vanko, G.; Vojs, M.; Rýger, I.; Ižák, T.; Jirásek, V.; Kutiš, V.; Lalinský, T.

    2015-05-01

    In this work, we present a pressure sensor based on diamond coated AlGaN/GaN diaphragm with integrated high electron mobility transistor (HEMT). The influence of the diamond film thickness (in the range of 1 μm to 50 μm) on the properties of the AlGaN/GaN diaphragm is studied by finite element simulation method (FEM). The effect of thermal buckling as well as the induced piezoelectric charge of HEMTs as a function of pressure and temperature is investigated. It was found out that diamond coated sensor better prevents the effect known as thermal buckling of the diaphragm at elevated temperature. Thermal buckling of diaphragms with 1, 5, 10 μm diamond coating occurs at temperature 40, 73 and 142 °C, respectively. Compared with original GaN diaphragm, diamond expanded the operational temperature range of the pressure sensor. Moreover, compared with the operational range of pressure sensor based on pure GaN diaphragm (up to 30 kPa), diamond coated modified MEMS sensors withstand relatively higher pressures (2.2 MPa). The maximum load on the diaphragm increased two times by adding only 1 μm of diamond coating.

  12. Device characteristics of the PnP AlGaAs/InGaAsN/GaAs double heterojunction bipolar transistor

    SciTech Connect

    CHANG,PING-CHIH; LI,N.Y.; LAROCHE,J.R.; BACA,ALBERT G.; HOU,H.Q.; REN,F.

    2000-02-09

    The authors have demonstrated a functional PnP double heterojunction bipolar transistor (DHBT) using AlGaAs, InGaAsN, and GaAs. The band alignment between InGaAsN and GaAs has a large {triangle}E{sub C} and a negligible {triangle}E{sub V}, and this unique characteristic is very suitable for PnP DHBT applications. The metalorganic vapor phase epitaxy (MOCVD) grown Al{sub 0.3}Ga{sub 0.7}As/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs PnP DHBT is lattice matched to GaAs and has a peak current gain of 25. Because of the smaller bandgap (Eg = 1.20 eV) of In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} used for the base layer, this device has a low V{sub ON} of 0.79 V, which is 0.25 V lower than in a comparable Pnp AlGaAs/GaAs HBT. And because GaAs is used for the collector, its BV{sub CEO} is 12 V, consistent with BV{sub CEO} of AlGaAs/GaAs HBTs of comparable collector thickness and doping level.

  13. High-quality Ga-rich AlGaN grown on trapezoidal patterned GaN template using super-short period AlN/GaN superlattices for rapid coalescence

    NASA Astrophysics Data System (ADS)

    Xiao, Ming; Zhang, Jincheng; Hao, Yue

    2017-04-01

    High quality crack-free Ga-rich Al26.1Ga73.9N film was grown on trapezoidal patterned GaN template (TPGT) by low-pressure metalorganic chemical vapor deposition. The super-short period AlN/GaN superlattices structure was used to grow AlGaN material instead of the direct growth method. We obtained large lateral to vertical growth rate ratio larger than 4.79. The growth rate of GaN layer was proved to be the decisive factor of the lateral to vertical growth rate ratio. Moreover, for AlGaN growth, we found that that the TPGT is more beneficial to suppression of crack and relaxation of biaxial tensile strain than planar GaN template. The obtained results demonstrate that, comparing with AlGaN grown on planar GaN template, the threading dislocation density in AlGaN grown on TPGT was reduced from 2×109 cm-2 to 2×108 cm-2.

  14. Surface photovoltage spectroscopy of an InGaAs/GaAs/AlGaAs single quantum well laser structure

    NASA Astrophysics Data System (ADS)

    Ashkenasy, N.; Leibovitch, M.; Shapira, Yoram; Pollak, Fred H.; Burnham, G. T.; Wang, X.

    1998-01-01

    An InGaAs/GaAs/AlGaAs single quantum well graded-index-of-refraction separate-confinement hetero-structure laser has been analyzed using surface photovoltage spectroscopy (SPS) in a contactless, nondestructive way at room temperature. Numerical simulation of the resulting spectrum made it possible to extract growth parameters, such as the InGaAs well width, the well and cladding compositions, as well as important electro-optic structure data of this device, including the lasing wavelength and built-in electric field. The results highlight the power of SPS in obtaining performance parameters of actual laser devices, containing two-dimensional structures, in a contactless, nondestructive way.

  15. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    DOE PAGES

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; ...

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and aftermore » BOE exposure.« less

  16. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    SciTech Connect

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; Zhu, Weidi; Kim, Byung-Jae; Le, Lingcong; Ren, Fan; Lind, Aaron G.; Dahl, James; Jones, Kevin S.; Pearton, Stephen J.; Kravchenko, Ivan I.; Zhang, Ming-Lan

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and after BOE exposure.

  17. AlGaN/GaN field effect transistors for power electronics—Effect of finite GaN layer thickness on thermal characteristics

    SciTech Connect

    Hodges, C. Anaya Calvo, J.; Kuball, M.; Stoffels, S.; Marcon, D.

    2013-11-11

    AlGaN/GaN heterostructure field effect transistors with a 150 nm thick GaN channel within stacked Al{sub x}Ga{sub 1−x}N layers were investigated using Raman thermography. By fitting a thermal simulation to the measured temperatures, the thermal conductivity of the GaN channel was determined to be 60 W m{sup −1} K{sup −1}, over 50% less than typical GaN epilayers, causing an increased peak channel temperature. This agrees with a nanoscale model. A low thermal conductivity AlGaN buffer means the GaN spreads heat; its properties are important for device thermal characteristics. When designing power devices with thin GaN layers, as well as electrical considerations, the reduced channel thermal conductivity must be considered.

  18. Modeling of the growth of GaAs–AlGaAs core–shell nanowires

    PubMed Central

    Voorhees, Peter W; Davis, Stephen H

    2017-01-01

    Heterostructured GaAs–AlGaAs core–shell nanowires with have attracted much attention because of their significant advantages and great potential for creating high performance nanophotonics and nanoelectronics. The spontaneous formation of Al-rich stripes along certain crystallographic directions and quantum dots near the apexes of the shell are observed in AlGaAs shells. Controlling the formation of these core–shell heterostructures remains challenging. A two-dimensional model valid on the wire cross section, that accounts for capillarity in the faceted surface limit and deposition has been developed for the evolution of the shell morphology and concentration in AlxGa1− xAs alloys. The model includes a completely faceted shell–vapor interface. The objective is to understand the mechanisms of the formation of the radial heterostructures (Al-rich stripes and Al-poor quantum dots) in the nanowire shell. There are two issues that need to be understood. One is the mechanism responsible for the morphological evolution of the shells. Analysis and simulation results suggest that deposition introduces facets not present on the equilibrium Wulff shapes. A balance between diffusion and deposition yields the small facets with sizes varying slowly over time, which yield stripe structures, whereas deposition-dominated growth can lead to quantum-dot structures observed in experiments. There is no self-limiting facet size in this case. The other issue is the mechanism responsible for the segregation of Al atoms in the shells. It is found that the mobility difference of the atoms on the {112} and {110} facets together determine the non-uniform concentration of the atoms in the shell. In particular, even though the mobility of Al on {110} facets is smaller than that of Ga, Al-rich stripes are predicted to form along the {112} facets when the difference of the mobilities of Al and Ga atoms is sufficiently large on {112} facets. As the size of the shell increases, deposition

  19. Optical characterization of AlN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Ursaki, V. V.; Tiginyanu, I. M.; Zalamai, V. V.; Hubbard, S. M.; Pavlidis, D.

    2003-10-01

    AlN/GaN/sapphire heterostructures with AlN gate film thickness of 3-35 nm are characterized using photoreflectivity (PR) and photoluminescence (PL) spectroscopy. Under a critical AlN film thickness, the luminescence from the GaN channel layer near the interface proves to be excitonic. No luminescence related to the recombination of the two-dimensional electron gas (2DEG) is observed, in spite of high 2DEG parameters indicated by Hall-effect measurements. The increase of the AlN gate film thickness beyond a critical value leads to a sharp decrease in exciton resonance in PR and PL spectra as well as to the emergence of a PL band in the 3.40-3.45 eV spectral range. These findings are explained taking into account the formation of defects in the GaN channel layer as a result of strain-induced AlN film cracking. A model of electronic transitions responsible for the emission band involved is proposed.

  20. Terahertz intersubband absorption in GaN/AlGaN step quantum wells

    NASA Astrophysics Data System (ADS)

    Machhadani, H.; Kotsar, Y.; Sakr, S.; Tchernycheva, M.; Colombelli, R.; Mangeney, J.; Bellet-Amalric, E.; Sarigiannidou, E.; Monroy, E.; Julien, F. H.

    2010-11-01

    We demonstrate terahertz intersubband absorptions at frequencies of 2.1 THz (λ ≈143 μm) and 4.2 THz (λ ≈70 μm) in nitride-based semiconductor quantum wells. The structures consist of a 3 nm thick GaN well, an Al0.05Ga0.95N step barrier, and a 3 nm thick Al0.1Ga0.9N barrier. The absorption is detected at 4.7 K. The structure design has been optimized to approach a flat-band potential in the wells to allow for an intersubband absorption in the terahertz frequency range and to maximize the optical dipole moments.

  1. Phase Separation kinetics in an Fe-Cr-Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Chao, J.

    2012-01-01

    The {alpha}-{alpha}{prime} phase separation kinetics in a commercial Fe-20 wt.% Cr-6 wt.% Al oxide dispersion-strengthened PM 2000{trademark} steel have been characterized with the complementary techniques atom probe tomography and thermoelectric power measurements during isothermal aging at 673, 708, and 748 K for times up to 3600 h. A progressive decrease in the Al content of the Cr-rich {alpha}{prime} phase was observed at 708 and 748 K with increasing time, but no partitioning was observed at 673 K. The variation in the volume fraction of the {alpha}{prime} phase well inside the coarsening regime, along with the Avrami exponent 1.2 and activation energy 264 kJ mol{sup -1}, obtained after fitting the experimental results to an Austin-Rickett type equation, indicates that phase separation in PM 2000{trademark} is a transient coarsening process with overlapping nucleation, growth, and coarsening stages.

  2. Hot corrosion of CoCrAlY alloys

    SciTech Connect

    Hwang, S.Y.

    1989-01-01

    The kinetics and mechanisms of the hot corrosion of CoCrAlY alloys over wide ranges of temperature (600-1000{degree}C) and Pso{sub 3} (10{sup {minus}6}-10{sup {minus}3} atm) were studied. Isothermal and cyclic experiments were performed to study the kinetics, and microstructures were examined by scanning electron microscopy. After interpreting these results, the hot corrosion mechanisms of the CoCrAlY alloys were proposed to explain the observed behavior. The reaction mechanism governing hot corrosion is thought to be as follows. At low temperature (600-800{degree}C), SO{sub 3} and CoO react and form a molten Na{sub 2}SO{sub 4}-CoSO{sub 4} salt mixture. Aluminum diffuses through the alloy, is oxidized, and the alumina which is formed becomes subject to basic fluxing. While alumina is subject to the Rapp-Goto mechanism, chromia may not be subject to this mechanism. Since Co is left behind in the alloy, the basic fluxing of alumina seems to be the cause for formation of nonprotective scales. Sulfides can form during low temperature hot corrosion and considerable sulfide formation is observed at 900-850{degree}C, but the sulfidation process is less likely to be the major cause of LTHC. Also, the sulfite formation mechanism is evaluated, and the activity of aluminum sulfite is found to be too low for this compound to exist. At high temperature (900-1000{degree}C), the CoCrAlY alloy was in the initiation stage due to the formation of protective alumina during isothermal tests. The mode of degradation of the CoCrAlY alloy at 1000{degree}C in pure oxygen during the cyclic tests was basic fluxing of alumina and chromia accompanied by spalling and cracking of oxides.

  3. Magnetic properties of EuCr2Al20

    NASA Astrophysics Data System (ADS)

    Swatek, Przemysław; Kaczorowski, Dariusz

    2016-10-01

    Polycrystalline sample of EuCr2Al20 was studied by means of x-ray powder diffraction, magnetization, electrical resistivity and heat capacity measurements. The compound was found to order antiferromagnetically at TN = 4.8 K due to the magnetic moments carried on divalent of Eu ions. The experimental findings are supported by the results of ab-initio band structure calculations.

  4. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  5. Thermal expansion in Cr:LiSrGaF{sub 6}

    SciTech Connect

    Grzechnik, Andrzej . E-mail: andrzej@wm.lc.ehu.es; Azcona, Zunbeltz Izaola; Bereciartua, Pablo; Friese, Karen; Doyle, Stephen

    2005-11-03

    High-temperature behaviour of LiSrGaF{sub 6} doped with 1.5 at.% of Cr{sup 3+} was studied with high-resolution synchrotron angle-dispersive X-ray powder diffraction in the temperature range 298-539 K. No phase transitions were detected. The origin of negative thermal expansion along the c axis is discussed based on the temperature dependencies of structural parameters and octahedral distortions obtained with the Rietveld method. The SrF{sub 6} slab contracts with increasing temperatures because of the diminishing F-Sr-F octahedral angles without any changes in the F-F octahedral edges not only around strontium but also around lithium and gallium. At the same time, the angular distortions of the SrF{sub 6} octahedra are largely diminished. Such a behaviour is discussed in comparison with the thermal expansion of LiCaAlF{sub 6} and LiSrAlF{sub 6}.

  6. Two-Phase (TiAl+TiCrAl) Coating Alloys for Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialek, James L. (Inventor); Brindley, William J. (Inventor)

    1998-01-01

    A coating for protecting titanium aluminide alloys, including the TiAl gamma + Ti3Al (alpha(sub 2)) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C. is disclosed. This protective coating consists essentially of titanium, aluminum. and chromium in the following approximate atomic ratio: Ti(41.5-34.5)Al(49-53)Cr(9.5-12.5)

  7. Lateral and Vertical Transistors Using the AlGaN/GaN Heterostructure

    SciTech Connect

    Chowdhury, S; Mishra, UK

    2013-10-01

    Power conversion losses are endemic in all areas of electricity consumption, including motion control, lighting, air conditioning, and information technology. Si, the workhorse of the industry, has reached its material limits. Increasingly, the lateral AlGaN/GaN HEMT based on gallium nitride (GaN-on-Si) is becoming the device of choice for medium power electronics as it enables high-power conversion efficiency and reduced form factor at attractive pricing for wide market penetration. The reduced form factor enabled by high-efficiency operation at high frequency further enables significant system price reduction because of savings in bulky extensive passive elements and heat sink costs. The high-power market, however, still remains unaddressed by lateral GaN devices. The current and voltage demand for high power conversion application makes the chip area in a lateral topology so large that it becomes more difficult to manufacture. Vertical GaN devices would play a big role alongside of silicon carbide (SiC) to address the high power conversion needs. In this paper, the development, performance, and status of lateral and vertical GaN devices are discussed.

  8. DLTS characterization of silicon nitride passivated AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Mosca, R.; Gombia, E.; Passaseo, A.; Tasco, V.; Peroni, M.; Romanini, P.

    2004-10-01

    Passivating the ungated surface of AlGaN/GaN HEMTs with silicon nitride (SiN) is effective in improving the microwave output power performances of these devices. However, very little information is available about surface states in GaN-based HEMTs after SiN passivation. In this work we investigate AlGaN/GaN HEMTs structures having either metal-semiconductor or metal-SiN-semiconductor gate contacts. In short gate devices conductance DLTS measurements point out a hole-like peak that shows an anomalous behaviour and can be ascribed to surface states in the access regions of the device. In insulated gate HEMTs a band of levels is detected and ascribed to surface states, whose energy ranges from 0.14 to 0.43 eV. Capacitance-voltage measurements allow us to point out the existence of a second band of interface states deeper in energy than the former one. This band is responsible for slow transients observed in the characteristics of the insulated gate FAT-HEMT.

  9. Integrating AlGaN/GaN high electron mobility transistor with Si: A comparative study of integration schemes

    SciTech Connect

    Mohan, Nagaboopathy; Raghavan, Srinivasan; Manikant,; Soman, Rohith

    2015-10-07

    AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 × 10{sup 9}/cm{sup 2} and <1 nm surface roughness. The 2-D electron gas channels formed at an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600–1900 cm{sup 2}/V s at a carrier concentration of 0.7–0.9 × 10{sup 13}/cm{sup 2}. Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner.

  10. LP-MOCVD growth of GaAlN/GaN heterostructures on silicon carbide: application to HEMT devices

    NASA Astrophysics Data System (ADS)

    di Forte Poisson, M.-A.; Magis, M.; Tordjman, M.; Aubry, R.; Sarazin, N.; Peschang, M.; Morvan, E.; Delage, S. L.; di Persio, J.; Quéré, R.; Grimbert, B.; Hoel, V.; Delos, E.; Ducatteau, D.; Gaquiere, C.

    2004-12-01

    This paper reports on the LP-MOCVD growth optimisation of GaAlN/GaN heterostructures grown on silicon carbide substrates for HEMT applications, and on the first device performances obtained with these structures. The critical impact of some growth parameters on the physical properties of the GaAlN/GaN epilayers has been identified and studied using high-resolution X-ray diffraction, AFM, C-V and sonogauge measurements. SiC substrates from different suppliers were evaluated and their influence on the physical properties of the GaAlN/GaN HEMT structures were investigated. We show that the static characteristics of the devices such as maximum drain current Idss or pinch-off voltage are correlated with the nucleation layer composition ( GaN or GaAlN) of the HEMT structure and with the defect density of the SiC substrate. A maximum drain current Idss around 1 A/mm and a pinch-off voltage of -5 V have been measured for devices with a gate length of 0.3 μm and a GaN nucleation layer, to be compared to an Idss up to 1.3 A/mm obtained for devices with the same geometry but with a GaAlN nucleation layer. I-V characteristics measured under pulsed measurements have also evidenced a clear impact of the nucleation layer composition on the trap density in the GaAlN/GaN HEMT structure. The first devices related to HEMT wafers with GaN nucleation layers were measured at 10 GHz using a load pull system. They show a CW output power in excess of 2.8 W/mm for a gate length of 0.5 μm, while devices related to HEMT wafers with GaAlN nucleation layer exhibit output power up to 4 W/mm at 10 GHz.

  11. AlGaN/GaN power amplifiers for ISM applications

    NASA Astrophysics Data System (ADS)

    Krausse, D.; Benkhelifa, F.; Reiner, R.; Quay, R.; Ambacher, O.

    2012-08-01

    In this paper, we report on the development of an RF high power amplifier, based on normally-on AlGaN/GaN Heterostructure Field-Effect Transistors (HFETs) on semi-insulating SiC substrates. The amplifier is derived from a transistor with a total gate periphery of 120 mm that exhibits a breakdown voltage better than 420 V. The transistor yields pulsed drain current levels of up to 53 A and therefore is found suitable for the ISM frequency band (industrial, scientific, medical) power applications at 13.56 MHz. The realized amplifier shows good performance in cw mode with an output power of 139 W and an efficiency of 71%, respectively. In pulsed mode, the amplifier exhibits an output power of 431 W for a duty cycle of 10% at a frequency of 13.56 MHz, which emphasizes the high potential of the III-V-compound semiconductor AlGaN/GaN for ISM applications. The comparison of the obtained values with standard silicon based semiconductor devices used for this frequency range furthermore shows the impressive advantages of AlGaN/GaN based devices for parameters like current density and power density that are at least by a factor of 10 higher. In a next step, the ruggedness of the realized amplifier was investigated. Operating the amplifier up to a VSWR of more than 15:1, no damage was observed. The junction temperature during VSWR mismatch was calculated to be more than 249 °C.

  12. Structure and wear behavior of AlCrSiN-based coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Du, Hao; Chen, Ming; Yang, Jun; Xiong, Ji; Zhao, Haibo

    2016-05-01

    AlCrN, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings have been deposited on high-polished WC-Co cemented carbide substrate and tools by mid-frequency magnetron sputtering in Ar/N2 mixtures. Al0.6Cr0.4, Al0.6Cr0.3Si0.1, and C/Mo/Nb targets were used during the deposition. The microstructure and mechanical properties of as-deposited coatings were investigated. Investigations of the wear behaviors of coated tools were also performed. The results showed that cubic structure was formed in the coatings. Broader CrAlN (1 1 1) and (2 0 0) peaks without SiNx peak were formed in the AlCrSiN/MexN coatings, which showed a nanocomposited structure. Meanwhile, according to SEM micrographs, AlCrN exhibited a columnar structure, while, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings showed nanocrystalline morphology. The nano-multilayered coatings performed higher hardness, H/E, and H3/E2 ratios compared with AlCrN coating. Through the Rockwell adhesion test, all the coatings exhibited adhesion strength quality HF1. After turning Inconel 718 under dry condition, the nano-multilyered coatings showed better wear resistance than AlCrN coating. Due to the molybdenum and niobium in the coating, AlCrSiN/MoN and AlCrSiN/NbN coatings showed the best wear resistance.

  13. Manipulation of emission energy in GaAs/AlGaAs core-shell nanowires with radial heterostructure

    SciTech Connect

    Barbosa, B. G.; Arakaki, H.; Souza, C. A. de; Pusep, Yu. A.

    2014-03-21

    Photoluminescence was studied in GaAs/AlGaAs nanowires (NWs) with different radial heterostructures. We demonstrated that manipulation of the emission energy may be achieved by appropriate choice of the shell structure. The emission at highest energy is generated in the NWs with tunneling thin AlGaAs inner shell and thin GaAs outer shell due to recombination of the photoexcited electrons confined in the outer shell with the holes in the core. Lower energy emission was shown to occur in the NWs with thick outer shell grown in the form of a short-period GaAs/AlGaAs multiple quantum well structure. In this case, the tunneling probability through the multiple quantum wells controls the energy emitted by the NWs. The doping of core results in dominated low energy emission from the GaAs core.

  14. High-efficiency AlGaAs-GaAs Cassegrainian concentrator cells

    NASA Technical Reports Server (NTRS)

    Werthen, J. G.; Hamaker, H. C.; Virshup, G. F.; Lewis, C. R.; Ford, C. W.

    1985-01-01

    AlGaAs-GaAs heteroface space concentrator solar cells have been fabricated by metalorganic chemical vapor deposition. AMO efficiencies as high as 21.1% have been observed both for p-n and np structures under concentration (90 to 100X) at 25 C. Both cell structures are characterized by high quantum efficiencies and their performances are close to those predicted by a realistic computer model. In agreement with the computer model, the n-p cell exhibits a higher short-circuit current density.

  15. Liquid phase epitaxy growth of GaAs/GaAlAs multi-quantum well structures

    NASA Technical Reports Server (NTRS)

    Cser, J.; Katz, J.; Hwang, D. M.

    1987-01-01

    Experiments in liquid phase epitaxial fabrication of thin GaAs/GaAlAs layers over a planar substrates have been carried out. Layer thicknesses smaller than 300 A were routinely obtained, with the best result being 120 A. Interface sharpness between the layers is approximately 10 A, which is comparable to OMCVD results, but the layers' thicknesses are usually not uniform. Of the experimental parameters, the growth time and the cooling rate seem to have the largest effect on the obtained layer thickness, while the growth temperature and the substrate crystallographic orientation produce less noticeable effects. Quantum effects in the grown layers were observed by photoluminescence measurements.

  16. State-of-the-art performance of GaAlAs/GaAs avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Ga(0.15)Al(0.85)As/GaAs avalanche photodiodes have been successfully fabricated. The performance of these detectors is characterized by a rise time of less than 35 ps, an external quantum efficiency with an antireflection coating of 95% at 0.53 microns, and a microwave optical gain of 42 dB. The dark current density is in the low range (10 to the minus A/sq cm) at one-half the breakdown voltages, and rises to 0.0001 A/sq cm at 42 dB optical gain.

  17. Simplified gas sensor model based on AlGaN/GaN heterostructure Schottky diode

    NASA Astrophysics Data System (ADS)

    Das, Subhashis; Majumdar, S.; Kumar, R.; Chakraborty, A.; Bag, A.; Biswas, D.

    2015-08-01

    Physics based modeling of AlGaN/GaN heterostructure Schottky diode gas sensor has been investigated for high sensitivity and linearity of the device. Here the surface and heterointerface properties are greatly exploited. The dependence of two dimensional electron gas (2DEG) upon the surface charges is mainly utilized. The simulation of Schottky diode has been done in Technology Computer Aided Design (TCAD) tool and I-V curves are generated, from the I-V curves 76% response has been recorded in presence of 500 ppm gas at a biasing voltage of 0.95 Volt.

  18. Simplified gas sensor model based on AlGaN/GaN heterostructure Schottky diode

    SciTech Connect

    Das, Subhashis Majumdar, S.; Kumar, R.; Bag, A.; Chakraborty, A.; Biswas, D.

    2015-08-28

    Physics based modeling of AlGaN/GaN heterostructure Schottky diode gas sensor has been investigated for high sensitivity and linearity of the device. Here the surface and heterointerface properties are greatly exploited. The dependence of two dimensional electron gas (2DEG) upon the surface charges is mainly utilized. The simulation of Schottky diode has been done in Technology Computer Aided Design (TCAD) tool and I-V curves are generated, from the I-V curves 76% response has been recorded in presence of 500 ppm gas at a biasing voltage of 0.95 Volt.

  19. Photoluminescence of individual doped GaAs /AlGaAs nanofabricated quantum dots

    NASA Astrophysics Data System (ADS)

    Kalliakos, Sokratis; García, César Pascual; Pellegrini, Vittorio; Zamfirescu, Marian; Cavigli, Lucia; Gurioli, Massimo; Vinattieri, Anna; Pinczuk, Aron; Dennis, Brian S.; Pfeiffer, Loren N.; West, Ken W.

    2007-04-01

    Dilute arrays of GaAs /AlGaAs modulation-doped quantum dots with same sizes fabricated by electron beam lithography and low impact reactive ion etching exhibit highly uniform luminescence lines. Single quantum dots display spectral emission with peak energies and linewidths linked largely to the geometrical diameter of the dot and to the built-in electron population. Multicharged excitonic and biexcitonic emission intensities have activation energy of about 2meV. These results highlight the potential of high quality nanofabricated quantum dots for applications in areas that require fine control of optical emission.

  20. A field induced guide-antiguide modulator of GaAs-AlGaAs

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Chung, Y.; Young, D. B.; Dagli, N.; Coldren, L. A.

    1991-01-01

    A guide-antiguide modulator of GaAs-AlGaAs using the electric-field-induced waveguide concept was demonstrated. The device was formed with a central waveguide electrode sandwiched between two antiguide electrodes on the surface of a p-i-n multiple quantum well (MQW). Switching between lateral guiding and antiguiding was accomplished by reverse biasing either the central electrode or the adjacent electrodes to increase the index beneath these respective regions. The on-off ratio was measured to be 20:1 with a propagation loss of the on-state of about 5 dB/mm.

  1. Temperature dependence of spontaneous emission from AlGaAs-GaAs laser diodes

    SciTech Connect

    Zabrowski, D.W.; Rice, R.R.; Specht, A.P.

    1986-04-01

    The relationship between spontaneous and stimulated emission from a variety of AlGaAs-GaAs double-heterostructure laser diodes has been studied as a function of temperature over a range of 10--70 /sup 0/C. The spontaneous emission varied exponentially with temperature, and we introduce T/sup prime//sub 0/(J) as the characteristic temperature of spontaneous emission. As the temperature was changed, the laser threshold and slope efficiency for a device strongly covaried with spontaneous emission. A moderately high correlation (r>0.75) was obtained between the lasing and spontaneous emission slope efficiencies of 20 randomly selected lasers from different suppliers.

  2. Temperature effect on the submicron AlGaN/GaN Gunn diodes for terahertz frequency

    NASA Astrophysics Data System (ADS)

    Yang, Lin'an; Mao, Wei; Yao, Qingyang; Liu, Qi; Zhang, Xuhu; Zhang, Jincheng; Hao, Yue

    2011-01-01

    The wurtzite AlGaN/GaN Gunn diode with tristep-graded Al composition AlGaN as hot electron injector is simulated by using an improved negative differential mobility model of GaN. The results show that the oscillation mode of Gunn diode gradually shifts from dipole domain mode toward accumulation mode with increase in temperature, and the mode shift closely depends on the injector length. At the temperatures of 300-400 K, 0.6 and 0.4 μm Gunn diodes normally generate the oscillation of dipole domain mode, yielding the fundamental oscillation frequencies of 332-352 GHz and 488-508 GHz, respectively, with the dc/rf conversion efficiencies of 2%-3% and the output power densities of 109-1010 W cm-3. At higher temperatures, the diodes generate the accumulation mode oscillation, and the highest frequency approaches 680 GHz and 977 GHz, respectively, with the dc/rf conversion efficiencies of 0.5%-1%.

  3. AlGaInN quaternary alloys by MOCVD

    SciTech Connect

    McIntosh, F.G.; Piner, E.; Boutros, K.; Roberts, J.C.; He, Y.; El-Masry, N.; Bedair, S.M.; Moussa, M.

    1996-11-01

    AlGaInN quaternary alloy based devices can cover the emission wavelength from deep UV to red. This quaternary alloy also offers lattice matched heterostructures for both optical and microwave devices. The authors report on the MOCVD growth of Al{sub x}Ga{sub 1{minus}x{minus}y}In{sub y}N (0 < x < 0.12), (0 < y < 0.15) at 750 C on sapphire substrates, using TMG, EDMIn, TMAl and NH{sub 3} precursors. Chemical composition, lattice constants and bandgaps of the grown films were determined by EDS, X-ray diffraction and room temperature PL. Data indicates that the lattice constants can also be deduced using Vegard`s law, indicating a solid solution of this alloy. PL showed band edge emission, however emission from deep levels was also observed. Optimized growth conditions and heterostructures using this quaternary alloy will be presented.

  4. Al/sub 2/O/sub 3/ adherence on CoCrAl alloys

    SciTech Connect

    Kingsley, L.M.

    1980-04-01

    Adherence of protective oxides on NiCrAl and CoCrAl superalloys has been promoted by a dispersion of a highly oxygen reactive element or its oxide being produced within the protection system. Two aspects of this subject are investigated here: the use of Al/sub 2/O/sub 3/ as both the dispersion and protective oxide; and the production of an HfO/sub 2/ dispersion while simultaneously aluminizing the alloy. It was found that an Al/sub 2/O/sub 3/ dispersion will act to promote the adherence of an external scale of Al/sub 2/O/sub 3/ to a degree comparable to previously tested dispersions and an HfO/sub 2/ dispersion comparable to that produced by a Rhines pack treatment is produced during aluminization.

  5. Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Woo, S. Y.; Sadaf, S. M.; Wu, Y.; Pofelski, A.; Laleyan, D. A.; Rashid, R. T.; Wang, Y.; Botton, G. A.; Mi, Z.

    2016-08-01

    Self-organized AlGaN nanowires by molecular beam epitaxy have attracted significant attention for deep ultraviolet optoelectronics. However, due to the strong compositional modulations under conventional nitrogen rich growth conditions, emission wavelengths less than 250 nm have remained inaccessible. Here we show that Al-rich AlGaN nanowires with much improved compositional uniformity can be achieved in a new growth paradigm, wherein a precise control on the optical bandgap of ternary AlGaN nanowires can be achieved by varying the substrate temperature. AlGaN nanowire LEDs, with emission wavelengths spanning from 236 to 280 nm, are also demonstrated.

  6. Characterization of GaAs:Cr-based Timepix detector using synchrotron radiation and charged particles

    NASA Astrophysics Data System (ADS)

    Smolyanskiy, P.; Chelkov, G.; Guskov, A.; Dedovich, D.; Kozhevnikov, D.; Kruchonak, U.; Leyva Fabelo, A.; Zhemchugov, A.

    2016-12-01

    The interest in the use of high resistivity gallium arsenide compensated by chromium (GaAs:Cr) for photon detection has been growing steadily due to its numerous advantages over silicon. At the same time, the prospects of this material as a sensor for pixel detectors in nuclear and high energy physics are much less studied. In this paper we report the results of characterization of the Timepix detectors hybridized with GaAs:Cr sensors of various thickness using synchrotron radiation and various charged particles, including alphas and heavy ions. The energy and spatial resolution have been determined. Interesting features of GaAs:Cr specific to the detector response to an extremely dense energy deposit by heavy ions have been observed for the first time. The long-term stability of the detector has been evaluated based on the measurements performed over one year. Possible limitation of GaAs:Cr as a sensor for high flux X-ray imaging is discussed.

  7. Ga, Ca, and 3d transition element (Cr through Zn) partitioning among spinel-lherzolite phases from the Lanzo massif, Italy: Analytical results and crystal chemistry

    SciTech Connect

    Wogelius, R.A.; Fraser, D.G.

    1994-06-01

    Ultramafic rocks exposed in Lanzo massif, Italy is a record of mantle geochemistry, melting, sub-solidus re-equilibration. Plagioclase(+ spinel)-lherzolite samples were analyzed by Scanning Proton Microscopy, other techniques. Previous work postulated partial melting events and a two-stage sub-solidus cooling history; this paper notes Ga enrichment on spinel-clinopyroxene grain boundaries, high Ga and transition element content of spinel, and pyroxene zonation in Ca and Al. Trace element levels in olivine and orthopyroxene are also presented. Zoning trends are interpreted as due to diffusion during cooling. Olivine-clinopyroxene Cr and Ca exchange as well as clinopyroxene and spinel zonation trends indicate that the massif experienced at least two sub-solidus cooling episodes, one at 20 kbar to 1000 C and one at 8 kbar <750C. Ga levels in cores of Lanzo high-Cr spinels are high (82-66 ppM) relative to other mantle spinels (66-40 ppM), indicating enrichment. Ga content of ultramafic spinels apparently increases with Cr content; this may be due to: increased Ga solubility stemming from crystal chemical effects and/or higher Ga activities in associated silicate melts. Thus, during melting, high-Cr residual spinel may tend to buffer solid-phase Ga level. These spinels are not only rich in Ga and Cr (max 26.37 el. wt %), but also in Fe (max 21.07 el. wt %), Mn (max 3400 ppM), and Zn (max 2430 ppM). These enrichments are again due to melt extraction and partitioning into spinel structure. Low Ni (min 1050 ppM) levels are due to unsuccessful competition of Ni with Cr for octahedral structural sites caused by crystal field. Comparisons of change in partitioning vs Cr content among several 3d transition elements for spinels from Lanzo, other localities allow us to separate crystal field effects from bulk chemical effects and to show that in typical assemblages, inversion of olivine-spinel partition coefficient for Ni from <1 to >1 should occur at 11% el. wt. Cr in spinel.

  8. Preparation of AlGaN/GaN Heterostructures on Sapphire Using Light Radiation Heating Metal-Organic Chemical Vapor Deposition at Low Pressure

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Gang; Shen, Bo; Zhang, Rong; Li, Wei-Ping; Chen, Peng; Chen, Zhi-Zhong; Gu, Shu-Lin; Shi, Yi; Z, Huang C.; Zheng, You-Dou

    2000-08-01

    AlGaN/GaN heterostructures on sapphire substrate were fabricated by using light radiation heating metalorganic chemical vapor deposition. Photoluminescence excitation spectra show that there are two abrupt slopes corresponding to the absorption edges of AlGaN and GaN, respectively. X-ray diffraction spectra clearly exhibit the GaN (0002), (0004), and AlGaN (0002), (0004) diffraction peaks, and no diffraction peak other than those from the GaN {0001} and AlGaN {0001} planes is found. Reciprocal space mapping indicates that there is no tilt between the AlGaN layer and the GaN layer. All results also indicate that the sample is of sound quality and the Al composition in the AlGaN layer is of high uniformity.

  9. Photoluminescence of GaAs/AlGaAs quantum ring arrays

    SciTech Connect

    Sibirmovskii, Yu. D. Vasil’evskii, I. S.; Vinichenko, A. N.; Eremin, I. S.; Zhigunov, D. M.; Kargin, N. I.; Kolentsova, O. S.; Martyuk, P. A.; Strikhanov, M. N.

    2015-05-15

    Samples of epitaxial structures with GaAs/AlGaAs quantum rings different in morphology are grown by droplet epitaxy. The photoluminescence spectra of the samples are recorded at temperatures of 20–90 and 300 K. Intense peaks defined by quantum confinement of the charge-carrier energy in the quantum rings are observed in the optical region. The peaks are identified by estimating the energy of the ground state of electrons and holes in GaAs quantum rings and by recording the spectra of the samples after removing the layers with the quantum rings by etching. The average dimensions of the quantum rings are determined by atomic force microscopy and scanning electron microscopy. Some inferences about the factors that influence the emission spectrum and intensity of the epitaxial structures with quantum rings are drawn.

  10. Terahertz intersubband photodetectors based on semi-polar GaN/AlGaN heterostructures

    NASA Astrophysics Data System (ADS)

    Durmaz, Habibe; Nothern, Denis; Brummer, Gordie; Moustakas, Theodore D.; Paiella, Roberto

    2016-05-01

    Terahertz intersubband photodetectors are developed based on GaN/AlGaN quantum wells grown on a free-standing semi-polar ( 20 2 ¯ 1 ¯ ) GaN substrate. These quantum wells are nearly free of the polarization-induced internal electric fields that severely complicate the design of nitride intersubband devices on traditional c-plane substrates. As a result, a promising bound-to-quasi-bound THz photodetector design can be implemented. Pronounced photocurrent peaks at the design frequency near 10 THz are measured, covering frequencies that are fundamentally inaccessible to existing arsenide intersubband devices due to reststrahlen absorption. This materials system provides a favorable platform to utilize the intrinsic advantages of nitride semiconductors for THz optoelectronics.

  11. Electroabsorption modulators based on bulk GaN films and GaN/AlGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Kao, Chen-Kai; Bhattacharyya, Anirban; Thomidis, Christos; Paiella, Roberto; Moustakas, Theodore D.

    2011-04-01

    Ultraviolet electroabsorption modulators based on bulk GaN films and on GaN/AlGaN multiple quantum wells were developed and characterized. In both types of devices, the absorption edge at room temperature is dominated by excitonic effects and can be strongly modified through the application of an external electric field. In the bulk devices, the applied voltage causes a broadening and quenching of the excitonic absorption, leading to enhanced transmission. In the quantum-well devices, the external field partially cancels the built-in polarization-induced electric fields in the well layers, thereby increasing the absorption. Unlike optical modulators based on smaller-bandgap zinc blende semiconductors, the bulk devices here are shown to provide similar performance levels as the quantum well devices, which is mainly a consequence of the uniquely large exciton binding energies of nitride semiconductors.

  12. Recombination balance in green-light-emitting GaN/InGaN/AlGaN quantum wells

    NASA Astrophysics Data System (ADS)

    Eliseev, Petr G.; Osin'ski, Marek; Li, Hua; Akimova, Irina V.

    1999-12-01

    Recombination balance parameters for GaN/InGaN/AlGaN single-quantum-well green-lightemitting diodes are extracted from optical power and carrier lifetime measurements. The radiative recombination coefficient B is found to depend on two-dimensional carrier density N, with a low-carrier-density limit of B0=1.2×10-4 cm2/s. Sublinearity of the light-current characteristic at temperatures ⩾300 K is associated with a nonradiative process whose rate is proportional to ˜N4.8. The external quantum efficiency of 5.5% at 20 mA results from the internal quantum yield of 63% and the photon extraction efficiency of 8.7%. At low temperatures, a nonradiative loss term proportional to ˜N9 is also identified.

  13. Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Hori, Y.; Yatabe, Z.; Hashizume, T.

    2013-12-01

    We have investigated the relationship between improved electrical properties of Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) and electronic state densities at the Al2O3/AlGaN interface evaluated from the same structures as the MOS-HEMTs. To evaluate Al2O3/AlGaN interface state densities of the MOS-HEMTs, two types of capacitance-voltage (C-V) measurement techniques were employed: the photo-assisted C-V measurement for the near-midgap states and the frequency dependent C-V characteristics for the states near the conduction-band edge. To reduce the interface states, an N2O-radical treatment was applied to the AlGaN surface just prior to the deposition of the Al2O3 insulator. As compared to the sample without the treatment, the N2O-radical treated Al2O3/AlGaN/GaN structure showed smaller frequency dispersion of the C-V curves in the positive gate bias range. The state densities at the Al2O3/AlGaN interface were estimated to be 1 × 1012 cm-2 eV-1 or less around the midgap and 8 × 1012 cm-2 eV-1 near the conduction-band edge. In addition, we observed higher maximum drain current at the positive gate bias and suppressed threshold voltage instability under the negative gate bias stress even at 150 °C. Results presented in this paper indicated that the N2O-radical treatment is effective both in reducing the interface states and improving the electrical properties of the Al2O3/AlGaN/GaN MOS-HEMTs.

  14. Influence of InGaN sub-quantum-well on performance of InAlN/GaN/InAlN resonant tunneling diodes

    SciTech Connect

    Chen, Haoran; Yang, Lin'an Hao, Yue

    2014-08-21

    The resonant tunneling mechanism of the GaN based resonant tunneling diode (RTD) with an InGaN sub-quantum-well has been investigated by means of numerical simulation. At resonant-state, Electrons in the InGaN/InAlN/GaN/InAlN RTD tunnel from the emitter region through the aligned discrete energy levels in the InGaN sub-quantum-well and GaN main-quantum-well into the collector region. The implantation of the InGaN sub-quantum-well alters the dominant transport mechanism, increase the transmission coefficient and give rise to the peak current and peak-to-valley current ratio. We also demonstrate that the most pronounced negative-differential-resistance characteristic can be achieved by choosing appropriately the In composition of In{sub x}Ga{sub 1−x}N at around x = 0.06.

  15. Influence of Be and Al on the magnetostrictive behavior of FeGa alloys

    SciTech Connect

    Mungsantisuk, Pinai; Corson, Robert P.; Guruswamy, Sivaraman

    2005-12-15

    The rare-earth-free body-centered-cubic FeGa-based alloys have an attractive combination of large low-field magnetostriction at room temperature, good mechanical properties, low hysteresis, and relatively low cost for use in sensor and actuator devices. This paper examines the influence of partially substituting Ga in FeGa alloys with Be and Al on their magnetostrictive behavior. Magnetic and magnetostrictive properties of the various ternary FeGaAl and FeGaBe alloys prepared by directional growth process are presented. It is shown that substitution of Ga with Al and Be can be made in FeGa alloys in certain composition ranges without a significant reduction in magnetostriction. Minimal reductions in magnetostriction when Ga is partially substituted by smaller Be or larger Al atoms in certain composition ranges indicate that local electronic environments are more important and that the effects of Ga and Be are additive.

  16. Influence of Be and Al on the magnetostrictive behavior of FeGa alloys

    NASA Astrophysics Data System (ADS)

    Mungsantisuk, Pinai; Corson, Robert P.; Guruswamy, Sivaraman

    2005-12-01

    The rare-earth-free body-centered-cubic FeGa-based alloys have an attractive combination of large low-field magnetostriction at room temperature, good mechanical properties, low hysteresis, and relatively low cost for use in sensor and actuator devices. This paper examines the influence of partially substituting Ga in FeGa alloys with Be and Al on their magnetostrictive behavior. Magnetic and magnetostrictive properties of the various ternary FeGaAl and FeGaBe alloys prepared by directional growth process are presented. It is shown that substitution of Ga with Al and Be can be made in FeGa alloys in certain composition ranges without a significant reduction in magnetostriction. Minimal reductions in magnetostriction when Ga is partially substituted by smaller Be or larger Al atoms in certain composition ranges indicate that local electronic environments are more important and that the effects of Ga and Be are additive.

  17. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  18. Improved high-temperature characteristics of a symmetrically graded AlGaAs/InxGa1-xAs/AlGaAs pHEMT

    NASA Astrophysics Data System (ADS)

    Huang, Jun-Chin; Hsu, Wei-Chou; Lee, Ching-Sung; Chang, Wei-Chen; Huang, Dong-Hai

    2006-12-01

    This work investigates the superior high-temperature and high-linearity characteristics of a double δ-doped AlGaAs/InxGa1-xAs/AlGaAs pseudomorphic high electron mobility transistor (pHEMT) with a symmetrically linearly graded InxGa1-xAs channel and a wide energy gap AlGaAs barrier. Distinguished high-temperature device characteristics are presented, including an extrinsic transconductance (gm,max) of 182 (223) mS mm-1, a drain-source saturation current density (IDSS) of 428 (524) mA mm-1, an output conductance of 0.334 (0.352) mS mm-1, a gate-voltage swing (GVS) of 1.45 (1.5) V, a voltage gain (Av) of 505 (658) and a reverse breakdown voltage (BVGD) of -24.1 (-31.2) V at 500 (300) K, respectively, with gate dimensions of 0.65 × 200 µm2. In addition, the device demonstrates a superior stable thermal threshold coefficient (∂Vth/∂T) of -0.55 mV K-1, a thermal GVS coefficient (∂GVS/∂T) of -0.25 mV K-1 and a wide gate-bias range of 1.25 V for a unity-gain cut-off frequency (ft) of over 20 GHz. Consequently, the proposed device shows good potential for high-temperature and high-linearity circuit applications.

  19. Spontaneously grown GaN and AlGaN nanowires

    NASA Astrophysics Data System (ADS)

    Bertness, K. A.; Roshko, A.; Sanford, N. A.; Barker, J. M.; Davydov, A. V.

    2006-01-01

    We have identified crystal growth conditions in gas-source molecular beam epitaxy (MBE) that lead to spontaneous formation of GaN nanowires with high aspect ratio on Si (1 1 1) substrates. The nanowires were oriented along the GaN c-axis and normal to the substrate surface. Unlike in many other reports of GaN nanowire growth, no metal catalysts were used. Low growth rates at substrate temperatures near 820 °C were combined with high nitrogen flux (partially dissociated with RF plasma excitation) to form well-separated GaN wires with diameters from 50 to 250 nm in diameter and lengths ranging from 2 to 7 μm. The nanowires grew out of an irregular matrix layer containing deep faceted holes. X-ray diffraction indicated that the wires were fully relaxed and aligned to the silicon substrate. The growth morphology was strongly affected by the presence of Al and Be. The changes suggest that surface diffusion is a primary driving force in the growth of GaN nanowires with MBE.

  20. Low energy proton radiation damage to (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R.; Kamath, S.; Knechtli, R. C.

    1979-01-01

    Twenty-seven 2 times 2 sq cm (AlGa)As-GaAs solar cells were fabricated and subjected to 50 keV, 100 keV, and 290 keV of proton irradiation along with eighteen high efficiency silicon solar cells. The results of the study further corroborate the advantages for space missions offered by GaAs cells over state of the art silicon cells. Thus, even though the GaAs cells showed greater degradation when irradiated by protons with energy less than 5 MeV, the solar cells were normally protected from these protons by the glass covers used in space arrays. The GaAs cells also offered superior end of life power capability compared with silicon. The change in the open circuit voltage, short circuit current, spectral response, and dark 1-5 characteristics after irradiation at each proton energy and fluence were found to be consistent with the explanation of the effect of the protons. Also dark 1-5 characteristics showed that a new recombination center dominates the current transport mechanism after irradiation.

  1. Degradation of blue AlGaN/InGaN/GaN LEDs subjected to high current pulses

    SciTech Connect

    Barton, D.L.; Zeller, J.; Phillips, B.S.; Chiu, P.C.; Askar, S.; Lee, D.S.; Osinski, M.; Malloy, K.J.

    1994-12-31

    Short-wavelength, visible-light emitting optoelectronic devices are needed for a wide range of commercial applications, including high-density optical data storage, full-color displays, and underwater communications. In 1994, high-brightness blue LEDs based on gallium nitride and related compounds (InGaN/AlGaN) were introduced by Nichia Chemical Industries. The Nichia diodes are 100 times brighter than the previously available SiC blue LEDs. Group-III nitrides combine a wide, direct bandgap with refractory properties and high physical strength. So far, no studies of degradation of GaN based LEDs have been reported. The authors study, reported in this paper, focuses on the performance of GaN LEDs under high electrical stress conditions. Their observations indicate that, in spite of a high defect density, which normally would have been fatal to other III-V devices, defects in group-III nitrides are not mobile even under high electrical stress. Defect tubes, however, can offer a preferential path for contact metals to electromigrate towards the p-n junction, eventually resulting in a short. The proposed mechanism of GaN diode degradation raises concern for prospects of reliable lasers in the group-III nitrides grown on sapphire.

  2. Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Oleg; Manfra, Michael

    2003-07-01

    The presence of electronic traps in GaN-based transistors limits device performance and reliability. It is believed that material defects and electronic states on GaN surface act as the trapping centers. In spite of extensive investigation of trapping phenomena, the physics of the active defects is not completely understood. Charge trapping in the device structure is reflected in gate lag, a delayed response of the channel current to modulation of the gate potential. Gate lag studies provide essential information about the traps allowing identification of the active defects. In this paper we review gate lag in GaN-based high electron mobility transistors (HEMTs). Current transient spectroscopy, a characterization method based on gate lag measurements, is applied for trap identification in AlGaN/GaN HEMTs grown by plasma-assisted molecular beam epitaxy. In particular we focus on the processes of electron capture and emission from the traps. Probing the charge transfer mechanisms leading to gate lag allows us to extract the trap characteristics including the trapping potential, the binding energy of an electron on the trap, and the physical location of the active centers in the device.

  3. Spin and phase relaxation dynamics in GaN and GaN/AlGaN quantum wells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Gallart, Mathieu; Ziegler, Marc; Hönerlage, Bernd H.; Gilliot, Pierre; Feltin, Eric; Carlin, Jean-François; Butté, Raphaël.; Grandjean, Nicolas

    2015-09-01

    By performing time-resolved optical non-degenerate pump-probe experiments, we study the relaxation dynamics of spin-polarized excitons in wurtzite epitaxial GaN and in nitride nanostructures. Those materials are indeed promising candidates for spintronic applications because of their weak spin-orbit coupling and large exciton binding energy (~ 17 meV and ~ 26meV in bulk GaN, respectively). In epilayers, we show that the high density of dislocations increases dramatically the spin relaxation of electrons and holes through the defect assisted Elliott-Yafet mechanism. That makes the exciton dephasing time very short. In high quality GaN/AlGaN quantum wells, both the exciton-spin lifetime S and the exciton dephasing-time T2 were determined via pump-probe spectroscopy using polarized laser pulses and time-resolved four wave-mixing experiments. The evolution of both quantities with temperature shows that spin relaxation occurs in the motional narrowing regime up to 80 K. Above this threshold, the thermal energy becomes large enough for excitons to escape from the QW. Such measurements demonstrate that GaN-based heterostructures can reach a very high degree of control that was previously mostly restricted to conventional III-V semiconductors and more specifically to the arsenide family.

  4. High mobility AlGaN/GaN devices for β--dosimetry

    NASA Astrophysics Data System (ADS)

    Schmid, Martin; Howgate, John; Ruehm, Werner; Thalhammer, Stefan

    2016-05-01

    There is a high demand in modern medical applications for dosimetry sensors with a small footprint allowing for unobtrusive or high spatial resolution detectors. To this end we characterize the sensoric response of radiation resistant high mobility AlGaN/GaN semiconductor devices when exposed to β--emitters. The samples were operated as a floating gate transistor, without a field effect gate electrode, thus excluding any spurious effects from β--particle interactions with a metallic surface covering. We demonstrate that the source-drain current is modulated in dependence on the kinetic energy of the incident β--particles. Here, the signal is shown to have a linear dependence on the absorbed energy calculated from Monte Carlo simulations. Additionally, a stable and reproducible sensor performance as a β--dose monitor is shown for individual radioisotopes. Our experimental findings and the characteristics of the AlGaN/GaN high mobility layered devices indicate their potential for future applications where small sensor size is necessary, like for instance brachytherapy.

  5. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Wang, H. T.; Ren, F.; Pearton, S. J.

    2008-08-01

    Chemical sensors can be used to analyze a wide variety of environmental and biological gases and liquids and may need to be able to selectively detect a target analyte. Different methods, including gas chromatography, chemiluminescence, selected ion flow tube, and mass spectroscopy, have been used to measure biomarkers. These methods show variable results in terms of sensitivity for some applications and may not meet the requirements for a handheld biosensor. A promising sensing technology utilizes AlGaN/GaN high electron mobility transistors (HEMTs). HEMT structures have been developed for use in microwave power amplifiers due to their high two dimensional electron gas (2DEG) mobility and saturation velocity. The conducting 2DEG channel of AlGaN/GaN HEMTs is very close to the surface and extremely sensitive to adsorption of analytes. HEMT sensors can be used for detecting gases, ions, pH values, proteins, and DNA. In this paper we review recent progress on functionalizing the surface of HEMTs for specific detection of glucose, kidney marker injury molecules, prostate cancer, and other common substances of interest in the biomedical field.

  6. Gate metal dependent electrical characteristics of AlGaN/GaN HEMTs

    SciTech Connect

    Koo, Sang-Mo Kang, Min-Seok

    2014-10-15

    Highlights: • We investigated transfer characteristics of AlGaN/GaN high electron mobility transistors. • We demonstrate the effect of the barrier height of Schottky gate metals. • The conduction mechanisms examine by comparing the experimental results with numerical simulations. • 2-DEG concentration depends on the barrier height of Schottky gate metals. - Abstract: We investigated transfer characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) and the effect of the barrier height of Schottky gate metals. It is found that the threshold voltage of the HEMT structures with the Ni Schottky contact shows a positive shift compared to that of the Ti Schottky contacts (ΔV{sub th} = 2.9 V). The maximum saturation current of the HEMT structures with the Ti Schottky contact (∼1.4 × 10{sup 7} A/cm{sup 2}) is found to be ∼2.5 times higher than that of the Ni Schottky contact (2.9 × 10{sup 7} A/cm{sup 2}). The conduction mechanisms have been examined by comparing the experimental results with numerical simulations, which confirm that the increased barrier height is mainly attributed to the reduction of 2-DEG concentration.

  7. Probing temperature gradients within the GaN buffer layer of AlGaN/GaN high electron mobility transistors with Raman thermography

    SciTech Connect

    Hodges, C. Pomeroy, J.; Kuball, M.

    2014-02-14

    We demonstrate the ability of confocal Raman thermography using a spatial filter and azimuthal polarization to probe vertical temperature gradients within the GaN buffer layer of operating AlGaN/GaN high electron mobility transistors. Temperature gradients in the GaN layer are measured by using offset focal planes to minimize the contribution from different regions of the GaN buffer. The measured temperature gradient is in good agreement with a thermal simulation treating the GaN thermal conductivity as homogeneous throughout the layer and including a low thermal conductivity nucleation layer to model the heat flow between the buffer and substrate.

  8. Alloy inhomogeneity and carrier localization in AlGaN sections and AlGaN/AlN nanodisks in nanowires with 240–350 nm emission

    SciTech Connect

    Himwas, C.; Hertog, M. den; Dang, Le Si; Songmuang, R.; Monroy, E.

    2014-12-15

    We present structural and optical studies of AlGaN sections and AlGaN/AlN nanodisks (NDs) in nanowires grown by plasma-assisted molecular beam epitaxy. The Al-Ga intermixing at Al(Ga)N/GaN interfaces and the chemical inhomogeneity in AlGaN NDs evidenced by scanning transmission electron microscopy are attributed to the strain relaxation process. This interpretation is supported by the three-dimensional strain distribution calculated by minimizing the elastic energy in the structure. The alloy inhomogeneity increases with the Al content, leading to enhanced carrier localization signatures in the luminescence characteristics, i.e., red shift of the emission, s-shaped temperature dependence, and linewidth broadening. Despite these effects, the emission energy of AlGaN/AlN NDs can be tuned in the 240–350 nm range with internal quantum efficiencies around 30%.

  9. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  10. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-01

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  11. Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs.

    PubMed

    Zhang, Yan; Ning, Yongqiang; Zhang, Lisen; Zhang, Jinsheng; Zhang, Jianwei; Wang, Zhenfu; Zhang, Jian; Zeng, Yugang; Wang, Lijun

    2011-06-20

    Vertical-cavity surface-emitting lasers emitting at 808 nm with unstrained GaAs/Al0.3Ga0.7As, tensilely strained GaAs(x)P(1-x)/Al0.3Ga0.7As and compressively strained In(1-x-y)Ga(x)Al(y)As/Al0.3Ga0.7As quantum-well active regions have been investigated. A comprehensive model is presented to determine the composition and width of these quantum wells. The numerical simulation shows that the gain peak wavelength is near 800 nm at room temperature for GaAs well with width of 4 nm, GaAs0.87P0.13 well with width of 13 nm and In0.14Ga0.74Al0.12As well with width of 6 nm. Furthermore, the output characteristics of the three designed quantum-well VCSELs are studied and compared. The results indicate that In0.14Ga0.74Al0.12As is the most appropriate candidate for the quantum well of 808-nm VCSELs.

  12. Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission

    SciTech Connect

    Lekhal, K.; Damilano, B. De Mierry, P.; Vennéguès, P.; Ngo, H. T.; Rosales, D.; Gil, B.; Hussain, S.

    2015-04-06

    Yellow/amber (570–600 nm) emitting In{sub x}Ga{sub 1−x}N/Al{sub y}Ga{sub 1−y}N/GaN multiple quantum wells (QWs) have been grown by metal organic chemical vapor deposition on GaN-on- sapphire templates. When the (Al,Ga)N thickness of the barrier increases, the room temperature photoluminescence is red-shifted while its yield increases. This is attributed to an increase of the QW internal electric field and an improvement of the material quality due to the compensation of the compressive strain of the In{sub x}Ga{sub 1−x}N QWs by the Al{sub y}Ga{sub 1−y}N layers, respectively.

  13. Spin polarization in two dimensional hole gas GaAs/AlGaAs

    NASA Astrophysics Data System (ADS)

    Chakhmane, Asmaa; El idrissi, Hassan; El kaaouachi, Abdelhamid

    2014-10-01

    In this paper, we have studied the magnetoresistance in a dilute two-dimensional hole gas in GaAs/AlGaAs within a parallel magnetic field. To do this, we tried to define the normalized resistivity, ρ(B)/ρ(0), as a function as B/Bχ and B/Bcross, where Bχ is a scaling parameter, and Bcross is determined by the bend of the resistivity curves versus B2. This study shows that there is no dependence between Bχ and Bcross for various hole densities. In order to examine the variation of the susceptibility, χ, we have access the product m*g* versus the hole density. The later is found to be almost constant. In this work we have reanalyzed the data obtained by Kumar et al., which were published in Ref. [4].

  14. AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range.

    PubMed

    Soltani, Mohammad; Soref, Richard; Palacios, Tomas; Englund, Dirk

    2016-10-31

    We analyze a photonic integrated circuit (PIC) platform comprised of a crystalline AlxGa1-xN optical guiding layer on an AlN substrate for the ultraviolet to visible (UV-vis) wavelength range. An Al composition of x~0.65 provides a refractive index difference of ~0.1 between AlxGa1-xN and AlN, and a small lattice mismatch (< 1%) that minimizes crystal dislocations at the AlxGa1-xN/AlN interface. This small refractive index difference is beneficial at shorter wavelengths to avoid extra-small waveguide dimensions. The platform enables compact waveguides and bends with high field confinement in the wavelength range from 700 nm down to 300 nm (and potentially lower) with waveguide cross-section dimensions comparable to those used for telecom PICs such as silicon and silicon nitride waveguides, allowing for well-established optical lithography. This platform can potentially enable cost-effective, manufacturable, monolithic UV-vis photonic integrated circuits.

  15. Enhanced Capability of Photoelectrochemical CO2 Conversion System Using an AlGaN/GaN Photoelectrode

    NASA Astrophysics Data System (ADS)

    Deguchi, Masahiro; Yotsuhashi, Satoshi; Hashiba, Hiroshi; Yamada, Yuka; Ohkawa, Kazuhiro

    2013-08-01

    We report significantly improved photosynthesis system based on AlGaN/GaN photochemical process. The resultant energy conversion efficiency is 0.13% which is the same level as that of real plants. The capability of this system is enhanced by high cathode potential due to the reduction of energy loss while utilizing the piezoelectric effect in the AlGaN/GaN heterostructure. The Faradaic efficiency of the CO2 conversion to organic materials is enhanced, accompanied by an increment in photocurrent by modification of the AlGaN/GaN photoelectrode structure and electrolytes. Furthermore, reaction products such as C2H4 and C2H5OH are generated by light illumination alone.

  16. Quantitative analysis of the trapping effect on terahertz AlGaN/GaN resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Yang, Lin'an; He, Hanbing; Mao, Wei; Hao, Yue

    2011-10-01

    We report on a simulation for terahertz aluminum gallium nitride (AlGaN)/gallium nitride (GaN) resonant tunneling diode (RTD) at room temperature by introducing deep-level defects into the polarized AlGaN/GaN/AlGaN quantum well. Results show that an evident degradation in negative-differential-resistance characteristic of RTD occurs when the defect density is higher than ˜106 cm-2, which is consistent with the measurements of the state-of-the-art GaN RTDs. At around 300 GHz, the simulation for a RTD oscillator also demonstrates evident decreases of rf power and efficiency because of the electron trapping effect.

  17. Structure and dynamics of carbon, silicon, and hydrogen complexes in AlAs, GaAs, and AlxGa1-xAs

    NASA Astrophysics Data System (ADS)

    Talwar, D. N.

    1995-09-01

    The results of a comprehensive Green's-function calculation are reported for the structure and dynamics of the amphoteric behavior of silicon \\{SiGa(Al),SiAs\\}, and the acceptor nature of beryllium and carbon \\{BeGa(Al),CAs\\} impurities in GaAs, AlAs, and AlxGa1-xAs. Impurity vibrational modes are studied for (i) the nearest-neighbor CAs-AlGa pairs (C2v symmetry) in AlxGa1-xAs (for x<0.04), (ii) the second-nearest-neighbor \\{e.g., CAs-Al(Ga)-CAs; SiAl-As-BeAl\\} pairs (C2v /Cs symmetry) in AlAs (GaAs), and (iii) the passivated H-CAs complexes in GaAs and AlAs. Comparisons are made with the existing experimental and theoretical data.

  18. High f T and f max AlGaN/GaN HFETs achieved by using thin and high-Al-composition AlGaN barrier layers and Cat-CVD SiN passivation

    NASA Astrophysics Data System (ADS)

    Higashiwaki, M.; Onojima, N.; Matsui, T.; Mimura, T.

    2006-05-01

    We fabricated sub-0.1 m-gate Al0.4Ga0.6N/GaN heterostructure field-effect transistors (HFETs) with AlGaN barrier thicknesses of 4-10 nm. The devices were passivated with 2 nm-thick SiN layers formed by catalytic chemical vapor deposition (Cat-CVD). The Cat-CVD SiN passivation greatly increased electron density, and the effect became more significant with decreasing AlGaN barrier thickness. The HFETs had maximum drain current densities of 1.1-1.5 A/mm and peak extrinsic transconductances of 305-438 mS/mm. Peak current-gain cutoff frequency of 163 GHz and maximum oscillation frequency of 192 GHz were obtained for the devices with 8 nm-thick AlGaN barriers.

  19. High-temperature molecular beam epitaxial growth of AlGaN/GaN on GaN templates with reduced interface impurity levels

    NASA Astrophysics Data System (ADS)

    Koblmüller, G.; Chu, R. M.; Raman, A.; Mishra, U. K.; Speck, J. S.

    2010-02-01

    We present combined in situ thermal cleaning and intentional doping strategies near the substrate regrowth interface to produce high-quality AlGaN/GaN high electron mobility transistors on semi-insulating (0001) GaN templates with low interfacial impurity concentrations and low buffer leakage. By exposing the GaN templates to an optimized thermal dissociation step in the plasma-assisted molecular beam epitaxy environment, oxygen, carbon, and, to lesser extent, Si impurities were effectively removed from the regrowth interface under preservation of good interface quality. Residual Si was further compensated by C-doped GaN via CBr4 to yield highly resistive GaN buffer layers. Improved N-rich growth conditions at high growth temperatures were then utilized for subsequent growth of the AlGaN/GaN device structure, yielding smooth surface morphologies and low residual oxygen concentration with large insensitivity to the (Al+Ga)N flux ratio. Room temperature electron mobilities of the two-dimensional electron gas at the AlGaN/GaN interface exceeded >1750 cm2/V s and the dc drain current reached ˜1.1 A/mm at a +1 V bias, demonstrating the effectiveness of the applied methods.

  20. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    NASA Astrophysics Data System (ADS)

    Kim, Sun Kyu; Pham, Vuong-Hung; Kim, Chong-Hyun

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  1. Development of AlGaN/GaN High Electron Mobility Transistors (HEMTS) on Diamond Substrates

    DTIC Science & Technology

    2006-06-01

    pp. 418. 14. P. Valizadeh and D . Pavlidis , "Investigation of the impact of Al mole-fraction on the consequences of RF stress on Al/sub x/Ga/sub 1-x...35 2. NPS HEMT Model Thermal Testing ...............................................37 D . FINAL THERMAL SIMULATION...ns) is changed proportionally to gate voltage and is given by equation 2.1 [11]: ( ) ( ) i s g T i n V V q d d ε = − + ∆ (2.1) where iε and id

  2. Rare-earth chromium gallides RE{sub 4}CrGa{sub 12} (RE=Tb-Tm)

    SciTech Connect

    Slater, Brianna R.; Bie, Haiying; Stoyko, Stanislav S.; Bauer, Eric D.; Thompson, Joe D.; Mar, Arthur

    2012-12-15

    The ternary rare-earth-metal chromium gallides RE{sub 4}CrGa{sub 12} (RE=Tb-Tm) have been prepared by reactions of the elements at 1000 Degree-Sign C in the presence of excess gallium used as a self-flux. Their structures are derived by inserting Cr atoms into a quarter of the empty Ga{sub 6} octahedral clusters found in the parent binary gallides REGa{sub 3} (AuCu{sub 3}-type), although single-crystal X-ray diffraction studies suggest that complex superstructures may be adopted. An ideal ordered Y{sub 4}PdGa{sub 12}-type structure was successfully refined for a crystal of Dy{sub 4}CrGa{sub 12} (Pearson symbol cI34, space group Im3{sup Macron }m, Z=2, a=8.572(1) A). Magnetic measurements on single-crystal samples reveal ferromagnetic or possibly ferrimagnetic ordering for the Tb, Dy, and Er members (T{sub C}=22, 15, and 2.8 K, respectively) and antiferromagnetic ordering for the Ho member (T{sub N}=7.5 K). Band structure calculations on a hypothetical 'Y{sub 4}CrGa{sub 12}' model suggest that the Cr atoms carry no local magnetic moment. - Graphical abstract: RE{sub 4}CrGa{sub 12} is derived by inserting Cr atoms into empty Ga{sub 6} octahedral clusters present in the parent binary gallides REGa{sub 3}. Highlights: Black-Right-Pointing-Pointer RE{sub 4}MGa{sub 12} (previously known for M=Fe, Ni, Pd, Pt, Ag) has been extended to M=Cr. Black-Right-Pointing-Pointer RE{sub 4}CrGa{sub 12} compounds show predominantly ferromagnetic ordering. Black-Right-Pointing-Pointer Band structure calculations suggest that Cr atoms carry no local magnetic moment.

  3. Enhancement of Rashba interaction in GaAs/AlGaAs quantum wells due to the incorporation of bismuth

    SciTech Connect

    Simmons, R. A.; Jin, S. R.; Sweeney, S. J.; Clowes, S. K.

    2015-10-05

    This paper reports on the predicted increase in the Rashba interaction due to the incorporation of Bi in GaAs/AlGaAs heterostructures. Band structure parameters obtained from the band anti-crossing theory have been used in combination with self-consistent Schrödinger-Poisson calculations and k.p models to determine the electron spin-splitting caused by structural inversion asymmetry and increased spin-orbit interaction. A near linear seven fold increase in the strength of the Rashba interaction is predicted for a 10% concentration of Bi in a GaAsBi/AlGaAs quantum well heterostructure.

  4. Surface donor states distribution post SiN passivation of AlGaN/GaN heterostructures

    SciTech Connect

    Goyal, Nitin; Fjeldly, Tor A.

    2014-07-21

    In this paper, we present a physics based analytical model to describe the effect of SiN passivation on two-dimensional electron gas density and surface barrier height in AlGaN/GaN heterostructures. The model is based on an extraction technique to calculate surface donor density and surface donor level at the SiN/AlGaN interface. The model is in good agreement with the experimental results and promises to become a useful tool in advanced design and characterization of GaN based heterostructures.

  5. GaN/AlGaN Strain-Balanced Heterostructures for Near-IR Quantum Well Photodetectors

    DTIC Science & Technology

    2007-11-02

    DATES COVERED (From – To) 16 September 2002 - 13-Feb-04 5a. CONTRACT NUMBER FA8655-02-M4006 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Gan /Algan Strain...Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39-18 GaN /AlGaN strain-balanced...and Development (EOARD). In this work GaN /AlGaN strain-balanced heterostructures have been designed for near-infrared absorption through intersubband

  6. Output power enhancement in AlGaN/GaN heterostructure field-effect transistors with multilevel metallization

    NASA Astrophysics Data System (ADS)

    Oh, Seung Kyu; Jang, Taehoon; Pouladi, Sara; Jo, Young Je; Ko, Hwa-Young; Ryou, Jae-Hyun; Kwak, Joon Seop

    2017-01-01

    To improve wafer utilization efficiency and heat dissipation performance, this paper proposes multilevel metallization-structured, lateral-type AlGaN/GaN heterostructure field-effect transistors (HFETs) on a 150 mm Si substrate using photosensitive polyimide (PSPI) as the intermetal dielectric layer. The maximum drain current of the HFETs is 46.3 A, which is 240% higher than that of conventional AlGaN/GaN HFETs with the same die size. Furthermore, the drain current drop of the HFETs under high-bias operation is reduced from 14.07 to 8.09%, as compared to that of conventional HFETs.

  7. Contribution of alloy clustering to limiting the two-dimensional electron gas mobility in AlGaN/GaN and InAlN/GaN heterostructures: Theory and experiment

    SciTech Connect

    Ahmadi, Elaheh; Mishra, Umesh K.; Chalabi, Hamidreza; Kaun, Stephen W.; Shivaraman, Ravi; Speck, James S.

    2014-10-07

    The influence of alloy clustering on fluctuations in the ground state energy of the two-dimensional electron gas (2DEG) in AlGaN/GaN and InAlN/GaN heterostructures is studied. We show that because of these fluctuations, alloy clustering degrades the mobility even when the 2DEG wavefunction does not penetrate the alloy barrier unlike alloy disorder scattering. A comparison between the results obtained for AlGaN/GaN and InAlN/GaN heterostructures shows that alloy clustering limits the 2DEG mobility to a greater degree in InAlN/GaN heterostructures. Our study also reveals that the inclusion of an AlN interlayer increases the limiting mobility from alloy clustering. Moreover, Atom probe tomography is used to demonstrate the random nature of the fluctuations in the alloy composition.

  8. Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via asymmetric step-like AlGaN quantum wells

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Wan, Zhi; Xu, FuJun; Wang, XinQiang; Lv, Chen; Shen, Bo; Jiang, Ming; Chen, QiGong

    2017-04-01

    Characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) with light-emitting wavelength around 265 nm via step-like AlGaN quantum wells (QWs) have been investigated. Simulation approach yields a result that, there is significant enhancement of light output power (LOP) for DUV-LEDs with two-layer step-like AlGaN QWs compared to that with conventional one. The location and thickness of AlGaN layer with higher Al-content in the step-like QWs are confirmed to significantly affect the distributions and overlap of electron and hole wavefunctions. The best material characteristic is obtained when the step-like QW is designed as an asymmetric structure, such as Al0.74Ga0.26N (1.8 nm)/Al0.64Ga0.36N (1.2 nm), where AlGaN with higher Al-content layer is set to be located nearer from n-side and be thick as far as possible. The key factors for the performance improvements for this specific design is the enhanced hole transport and mitigated auger recombination.

  9. Linear and nonlinear optical properties of GaAs/Al{sub x}Ga{sub 1−x}As/GaAs/Al{sub y}Ga{sub 1−y}As multi-shell spherical quantum dot

    SciTech Connect

    Emre Kavruk, Ahmet E-mail: aekavruk@gmail.com; Koc, Fatih; Sahin, Mehmet E-mail: mehsahin@gmail.com

    2013-11-14

    In this work, the optical properties of GaAs/Al{sub x}Ga{sub 1−x}As/GaAs/Al{sub y}Ga{sub 1−y}As multi-shell quantum dot heterostructure have been studied as a function of Al doping concentrations for cases with and without a hydrogenic donor atom. It has been observed that the absorption coefficient strength and/or resonant absorption wavelength can be adjusted by changing the Al content of inner-barrier and/or outer-barrier regions. Besides, it has been shown that the donor atom has an important effect on the control of the electronic and optical properties of the structure. The results have been presented as a function of the Al contents of the inner-barrier x and outer-barrier y regions and probable physical reasons have been discussed.

  10. Persistent photoconductivity in AlGaN/GaN heterojunction channels caused by the ionization of deep levels in the AlGaN barrier layer

    SciTech Connect

    Murayama, H.; Akiyama, Y.; Niwa, R.; Sakashita, H.; Sakaki, H.; Kachi, T.; Sugimoto, M.

    2013-12-04

    Time-dependent responses of drain current (I{sub d}) in an AlGaN/GaN HEMT under UV (3.3 eV) and red (2.0 eV) light illumination have been studied at 300 K and 250 K. UV illumination enhances I{sub d} by about 10 %, indicating that the density of two-dimensional electrons is raised by about 10{sup 12} cm{sup −2}. When UV light is turned off at 300 K, a part of increased I{sub d} decays quickly but the other part of increment is persistent, showing a slow decay. At 250 K, the majority of increment remains persistent. It is found that such a persistent increase of I{sub d} at 250 K can be partially erased by the illumination of red light. These photo-responses are explained by a simple band-bending model in which deep levels in the AlGaN barrier get positively charged by the UV light, resulting in a parabolic band bending in the AlGaN layer, while some potion of those deep levels are neutralized by the red light.

  11. An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell

    SciTech Connect

    Venkatasubramanian, R. )

    1993-01-01

    This report describes work to develop inverted-grown Al[sub 0.34]Ga[sub 0.66]As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al[sub 0.34]Ga[sub 0.66]As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The cycled'' organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al[sub 0.34]Ga[sub 0.66]As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

  12. Development and High Temperature Property Evaluation of Ni-Co-Cr-Al Composite Electroforms

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Siju; Balaraju, J. N.; Ravisankar, B.

    2015-05-01

    Ni-Co-Cr-Al composite electroforms were developed with cobalt content of 10 and 40 wt.%. Cr and Al nano-particles were suspended in sulphamate electrolyte and co-deposited in the Ni-Co matrices. The surface morphology was investigated using field emission scanning electron microscope and the composition analyzed by energy-dispersive x-ray analysis. The oxidation resistance of the electroforms was studied from 600 to 1000 °C. The weight gain of Ni-10 wt.%Co-Cr-Al was less (better oxidation resistance) compared to Ni-Cr-Al and Ni-40 wt.%Co-Cr-Al. The x-ray diffraction studies revealed that the oxidation product formed on the surface of Ni-Cr-Al and Ni-10 wt.%Co-Cr-Al consisted of NiO and Al2O3, while Ni-40 wt.%Co-Cr-Al comprised oxides such as NiCo2O4, CrO3, CoO, NiO, and Al2O3. The hot corrosion behavior was investigated in 75%Na2SO4 + 25%NaCl environment at 800 °C. It was found that the hot corrosion resistance of the composite coating improved with increase in cobalt content. The probable composition suitable for high-temperature applications was found to be Ni-10 wt.%Co-Cr-Al.

  13. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu

    2016-12-01

    Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).

  14. AlGaAs/GaAs transverse junction stripe lasers with distributed feedback

    NASA Technical Reports Server (NTRS)

    Hafich, M. J.; Skogman, R. A.; Petersen, P. E.; Kawanishi, H.

    1981-01-01

    Transverse junction stripe (TJS) lasers with periodic feedback were fabricated in two geometries. An interferometric and wet chemical etching technique was used to create a feedback grating across the entire pumping region for the distributed feedback (DFB) TJS laser and to create the separate distributed Bragg reflectors/DBR) for the TJS/DBR laser. The TJS/DFB laser was a double heterostructure device grown by liquid phase epitaxy (LPE) and had a third order grating etched in the top ALO.2GaO.8As layer. The grating was buried by growing an ALO.35GaO.65As layer on the grating by metal organic chemical vapor deposition (MO-CVD). The TJS/DBR laser was also fabricated in an LPE double heterostructure. The top AlGaAs layer was thinned to 0.1 micron over more than half of the laser so that the grating would be close to the GaAs active layer and optical field. Single mode operation in both configurations was obtained. The thermal shift of the laser wavelength in both cases was less than 1 Angstrom/deg K, compared to the 3 Angstrom/deg K shift of the spontaneous emission peak.

  15. In-situ monitoring of GaSb, GaInAsSb, and AlGaAsSb

    SciTech Connect

    Vineis, C.J. |; Wang, C.A.; Jensen, K.F.; Breiland, W.G.

    1998-06-01

    Suitability of silicon photodiode detector arrays for monitoring the spectral reflectance during epitaxial growths of GaSb, AlGaAsSb, and GaInAsSb, which have cutoff wavelengths of 1.7, 1.2, and 2.3 {micro}m, respectively, is demonstrated. These alloys were grown lattice matched to GaSb in a vertical rotating-disk reactor, which was modified to accommodate near normal reflectance without affecting epilayer uniformity. By using a virtual interface model, the growth rate and complex refractive index at the growth temperature are extracted for these alloys over the 600 to 950 nm spectral range. Excellent agreement is obtained between the extracted growth rate and that determined by ex-situ measurement. Optical constants are compared to theoretical predictions based on an existing dielectric function model for these materials. Furthermore, quantitative analysis of the entire reflectance spectrum yields valuable information on the approximate thickness of overlayers on the pregrowth substrate.

  16. Effect of Al-mole fraction in Al{sub x}Ga{sub 1−x}N grown by MOCVD

    SciTech Connect

    Jayasakthi, M. Ramesh, R. Prabakaran, K. Loganathan, R. Kuppulingam, B. Balaji, M. Arivazhagan, P. Sankaranarayanan, S. Singh, Shubra Baskar, K.

    2014-04-24

    AlGaN/AlN layers were grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. The Al{sub x}Ga{sub 1−x}N layer composition was varied from 15% to 25%. The crystalline quality, thickness and aluminum (Al) composition of AlGaN were determined using high resolution X-ray diffraction (HRXRD). The growth rate decreases on increasing Al composition. Reciprocal space mapping (RSM) was used to estimate the strain and relaxation between AlGaN and AlN. The optical properties of AlGaN layers were investigated by room temperature Photoluminescence (PL). The AlGaN peak shifts towards lower wavelength with Al composition. The surface morphology of AlGaN was studied by atomic force microscopy (AFM). Root mean square (RMS) roughness values were found to be increased in AlGaN layers with composition.

  17. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    NASA Astrophysics Data System (ADS)

    Zawadzki, Wlodek; Raymond, Andre; Kubisa, Maciej

    2016-05-01

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov-de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov-de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of negatively

  18. Strain relaxation in (0001) AlN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Bourret, Alain; Adelmann, Christoph; Daudin, Bruno; Rouvière, Jean-Luc; Feuillet, Guy; Mula, Guido

    2001-06-01

    The strain-relaxation phenomena during the early stages of plasma-assisted molecular-beam epitaxy growth of lattice-mismatched wurtzite (0001) AlN/GaN heterostructures have been studied by real-time recording of the in situ reflection high-energy electron diffraction (RHEED), ex situ transmission electron microscopy (TEM), and atomic-force microscopy. A pseudo-two-dimensional layer-by-layer growth is observed at substrate temperatures of 640-660 °C, as evidenced by RHEED and TEM. However, the variation of the in-plane lattice parameter during growth and after growth has been found to be complex. Three steps have been seen during the deposition of lattice-mismatched AlN and GaN layers: they were interpreted as the succession of the formation of flat platelets, 3-6 monolayers high (0.8-1.5 nm) and 10-20 nm in diameter, their partial coalescence, and gradual dislocation introduction. Platelet formation leads to elastic relaxation as high as 1.8%, i.e., a considerable part of the AlN/GaN lattice mismatch of 2.4%, and can be reversible. Platelets are always observed during the initial stages of growth and are almost insensitive to the metal/N ratio. In contrast, platelet coalescence and dislocation introduction are very dependent on the metal/N ratio: no coalescence occurs and the dislocation introduction rate is higher under N-rich conditions. In all cases, the misfit dislocation density, as measured by the irreversible relaxation, is initially of the order of 7×1011 cm-2 and decreases exponentially with the layer thickness. These results are interpreted in the framework of a model that emphasizes the important role of the flat platelets for dislocation nucleation.

  19. Monitoring and Controlling of Strain During MOCVD of AlGaN for UV Optoelectronics

    SciTech Connect

    Han, J.; Crawford, M.H.; Shul, R.J.; Hearne, S.J.; Chason, E.; Figiel, J.J.; Banas, M.

    1999-01-14

    The grown-in tensile strain, due to a lattice mismatch between AlGaN and GaN, is responsible for the observed cracking that seriously limits the feasibility of nitride-based ultraviolet (UV) emitters. We report in-situ monitoring of strain/stress during MOCVD of AlGaN based on a wafer-curvature measurement technique. The strain/stress measurement confirms the presence of tensile strain during growth of AlGaN pseudomorphically on a thick GaN layer. Further growth leads to the onset of stress relief through crack generation. We find that the growth of AlGaN directly on low-temperature (LT) GaN or AlN buffer layers results in a reduced and possibly controllable strain.

  20. Dual Band Deep Ultraviolet AlGaN Photodetectors

    NASA Technical Reports Server (NTRS)

    Aslam, S.; Miko, L.; Stahle, C.; Franz, D.; Pugel, D.; Guan, B.; Zhang, J. P.; Gaska, R.

    2007-01-01

    We report on the design, fabrication and characterization of a back-illuminated voltage bias selectable dual-band AlGaN UV photodetector. The photodetector can separate UVA and W-B band radiation by bias switching a two terminal n-p-n homojunction structure that is fabricated in the same pixel. When a forward bias is applied between the top and bottom electrodes, the detector can sense UV-A and reject W-B band radiation. Alternatively, under reverse bias, the photodetector can sense UV-B and reject UV-A band radiation.

  1. Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys in the temperature range of 700-750 deg C

    NASA Technical Reports Server (NTRS)

    Chiang, K. T.; Meier, G. H.

    1980-01-01

    The effect of SO3 pressure in the gas phase on the Na2SO4 induced hot corrosion of Co-Cr, Ni-Cr, and Co-Cr-Al alloys was studied in the temperature range 700 to 750 C. The degradation of the Co-Cr and Ni-Cr alloys was found to be associated with the formation of liquid mixed sulfates (CoSO4-Na2SO4 or NiSO4-Na2SO4) which provided a selective dissolution of the Co or Ni and a subsequent sulfidation oxidation mode of attack which prevented the maintenance of a protective Cr2O3 film. A clear mechanism was not developed for the degradation of Co-Cr-Al alloys. A pitting corrosion morphology was induced by a number of different mechanisms.

  2. Optical constants of GaAs-AlGaAs superlattices and multiple quantum wells

    NASA Technical Reports Server (NTRS)

    Kahen, K. B.; Leburton, J. P.

    1986-01-01

    The optical properties of GaAs-Al sub x Ga sub 1-xAs superlattices are calculated as a function of the frequency and superlattice structure. The comutations are performed using a partition method which combines the vectors k.p method with the pseudopotential technique. The influence of the super-structure on the electronic properties of the systems is accounted for by appropriate quantization conditions. The anisotropy and structure dependence of the dielectric constant result mainly from the contribution of the gamma region while the contributions of the other regions of the Brillouin zone are rather insensitive to the superlattice structure. The superlattice index of refraction values are shown to attain maxima at the various quantized transition energies, where for certain structures, the difference between the refractive indices of the superlattices and its corresponding Al sub x Ga sub 1-xAs alloy can be as large as 2%. In general results are in good agreement with the experimental data.

  3. V-pit to truncated pyramid transition in AlGaN-based heterostructures

    NASA Astrophysics Data System (ADS)

    Mogilatenko, A.; Enslin, J.; Knauer, A.; Mehnke, F.; Bellmann, K.; Wernicke, T.; Weyers, M.; Kneissl, M.

    2015-11-01

    The formation of three-dimensional truncated pyramids after the deposition of AlN/GaN superlattices onto (0001) AlN/sapphire templates has been analysed by atomic force microscopy as well as transmission electron microscopy. V-pits in AlN layers and the formation of nano-mounds around the v-pit edges are suggested to be responsible for the pyramid formation. Keeping the individual AlN layer thickness at 2.5 nm in the 80xAlN/GaN superlattice, the transformation to the three-dimensional pyramids is observed when the individual GaN layer thickness exceeds 1.5 nm. A subsequent overgrowth of the pyramidal structures by AlGaN results in inhomogeneous Ga distribution in the layers and laterally inhomogeneous strain states. Nevertheless, compared to the growth on planar layers, the overgrowth of the truncated pyramids leads to a slight reduction in dislocation density from 1 · 1010 cm-2 (for GaN thickness of 1 nm in SL) to 7 · 109 cm-2 (for GaN thickness of 2 nm in SL). The non-planar growth front and thus the compositional inhomogeneity in AlGaN vanish gradually with increasing AlGaN thickness. As a result, homogeneous 4 μm thick Al0.5Ga0.5N buffer layers suitable for the fabrication of UV-B LED structures can be obtained.

  4. Identification of the Ga interstitial in Al(x)Ga(1-x)As by optically detected magnetic resonance

    NASA Technical Reports Server (NTRS)

    Kennedy, T. A.; Spencer, M. G.

    1986-01-01

    A new optically detected magnetic resonance spectrum in Al(x)Ga(1-x)As is reported and assigned to native Ga interstitials. Luminescence-quenching signals were observed over the energy region from 0.75 to 1.1 eV. The optically detected magnetic resonance is nearly isotropic, with spin-Hamiltonian parameters g = 2.025 + or - 0.006, central hyperfine splitting A(Ga-69) = 0.050 + or - 0.001/cm, and A(Ga-71) = 0.064 + or - 0.001/cm for H near the 001 line. The strong hyperfine coupling denotes an electronic state of A1 symmetry, which current theories predict for the Ga interstitial but not the Ga antisite. The slight anisotropy probably indicates that the Ga(i) is paired with a second, unknown defect.

  5. Terahertz intersubband transition in GaN/AlGaN step quantum well

    NASA Astrophysics Data System (ADS)

    Wu, F.; Tian, W.; Yan, W. Y.; Zhang, J.; Sun, S. C.; Dai, J. N.; Fang, Y. Y.; Wu, Z. H.; Chen, C. Q.

    2013-04-01

    The influences of polarization and structure parameters on the intersubband transition frequency within terahertz (THz) range and oscillator strength in GaN/AlGaN step quantum well have been investigated by solving Schrödinger and Poisson equations self-consistently. The results show that the Al mole compositions of step quantum well and space barrier have a significant effect on the THz intersubband transition frequency. A specific phenomenon is found that the minimum energy spacing between the ground state and first excited state can be achieved as the Al mole composition of space barrier is about twice of that of step well. In particular, an intersubband transition with energy of 19.8 meV (4.83 THz) can be obtained with specifically designed parameters. This specific phenomenon still exists in a wide range of step well width and a narrow range of well width with less than 3% fluctuation of the Al mole composition of barrier. In addition, oscillator strength and dipole matrix element versus the widths of well and step well, the influences of doping location and concentration on the absorption coefficient, are also investigated in detail in this study. The results should be of benefit to the design of devices operating in the THz frequency range.

  6. Cyclic Oxidation of FeCrAlY/Al2O3 Composites

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.

    1999-01-01

    Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.

  7. A sulfur segregation study of PWA 1480, NiCrAl, and NiAl alloys

    NASA Technical Reports Server (NTRS)

    Jayne, D. T.; Smialek, J. L.

    1993-01-01

    Some nickel based superalloys show reduced oxidation resistance from the lack of an adherent oxide layer during high temperature cyclic oxidation. The segregation of sulfur to the oxide-metal interface is believed to effect oxide adhesion, since low sulfur alloys exhibit enhanced adhesion. X ray Photoelectron Spectroscopy (XPS) was combined with an in situ sample heater to measure sulfur segregation in NiCrAl, PWA 1480, and NiAl alloys. The polished samples with a 1.5 to 2.5 nm (native) oxide were heated from 650 to 1100 C with hold times up to 6 hr. The sulfur concentration was plotted as a function of temperature versus time at temperature. One NiCrAl sulfur study was performed on the same casting used by Browning to establish a base line between previous Auger Electron Spectroscopy (AES) results and the XPS results of this study. Sulfur surface segregation was similar for PWA 1480 and NiCrAl and reached a maximum of 30 at% at 800 to 850 C. Above 900 C the sulfur surface concentration decreased to about 3 at% at 1100 C. These results are contrasted to the minimal segregation observed for low sulfur hydrogen annealed materials which exhibit improved scale adhesion.

  8. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  9. Nitrogen-concentration control in GaNAs/AlGaAs quantum wells using nitrogen δ-doping technique

    SciTech Connect

    Mano, Takaaki; Jo, Masafumi; Kuroda, Takashi; Noda, Takeshi; Sugimoto, Yoshimasa; Sakuma, Yoshiki; Elborg, Martin; Sakoda, Kazuaki

    2014-05-15

    GaNAs/Al{sub 0.35}Ga{sub 0.65}As multiple quantum wells (MQWs) with nitrogen δ-doping were fabricated on GaAs (100) substrates by plasma-assisted molecular beam epitaxy. High controllability of nitrogen-concentrations in the MQWs was achieved by tuning nitrogen δ-doping time. The maximum nitrogen concentration in the MQWs was 2.8%. The MQWs exhibit intense, narrow photoluminescence emission.

  10. Electrically detected nuclear magnetic resonance in GaAs/AlGaAs-based quantum point contacts

    NASA Astrophysics Data System (ADS)

    Keane, Zachary; Godfrey, Matthew; Burke, Adam; Chen, Jason; Fricke, Sebastian; Klochan, Oleh; Micolich, Adam; Beere, Harvey; Ritchie, Dave; Trunov, Kirill; Reuter, Dirk; Wieck, Andreas; Hamilton, Alex

    2011-03-01

    Nuclear magnetic resonance (NMR) is a well-known technique with widespread applications in physics, chemistry and medicine. Conventional NMR studies use inductive coils to detect the magnetic field produced by precessing nuclear spins; this approach requires on the order of 1012 spins for detection. Recently, resistive detection of NMR through the hyperfine interaction has been demonstrated with electrons in mesoscopic 2- and 1-dimensional devices based on high-quality GaAs/AlGaAs heterostructures. These studies are typically sensitive to 108 spins, enabling NMR on much smaller sample volumes. Holes are predicted to have much weaker nuclear spin coupling than electrons, which could be relevant to the emerging fields of spintronics and quantum information processing. We present a preliminary comparison between the magnitude of the NMR signal in electron and hole quantum point contacts.

  11. Performance enhancement of gate-annealed AlGaN/GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Mahajan, Somna S.; Malik, Amit; Laishram, Robert; Vinayak, Seema

    2017-03-01

    The electrical performances of unannealed and post gate-annealed AlGaN/GaN High Electron Mobility Transistors (HEMTs) were analyzed. A considerable improvement in HEMT parameters such as the drain source current ( I ds ), transconductance ( g m ), gate reverse leakage current ( I r ) and off-state breakdown voltage ( V boff ) were observed in optimally post gate-annealed HEMT devices. The improvement in the device parameters was correlated with the combined effects of an improved electron mobility and the removal of interface inhomogenity in the gated region as a result of gate annealing. The gate-annealed HEMTs, thus, delivered an output power of 5 W/mm at the S and the C bands.

  12. Small signal modeling of AlGaN/GaN HEMTs with consideration of CPW capacitances

    NASA Astrophysics Data System (ADS)

    Jiangfeng, Du; Peng, Xu; Kang, Wang; Chenggong, Yin; Yang, Liu; Zhihong, Feng; Shaobo, Dun; Qi, Yu

    2015-03-01

    Given the coplanar waveguide (CPW) effect on AlGaN/GaN high electron mobility transistors at a high frequency, the traditional equivalent circuit model cannot accurately describe the electrical characteristics of the device. The admittance of CPW capacitances is large when the frequency is higher than 40 GHz; its impact on the device cannot be ignored. In this study, a small-signal equivalent circuit model considering CPW capacitance is provided. To verify the model, S-parameters are obtained from the modeling and measurements. A good agreement is observed between the simulation and measurement results, indicating the reliability of the model. Project supported by the National Natural Science Foundation of China (Nos. 61376078, 61274086) and the Fundamental Research Funds for the Central Universities of China (No. ZYGX2012J041).

  13. Effect of thermal neutrons on emission characteristics of InGaAs/AlGaAs heterolasers

    SciTech Connect

    Makhsudov, B I

    2015-03-31

    It is studied how the threshold current of InGaAs/AlGaAs quantum-well injection heterolasers emitting near the wavelength λ = 0.7 μm changes under irradiation by thermal neutrons. It is found that the threshold pump current decreases at small doses (10{sup -2} neutron cm{sup -2}), while doses exceeding 6 × 10{sup 7} neutron cm{sup -2} cause an increase in this current and degradation of the structure. It is found that the main reasons for an increase in the threshold current at high irradiation doses are the nuclear reactions of the {sub 49}In{sup 115} (n, γ) → {sub 49}In{sup 116} type and the β-decay of the {sub 49}In{sup 116} isotope, which results in the appearance of {sub 50}Sn{sup 116} atoms. (lasers)

  14. Small-signal model parameter extraction for AlGaN/GaN HEMT

    NASA Astrophysics Data System (ADS)

    Le, Yu; Yingkui, Zheng; Sheng, Zhang; Lei, Pang; Ke, Wei; Xiaohua, Ma

    2016-03-01

    A new 22-element small signal equivalent circuit model for the AlGaN/GaN high electron mobility transistor (HEMT) is presented. Compared with the traditional equivalent circuit model, the gate forward and breakdown conductions (G gsf and G gdf) are introduced into the new model to characterize the gate leakage current. Additionally, for the new gate-connected field plate and the source-connected field plate of the device, an improved method for extracting the parasitic capacitances is proposed, which can be applied to the small-signal extraction for an asymmetric device. To verify the model, S-parameters are obtained from the modeling and measurements. The good agreement between the measured and the simulated results indicate that this model is accurate, stable and comparatively clear in physical significance.

  15. AlGaAs/GaAs laser diode bars (λ = 808 nm) with improved thermal stability

    SciTech Connect

    Marmalyuk, A A; Ladugin, M A; Andreev, A Yu; Telegin, K Yu; Yarotskaya, I V; Meshkov, A S; Konyaev, V P; Sapozhnikov, S M; Lebedeva, E I; Simakov, V A

    2013-10-31

    Two series of AlGaAs/GaAs laser heterostructures have been grown by metal-organic vapour phase epitaxy, and 808-nm laser diode bars fabricated from the heterostructures have been investigated. The heterostructures differed in waveguide thickness and quantum well depth. It is shown that increasing the barrier height for charge carriers in the active region has an advantageous effect on the output parameters of the laser sources in the case of the heterostructures with a narrow symmetric waveguide: the slope of their power – current characteristics increased from 0.9 to 1.05 W A{sup -1}. Thus, the configuration with a narrow waveguide and deep quantum well is better suited for high-power laser diode bars under hindered heat removal conditions. (lasers)

  16. Spectroscopy in the gas phase with GaAs/AlGaAs quantum-cascade lasers.

    PubMed

    Hvozdara, L; Gianordoli, S; Strasser, G; Schrenk, W; Unterrainer, K; Gornik, E; Murthy, C S; Kraft, M; Pustogow, V; Mizaikoff, B; Inberg, A; Croitoru, N

    2000-12-20

    We demonstrate what we believe is the first application of the recently developed electrically pumped GaAs/AlGaAs quantum-cascade lasers in a spectroscopic gas-sensing system by use of hollow waveguides. Laser light with an emission maximum at 10.009 microm is used to investigate the mid-infrared absorption of ethene at atmospheric pressure. We used a 434-mm-long silver-coated silica hollow waveguide as a sensing element, which served as a gas absorption cell. Different mixtures of helium and ethene with known concentrations are flushed through the waveguide while the laser radiation that passes through the waveguide is analyzed with a Fourier-transform infrared spectrometer. The experimentally obtained discrete ethene spectrum agrees well with the calculated spectrum. A detection threshold of 250 parts per million is achieved with the current setup.

  17. Proton implantation for the isolation of AlGaAs/GaAs quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Szerling, A.; Kosiel, K.; Kozubal, M.; Myśliwiec, M.; Jakieła, R.; Kuc, M.; Czyszanowski, T.; Kruszka, R.; Pągowska, K.; Karbownik, P.; Barcz, A.; Kamińska, E.; Piotrowska, A.

    2016-07-01

    The novel fabrication scheme of the mid-infrared (∼9.5 μm) Al0.45Ga0.55As/GaAs plasmon-enhanced-waveguide quantum cascade laser (QCL) is reported. The electric isolation was made exclusively by 6.5 μm-deep proton implantation. The applied implantation allowed us to suppress the current spreading and at the same time enabled the laser radiation confinement without any mesa formation. A galvanic gold layer at least 3.5 μm thick covering the top ohmic contact was used as a mask for implantation. This mask was not removed after the implantation, but it served for heat spreading from the laser. A considerable reduction in the necessary technological steps was obtained with the presented novel fabrication scheme, in comparison with the standard mesa-etching-based method.

  18. Electrically biased GaAs/AlGaAs heterostructures for enhanced detection of bacteria

    NASA Astrophysics Data System (ADS)

    Aziziyan, Mohammad R.; Hassen, Walid M.; Dubowski, Jan J.

    2016-03-01

    We have examined the influence of electrical bias on immobilization of bacteria on the surface of GaAs/AlGaAs heterostructures, functionalized with an alkanethiol based architecture. A mixture of biotinylated polyethylene glycol (PEG) thiol and hexadecanethiol was applied to attach neutravidin and antibodies targeting specific immobilization of Legionella pneumophila. An electrochemical setup was designed to bias biofunctionalized samples with the potential measured versus silver/silver chloride reference electrode in a three electrode configuration system. The immobilization efficiency has been examined with fluorescence microscopy after tagging captured bacteria with fluorescein labeled antibodies. We demonstrate more than 2 times enhanced capture of Legionella pneumophila, suggesting the potential of electrically biased biochips to deliver enhanced sensitivity in detecting these bacteria.

  19. Microwave characterization and modeling of GaAs/AlGaAs heterojunction bipolar transistors

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Romanofsky, Robert R.

    1987-01-01

    The characterization and modeling of a microwave GaAs/AlGaAs heterojunction Bipolar Transistor (HBT) are discussed. The de-embedded scattering parameters are used to derive a small signal lumped element equivalent circuit model using EEsof's Touchstone software package. Each element in the equivalent circuit model is shown to have its origin within the device. The model shows good agreement between the measured and modeled scattering parameters over a wide range of bias currents. Further, the MAG (maximum available power gain) and the h sub 21 (current gain) calculated from the measured data and those predicted by the model are also in good agreement. Consequently, the model should also be capable of predicting the f sub max and the f sub T of other HBTs.

  20. Large linear magnetoresistance in a GaAs/AlGaAs heterostructure

    SciTech Connect

    Aamir, Mohammed Ali Goswami, Srijit Ghosh, Arindam; Baenninger, Matthias; Farrer, Ian; Ritchie, David A.; Tripathi, Vikram; Pepper, Michael

    2013-12-04

    We report non-saturating linear magnetoresistance (MR) in a two-dimensional electron system (2DES) at a GaAs/AlGaAs heterointerface in the strongly insulating regime. We achieve this by driving the gate voltage below the pinch-off point of the device and operating it in the non-equilibrium regime with high source-drain bias. Remarkably, the magnitude of MR is as large as 500% per Tesla with respect to resistance at zero magnetic field, thus dwarfing most non-magnetic materials which exhibit this linearity. Its primary advantage over most other materials is that both linearity and the enormous magnitude are retained over a broad temperature range (0.3 K to 10 K), thus making it an attractive candidate for cryogenic sensor applications.

  1. Performance enhancement of AlGaN/GaN nanochannel omega-FinFET

    NASA Astrophysics Data System (ADS)

    Im, Ki-Sik; Seo, Jae Hwa; Vodapally, Sindhuri; Kang, In Man; Lee, Jae-Hoon; Cristoloveanu, Sorin; Lee, Jung-Hee

    2017-03-01

    Novel AlGaN/GaN omega-shaped nanochannel FinFETs with fin width of 50 nm were successfully fabricated using TMAH lateral wet etching with ALD HfO2 sidewall spacer. This fin structure apparently exhibited the current spreading in the access region, which results in the suppression of the drain lag effect at high drain voltage and sharp switching performance with subthreshold swing of 57-65 mV/decade. Excellent on- and off-state state performances for the fabricated device prove that the omega-shaped gate structure not only exhibits excellent gate controllability, but also decouples the active nano-channel region from the underlying thick buffer. The proposed device is very promising candidate for high-performance device applications.

  2. Role of iron impurity complexes in degradation of GaN/AlGaN HEMTs

    NASA Astrophysics Data System (ADS)

    Puzyrev, Yevgeniy; Pantelides, Sokrates; Vanderbilt University Team

    2014-03-01

    GaN/AlGaN high electron mobility transistors (HEMTs) are leading candidates for power RF devices, but they suffer from reliability issues, in particular, a current collapse. Experiments have shown that the current collapse is correlated with the presence of a Tp1 trap in either the GaN substrate or at the surface with an energy level at about 0.55 eV below the GaN conduction band. Recent experiments demonstrated that the Ec-0.55eV level increases with the decrease of the distance from the channel to the Fe-doped GaN. Another study found a correlation between threading dislocation density (TDD) and the concentration of Ec-0.55eV trap. Drastic decrease of Ec-0.55eV trap concentration is observed after hydrogenation of the samples. During OFF state stress, the population of the generated Tp1 trap is proportional to the square root of the stress time, suggesting Tp1 generation is correlated to the diffusion of a point defect. We present results of first-principle calculations and show that degradation occurs by the dehydrogenation of Fe and Fe-vacancy complexes. Using these results we analyze available experimental data and provide a comprehensive picture of the generation of the Ec-0.55eV trap level. This work was supported in part by the Office of Naval research MURI grant N-00014-08-100655 and by the McMinn Endowment at Vanderbilt University.

  3. Momentum relaxation due to polar optical phonons in AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, J.-Z.; Dyson, A.; Ridley, B. K.

    2011-10-01

    Using the dielectric continuum (DC) model, momentum relaxation rates are calculated for electrons confined in quasi-two-dimensional (quasi-2D) channels of AlGaN/GaN heterostructures. Particular attention is paid to the effects of half-space and interface modes on the momentum relaxation. The total momentum relaxation rates are compared with those evaluated by the three-dimensional phonon (3DP) model, and also with the Callen results for bulk GaN. In heterostructures with a wide channel (effective channel width >100 Å), the DC and 3DP models yield very close momentum relaxation rates. Only for narrow-channel heterostructures do interface phonons become important in momentum relaxation processes, and an abrupt threshold occurs for emission of interface as well as half-space phonons. For a 30-Å GaN channel, for instance, the 3DP model is found to underestimate rates just below the bulk phonon energy by 70% and overestimate rates just above the bulk phonon energy by 40% compared to the DC model. Owing to the rapid decrease in the electron-phonon interaction with the phonon wave vector, negative momentum relaxation rates are predicted for interface phonon absorption in usual GaN channels. The total rates remain positive due to the dominant half-space phonon scattering. The quasi-2D rates can have substantially higher peak values than the three-dimensional rates near the phonon emission threshold. Analytical expressions for momentum relaxation rates are obtained in the extreme quantum limits (i.e., the threshold emission and the near subband-bottom absorption). All the results are well explained in terms of electron and phonon densities of states.

  4. Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States

    USGS Publications Warehouse

    Wilshire, H.G.; Shervais, J.W.

    1975-01-01

    Ultramafic xenoliths in basalts from the western United States are divided into Al-augite and Cr-diopside groups. The Al-augite group is characterized by Al, Ti-rich augites, comparatively Fe-rich olivine and orthopyroxene, and Al-rich spinel, the Cr-diopside group by Cr-rich clinopyroxene and spinel and by Mg-rich olivine and pyroxenes. Both groups have a wide range of subtypes, but the Al-augite group is dominated by augite-rich varieties, and the Cr-diopside group by olivine-rich lherzolites. ?? 1975.

  5. Interaction of Cr3+ with valence and conduction bands in the long persistent phosphor ZnGa2O4:Cr3+, studied by ENDOR spectroscopy

    NASA Astrophysics Data System (ADS)

    Binet, Laurent; Sharma, Suchinder K.; Gourier, Didier

    2016-09-01

    Cr3+-doped zinc gallate ZnGa2O4 is a red-near infrared (IR) long persistent phosphor that can be excited by orange-red light, in the transparency window of living tissues. With this property, persistent luminescence nanoparticles were recently used for in vivo optical imaging of tumors in mice. In order to understand the origin of the excitability of persistent luminescence by visible light in this material, a Q-band ENDOR investigation of 71/69Ga and 53Cr nuclei was performed in ZnGa2O4:Cr3+ to get information on the interaction of Cr3+ with valence and conduction bands. The positive electron spin density at Ga nuclei revealed a dominant interaction of the 4A2 ground state of Cr3+ with the valence band, and a weaker interaction with the conduction band. The latter may occur only in the excited 2E and 4T2 states of Cr3+. It is proposed that when these two interactions are present, pairs of electrons and holes can be generated from excited Cr3+ in distorted sites undergoing local electric field produced by neighboring defects with opposite charges.

  6. Interaction of Cr(3+) with valence and conduction bands in the long persistent phosphor ZnGa2O4:Cr(3+), studied by ENDOR spectroscopy.

    PubMed

    Binet, Laurent; Sharma, Suchinder K; Gourier, Didier

    2016-09-28

    Cr(3+)-doped zinc gallate ZnGa2O4 is a red-near infrared (IR) long persistent phosphor that can be excited by orange-red light, in the transparency window of living tissues. With this property, persistent luminescence nanoparticles were recently used for in vivo optical imaging of tumors in mice. In order to understand the origin of the excitability of persistent luminescence by visible light in this material, a Q-band ENDOR investigation of (71/69)Ga and (53)Cr nuclei was performed in ZnGa2O4:Cr(3+) to get information on the interaction of Cr(3+) with valence and conduction bands. The positive electron spin density at Ga nuclei revealed a dominant interaction of the (4)A2 ground state of Cr(3+) with the valence band, and a weaker interaction with the conduction band. The latter may occur only in the excited (2)E and (4)T2 states of Cr(3+). It is proposed that when these two interactions are present, pairs of electrons and holes can be generated from excited Cr(3+) in distorted sites undergoing local electric field produced by neighboring defects with opposite charges.

  7. The effect of surface cleaning on quantum efficiency in AlGaN photocathode

    NASA Astrophysics Data System (ADS)

    Hao, Guanghui; Zhang, Yijun; Jin, Muchun; Feng, Cheng; Chen, Xinlong; Chang, Benkang

    2015-01-01

    To improve the quantum efficiency of AlGaN photocathode, various surfaces cleaning techniques for the removal of alumina and carbon from AlGaN photocathode surface were investigated. The atomic compositions of AlGaN photocathode structure and surface were measured by the X-ray photoelectron spectroscopy and Ar+ ion sputtering. It is found that the boiling KOH solution and the mixture of sulfuric acid and hydrogen peroxide, coupled with the thermal cleaning at 850 °C can effectively remove the alumina and carbon from the AlGaN photocathode surface. The quantum efficiency of AlGaN photocathode is improved to 35.1% at 240 nm, an increase of 50% over the AlGaN photocathode chemically cleaned by only the mixed solution of sulfuric acid and hydrogen peroxide and thermally cleaned at 710 °C.

  8. InGaAsSb/AlGaAsSb Heterojunction Phototransistors for Infrared Applications

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. N.; Sulima, Oleg V.; Ismail, Syed; Singh, Upendra N.

    2006-01-01

    High quality infrared (IR) quantum detectors are important for several applications, such as atmospheric remote sensing, chemical detection and absorption spectroscopy. Although several IR detectors are commercially available, with different materials and structures, they provide limited performance regarding the signal-to-noise ratio and the corresponding minimum detectable signal. InGaAsSb/AlGaAsSb heterojunction based phototransistors show strong potential for developing IR sensors with improved performance. In this paper, the performance of a novel npn InGaAsSb/AlGaAsSb heterojunction phototransistor is presented. This performance study is based on experimental characterization of the device dark current, noise and spectral response. Detectivity of 1.7x10(exp 9) cmHz(exp 1/2)/W at 2 microns was obtained at 100 C temperature and 2 V bias voltage. This corresponds to a responsivity of 94.7 A/W and an internal gain of 156 with about 37.7% quantum efficiency. Reducing the temperature to -30 C allows to increase the bias to 3V and enhance the detectivity to 8.7x10(exp 10) cmHz(exp 1/2)/W at the same wavelength, which corresponds to a responsivity of 386.5 A/W and an internal gain of 288.2 with about 83.3% quantum efficiency. The device impulse response and linearity, including the corresponding dynamic range, also are presented. Impulse response analysis indicated a settling time of about 1.1 s at 2V and 100 C, while linearity measurements indicated a constant responsivity in the radiation intensity range of 1.6x10(exp -7) W/sq cm and 31.6 mW/sq cm.

  9. Spin dependent transport properties of Mn-Ga/MgO/Mn-Ga magnetic tunnel junctions with metal(Mg, Co, Cr) insertion layer

    SciTech Connect

    Liang, S. H.; Tao, L. L.; Liu, D. P. Han, X. F.; Lu, Y.

    2014-04-07

    We report a first principles theoretical investigation of spin polarized quantum transport in Mn{sub 2}Ga/MgO/Mn{sub 2}Ga and Mn{sub 3}Ga/MgO/Mn{sub 3}Ga magnetic tunneling junctions (MTJs) with the consideration of metal(Mg, Co, Cr) insertion layer effect. By changing the concentration of Mn, our calculation shows a considerable disparity in transport properties: A tunneling magnetoresistance (TMR) ratio of 852% was obtained for Mn{sub 2}Ga-based MTJs, however, only a 5% TMR ratio for Mn{sub 3}Ga-based MTJs. In addition, the influence of insertion layer has been considered in our calculation. We found the Co insertion layer can increase the TMR of Mn{sub 2}Ga-based MTJ to 904%; however, the Cr insertion layer can decrease the TMR by 668%; A negative TMR ratio can be obtained with Mg insertion layer. Our work gives a comprehensive understanding of the influence of different insertion layer in Mn-Ga based MTJs. It is proved that, due to the transmission can be modulated by the interfacial electronic structure of insertion, the magnetoresistance ratio of Mn{sub 2}Ga/MgO/Mn{sub 2}Ga MTJ can be improved by inserting Co layer.

  10. Corrosion and Discharge Behaviors of Al-Mg-Sn-Ga-In in Different Solutions

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yin, Xiang; Yan, Yang; Dai, Yilong; Fan, Sufeng; Qiao, Xueyan; Yu, Kun

    2016-08-01

    Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga-0.05 wt.%In and Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga alloys were prepared by melting, casting and cold rolling. Corrosion and discharge behaviors of the two experimental alloys were investigated by electrochemical measurement, self-corrosion rate measurement, air battery testing, and scanning electron microscopy. The results showed that Al-Mg-Sn-Ga-In alloy exhibited higher electrochemical activity than Al-Mg-Sn-Ga alloy in 2 M NaCl solution, while it showed lower electrochemical activity than Al-Mg-Sn-Ga alloy in 4 M NaOH solution. By comparison with the air battery based on Al-Mg-Sn-Ga alloy, the battery with Al-Mg-Sn-Ga-In alloy cannot exhibit better discharge performance in 4 M NaOH electrolyte. However, the performance of the air battery based on Al-Mg-Sn-Ga-In alloy was greatly improved due to the In-rich inclusions and the uniform corroded morphology in 2 M NaCl electrolyte. Thus, Al-Mg-Sn-Ga-In alloy was a good anode material for Al-air battery in 2 M NaCl electrolyte.

  11. Mechanism of stress control for GaN growth on Si using AlN interlayers

    NASA Astrophysics Data System (ADS)

    Suzuki, Michihiro; Nakamura, Akihiro; Nakano, Yoshiaki; Sugiyama, Masakazu

    2017-04-01

    For the purpose of controlling the wafer bow of GaN-on-Si structure, in situ curvature transient during the growth of a GaN layer on an AlN interlayer was investigated systematically by estimating the compressive strain applied to the GaN layer with the progress of the layer growth. The compressive strain was dependent on the morphology of the GaN surface prior to the growth of the AlN interlayer. It was found that the transition sequence from GaN growth to AlN growth induces roughening of the GaN surface and both high NH3 partial pressure and the short transition time were effective for reducing the roughness of the GaN surface beneath the AlN interlayer. The improved transition sequence increased the compressive strain in GaN by a factor of 2.5. The AlN grown at the same temperature as that of GaN was beneficial in both better surface morphology and the reduction of the transition time between GaN growth and AlN growth. With this high-temperature AlN interlayer, its thickness is another important factor governing the compressive strain in GaN. To get AlN relaxed for applying the compressive strain to GaN, the AlN layer should be thicker but too thick layer after relaxation results in surface roughening, which in turn introduces defects to the overlying GaN layer and reduces the compressive strain by partial lattice relaxation of GaN.

  12. Long-Wavelength 256X256 GaAs/AlGaAs Quantum Well Photodetector (QWIP) Palm-Size Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Liu, J.; Luong, E.; McKelvey, M.; Mumolo, J.; Shott, C.; Stetson, N.; Rafol, S.

    1998-01-01

    In this paper, we discuss the development of this very sensitive long-wavelength infrared (LWIR) camera based on a GaAs/AlGaAs QWIP focal plane array (FPA) and its performance in terms of quantum efficiency, NEAT, uniformity, and operability.

  13. Anomalous effects of temperature and UV illumination on the operation of AlGaN/GaN MODFET

    NASA Astrophysics Data System (ADS)

    Valizadeh, Pouya; Alekseev, Egor; Pavlidis, Dimitris; Yun, Feng; Morkoç, Hadis

    2006-02-01

    The impact of high temperature rapid thermal annealing (RTA) on the mode of operation of AlGaN/GaN modulation doped field effect transistors (MODFETs) is reported. It is observed that annealing at high temperatures is capable of turning the normally depletion-mode (D-mode) characteristics of an AlGaN/GaN MODFET, towards that of an enhancement-mode (E-mode). This change is shown to be partly reversible through UV illumination. These results support the arguments on the extensive role of deep surface states on the operation of AlGaN/GaN MODFETs. According to this variation of characteristics, fabrication and characterization of close to E-mode AlGaN/GaN MODFETs are reported, using MBE grown material on sapphire. The devices demonstrate maximum extrinsic gate transconductance of 180 mS/mm. Unity current gain cutoff frequency ( fT) of 5 GHz and maximum oscillation frequency ( fmax) of 14 GHz were measured.

  14. Channel Temperature Estimates for Microwave AlGaN/GaN Power HEMTS on SiC and Sapphire

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2003-01-01

    A simple technique to estimate the channel temperature of a generic AlGaN/GaN HEMTs on SiC or Sapphire, while incorporating temperature dependence of the thermal conductivity is presented. The procedure is validated b y comparing it's predictions with the experimentally measured temperatures in devices presented in three recently published articles.

  15. High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer

    NASA Astrophysics Data System (ADS)

    Ko, Tsung-Shine; Lin, Der-Yuh; Lin, Chia-Feng; Chang, Che-Wei; Zhang, Jin-Cheng; Tu, Shang-Ju

    2017-04-01

    In this paper, we experimentally studied the effect of AlN spacer layer on optical and electrical properties of AlGaN/GaN high electric mobility transistors (HEMTs) grown by metal organic chemical vapor deposition method. For AlGaN layer in HEMT structure, the Al composition of the sample was determined using x-ray diffraction and photoluminescence. Electrolyte electro-reflectance (EER) measurement not only confirmed the aluminum composition of AlGaN layer, but also determined the electric field strength on the AlGaN layer through the Franz-Keldysh oscillation phenomenon. This result indicated that the electric field on the AlGaN layer could be improved from 430 to 621 kV/cm when AlN spacer layer was inserted in HEMT structure, which increased the concentration of two dimensional electron gas (2DEG) and improve the mobility. The temperature dependent Hall results show that both the mobility and the carrier concentration of 2DEG would decrease abruptly causing HEMT loss of function due to phonon scattering and carrier thermal escape when temperature increases above a specific value. Meanwhile, our study also demonstrates using AlN spacer layer could be beneficial to allow the mobility and carrier density of 2DEG sustaining at high temperature region.

  16. Diffusive Interaction Between Ni-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Tkacz-Śmiech, Katarzyna; Danielewski, Marek; Bożek, Bogusław; Berent, Katarzyna; Zientara, Dariusz; Zajusz, Marek

    2017-03-01

    In high-temperature coatings, welded parts, and a range of other applications, components in the contact zone interdiffuse at elevated temperatures and may react to change the phase composition. The diffusion zone can be complex and can consist of sequential layers of intermediate phases, solid solutions, and in the case of multicomponent systems also of multiphase layers. In this work, the interdiffusion in Ni-Cr-Al alloys is studied experimentally and modeled numerically. The diffusion multiples were prepared by hot isostatic pressing and post-annealing at 1473 K (1200 °C). The concentration profiles were measured with wide-line EDS technique which allowed obtaining high-accuracy diffusion paths. The experimental profiles and diffusion paths were compared with numerical results simulated with application of very recent model of interdiffusion in muticomponent-multiphase systems. The calculated and experimental data show good agreement.

  17. Plasma chemistries for dry etching GaN, AlN, InGaN and InAlN

    SciTech Connect

    Pearton, S.J.; Vartuli, C.B.; Lee, J.W.; Donovan, S.M.; MacKenzie, J.D.; Abernathy, C.R.; Shul, R.J.; McLane, G.F.; Ren, F.

    1996-04-01

    Etch rates up to 7,000 {angstrom}/min. for GaN are obtained in Cl{sub 2}/H{sub 2}/Ar or BCl{sub 3}/Ar ECR discharges at 1--3mTorr and moderate dc biases. Typical rates with HI/H{sub 2} are about a factor of three lower under the same conditions, while CH{sub 4}/H{sub 2} produces maximum rates of only {approximately}2,000 {angstrom}/min. The role of additives such as SF{sub 6}, N{sub 2}, H{sub 2} or Ar to the basic chlorine, bromine, iodine or methane-hydrogen plasma chemistries are discussed. Their effect can be either chemical (in forming volatile products with N) or physical (in breaking bonds or enhancing desorption of the etch products). The nitrides differ from conventional III-V`s in that bond-breaking to allow formation of the etch products is a critical factor. Threshold ion energies for the onset of etching of GaN, InGaN and InAlN are {ge} 75 eV.

  18. Modeling of sheet carrier density and microwave frequency characteristics in Spacer based AlGaN/AlN/GaN HEMT devices

    NASA Astrophysics Data System (ADS)

    Mohanbabu, A.; Anbuselvan, N.; Mohankumar, N.; Godwinraj, D.; Sarkar, C. K.

    2014-01-01

    In this paper, we present a physics-based model for two-dimensional electron gas (2DEG) sheet carrier density ns and various microwave characteristics such as transconductance, cut-off frequency (ft) of the proposed Spacer layer based AlxGa1-xN/AlN/GaN High Electron Mobility Transistors (HEMTs) is modeled by considering the quasi-triangular quantum well. To obtain charge density ns, the variation of Fermi level with supply voltage and the formation of various energy sub-bands E0, E1 are considered. The obtained results are simple and easy to analyze the sheet carrier density, DC model and microwave frequency performance analysis for nanoscale Spacer layer based AlxGa1-xN/AlN/GaN HEMT power devices. The Spacer layer based AlGaN/AlN/GaN heterostructure HEMTs shows excellent promise as one of the candidates to substitute present AlGaN/GaN HEMTs for future high speed and high power applications. Derived model results for drain current, transconductance, current-gain cutoff frequency for different short and long gate length device are calibrated and verified with experimental data over a full range for gate and drain applied voltages and is useful for nanoscale and microwave analysis for circuit design.

  19. Study of the effects of GaN buffer layer quality on the dc characteristics of AlGaN/GaN high electron mobility transistors

    DOE PAGES

    Ahn, Shihyun; Zhu, Weidi; Dong, Chen; ...

    2015-04-21

    Here we studied the effect of buffer layer quality on dc characteristics of AlGaN/GaN high electron mobility (HEMTs). AlGaN/GaN HEMT structures with 2 and 5 μm GaN buffer layers on sapphire substrates from two different vendors with the same Al concentration of AlGaN were used. The defect densities of HEMT structures with 2 and 5 μm GaN buffer layer were 7 × 109 and 5 × 108 cm₋2, respectively, as measured by transmission electron microscopy. There was little difference in drain saturation current or in transfer characteristics in HEMTs on these two types of buffer. However, there was no dispersionmore » observed on the nonpassivated HEMTs with 5 μm GaN buffer layer for gate-lag pulsed measurement at 100 kHz, which was in sharp contrast to the 71% drain current reduction for the HEMT with 2 μm GaN buffer layer.« less

  20. Study of the effects of GaN buffer layer quality on the dc characteristics of AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Le, Lingcong; Hwang, Ya-Hsi; Kim, Byung-Jae; Ren, Fan; Pearton, Stephen J.; Lind, Aaron G.; Jones, Kevin S.; Kravchenko, I. I.; Zhang, Ming-Lan

    2015-04-21

    Here we studied the effect of buffer layer quality on dc characteristics of AlGaN/GaN high electron mobility (HEMTs). AlGaN/GaN HEMT structures with 2 and 5 μm GaN buffer layers on sapphire substrates from two different vendors with the same Al concentration of AlGaN were used. The defect densities of HEMT structures with 2 and 5 μm GaN buffer layer were 7 × 109 and 5 × 108 cm₋2, respectively, as measured by transmission electron microscopy. There was little difference in drain saturation current or in transfer characteristics in HEMTs on these two types of buffer. However, there was no dispersion observed on the nonpassivated HEMTs with 5 μm GaN buffer layer for gate-lag pulsed measurement at 100 kHz, which was in sharp contrast to the 71% drain current reduction for the HEMT with 2 μm GaN buffer layer.

  1. Structural and optical investigations of Al xGa 1- xAs:Si/GaAs(1 0 0) MOCVD heterostructures

    NASA Astrophysics Data System (ADS)

    Seredin, P. V.; Glotov, A. V.; Domashevskaya, E. P.; Arsentyev, I. N.; Vinokurov, D. A.; Tarasov, I. S.

    2010-11-01

    Al xGa 1- xAs:Si/GaAs(1 0 0) heterostructure and homoepitaxial GaAs:Si/GaAs(1 0 0) structures grown by MOCVD were investigated. The changes observed in our experiments with highly doped Al xGa 1- xAs alloys, led not only to the reconstruction of the electron density and formation of deep levels (DX-centers) with subsequent relaxation of the crystal lattice in the alloy, but also indicate at the formation of quaternary Al xGa 1- x- ySi y+ zAs 1- z substitution-type alloy grown on GaAs(1 0 0).

  2. Interface states in Al2O3/AlGaN/GaN metal-oxide-semiconductor structure by frequency dependent conductance technique

    NASA Astrophysics Data System (ADS)

    Liao, Xue-Yang; Zhang, Kai; Zeng, Chang; Zheng, Xue-Feng; En, Yun-Fei; Lai, Ping; Hao, Yue

    2014-05-01

    Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/AlGaN/GaN metal-oxide-semiconductor (MOS) structures. Two types of device structures, namely, the recessed gate structure (RGS) and the normal gate structure (NGS), are studied in the experiment. Interface trap parameters including trap density Dit, trap time constant τit, and trap state energy ET in both devices have been determined. Furthermore, the obtained results demonstrate that the gate recess process can induce extra traps with shallower energy levels at the Al2O3/AlGaN interface due to the damage on the surface of the AlGaN barrier layer resulting from reactive ion etching (RIE).

  3. Role of nanoscale AlN and InN for the microwave characteristics of AlGaN/(Al,In)N/GaN-based HEMT

    SciTech Connect

    Lenka, T. R. Panda, A. K.

    2011-09-15

    A new AlGaN/GaN-based high electron mobility transistor (HEMT) is proposed and its micro-wave characteristics are discussed by introducing a nanoscale AlN or InN layer to study the potential improvement in their high frequency performance. The 2DEG transport mechanism including various sub-band calculations for both (Al,In) N-based HEMTs are also discussed in the paper. Apart from direct current characteristics of the proposed HEMT, various microwave parameters such as transconductance, unit current gain (h{sub 21} = 1) cut-off frequency (f{sub t}), high power-gain frequency (f{sub max}). Masons available/stable gain and masons unilateral gain are also discussed for both devices to understand its suitable deployment in microwave frequency range.

  4. Low frequency noise of AlGaN/GaN MODFETs: A comparative study of surface, barrier and heterointerface effects

    NASA Astrophysics Data System (ADS)

    Valizadeh, Pouya; Pavlidis, Dimitris; Shiojima, Kenji; Makimura, Takashi; Shigekawa, Naoteru

    2005-08-01

    The impact of surface passivation, barrier Al composition and heterointerface quality on the low frequency noise characteristics of AlGaN/GaN MODFETs is investigated. Despite the considerable variation of noise level and frequency exponent of the 1/ f noise characteristics of different heterointerface quality devices, it is found that the drain noise current characteristics are independent of Al composition. The surface treatment of same heterointerface roughness devices is also found to have no influence. This observation, while excluding the drain noise current as a tool suitable for studying the surface conditions and barrier type of AlGaN/GaN MODFETs, suggests the possibility of conducting low frequency noise studies for investigating the quality of the heterointerface.

  5. Short-period intrinsic Stark GaN /AlGaN superlattice as a Bloch oscillator

    NASA Astrophysics Data System (ADS)

    Litvinov, V. I.; Manasson, A.; Pavlidis, D.

    2004-07-01

    We discuss the properties of AlGaN /GaN superlattice (SL) related to the feasibility of a terahertz-range oscillator. The distortion of the conduction-band profile by the polarization fields has been taken into account. We have calculated the conduction-band offset between the pseudomorphic AlGaN barrier and the GaN quantum well, the first miniband width and energy dispersion, as functions of Al content in the barrier. As the short-period SL miniband energy dispersion contains contributions from next to nearest neighbors, it causes anharmonic electron oscillations at the multiples of the fundamental Bloch frequency. The Al content and SL period that favor high-frequency oscillations have been determined.

  6. Adherent Al2O3 scales produced on undoped NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1986-01-01

    Repeated oxidation and polishing of high purity Ni-15Cr-13Al has dramatically changed its cyclic oxidation behavior from nonadherent to adherent. No apparent change in scale phase, morphology or interface structure occurred during this transition, dismissing any mechanism based on pegging, vacancy sink, or growth stress. The principle change that did occur was a reduction in the sulfur content from 10 ppmw to 3 ppmw after 25 cycles at 1120 C. These observations are used to support the model of Al2O3 scale adherence put forth by Smeggil et al. which claims that Al2O3 scale spallation occurs due to sulfur segregation and bond deterioration at the oxide-metal interface.

  7. Growth and characterization of AlGaN films on patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kwak, Y. S.; Lee, D. S.; Kim, K. H.; Kim, W. H.; Moon, S. W.

    2011-12-01

    A GaN film and two AlGaN films with Al compositions of 5% and 10% have been grown on the patterned sapphire substrates (PSSs) by metal organic chemical vapor deposition (MOCVD). Optical properties and crystalline qualities of the films have been investigated. The GaN film and the Al0.05Ga0.95N film are almost entirely coalesced except for some point defects. However, the Al0.1Ga0.9N film contains large pits encircled by small pits adjacent to them. The large pits are distributed in the same manner with the PSS arrangement. Dislocations and inversion domain boundaries were also observed in the Al0.1Ga0.9N film.

  8. Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control

    SciTech Connect

    Stettner, T. E-mail: Gregor.Koblmueller@wsi.tum.de Zimmermann, P.; Loitsch, B.; Regler, A.; Mayer, B.; Winnerl, J.; Matich, S.; Riedl, H.; Kaniber, M.; Abstreiter, G.; Koblmüller, G. E-mail: Gregor.Koblmueller@wsi.tum.de Finley, J. J. E-mail: Gregor.Koblmueller@wsi.tum.de; Döblinger, M.

    2016-01-04

    We demonstrate the growth and single-mode lasing operation of GaAs-AlGaAs core-multishell nanowires (NW) with radial single and multiple GaAs quantum wells (QWs) as active gain media. When subject to optical pumping lasing emission with distinct s-shaped input-output characteristics, linewidth narrowing and emission energies associated with the confined QWs are observed. Comparing the low temperature performance of QW NW laser structures having 7 coaxial QWs with a nominally identical structure having only a single QW shows that the threshold power density reduces several-fold, down to values as low as ∼2.4 kW/cm{sup 2} for the multiple QW NW laser. This confirms that the individual radial QWs are electronically weakly coupled and that epitaxial design can be used to optimize the gain characteristics of the devices. Temperature-dependent investigations show that lasing prevails up to 300 K, opening promising new avenues for efficient III–V semiconductor NW lasers with embedded low-dimensional gain media.

  9. High-performance 980-nm emission wavelength InGaAs/AlGaAs/GaAs laser diodes

    NASA Astrophysics Data System (ADS)

    Suruceanu, Grigore I.; Caliman, Andrei N.; Vieru, Stanislav T.; Iakovlev, V. P.; Sarbu, A. V.; Mereuta, Alexandru Z.

    2000-02-01

    This paper present the fabrication and mirrors passivation process of InGaAs/AlGaAs/GaAs narrow stripe 980 nm emission wavelength laser diodes. After mesa-stripe definition and Au-contact deposition procedures, a procedure of in-vacuum cleaving and in-situ passivation with (lambda) /2-thick ZnSe layers was performed. 960 micrometers and 500 micrometers length laser diodes bars was fabricated as a result. Antireflection-high reflectivity coating were formed on the bars facets. Laser diodes were soldered p-junction-side down on copper submounts. The room temperature CW threshold current value of 20 mA and CW maximum output power of 440 mW at 760 mA pumping current were obtained. The far-field emission pattern of laser diodes is lateral single mode in large range of output powers. These laser diodes were used for laser diode module fabrication. In this module the laser diodes was coupled with tapered single mode 9 micrometers /125 micrometers optical fiber with a fused microlens at the end. CW output optical power of 40 mW from the fiber was obtained at 240 mA operating current of the laser diode module.

  10. Monolithic Series-Interconnected GaInAsSb/AlGaAsSb Thermophotovoltaic Devices Wafer Bonded to GaAs

    NASA Astrophysics Data System (ADS)

    Wang, C. A.; Huang, R. K.; Connors, M. K.; Shiau, D. A.; Murphy, P. G.; O'Brien, P. W.; Anderson, A. C.; Donetsky, D.; Anikeev, S.; Belenky, G.; Luryi, S.; Nichols, G.

    2004-11-01

    GaInAsSb/AlGaAsSb/GaSb epitaxial layers were wafer bonded to semi-insulating GaAs wafers for monolithic series interconnection of thermophotovoltaic (TPV) devices. SiOx/Ti/Au was used as a bonding layer to provide electrical isolation and to serve as an internal back-surface reflector (BSR). The minority-carrier lifetime in WB BSR structures is more than two times longer than that of control structures without a BSR. WB GaInAsSb/AlGaAsSb TPV cells were fabricated and monolithically interconnected in series. These cells exhibit nearly linear voltage building. At a short-circuit current density of 0.4 A/cm2, Voc of a single TPV cell is 0.2 V, compared to 0.37 and 1.8 V for 2- and 10-junction series-interconnected TPV cells, respectively.

  11. Effects of two-mode transverse optical phonons in bulk wurtzite AlGaN on electronic mobility in AlGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Gu, Z.; Ban, S. L.; Jiang, D. D.; Qu, Y.

    2017-01-01

    The two-mode property of bulk transverse optical (TO) phonons in ternary mixed crystals of wurtzite AlxGa1-xN has been investigated by introducing impurity modes in a modified random-element isodisplacement model. Based on the dielectric continuous model, the uniaxial model, and the Lei-Ting balance equation, the effects of the two-mode property on electrostatic potentials of interface optical and confined optical phonons in AlGaN/GaN quantum wells, as well as their influences on the electronic mobility (EM), are discussed by a component-dependent weight model. Our results indicate that the total EM decreases to a minimum at first and then increases slowly with x under the influences of the competitions from the eight branches of phonons. The further calculation shows that the total EM decreases with the increment of temperature in the range of 200 K < T < 400 K and reduction of well width d. As a comparison, the EM is calculated for an Al0.58Ga0.42N/GaN quantum well at room temperature, and our result is 1263.0 cm2/Vs, which is 1.44 times of the experiment value. Our result is expected since the difference between our theory and the experiment is mainly due to the neglect of interface-roughness and other secondary scattering mechanisms. Consequently, the two-mode property of bulk TO phonons in ternary mixed crystals does affect obviously on the electron transport in the quantum wells. And our component-dependent weight model could be extended to study the electric properties influenced by optical phonons in other related heterostructures.

  12. Novel attributes of AlGaN/AlN/GaN/SiC HEMTs with the multiple indented channel

    NASA Astrophysics Data System (ADS)

    Orouji, Ali A.; Ghaffari, Majid

    2015-11-01

    In this paper, a high performance AlGaN/AlN/GaN/SiC High Electron Mobility Transistor (HEMT) with the multiple indented channel (MIC-HEMT) is proposed. The main focus of the proposed structure is based on reduction of the space around the gate, stop of the spread of the depletion region around the source-drain, and decrement of the thickness of the channel between the gate and drain. Therefore, the breakdown voltage increases, meanwhile the elimination of the gate depletion layer extension to source/drain decreases the gate-source and gate-drain capacitances. The optimized results reveal that the breakdown voltage and the drain saturation current increase about 178% and 46% compared with a conventional HEMT (C-HEMT), respectively. Therefore, the maximum output power density is improved by factor 4.1 in comparison with conventional one. Also, the cut-off frequency of 25.2 GHz and the maximum oscillation frequency of 92.1 GHz for the MIC-HEMT are obtained compared to 13 GHz and 43 GHz for that of the C-HEMT and the minimum figure noise decreased consequently of reducing the gate-drain and gate-source capacitances by about 42% and 40%, respectively. The proposed MIC-HEMT shows a maximum stable gain (MSG) exceeding 24.1 dB at 3.1 GHz which the greatest gain is yet reported for HEMTs, showing the potential of this device for high power RF applications.

  13. Improved High-Energy Response of AlGaAs/GaAs Solar Cells Using a Low-Cost Technology

    NASA Astrophysics Data System (ADS)

    Noorzad, Camron D.; Zhao, Xin; Harotoonian, Vache; Woodall, Jerry M.

    2016-12-01

    We report on an AlGaAs/GaAs solar cell with a significantly increased high-energy response that was produced via a modified liquid phase epitaxy (LPE) technique. This technique uses a one-step process in which the solid-liquid equilibrium Al-Ga-As:Zn melt in contact with an n-type vendor GaAs substrate simultaneously getters impurities in the substrate that shorten minority carrier lifetimes, diffuses Zn into the substrate to create a p- n junction, and forms a thin p-AlGaAs window layer that enables more high-energy light to be efficiently absorbed. Unlike conventional LPE, this process is performed isothermally. In our "double Al" method, the ratio of Al in the melt ("Al melt ratio") that was used in our process was two times more than what was previously reported in the record 1977 International Business Machines (IBM) solar cell. Photoluminescence (PL) results showed our double Al sample yielded a response to 405 nm light ("blue light"), which was more than twice as intense as the response from our replicated IBM cell. The original 1977 cell had a low-intensity spectral response to photon wavelengths under 443 nm (Woodall and Hovel in Sol Energy Mater Sol Cells 29:176, 1990). Secondary ion mass spectrometry results confirmed the increased blue light response was due to a large reduction in AlGaAs window layer thickness. These results proved increasing the Al melt ratio broadens the spectrum of light that can be transmitted through the window layer into the active GaAs region for absorption, increasing the overall solar cell efficiency. Our enhanced double Al method can pave the way for large-scale manufacturing of low-cost, high-efficiency solar cells.

  14. Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.

    1982-01-01

    The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.

  15. Alloy Fluctuations Act as Quantum Dot-like Emitters in GaAs-AlGaAs Core-Shell Nanowires.

    PubMed

    Jeon, Nari; Loitsch, Bernhard; Morkoetter, Stefanie; Abstreiter, Gerhard; Finley, Jonathan; Krenner, Hubert J; Koblmueller, Gregor; Lauhon, Lincoln J

    2015-08-25

    GaAs-AlxGa1-xAs (AlGaAs) core-shell nanowires show great promise for nanoscale electronic and optoelectronic devices, but the application of these nonplanar heterostructures in devices requires improved understanding and control of nanoscale alloy composition and interfaces. Multiple researchers have observed sharp emission lines of unknown origin below the AlGaAs band edge in photoluminescence (PL) spectra of core-shell nanowires; point defects, alloy composition fluctuations, and self-assembled quantum dots have been put forward as candidate structures. Here we employ laser-assisted atom probe tomography to reveal structural and compositional features that give rise to the sharp PL emission spectra. Nanoscale ellipsoidal Ga-enriched clusters resulting from random composition fluctuations are identified in the AlGaAs shell, and their compositions, size distributions, and interface characteristics are analyzed. Simulations of exciton transition energies in ellipsoidal quantum dots are used to relate the Ga nanocluster distribution with the distribution of sharp PL emission lines. We conclude that the Ga rich clusters can act as discrete emitters provided that the major diameter is ≥4 nm. Smaller clusters are under-represented in the PL spectrum, and spectral lines of larger clusters are broadened, due to quantum tunneling between clusters.

  16. Anomalous diffusion of isoelectronic antimony implant induced defects in GaAs-AlGaAs multiquantum well structures

    NASA Astrophysics Data System (ADS)

    Rao, E. V. K.; Krauz, Ph.; Thibierge, H.; Azoulay, R.; Vieu, C.

    1994-03-01

    We present here evidence on the deep diffusion of isoelectronic Sb implant induced defects in thick GaAs-AlGaAs multiquantum well structures (MQW) to depths as far as ˜30 times the implant projected range (Rp). This observation has been confirmed by performing low temperature photoluminescence depth scanning measurements and cross-sectional transmission electron microscopy (XTEM) analysis on room temperature Sb implanted thick MQW samples. An explanation based on the isoelectronic nature of Sb and its substitution on As site (SbAs) has been proposed to understand the anomalous diffusion of defects during implant and their contribution to Al/Ga disordering during post-implant annealing.

  17. MOCVD Growth of AlGaInN for UV Emitters

    SciTech Connect

    Crawford, Mary; Han, Jung

    1999-07-07

    Issues related to the growth of nitride-based UV emitters are investigated in this work. More than 100 times of improved in the optical efficiency of the GaN active region can be attained with a combination of raising the growth pressure and introducing a small amount of indium. The unique issue in the UV emitter concerning the use of AlGaN for confinement and the associated tensile cracking is also investigated. They showed that the quaternary AlGaInN is potentially capable of providing confinement to GaN and GaN:In active regions while maintaining lattice matching to GaN, unlike the AlGaN ternary system.

  18. Evaluation of titanium disilicide/copper Schottky gate for AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Yoon, Seonno; Lee, Seung Min; Kim, Jeyoung; Lee, Hi-Deok; Cha, Ho-Young; Oh, Jungwoo

    2017-03-01

    Titanium disilicide/copper (TiSi2/Cu) gate AlGaN/GaN high electron mobility transistors (HEMTs) with low gate leakage current are demonstrated. The TiSi2/Cu gate devices demonstrate electrical characteristics that are comparable to those of conventional Ni/Au gate devices. At gate voltage of ‑20 V, typical gate leakage current for a TiSi2/Cu gate device with a gate length of 5 μm and width of 200 μm is found to be as low as 5.15 × 10‑7 mA mm‑1, which is three orders lower than that of the Ni/Au gate device. The lower gate leakage current is primarily caused by the higher Schottky barrier height of TiSi2/Cu on AlGaN/GaN HEMTs than that of Ni/Au by 0.36 eV. The threshold voltages of the TiSi2/Cu gate HEMTs were maintained to be equivalent to that of the Ni/Au gate device. No Cu diffusion was found at the metal and AlGaN interface by secondary ion mass spectrometry and scanning transmission electron microscopy. These results indicate that TiSi2 is a good barrier layer of Cu diffusion, and titanium disilicide/copper is a promising candidate for high-performance AlGaN/GaN HEMTs.

  19. High electron mobility recovery in AlGaN/GaN 2DEG channels regrown on etched surfaces

    NASA Astrophysics Data System (ADS)

    Chan, Silvia H.; Keller, Stacia; Tahhan, Maher; Li, Haoran; Romanczyk, Brian; DenBaars, Steven P.; Mishra, Umesh K.

    2016-06-01

    This paper reports high two-dimensional electron gas mobility attained from the regrowth of the AlGaN gating layer on ex situ GaN surfaces. To repair etch-damaged GaN surfaces, various pretreatments were conducted via metalorganic chemical vapor deposition, followed by a regrown AlGaN/GaN mobility test structure to evaluate the extent of recovery. The developed treatment process that was shown to significantly improve the electron mobility consisted of a N2 + NH3 pre-anneal plus an insertion of a 4 nm or thicker GaN interlayer prior to deposition of the AlGaN gating layer. Using the optimized process, a high electron mobility transistor (HEMT) device was fabricated which exhibited a high mobility of 1450 cm2 V-1 s-1 (R sh = 574 ohm/sq) and low dispersion characteristics. The additional inclusion of an in situ Al2O3 dielectric into the regrowth process for MOS-HEMTs still preserved the transport properties near etch-impacted areas.

  20. Strain dependence on polarization properties of AlGaN and AlGaN-based ultraviolet lasers grown on AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Mita, Seiji; Tweedie, James

    2015-06-08

    Since the band ordering in AlGaN has a profound effect on the performance of UVC light emitting diodes (LEDs) and even determines the feasibility of surface emitting lasers, the polarization properties of emitted light from c-oriented AlGaN and AlGaN-based laser structures were studied over the whole composition range, as well as various strain states, quantum confinements, and carrier densities. A quantitative relationship between the theoretical valence band separation, determined using k•p theory, and the experimentally measured degree of polarization is presented. Next to composition, strain was found to have the largest influence on the degree of polarization while all other factors were practically insignificant. The lowest crossover point from the transverse electric to transverse magnetic polarized emission of 245 nm was found for structures pseudomorphically grown on AlN substrates. This finding has significant implications toward the efficiency and feasibility of surface emitting devices below this wavelength.

  1. In-situ passivation of quaternary barrier InAlGaN/GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Gamarra, Piero; Lacam, Cedric; Tordjman, Maurice; Medjdoub, Farid; di Forte-Poisson, Marie-Antoinette

    2017-04-01

    This work presents the growth of quaternary barrier InAlGaN/GaN HEMT structures with in-situ SiN passivation by MOVPE. Five heterostructures with different SiN thicknesses, ranging from 0 to 22 nm, were realized. We observed that the growth of SiN onto the InAlGaN barrier results in smooth films, without formation of extended defects and without degradation of the structural properties of the barrier layer, even in the case of a SiN growth times as long as 90 min. In agreement with these findings, the sheet resistance of the heterostructures was found to be independent on the SiN deposition time, proving also that the SiN layer does not introduce additional strain into the heterostructure. The passivation effect of the SiN cap was demonstrated through Hall measurements. A significant increase of the sheet resistance after ohmic contacts realization was observed on the sample without SiN in-situ passivation and related to surface charges. This change was not observed on the HEMT structures with in-situ passivation, regardless the SiN layer thickness, showing that the SiN cap is an effective way to reduce the density of electronically active states at the interface between the III-N layers and the passivation. In addition, the structures show state of the art transport properties with 2DEG densities of 1.6×1013 cm-2 and electron mobilities as high as 1800 cm2 V-1 s-1.

  2. Photoresponse and trap characteristics of transparent AZO-gated AlGaN/GaN HEMT

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Zhao, Meng-Di; He, Yun-Long; Zheng, Xue-Feng; Zhang, Kun; Wei, Xiao-Xiao; Mao, Wei; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue

    2016-10-01

    AZO-gated and Ni/Au-gated AlGaN/GaN HEMTs are fabricated successfully, and an excellent transparency of AZO-gated electrode is achieved. After a negative gate bias stress acts on two kinds of the devices, their photoresponse characteristics are investigated by using laser sources with different wavelengths. The effect of photoresponse on AZO-gated electrode device is more obvious than on Ni/Au-gated electrodes device. The electrons are trapped in the AlGaN barrier of AZO-gated HEMT after it has experienced negative gate bias stress, and then the electrons can be excited effectively after it has been illuminated by the light with certain wavelengths. Furthermore, the trap state density D T and the time constant τ T of the AZO-gated Schottky contact are extracted by fitting the measured parallel conductance in a frequency range from 10 kHz to 10 MHz. The constants of the trap range from about 0.35 μs to 20.35 μs, and the trap state density increased from 1.93 × 1013 eV-1·cm-2 at an energy of 0.33 eV to 3.07 × 1011 eV-1·cm-2 at an energy of 0.40 eV. Moreover, the capacitance and conductance measurements are used to characterize the trapping effects under different illumination conditions in AZO-gated HEMTs. Reduced deep trap states' density is confirmed under the illumination of short wavelength light. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574110, 61574112, and 61106106).

  3. In-situ, Gate Bias Dependent Study of Neutron Irradiation Effects on AlGaN/GaN HFETs

    DTIC Science & Technology

    2010-03-01

    Applied Physics Letters , vol.82, no. 22, 2 June 2008. 72 [12] D. M. Sathaiya, et al., "Thermionic trap-assisted tunneling model and its... Letters , vol. 25, no. 3, 1045, 2008. [18] A. Y. Polyakov , et al., “Neutron irradiation effects on electrical properties and deep-level spectra in...undoped n-AlGaN/GaN heterostructures,” Journal of Applied Physics , vol. 98, 033529, 2005. [19] A. Y. Polyakov , et al., “Neutron irradiation effects in

  4. Three-dimensional nanoscale study of Al segregation and quantum dot formation in GaAs/AlGaAs core-shell nanowires

    SciTech Connect

    Mancini, L.; Blum, I.; Vurpillot, F.; Rigutti, L.; Fontana, Y.; Conesa-Boj, S.; Francaviglia, L.; Russo-Averchi, E.; Heiss, M.; Morral, A. Fontcuberta i; Arbiol, J.

    2014-12-15

    GaAs/Al-GaAs core-shell nanowires fabricated by molecular beam epitaxy contain quantum confining structures susceptible of producing narrow photoluminescence (PL) and single photons. The nanoscale chemical mapping of these structures is analyzed in 3D by atom probe tomography (APT). The study allows us to confirm that Al atoms tend to segregate within the AlGaAs shells towards the vertices of the hexagons defining the nanowire cross section. We also find strong alloy fluctuations remaining AlGaAs shell, leading occasionally to the formation of quantum dots (QDs). The PL emission energies predicted in the framework of a 3D effective mass model for a QD analyzed by APT and the PL spectra measured on other nanowires from the same growth batch are consistent within the experimental uncertainties.

  5. Chemical ordering in Cr3Al and relation to semiconducting behavior

    NASA Astrophysics Data System (ADS)

    Boekelheide, Z.; Stewart, D. A.; Hellman, F.

    2012-08-01

    Cr3Al shows semiconductor-like behavior which has been attributed to a combination of antiferromagnetism and chemical ordering of the Cr and Al atoms on the bcc sublattice. This article presents a detailed theoretical and experimental study of the chemical ordering in Cr3Al. Using density functional theory within the Korringa-Kohn-Rostoker (KKR) formalism, we consider five possible structures with the Cr3Al stoichiometry: a bcc solid solution, two-phase C11b Cr2Al+Cr, off-stoichiometric C11b Cr3Al, D03 Cr3Al, and X-phase Cr3Al. The calculations show that the chemically ordered, rhombohedrally distorted X-phase structure has the lowest energy of those considered and should, therefore, be the ground state found in nature, while the D03 structure has the highest energy and should not occur. While KKR calculations of the X phase indicate a pseudogap in the density of states, additional calculations using a full potential linear muffin-tin orbital approach and a plane-wave technique show a narrow band gap. Experimentally, thin films of Cr1-xAlx were grown and the concentration, growth temperature, and substrate were varied systematically. The peak resistivity (2400 μΩ-cm) is found for films with x=0.25, grown epitaxially on a 300 ∘C MgO substrate. At this x, a transition between nonmetallic and metallic behavior occurs at a growth temperature of about 400 ∘C, which is accompanied by a change in chemical ordering from X phase to C11b Cr3Al. These results clarify the range of possible structures for Cr3Al and the relationship between chemical ordering and electronic transport behavior.

  6. Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors

    SciTech Connect

    Ťapajna, M. Kuzmík, J.; Hilt, O.; Bahat-Treidel, E.; Würfl, J.

    2015-11-09

    Gate diode conduction mechanisms were analyzed in normally-off p-GaN/AlGaN/GaN high-electron mobility transistors grown on Si wafers before and after forward bias stresses. Electrical characterization of the gate diodes indicates forward current to be limited by channel electrons injected through the AlGaN/p-GaN triangular barrier promoted by traps. On the other hand, reverse current was found to be consistent with carrier generation-recombination processes in the AlGaN layer. Soft breakdown observed after ∼10{sup 5 }s during forward bias stress at gate voltage of 7 V was attributed to formation of conductive channel in p-GaN/AlGaN gate stack via trap generation and percolation mechanism, likely due to coexistence of high electric field and high forward current density. Possible enhancement of localized conductive channels originating from spatial inhomogeneities is proposed to be responsible for the degradation.

  7. Radiation enhancement in doped AlGaN-structures upon optical pumping

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.; Zhuravlev, K. S.; Zakrevsky, D. E.; Malin, T. V.; Osinnykh, I. V.; Fateev, N. V.

    2017-01-01

    Spectral characteristics of spontaneous and stimulated luminescence have been studied for molecular beam epitaxy synthesized Al x Ga1- x N/AlN solid solutions with x = 0.5 and 0.74 upon optical pumping by pulse laser radiation with λ = 266 nm. Broadband radiation spectra with a width of 260 THz for Al0.5Ga0.5N and 360 THz for Al0.74Ga0.26N have been obtained. The measured enhancement factors are g ≈ 70 cm-1 for Al0.5Ga0.5N at λ ≈ 528 nm and g ≈ 20 cm-1 for Al0.74Ga0.26N at λ ≈ 468 nm.

  8. AlN/GaN Metal Insulator Semiconductor Field Effect Transistor on Sapphire Substrate

    NASA Astrophysics Data System (ADS)

    Seo, Sanghyun; Ghose, Kaustav; Zhao, Guang Yuan; Pavlidis, Dimitris

    AlN/GaN Metal Insulator Semiconductor Field Effect Transistors (MISFETs) were designed, simulated and fabricated. DC, S-parameter and power measurements were also performed. Drift-diffusion simulations using DESSIS compared AlN/GaN MISFETs and Al32Ga68N/GaN Heterostructure FETs (HFETs) with the same geometries. The simulation results show the advantages of AlN/GaN MISFETs in terms of higher saturation current, lower gate leakage and higher transconductance than AlGaN/GaN HFETs. First results from fabricated AlN/GaN devices with 1μm gate length and 200μm gate width showed a maximum drain current density of ˜380mA/mm and a peak extrinsic transconductance of 85mS/mm. S-parameter measurements showed that currentgain cutoff frequency (fT) and maximum oscillation frequency (fmax) were 5.85GHz and 10.57GHz, respectively. Power characteristics were measured at 2GHz and showed output power density of 850mW/mm with 23.8% PAE at VDS=15V. To the authors knowledge this is the first report of a systematic study of AlN/GaN MISFETs addressing their physical modeling and experimental high-frequency characteristics including the power performance.

  9. Resolution characteristics of graded band-gap reflection-mode AlGaAs/GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Deng, Wenjuan; Zhang, Daoli; Zou, Jijun; Peng, Xincun; Wang, Weilu; Zhang, Yijun; Chang, Benkang

    2015-12-01

    The modulation transfer function (MTF) of graded band-gap AlGaAs/GaAs reflection-mode photocathodes was determined using two-dimensional Poisson and continuity equations through numerical method. Based on the MTF model, we calculated the theoretical MTF of graded and uniform band-gap reflection-mode photocathodes. We then analyzed the effects of Al composition, wavelength of incident photon, and thicknesses of AlGaAs and GaAs layer on the resolution. Calculation results show that graded band-gap structures can increase the resolution of reflection-mode photocathodes. When the spatial frequency is 800 lp/mm and wavelength is 600 nm, the resolution of graded band-gap photocathodes generally increases by 15.4-29.6%. The resolution improvement of graded band-gap photocathodes is attributed to the fact that the built-in electric field in graded band-gap photocathodes reduces the lateral diffusion distance of photoelectrons.

  10. MAX phase - Alumina composites via elemental and exchange reactions in the Tin+1ACn systems (A=Al, Si, Ga, Ge, In and Sn)

    NASA Astrophysics Data System (ADS)

    Cuskelly, Dylan; Richards, Erin; Kisi, Erich

    2016-05-01

    Extension of the aluminothermal exchange reaction synthesis of Mn+1AXn phases to systems where the element 'A' is not the reducing agent was investigated in systems TiO2-A-Al-C for A=Al, Si, Ga, Ge, In and Sn as well as Cr2O3-Ga-Al-C. MAX phase-Al2O3 composites were made in all systems except those with A=Ga or In. The effectiveness of conversion to MAX phases was generally in the range 63-96% without optimisation of starting ratios. Optimisation in the Ti-Si-C system gave a MAX phase component with >98% Ti3SiC2.

  11. Effects of high-temperature AIN buffer on the microstructure of AlGaN/GaN HEMTs

    SciTech Connect

    Coerekci, S.; Oeztuerk, M. K.; Yu, Hongbo; Cakmak, M.; Oezcelik, S.; Oezbay, E.

    2013-06-15

    Effects on AlGaN/GaN high-electron-mobility transistor structure of a high-temperature AlN buffer on sapphire substrate have been studied by high-resolution x-ray diffraction and atomic force microscopy techniques. The buffer improves the microstructural quality of GaN epilayer and reduces approximately one order of magnitude the edge-type threading dislocation density. As expected, the buffer also leads an atomically flat surface with a low root-mean-square of 0.25 nm and a step termination density in the range of 10{sup 8} cm{sup -2}. Due to the high-temperature buffer layer, no change on the strain character of the GaN and AlGaN epitaxial layers has been observed. Both epilayers exhibit compressive strain in parallel to the growth direction and tensile strain in perpendicular to the growth direction. However, an high-temperature AlN buffer layer on sapphire substrate in the HEMT structure reduces the tensile stress in the AlGaN layer.

  12. AlGaN/GaN metal oxide semiconductor heterostructure field-effect transistors with 4 nm thick Al2O3 gate oxide

    NASA Astrophysics Data System (ADS)

    Gregušová, D.; Stoklas, R.; Čičo, K.; Lalinský, T.; Kordoš, P.

    2007-08-01

    AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOSHFETs) with 4 nm thick Al2O3 gate oxide were prepared and their performance was compared with that of AlGaN/GaN HFETs. The MOSHFETs yielded ~40% increase of the saturation drain current compared with the HFETs, which is larger than expected due to the gate oxide passivation. Despite a larger gate-channel separation in the MOSHFETs, a higher extrinsic transconductance than that of the HFETs was measured. The drift mobility of the MOSHFETs, evaluated on large-gate FET structures, was significantly higher than that of the HFETs. The zero-bias mobility for MOSHFETs and HFETs was 1950 cm2 V-1 s-1 and 1630 cm2 V-1 s-1, respectively. These features indicate an increase of the drift velocity and/or a decrease of the parasitic series resistance in the MOSHFETs. The current collapse, evaluated from pulsed I-V measurements, was highly suppressed in the MOSHFETs with 4 nm thick Al2O3 gate oxide. This result, together with the suppressed frequency dispersion of the capacitance, indicates that the density of traps in the Al2O3/AlGaN/GaN MOSHFETs was significantly reduced.

  13. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect

    Pang, Mingjun; Zhan, Yongzhong; Du, Yong

    2013-02-15

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  14. Excitation and de-excitation mechanisms of Er-doped GaAs and AlGaAs

    NASA Astrophysics Data System (ADS)

    Elsaesser, David W.

    1992-12-01

    Electrical and optical characterization have been performed on GaAs and Al(x)Ga(1-x)As samples doped with Er either by ion implantation or during Molecular Beam Epitaxial (MBE) growth. Deep Level Transient Spectroscopy (DLTS) and Temperature-Dependent Hall Effect (TDH) measurements indicated the presence of two hole traps in Er-doped GaAs, at 35 and 360 meV above the valence band maximum. The former (shallower) center was thought to be due to Er substituting for a Ga atom (ErGa) and giving rise to an isoelectronic impurity potential. The second center was attributed to an Er atom occupying an interstitial position (Er(i)). Annealing studies performed on Er-implanted GaAs indicated that the ErGa center preferentially formed at higher annealing temperatures (greater than 850 C), with the Er(i) reaching a maximum concentration at an annealing temperature of around 750 C. Optical characterization performed by Photoluminescence (PL) measurements showed that the Er(i) center gave a much stronger Er-related intra-4f shell emission. Mechanisms for the excitation of the 4f shells of these two centers are discussed. Similar optically active Eri centers may be forming in AlGaAs.

  15. Spin Polarization of Carriers in InGaAs Self-Assembled Quantum Rings Inserted in GaAs-AlGaAs Resonant Tunneling Devices

    NASA Astrophysics Data System (ADS)

    Orsi Gordo, V.; Gobato, Y. Galvão; Galeti, H. V. A.; Brasil, M. J. S. P.; Taylor, D.; Henini, M.

    2017-03-01

    In this work, we have investigated transport and polarization resolved photoluminescence (PL) of n-type GaAs-AlGaAs resonant tunneling diodes (RTDs) containing a layer of InGaAs self-assembled quantum rings (QRs) in the quantum well (QW). All measurements were performed under applied voltage, magnetic fields up to 15 T and using linearly polarized laser excitation. It was observed that the QRs' PL intensity and the circular polarization degree (CPD) oscillate periodically with applied voltage under high magnetic fields at 2 K. Our results demonstrate an effective voltage control of the optical and spin properties of InGaAs QRs inserted into RTDs.

  16. Pulsed electron-beam-pumped laser based on AlGaN/InGaN/GaN quantum-well heterostructure

    SciTech Connect

    Gamov, N A; Zhdanova, E V; Zverev, M M; Peregudov, D V; Studenov, V B; Mazalov, A V; Kureshov, V A; Sabitov, D R; Padalitsa, A A; Marmalyuk, A A

    2015-07-31

    The parameters of pulsed blue-violet (λ ≈ 430 nm at T = 300 K) lasers based on an AlGaN/InGaN/GaN structure with five InGaN quantum wells and transverse electron-beam pumping are studied. At room temperature of the active element, the minimum electron energy was 9 keV and the minimum threshold electron beam current density was 8 A cm{sup -2} at an electron energy of 18 keV. (lasers)

  17. Recombination current in AlGaAs/GaAs superlattice solar-cells grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kawaharazuka, A.; Nishinaga, J.; Horikoshi, Y.

    2015-09-01

    We investigate the effect of the recombination current of p-i-n junction solar-cells. We develop a simple evaluation method of the recombination and diffusion current component of the solar-cells based on the measured three characteristic values: short circuit current, open circuit voltage, and fill factor without the knowledge in the details of the device structure. The advantage of the developed technique is its simplicity and wide applicability to various p-i-n junction solar-cells. We apply the method to GaAs bulk and AlGaAs/GaAs superlattice solar-cells. Obtained parameters well reproduce the whole current-voltage characteristics. The diode current is almost dominated by the recombination current at the maximum-output voltage for both GaAs bulk and superlattice cells. The higher contribution of the recombination current in the superlattice solar-cell is due to the quality of the AlGaAs barriers and the AlGaAs/GaAs interfaces. This result indicates that the good crystalline quality is important to enhance the efficiency of the solar-cells.

  18. Growth and characterization of GaAs, AlGaAs and their heterostructures by organometallic vapor phase epitaxy

    SciTech Connect

    Shealy, J.R.

    1983-01-01

    Organometallic Vapor Phase Epitaxy (OMVPE) is a cold wall vapor desposition technique using organometallic and/or hydride sources for the fabrication of a variety of epitaxial compound semiconductor alloys on suitable substrates. The use of the OMVPE process to produce high quality GaAs, AlGaAs, and their heterostructures on GaAs substrates using trimethygalium (TMG), trimethylalumium (TMA), and arsine is described. For GaAs epitaxial films, the unintentional residual donor sand acceptors have been identified using far-infrared photo-ionization data, and low temperature photoluminescence, respectively, and their concentrations have been evaluated using Hall data. For the growth of AlGaAs films, it was observed that poor quality films were obtained due to oxygen contamination of the layer during growth. A series of graded bandgap heterostructures and abrupt quantum well heterostructures were grown over a variety of growth conditions. Composition gradings were controlled over a full range of alloy compositions on distances as small as 500 - 1000 A, and a 40 A quantum well heterostructure was obtained at low growth temperatures (550/sup 0/C). Finally, results are presented on a few devices which incorporate metallurgical junctions and heterojunctions with the GaAs/AlGaAs system. These devices include a microwave vertical FET structure, graded bandgap solar cells, and light emitting diodes.

  19. Radiation effects on GaAs/AlGaAs core/shell ensemble nanowires and nanowire infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Li, Fajun; Li, Ziyuan; Tan, Liying; Zhou, Yanping; Ma, Jing; Lysevych, Mykhaylo; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2017-03-01

    With the recent advances in nanowire (NW) growth and fabrication, there has been rapid development and application of GaAs NWs in optoelectronics. It is also of importance to study the radiation tolerance of optoelectronic nano-devices for atomic energy and space-based applications. Here, photoluminescence (PL) and time-resolved photoluminescence measurements were carried out on GaAs/AlGaAs core/shell NWs at room temperature before and after 1 MeV proton irradiation with fluences ranging from 1.0 × 1012–3.0 × 1013 cm‑2. It is found that the GaAs/AlGaAs core/shell NWs with smaller diameter show much less PL degradation compared with the ones with larger diameters. The increased radiation hardness is mainly attributed to the improvement of a room temperature dynamic-annealing mechanism near the surface of the NWs. We also found that the minority carrier lifetime is closely related to both the PL intensity and defect density induced by irradiation. Finally, GaAs/AlGaAs ensemble NW photodetectors operating in the near-infrared spectral regime have been demonstrated. The influence of proton irradiation on light and dark current characteristics also indicates that NW structures are a good potential candidate for radiation harsh-environment applications.

  20. Radiation effects on GaAs/AlGaAs core/shell ensemble nanowires and nanowire infrared photodetectors.

    PubMed

    Li, Fajun; Li, Ziyuan; Tan, Liying; Zhou, Yanping; Ma, Jing; Lysevych, Mykhaylo; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2017-03-24

    With the recent advances in nanowire (NW) growth and fabrication, there has been rapid development and application of GaAs NWs in optoelectronics. It is also of importance to study the radiation tolerance of optoelectronic nano-devices for atomic energy and space-based applications. Here, photoluminescence (PL) and time-resolved photoluminescence measurements were carried out on GaAs/AlGaAs core/shell NWs at room temperature before and after 1 MeV proton irradiation with fluences ranging from 1.0 × 10(12)-3.0 × 10(13) cm(-2). It is found that the GaAs/AlGaAs core/shell NWs with smaller diameter show much less PL degradation compared with the ones with larger diameters. The increased radiation hardness is mainly attributed to the improvement of a room temperature dynamic-annealing mechanism near the surface of the NWs. We also found that the minority carrier lifetime is closely related to both the PL intensity and defect density induced by irradiation. Finally, GaAs/AlGaAs ensemble NW photodetectors operating in the near-infrared spectral regime have been demonstrated. The influence of proton irradiation on light and dark current characteristics also indicates that NW structures are a good potential candidate for radiation harsh-environment applications.

  1. Wurtzite Al xGa 1- xN bulk crystals grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Staddon, C. R.; Powell, R. E. L.; Akimov, A. V.; Luckert, F.; Edwards, P. R.; Martin, R. W.; Kent, A. J.; Foxon, C. T.

    2011-05-01

    We have studied the growth of wurtzite GaN and Al xGa 1- xN layers and bulk crystals by molecular beam epitaxy (MBE). MBE is normally regarded as an epitaxial technique for the growth of very thin layers with monolayer control of their thickness. However, we have used the MBE technique for bulk crystal growth and have produced 2 in diameter wurtzite Al xGa 1- xN layers up to 10 μm in thickness. Undoped wurtzite Al xGa 1- xN films were grown on GaAs (1 1 1)B substrates by a plasma-assisted molecular beam epitaxy (PA-MBE) method and were removed from the GaAs substrate after the growth. The fact that free-standing ternary Al xGa 1- xN wafers can be grown is very significant for the potential future production of wurtzite Al xGa 1- xN substrates optimized for AlGaN-based device structures.

  2. Wafer-scale crack-free AlGaN on GaN through two-step selective-area growth for optically pumped stimulated emission

    NASA Astrophysics Data System (ADS)

    Ko, Young-Ho; Bae, Sung-Bum; Kim, Sung-Bock; Kim, Dong Churl; Leem, Young Ahn; Cho, Yong-Hoon; Nam, Eun-Soo

    2016-07-01

    Crack-free AlGaN template has been successfully grown over entire 2-in. wafer by using 2-step selective-area growth (SAG). The GaN truncated structure was obtained by vertical growth mode with low growth temperature. AlGaN of second step was grown under lateral growth mode. Low pressure enhanced the relative ratio of lateral to vertical growth rate as well as absolute overall growth rate. High V/III ratio was favorable for lateral growth mode. Crack-free planar AlGaN was obtained under low pressure of 30 Torr and high V/III ratio of 4400. The AlGaN was crack-free over entire 2-in. wafer and had quite uniform Al-mole fraction. The dislocation density of the AlGaN with 20% Al-composition was as low as ~7.6×108 /cm2, measured by cathodoluminescence. GaN/AlGaN multi-quantum well (MQW) with cladding and waveguide layers were grown on the crack-free AlGaN template with low dislocation density. It was confirmed that the MQW on the AlGaN template emitted the stimulated emission at 355.5 nm through optical pumping experiment. The AlGaN obtained by 2-step SAG would provide high crystal quality for highly-efficient optoelectronic devices as well as the ultraviolet laser diode.

  3. Modeling on oxide dependent 2DEG sheet charge density and threshold voltage in AlGaN/GaN MOSHEMT

    NASA Astrophysics Data System (ADS)

    Panda, J.; Jena, K.; Swain, R.; Lenka, T. R.

    2016-04-01

    We have developed a physics based analytical model for the calculation of threshold voltage, two dimensional electron gas (2DEG) density and surface potential for AlGaN/GaN metal oxide semiconductor high electron mobility transistors (MOSHEMT). The developed model includes important parameters like polarization charge density at oxide/AlGaN and AlGaN/GaN interfaces, interfacial defect oxide charges and donor charges at the surface of the AlGaN barrier. The effects of two different gate oxides (Al2O3 and HfO2) are compared for the performance evaluation of the proposed MOSHEMT. The MOSHEMTs with Al2O3 dielectric have an advantage of significant increase in 2DEG up to 1.2 × 1013 cm-2 with an increase in oxide thickness up to 10 nm as compared to HfO2 dielectric MOSHEMT. The surface potential for HfO2 based device decreases from 2 to -1.6 eV within 10 nm of oxide thickness whereas for the Al2O3 based device a sharp transition of surface potential occurs from 2.8 to -8.3 eV. The variation in oxide thickness and gate metal work function of the proposed MOSHEMT shifts the threshold voltage from negative to positive realizing the enhanced mode operation. Further to validate the model, the device is simulated in Silvaco Technology Computer Aided Design (TCAD) showing good agreement with the proposed model results. The accuracy of the developed calculations of the proposed model can be used to develop a complete physics based 2DEG sheet charge density and threshold voltage model for GaN MOSHEMT devices for performance analysis.

  4. Microstructure/Oxidation/Microhardness Correlations in Gamma-Based and Tau-Based Al-Ti-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Brady, Michael P.; Smialek, J. L.; Humphrey, D. L.

    1994-01-01

    The relationships between alloy microstructure and air oxidation kinetics and alloy microstructure and microhardness in the Al-Ti-Cr system for exposures at 800 C and 1000 C were investigated. The relevant phases were identified as tau (Ll2), gamma (LIO), r-Al2Ti, TiCrAl (laves), and Cr2AI. Protective alumina formation was associated with tau, Al-rich TiCrAl, and gamma/TiCrAl mixtures. Brittleness was associated with the TiCrAl phase and tau decomposition to A12Ti + Cr2AI. It was concluded that two-phase gamma + TiCrAl alloys offer the greatest potential for oxidation resistance and room temperature ductility in the Al-Ti-Cr system.

  5. High-power single-element pseudomorphic InGaAs/GaAs/AlGaAs single quantum well lasers for pumping Er-doped fiber amplifiers

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1991-01-01

    A 980-nm-ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs single-quantum-well laser with a maximum single-ended output power of 240 mW from a facet-coated device is fabricated from a graded-index separate-confinement heterostructure grown by molecular-beam epitaxy. The laser oscillates in the fundamental spatial mode, allowing 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. Life testing at an output power of 30 mW per facet from uncoated devices reveals a superior reliability to GaAs/AlGaAs quantum-well lasers but also the need for protective facet coatings for long term reliability at power levels required for pumping Er-doped fiber amplifiers.

  6. Stranski-Krastanow growth of (1122)-oriented GaN/AlN quantum dots

    SciTech Connect

    Lahourcade, L.; Monroy, E.; Kehagias, T.; Dimitrakopulos, G. P.; Komninou, P.

    2009-03-16

    Semipolar GaN(1122) deposited on AlN(1122) by plasma-assisted molecular-beam epitaxy can follow the Frank-Van der Merwe or the Stranski-Krastanow growth mode as a function of the Ga/N ratio. N-rich grown GaN relaxes elastically at a critical thickness but the resulting GaN islands present multiple crystallographic orientations. In contrast, after deposition of a few two-dimensional GaN monolayers under Ga-rich conditions, a growth interruption in vacuum induces (1122)-oriented islanding. Applying this latter procedure, we have synthesized GaN/AlN quantum dot superlattices with reduced internal electric field.

  7. Temperature dependence of mid-infrared intersubband absorption in AlGaN/GaN multiple quantum wells

    SciTech Connect

    Kotani, Teruhisa; Arita, Munetaka; Hoshino, Katsuyuki; Arakawa, Yasuhiko

    2016-02-01

    The temperature dependence of the mid-infrared intersubband (ISB) absorption in non-polar (m-plane) and polar (c-plane) AlGaN/GaN quantum wells (QWs) is studied. The ISB absorption shifts to higher energy as the temperature is reduced from 300 K to below 10 K. Both m-plane and c-plane QWs show a small energy shift (1.6–2.6 meV) compared to AlGaAs/GaAs (3.5–5.2 meV) and AlSb/InAs (6.2 and 12 meV) QWs. Theoretical calculations considering the temperature induced material constant changes show good agreement with the experimental results. These results suggest that ISB transition energies in AlGaN/GaN QWs are more stable against temperature change mainly because of the heavy effective masses and small nonparabolicities.

  8. On the increased efficiency in InGaN-based multiple quantum wells emitting at 530-590 nm with AlGaN interlayers

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Fischer, A. J.; Bryant, B. N.; Kotula, P. G.; Wierer, J. J.

    2015-04-01

    InGaN/AlGaN/GaN-based multiple quantum wells (MQWs) with AlGaN interlayers (ILs) are investigated, specifically to examine the fundamental mechanisms behind their increased radiative efficiency at wavelengths of 530-590 nm. The AlzGa1-zN (z~0.38) IL is ~1-2 nm thick, and is grown after and at the same growth temperature as the ~3 nm thick InGaN quantum well (QW). This is followed by an increase in temperature for the growth of a ~10 nm thick GaN barrier layer. The insertion of the AlGaN IL within the MQW provides various benefits. First, the AlGaN IL allows for growth of the InxGa1-xN QW well below typical growth temperatures to achieve higher x (up to~0.25). Second, annealing the IL capped QW prior to the GaN barrier growth improves the AlGaN IL smoothness as determined by atomic force microscopy, improves the InGaN/AlGaN/GaN interface quality as determined from scanning transmission electron microscope images and x-ray diffraction, and increases the radiative efficiency by reducing non-radiative defects as determined by time-resolved photoluminescence measurements. Finally, the AlGaN IL increases the spontaneous and piezoelectric polarization induced electric fields acting on the InGaN QW, providing an additional red-shift to the emission wavelength as determined by Schrodinger-Poisson modeling and fitting to the experimental data. The relative impact of increased indium concentration and polarization fields on the radiative efficiency of MQWs with AlGaN ILs is explored along with implications to conventional longer wavelength emitters.

  9. ELECTROABSORPTION OF UNSTRAINED InGaAs/InAlGaAs MULTIPLE QUANTUM WELL STRUCTURE GROWN ON GaAs SUBSTRATES

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Nee, Tzer-En

    Large electroabsorption was observed in InGaAs/InAlGaAs multiple quantum well structures grown on GaAs substrates operating near 1.3 μm. The molecular beam epitaxy (MBE) growth of these structures was incorporation of a carefully designed InAlAs multistage strain-relaxed buffer. The optical absorption spectra as a function of the reverse bias at room temperature are shown. The good characteristics of the optical modulators fabricated on this structure have indicated its potential for practical applications of high-speed modulation.

  10. Effects of Al additives on growth of GaN polycrystals by the Na flux method

    NASA Astrophysics Data System (ADS)

    Imabayashi, Hiroki; Murakami, Kosuke; Matsuo, Daisuke; Honjo, Masatomo; Imanishi, Masayuki; Maruyama, Mihoko; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke

    2017-03-01

    In this study, we investigated the growth of GaN polycrystals using the Al-added Na flux method. We studied the effects of Al on accelerating the nucleation and purity of GaN polycrystals. The yields of GaN crystals grown in Al-added Na flux were dramatically increased from those in Al-free Na flux, and the polycrystals grown by the Al-added Na flux method were highly transparent. As observed in secondary ion mass spectroscopy measurements, the Al content of the polycrystals was below the detection limit of 3 × 1016 atoms/cm3. From these results, the Al-added Na flux method is found to be appropriate for fabricating a large amount of GaN polycrystals without deteriorating the crystal quality.

  11. Performance and applications of GaAs:Cr-based Medipix detector in X-ray CT

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, D.; Chelkov, G.; Demichev, M.; Gridin, A.; Smolyanskiy, P.; Zhemchugov, A.

    2017-01-01

    In the recent years, the method of single photon counting X-ray μ-CT is being actively developed and applied in various fields. Results of our studies carried out using the MARS μ-CT scanner equipped with GaAs Medipix-based camera are presented. The procedure of mechanical alignment of the scanner is described, including direct and indirect measurements of the spatial resolution. The software chain for data processing and reconstruction has been developed and reported. We demonstrate the possibility to apply the scanner for research in geology and medicine and provide demo images of geological samples (chrome spinellids, titanium magnetite ore) and medical samples (atherosclerotic plaque, abdominal aortic aneurysm). The first results of multi-energy scans using GaAs:Cr-based camera are shown.

  12. High temperature oxidation resistant coatings for the directionally solidified Ni-Nb-Cr-Al eutectic superalloy

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Ulion, N. E.; Felten, E. J.

    1977-01-01

    Protective coatings required for the Ni-Nb-Cr-Al directionally solidified eutectic superalloy were developed and evaluated on the basis of oxidation resistance, diffusional stability, thermal fatigue, and creep resistance. NiCrAlY+Pt and NiCrAlY physical vapor-deposition coating systems exhibited the best combination of properties. Burner-rig testing indicated that the useful life of a 127-micron-thick NiCrAlY+Pt coating exceeds 1000 h at 1366 K. Eutectic-alloy creep lives at 1311 K and a stress of 151.7 MN/sq m were greater for NiCrAlY+Pt-coated specimens than for uncoated specimens by a factor of two.

  13. Influence of hydrostatic pressure on cation vacancies in GaN, AlN, and GaAs

    NASA Astrophysics Data System (ADS)

    Gorczyca, I.; Christensen, N. E.; Svane, A.

    2002-08-01

    The effects of hydrostatic pressure on the formation energy and electronic level positions of cation vacancies in GaN, AlN, and GaAs are examined by means of ab initio calculations using a supercell approach in connection with the full-potential linear-muffin-tin-orbital method. Atomic relaxations are fully taken into account. Substantial differences are revealed in the pressure behavior of the defect level positions and formation energies for the cation vacancies in the nitride compounds and in GaAs. Additionally, the arsenic antisite in GaAs is examined, also exhibiting pressure response different from that of the vacancies. The pressure effect is strong for the vacancy and the antisite in GaAs, but for similar defects in the III-V nitrides it is rather weak.

  14. High Quantum Efficiency AlGaN/InGaN Photodetectors

    SciTech Connect

    Buckley, James H; Leopold, Daniel

    2009-11-24

    High efficiency photon counting detectors in use today for high energy particle detection applications have a significant spectral mismatch with typical sources and have a number of practical problems compared with conventional bialkali photomultiplier tubes. Numerous high energy physics experiments that employ scintillation light detectors or Cherenkov detectors would benefit greatly from photomultipliers with higher quantum efficiencies. The need for extending the sensitivity of photon detectors to the blue and UV wavebands comes from the fact that both Cherenkov light and some scintillators have an emission spectrum which is peaked at short wavelengths. This research involves the development of high quantum efficiency, high gain, UV/blue photon counting detectors based on AlGaN/InGaN photocathode heterostructures grown by molecular beam epitaxy (MBE). The work could eventually lead to nearly ideal light detectors with a number of distinct advantages over existing technologies for numerous applications in high-energy physics and particle astrophysics. Potential advantages include much lower noise detection, better stability and radiation resistance than other cathode structures, very low radioactive background levels for deep underground experiments and high detection efficiency of individual UV-visible photons. We are also working on the development of photocathodes with intrinsic gain, initially improving the detection efficiency of hybrid semiconductor-vacuum tube devices, and eventually leading to an all-solid-state photomultiplier device.

  15. Nanofabrication of gate-defined GaAs/AlGaAs lateral quantum dots.

    PubMed

    Bureau-Oxton, Chloé; Camirand Lemyre, Julien; Pioro-Ladrière, Michel

    2013-11-01

    A quantum computer is a computer composed of quantum bits (qubits) that takes advantage of quantum effects, such as superposition of states and entanglement, to solve certain problems exponentially faster than with the best known algorithms on a classical computer. Gate-defined lateral quantum dots on GaAs/AlGaAs are one of many avenues explored for the implementation of a qubit. When properly fabricated, such a device is able to trap a small number of electrons in a certain region of space. The spin states of these electrons can then be used to implement the logical 0 and 1 of the quantum bit. Given the nanometer scale of these quantum dots, cleanroom facilities offering specialized equipment- such as scanning electron microscopes and e-beam evaporators- are required for their fabrication. Great care must be taken throughout the fabrication process to maintain cleanliness of the sample surface and to avoid damaging the fragile gates of the structure. This paper presents the detailed fabrication protocol of gate-defined lateral quantum dots from the wafer to a working device. Characterization methods and representative results are also briefly discussed. Although this paper concentrates on double quantum dots, the fabrication process remains the same for single or triple dots or even arrays of quantum dots. Moreover, the protocol can be adapted to fabricate lateral quantum dots on other substrates, such as Si/SiGe.

  16. Highly reliable high-power AlGaAs/GaAs 808 nm diode laser bars

    NASA Astrophysics Data System (ADS)

    Hülsewede, R.; Schulze, H.; Sebastian, J.; Schröder, D.; Meusel, J.; Hennig, P.

    2007-02-01

    There are strong demands at the market to increase power and reliability for 808 nm diode laser bars. Responding to this JENOPTIK Diode Lab GmbH developed high performance 808 nm diode laser bars in the AlGaAs/GaAs material system with special emphasis to high power operation and long term stability. Optimization of the epitaxy structure and improvements in the diode laser bar design results in very high slope efficiency of >1.2 W/A, low threshold current and small beam divergence in slow axis direction. Including low serial resistance the overall wall plug efficiency is up to 65% for our 20%, 30% and 50% filling factor 10 mm diode laser bars. With the JENOPTIK Diode Lab cleaving and coating technique the maximum output power is 205 W in CW operation and 377 W in QCW operation (200 μs, 2% duty cycle) for bars with 50% filling factor. These bars mounted on micro channel cooled package are showing a very high reliability of >15.000 h. Mounted on conductive cooled package high power operation at 100 W is demonstrated for more than 5000h.

  17. Microwave Transmission Measurements in Gated GaAs/AlGaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Stone, Kristjan; Knez, Ivan; Du, Rui-Rui; Manfra, Michael; Pfeiffer, Loren; West, Ken

    2010-03-01

    Microwave transmission measurements across a 2D electron system have been previously demonstrated in quantum Hall effect and electronic solids regime [1]. We have developed a co-planar waveguide (CPW) system for experiments in microwave-induced resistance oscillations and zero resistance states. Microwaves from a tunable source (2 - 40 GHz) were fed into our system and coupled to a CPW meander line at 300mK to measure cyclotron resonance peaks from a carbon-doped (100) GaAs/AlxGa1-xAs quantum well 2D hole system. Our samples are Hall bars with mobility μ= 0.7-1 x10^6 cm^2/Vs and carrier density ranging from 2.02 - 2.26x10^11cm-2. Each sample has been gated with AuPd using a Si3N4 dielectric. A differential power measurement δP = Pout -Pout^gate is taken with the signal from the power sensor triggered from a modulated gate to remove the background microwave signal, yielding a cyclotron resonance peak from the transmission signal. We are able to fit our cyclotron transmission signal using the Drude model and determine the hole mass and the cyclotron scattering time. Experimental data as well as a brief discussion will be presented. The work at Rice was funded by NSF DMR-0706634. [1] L. W. Engel et al, Phys. Rev. Lett. 71, 2638 (1993).

  18. Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice

    NASA Astrophysics Data System (ADS)

    Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L.; Biermann, Klaus; Grahn, Holger T.

    2017-01-01

    Noise-enhanced chaos in a doped, weakly coupled GaAs /Al0.45Ga0.55As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.

  19. Transport of dipolar excitons in (Al,Ga)N/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Fedichkin, F.; Andreakou, P.; Jouault, B.; Vladimirova, M.; Guillet, T.; Brimont, C.; Valvin, P.; Bretagnon, T.; Dussaigne, A.; Grandjean, N.; Lefebvre, P.

    2015-05-01

    We investigate the transport of dipolar indirect excitons along the growth plane of polar (Al,Ga)N/GaN quantum well structures by means of spatially and time-resolved photoluminescence spectroscopy. The transport in these strongly disordered quantum wells is activated by dipole-dipole repulsion. The latter induces an emission blue shift that increases linearly with exciton density, whereas the radiative recombination rate increases exponentially. Under continuous, localized excitation, we observe continuously decreasing emission energy, as excitons propagate away from the excitation spot. This corresponds to a steady-state gradient of exciton density, measured over several tens of micrometers. Time-resolved microphotoluminescence experiments provide information on the dynamics of recombination and transport of dipolar excitons. We account for the ensemble of experimental results by solving the nonlinear drift-diffusion equation. Quantitative analysis suggests that in such structures, exciton propagation on the scale of 10 to 20 μ m is mainly driven by diffusion, rather than by drift, due to the strong disorder and the presence of nonradiative defects. Secondary exciton creation, most probably by the intense higher-energy luminescence, guided along the sample plane, is shown to contribute to the exciton emission pattern on the scale up to 100 μ m . The exciton propagation length is strongly temperature dependent, the emission being quenched beyond a critical distance governed by nonradiative recombination.

  20. Enhanced optical property in quaternary GaInAsSb/AlGaAsSb quantum wells

    SciTech Connect

    Lin, Chien-Hung Lee, Chien-Ping

    2014-10-21

    High quality GaInAsSb/AlGaAsSb quantum wells (QWs) have been grown by molecular beam epitaxy using proper interface treatments. By controlling the group-V elements at interfaces, we obtained excellent optical quality QWs, which were free from undesired localized trap states, which may otherwise severely affect the exciton recombination. Strong and highly efficient exciton emissions up to room temperature with a wavelength of 2.2 μm were observed. A comprehensive investigation on the QW quality was carried out using temperature dependent and power dependent photoluminescence (PL) measurements. The PL emission intensity remains nearly constant at low temperatures and is free from the PL quenching from the defect induced localized states. The temperature dependent emission energy had a bulk-like behavior, indicating high quality well/barrier interfaces. Because of the uniformity of the QWs and smooth interfaces, the low temperature limit of inhomogeneous line width broadening is as small as 5 meV.

  1. Electron mobility-lifetime and resistivity mapping of GaAs:Cr wafers

    NASA Astrophysics Data System (ADS)

    Chsherbakov, I.; Kolesnikova, I.; Lozinskaya, A.; Mihaylov, T.; Novikov, V.; Shemeryankina, A.; Tolbanov, O.; Tyazhev, A.; Zarubin, A.

    2017-02-01

    Previous works onchromium compensated gallium arsenide (GaAs:Cr) have shown high efficiency, good spatial and energy resolution, which is obviously connected with the high quality of material itself. The purpose of this research was to aggravate the diffusion process by increasing the annealing temperature and to observe whether there will be any degradation of material characteristics. The investigation of three 3-inch GaAs:Cr wafers with different annealing temperature of chromium was carried out. Resistivity and mobility-lifetime measurements were made using pad sensors made of these wafers. The I-V curves were built to estimate the resistivity across the wafer. Furthermore charge collection efficiency (CCE) measurements were carried out in order to estimate the μeτ e product of GaAs:Cr. The resistivity mapping has showed a variation of resistivity across the wafer in the range from 1.25 × 109 to 5.5 × 108 Ohm cm. Although the third wafer showed quite good uniformity, the resistance didn't reached values higher than 3.5 × 108 Ohm cm. In spite of harsh diffusion conditions all the materials showed quite good CCE (about 90%) and μ eτe more than 5 × 10‑5 cm2/V. Also a strong dependency between the resistivity and mobility-lifetime product was found only for one wafer. So the uniformity of μeτ e product across the wafer can be stated independently of resistivity. More detailed information and discussion of experimental results is presented in the article.

  2. Evaluation of Ti-48Al-2Cr-2Nb Under Fretting Conditions

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.; Raj, Sai V.

    2001-01-01

    The fretting behavior of Ti-48Al-2Cr-2Nb (y-TiAl) in contact with the nickel-base superalloy 718 was examined in air at temperatures from 296 to 823 K (23 to 550 C). The interfacial adhesive bonds between Ti-48Al-2Cr-2Nb and superalloy 718 were generally stronger than the cohesive bonds within Ti-48Al-2Cr-2Nb. The failed Ti-48Al-2Cr-2Nb debris subsequently transferred to the superalloy 718. In reference experiments conducted with Ti-6Al-4V against superalloy 718 under identical fretting conditions, the degree of transfer was greater for Ti-6A1-4V than for Ti-48Al-2Cr-2Nb. Wear of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting frequency. The increasing rate of oxidation at elevated temperatures led to a drop in wear at 473 K. However, fretting wear increased as the temperature was increased from 473 to 823 K. At 723 and 823 K, oxide film disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.

  3. Performance of antireflecting coating-AlGaAs window layer coupling for terrestrial concentrator GaAs solar cells

    SciTech Connect

    Valle, C.A. del; Alcaraz, M.F.

    1997-09-01

    In this paper, the authors present the performance of optical coating systems coupled with AlGaAs window layers over GaAs solar cells. Single, double, and triple antireflecting coatings and window layers with constant and graded aluminum content are considered. Comparison between constant and graded window layers is established. To better represent reality, practical factors such as absorption of materials even for antireflecting coatings and the oxidation at window layer surface due to its high aluminum content are also included in the calculations. The design criteria to determine the optimum thickness of each layer is the achievement of maximum photogenerated current density. For this purpose and to account for terrestrial concentrators GaAs solar cells, the inclusion of direct terrestrial solar spectrum together with the internal spectral response of the device are taken into account. Finally, the best antireflecting coating/AlGaAs window layer couplings for different cases are presented.

  4. SnO2-gated AlGaN/GaN high electron mobility transistors based oxygen sensors

    SciTech Connect

    Hung, S.T.; Chung, Chi-Jung; Chen, Chin Ching; Lo, C. F.; Ren, F.; Pearton, S. J.; Kravchenko, Ivan I

    2012-01-01

    Hydrothermally grown SnO2 was integrated with AlGaN/GaN high electron mobility transistor (HEMT) sensor as the gate electrode for oxygen detection. The crystalline of the SnO2 was improved after annealing at 400 C. The grain growth kinetics of the SnO2 nanomaterials, together with the O2 gas sensing properties and sensing mechanism of the SnO2 gated HEMT sensors were investigated. Detection of 1% oxygen in nitrogen at 100 C was possible. A low operation temperature and low power consumption oxygen sensor can be achieved by combining the SnO2 films with the AlGaN/GaN HEMT structure

  5. Optical bistability and multistability in a defect slab doped by GaAs/AlGaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin

    2016-05-01

    We proposed a new model for controlling the optical bistability (OB) and optical multistability (OM) in a defect slab doped with four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al0.3 Ga0.7As barriers. The effects of biexciton energy renormalization, exciton spin relaxation, and thickness of the slab on the OB and OM properties of the defect slab were theoretically investigated. We found that the transition from OB to OM or vice versa is possible by adjusting the controllable parameters in a lab. Moreover, the transmission, reflection, and absorption properties of the weak probe light through the slab were also discussed in detail.

  6. Emphasis on trap activity in AlGaN/GaN HEMTs through temperature dependent pulsed I-V characteristics

    NASA Astrophysics Data System (ADS)

    Agboton, Alain; Defrance, Nicolas; Altuntas, Philippe; Lecourt, François; Douvry, Yannick; Hoel, Virginie; Soltani, Ali; De Jaeger, Jean-Claude

    2013-11-01

    This paper reports on the temperature dependent threshold voltage analysis of AlGaN/GaN High electron mobility transistors (HEMTs) in order to investigate the trap effects occurring in these devices. Measurements are performed in pulse configuration to emphasize the gate-lag and drain-lag effects involving current collapses. A quantitative extraction of the interface traps density is performed through the observation of the pinch-off voltage shifts in cold bias conditions. Additionally, a thermally activated energy level of 0.25 eV is evaluated whatever the bias condition. It is also shown that the trap density increases drastically when the drain is biased, limiting the performance of AlGaN/GaN devices through drain-lag effect.

  7. Dark current and optical properties in asymmetric GaAs/AlGaAs staircase-like multiquantum well structure

    NASA Astrophysics Data System (ADS)

    Altin, E.; Hostut, M.; Ergun, Y.

    2013-05-01

    In this study, we investigate dark current voltage characteristics of GaAs/AlGaAs staircase-like asymmetric multiquantum well structure at various temperatures experimentally. Measured dark current density-voltage (Jd-V) characteristics are compared with the Levine Model. It is seen that the model fits well with the experimental dark current density. Ground state energy of electrons, heavy holes and light holes are calculated by Kronig-Penney Model. Optical properties of sample are characterized by photoluminescence and photoconductivity measurements. The temperature-dependent photoluminescence (PL) spectra of the GaAs/GaAlAs QWIP show that the peaks corresponding interband transition from the ground heavy-hole subband to the ground electronic subband (Ehh1 - Ee1) are dominantly observed and the peak positions corresponding to the interband transitions of the PL spectrum are dependent on the temperature. Photoconductivity measurement is performed for different negative polarities at 37 K.

  8. Degenerate four-wave mixing in room-temperature GaAs/GaAlAs multiple quantum well structures

    NASA Astrophysics Data System (ADS)

    Miller, D. A. B.; Chemla, D. S.; Eilenberger, D. J.; Smith, P. W.; Gossard, A. C.; Wiegman, W.

    1983-06-01

    Degenerate four-wave mixing (DFWM) is of current interest both for practical applications (e.g., phase conjugation) and as a physical probe. DFWM makes it possible to detect very small nonlinear changes in refraction. In connection with the present investigation, the first observations of DFWM in GaAs/GaAlAs multiple quantum well structures (MQW's) at room temperature are reported. By combining DFWM and nonlinear absorption results, a direct measurement of the nonlinear refraction near the band gap of the MQW is conducted. The obtained value is compared with previous estimates. The measurements are of practical importance for possible low-power optical devices compatible with laser diodes based either on DFWM, nonlinear refraction (such as optical bistability) of nonlinear absorption. The MQW samples were grown by molecular beam epitaxy (MBE) on GaAs substrates, with the MQW layers sandwiched between GaAlAs cap layers which are transparent at the considered wavelengths.

  9. Suppression of Martensitic Transformation in Co2Cr(Ga,Si) Heusler Alloys by Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Xiao, Fei; Jin, Xuejun; Fukuda, Takashi; Kakeshita, Tomoyuki

    2017-03-01

    We have investigated the influence of thermal cycles on martensitic transformation of a Co2Cr(Ga,Si) ferromagnetic Heusler alloy. The as-quenched specimen exhibits successive L21(L)-D022-L21(H) martensitic transformation in the cooling process, which is known as reentrant martensitic transformation. However, heating to 800 K (527 °C) for reverse D022-L21 transformation with a rate of 10 K/min (10 °C/min) stabilizes the parent phase, meaning that the martensitic transformation is suppressed by the thermal cycles. We found precipitate after thermal cycles, and it will be the reason for the stabilization of parent phase.

  10. High energy proton radiation damage to (AlGa)As-G aAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R.; Goldhammer, L.; Kamath, S.; Knechtli, R. C.

    1979-01-01

    Twelve 2 + 2 sq cm (AlGa)As-GaAs solar cells were fabricated and were subjected to 15.4 and 40 MeV of proton irradiation. The results showed that the GaAs cells degrade considerably less than do conventional and developmental K7 silicon cells. The detailed characteristics of the GaAs and silicon cells, both before and after irradiation, are described. Further optimization of the GaAs cells seems feasible, and areas for future work are suggested.

  11. Large signal and noise properties of heterojunction Al x Ga1-x As/GaAs DDR IMPATTs

    NASA Astrophysics Data System (ADS)

    Banerjee, Suranjana; Mitra, Monojit

    2016-06-01

    Simulation studies are carried out on the large signal and noise properties of heterojunction (HT) Al x Ga1-x As/GaAs double drift region (DDR) IMPATT devices at V-band (60 GHz). The dependence of Al mole fraction on the aforementioned properties of the device has been investigated. A full simulation software package has been indigenously developed for this purpose. The large signal simulation is based on a non-sinusoidal voltage excitation model. Three mole fractions of Al and two complementary HT DDR structures for each mole fraction i.e., six DDR structures are considered in this study. The purpose is to discover the most suitable structure and corresponding mole fraction at which high power, high efficiency and low noise are obtained from the device. The noise spectral density and noise measure of all six HT DDR structures are obtained from a noise model and simulation method. Similar studies are carried out on homojunction (HM) DDR GaAs IMPATTs at 60 GHz to compare their RF properties with those of HT DDR devices. The results show that the HT DDR device based on N-Al x Ga1-x As/p-GaAs with 30% mole fraction of Al is the best one so far as large signal power output, DC to RF conversion efficiency and noise level are concerned.

  12. Polarity control of GaN grown on pulsed-laser-deposited AlN/GaN template by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoo, Jinyeop; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    We report on the polarity control of GaN regrown on pulsed-laser-deposition-grown N-polar AlN on a metalorganic-vapor-phase-epitaxy-grown Ga-polar GaN template. The polarity of the regrown GaN, which was confirmed using aqueous KOH solutions, can be inverted from that of AlN by inserting a low-temperature GaN (LT-GaN) buffer layer. We hypothetically ascribe the Ga-polarity selection of GaN on the LT-GaN buffer layer to the mixed polarity of LT-GaN grains and higher growth rate of the Ga-polar grain, which covers up the N-polar grain during the initial stage of the high-temperature growth. The X-ray rocking curve analysis revealed that the edge-dislocation density in the N-polar regrown GaN is 5 to 8 times smaller than that in the Ga-polar regrown GaN. N-polar GaN grows directly on N-polar AlN at higher temperatures. Therefore, nucleus islands grow larger than those of LT-GaN and the area fraction of coalescence boundaries between islands, where edge dislocations emerge, becomes smaller.

  13. DC and small-signal physical models for the AlGaAs/GaAs high electron mobility transistor

    NASA Technical Reports Server (NTRS)

    Sarker, J. C.; Purviance, J. E.

    1991-01-01

    Analytical and numerical models are developed for the microwave small-signal performance, such as transconductance, gate-to-source capacitance, current gain cut-off frequency and the optimum cut-off frequency of the AlGaAs/GaAs High Electron Mobility Transistor (HEMT), in both normal and compressed transconductance regions. The validated I-V characteristics and the small-signal performances of four HeMT's are presented.

  14. Switchable bicolor (5.5-9.0 microns) infrared detector using asymmetric GaAs/AlGaAs multiquantum well

    NASA Astrophysics Data System (ADS)

    Martinet, E.; Rosencher, E.; Luc, F.; Bois, Ph.; Costard, E.; Delaitre, S.

    1992-07-01

    Electrical switching of a bispectral infrared photoconductor is demonstrated with GaAs/AlGaAs asymmetric step multiquantum wells, presenting bound-to-bound (tunable 8.5-9.0 microns) and bound-to-extended (about 5.5 microns) intersubband transitions of similar oscillator strengths. The bound-to-bound photoresponse is switched on by applying an electric field of sufficient magnitude to permit the collection of the photoexcited bound electrons of tunneling.

  15. Emission of terahertz radiation from GaN/AlGaN heterostructure under electron heating in lateral electric field

    NASA Astrophysics Data System (ADS)

    Shalygin, V. A.; Vorobjev, L. E.; Firsov, D. A.; Sofronov, A. N.; Melentyev, G. A.; Lundin, W. V.; Sakharov, A. V.; Tsatsulnikov, A. F.

    2013-12-01

    Spontaneous emission of terahertz radiation from modulation-doped AlGaN/GaN heterostructure under conditions of heating of a two-dimensional electron gas in the lateral electric field has been studied. The experimental data on the field dependence of the integral intensity of THz emission is compared with the theoretical simulation of blackbody-like emission from hot 2D electrons. Complementary transport measurements have been carried out to determine the dependence of effective electron temperature on electric field.

  16. Anomalous-circular photogalvanic effect in a GaAs/AlGaAs two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Tang, C. G.; Chen, Y. H.; Liu, Y.; Wang, Z. G.

    2009-09-01

    We have studied the circular photogalvanic effect (CPGE) in a GaAs/AlGaAs two-dimensional electron gas excited by near infrared light at room temperature. The anomalous CPGE observed under normal incidence indicates a swirling current which is realized by a radial spin current via the reciprocal spin-Hall effect. The anomalous CPGE exhibits a cubic cosine dependence on the incidence angle, which is discussed in line with the above interpretation.

  17. Anomalous-circular photogalvanic effect in a GaAs/AlGaAs two-dimensional electron gas.

    PubMed

    Tang, C G; Chen, Y H; Liu, Y; Wang, Z G

    2009-09-16

    We have studied the circular photogalvanic effect (CPGE) in a GaAs/AlGaAs two-dimensional electron gas excited by near infrared light at room temperature. The anomalous CPGE observed under normal incidence indicates a swirling current which is realized by a radial spin current via the reciprocal spin-Hall effect. The anomalous CPGE exhibits a cubic cosine dependence on the incidence angle, which is discussed in line with the above interpretation.

  18. GaAs/GaAlAs device structures prepared by molecular beam epitaxy using indium-free mounting techniques

    SciTech Connect

    SpringThorpe, A.J.; Mandeville, P.

    1986-07-01

    A simple indium-free mount is described for the VG-Semicon V80-H MBE system. In conjunction with nonstandard substrate preparation techniques, the use of this mount has enabled GaAs/GaAlAs device structures to be prepared with consistently low (< or =200/cm/sup 2/) oval defect concentrations. Both 2DEG structures, with high 4 K mobilities, and GRINSCH lasers, with low thresholds, have been prepared to demonstrate the capabilities of the mounting procedures.

  19. Effects of light illumination on electron velocity of AlGaN/GaN heterostructures under high electric field

    SciTech Connect

    Guo, Lei; Yang, Xuelin Cheng, Jianpeng; Sang, Ling; Xu, Fujun; Tang, Ning; Feng, Zhihong; Lv, Yuanjie; Wang, Xinqiang; Shen, B.; Ge, Weikun

    2014-12-15

    We have investigated the variation of electron velocity in AlGaN/GaN heterostructures depending on illuminating light intensity and wavelength. It is shown that the electron velocity at high electric field increases under above-band light illumination. This electron velocity enhancement is found to be related to the photo-generated cold holes which interact with hot electrons and thus accelerate the energy relaxation at high electric field. The results suggest an alternative way to improve the electron energy relaxation rate and hence the electron velocity in GaN based heterostructures.

  20. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Deming; Chen, Guiqing; Wang, Yuesheng

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  1. Thermodynamic assessments and inter-relationships between systems involving Al, Am, Ga, Pu, and U

    NASA Astrophysics Data System (ADS)

    Perron, A.; Turchi, P. E. A.; Landa, A.; Oudot, B.; Ravat, B.; Delaunay, F.

    2016-12-01

    A newly developed self-consistent CALPHAD thermodynamic database involving Al, Am, Ga, Pu, and U is presented. A first optimization of the slightly characterized Am-Al and completely unknown Am-Ga phase diagrams is proposed. To this end, phase diagram features as crystal structures, stoichiometric compounds, solubility limits, and melting temperatures have been studied along the U-Al → Pu-Al → Am-Al, and U-Ga → Pu-Ga → Am-Ga series, and the thermodynamic assessments involving Al and Ga alloying are compared. In addition, two distinct optimizations of the Pu-Al phase diagram are proposed to account for the low temperature and Pu-rich region controversy. The previously assessed thermodynamics of the other binary systems (Am-Pu, Am-U, Pu-U, and Al-Ga) is also included in the database and is briefly described in the present work. Finally, predictions on phase stability of ternary and quaternary systems of interest are reported to check the consistency of the database.

  2. Thermodynamic assessments and inter-relationships between systems involving Al, Am, Ga, Pu, and U

    SciTech Connect

    Perron, A.; Turchi, P. E. A.; Landa, A.; Oudot, B.; Ravat, B.; Delaunay, F.

    2016-12-01

    We present a newly developed self-consistent CALPHAD thermodynamic database involving Al, Am, Ga, Pu, and U. A first optimization of the slightly characterized Am-Al and completely unknown Am-Ga phase diagrams is proposed. To this end, phase diagram features as crystal structures, stoichiometric compounds, solubility limits, and melting temperatures have been studied along the U-Al → Pu-Al → Am-Al, and U-Ga → Pu-Ga → Am-Ga series, and the thermodynamic assessments involving Al and Ga alloying are compared. In addition, two distinct optimizations of the Pu-Al phase diagram are proposed to account for the low temperature and Pu-rich region controversy. We included the previously assessed thermodynamics of the other binary systems (Am-Pu, Am-U, Pu-U, and Al-Ga) in the database and is briefly described in the present work. In conclusion, predictions on phase stability of ternary and quaternary systems of interest are reported to check the consistency of the database.

  3. Thermodynamic assessments and inter-relationships between systems involving Al, Am, Ga, Pu, and U

    DOE PAGES

    Perron, A.; Turchi, P. E. A.; Landa, A.; ...

    2016-12-01

    We present a newly developed self-consistent CALPHAD thermodynamic database involving Al, Am, Ga, Pu, and U. A first optimization of the slightly characterized Am-Al and completely unknown Am-Ga phase diagrams is proposed. To this end, phase diagram features as crystal structures, stoichiometric compounds, solubility limits, and melting temperatures have been studied along the U-Al → Pu-Al → Am-Al, and U-Ga → Pu-Ga → Am-Ga series, and the thermodynamic assessments involving Al and Ga alloying are compared. In addition, two distinct optimizations of the Pu-Al phase diagram are proposed to account for the low temperature and Pu-rich region controversy. We includedmore » the previously assessed thermodynamics of the other binary systems (Am-Pu, Am-U, Pu-U, and Al-Ga) in the database and is briefly described in the present work. In conclusion, predictions on phase stability of ternary and quaternary systems of interest are reported to check the consistency of the database.« less

  4. Coating MCPs with AlN and GaN

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhakim; Starikov, David; Boney, Chris

    2006-01-01

    A development effort underway at the time of reporting the information for this article is devoted to increasing the sensitivity of microchannel plates (MCPs) as detectors of photons and ions by coating the MCPs with nitrides of elements in period III of the periodic table. Conventional MCPs are relatively insensitive to slowly moving, large-mass ions for example, ions of biomolecules under analysis in mass spectrometers. The idea underlying this development is to coat an MCP to reduce its work function (decrease its electron affinity) in order to increase both (1) the emission of electrons in response to impingement of low-energy, large-mass ions and (2) the multiplying effect of secondary electron emission. Of particular interest as coating materials having appropriately low or even negative electron affinities are gallium nitride, aluminum nitride, and ternary alloys of general composition Al(x)Ga(1-x)N (where 0AlN and GaN both undoped and doped with Si were deposited on commercial MCPs by radio-frequency molecular-beam epitaxy (also known as plasma-assisted molecular-beam epitaxy) at temperatures <200 C. This deposition technique is particularly suitable because (1) MCPs cannot withstand the higher deposition-substrate temperatures used to decompose constituent compounds in some other deposition techniques and (2) in this technique, the constituent Al, Ga, and N

  5. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    SciTech Connect

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar; Terrani, Kurt A.; Field, Kevin G.

    2016-02-17

    We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning of the Al from the α' precipitates was also observed.

  6. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    DOE PAGES

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; ...

    2016-02-17

    We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning ofmore » the Al from the α' precipitates was also observed.« less

  7. Deep UV AlGaN light emitting diodes grown by gas source molecular beam epitaxy on sapphire and AlGaN/sapphire substrates

    NASA Astrophysics Data System (ADS)

    Nikishin, S.; Borisov, B.; Kuryatkov, V.; Usikov, A.; Dmitriev, V.; Holtz, M.

    2006-02-01

    We report the electrical and optical properties of deep ultraviolet light emitting diodes (LEDs) based on digital alloy structures (DAS) of AlN/Al 0.08Ga 0.92N grown by gas source molecular beam epitaxy with ammonia on sapphire substrates and AlGaN/sapphire templates. AlGaN/sapphire templates were grown by recently developed stress controlled hydride vapor phase epitaxy (HVPE). For DAS with effective bandgap of 5.1 eV we obtain room temperature electron concentrations up to 1x10 19 cm -3 and hole concentrations of 1x10 18 cm -3. Based on these results we prepared double heterostructure (DHS) LEDs operating in the range of 250 to 290 nm. The emission wavelengths were controlled through the effective bandgap of the active region. The possible ways for increase of LED's efficiency are discussed. We observed significant improvement in the room temperature luminescence efficiency (by factor of 100) of AlGaN quantum wells when a transition growth mode is induced by reduced flux of ammonia. We found that active layer grown on HVPE AlGaN/sapphire substrates have higher luminescence efficiency (by factor of 3) than DAS grown on sapphire.

  8. Observation of interface band bending on GaAs/AlAs heterostructures by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; Yao, Xiaowei; Workman, Richard K.; Peterson, Charles A.; Fallahi, Mahmoud

    1998-05-01

    The electronic structure at the interface of GaAs/AlAs multilayers grown by molecular beam epitaxy is investigated on the (110) surface using scanning tunneling microscopy. The valence band bending, which is produced by an interface dipole layer, is observed from cross-sectional profiles exhibiting spike structures. It is found that the transition region of the AlAs/GaAs interface (3.0 - 4.0 nm) is smaller than that of the GaAs/AlAs interface (4.0 - 5.0 nm). Similar spike structures showing a transition region of 3.5 - 4.5 nm are also observed at the GaAs/Al0.6Ga0.4As interface.

  9. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  10. Dynamical spin injection into a two-dimensional electron gas in an AlGaAs/GaAs structure

    NASA Astrophysics Data System (ADS)

    Ohtomo, Kenro; Ando, Yuichiro; Shinjo, Teruya; Uemura, Tetsuya; Shiraishi, Masashi

    A two-dimensional electron system in a GaAs-based heterostructure is the attractive platform for spintronics since it has high mobility and spin-orbit interaction can be modulated by the gate voltage1. Thus, it is a possible platform to realize electric gate-controlled spin transistor2. However, room-temperature spin transport through GaAs-based heterostructure has yet to be shown. We report first spin transport through the quantum well at GaAs/AlGaAs interface at room temperature. We used spin pumping under ferromagnetic resonance to inject spins from the Ni80Fe20 to the GaAs/AlGaAs quantum well. Generated spin current propagated through the 1 μm channel and was detected using spin-charge conversion inverse spin Hall effect in the Pt electrode. In agreement with spin pumping theory, polarity of the spin transport signal was reversed together with magnetization of the Ni80Fe20. This first demonstration of spin transport through a quantum well at a semiconductor heterostructure interface at room temperature opens a way to realize Datta-Das spin-based transistor.1 J. Nitta, et al., PRL 78, 1335 (1997). 2 S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

  11. Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure

    NASA Astrophysics Data System (ADS)

    Khmissi, H.; Baira, M.; Sfaxi, L.; Bouzaïene, L.; Saidi, F.; Bru-Chevallier, C.; Maaref, H.

    2011-03-01

    Optical properties of InAs quantum dots (QDs) inserted in AlGaAs/GaAs modulation doped heterostructure are investigated. To study the effect of carrier transfer behavior on the luminescence of self-assembled quantum dots, a series of sample has been prepared using molecular beam epitaxy (Riber 32 system) in which we have varied the thickness separating the delta dopage and the InAs quantum dots layer. Photoluminescence spectra show the existence of two peaks that can be attributed to transition energies from the ground state (E1-HH1) and the first excited state (E2-HH2). Two antagonist effects have been observed, a blue shift of the emission energies result from electron transferred from the AlGaAs/GaAs heterojunction to the InAs quantum dots and a red shift caused by the quantum confined Stark effect due to the internal electric field existing In the AlGaAs/GaAs heterojunction.

  12. Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure

    SciTech Connect

    Khmissi, H.; Baira, M.; Bouzaieene, L.; Saidi, F.; Maaref, H.; Sfaxi, L.; Bru-Chevallier, C.

    2011-03-01

    Optical properties of InAs quantum dots (QDs) inserted in AlGaAs/GaAs modulation doped heterostructure are investigated. To study the effect of carrier transfer behavior on the luminescence of self-assembled quantum dots, a series of sample has been prepared using molecular beam epitaxy (Riber 32 system) in which we have varied the thickness separating the delta dopage and the InAs quantum dots layer. Photoluminescence spectra show the existence of two peaks that can be attributed to transition energies from the ground state (E{sub 1}-HH{sub 1}) and the first excited state (E{sub 2}-HH{sub 2}). Two antagonist effects have been observed, a blue shift of the emission energies result from electron transferred from the AlGaAs/GaAs heterojunction to the InAs quantum dots and a red shift caused by the quantum confined Stark effect due to the internal electric field existing In the AlGaAs/GaAs heterojunction.

  13. Surface passivation and interface properties of bulk GaAs and epitaxial-GaAs/Ge using atomic layer deposited TiAlO alloy dielectric.

    PubMed

    Dalapati, G K; Chia, C K; Tan, C C; Tan, H R; Chiam, S Y; Dong, J R; Das, A; Chattopadhyay, S; Mahata, C; Maiti, C K; Chi, D Z

    2013-02-01

    High quality surface passivation on bulk-GaAs substrates and epitaxial-GaAs/Ge (epi-GaAs) layers were achieved by using atomic layer deposited (ALD) titanium aluminum oxide (TiAlO) alloy dielectric. The TiAlO alloy dielectric suppresses the formation of defective native oxide on GaAs layers. X-ray photoelectron spectroscopy (XPS) analysis shows interfacial arsenic oxide (As(x)O(y)) and elemental arsenic (As) were completely removed from the GaAs surface. Energy dispersive X-ray diffraction (EDX) analysis and secondary ion mass spectroscopy (SIMS) analysis showed that TiAlO dielectric is an effective barrier layer for reducing the out-diffusion of elemental atoms, enhancing the electrical properties of bulk-GaAs based metal-oxide-semiconductor (MOS) devices. Moreover, ALD TiAlO alloy dielectric on epi-GaAs with AlGaAs buffer layer realized smooth interface between epi-GaAs layers and TiAlO dielectric, yielding a high quality surface passivation on epi-GaAs layers, much sought-after for high-speed transistor applications on a silicon platform. Presence of a thin AlGaAs buffer layer between epi-GaAs and Ge substrates improved interface quality and gate dielectric quality through the reduction of interfacial layer formation (Ga(x)O(y)) and suppression of elemental out-diffusion (Ga and As). The AlGaAs buffer layer and TiAlO dielectric play a key role to suppress the roughening, interfacial layer formation, and impurity diffusion into the dielectric, which in turn largely enhances the electrical property of the epi-GaAs MOS devices.

  14. Persistent luminescence in ZnGa2O4:Cr: an outstanding biomarker for in-vivo imaging

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Bessiere, A.; Gourier, D.; Binet, L.; Viana, B.; Basavaraju, N.; Priolkar, K.; Maldiney, T.; Scherman, D.; Richard, C.

    2014-03-01

    ZnGa2O4 (ZGO) is a normal spinel. When doped with Cr3+ ions, ZGO:Cr becomes a high brightness persistent luminescence material with an emission spectrum perfectly matching the transparency window of living tissues. It allows in vivo mouse imaging with a better signal to background ratio than classical fluorescent NIR probes. The most interesting characteristic of ZGO:Cr lies in the fact that its LLP can be excited with red light, well below its band gap energy and in the transparency window of living tissues. A mechanism based on the trapping of carriers localized around a special type of Cr3+ ions namely CrN2 can explain this singularity. The antisite defects of the structure are the main responsible traps in the persistent luminescence mechanism. When located around Cr3+ ions, they allow, via Cr3+ absorption, the storage of not only UV light but also all visible light from the excitation source.

  15. Selective oxidation of buried AlGaAs for fabrication of vertical-cavity lasers

    SciTech Connect

    Choquette, K.D.; Geib, K.M.; Chui, H.C.; Hou, H.Q.; Hull, R.

    1996-06-01

    The authors discuss the selective conversion of buried layers of AlGaAs to a stable oxide and the implementation of this oxide into high performance vertical-cavity surface emitting lasers (VCSELs). The rate of lateral oxidation is shown to be linear with an Arrhenius temperature dependence. The measured activation energies vary with Al composition, providing a high degree of oxidation selectivity between AlGaAs alloys. Thus buried oxide layers can be selectively fabricated within the VCSEL through small compositional variations in the AlGaAs layers. The oxidation of AlGaAs alloys, as opposed to AlAs, is found to provide robust processing of reliable lasers. The insulating and low refractive index oxide provides enhanced electrical and optical confinement for ultralow threshold currents in oxide-apertured VCSELs.

  16. Self-Aligned ALD AlOx T-gate Insulator for Gate Leakage Current Suppression in SiNx-Passivated AlGaN/GaN HEMTs

    DTIC Science & Technology

    2010-01-01

    blanket-deposited between the source and drain, as has been demonstrated by Ye et al. [21]. Similiarly, Saadat and co-workers have used ALD-deposited HfOx...been reported previously by Saadat et al. [22] and noted to be indicative of slow trapping centers in the oxide and at the oxide/semiconductor...gate dielectric. Appl Phys Lett 2005;86:063501–3. [22] Saadat OI, Chung JW, Piner EL, Palacios T. Gate-first AlGaN/GaN HEMT technology for high-frequency

  17. 10-16 meu broadband 640X512 GaAs/AlGaAs quantum well infrared photodetector (QWIP) focal plane array

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Rafol, S. B.; Mumolo, J. M.; Reininger, F. M.; Fastenau, J. M.; Liu, A. K.

    2001-01-01

    In this presentation, we will discuss the development of this large format broadband infrared FPA based on a GaAs/AlGaAs materials system and its performance in quantum efficiency, uniformity, and operability.

  18. Non-equilibrium Green's function calculation of AlGaAs-well-based and GaSb-based terahertz quantum cascade laser structures

    SciTech Connect

    Yasuda, H. Hosako, I.

    2015-03-16

    We investigate the performance of terahertz quantum cascade lasers (THz-QCLs) based on Al{sub x}Ga{sub 1−x}As/Al{sub y}Ga{sub 1−y}As and GaSb/AlGaSb material systems to realize higher-temperature operation. Calculations with the non-equilibrium Green's function method reveal that the AlGaAs-well-based THz-QCLs do not show improved performance, mainly because of alloy scattering in the ternary compound semiconductor. The GaSb-based THz-QCLs offer clear advantages over GaAs-based THz-QCLs. Weaker longitudinal optical phonon–electron interaction in GaSb produces higher peaks in the spectral functions of the lasing levels, which enables more electrons to be accumulated in the upper lasing level.

  19. High-efficiency blue LEDs with thin AlGaN interlayers in InGaN/GaN MQWs grown on Si (111) substrates

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeya; Yoshida, Hisashi; Ito, Toshihide; Okada, Aoi; Uesugi, Kenjiro; Nunoue, Shinya

    2016-02-01

    We demonstrate high-efficiency blue light-emitting diodes (LEDs) with thin AlGaN interlayers in InGaN/GaN multiquantum wells (MQWs) grown on Si (111) substrates. The peak external quantum efficiency (EQE) ηEQE of 82% at room temperature and the hot/cold factor (HCF) of 94% have been obtained by using the functional thin AlGaN interlayers in the MQWs in addition to reducing threading dislocation densities (TDDs) in the blue LEDs. An HCF is defined as ηEQE(85°C)/ηEQE(25°C). The blue LED structures were grown by metal-organic chemical vapor deposition on Si (111) substrates. The MQWs applied as an active layer have 8- pairs of InGaN/AlyGa1-yN/GaN (0<=y<=1) heterostructures. Thinfilm LEDs were fabricated by removing the Si (111) substrates from the grown layers. It is observed by high-resolution transmission electron microscopy and three-dimensional atom probe analysis that the 1 nm-thick AlyGa1-yN interlayers, whose Al content is y=0.3 or less, are continuously formed. EQE and the HCFs of the LEDs with thin Al0.15Ga0.85N interlayers are enhanced compared with those of the samples without the interlayers in the low-current-density region. We consider that the enhancement is due to both the reduction of the nonradiative recombination centers and the increase of the radiative recombination rate mediated by the strain-induced hole carriers indicated by the simulation of the energy band diagram.

  20. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-09-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  1. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy.

    PubMed

    Manzoni, A; Daoud, H; Völkl, R; Glatzel, U; Wanderka, N

    2013-09-01

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al-Ni rich matrix and Cr-Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr-Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr-Fe-rich precipitates.

  2. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.; Unocic, Kinga A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  3. Comparative study of NH 4OH and HCl etching behaviours on AlGaN surfaces

    NASA Astrophysics Data System (ADS)

    Sohal, Rakesh; Dudek, Piotr; Hilt, Oliver

    2010-01-01

    A controlled AlGaN surface preparation method avails to improve the performance of GaN-based HEMT devices. A comparative investigation of chemical treatments by (1:10) NH 4OH:H 2O and (1:10) HCl:H 2O solutions for AlGaN surface preparation by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) is reported. The XPS data clearly reveal that the native oxide on AlGaN was composed of Al 2O 3, Ga 2O 3 and NO compounds. These compounds were etched off partially or completely by both the chemical treatments, namely NH 4OH or HCl solutions, independently. The HCl treatment etches out Al 2O 3 completely from native oxide unlike NH 4OH treatment. The HCl treatment results in larger amount of carbon segregation on AlGaN surfaces, however it removes all oxides' compounds faster than NH 4OH treatment. The AFM results reveal the improvement of surface morphology by both the chemical treatments leading to the surface roughness RMS values of 0.24 nm and 0.21 nm for NH 4OH and HCl treated AlGaN layers, respectively.

  4. Investigations of the structural stability of highly strained [(Al)GaIn]As/Ga (PAs) multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Marschner, T.; Lutgen, S.; Volk, M.; Stolz, W.; Göbel, E. O.

    1996-10-01

    The structural stability of highly strained [(Al)GaIn]As/Ga (PAs) strained layer superlattice (SLS) structures as a function of the average lattice mismatch is investigated. The SLS structures, grown by metalorganic vapor-phase epitaxy, are studied by using high-resolution x-ray diffraction. The range of stable SLS structures obtained experimentally is compared to a recent theoretical model assuming strain relaxation by formation of misfit dislocations [D. C. Houghton, M. Davies, and M. Dion, Appl. Phys. Lett. 64, 505 (1994)]. In particular, the influence of the surface migration length of the group-III species on the growth surface is investigated by varying the Al concentration in the compressively strained [(Al)GaIn]As layers. Structurally stable [(Al)GaIn]As/Ga(PAs) SLS structures having a total layer thickness of 1 μm and an average lattice mismatch of up to (Δd/d)⊥=1.2×10-2 have been realized. These values exceed by far the values of the misfit dislocation model. This behavior indicates that surface morphology changes rather than misfit dislocation formation are the primary cause for the instability of highly strained SLSs.

  5. Screw dislocation-induced growth spirals as emissive exciton localization centers in Al-rich AlGaN/AlN quantum wells

    SciTech Connect

    Funato, Mitsuru Banal, Ryan G.; Kawakami, Yoichi

    2015-11-15

    Screw dislocations in Al-rich AlGaN/AlN quantum wells cause growth spirals with an enhanced Ga incorporation, which create potential minima. Although screw dislocations and their surrounding potential minima suggest non-radiative recombination processes within growth spirals, in reality, screw dislocations are not major non-radiative sinks for carriers. Consequently, carriers localized within growth spirals recombine radiatively without being captured by non-radiative recombination centers, resulting in intense emissions from growth spirals.

  6. Kinetics of borided 31CrMoV9 and 34CrAlNi7 steels

    SciTech Connect

    Efe, Goezde Celebi; Ipek, Mediha; Ozbek, Ibrahim; Bindal, Cuma

    2008-01-15

    In this study, kinetics of borides formed on the surface of 31CrMoV9 and 34CrAlNi7 steels borided in solid medium consisting of Ekabor II at 850-900-950 deg. C for 2, 4, 6 and 8 h were investigated. Scanning electron microscopy and optical microscopy examinations showed that borides formed on the surface of borided steels have columnar morphology. The borides formed in the coating layer confirmed by X-ray diffraction analysis are FeB, Fe{sub 2}B, CrB, and Cr{sub 2}B. The hardnesses of boride layers are much higher than that of matrix. It was found that depending on process temperature and time the fracture toughness of boride layers ranged from 3.93 to 4.48 MPa m{sup 1/2} for 31CrMoV9 and from 3.87 to 4.40 MPa m{sup 1/2} for 34CrAlNi7 steel. Activation energy, growth rate and growth acceleration of boride layer calculated according to these kinetic studies revealed that lower activation energy results in the fast growth rate and high growth acceleration.

  7. Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Nagashima, Kazuhide; Krot, Alexander N.; Ogliore, Ryan C.; Yin, Qing-Zhu; Amelin, Yuri; Stirling, Claudine H.; Kaltenbach, Angela

    2017-03-01

    We report on the mineralogy, petrography, and in situ measured oxygen- and magnesium-isotope compositions of eight porphyritic chondrules (seven FeO-poor and one FeO-rich) from the Renazzo-like carbonaceous (CR) chondrites Graves Nunataks 95229, Grosvenor Mountains 03116, Pecora Escarpment 91082, and Queen Alexandra Range 99177, which experienced minor aqueous alteration and very mild thermal metamorphism. We find no evidence that these processes modified the oxygen- or Al-Mg isotope systematics of chondrules in these meteorites. Olivine, low-Ca pyroxene, and plagioclase within an individual chondrule have similar O-isotope compositions, suggesting crystallization from isotopically uniform melts. The only exceptions are relict grains in two of the chondrules; these grains are 16O-enriched relative to phenocrysts of the host chondrules. Only the FeO-rich chondrule shows a resolvable excesses of 26Mg, corresponding to an inferred initial 26Al/27Al ratio [(26Al/27Al)0] of (2.5 ± 1.6) × 10-6 (±2SE). Combining these results with the previously reported Al-Mg isotope systematics of CR chondrules (Nagashima et al., 2014, Geochem. J. 48, 561), 7 of 22 chondrules (32%) measured show resolvable excesses of 26Mg; the presence of excess 26Mg does not correlate with the FeO content of chondrule silicates. In contrast, virtually all chondrules in weakly metamorphosed (petrologic type 3.0-3.1) unequilibrated ordinary chondrites (UOCs), Ornans-like carbonaceous (CO) chondrites, and the ungrouped carbonaceous chondrite Acfer 094 show resolvable excesses of 26Mg. The inferred (26Al/27Al)0 in CR chondrules with resolvable excesses of 26Mg range from (1.0 ± 0.4) × 10-6 to (6.3 ± 0.9) × 10-6, which is typically lower than (26Al/27Al)0 in the majority of chondrules from UOCs, COs, and Acfer 094. Based on the inferred (26Al/27Al)0, three populations of CR chondrules are recognized; the population characterized by low (26Al/27Al)0 (<3 × 10-6) is dominant. There are no noticeable

  8. Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; Coelho, A. A.; Nigam, A. K.; Johnson, D. D.; Alam, Aftab; Suresh, K. G.

    2015-07-01

    Despite a plethora of materials suggested for spintronic applications, a new class of materials has emerged, namely spin gapless semiconductors (SGS), which offers potentially more advantageous properties than existing ones. These magnetic semiconductors exhibit a finite band gap for one spin channel and a closed gap for the other. Here, supported by electronic-structure calculations, we report evidence of SGS behavior in equiatomic quaternary CoFeCrGa, having a cubic Heusler (prototype LiMgPdSn) structure but exhibiting chemical disorder (DO3 structure). CoFeCrGa is found to transform from SGS to half-metallic phase under pressure, which is attributed to unique electronic-structure features. The saturation magnetization (MS) obtained at 8 K agrees with the Slater-Pauling rule and the Curie temperature (TC) is found to exceed 400 K . Carrier concentration (up to 250 K ) and electrical conductivity are observed to be nearly temperature independent, prerequisites for SGS. The anomalous Hall coefficient is estimated to be 185 S /cm at 5 K . Considering the SGS properties and high TC, this material appears to be promising for spintronic applications.

  9. Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment

    DOE PAGES

    Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; ...

    2015-07-08

    Despite a plethora of materials suggested for spintronic applications, a new class of materials has emerged, namely spin gapless semiconductors (SGS), which offers potentially more advantageous properties than existing ones. These magnetic semiconductors exhibit a finite band gap for one spin channel and a closed gap for the other. Supported by electronic-structure calculations, we report evidence of SGS behavior in equiatomic quaternary CoFeCrGa, having a cubic Heusler (prototype LiMgPdSn) structure but exhibiting chemical disorder (DO3 structure). CoFeCrGa is found to transform from SGS to half-metallic phase under pressure, which is attributed to unique electronic-structure features. The saturation magnetization (MS) wasmore » obtained at 8K agrees with the Slater-Pauling rule and the Curie temperature (TC) is found to exceed 400K. Carrier concentration (up to 250K) and electrical conductivity are observed to be nearly temperature independent, prerequisites for SGS. The anomalous Hall coefficient is estimated to be 185S/cm at 5K. Considering the SGS properties and high TC, this material appears to be promising for spintronic applications.« less

  10. Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment

    SciTech Connect

    Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; Coelho, A. A.; Nigam, A. K.; Johnson, D. D.; Alam, Aftab; Suresh, K. G.

    2015-07-08

    Despite a plethora of materials suggested for spintronic applications, a new class of materials has emerged, namely spin gapless semiconductors (SGS), which offers potentially more advantageous properties than existing ones. These magnetic semiconductors exhibit a finite band gap for one spin channel and a closed gap for the other. Supported by electronic-structure calculations, we report evidence of SGS behavior in equiatomic quaternary CoFeCrGa, having a cubic Heusler (prototype LiMgPdSn) structure but exhibiting chemical disorder (DO3 structure). CoFeCrGa is found to transform from SGS to half-metallic phase under pressure, which is attributed to unique electronic-structure features. The saturation magnetization (MS) was obtained at 8K agrees with the Slater-Pauling rule and the Curie temperature (TC) is found to exceed 400K. Carrier concentration (up to 250K) and electrical conductivity are observed to be nearly temperature independent, prerequisites for SGS. The anomalous Hall coefficient is estimated to be 185S/cm at 5K. Considering the SGS properties and high TC, this material appears to be promising for spintronic applications.

  11. Temperature-dependent polarization characteristics in Al0.25Ga0.75N/AlN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Xiang, Yong; Chen, Xinjuan; Ji, Cheng; Yang, Xuelin; Xu, Fujun; Yang, Zhijian; Kang, Xiangning; Shen, Bo; Zhang, Guoyi; Yu, Tongjun

    2016-02-01

    The characteristics of polarizations, including spontaneous polarization (PSP) and piezoelectric polarization (PPE) in Al0.25Ga0.75N/AlN/GaN were obtained by temperature-dependent x-ray diffraction measurements of AlN and GaN layers, and the sheet carrier density (ns) in 20-nm-thick barrier Al0.25Ga0.75N/AlN/GaN heterostructure was studied by Hall measurement at different temperatures from 300 K to 600 K. It is found that the PSP/e (˜1 × 1013 cm-2, e is the electron charge) is larger than PPE/e (˜7 × 1012 cm-2). Excluding the influence of background carrier density, the change of PSP/e with temperature is similar to that of ns, while the tendency of PPE/e is opposite. The contributions to ns change by PSP and PPE are ˜-7.3 × 1011 cm-2 and ˜1.9 × 1011 cm-2, respectively. Therefore, the total variation of PSP and PPE is ˜-5.4 × 1011 cm-2, which is close to the value ˜-5.5 × 1011 cm-2 obtained by Hall data. All these results demonstrate that the PSP is dominant in temperature-dependent properties of two-dimensional electron gas. Moreover, the reduction of PSP with increasing temperature might aggravate current collapse in high electron mobility transistors devices.

  12. Cr-Al coatings on low carbon steel prepared by a mechanical alloying technique

    NASA Astrophysics Data System (ADS)

    Hia, A. I. J.; Sudiro, T.; Aryanto, D.; Sebayang, K.

    2016-08-01

    Four different compositions of Cr and Al coatings as Cr10o, Cr87.5Al12.5, Cr5oAl5o, and Al100 have been prepared on the surface of low carbon steel by a mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Hereafter, the Cr-Al powder and substrate were mechanical alloyed in air for 1 hour. Heat treatment of coated sample were carried out at 800°C in a vacuum furnace. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The results show that Cr, Cr-Al or Al coatings were formed on the surface of low carbon steel. After heat treatment, new phases and interdiffusion zone were formed in the coating and at the coating/steel interface, depending on the coating composition.

  13. The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance

    NASA Astrophysics Data System (ADS)

    Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini

    2012-06-01

    Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.

  14. AlGaInN laser diode technology and systems for defence and security applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lujca; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2015-10-01

    AlGaInN laser diodes is an emerging technology for defence and security applications such as underwater communications and sensing, atomic clocks and quantum information. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries. Ridge waveguide laser diodes are fabricated to achieve single mode operation with optical powers up to 100mW with the 400-440nm wavelength range with high reliability. Visible free-space and underwater communication at frequencies up to 2.5GHz is reported using a directly modulated 422nm GaN laser diode. Low defectivity and highly uniform GaN substrates allow arrays and bars to be fabricated. High power operation operation of AlGaInN laser bars with up to 20 emitters have been demonstrated at optical powers up to 4W in a CS package with common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space or optical fibre system integration with a very small form-factor.

  15. AlGaAs phased array laser for optical communications

    NASA Technical Reports Server (NTRS)

    Carlson, N. W.

    1989-01-01

    Phased locked arrays of multiple AlGaAs diode laser emitters were investigated both in edge emitting and surface emitting configurations. CSP edge emitter structures, coupled by either evanescent waves or Y-guides, could not achieve the required powers (greater than or similar to 500 mW) while maintaining a diffraction limited, single lobed output beam. Indeed, although the diffraction limit was achieved in this type of device, it was at low powers and in the double lobed radiation pattern characteristic of out-of-phase coupling. Grating surface emitting (GSE) arrays were, therefore, investigated with more promising results. The incorporation of second order gratings in distribute Bragg reflector (DBR) structures allows surface emission, and can be configured to allow injection locking and lateral coupling to populate 2-D arrays that should be able to reach power levels commensurate with the needs of high performance, free space optical communications levels. Also, a new amplitude modulation scheme was developed for GSE array operation.

  16. Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates

    SciTech Connect

    Guo, Wei Bryan, Zachary; Kirste, Ronny; Bryan, Isaac; Hussey, Lindsay; Bobea, Milena; Haidet, Brian; Collazo, Ramón; Sitar, Zlatko; Xie, Jinqiao; Mita, Seiji; Gerhold, Michael

    2014-03-14

    Optical gain spectra for ∼250 nm stimulated emission were compared in three different AlGaN-based structures grown on single crystalline AlN substrates: a single AlGaN film, a double heterostructure (DH), and a Multiple Quantum Well (MQW) structure; respective threshold pumping power densities of 700, 250, and 150 kW/cm{sup 2} were observed. Above threshold, the emission was transverse-electric polarized and as narrow as 1.8 nm without a cavity. The DH and MQW structures showed gain values of 50–60 cm{sup −1} when pumped at 1 MW/cm{sup 2}. The results demonstrated the excellent optical quality of the AlGaN-based heterostructures grown on AlN substrates and their potential for realizing electrically pumped sub-280 nm laser diodes.

  17. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    SciTech Connect

    He, Y.R.; Zheng, M.H.; Rapp, R.A.

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  18. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Xie, Jinqiao; Mita, Seiji

    2015-04-06

    The internal quantum efficiency (IQE) of Al{sub 0.55}Ga{sub 0.45}N/AlN and Al{sub 0.55}Ga{sub 0.45}N/Al{sub 0.85}Ga{sub 0.15}N UVC MQW structures was analyzed. The use of bulk AlN substrates enabled us to undoubtedly distinguish the effect of growth conditions, such as V/III ratio, on the optical quality of AlGaN based MQWs from the influence of dislocations. At a high V/III ratio, a record high IQE of ∼80% at a carrier density of 10{sup 18 }cm{sup −3} was achieved at ∼258 nm. The high IQE was correlated with the decrease of the non-radiative coefficient A and a reduction of midgap defect luminescence, all suggesting that, in addition to dislocations, point defects are another major factor that strongly influences optical quality of AlGaN MQW structures.

  19. Two-dimensional electron gas in an n(+)-GaAs/undoped AlGaAs/undoped GaAs SIS structure

    NASA Astrophysics Data System (ADS)

    Wada, T.; Matsumoto, K.; Ogura, M.; Shida, K.; Yao, T.; Igarashi, T.; Hashizume, N.; Hayashi, Y.

    1985-03-01

    The two-dimensionality of the electronic system in a new self-aligned GaAs MIS-like FET having an n(+)-GaAs/undoped AlGaAs/undoped GaAs SIS structure is demonstrated by the angular-dependent characteristics of SdH effects. The mobility of a two-dimensional electron gas in a GaAs-SISFET is shown to be 120,000 sq cm/V x s with a sheet-carrier concentration of 6.6 x 10 to the 11th/sq cm at 4.2 K and VG = -/0.6 V. The quantized Hall effect is realized by changing gate voltages at as low a magnetic field as 3.5 T.

  20. Solid state reduction of chromium (VI) pollution for Al2O3-Cr metal ceramics application

    NASA Astrophysics Data System (ADS)

    Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yangai; Tang, Hao; Min, Xin; Wu, Xiaowen

    2016-04-01

    Reduction of chromium (VI) from Na2CrO4 through aluminothermic reaction and fabrication of metal-ceramic materials from the reduction products have been investigated in this study. Na2CrO4 could be successfully reduced into micrometer-sized Cr particles in a flowing Ar atmosphere in presence of Al powder. The conversion ratio of Na2CrO4 to metallic Cr attained 96.16% efficiency. Al2O3-Cr metal-ceramic with different Cr content (5 wt%, 10 wt%, 15 wt%, 20 wt%) were further prepared from the reduction product Al2O3-Cr composite powder, and aluminum oxide nanopowder via pressure-less sintering. The phase composition, microstructure and mechanical properties of metal-ceramic composites were characterized to ensure the potential of the Al2O3-Cr composite powder to form ceramic materials. The highest relative density and bending strength can reach 93.4% and 205 MP, respectively. The results indicated that aluminothermic reduction of chromium (VI) for metal-ceramics application is a potential approach to remove chromium (VI) pollutant from the environment.

  1. Oxidation of the GaAs semiconductor at the Al2O3/GaAs junction.

    PubMed

    Tuominen, Marjukka; Yasir, Muhammad; Lång, Jouko; Dahl, Johnny; Kuzmin, Mikhail; Mäkelä, Jaakko; Punkkinen, Marko; Laukkanen, Pekka; Kokko, Kalevi; Schulte, Karina; Punkkinen, Risto; Korpijärvi, Ville-Markus; Polojärvi, Ville; Guina, Mircea

    2015-03-14

    Atomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes). The oxidation-induced defect-rich phases at the interfaces of oxide/III-V junctions significantly affect the electrical performance of devices. In this study, a method to control the GaAs oxidation and interfacial defect density at the prototypical Al2O3/GaAs junction grown via atomic layer deposition (ALD) is demonstrated. Namely, pre-oxidation of GaAs(100) with an In-induced c(8 × 2) surface reconstruction, leading to a crystalline c(4 × 2)-O interface oxide before ALD of Al2O3, decreases band-gap defect density at the Al2O3/GaAs interface. Concomitantly, X-ray photoelectron spectroscopy (XPS) from these Al2O3/GaAs interfaces shows that the high oxidation state of Ga (Ga2O3 type) decreases, and the corresponding In2O3 type phase forms when employing the c(4 × 2)-O interface layer. Detailed synchrotron-radiation XPS of the counterpart c(4 × 2)-O oxide of InAs(100) has been utilized to elucidate the atomic structure of the useful c(4 × 2)-O interface layer and its oxidation process. The spectral analysis reveals that three different oxygen sites, five oxidation-induced group-III atomic sites with core-level shifts between -0.2 eV and +1.0 eV, and hardly any oxygen-induced changes at the As sites form during the oxidation. These results, discussed within the current atomic model of the c(4 × 2)-O interface, provide insight into the atomic structures of oxide/III-V interfaces and a way to control the semiconductor oxidation.

  2. Spectroscopic properties of {Cr}^{3+} in the spinel solid solution {ZnAl}_{2-x}{Cr}x{O}_4

    NASA Astrophysics Data System (ADS)

    Verger, Louisiane; Dargaud, Olivier; Rousse, Gwenaelle; Rozsályi, Emese; Juhin, Amélie; Cabaret, Delphine; Cotte, Marine; Glatzel, Pieter; Cormier, Laurent

    2016-01-01

    The evolution of the structural environment of {Cr}{^{3+}} along the solid solution {ZnAl}_{2-x}{Cr}x{O}_4 has been investigated using a multi-analytical approach. X-ray diffraction confirms that the system follows Vegard's law. Diffuse reflectance spectra show a decrease of the crystal field parameter with the Cr content, usually related to the increase of the Cr-O bond length in a point charge model. This interpretation is discussed and compared to the data obtained by first-principle calculations based on density functional theory. X-ray absorption near edge structure spectra at the Cr K-edge show a pronounced evolution in the pre-edge with the Cr content, characterised by the appearance of a third feature. Calculations enable to assign the origin of this feature to Cr neighbours. The colour change from pink to brownish pink and eventually green along the solid solution has also been quantified by calculating the L*, a*, b* and x, y coefficients in the system defined by the International Commission on Illumination.

  3. Reduced mobility and PPC in In(.20)Ga(.80)As / Al(.23)Ga(.77)As HEMT structure

    NASA Technical Reports Server (NTRS)

    Schacham, S. E.; Mena, Rafael A.; Haugland, Edward J.; Alterovitz, Samuel A.

    1992-01-01

    Transport properties of a pseudomorphic In(.20)Ga(.80)As/Al(.23)Ga(.77)As High Electron Mobility Transistor (HEMT) structure were measured by Hall and SdH techniques. Two samples of identical structures but with different doping levels were compared. Low temperature mobility measurements as a function of concentration coincides with the onset of second subband occupancy, indicating that the decrease in mobility is due to intersubband scattering. In spite of the low Al content (23 percent), large persistent photoconductivity (PPC) was observed in the highly doped sample only, showing a direct correlation between the PPC and doping concentration of the barrier layer.

  4. Thermodynamic properties of La-Ga-Al and U-Ga-Al alloys and the separation factor of U/La couple in the molten salt-liquid metal system

    NASA Astrophysics Data System (ADS)

    Novoselova, A.; Smolenski, V.; Volkovich, V. A.; Ivanov, A. B.; Osipenko, A.; Griffiths, T. R.

    2015-11-01

    The electrochemical behaviour of lanthanum and uranium was studied in fused 3LiCl-2KCl eutectic and Ga-Al eutectic liquid metal alloy between 723 and 823 K. Electrode potentials were recorded vs. Cl-/Cl2 reference electrode and the temperature dependencies of the apparent standard potentials of La-(Ga-Al) and U-(Ga-Al) alloys were determined. Lanthanum and uranium activity coefficients and U/La couple separation factor were calculated. Partial excess free Gibbs energy, partial enthalpy of mixing and partial excess entropy of La-(Ga-Al) and U-(Ga-Al) alloys were estimated.

  5. Electron and Composite Fermion Transport in MOCVD Grown GaAs/AlGaAs Heterostructures

    NASA Astrophysics Data System (ADS)

    Zudov, M. A.; Du, R. R.; Simmons, J. A.; Chui, H. C.

    1996-03-01

    Previously, high quality fractional quantum Hall effect(FQHE) data was accessible only from MBE-grown heterostructures. Sandia National Labs has recently grown high purity MOCVD GaAs/AlGaAs heterostructure with 2DEG mobility of 2.0x10^6 cm^2/Vs[1]. Material parameters such as impurity potential profile, defects and interface quality are expected to be modified for MOCVD. While these are believed to affect predominantly the carrier scattering in 2DEG, their effects on quantum transport properties (in particular the experimental effective mass and spin g-factor of composite fermions) are also worth examination. We report on temperature-dependent Shubnikov -de Haas(SdH) oscillations near zero magnetic field, SdH near Landau level filling factor ν = 1/2, 3/2, and angular dependent magnetoresistance mesurements on the FQHE states around ν = 3/2 in high-density (up to 3.2x10^11 cm-2) MOCVD samples. Measurements were performed in a 20mK/20T ^3He-^4He mixture dilution refrigerator. Our results around ν = 3/2 conform to the same composite fermion level scheme obtained earlier for low-density MBE samples[2]. [1] H. C. Chui, B. E. Hammons, N. E. Harff, J. A. Simmons and M. E. Sherwin, to appear in Appl. Phys. Lett. [2] R. R. Du, A. S. Yeh, H. L. Stormer, D. C. Tsui, L. N. Pfeifer, K. W. West, Phys. Rev. Lett. 75, 3926(1995)

  6. Proton damage effects on GaAs/GaAlAs vertical cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Le Metayer, P.; Gilard, O.; Germanicus, R.; Campillo, D.; Ledu, F.; Cazes, J.; Falo, W.; Chatry, C.

    2003-12-01

    A series of proton irradiations of GaAs/GaAlAs vertical cavity surface emitting lasers (VCSELs) has been carried out for the purpose of assessing the suitability of these devices for space applications. The irradiations were performed on biased and unbiased devices at energies of 30, 40, 50, and 60 MeV. Both current versus voltage (I-V) and optical power versus current (P-I) characteristics were measured before and after each irradiation phase. A simple circuit equivalent model for the VCSEL has been developed to analyze proton damage effects through the extraction of electrical parameters. The current threshold of VCSEL is shown to be the only important parameter modified by a high fluence (up to 1012 protons/cm2) irradiation. Changes in the threshold current show radiation generated recombination centers to be the main cause of degradation. Due to carrier injection annealing related effects, we observed that unbiased devices show the greatest relative threshold increase (between 15% and 20% at 1013 protons/cm2). The threshold current damage factor was also calculated. The analysis of the I-V characteristics shows that in the range of low fluences (1010-1012 protons/cm2) radiation induced ordering effects may compete with the usual radiation degradation that we observed at higher fluences. Consequently, the nonionizing energy loss approach, which is extensively used to predict the degradation of electronic devices under a full spectrum of energetic particles, is deemed to be not yet applicable for prediction of end-of-life performances of VCSELs.

  7. AlGaAs converters and arrays for laser power beaming

    SciTech Connect

    Khvostikov, Vladimir Sorokina, Svetlana; Potapovich, Nataliia; Khvostikova, Olga; Shvarts, Maxim; Timoshina, Nailya; Andreev, Viacheslav

    2015-09-28

    This study reports on the development of AlGaAs/GaAs-based laser power photovoltaic (PV) converters fabricated by LPE. The monochromatic (λ = 809 nm) conversion efficiency up to 58% is measured for cells with p-n junction in Al{sub 0.07}Ga{sub 0.93}As and low (x = 0.25-0.3) Al concentration ‘window’. Modules, which have converters of low and high power laser radiation and the voltage of 4V, have been designed and fabricated. Comparison of output parameters measured at two different conditions (i.e., under flash lamp and laser beam) has been performed.

  8. Investigating the suitability of GaAs:Cr material for high flux X-ray imaging

    NASA Astrophysics Data System (ADS)

    Veale, M. C.; Bell, S. J.; Duarte, D. D.; French, M. J.; Hart, M.; Schneider, A.; Seller, P.; Wilson, M. D.; Kachkanov, V.; Lozinskaya, A. D.; Novikov, V. A.; Tolbanov, O. P.; Tyazhev, A.; Zarubin, A. N.

    2014-12-01

    Semi-insulating wafers of GaAs material with a thickness of 500μm have been compensated with chromium by Tomsk State University. Initial measurements have shown the material to have high resistivity (3 × 109Ωcm) and tests with pixel detectors on a 250 μm pitch produced uniform spectroscopic performance across an 80 × 80 pixel array. At present, there is a lack of detectors that are capable of operating at high X-ray fluxes (> 108 photons s-1 mm-2) in the energy range 5-50 keV. Under these conditions, the poor stopping power of silicon, as well as issues with radiation hardness, severely degrade the performance of traditional detectors. While high-Z materials such as CdTe and CdZnTe may have much greater stopping power, the formation of space charge within these detectors degrades detector performance. Initial measurements made with GaAs:Cr detectors suggest that many of its material properties make it suitable for these challenging conditions. In this paper the radiation hardness of the GaAs:Cr material has been measured on the B16 beam line at the Diamond Light Source synchrotron. Small pixel detectors were bonded to the STFC Hexitec ASIC and were irradiated with 3 × 108 photons s-1 mm-2 monochromatic 12 keV X-rays up to a maximum dose of 0.6 MGy. Measurements of the spectroscopic performance before and after irradiation have been used to assess the extent of the radiation damage.

  9. Microstructure and Sliding Wear Performance of Cr7C3-(Ni,Cr)3(Al,Cr) Coating Deposited from Cr7C3 In Situ Formed Atomized Powder

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Bin; Shen, Jie; Gao, Feng; Yu, Yueguang; Li, Changhai

    2017-01-01

    This work is aimed at developing a new type of Cr7C3-(Ni,Cr)3(Al,Cr) coating for parts used in heavy-duty diesel engines. The feedstock, in which the stripe-shaped Cr7C3 was in situ formed, was firstly prepared by vacuum melting and gas atomization and then subjected by high-velocity oxy-fuel spraying to form the coatings. The carbon content, microstructure and phase constitution of the powders, as well as the sprayed coatings, were analyzed by chemical analysis, SEM and XRD. The hardness and sliding wear performance of the sprayed coatings were also tested and compared to a commercial Cr3C2-NiCr coating used on piston rings. The results showed that the content of carbon in feedstock was almost the same as designed, and that the volume content of in situ formed Cr7C3 was increased with carbon and chromium added. The major phases of the powders and sprayed coatings are Cr7C3 and Cr-alloyed Ni3Al. Only a small amount of carbon lost during the spraying process. As Cr7C3 content increased in the coatings, the microhardness at room temperature was firstly increased to about 1000Hv0.3. The microhardness of the coatings stayed almost constant, while the testing temperature was raised up to 700 °C for 0.5 h, which illustrates the potential application of the investigated coatings under high temperature conditions. The coatings containing 70 and 77 vol.% Cr7C3 showed the most promising wear resistance, lower friction coefficient and better tribological compatibility to gray cast iron counterpart than other tested Cr7C3-(Ni,Cr)3(Al,Cr) coatings and the reference Cr3C2-NiCr coating.

  10. GaAs (AlGaAs)/CuInSe2 tandem solar cells. Technology status and future directions

    NASA Technical Reports Server (NTRS)

    Kim, N. P.; Burgess, R. M.; Gale, R. P.; Mcclelland, R. W.

    1991-01-01

    Mechanically stacked, high efficiency, lightweight, and radiation resistant photovoltaic cells based on a GaAs thin film top and CuInSe2 thin film bottom cells were developed, and are considered one of the most promising devices for planar solar array applications. The highest efficiency demonstrated so far using the 4 sq cm design is 23.1 pct. AM0, one sun efficiency when measured in four-terminal configuration. The current status of the GaAs(AlGaAs)/CuInSe2 tandem cell program is presented and future directions that will lead to cell efficiencies higher than 26 pct. Air Mass Zero (AM0). A new 8 sq cm cell design developed for a two terminal and voltage matched configuration to minimize wiring complexity is discussed. Optimization of the GaAs structure for a higher end-of-life performance and further improvement of tandem cells by utilizing AlGaAs as an top absorber are described. Results of environmental tests conducted with these thin film GaAs/CuInSe2 tandem cells are also summarized.

  11. Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers.

    PubMed

    Saxena, Dhruv; Jiang, Nian; Yuan, Xiaoming; Mokkapati, Sudha; Guo, Yanan; Tan, Hark Hoe; Jagadish, Chennupati

    2016-08-10

    We present the design and room-temperature lasing characteristics of single nanowires containing coaxial GaAs/AlGaAs multiple quantum well (MQW) active regions. The TE01 mode, which has a doughnut-shaped intensity profile and is polarized predominantly in-plane to the MQWs, is predicted to lase in these nanowire heterostructures and is thus chosen for the cavity design. Through gain and loss calculations, we determine the nanowire dimensions required to minimize loss for the TE01 mode and determine the optimal thickness and number of QWs for minimizing the threshold sheet carrier density. In particular, we show that there is a limit to the minimum and maximum number of QWs that are required for room-temperature lasing. Based on our design, we grew nanowires of a suitable diameter containing eight uniform coaxial GaAs/AlGaAs MQWs. Lasing was observed at room temperature from optically pumped single nanowires and was verified to be from TE01 mode by polarization measurements. The GaAs MQW nanowire lasers have a threshold fluence that is a factor of 2 lower than that previously demonstrated for room-temperature GaAs nanowire lasers.

  12. Intersubband transitions in nonpolar GaN/Al(Ga)N heterostructures in the short- and mid-wavelength infrared regions

    SciTech Connect

    Lim, C. B.; Beeler, M.; Ajay, A.; Lähnemann, J.; Bellet-Amalric, E.; Monroy, E.; Bougerol, C.

    2015-07-07

    This paper assesses nonpolar m- and a-plane GaN/Al(Ga)N multi-quantum-wells grown on bulk GaN for intersubband optoelectronics in the short- and mid-wavelength infrared ranges. The characterization results are compared to those for reference samples grown on the polar c-plane, and are verified by self-consistent Schrödinger-Poisson calculations. The best results in terms of mosaicity, surface roughness, photoluminescence linewidth and intensity, as well as intersubband absorption are obtained from m-plane structures, which display room-temperature intersubband absorption in the range from 1.5 to 2.9 μm. Based on these results, a series of m-plane GaN/AlGaN multi-quantum-wells were designed to determine the accessible spectral range in the mid-infrared. These samples exhibit tunable room-temperature intersubband absorption from 4.0 to 5.8 μm, the long-wavelength limit being set by the absorption associated with the second order of the Reststrahlen band in the GaN substrates.

  13. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  14. Structural Disorder and Magnetism in the Spin-Gapless Semiconductor CoFeCrAl

    DTIC Science & Technology

    2016-08-24

    semiconductor CoFeCrAl into a half- metallic ferrimagnet and increases the half- metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of...magnets. However, Si addition improves the degree of Heusler ordering and changes the electronic structure from a SGS to a half- metal with increased...total moment per relaxed unit cell are 1.71 µB (I), –0.60 µB (II), and 1.05 µB (III). None of the disordered CoFeCrAl structures is energetically

  15. Properties of Cr2AlC MAX phase thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Buck, Zachary; Donato, Tyler; Rotella, Christopher; Lunk, Carl; Lofland, S. E.; Hettinger, J. D.

    2012-02-01

    Mn+ 1AXn (MAX) phases, where n is 1, 2, and 3, M is an early transition metal, A is an A-group element, and X is either C or N, are ternary carbides with unique properties such as low density, easy machinability, and good oxidation resistance. The MAX phase Cr2AlC is of particular interest for industrial applications to its excellent high-temperature oxidation resistance and relatively low synthesis temperature. We prepared Cr2AlC thin films on c-axis oriented single crystal Al2O3, glassy carbon and Si thermal oxide substrates using reactive magnetron sputtering as precursor materials for carbide-derived carbon (CDC) films for ``on-chip'' supercapacitors. Film deposition was optimized using elemental composition data obtained by WDXRF. Optimized films were characterized using XRD and scanning electron microscopy. It was found that textured Cr2AlC films only form when the composition was Al-rich allowing the formation of a Cr5Al8 interfacial layer. As film composition was optimized, the interfacial layer did not form but the XRD peaks associated with the Cr2AlC also decreased in magnitude. Extremely high-textured films were grown when a thin buffer layer of CrAl2 was deposited on the substrate before depositing the Cr2AlC films. This result suggests that Cr2AlC films may not be ideal for CDC applications since the films may ``lift-off'' during conversion due to the existence of the naturally occurring buffer-layer.

  16. Microwave performance of an optically controlled AlGaAs/GaAs high electron mobility transistor and GaAs MESFET

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Bhasin, Kul. B.

    1987-01-01

    Direct current and also the microwave characteristics of optically illuminated AlGaAs/GaAs HEMT are experimentally measured for the first time and compared with that of GaAs MESFET. The results showed that the average increase in the gain is 2.89 dB under 1.7 nW/sq cm optical intensity at 0.83 microns. Further, the effect of illumination on S-parameters is more pronounced when the devices are biased close to pinch off. Novel applications of optically illuminated HEMT as a variable gain amplifier, high speed high frequency photo detector, and mixer are demonstrated.

  17. Room temperature, single mode emission from two-section coupled cavity InGaAs/AlGaAs/GaAs quantum cascade laser

    SciTech Connect

    Pierściński, K. Pierścińska, D.; Pluska, M.; Gutowski, P.; Sankowska, I.; Karbownik, P.; Czerwinski, A.; Bugajski, M.

    2015-10-07

    Room temperature, single mode, pulsed emission from two-section coupled cavity InGaAs/AlGaAs/GaAs quantum cascade laser fabricated by focused ion beam processing is demonstrated and analyzed. The single mode emission is centered at 1059.4 cm{sup −1} (9.44 μm). A side mode suppression ratio of 43 dB was achieved. The laser exhibits a peak output power of 15 mW per facet at room temperature. The stable, single mode emission is observed within temperature tuning range, exhibiting shift at rate of 0.59 nm/K.

  18. Room temperature, single mode emission from two-section coupled cavity InGaAs/AlGaAs/GaAs quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Pierściński, K.; Pierścińska, D.; Pluska, M.; Gutowski, P.; Sankowska, I.; Karbownik, P.; Czerwinski, A.; Bugajski, M.

    2015-10-01

    Room temperature, single mode, pulsed emission from two-section coupled cavity InGaAs/AlGaAs/GaAs quantum cascade laser fabricated by focused ion beam processing is demonstrated and analyzed. The single mode emission is centered at 1059.4 cm-1 (9.44 μm). A side mode suppression ratio of 43 dB was achieved. The laser exhibits a peak output power of 15 mW per facet at room temperature. The stable, single mode emission is observed within temperature tuning range, exhibiting shift at rate of 0.59 nm/K.

  19. Reliability of AlGaN/GaN high electron mobility transistors on low dislocation density bulk GaN substrate: Implications of surface step edges

    SciTech Connect

    Killat, N. E-mail: Martin.Kuball@bristol.ac.uk; Montes Bajo, M.; Kuball, M. E-mail: Martin.Kuball@bristol.ac.uk; Paskova, T.; Evans, K. R.; Leach, J.; Li, X.; Özgür, Ü.; Morkoç, H.; Chabak, K. D.; Crespo, A.; Gillespie, J. K.; Fitch, R.; Kossler, M.; Walker, D. E.; Trejo, M.; Via, G. D.; Blevins, J. D.

    2013-11-04

    To enable gaining insight into degradation mechanisms of AlGaN/GaN high electron mobility transistors, devices grown on a low-dislocation-density bulk-GaN substrate were studied. Gate leakage current and electroluminescence (EL) monitoring revealed a progressive appearance of EL spots during off-state stress which signify the generation of gate current leakage paths. Atomic force microscopy evidenced the formation of semiconductor surface pits at the failure location, which corresponds to the interaction region of the gate contact edge and the edges of surface steps.

  20. Piezoelectric polarization and quantum size effects on the vertical transport in AlGaN/GaN resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    H, Dakhlaoui; S, Almansour

    2016-06-01

    In this work, the electronic properties of resonant tunneling diodes (RTDs) based on GaN-Al x Ga(1-x)N double barriers are investigated by using the non-equilibrium Green functions formalism (NEG). These materials each present a wide conduction band discontinuity and a strong internal piezoelectric field, which greatly affect the electronic transport properties. The electronic density, the transmission coefficient, and the current-voltage characteristics are computed with considering the spontaneous and piezoelectric polarizations. The influence of the quantum size on the transmission coefficient is analyzed by varying GaN quantum well thickness, Al x Ga(1-x)N width, and the aluminum concentration x Al. The results show that the transmission coefficient more strongly depends on the thickness of the quantum well than the barrier; it exhibits a series of resonant peaks and valleys as the quantum well width increases. In addition, it is found that the negative differential resistance (NDR) in the current-voltage (I-V) characteristic strongly depends on aluminum concentration x Al. It is shown that the peak-to-valley ratio (PVR) increases with x Al value decreasing. These findings open the door for developing vertical transport nitrides-based ISB devices such as THz lasers and detectors. Project supported by the Deanship of Scientific Research of University of Dammam (Grant No. 2014137).

  1. Degradation mechanisms of 2 MeV proton irradiated AlGaN/GaN HEMTs

    SciTech Connect

    Greenlee, Jordan D. Anderson, Travis J.; Koehler, Andrew D.; Weaver, Bradley D.; Kub, Francis J.; Hobart, Karl D.; Specht, Petra; Dubon, Oscar D.; Luysberg, Martina; Weatherford, Todd R.

    2015-08-24

    Proton-induced damage in AlGaN/GaN HEMTs was investigated using energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM), and simulated using a Monte Carlo technique. The results were correlated to electrical degradation using Hall measurements. It was determined by EDS that the interface between GaN and AlGaN in the irradiated HEMT was broadened by 2.2 nm, as estimated by the width of the Al EDS signal compared to the as-grown interface. The simulation results show a similar Al broadening effect. The extent of interfacial roughening was examined using high resolution TEM. At a 2 MeV proton fluence of 6 × 10{sup 14} H{sup +}/cm{sup 2}, the electrical effects associated with the Al broadening and surface roughening include a degradation of the ON-resistance and a decrease in the electron mobility and 2DEG sheet carrier density by 28.9% and 12.1%, respectively.

  2. Oxidation behavior of cubic phases formed by alloying Al3Ti with Cr and Mn

    NASA Technical Reports Server (NTRS)

    Parfitt, L. J.; Nic, J. P.; Mikkola, D. E.; Smialek, J. L.

    1991-01-01

    Gravimetric, SEM, and XRD data are presented which document the significant improvement obtainable in the oxidation resistance of Al3Ti-containing alloys through additions of Cr. The L1(2) Al(67)Cr(8)Ti25 alloy exhibited excellent cyclic oxidation resistance at 1473 K, with the primary oxide formed being the ideally protective alpha-Al2O3. The Al(67)Mn(8)Ti(25) alloy also tested for comparison exhibited poor cyclic oxidation resistance, with substantial occurrence of TiO2 in the protective scales. Catastrophic oxidation was also encountered in the quaternary alloy Al(67)Mn(8)Ti(22)V(3).

  3. Transport Equations for CAD Modeling of Al(x)Ga(1-x)N/GaN HEMTs

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2003-01-01

    BEMTs formed from Al(x)Ga(1-x)N/GaN heterostructures are being investigated for high RF power and efficiency around the world by many groups, both academic and industrial. In these devices, the 2DEG formation is dominated by both spontaneous and piezoelectric polarization fields, with each component having nearly the same order of magnitude. The piezoelectric portion is induced by the mechanical strain in the structure, and to analyze these devices, one must incorporate the stress/strain relationships, along with the standard semiconductor transport equations. These equations for Wurtzite GaN are not easily found in the open literature, hence this paper summarizes them, along with the constitutive equations for piezoelectric materials. The equations are cast into the format for the Wurtzite crystal class, which is the most common way GaN is grown epitaxially.

  4. Reduction of Cr (VI) by organic acids in the presence of Al (III).

    PubMed

    Chen, Na; Lan, Yeqing; Wang, Bo; Mao, Jingdong

    2013-09-15

    The effects of Al (III) on the reduction of Cr (VI) by three α-hydroxy acids, tartaric, malic and citric acids, were investigated through batch experiments at pH from 2.5 to 4.0 and temperatures from 25 °C to 35 °C. These reactions could be described as pseudo-zero-order with respect to Cr (VI) when the concentrations of α-hydroxy acids were greatly in excess. The transformation rates of Cr (VI) to Cr (III) in the presence of Al (III) without light were in the decreasing order of tartaric acid>malic acid>citric acid. This order suggested that the two α-hydroxyl groups in tartaric acid could play an important role in the reduction of Cr (VI) by organic acids. The possible mechanism was that the formed complex between organic acids and Al (III) significantly enhanced the reductivity of α-hydroxy acids and further led to the more complicated Cr (VI)-tartaric acid-Al (III) cyclic ester which greatly accelerated the reduction rate. The Cr (VI) reduction reaction rate increased with the decrease of pH but with the increase of Al (III) concentration, tartaric acid concentration, and temperature. As the pH decreased, the increase of [H(+)] led to an increase in {Al(III)H₂Tar₂}(+), the most active species, and thus the enhanced reduction rate.

  5. Luminescence Spectra of ZnAl 2 O 4 {:}Cr 3+ Spinel Nanopowders

    NASA Astrophysics Data System (ADS)

    Luc, H. H.; Nguyen, T. K.; Nguyen, V. M.; Suchocki, A.; Kamiñska, A.; Le, V. K.; Nguyen, V. H.; Luong, T. T.

    2002-12-01

    The synthetic ZnAl 2 O 4 spinels doped with Cr 3+ ions are prepared from ZnSO,dwi{4}>, Al 2 (SO 4 ) 3 , and Cr 2 (SO 4 ) 3 . The spinel single phase is detected from X-ray diffraction. Luminescence properties of Cr 3+ in ZnAl 2 O 4 were studied by low temperature luminescence and decay measurements. Four luminescence lines at 14570, 14520, 14460, and 14330 cm -1 were found to originate from structure distortion and the line at 14175 cm -1 - from chromium pairs. The broad emission band at about 13540 cm -1 is considered to arise from a new Cr 3+ center in ZnCr 2 O 4 .

  6. Quaternary AlInGaN/InGaN quantum well on vicinal c-plane substrate for high emission intensity of green wavelengths

    SciTech Connect

    Park, Seoung-Hwan; Pak, Y. Eugene; Park, Chang Young; Mishra, Dhaneshwar; Yoo, Seung-Hyun; Cho, Yong-Hee Shim, Mun-Bo; Kim, Sungjin

    2015-05-14

    Electronic and optical properties of non-trivial semipolar AlInGaN/InGaN quantum well (QW) structures are investigated by using the multiband effective-mass theory and non-Markovian optical model. On vicinal c-plane GaN substrate miscut by a small angle (θ < 40°) from c-plane, the AlInGaN/InGaN system is shown to have ∼3 times larger spontaneous emission peak intensity than the conventional InGaN/GaN system at green wavelength. It is attributed to much larger optical matrix element of the quaternary AlInGaN/InGaN system, derived from the reduction of internal electric field induced by polarizations. This effect exceeds the performance-degrading factor of smaller quasi-Fermi-level separation for the quaternary AlInGaN/InGaN system than that for the conventional InGaN/GaN system. Results indicate that the use of quaternary III-nitride QWs on vicinal substrates may be beneficial in improving the performance of optical devices emitting green light.

  7. Nanoheteroepitaxy of GaN on AlN/Si(111) nanorods fabricated by nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Shin, In-Su; Jin, Lu; Kim, Donghyun; Park, Yongjo; Yoon, Euijoon

    2016-06-01

    Nanoheteroepitaxy (NHE) of GaN on an AlN/Si(111) nanorod structure was investigated by metal-organic chemical vapor deposition. Silica nanosphere lithography was employed to fabricate a periodic hexagonal nanorod array with a narrow gap of 30 nm between the nanorods. We were successful in obtaining a fully coalesced GaN film on the AlN/Si(111) nanorod structure. Transmission electron microscopy revealed that threading dislocation (TD) bending and termination by stacking faults occurred near the interface between GaN and the AlN/Si(111) nanorods, resulting in the reduction of TD density for the NHE GaN layer. The full width at half-maximum of the X-ray rocking curve for (102) plane of the NHE GaN was found to decrease down to 728 arcsec from 1005 arcsec for the GaN layer on a planar AlN/Si(111) substrate, indicating that the crystalline quality of the NHE GaN was improved. Also, micro-Raman measurement showed that tensile stress in the NHE GaN layer was reduced significantly as much as 70% by introducing air voids between the nanorods.

  8. GaN/AlN Quantum Wells and Quantum Dots for Unipolar Devices at Telecommunication Wavelengths

    SciTech Connect

    Julien, Francois H.; Tchernycheva, Maria; Doyennette, Laetitia; Nevou, Laurent; Lupu, Anatole; Warde, Elias; Guillot, Fabien; Monroy, Eva; Bellet-Amalric, Edith

    2007-04-10

    We report on the latest achievements in terms of growth and optical investigation of ultrathin GaN/AlN isolated and coupled quantum wells grown by plasma-assisted molecular-beam epitaxy. We also present the observation of intraband absorption in self-organized GaN quantum dots and on the application to infrared photodetection at telecommunication wavelengths.

  9. Magneto-trions in a GaMnAs/Ga0.6Al0.4As Quantum Dot

    NASA Astrophysics Data System (ADS)

    Lalitha, D.; Peter, A. John; Lee, Chang Woo

    2014-09-01

    Magneto bound exciton and the charged exciton in a GaMn0.02As/Ga0.6Al0.4As quantum dot are reported with the spatial confinement effect. The numerical calculations are carried out with the inclusion of exchange interaction between the carrier and the magnetic impurities. The binding energies of exciton and the trions and the optical transition energy are obtained as a function of dot radius. Numerical computations are followed using exact diagonalization method. The spin polaronic energy of the exciton and the charged excitons are obtained using a mean field theory in the presence of magnetic field strength. The magnetization of Mn ion impurities as a function of dot radius is investigated. The effective g-factor of conduction (valence) band electron (hole) is obtained in the GaMnAs quantum dot. The magnetic field induced size dependence of effective Landé g-factor is computed. The result shows that (i) the geometrical dependence on sp-d exchange interaction in the GaMn0.02As/Ga0.6Al0.4As quantum dot has great influence with the geometrical confinement, (ii) the monotonic behavior of effective g-factor with the reduction of dot radius is observed, (iii) the Landé factor is more sensitive if the geometrical confinement effect is included and (iv) the value of effective g-factor increases when the spatial confinement is enhanced for all the dot radii. Our results show that the effective Landé g-factor can be manipulated negative to positive values in the GaMn0.02As/Ga0.4Al0.6As quantum dot.

  10. Step buffer layer of Al0.25Ga0.75N/Al0.08Ga0.92N on P-InAlN gate normally-off high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Shrestha, Niraj M.; Li, Yiming; Chang, E. Y.

    2016-07-01

    Normally-off AlGaN/GaN high electron mobility transistors (HEMTs) are indispensable devices for power electronics as they can greatly simplify circuit designs in a cost-effective way. In this work, the electrical characteristics of p-type InAlN gate normally-off AlGaN/GaN HEMTs with a step buffer layer of Al0.25Ga0.75N/Al0.1Ga0.9N is studied numerically. Our device simulation shows that a p-InAlN gate with a step buffer layer allows the transistor to possess normally-off behavior with high drain current and high breakdown voltage simultaneously. The gate modulation by the p-InAlN gate and the induced holes appearing beneath the gate at the GaN/Al0.25Ga0.75N interface is because a hole appearing in the p-InAlN layer can effectively vary the threshold voltage positively. The estimated threshold voltage of the normally-off HEMTs explored is 2.5 V at a drain bias of 25 V, which is 220% higher than the conventional p-AlGaN normally-off AlGaN/GaN gate injection transistor (GIT). Concurrently, the maximum current density of the explored HEMT at a drain bias of 10 V slightly decreases by about 7% (from 240 to 223 mA mm-1). At a drain bias of 15 V, the current density reached 263 mA mm-1. The explored structure is promising owing to tunable positive threshold voltage and the maintenance of similar current density; notably, its breakdown voltage significantly increases by 36% (from 800 V, GIT, to 1086 V). The engineering findings of this study indicate that novel p-InAlN for both the gate and the step buffer layer can feature a high threshold voltage, large current density and high operating voltage for advanced AlGaN/GaN HEMT devices.

  11. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-09-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1- x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1- x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1- x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1- x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  12. Energy relaxation of hot electrons in lattice-matched AlInN/AlN/GaN heterostructures

    SciTech Connect

    Zhang, J.-Z.; Dyson, A.; Ridley, B. K.

    2013-12-04

    Using the dielectric continuum model, hot-electron power dissipation and energy relaxation times are calculated for a typical lattice-matched AlInN/AlN/GaN heterostructure, including effects of hot phonons and screening from the mobile electrons. The calculated power dissipation and energy relaxation times are very close to the experimental data.

  13. Constant growth of V-groove AlGaAs/GaAs multilayers on submicron gratings for complex optical devices

    NASA Astrophysics Data System (ADS)

    Son, Chang-Sik; Kim, Tae Geun; Wang, Xue-Lun; Ogura, Mutsuo

    2000-12-01

    We have developed a new way of the constant growth technique to conserve a grating height of vertical-stacked V-groove AlGaAs/GaAs multilayer on submicron gratings up to 1.5 μm thickness by a low-pressure metalorganic chemical vapor deposition. The V-shaped GaAs buffer, grown on thermally deformed submicron gratings, has an important role in overcoming mass transport effects by recovering the deformed grating profile from sinusoidal to V-shaped. The low AlAs mole fraction is favorable to preserve the grating height up to a greater thickness. The constant growth technique is an important step to realize complex optoelectronic devices such as one-step grown distributed feedback lasers and two-dimensional photonic crystals.

  14. Terahertz intersubband absorption in non-polar m-plane AlGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Edmunds, C.; Shao, J.; Shirazi-HD, M.; Manfra, M. J.; Malis, O.

    2014-07-01

    We demonstrate THz intersubband absorption (15.6-26.1 meV) in m-plane AlGaN/GaN quantum wells. We find a trend of decreasing peak energy with increasing quantum well width, in agreement with theoretical expectations. However, a blue-shift of the transition energy of up to 14 meV was observed relative to the calculated values. This blue-shift is shown to decrease with decreasing charge density and is, therefore, attributed to many-body effects. Furthermore, a ˜40% reduction in the linewidth (from roughly 8 to 5 meV) was obtained by reducing the total sheet density and inserting undoped AlGaN layers that separate the wavefunctions from the ionized impurities in the barriers.

  15. Electrical detection of kidney injury molecule-1 with AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Wang, H. T.; Kang, B. S.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-11-26

    AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect kidney injury molecule-1 (KIM-1), an important biomarker for early kidney injury detection. The gate region consisted of 5 nm gold deposited onto the AlGaN surface. The gold was conjugated to highly specific KIM-1 antibodies through a self-assembled monolayer of thioglycolic acid. The HEMT source-drain current showed a clear dependence on the KIM-1 concentration in phosphate-buffered saline solution. The limit of detection was 1 ng/ml using a 20x50 {mu}m{sup 2} gate sensing area. This approach shows potential for both preclinical and clinical kidney injury diagnosis with accurate, rapid, noninvasive, and high throughput capabilities.

  16. Electrical detection of kidney injury molecule-1 with AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, H. T.; Kang, B. S.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-11-01

    AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect kidney injury molecule-1 (KIM-1), an important biomarker for early kidney injury detection. The gate region consisted of 5nm gold deposited onto the AlGaN surface. The gold was conjugated to highly specific KIM-1 antibodies through a self-assembled monolayer of thioglycolic acid. The HEMT source-drain current showed a clear dependence on the KIM-1 concentration in phosphate-buffered saline solution. The limit of detection was 1ng/ml using a 20×50μm2 gate sensing area. This approach shows potential for both preclinical and clinical kidney injury diagnosis with accurate, rapid, noninvasive, and high throughput capabilities.

  17. High-gain AlGaAs/GaAs double heterojunction Darlington phototransistors for optical neural networks

    NASA Technical Reports Server (NTRS)

    Kim, Jae H. (Inventor); Lin, Steven H. (Inventor)

    1991-01-01

    High-gain MOCVD-grown (metal-organic chemical vapor deposition) AlGaAs/GaAs/AlGaAs n-p-n double heterojunction bipolar transistors (DHBTs) and Darlington phototransistor pairs are provided for use in optical neural networks and other optoelectronic integrated circuit applications. The reduced base doping level used results in effective blockage of Zn out-diffusion, enabling a current gain of 500, higher than most previously reported values for Zn-diffused-base DHBTs. Darlington phototransitor pairs of this material can achieve a current gain of over 6000, which satisfies the gain requirement for optical neural network designs, which advantageously may employ neurons comprising the Darlington phototransistor pairs in series with a light source.

  18. DC characteristics of ALD-grown Al2O3/AlGaN/GaN MIS-HEMTs and HEMTs at 600 °C in air

    NASA Astrophysics Data System (ADS)

    Suria, Ateeq J.; Saran Yalamarthy, Ananth; So, Hongyun; Senesky, Debbie G.

    2016-11-01

    To the best of our knowledge, the 600 °C device characteristics detailed here reflect the highest operation temperature reported for AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) in air which supports the realization of electronics for high-temperature applications (e.g., space exploration, combustion and downhole). The high-temperature response of Al2O3/AlGaN/GaN MIS-HEMTs with Al2O3 deposited by plasma-enhanced atomic layer deposition (ALD) as the gate dielectric and passivation layers was examined here. More specifically, the DC current-voltage response and the threshold voltage characteristics of the MIS-HEMTs were evaluated to temperatures up to 600 °C in air. For comparison, the response of AlGaN/GaN HEMTs without the ALD Al2O3 layer was also measured. It was observed that the HEMTs failed above 300 °C accompanied by a ˜500 times increase in leakage current and observation of bubbles formed in active region of gate. On the contrary, the MIS-HEMTs continued to operate normally up to 600 °C. However, within the 30 min period exposed to 600 °C the MIS-HEMT degraded permanently. This was observed at 20 °C after return from operation at 600 °C as a change in threshold voltage and saturation drain current. The failure of the HEMTs is suggested to be due to the diffusion of gate metals (Ni and Au) into the active regions of the AlGaN/GaN heterostructure, which creates additional leakage current pathways. The impact of strain relaxation and interfacial trapped charges on threshold voltage as a function of temperature was studied using an energy band-gap model. The ALD Al2O3 gate dielectric layer acts as a diffusion barrier to the Ni and Au gate metals, thus enabling short-term operation of MIS-HEMTs to 600 °C, the highest operation temperature reported for this device architecture to date.

  19. State diagnostics of RTD based on nanoscale multilayered AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Makeev, M. O.; Meshkov, S. A.; Sinyakin, V. Yu

    2016-08-01

    In the present work the problems of technical diagnostics of RTD based on nanoscale multilayered AlGaAs heterostructures are being solved. The technique and the algorithms of RTD functionality region developing are being considered.

  20. Process for producing Ti-Cr-Al-O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2001-01-01

    Thin films of Ti-Cr-Al-O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti-Cr-Al-O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti-Cr-Al-O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti-Cr-Al-O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  1. Flat panel display using Ti-Cr-Al-O thin film

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2002-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  2. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    SciTech Connect

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; Gao, Michael C.; Tang, Zhi; Poplawsky, Jonathan D.; Liaw, Peter K.

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result, the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.

  3. Polarization-induced electrical conductivity in ultra-wide band gap AlGaN alloys

    NASA Astrophysics Data System (ADS)

    Armstrong, Andrew M.; Allerman, Andrew A.

    2016-11-01

    Unintentionally doped (UID) AlGaN epilayers graded over Al compositions of 80%-90% and 80%-100% were grown by metal organic vapor phase epitaxy and were electrically characterized using contactless sheet resistance (Rsh) and capacitance-voltage (C-V) measurements. Strong electrical conductivity in the UID graded AlGaN epilayers resulted from polarization-induced doping and was verified by the low resistivity of 0.04 Ω cm for the AlGaN epilayer graded over 80%-100% Al mole fraction. A free electron concentration (n) of 4.8 × 1017 cm-3 was measured by C-V for Al compositions of 80%-100%. Average electron mobility ( μ ¯ ) was calculated from Rsh and n data for three ranges of Al composition grading, and it was found that UID AlGaN graded from 88%-96% had μ ¯ = 509 cm2/V s. The combination of very large band gap energy, high μ ¯ , and high n for UID graded AlGaN epilayers make them attractive as a building block for high voltage power electronic devices such as Schottky diodes and field effect transistors.

  4. The role of surface kinetics on composition and quality of AlGaN

    NASA Astrophysics Data System (ADS)

    Bryan, Isaac; Bryan, Zachary; Mita, Seiji; Rice, Anthony; Hussey, Lindsay; Shelton, Christopher; Tweedie, James; Maria, Jon-Paul; Collazo, Ramón; Sitar, Zlatko

    2016-10-01

    Metal-polar, Al-rich AlGaN films were grown on both single crystalline AlN and sapphire substrates. The role of surface morphology and surface kinetics on AlGaN composition is presented. With the reduced dislocation density of the films grown on AlN substrates, atomically smooth bilayer stepped surfaces are achieved with RMS roughness of less than 50 pm for a 5×5 μm2 AFM scan area. By controlling the surface supersaturation through adjusting the growth rate, a transition from 2D nucleation to step flow was observed. The critical misorientation angle for step-bunching in nominal Al0.70Ga0.30N grown with a growth rate of 600 nm/h on AlN substrates was found to be 0.4°. The composition of bilayer stepped AlGaN was strongly dependent on substrate misorientation angle, where a compositional variation by a factor of two for a change in misorientation angle from 0.05 to 0.40° was observed; this is explained by the different surface diffusion lengths of Ga and Al. Step-bunching resulted in strong compositional inhomogeneity as observed by photoluminescence and scanning transmission electron microscopy studies.

  5. Performance of AlGaN/GaN MISHFET using dual-purpose thin Al2O3 layer for surface protection and gate insulator

    NASA Astrophysics Data System (ADS)

    Kim, Do-Kywn; Sindhuri, V.; Jo, Young-Woo; Kim, Dong-Seok; Kang, Hee-Sung; Lee, Jun-Hyeok; Lee, Yong Soo; Bae, Youngho; Hahm, Sung-Ho; Lee, Jung-Hee

    2014-10-01

    In this work, we have investigated a role of a thin Al2O3 layer in AlGaN/GaN MISHFET by characterizing the variation of the sheet resistance of the 2DEG channel layer. The Al2O3 layer, varying the thickness from 0 to 10 nm, was utilized as the gate insulator of the device as well as the surface protection layer during RTP for ohmic contact formation. After RTP, the 2DEG channel layer without the Al2O3 layer was rapidly degraded by increasing the sheet resistance of the layer to 1360 Ω/□ from the sheet resistance of 400 Ω/□ of the as-grown sample. The degradation was still observed even when 1.5 nm-thick Al2O3 layer was used. However, the sheet resistances of the devices remained constant with slightly decreased value from that of the as-grown sample when the thickness is larger than 3 nm, which indicates that the 3 nm-thick Al2O3 layer well protects the AlGaN surface above the 2DEG channel during RTP. The slight decrease in sheet resistance is probably because some acceptor-like states existing at AlGaN surface become neutralized and hence the 2DEG density increases. The Al2O3 layer was not removed for proceeding the fabrication of AlGaN/GaN MISHFET, but rather used as a gate dielectric, which simplifies the device fabrication eliminating the additional deposition steps for the gate dielectric. The threshold voltage of the device, investigated in this work, was increased to the negative direction with increasing the thickness of Al2O3 layers while the transconductance was decreased. The best performances were obtained from the device with 8 nm-thick Al2O3 layer, exhibiting very low gate leakage current of 10-9 A/mm with subthreshold swing (SS) of 80 mV/dec and very high Ion/Ioff ratio (>9 orders).

  6. Acoustic resonator with Al electrodes on an AlN layer and using a GaAs substrate

    DOEpatents

    Kline, Gerald R.; Lakin, Kenneth M.

    1985-12-03

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  7. Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen

    NASA Astrophysics Data System (ADS)

    Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.

    2017-02-01

    Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.

  8. NiAl-based Polyphase in situ Composites in the NiAl-Ta-X (X = Cr, Mo, or V) Systems

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Polyphase in situ composites were generated by directional solidification of ternary eutectics. This work was performed to discover if a balance of properties could be produced by combining the NiAl-Laves phase and the NiAl-refractory metal phase eutectics. The systems investigated were the Ni-Al-Ta-X (X = Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and the eutectic composition, temperature, and morphology were determined. The ternary eutectic systems examined were the NiAl-NiAlTa-(Mo, Ta), NiAl-(Cr, Al) NiTa-Cr, and the NiAl-NiAlTa-V systems. Each eutectic consists of NiAl, a C14 Laves phase, and a refractory metal phase. Directional solidification was performed by containerless processing techniques in a levitation zone refiner to minimize alloy contamination. Room temperature fracture toughness of these materials was determined by a four-point bend test. Preliminary creep behavior was determined by compression tests at elevated temperatures, 1100-l400 K. Of the ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr, Al)NiTa-Cr eutectic was intermediate between the values of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  9. Microstructure of V-based ohmic contacts to AlGaN/GaN heterostructures at a reduced annealing temperature

    SciTech Connect

    Schmid, A. Schroeter, Ch.; Otto, R.; Heitmann, J.; Schuster, M.; Klemm, V.; Rafaja, D.

    2015-02-02

    Ohmic contacts with V/Al/Ni/Au and V/Ni/Au metalization schemes were deposited on AlGaN/GaN heterostructures. The dependence of the specific contact resistance on the annealing conditions and the V:Al thickness ratio was shown. For an optimized electrode stack, a low specific contact resistance of 8.9 × 10{sup −6} Ω cm{sup 2} was achieved at an annealing temperature of 650 °C. Compared to the conventional Ti/Al/Ni/Au contact, this is a reduction of 150 K. The microstructure and contact formation at the AlGaN/metal interface were investigated by transmission electron microscopy including high-resolution micrographs and energy dispersive X-ray analysis. It was shown that for low-resistive contacts, the resistivity of the metalization has to be taken into account. The V:Al thickness ratio has an impact on the formation of different intermetallic phases and thus is crucial for establishing ohmic contacts at reduced annealing temperatures.

  10. High efficiency improvements in AlGaN-based ultraviolet light-emitting diodes with specially designed AlGaN superlattice hole and electron blocking layers

    NASA Astrophysics Data System (ADS)

    Yi, Xinyan; Sun, Huiqing; Sun, Jie; Yang, Xian; Fan, Xuancong; Zhang, Zhuding; Guo, Zhiyou

    2017-04-01

    AlxGa1-xN/Al0.6Ga0.4N graded superlattice hole blocking layers (GSL-HBLs) and AlxGa1-xN/Al0.6Ga0.4N graded superlattice electron blocking layers (GSL-EBLs) are applied to the traditional AlGaN-based ultraviolet light-emitting diodes (UVLEDs). This can obtain much higher internal quantum efficiency (IQE) and output power. In order to reveal the underlying physical mechanism of this unique structure, we have studied it numerically by APSYS simulation programs. We find that GSL-EBLs can obviously increase the electron potential height and reduce the hole potential height, produce less electron leakage and more hole injection, leading to higher carrier contration. GSL-HBLs can obviously reduce the hole leakage, reduce the thermal velocity and correspondingly the mean free path of the hot electrons, and increase the electron injection. This enhanced the electron capture efficiency of the multiple quantum wells, which can also help to reduce electron leakage.

  11. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGES

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; ...

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  12. Viability of thin wall tube forming of ATF FeCrAl

    SciTech Connect

    Maloy, Stuart Andrew; Aydogan, Eda; Anderoglu, Osman; Lavender, Curt; Yamamoto, Yukinori

    2016-09-16

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  13. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    SciTech Connect

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  14. Electrical properties of n-type AlGaN with high Si concentration

    NASA Astrophysics Data System (ADS)

    Takeda, Kunihiro; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2016-05-01

    The electrical properties of Si-doped AlGaN layers (AlN molar fractions: 0.03-0.06) with the donor concentrations (N D) from 8.8 × 1017 to 4.5 × 1020 cm-3 were investigated by variable-temperature Hall effect measurement using the van der Pauw method. A minimum resistivity of 3.6 × 10-4 Ω cm was obtained for Si-doped AlGaN with a smooth surface at room temperature. We found that the activation energy of the Si donor is affected by the Coulomb interaction in the AlGaN layer with N D values from 8.8 × 1017 to 2.5 × 1020 cm-3. In several AlGaN layers, the free-electron concentration did not vary with sample temperature, as expected in the case of degeneracy. The localization of GaN in the AlGaN layer was speculated as a cause of degeneracy of samples.

  15. Inductively coupled BCl3/Cl2 /Ar plasma etching of Al-rich AlGaN

    DOE PAGES

    Douglas, Erica A.; Sanchez, Carlos A.; Kaplar, Robert J.; ...

    2016-12-01

    Varying atomic ratios in compound semiconductors is well known to have large effects on the etching properties of the material. The use of thin device barrier layers, down to 25 nm, adds to the fabrication complexity by requiring precise control over etch rates and surface morphology. The effects of bias power and gas ratio of BCl3 to Cl2 for inductively coupled plasma etching of high Al content AlGaN were contrasted with AlN in this study for etch rate, selectivity, and surface morphology. Etch rates were greatly affected by both bias power and gas chemistry. Here we detail the effects ofmore » small variations in Al composition for AlGaN and show substantial changes in etch rate with regards to bias power as compared to AlN.« less

  16. Improved tunneling magnetoresistance in (Ga,Mn)As/AlOx/CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yu, G. Q.; Chen, L.; Rizwan, Syed; Zhao, J. H.; XU, K.; Han, X. F.

    2011-06-01

    We fabricated (Ga,Mn)As/AlOx/Co40Fe40B20 magnetic tunnel junctions with ferromagnetic semiconductor/insulator/ferromagnetic metal (S/I/F) structure. The treatments of pre-annealing and post-plasma cleaning on the (Ga,Mn)As film were introduced before the growth of the subsequent layers. A high tunneling magnetoresistance (TMR) ratio of 101% is achieved at 2 K, and the spin polarization of (Ga,Mn)As, P = 56.8%, is deduced from Jullière's formula. The improved TMR ratio is primarily due to the improved magnetism of (Ga,Mn)As layer by low-temperature annealing and cleaned interface between (Ga,Mn)As and AlOx attained by subsequent plasma cleaning process.

  17. AlGaN HEMTs on patterned resistive/conductive SiC templates

    NASA Astrophysics Data System (ADS)

    Prystawko, Pawel; Sarzynski, Marcin; Nowakowska-Siwinska, Anna; Crippa, Danilo; Kruszewski, Piotr; Wojtasiak, Wojciech; Leszczynski, Mike

    2017-04-01

    High performance GaN-based high electron mobility transistors (HEMTs) on SiC require low-miscut ( 0.45°), resistive substrates, which are very expensive. A cost-effective solution is to use resistive SiC template i.e., grow a thick resistive SiC epitaxial layer on cheap, conductive SiC substrate. However, this approach requires much higher miscut (2-8°). In the present work we show a lateral patterning technology capable to locally decrease the high miscut of the resistive SiC template, down to a level acceptable for GaN epitaxy. On such patterned SiC templates we grew smooth AlGaN/GaN structures. The maximum width of flat regions available for device fabrication was nearly 100 μm. In these flat regions AlGaN-based HEMTs were fabricated and characterized.

  18. Temperature dependence of the threshold voltage of AlGaN/GaN/SiC high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Alim, Mohammad A.; Rezazadeh, Ali A.; Gaquiere, Christophe

    2016-12-01

    Shifts in the threshold voltage V T subject to temperature in AlGaN/GaN-based high-electron-mobility transistors (HEMTs) grown on silicon carbide substrate are reported. Variation of V T with drain-source voltage and temperature is investigated, including experimental characterization, modelling and analysis. Possible parameters that affect V T are Schottky barrier height of the device, along with trap-assisted phenomena, aluminium concentration and polarization fields depending on the dielectric, were studied. The threshold voltage and Schottky barrier height shift positively with temperature, and a zero temperature coefficient point in the transfer curve was found before the threshold voltage. An analytical model for threshold voltage V T based on lattice-mismatched Al x Ga1-x N/GaN HEMTs is presented based on aluminium mole concentration, and it is found that V T shifts towards more negative values with increasing aluminium concentration. The model correctly predicts device performance and is found to be consistent with the measured results. These results are valuable for understanding the underlying physics of GaN/SiC HEMTs and their optimization with temperature.

  19. A low-noise K-Ka band oscillator using AlGaAs/GaAs heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Madihian, Mohammad; Takahashi, Hideki

    1991-01-01

    The design considerations, fabrication process, and performance of the first K-Ka-band oscillator implemented using a self-aligned AlGaAs/GaAs heterojunction bipolar transistor (HBT) are described. A large-signal time-domain-based design approach has been used which applies a SPICE-F simulator for optimization of the oscillator circuit parameters for maximum output power. The oscillator employs a 2 x 10 sq mm emitter AlGaAs/GaAs HBT that was fabricated using a pattern inversion technology. The HBT has a base current 1/f noise power density lower than 1 x 10 to the -20th sq A/Hz at 1 kHz and lower than 1 x 10 to the -22nd sq A/Hz at 100 kHz for a collector current of 1 mA. The oscillator, which is composed of only low-Q microstrip transmission lines, has a phase noise of -80 dBc/Hz at 100 kHz off carrier when operated at 26.6 GHz. These results indicate the applicability of the HBTs to low-phase-noise monolithic oscillators at microwave and millimeter-wave frequencies, where both Si bipolar transistors and GaAs FETs are absent.

  20. GaAlN/GaN HEMT heterostructures grown on SiCopSiC composite substrates for HEMT application

    NASA Astrophysics Data System (ADS)

    di Forte Poisson, M.-A.; Magis, M.; Tordjman, M.; Di Persio, J.; Langer, R.; Toth, L.; Pecz, B.; Guziewicz, M.; Thorpe, J.; Aubry, R.; Morvan, E.; Sarazin, N.; Gaquière, C.; Meneghesso, G.; Hoel, V.; Jacquet, J.-C.; Delage, S.

    2008-11-01

    This paper reports on low-pressure metalorganic vapour deposition (LP-MOCVD) growth optimisation of GaAlN/GaN heterostructures grown on SiCopSiC (silicon carbide-oxyde-polycrystalline silicon carbide) composite substrates for HEMT applications, and on the first device performances obtained with these structures. Some critical growth parameters, such as growth temperature, V/III ratio and nucleation layer at the GaN/SiC interface, have been investigated, and their impact on physical properties of these heterostructures is studied. Such optimisation of the growth conditions has led to GaAlN/GaN HEMT heterostructures which are successfully compared in terms of material quality to the standard HEMT heterostructures grown on bulk SiC substrates. Their electrical characteristics, such as sheet carrier density ( Ns), mobility ( μ), pinch-off voltage ( Vp) or sheet resistance ( Rs), are very similar to those obtained on bulk SiC substrates and their crystallographic properties, assessed by high-resolution X-ray diffraction (HR-XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM), seem to be in good agreement with the above-mentioned electrical characteristics. First devices with 0.5 μm gate length, made on these specific composite wafers, exhibit very good microwave performances, with output power of 5 W/mm at 10 GHz, similar to those obtained on bulk SiC substrates, showing the promising capability of SiCopSiC composite substrates.