Science.gov

Sample records for al cr ga

  1. Optical properties of heusler alloys Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa

    NASA Astrophysics Data System (ADS)

    Shreder, E. I.; Svyazhin, A. D.; Belozerova, K. A.

    2013-11-01

    The results of an investigation of optical properties and the calculations of the electronic structure of Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa Heusler alloys are presented. The main focus of our attention is the study of the spectral dependence of the real part (ɛ1) and imaginary part (ɛ2) of the dielectric constant in the range of wavelengths λ = 0.3-13 μm using the ellipsometric method. An anomalous behavior of the optical conductivity σ(ω) has been found in the infrared range in the Co2CrAl and Co2CrGa alloys, which differs substantially from that in the Co2FeSi and Co2FeAl alloys. The results obtained are discussed based on the calculations of the electronic structure.

  2. Half-metallicity at the Heusler alloy Co(2)Cr(0.5)Fe(0.5)Al(001) surface and its interface with GaAs(001).

    PubMed

    Zarei, Sareh; Javad Hashemifar, S; Akbarzadeh, Hadi; Hafari, Zohre

    2009-02-01

    Electronic and magnetic properties of the Heusler alloy Co(2)Cr(0.5)Fe(0.5)Al(001) surfaces and its interfaces with GaAs(001) are studied within the framework of density functional theory by using the plane-wave pseudopotential approach. The phase diagram obtained by ab initio atomistic thermodynamics shows that the CrAl surface is the most stable (001) termination of this Heusler alloy. We discuss that, at the ideal surfaces and interfaces with GaAs, half-metallicity of the alloy is lost, although the CrAl surface keeps high spin polarization. The energy band profile of the stable interface is investigated and a negative p Schottky barrier of -0.78 eV is obtained for this system.

  3. Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange

    NASA Astrophysics Data System (ADS)

    Gillen, Roland; Robertson, John

    2011-07-01

    We report density functional theory band structure calculations on the transparent conducting oxides CuAlO2, CuGaO2, CuInO2, and CuCrO2. The use of the hybrid functional screened-exchange local density approximation (sX-LDA) leads to considerably improved electronic properties compared to standard LDA and generalized gradient approximation (GGA) approaches. We show that the resulting electronic band gaps compare well with experimental values and previous quasiparticle calculations, and show the correct trends with respect to the atomic number of the cation (Al, Ga, In). The resulting energetic depths of Cu d and O p levels and the valence-band widths are considerable improvements compared to LDA and GGA and are in good agreement with available x-ray photoelectron spectroscopy data. Lastly, we show the calculated imaginary part of the dielectric function for all four systems.

  4. The structural, electronic, magnetic and mechanical properties of quaternary Heusler alloys ZrTiCrZ (Z  =  Al, Ga, In, Si, Ge, Sn): a first-principles study

    NASA Astrophysics Data System (ADS)

    Yan, Peng-Li; Zhang, Jian-Min; Zhou, Bo; Xu, Ke-Wei

    2016-06-01

    The structural, electronic, magnetic and mechanical properties of the quaternary Heusler alloys ZrTiCrZ (Z  =  Al, Ga, In, Si, Ge, Sn) have been investigated firstly by using the first-principles calculations. The preferred configurations of the ZrTiCrZ alloys are all Y-type (I). At their equilibrium lattice constants, the ZrTiCrZ alloys are half-metallic (HM) ferrimagnets for Z  =  Al, Ga and In, while spin-gapless semiconductor (SGS) antiferromagnets (AFM) for Z  =  Si, Ge and Sn. The total magnetic moments {μt} of the ZrTiCrZ alloys are  -1 {μ\\text{B}}/\\text{f}\\text{.u}\\text{.} for Z  =  Al, Ga and In, while 0 {μ\\text{B}}/\\text{f}\\text{.u}\\text{.} for Z  =  Si, Ge and Sn, both linearly scaled with the total number of valence electrons {{Z}\\text{t}} by Slater-Pauling rule {μ\\text{t}}={{Z}\\text{t}}-18 . The elastic constants {{C}11} , {{C}12} and {{C}44} of the single crystal and the related elastic moduli G , B , E , \\upsilon and A of the polycrystalline aggregates are also calculated and used to study the mechanical stability of these alloys. Although the Curie temperatures {{T}\\text{C}} of the ZrTiCrZ alloys are overestimated by using the mean field approximation (MFA), they can be better estimated by including the exchange interactions. Finally, the HM stabilities as well as the total and atomic magnetic moments of the ZrTiCrZ alloys (Z  =  Al, Ga, In) under either hydrostatic strain or tetragonal strain are also discussed.

  5. The structural, electronic, magnetic and mechanical properties of quaternary Heusler alloys ZrTiCrZ (Z  =  Al, Ga, In, Si, Ge, Sn): a first-principles study

    NASA Astrophysics Data System (ADS)

    Yan, Peng-Li; Zhang, Jian-Min; Zhou, Bo; Xu, Ke-Wei

    2016-06-01

    The structural, electronic, magnetic and mechanical properties of the quaternary Heusler alloys ZrTiCrZ (Z  =  Al, Ga, In, Si, Ge, Sn) have been investigated firstly by using the first-principles calculations. The preferred configurations of the ZrTiCrZ alloys are all Y-type (I). At their equilibrium lattice constants, the ZrTiCrZ alloys are half-metallic (HM) ferrimagnets for Z  =  Al, Ga and In, while spin-gapless semiconductor (SGS) antiferromagnets (AFM) for Z  =  Si, Ge and Sn. The total magnetic moments {μt} of the ZrTiCrZ alloys are  ‑1 {μ\\text{B}}/\\text{f}\\text{.u}\\text{.} for Z  =  Al, Ga and In, while 0 {μ\\text{B}}/\\text{f}\\text{.u}\\text{.} for Z  =  Si, Ge and Sn, both linearly scaled with the total number of valence electrons {{Z}\\text{t}} by Slater–Pauling rule {μ\\text{t}}={{Z}\\text{t}}-18 . The elastic constants {{C}11} , {{C}12} and {{C}44} of the single crystal and the related elastic moduli G , B , E , \\upsilon and A of the polycrystalline aggregates are also calculated and used to study the mechanical stability of these alloys. Although the Curie temperatures {{T}\\text{C}} of the ZrTiCrZ alloys are overestimated by using the mean field approximation (MFA), they can be better estimated by including the exchange interactions. Finally, the HM stabilities as well as the total and atomic magnetic moments of the ZrTiCrZ alloys (Z  =  Al, Ga, In) under either hydrostatic strain or tetragonal strain are also discussed.

  6. Ohmic contact formation between metal and AlGaN/GaN heterostructure via graphene insertion

    NASA Astrophysics Data System (ADS)

    Sung Park, Pil; Reddy, Kongara M.; Nath, Digbijoy N.; Yang, Zhichao; Padture, Nitin P.; Rajan, Siddharth

    2013-04-01

    A simple method for the creation of Ohmic contact to 2D electron gas in AlGaN/GaN high electron-mobility transistors using Cr/graphene layer is demonstrated. A weak temperature dependence of this Ohmic contact observed in the range 77 to 300 K precludes thermionic emission or trap-assisted hopping as possible carrier-transport mechanisms. It is suggested that the Cr/graphene combination acts akin to a doped n-type semiconductor in contact with AlGaN/GaN heterostructure, and promotes carrier transport along percolating Al-lean paths through the AlGaN layer. This use of graphene offers a simple method for making Ohmic contacts to AlGaN/GaN heterostructures, circumventing complex additional processing steps involving high temperatures. These results could have important implications for the fabrication and manufacturing of AlGaN/GaN-based microelectronic and optoelectronic devices/sensors of the future.

  7. Vibrational analysis of the elpasolites Cs{sub 2}NaAlF{sub 6} and Cs{sub 2}NaGaF{sub 6} doped with Cr{sup 3+} ions by fluorescence spectroscopy.

    SciTech Connect

    Bordallo, H. N.; Sosman, L. P.; Tavares, A. D., Jr.; da Fonseca, R. J. M.

    1999-09-07

    Interest in 3d transition metal impurities in ionic crystals has increased due to their important role in the laser activity of these materials. Moreover, recent advances in tunable solid-state lasers and high-power semiconductor laser diode arrays have generated a strong interest in investigating new compounds that emit in the visible and near-infrared spectral regions. In particular, many optical studies have been devoted to Cr{sup 3+}-doped fluoride crystals as a consequence of the high quality of some Cr{sup 3+}-based laser materials. In the present investigation, the low temperature emission spectra of Cr{sup 3+} ions in the hexagonal elpasolites Cs{sub 2}NaAlF{sub 6} and Cs{sub 2}NaGaF{sub 6} have been measured. Each compound has two crystallographically inequivalent octahedral sites for the Al{sup 3+} and Ga{sup 3+} ions that can be occupied by Cr{sup 3+} ions. For both materials, the luminescence spectrum presents two zero-phonon lines accompanied by a well-defined vibrational structure. The different peaks of the emission broadband are described in terms of phonons of the lattice and normal modes of the octahedral complex [CrF{sub 6}]{sup 3{minus}}. A detailed analysis of the vibrational structure observed leads to the conclusion that the {sup 2}E and {sup 4}T{sub 2} excited states of the [CrF{sub 6}]{sup 3{minus}} ions are displaced along the e{sub g}, a{sub 1g} and probably the t{sub 2g} coordinates.

  8. LiCaAl/sub 6/:Cr/sup 3+/

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Smith, L.K.; Krupke, W.F. )

    1988-11-01

    The authors report the discovery of a new laser, LiCaAIF/sub 6/:Cr/sup 3/ (Cr/sup 3+/ :LiCAF). The intrinsic (extrapolated maximum) slope efficiency was found to be 67 percent. For comparison, they also measured the intrinsic slope efficiencies of BeAl/sub 2/O/sub 4/:Cr/sup 3+/ (alexandrite), Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, and ScBO/sub 3/:Cr/sup 3+/, and obtained values of 65,28, and 26 percent, respectively. The tuning range of LiCaAIF/sub 6/:Cr/sup 3+/ was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well.

  9. High breakdown voltage in AlGaN/GaN HEMTs using AlGaN/GaN/AlGaN quantum-well electron-blocking layers.

    PubMed

    Lee, Ya-Ju; Yao, Yung-Chi; Huang, Chun-Ying; Lin, Tai-Yuan; Cheng, Li-Lien; Liu, Ching-Yun; Wang, Mei-Tan; Hwang, Jung-Min

    2014-01-01

    In this paper, we numerically study an enhancement of breakdown voltage in AlGaN/GaN high-electron-mobility transistors (HEMTs) by using the AlGaN/GaN/AlGaN quantum-well (QW) electron-blocking layer (EBL) structure. This concept is based on the superior confinement of two-dimensional electron gases (2-DEGs) provided by the QW EBL, resulting in a significant improvement of breakdown voltage and a remarkable suppression of spilling electrons. The electron mobility of 2-DEG is hence enhanced as well. The dependence of thickness and composition of QW EBL on the device breakdown is also evaluated and discussed.

  10. High breakdown voltage in AlGaN/GaN HEMTs using AlGaN/GaN/AlGaN quantum-well electron-blocking layers

    PubMed Central

    2014-01-01

    In this paper, we numerically study an enhancement of breakdown voltage in AlGaN/GaN high-electron-mobility transistors (HEMTs) by using the AlGaN/GaN/AlGaN quantum-well (QW) electron-blocking layer (EBL) structure. This concept is based on the superior confinement of two-dimensional electron gases (2-DEGs) provided by the QW EBL, resulting in a significant improvement of breakdown voltage and a remarkable suppression of spilling electrons. The electron mobility of 2-DEG is hence enhanced as well. The dependence of thickness and composition of QW EBL on the device breakdown is also evaluated and discussed. PMID:25206318

  11. AlGaAs diode pumped tunable chromium lasers

    DOEpatents

    Krupke, William F.; Payne, Stephen A.

    1992-01-01

    An all-solid-state laser system is disclosed wherein the laser is pumped in the longwave wing of the pump absorption band. By utilizing a laser material that will accept unusually high dopant concentrations without deleterious effects on the crystal lattice one is able to compensate for the decreased cross section in the wing of the absorption band, and the number of pump sources which can be used with such a material increases correspondingly. In a particular embodiment a chromium doped colquiriite-structure crystal such as Cr:LiSrAlF.sub.6 is the laser material. The invention avoids the problems associated with using AlGaInP diodes by doping the Cr:LiSrAlF.sub.6 heavily to enable efficient pumping in the longwave wing of the absorption band with more practical AlGaAs diodes.

  12. Comparison of trap characteristics between AlGaN/GaN and AlGaN/InGaN/GaN heterostructure by frequency dependent conductance measurement

    SciTech Connect

    Chakraborty, Apurba; Biswas, Dhrubes

    2015-02-23

    Frequency dependent conductance measurement is carried out to observe the trapping effect in AlGaN/InGaN/GaN double heterostructure and compared that with conventional AlGaN/GaN single heterostructure. It is found that the AlGaN/InGaN/GaN diode structure does not show any trapping effect, whereas single heterostructure AlGaN/GaN diode suffers from two kinds of trap energy states in near depletion to higher negative voltage bias region. This conductance behaviour of AlGaN/InGaN/GaN heterostructure is owing to more Fermi energy level shift from trap energy states at AlGaN/InGaN junction compare to single AlGaN/GaN heterostructure and eliminates the trapping effects. Analysis yielded interface trap energy state in AlGaN/GaN is to be with time constant of (33.8–76.5) μs and trap density of (2.38–0.656) × 10{sup 12 }eV{sup −1} cm{sup −2} in −3.2 to −4.8 V bias region, whereas for AlGaN/InGaN/GaN structure no interface energy states are found and the extracted surface trap energy concentrations and time constants are (5.87–4.39) ×10{sup 10} eV{sup −1} cm{sup −2} and (17.8–11.3) μs, respectively, in bias range of −0.8–0.0 V.

  13. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    SciTech Connect

    Feng, Wuwei Wang, Weihua; Zhao, Chenglong; Van Quang, Nguyen; Cho, Sunglae; Dung, Dang Duc

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.

  14. Phase Transitions in the Na 3M2(PO 4) 2F 3 Family ( M=Al 3+, V 3+, Cr 3+, Fe 3+, Ga 3+): Synthesis, Thermal, Structural, and Magnetic Studies

    NASA Astrophysics Data System (ADS)

    Le Meins, J.-M.; Crosnier-Lopez, M.-P.; Hemon-Ribaud, A.; Courbion, G.

    1999-12-01

    The investigated compounds Na3M2(PO4)2F3 (M=Al3+, V3+, Cr3+, Fe3+, Ga3+) have been prepared by hydrothermal synthesis or by solid state synthesis and characterized by thermal analyses (TGA, DTA, DSC), powder and single crystal X-ray works, or neutron diffraction. Several other ways of characterization have also been used such as diffraction by TEM, IR, magnetism, and Mössbauer spectrometry. These compounds present two crystallographic transitions which involve three modifications: α, β, and α. The room temperature (β) phases can be split into two groups: the first (β1), with M=Al3+, Cr3+, Ga3+, crystallizes in the space group P42/mbc (a=12.406(2) Å, c=10.411(2) Å, Z=8 for M=Al3+) whereas the second group (β3) with M=V3+, Fe3+ crystallizes in the space group P42/mnm (a=9.047(2) Å, c=10.705(2) Å, Z=4 for M=V3+). On the other hand all the high temperature (α) phases adopt the same space group I4/mmm (a=6.206(1) Å, c=10.418(4) Å, Z=2 for M=Al3+). Mössbauer spectrometry and powder neutron diffraction (paramagnetic state) allowed us to evidence a low temperature (γ) phase on the Fe compound which is characterized by an orthorhombic symmetry (a=12.756(1) Å, b=12.803(1) Å, c=10.602(2) Å, Z=8, space group Pbam). All these compounds adopt an identical three-dimensional [M2(PO4)2F3]3-∞ network built up by sharing four corners between PO4 tetrahedra and M2O8F3 bioctahedra (one fluorine apex bridges two octahedra). Na+ ions are statistically distributed inside the resulting channels. Susceptibility measurements reveal an antiferromagnetic behavior for each of the paramagnetic compounds (M=V3+, Cr3+, Fe3+).

  15. Analysis of InGaN light-emitting diodes with GaN-AlGaN and AlGaN-GaN composition-graded barriers

    SciTech Connect

    Yang, Yujue; Wang, Junxi; Li, Jinmin; Zeng, Yiping

    2014-06-21

    The effects of InGaN-based light-emitting diodes (LEDs) with Al composition increasing and decreasing GaN-AlGaN barriers along the growth direction are studied numerically. Simulation results suggest that the LEDs with GaN-AlGaN composition-decreased barriers show more significant enhancement of light-output power and internal quantum efficiency than LEDs with composition-increasing GaN-AlGaN barriers when compared with the conventional LED with GaN barriers, due to the improvement in hole injection efficiency and electron blocking capability. Moreover, the optical performance is further improved by replacing GaN-AlGaN barriers with AlGaN-GaN barriers of the same Al composition-decreasing range, which are mainly attributed to the modified band diagrams. In addition, the major causes of the different efficiency droop behaviors for all the designed structures are explained by the electron leakage current and the different increase rates of hole concentration with injection current.

  16. Scattering induced by Al segregation in AlGaN/GaN heterostructures

    SciTech Connect

    Liu, Xiwen; Lu, Yanwu; Ji, Dong

    2015-08-17

    The effect of Al segregation near dislocations on the mobility of two-dimensional electron gas in AlGaN/GaN heterostructure-based high-electron-mobility transistors was investigated. Exponentially varied composition fluctuation was effective in describing Al segregation near dislocations when calculating scattering behavior. Mobility, which was limited by Al segregation surrounding dislocation lines, was calculated to be in the order of 10{sup 3} cm{sup 2}/Vs to 10{sup 6} cm{sup 2}/Vs. Results indicated that the mobility in AlGaN/GaN heterojunction was enhanced upon the reduction of dislocation density at low temperature. This study contributes to generating higher electron mobility in AlGaN/GaN heterojunctions.

  17. GaAs AlGaAs intersubband MIR lasers

    NASA Astrophysics Data System (ADS)

    Hvozdara, Lubos; Gianordoli, Stefan; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl; Gornik, Erich

    1999-09-01

    We report on the design, growth and characterization of electrically pumped quantum cascade lasers (QCL) and LEDs, based on the GaAs/AlGaAs material system. Intersubband and interminiband optical transitions within the conduction band of a heterostructure are used to achieve spontaneous emission and lasing action. Samples are grown using solid source molecular beam epitaxy. Transport measurements, IR photocurrent spectral response, transmission and emission measurements are performed. Laser wavelength above ten microns are achieved. Peak powers are in the 200 mW range. Laser operation up to 100K and threshold current densities below 15 kA/cm2 are recorded. Ridge lasers exhibit multimode spectra, typical for Fabry-Perot resonators. Room temperature spontaneous emission is recorded, showing the feasibility of a room temperature operating QCL on the GaAs/AlGaAs material system.

  18. AlGaAs-GaAs cascade solar cell

    NASA Technical Reports Server (NTRS)

    Lamorte, M. F.; Abbott, D. H.

    1980-01-01

    Computer modeling studies are reported for a monolithic, two junction, cascade solar cell using the AlGaAs GaAs materials combination. An optimum design was obtained through a serial optimization procedure by which conversion efficiency is maximized for operation at 300 K, AM 0, and unity solar concentration. Under these conditions the upper limit on efficiency was shown to be in excess of 29 percent, provided surface recombination velocity did not exceed 10,000 cm/sec.

  19. Reverse bias leakage current mechanism of AlGaN/InGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Chakraborty, Apurba; Ghosh, Saptarsi; Mukhopadhyay, Partha; Jana, Sanjay K.; Dinara, Syed Mukulika; Bag, Ankush; Mahata, Mihir K.; Kumar, Rahul; Das, Subhashis; Das, Palash; Biswas, Dhrubes

    2016-03-01

    The reverse bias leakage current mechanism of AlGaN/InGaN/GaN heterostructure is investigated by current-voltage measurement in temperature range from 298 K to 423 K. The Higher electric field across the AlGaN barrier layer of AlGaN/InGaN/GaN double heterostructure due to higher polarization charge is found to be responsible for strong Fowler-Nordheim (FN) tunnelling in the electric field higher than 3.66 MV/cm. For electric field less than 3.56 MV/cm, the reverse bias leakage current is also found to follow the trap assisted Frenkel-Poole (FP) emission in low negative bias region. Analysis of reverse FP emission yielded the barrier height of trap energy level of 0.34 eV with respect to Fermi level. [Figure not available: see fulltext.

  20. Bulk modulus and specific heat of B-site doped (La0.3Pr0.7)0.65Ca0.35Mn1-xBxO3 (B=Fe, Cr, Ru, Al, Ga)

    NASA Astrophysics Data System (ADS)

    Srivastava, Archana; Thakur, Rasna; Gaur, N. K.

    2014-04-01

    Specific heat (Cp) thermal expansion (α) and Bulk modulus (BT) of lightly doped Rare Earth manganites (La0.3Pr0.7)0.65Ca0.35Mn1-xBxO3 (B3+ = Fe3+,Cr3+,Ga3+,Al3+,Ru4+); (0.3

  1. Surface half-metallicity of half-Heusler compound FeCrSe and interface half-metallicity of FeCrSe/GaP

    NASA Astrophysics Data System (ADS)

    Khalaf Al-zyadi, Jabbar M.; Jolan, Mudhahir H.; Yao, Kai-Lun

    2016-04-01

    Recent studies showed that half-Heusler FeCrSe exhibits half-metallic ferromagnetism (Huang et al. [20]). In this paper, we investigate extensively the electronic, magnetic, and half-metallic properties of the half-Heusler alloy FeCrSe (111) and (001) surfaces and the interface with GaP (111) substrate by using the first-principles calculations within the density functional theory. The atomic density of states demonstrates that the half-me tallicity verified in the bulk FeCrSe is maintained at the CrSe-terminated (001) and Se-terminated (111) surfaces, but lost at both Cr- and Fe-terminated (111) surfaces and the Fe-terminated (001) surface. Alternatively, for the interface of FeCrSe/GaP (111), the bulk half-metallicity is destroyed at Se-P configuration while Se-Ga interface and subinterface show nearly 100% spin polarization. Moreover, the calculated interfacial adhesion energies exhibit that Se-Ga shape is more stable than the Se-P one. The calculated magnetic moments of Se, Ga at the Se-Ga (111) interface and P at the Se-P (111) interface increase with respect to the corresponding bulk values while the atomic magnetic moment of Se atom at the Se-P (111) interface decreases. We also notice that the magnetic moments of subinterface Fe at both Se-Ga and Se-P (111) interfaces decrease compared to the bulk values.

  2. High performance AlGaN/GaN HEMTs with AlN/SiNx passivation

    NASA Astrophysics Data System (ADS)

    Xin, Tan; Yuanjie, Lü; Guodong, Gu; Li, Wang; Shaobo, Dun; Xubo, Song; Hongyu, Guo; Jiayun, Yin; Shujun, Cai; Zhihong, Feng

    2015-07-01

    AlGaN/GaN high electron-mobility transistors (HEMTs) with 5 nm AlN passivation by plasma enhanced atomic layer deposition (PEALD) were fabricated, covered by 50 nm SiNx which was grown by plasma enhanced chemical vapor deposition (PECVD). With PEALD AlN passivation, current collapse was suppressed more effectively and the devices show better subthreshold characteristics. Moreover, the insertion of AlN increased the RF transconductance, which lead to a higher cut-off frequency. Temperature dependence of DC characteristics demonstrated that the degradations of drain current and maximum transconductance at elevated temperatures for the AlN/SiNx passivated devices were much smaller compared with the devices with SiNx passivation, indicating that PEALD AlN passivation can improve the high temperature operation of the AlGaN/GaN HEMTs. Project supported by the National Natural Science Foundation of China (No. 60890192).

  3. Gate length scaling effect on high-electron mobility transistors devices using AlGaN/GaN and AlInN/AlN/GaN heterostructures.

    PubMed

    Liao, S Y; Lu, C C; Chang, T; Huang, C F; Cheng, C H; Chang, L B

    2014-08-01

    Compared to AlGaN/GaN HEMT with 0.15 μm T-gate length, the AlInN/AlN/GaN one exhibits much higher current density and transconductance of 1558 mA/mm at Vd = 2 V and 330 mS/mm, respectively. The high extrinsic ft and fmax of 82 GHz and 70 GHz are extracted from AlInN/AlN/GaN HEMT. Besides, we find that the transconductance roll-off is significant in AlGaN/GaN, but largely improved in AlInN/AlN/GaN HEMT, suggesting that the high carrier density and lattice-matched epitaxial heterostructure is important to reach both large RF output power and high operation frequency, especially for an aggressively gate length scaling.

  4. High-efficiency of AlInGaN/Al(In)GaN-delta AlGaN quantum wells for deep-ultraviolet emission

    NASA Astrophysics Data System (ADS)

    Saidi, Hosni; Ridene, Said

    2016-10-01

    Band structure and optical gain properties of AlInGaN/AlInGaN-delta-AlGaN quantum wells for deep-ultraviolet light emitting and lasers diodes with wavelength λ ∼229 nm and TE-polarized optical gain peak intensity ∼1.7 times larger than the conventional AlInN-delta-GaN was proposed and investigated in this work. The active region is made up of 20 Å staggered Al0.89In0.03Ga0.08N/Al0.8In 0.01Ga0.19N layers with a 3 Å Al0.46Ga0.54N delta layer. The use of the quaternary AlInGaN well layer permits the independent control of the band gap and the lattice parameter, so that the internal electric field induced by polarizations can be reduced and interband transition energy increases. Therefore, we can predict that the optical performance of the AlInGaN-delta-AlGaN is more convenient for an emission in the deep-ultraviolet than that of the conventional AlInN-delta-GaN-based quantum wells.

  5. Optical Absorption Spectra of Cr3+ and Cr4+ in Sr3Ga2Ge4O14 Garnet Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Deng, Peizhen; Zhang, Qiang; Gan, Fuxi

    1995-07-01

    Single crystals of Sr3Ga2Ge4O14:Cr are grown by the Czochralski method. The polarized optical absorption spectra of Cr in visible and near-infrared wavelength are presented and analyzed. It is suggested that Cr enters the octahedral and tetrahedral positions as Cr3+ and Cr4+ respectively.

  6. Reaction diffusion in the NiCrAl and CoCrAl systems

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1978-01-01

    The paper assesses the effect of overlay coating and substrate composition on the kinetics of coating depletion by interdiffusion. This is accomplished by examining the constitution, kinetics and activation energies for a series of diffusion couples primarily of the NiCrAl/Ni-10Cr or CoCrAl/Ni-10Cr type annealed at temperatures in the range 1000-1205 C for times up to 500 hr. A general procedure is developed for analyzing diffusion in multicomponent multiphase systems. It is shown that by introducing the concept of beta-source strength, which can be determined from appropriate phase diagrams, the Wagner solution for consumption of a second phase in a semiinfinite couple is successfully applied to the analysis of MCrAl couples. Thus, correlation of beta-recession rate constants with couple composition, total and diffusional activation energies, and interdiffusion coefficients are determined.

  7. Multicharacterization approach for studying InAl(Ga)N/Al(Ga)N/GaN heterostructures for high electron mobility transistors

    SciTech Connect

    Naresh-Kumar, G. Trager-Cowan, C.; Vilalta-Clemente, A.; Morales, M.; Ruterana, P.; Pandey, S.; Cavallini, A.; Cavalcoli, D.; Skuridina, D.; Vogt, P.; Kneissl, M.; Behmenburg, H.; Giesen, C.; Heuken, M.; Gamarra, P.; Di Forte-Poisson, M. A.; Patriarche, G.; Vickridge, I.

    2014-12-15

    We report on our multi–pronged approach to understand the structural and electrical properties of an InAl(Ga)N(33nm barrier)/Al(Ga)N(1nm interlayer)/GaN(3μm)/ AlN(100nm)/Al{sub 2}O{sub 3} high electron mobility transistor (HEMT) heterostructure grown by metal organic vapor phase epitaxy (MOVPE). In particular we reveal and discuss the role of unintentional Ga incorporation in the barrier and also in the interlayer. The observation of unintentional Ga incorporation by using energy dispersive X–ray spectroscopy analysis in a scanning transmission electron microscope is supported with results obtained for samples with a range of AlN interlayer thicknesses grown under both the showerhead as well as the horizontal type MOVPE reactors. Poisson–Schrödinger simulations show that for high Ga incorporation in the Al(Ga)N interlayer, an additional triangular well with very small depth may be exhibited in parallel to the main 2–DEG channel. The presence of this additional channel may cause parasitic conduction and severe issues in device characteristics and processing. Producing a HEMT structure with InAlGaN as the barrier and AlGaN as the interlayer with appropriate alloy composition may be a possible route to optimization, as it might be difficult to avoid Ga incorporation while continuously depositing the layers using the MOVPE growth method. Our present work shows the necessity of a multicharacterization approach to correlate structural and electrical properties to understand device structures and their performance.

  8. Asymmetric quantum-well structures for AlGaN/GaN/AlGaN resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    Yang, Lin'an; Li, Yue; Wang, Ying; Xu, Shengrui; Hao, Yue

    2016-04-01

    Asymmetric quantum-well (QW) structures including the asymmetric potential-barrier and the asymmetric potential-well are proposed for AlGaN/GaN/AlGaN resonant tunneling diodes (RTDs). Theoretical investigation gives that an appropriate decrease in Al composition and thickness for emitter barrier as well as an appropriate increase of both for collector barrier can evidently improve the negative-differential-resistance characteristic of RTD. Numerical simulation shows that RTD with a 1.5-nm-thick GaN well sandwiched by a 1.3-nm-thick Al0.15Ga0.85N emitter barrier and a 1.7-nm-thick Al0.25Ga0.75N collector barrier can yield the I-V characteristic having the peak current (Ip) and the peak-to-valley current ratio (PVCR) of 0.39 A and 3.6, respectively, about double that of RTD with a 1.5-nm-thick Al0.2Ga0.8N for both barriers. It is also found that an introduction of InGaN sub-QW into the diode can change the tunneling mode and achieve higher transmission coefficient of electron. The simulation demonstrates that RTD with a 2.8-nm-thick In0.03Ga0.97N sub-well in front of a 2.0-nm-thick GaN main-well can exhibit the I-V characteristic having Ip and PVCR of 0.07 A and 11.6, about 7 times and double the value of RTD without sub-QW, respectively. The purpose of improving the structure of GaN-based QW is to solve apparent contradiction between the device structure and the device manufacturability of new generation RTDs for sub-millimeter and terahertz applications.

  9. Ab initio calculations of zinc-blende CrAs/GaAs superlattices

    NASA Astrophysics Data System (ADS)

    Nagao, Kazutaka; Shirai, Masafumi; Miura, Yoshio

    2004-06-01

    We investigate the properties of interfaces between highly spin-polarized zinc-blende (ZB) CrAs and GaAs using first-principles density functional calculations. It is found that the local spin polarization at the Fermi level is very high even at ZB-CrAs/GaAs interface and then exhibits gradual decay from the interface to the inside of GaAs, reflecting their ideal structural matching. We further study the properties of ZB-CrAs/GaAs multilayer where two-monolayer ZB-CrAs and two-monolayer GaAs stack alternately. The multilayer shows high spin polarization throughout its entire region. Since the spin polarization is found insensitive to Cr-Ga substitutional disorder, both ZB-CrAs and ZB-CrAs/GaAs multilayer may work as efficient filter for spin-polarized current injection into GaAs.

  10. Fine structure of Fe-Co-Ga and Fe-Cr-Ga alloys with low Ga content

    SciTech Connect

    Kleinerman, Nadezhda M. Serikov, Vadim V. Vershinin, Aleksandr V. Mushnikov, Nikolai V. Stashkova, Liudmila A.

    2014-10-27

    Investigation of Ga influence on the structure of Fe-Cr and Fe-Co alloys was performed with the use of {sup 57}Fe Mössbauer spectroscopy and X-ray diffraction methods. In the alloys of the Fe-Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to enter the nearest surroundings of iron atoms, thus forming binary Fe-Ga regions (or phases)

  11. Current transport mechanism in graphene/AlGaN/GaN heterostructures with various Al mole fractions

    NASA Astrophysics Data System (ADS)

    Pandit, Bhishma; Seo, Tae Hoon; Ryu, Beo Deul; Cho, Jaehee

    2016-06-01

    The current transport mechanism of graphene formed on AlxGa1-xN/GaN heterostructures with various Al mole fractions (x = 0.15, 0.20, 0.30, and 0.40) is investigated. The current-voltage measurement from graphene to AlGaN/GaN shows an excellent rectifying property. The extracted Schottky barrier height of the graphene/AlGaN/GaN contacts increases with the Al mole fraction in AlGaN. However, the current transport mechanism deviates from the Schottky-Mott theory owing to the deterioration of AlGaN crystal quality at high Al mole fractions confirmed by reverse leakage current measurement.

  12. Electron paramagnetic resonance spectroscopy of Cr3+ in hexagonal Cs2NaGaF6 crystals

    NASA Astrophysics Data System (ADS)

    Vrielinck, H.; Khaidukov, N. M.; Callens, F.; Matthys, P.

    Powder samples of hydrothermally grown Cr3+ -doped Cs-2 NaGaF6 crystals have been investigated with electron paramagnetic resonance spectroscopy at X - (9.5 GHz) and Q -band (34 GHz). Analysis of the spectra clearly demonstrates that there are two distinct Cr3+ centres in the Cs2NaGaF6 crystal, having nearly identical g factors, but differing largely from the viewpoint of their zero field splitting. By using the Cr-53 hyperfine spectra observed with electron nuclear double resonance spectroscopy, it is deduced that these centres have opposite signs for the zero field splitting. The spectroscopic properties of the Cr3+ centres in the isostructural Cs2NaGaF6 and Cs2NaAlF6 crystals are compared and discussed.

  13. Investigation of amber light-emitting diodes based on InGaN/AlN/AlGaN quantum wells

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Lu, Shen; Hirahara, Sota; Niwa, Kazumasa; Kamiyama, Satoshi; Ohkawa, Kazuhiro

    2016-05-01

    We investigated InGaN-based amber light-emitting diodes (LEDs) with AlN/(Al)GaN barrier layers grown by metalorganic vapor-phase epitaxy. Tensilely strained AlN/Al0.03Ga0.97N barriers improved the crystalline quality of compressively strained InGaN quantum wells. We found that strain compensation among wells and barriers improves the external quantum efficiency of high-In-content InGaN-based amber LEDs. The amber LEDs with AlN/Al0.03Ga0.97N barriers have shown an electroluminescence (EL) intensity approximately 2.5-fold that of LEDs with the AlN/GaN barriers at 20 mA.

  14. Ultrafast Exciton Dynamics in InGaN/GaN and Rh/Cr2O3 Nanoparticle-Decorated InGaN/GaN Nanowires.

    PubMed

    Pu, Ying-Chih; Kibria, M G; Mi, Zetian; Zhang, Jin Z

    2015-07-01

    Ultrafast exciton and charge-carrier dynamics in InGaN/GaN nanowires (NWs) with and without Rh/Cr2O3 nanoparticle (NP) decoration have been investigated using femtosecond transient absorption (TA) techniques with excitation at 415 nm and white-light probe (450-700 nm). By comparing the TA profiles between InGaN/GaN and InGaN/GaN-Rh/Cr2O3 NWs, an additional decay component on the medium time scale (∼50 ps) was identified with Rh/Cr2O3 decoration, which is attributed to interfacial charge transfer from InGaN/GaN NWs to Rh/Cr2O3 NPs, desired for light energy conversion applications. This is consistent with reduced photoluminescence (PL) of the NWs by the Rh/Cr2O3 NPs. A kinetic model was developed to explain the TA results and gain further insight into the exciton and charge-carrier dynamics.

  15. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin; Masson, Denis; Riel, Bruno; Fafard, Simon; Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent

    2010-10-14

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  16. Reactive codoping of GaAlInP compound semiconductors

    DOEpatents

    Hanna, Mark Cooper; Reedy, Robert

    2008-02-12

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  17. Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT

    SciTech Connect

    Lenka, T. R. Panda, A. K.

    2011-05-15

    Growth of wide bandgap material over narrow bandgap material, results into a two dimensional electron gas (2DEG) at the heterointerface due to the conduction band discontinuity. In this paper the 2DEG transport properties of AlGaN/GaN-based high electron mobility transistor (HEMT) is discussed and its effect on various characteristics such as 2DEG density, C-V characteristics and Sheet resistances for different mole fractions are presented. The obtained results are also compared with AlGaAs/GaAs-based HEMT for the same structural parameter as like AlGaN/GaN-based HEMT. The calculated results of electron sheet concentration as a function of the Al mole fraction are in excellent agreement with some experimental data available in the literature.

  18. Creep and Toughness of Cryomilled NiAl Containing Cr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Aikin, Beverly; Salem, Jon

    2000-01-01

    NiAl-AlN + Cr composites were produced by blending cryomilled NiAl powder with approx. 10 vol % Cr flakes. In comparison to the as-consolidated matrices, hot isostatically pressed Cr-modified materials did not demonstrate any significant improvement in toughness. Hot extruded NiAl-AlN+10.5Cr, however, possessed a toughness twice that determine for the base NiAl-AlN alloy. Measurement of the 1200 to 1400 K plastic flow properties revealed that the strength of the composites was completely controlled by the properties of the NiAl-AlN matrices. This behavior could be successfully modeled by the Rule-of-Mixtures, where load is shed from the weak Cr to the strong matrix.

  19. SEMICONDUCTOR DEVICES: AlGaN/GaN double-channel HEMT

    NASA Astrophysics Data System (ADS)

    Si, Quan; Yue, Hao; Xiaohua, Ma; Pengtian, Zheng; Yuanbin, Xie

    2010-04-01

    The fabrication of AlGaN/GaN double-channel high electron mobility transistors on sapphire substrates is reported. Two carrier channels are formed in an AlGaN/GaN/AlGaN/GaN multilayer structure. The DC performance of the resulting double-channel HEMT shows a wider high transconductance region compared with single-channel HEMT. Simulations provide an explanation for the influence of the double-channel on the high transconductance region. The buffer trap is suggested to be related to the wide region of high transconductance. The RF characteristics are also studied.

  20. Electronic structure and transport properties of CrAs/GaAs/CrAs trilayersfrom first principles theory

    NASA Astrophysics Data System (ADS)

    Bengone, O.; Eriksson, O.; Fransson, J.; Turek, I.; Kudrnovský, J.; Drchal, V.

    2004-07-01

    We present a theoretical study of the transport properties of a CrAs/GaAs/CrAs trilayer. The theory was based on a first principles method for calculating the electronic structure, in combination with a Kubo-Landauer approach for calculating the transport properties in a current perpendicular to the plane geometry. We have also investigated the electronic structure and the magnetic properties of this trilayer, with special focus on electronic and magnetic properties at the CrAs/GaAs interface. Finally, we have studied the effects of chemical disorder on the transport properties, in particular the influence of As antisites at both the Cr and Ga sites.

  1. AlGaN/InGaN Photocathode Development

    SciTech Connect

    Buckley, J. H.; Leopold, D. J.

    2008-12-24

    An increase in quantum efficiency in photodetectors could result in a proportional reduction in the area of atmospheric Cherenkov telescopes and an even larger reduction in cost. We report on the development of high quantum efficiency, high gain, UV/blue photon-counting detectors based on AlGaN/InGaN photocathode heterostructures grown by molecular beam epitaxy. This research could eventually result in nearly ideal light detectors with a number of distinct advantages over existing technologies for numerous applications in high-energy physics and particle astrophysics. Potential advantages include much lower noise detection, better stability and radiation resistance than other cathode structures, high VUV sensitivity and very low radioactive background levels for deep underground experiments, and high detection efficiency for the detection of individual VUV-visible photons. We are also developing photocathodes with intrinsic gain, initially improving the detection efficiency of hybrid semiconductor-vacuum tube devices and eventually leading to a new type of all-solid-state photomultiplier device.

  2. Effect of buffer structures on AlGaN/GaN high electron mobility transistor reliability

    SciTech Connect

    Liu, L.; Xi, Y. Y.; Ren, F.; Pearton, S. J.; Laboutin, O.; Cao, Yu; Johnson, Wayne J.; Kravchenko, Ivan I

    2012-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) with three different types of buffer layers, including a GaN/AlGaN composite layer, or 1 or 2 lm GaN thick layers, were fabricated and their reliability compared. The HEMTs with the thick GaN buffer layer showed the lowest critical voltage (Vcri) during off-state drain step-stress, but this was increased by around 50% and 100% for devices with the composite AlGaN/GaN buffer layers or thinner GaN buffers, respectively. The Voff - state for HEMTs with thin GaN and composite buffers were 100 V, however, this degraded to 50 60V for devices with thick GaN buffers due to the difference in peak electric field near the gate edge. A similar trend was observed in the isolation breakdown voltage measurements, with the highest Viso achieved based on thin GaN or composite buffer designs (600 700 V), while a much smaller Viso of 200V was measured on HEMTs with the thick GaN buffer layers. These results demonstrate the strong influence of buffer structure and defect density on AlGaN/GaN HEMT performance and reliability.

  3. AlGaAs/InGaAsN/GaAs PnP double heterojunction bipolar transistor

    SciTech Connect

    Chang, P.C.; Baca, A.G.; Li, N.Y.; Sharps, P.R.; Hou, H.Q.; Laroche, J.R.; Ren, F.

    2000-01-04

    The authors demonstrated a functional PnP double heterojunction bipolar transistor (DHBT) using AlGaAs, InGaAsN, and GaAs. The band alignment between InGaAsN and GaAs has a large {triangle}E{sub c} and negligible {triangle}E{sub v}, this unique characteristic is very suitable for PnP DHBT applications. The metalorganic vapor phase epitaxy (MOCVD) grown Al{sub 0.3}Ga{sub 0.7}As/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs PnP DHBT is lattice matched to GaAs and has a peak current gain of 25. Because of the smaller bandgap (E{sub g}=1.20eV) of In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} used for the base layer, this device has a low V{sub ON} of 0.79 V, which is 0.25 V lower than in a comparable Pnp AlGaAs/GaAs HBT. And because GaAs is used for the collector, its BV{sub CEO} is 12 V, consistent with BV{sub CEO} of AlGaAs/GaAs HBTs.

  4. Radiation Hard AlGaN Detectors and Imager

    SciTech Connect

    2012-05-01

    Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

  5. Piezoelectric Franz-Keldysh effect in a GaN/InGaN/AlGaN multilayer structure

    NASA Astrophysics Data System (ADS)

    Hou, Yong T.; Teo, Kie L.; Li, Ming Fu; Uchida, Kazuo; Tokunaga, Hiroki; Akutsu, Nakao; Matsumoto, Koh

    1999-11-01

    Contactless electroreflectance (CER) of a GaN/InGaN/AlGaN multilayer structure grown on sapphire has been measured in the temperature range of 15K and 450K. Except for the GaN exciton structures, well-defined Franz-Keldysh Oscillations are observed above the AlGaN band gap. An electomodulational model based on complex Airy functions is used to analyze the FKOs line shape. The temperature dependence of transition energies is obtained both for GaN and AlGaN. The magnitude of the built in electric field in AlGaN layer is also determined. The temperature dependence of the electric field is found to be consistent with the variation of thermal strain in the epilayer. It is demonstrated that the built-in electric field can be identified to be due to the piezoelectric effect.

  6. Coordination and activation of Al-H and Ga-H bonds.

    PubMed

    Abdalla, Joseph A B; Riddlestone, Ian M; Turner, Joshua; Kaufman, Paul A; Tirfoin, Remi; Phillips, Nicholas; Aldridge, Simon

    2014-12-22

    The modes of interaction of donor-stabilized Group 13 hydrides (E=Al, Ga) were investigated towards 14- and 16-electron transition-metal fragments. More electron-rich N-heterocyclic carbene-stabilized alanes/gallanes of the type NHC⋅EH3 (E=Al or Ga) exclusively generate κ(2) complexes of the type [M(CO)4 (κ(2)-H3 E⋅NHC)] with [M(CO)4 (COD)] (M=Cr, Mo), including the first κ(2) σ-gallane complexes. β-Diketiminato ('nacnac')-stabilized systems, {HC(MeCNDipp)2 }EH2 , show more diverse reactivity towards Group 6 carbonyl reagents. For {HC(MeCNDipp)2 }AlH2, both κ(1) and κ(2) complexes were isolated, while [Cr(CO)4 (κ(2)-H2 Ga{(NDippCMe)2 CH})] is the only simple κ(2) adduct of the nacnac-stabilized gallane which can be trapped, albeit as a co-crystallite with the (dehydrogenated) gallylene system [Cr(CO)5 (Ga{(NDippCMe)2 CH})]. Reaction of [Co2 (CO)8] with {HC(MeCDippN)2 }AlH2 generates [(OC)3 Co(μ-H)2 Al{(NdippCme)2 CH}][Co(CO)4] (12), which while retaining direct AlH interactions, features a hitherto unprecedented degree of bond activation in a σ-alane complex. PMID:25358970

  7. Cr-Al Diffusion in Chromite Spinel at High Pressure

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Yasuda, A.; Ozawa, K.

    2005-12-01

    Compositional zoning in chromite spinel gives us important information to constrain thermal and deformation history of ultramafic-mafic rocks. For the quantitative estimation, diffusivity of elements in spinel is a critical parameter. Although the Mg-Fe2+ interdiffusion coefficient in MgAl2O4 spinel has experimentally studied by Freer & O'Reilly (1980) and Liemann & Ganguly (2002), Cr-Al interdiffusion coefficient has not been determined yet. In this study, we have experimentally determined Cr-Al interdiffusion coefficient in chromite spinel at temperatures ranging 1400-1700 °C and pressures ranging 3-7 GPa, by using diffusion couple of natural single crystals of spinel and chromite. Experiments were carried out with a multi-anvil type (MA-8 type) high-pressure apparatus at the Earthquake Research Institute, University of Tokyo. After experiments, the samples were cut perpendicular to the contact plane and analyzed with EPMA and EBSD. The elemental mapping showed that Cr, Al, Fe3+, Fe2+, and Mg diffused perpendicular to the contact plane. The Cr-Al diffusion profiles are complementary with each other and asymmetric with steeper profile in the spinel side suggesting a compositional dependence of Cr-Al diffusion in spinel. The Cr-Al interdiffusion coefficient was estimated by the Boltzmann-Matano method. The coefficient decreases with Cr# (=Cr/(Cr+Al)) of spinel, which varies more than one order of magnitude as the Cr# changes from 0.1 to 0.85 at 3 GPa and 1600 °C. It is concluded that the self-diffusion coefficient of Al is more than one order of magnitude larger than that of Cr. The Cr-Al interdiffusion coefficient is expressed by D=D0exp(-Q/RT), where D0=2.8×10-2 m2/s and Q=498 kJ/mol at Cr#=0.2. This relation is applicable up to Cr#=0.5. Extrapolation of the self-diffusion coefficient of Cr to the lower temperature shows that Cr is the slowest diffusion species in chromite spinel including oxygen. This extremely slow Cr self-diffusion is consistent with the Cr-Al

  8. Dependence of ohmic contact properties on AlGaN layer thickness for AlGaN/GaN high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Takei, Yusuke; Tsutsui, Kazuo; Saito, Wataru; Kakushima, Kuniyuki; Wakabayashi, Hitoshi; Iwai, Hiroshi

    2016-04-01

    The dependence of ohmic contact resistance on the AlGaN layer thickness was evaluated for AlGaN/GaN high-electron-mobility transistor (HEMT) structures. Mo/Al/Ti contacts were formed on AlGaN layers with various thicknesses. The observed resistance characteristics are discussed on the basis of a model in which the overall contact resistance is composed of a series of three resistance components. Different dependences on the AlGaN layer thickness was observed after annealing at low temperatures (800-850 °C) and at high temperatures (900-950 °C). It was determined that lowering the resistance at the metal/AlGaN interface and that of the AlGaN layer is important for obtaining low-resistance ohmic contacts.

  9. Preparation of Al-Cr-Fe Coatings by Heat Treatment of Electrodeposited Cr/Al Composite Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Chen, Chang'an; Zhang, Guikai; Rao, Yongchu; Ling, Guoping

    Al-Cr-Fe coatings have been widely used in the surface engineering field of materials, due to their excellent corrosion resistance to water vapor and fused salt deposits. In this study, a new two-step approach was developed to prepare Al-Cr-Fe coatings on surfaces of SUS430 stainless steels. First, the Cr/Al composite coatings were prepared by electrodepositing Cr from aqueous solution then electrodepositing Al from AlCl3-1-ethyl-3-methyl-imidazolium chloride (AlCl3-EMIC) ionic liquid on SUS430 stainless steel substrate. In the second, heat treatment of the Cr/Al composite coatings was carried out to acquire Al-Cr-Fe coatings. Effects of the thickness of Cr/Al composite coatings, the time and temperature of heat treatment on composition and phase structure of alloy layers were studied by using scanning electron microscope (SEM), backscattered electron (BSE), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The structure transformation process and formation mechanism of Al-Cr-Fe coatings were discussed.

  10. Hot-electron real-space transfer and longitudinal transport in dual AlGaN/AlN/{AlGaN/GaN} channels

    NASA Astrophysics Data System (ADS)

    Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Ferreyra, R.; Özgür, Ü.; Morkoç, H.

    2015-03-01

    Real-space transfer of hot electrons is studied in dual-channel GaN-based heterostructure operated at or near plasmon-optical phonon resonance in order to attain a high electron drift velocity at high current densities. For this study, pulsed electric field is applied in the channel plane of a nominally undoped Al0.3Ga0.7N/AlN/{Al0.15Ga0.85N/GaN} structure with a composite channel of Al0.15Ga0.85N/GaN, where the electrons with a sheet density of 1.4 × 1013 cm-2, estimated from the Hall effect measurements, are confined. The equilibrium electrons are situated predominantly in the Al0.15Ga0.85N layer as confirmed by capacitance-voltage experiment and Schrödinger-Poisson modelling. The main peak of the electron density per unit volume decreases as more electrons occupy the GaN layer at high electric fields. The associated decrease in the plasma frequency induces the plasmon-assisted decay of non-equilibrium optical phonons (hot phonons) confirmed by the decrease in the measured hot-phonon lifetime from 0.95 ps at low electric fields down below 200 fs at fields of E \\gt 4 kV cm-1 as the plasmon-optical phonon resonance is approached. The onset of real-space transfer is resolved from microwave noise measurements: this source of noise dominates for E \\gt 8 kV cm-1. In this range of fields, the longitudinal current exceeds the values measured for a mono channel reference Al0.3Ga0.7N/AlN/GaN structure. The results are explained in terms of the ultrafast decay of hot phonons and reduced alloy scattering caused by the real-space transfer in the composite channel.

  11. Magnetic and chemical aspects of Cr-based films grown on GaAs(001)

    NASA Astrophysics Data System (ADS)

    Mosca, D. H.; de Camargo, P. C.; Guimarães, J. L.; Schreiner, W. H.; de Oliveira, A. J. A.; Souza, P. E. N.; Eddrief, M.; Etgens, V. H.

    2005-11-01

    We have investigated the magnetic and chemical properties of very thin films of Cr, CrAs, and arsenized Cr, grown by molecular beam epitaxy on GaAs (001), using x-ray photoemission spectroscopy and SQUID magnetometry. The substrate was kept at 200 °C in an As-rich environment for incoming Cr atoms at the GaAs surface. Gallium segregation and the chemical reactivity between Ga and Cr have negligible contribution to the formation of different thin films. A clear ferromagnetic response, even at room temperature, suggests the formation of a very thin buried interfacial layer during the growth process.

  12. On the AlGaInP-bulk and AlGaInP/GaAs-superlattice confinement effects for heterostructure-emitter bipolar transistors

    SciTech Connect

    Tsai, Jung-Hui

    2015-02-09

    The confinement effect and electrical characteristics of heterostructure-emitter bipolar transistors with an AlGaInP bulk-confinement layer and an AlGaInP/GaAs superlattice-confinement layer are first demonstrated and compared by experimentally results. In the two devices, the relatively large valence band discontinuity at AlGaInP/GaAs heterojunction provides excellent confinement effect for holes to enhance current gain. As to the AlGaInP/GaAs superlattice-confinement device, part of thermionic-emission electrons will be trapped in the GaAs quantum wells of the superlattice. This will result in lower collector current and current gain as compared with the bulk-confinement device. Nevertheless, the superlattice-confinement device exhibits a larger current-gain cutoff frequency, which can be attributed that the tunneling behavior is included in the carrier transportation and transporting time across the emitter region could be substantially reduced.

  13. Analysis of critical melt supercooling for heteroepitaxy of Al/sub x/Ga/sub 1-x/Sb by GaSb

    SciTech Connect

    Germogenov, V.P.; Pozolotin, V.A.

    1988-08-01

    Thermodynamic computations of the critical supercooling of a melt are performed for the case of heteroepitaxy of a solid Al/sub x/Ga/sub 1-x/Sb solution on a GaSb substrate for which there should be no substrate etching. Three kinds of supercoolings are examined, where ..delta..T/sub cr//sup (1)/ is the supercooling for which they change in the system Gibbs energy should equal zero because of dissolution, ..delta..T/sub cr//sup (2)/ is the supercooling for which the diminution in the system Gibbs energy due to substrate dissolution equals the energy being liberated during crystallization of the Al/sub x/Ga/sub 1-x/Sb solid solutions layer. Finally, the influence of the specific free interphasal energy of the substrate-melt interface on the result of computing the critical supercooling (the supercooling ..delta..T/sub cr//sup (3)/) is considered.

  14. Medium energy proton radiation damage to (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R. Y.; Kamath, G. S.; Knechtli, R. C.

    1982-01-01

    The performance of (AlGa)As-GaAs solar cells irradiated by medium energy 2, 5, and 10 MeV protons was evaluated. The Si cells without coverglass and a number of GaAs solar cells with 12 mil coverglass were irradiated simultaneously with bare GaAs cells. The cell degradation is directly related to the penetration of depth of protons with GaAs. The influence of periodic and continuous thermal annealing on the GaAs solar cells was investigated.

  15. GaInP /GaAs double heterojunction bipolar transistor with GaAs /Al0.11Ga0.89As/GaInP composite collector

    NASA Astrophysics Data System (ADS)

    Poh, Z. S.; Yow, H. K.; Houston, P. A.; Krysa, A. B.; Ong, D. S.

    2006-07-01

    GaInP /GaAs/GaInP double heterojunction bipolar transistor (DHBT) with an Al0.11Ga0.89As layer within lowly doped GaAs-GaInP composite collector was characterized. In comparison to an abrupt GaInP /GaAs/GaInP DHBT with saturation voltages in excess of 20V, current gains of 25 at high biases, and breakdown voltages in the range of 22V, the DHBT incorporating GaAs -Al0.11Ga0.89As-GaInP composite collector has demonstrated lower saturation voltages of less than 6V and high current gains of 50 without compromising the breakdown voltages of the GaInP collector. Al0.11Ga0.89As layer can thus provide an alternative design to effectively minimize the potential spike effects at the GaAs /GaInP heterojunction.

  16. Characterization of interface reaction of Ti/Al-based ohmic contacts on AlGaN/GaN epitaxial layers on GaN substrate

    NASA Astrophysics Data System (ADS)

    Zadeh, Daryoush H.; Tanabe, Shinichi; Watanabe, Noriyuki; Matsuzaki, Hideaki

    2016-05-01

    The ohmic properties of Ti/Al/Mo/Au contacts on a high-quality AlGaN/GaN heterostructure epitaxially grown on a GaN substrate were investigated. Systematic structural and electrical analyses of the metal/AlGaN interface after annealing in N2 at 700 and 900 °C were conducted. After annealing at 900 °C, a new Al-rich interlayer with nitrogen vacancies was formed at the metal/AlGaN interface. Ohmic contacts with a low specific contact resistance (ρc) of 5.1 × 10-6 Ω cm2 and a dominant field emission carrier transport mechanism were achieved. The fabrication of recessed-AlGaN-structured ohmic contact with ρc as low as 2.4 × 10-5 Ω cm2 at a low annealing temperature of 650 °C, was also successfully demonstrated. This result indicates that a process methodology can be provided for fabricating low-resistivity ohmic contacts with a low thermal budget on a high-quality AlGaN/GaN structure, which is based on an appropriate control of the metal/AlGaN interface and AlGaN thickness rather than relying on the existence of threading dislocations.

  17. Hot Corrosion Performance of AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa Coatings Deposited by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Tao, Chong; Wang, Lei; Cheng, Nailiang; Hu, Hengfa; Liu, Yang; Song, Xiu

    2016-04-01

    AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa coatings were deposited on 316L stainless steel substrate using atmospheric plasma spraying, respectively, in order to improve the oxidation and corrosion resistance. The hot corrosion performance of the coatings at 700 and 900 °C were studied, and the detailed microstructures and phase composition of the coatings were analyzed using x-ray diffraction, scanning electron microscope with energy dispersive spectrometer, and transmission electron microscope. The results show that both coatings are structurally featured by slatted layers, consisting of amorphous phase, Cr2O3, Ni3Al, and Al2O3. The hot corrosion resistance of AlO-CrO/NiCoCrAlYTa coating is better than that of AlO/NiCoCrAlYTa coating. This improvement is attributed to lower porosity and more compact Cr2O3 in AlO-CrO/NiCoCrAlYTa coating which performs better than Al2O3 in blocking further inward progress of corrosion and oxidization.

  18. Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures

    SciTech Connect

    Kuppulingam, B. Singh, Shubra Baskar, K.

    2014-04-24

    Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

  19. Multi-bands photoconductive response in AlGaN/GaN multiple quantum wells

    SciTech Connect

    Chen, G.; Rong, X.; Xu, F. J.; Tang, N.; Wang, X. Q. Shen, B.; Fu, K.; Zhang, B. S.; Hashimoto, H.; Yoshikawa, A.; Ge, W. K.

    2014-04-28

    Based on the optical transitions among the quantum-confined electronic states in the conduction band, we have fabricated multi-bands AlGaN/GaN quantum well infrared photodetectors. Crack-free AlGaN/GaN multiple quantum wells (MQWs) with atomically sharp interfaces have been achieved by inserting an AlN interlayer, which releases most of the tensile strain in the MQWs grown on the GaN underlayer. With significant reduction of dark current by using thick AlGaN barriers, photoconductive responses are demonstrated due to intersubband transition in multiple regions with center wavelengths of 1.3, 2.3, and 4 μm, which shows potential applications on near infrared detection.

  20. Initial adsorption of Cr atoms on GaAs(0 0 1)

    NASA Astrophysics Data System (ADS)

    Yagyu, Kazuma; Komamiya, Daisuke; Yoshino, Junji

    2011-01-01

    Cr-adsorbed GaAs(0 0 1)-c(4×4)α surfaces were investigated in view of a preparatory stage before studying the growth of zincblende CrAs. Cr was adsorbed on a GaAs(001)-c(4×4)α surface at 200 °C followed by annealing for 2 min. Cr adsorbed surface was investigated with scanning tunneling microscopy at 80 K. Single Cr atom was identified after the classification of Cr dots grown on the surface. The results have suggested that a Cr atom adsorbs on a site between three Ga-As dimers. After further adsorption of Cr, the surface is covered by dots which are higher than a step height of the substrate.

  1. Electrical properties of GaN-based heterostructures adopting InAlN/AlGaN bilayer barriers

    NASA Astrophysics Data System (ADS)

    Xu, Z. Y.; Xu, F. J.; Huang, C. C.; Wang, J. M.; Zhang, X.; Yang, Z. J.; Wang, X. Q.; Shen, B.

    2016-08-01

    Electrical properties of GaN-based heterostructures adopting InAlN/AlGaN bilayer barriers are investigated by Hall-effect and current-voltage measurements. It is found that this structure possesses both merits of high two-dimensional electron gas (2DEG) density and low gate leakage current density, while maintaining high 2DEG mobility. Furthermore, temperature dependence of the 2DEG density in this structure is verified to follow a combined tendency of InAlN/GaN (increase) and AlGaN/GaN (decrease) heterostructures with increasing temperature from 90 K to 400 K, which is mainly caused by superposition of the effects from carrier thermal activation induced by extrinsic factors in InAlN layer and the reduced conduction-band discontinuity.

  2. Oxidation of Fe-Cr-Al and Fe-Cr-Al-Y Single Crystals

    NASA Astrophysics Data System (ADS)

    Grabke, H. J.; Siegers, M.; Tolpygo, V. K.

    1995-03-01

    Single crystal samples of the alloy Fe-20%Cr-5%Al with and without Y-doping were used to study the "reactive element" (RE) effect, which causes improved oxidation behaviour and formation of a protective Al2O3 layer on this alloy. The oxidation was followed by AES at 10-7 mbar O2 up to about 1000 °C. Most observations were peculiar for this low pO2 environment, but yttrium clearly favors the formation of Al-oxide and stabilizes it also under these conditions, probably by favoring its nucleation. The oxides formed are surface compounds of about monolayer thickness, not clearly related to bulk oxides. Furthermore, the morphologies of oxide scales were investigated by SEM, after oxidation at 1000°C for 100 h at 133 mbar O2. On Fe-Cr-Al the scale is strongly convoluted and tends to spalling, whereas the presence of Y leads to flat scales which are well adherent. This difference is explained by a change in growth mechanism. The tendency for separation of oxide and metal was highest for the samples with low energy metal surface, i.e. (100) and (110), the scale was better adherent on the (111) oriented surface and on the polycrystalline specimen, since in the latter cases the overall energy for scale/metal separation is higher. All observations, from the low and from the high pO2 experiments, are discussed in relation to the approximately ten mechanisms proposed in the literature for explanation of the RE effects.

  3. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    SciTech Connect

    Das, Palash Biswas, Dhrubes

    2014-04-24

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT.

  4. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors.

    PubMed

    Li, Yat; Xiang, Jie; Qian, Fang; Gradecak, Silvija; Wu, Yue; Yan, Hao; Blom, Douglas A; Lieber, Charles M

    2006-07-01

    We report the rational synthesis of dopant-free GaN/AlN/AlGaN radial nanowire heterostructures and their implementation as high electron mobility transistors (HEMTs). The radial nanowire heterostructures were prepared by sequential shell growth immediately following nanowire elongation using metal-organic chemical vapor deposition (MOCVD). Transmission electron microscopy (TEM) studies reveal that the GaN/AlN/AlGaN radial nanowire heterostructures are dislocation-free single crystals. In addition, the thicknesses and compositions of the individual AlN and AlGaN shells were unambiguously identified using cross-sectional high-angle annular darkfield scanning transmission electron microscopy (HAADF-STEM). Transport measurements carried out on GaN/AlN/AlGaN and GaN nanowires prepared using similar conditions demonstrate the existence of electron gas in the undoped GaN/AlN/AlGaN nanowire heterostructures and also yield an intrinsic electron mobility of 3100 cm(2)/Vs and 21,000 cm(2)/Vs at room temperature and 5 K, respectively, for the heterostructure. Field-effect transistors fabricated with ZrO(2) dielectrics and metal top gates showed excellent gate coupling with near ideal subthreshold slopes of 68 mV/dec, an on/off current ratio of 10(7), and scaled on-current and transconductance values of 500 mA/mm and 420 mS/mm. The ability to control synthetically the electronic properties of nanowires using band structure design in III-nitride radial nanowire heterostructures opens up new opportunities for nanoelectronics and provides a new platform to study the physics of low-dimensional electron gases.

  5. Ti-Cr-Al-O Thin Film Resistors

    SciTech Connect

    Jankowski, A F; Hayes, J P

    2002-03-21

    Thin films of Ti-Cr-Al-O are produced for use as an electrical resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O{sub 2}. Vertical resistivity values from 10{sup 4} to 10{sup 10} Ohm-cm are measured for Ti-Cr-Al-O films. The film resistivity can be design selected through control of the target composition and the deposition parameters. The Ti-Cr-Al-O thin film resistor is found to be thermally stable unlike other metal-oxide films.

  6. Bias dependence and light sensitivity of (Al, Ga)As/GaAs MODFET's at 77 K

    NASA Astrophysics Data System (ADS)

    Drummond, T. J.; Fischer, R. J.; Kopp, W. F.; Morkoc, H.; Lee, K.; Shur, M. S.

    1983-12-01

    Modulation doped field-effect transistors typically show a threshold-voltage shift of about 0.2 V at 77 K with respect to room temperature. An investigation of the characteristics of Al(0.33)Ga(0.67)As/GaAs and Al(0.24)Ga(0.76)As/GaAs MODFETs confirms that the low temperature performance of these devices is affected by the presence of persistent photoconductive traps in the bulk (Al, Ga)As and the properties of the surface, both of which depend strongly on the Al mole fraction and the growth conditions. Al(0.33)Ga(0.67)As/GaAs MODFETs grown at 610 C show a threshold voltage shift of less than 0.05 V at 77 K with respect to room temperature, and little sensitivity of the current-voltage characteristics on illumination and on bias condition, indicating that by proper control of the growth parameters it is possible to obtain high quality (Al, Ga)As/GaAs MODFETs suitable for operation 77 K.

  7. From Schottky to Ohmic graphene contacts to AlGaN/GaN heterostructures: Role of the AlGaN layer microstructure

    SciTech Connect

    Fisichella, G.; Greco, G.; Roccaforte, F.; Giannazzo, F.

    2014-08-11

    The electrical behaviour of graphene (Gr) contacts to Al{sub x}Ga{sub 1−x}N/GaN heterostructures has been investigated, focusing, in particular, on the impact of the AlGaN microstructure on the current transport at Gr/AlGaN interface. Two Al{sub 0.25}Ga{sub 0.75}N/GaN heterostructures with very different quality in terms of surface roughness and defectivity, as evaluated by atomic force microscopy (AFM) and transmission electron microscopy, were compared in this study, i.e., a uniform and defect-free sample and a sample with a high density of typical V-defects, which locally cause a reduction of the AlGaN thickness. Nanoscale resolution current voltage (I-V) measurements by an Au coated conductive AFM tip were carried out at several positions both on the bare and Gr-coated AlGaN surfaces. Rectifying contacts were found onto both bare AlGaN surfaces, but with a more inhomogeneous and lower Schottky barrier height (Φ{sub B} ≈ 0.6 eV) for AlGaN with V-defects, with respect to the case of the uniform AlGaN (Φ{sub B} ≈ 0.9 eV). Instead, very different electrical behaviours were observed in the presence of the Gr interlayer between the Au tip and AlGaN, i.e., a Schottky contact with reduced barrier height (Φ{sub B} ≈ 0.4 eV) for the uniform AlGaN and an Ohmic contact for the AlGaN with V-defects. Interestingly, excellent lateral uniformity of the local I-V characteristics was found in both cases and can be ascribed to an averaging effect of the Gr electrode over the AlGaN interfacial inhomogeneities. Due to the locally reduced AlGaN layer thickness, V defect act as preferential current paths from Gr to the 2DEG and can account for the peculiar Ohmic behaviour of Gr contacts on defective AlGaN.

  8. AlGaN/GaN heterostructure prepared on a Si (110) substrate via pulsed sputtering

    SciTech Connect

    Watanabe, T.; Ohta, J.; Kondo, T.; Ohashi, M.; Ueno, K.; Kobayashi, A.; Fujioka, H.

    2014-05-05

    GaN films were grown on Si (110) substrates using a low-temperature growth technique based on pulsed sputtering. Reduction of the growth temperature suppressed the strain in the GaN films, leading to an increase in the critical thickness for crack formation. In addition, an AlGaN/GaN heterostructure with a flat heterointerface was prepared using this technique. Furthermore, the existence of a two dimensional electron gas at the heterointerface with a mobility of 1360 cm{sup 2}/Vs and a sheet carrier density of 1.3 × 10{sup 13} cm{sup −2} was confirmed. Finally, the use of the AlGaN/GaN heterostructure in a high electron mobility transistor was demonstrated. These results indicate that low-temperature growth via pulsed sputtering is quite promising for the fabrication of GaN-based electronic devices.

  9. An extrinsic fmax > 100 GHz InAlN/GaN HEMT with AlGaN back barrier

    NASA Astrophysics Data System (ADS)

    Bo, Liu; Zhihong, Feng; Shaobo, Dun; Xiongwen, Zhang; Guodong, Gu; Yuangang, Wang; Peng, Xu; Zezhao, He; Shujun, Cai

    2013-04-01

    We report the DC and RF performance of InAlN/GaN high-electron mobility transistors with AlGaN back barrier grown on SiC substrates. These presented results confirm the high performance that is reachable by InAlN-based technology. The InAlN/GaN HEMT sample showed a high 2DEG mobility of 1550 cm2/(V·s) at a 2DEG density of 1.7 × 1013 cm-2. DC and RF measurements were performed on the unpassivated device with 0.2 μm “T“ gate. The maximum drain current density at VGS = 2 V is close to 1.05 A/mm in a reproducible way. The reduction in gate leakage current helps to increase the frequency performance of AlGaN back barrier devices. The power gain cut-off frequency of a transistor with an AlGaN back barrier is 105 GHz, which is much higher than that of the device without an AlGaN back barrier at the same gate length. These results indicate InAlN/GaN HEMT is a promising candidate for millimeter-wave application.

  10. Prostate specific antigen detection using AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Wang, H. T.; Lele, T. P.; Tseng, Y.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-09-01

    Antibody-functionalized Au-gated AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect prostate specific antigen (PSA). The PSA antibody was anchored to the gate area through the formation of carboxylate succinimdyl ester bonds with immobilized thioglycolic acid. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when target PSA in a buffer at clinical concentrations was added to the antibody-immobilized surface. The authors could detect a wide range of concentrations from 10pg/mlto1μg/ml. The lowest detectable concentration was two orders of magnitude lower than the cutoff value of PSA measurements for clinical detection of prostate cancer. These results clearly demonstrate the promise of portable electronic biological sensors based on AlGaN /GaN HEMTs for PSA screening.

  11. Selective thermal terahertz emission from GaAs and AlGaAs

    SciTech Connect

    Požela, K. Širmulis, E.; Kašalynas, I.; Šilėnas, A.; Požela, J.; Jucienė, V.

    2014-09-01

    The selective thermally stimulated terahertz (THz) radiation emission from GaAs and AlGaAs alloys are experimentally observed at frequencies of coupled oscillations of free electron plasma and different branches of interface AlGaAs optical phonons. The effect of strong absorption of incident radiation with large oblique angle (26°) by heated GaAs and AlGaAs is revealed. The coherent THz radiation emission with the frequency of 7.6 THz from the heated high conductivity GaAs (n = 4 × 10{sup 18 }cm{sup −3}) layer is observed. The results are highly relevant to application in optoelectronic THz devices.

  12. Mid-infrared Photoconductive Response in AlGaN/GaN Step Quantum Wells

    PubMed Central

    Rong, X.; Wang, X. Q.; Chen, G.; Zheng, X. T.; Wang, P.; Xu, F. J.; Qin, Z. X.; Tang, N.; Chen, Y. H.; Sang, L. W.; Sumiya, M.; Ge, W. K.; Shen, B.

    2015-01-01

    AlGaN/GaN quantum structure is an excellent candidate for high speed infrared detectors based on intersubband transitions. However, fabrication of AlGaN/GaN quantum well infrared detectors suffers from polarization-induced internal electric field, which greatly limits the carrier vertical transport. In this article, a step quantum well is proposed to attempt solving this problem, in which a novel spacer barrier layer is used to balance the internal electric field. As a result, a nearly flat band potential profile is obtained in the step barrier layers of the AlGaN/GaN step quantum wells and a bound-to-quasi-continuum (B-to-QC) type intersubband prototype device with detectable photocurrent at atmosphere window (3–5 μm) is achieved in such nitride semiconductors. PMID:26395756

  13. Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures

    SciTech Connect

    Ngo, Thi Huong; Gil, Bernard; Valvin, Pierre; Damilano, Benjamin; Lekhal, Kaddour; De Mierry, Philippe

    2015-09-21

    We determine the internal quantum efficiency of strain-balanced AlGaN-InGaN-GaN hetero-structures designed for yellow-amber light emission, by using a recent model based on the kinetics of the photoluminescence decay initiated by Iwata et al. [J. Appl. Phys. 117, 075701 (2015)]. Our results indicate that low temperature internal quantum efficiencies sit in the 50% range and we measure that adding an AlGaN layer increases the internal quantum efficiency from 50% up to 57% with respect to the GaN-InGaN case. More dramatic, it almost doubles from 2.5% up to 4.3% at room temperature.

  14. TI--CR--AL--O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  15. Laser diode bars based on strain-compensated AlGaPAs/GaAs heterostructures

    SciTech Connect

    Marmalyuk, Aleksandr A; Ladugin, M A; Yarotskaya, I V; Panarin, V A; Mikaelyan, G T

    2012-01-31

    Traditional (in the AlGaAs/GaAs system) and phosphorus-compensated (in the AlGaAs/AlGaPAs/GaAs system) laser heterostructures emitting at a wavelength of 850 nm are grown by MOVPE and studied. Laser diode bars are fabricated and their output characteristics are studied. The method used to grow heterolayers allowed us to control (minimise) mechanical stresses in the AlGaPAs/GaAs laser heterostructure, which made it possible to keep its curvature at the level of the initial curvature of the substrate. It is shown that the use of a compensated AlGaPAs/GaAs heterostructure improves the linear distribution of emitting elements in the near field of laser diode arrays and allows the power - current characteristic to retain its slope at high pump currents owing to a uniform contact of all emitting elements with the heat sink. The radius of curvature of the grown compensated heterostructures turns out to be smaller than that of traditional heterostructures.

  16. Terahertz GaAs/AlAs quantum-cascade lasers

    NASA Astrophysics Data System (ADS)

    Schrottke, L.; Lü, X.; Rozas, G.; Biermann, K.; Grahn, H. T.

    2016-03-01

    We have realized GaAs/AlAs quantum-cascade lasers operating at 4.75 THz exhibiting more than three times higher wall plug efficiencies than GaAs/Al0.25Ga0.75As lasers with an almost identical design. At the same time, the threshold current density at 10 K is reduced from about 350 A/cm2 for the GaAs/Al0.25Ga0.75As laser to about 120 A/cm2 for the GaAs/AlAs laser. Substituting AlAs for Al0.25Ga0.75As barriers leads to a larger energy separation between the subbands reducing the probability for leakage currents through parasitic states and for reabsorption of the laser light. The higher barriers allow for a shift of the quasi-continuum of states to much higher energies. The use of a binary barrier material may also reduce detrimental effects due to the expected composition fluctuations in ternary alloys.

  17. Effect of high density H 2 plasmas on InGaP/GaAs and AlGaAs/GaAs HEMTs

    NASA Astrophysics Data System (ADS)

    Ren, F.; Kopf, R. F.; Kuo, J. M.; Lothian, J. R.; Lee, J. W.; Pearton, S. J.; Shul, R. J.; Constantine, C.; Johnson, D.

    1998-05-01

    InGaP/GaAs and AlGaAs/GaAs high electron mobility transistors have been exposed to inductively coupled plasma or electron cyclotron resonance H 2 plasmas as a function of pressure, source power and rf chuck power. The transconductance, gate ideality factor and saturated drain-source current are all degraded by the plasma treatment. Two mechanisms are identified: passivation of Si dopants in the InGaP or AlGaAs donor layers by H 0 and lattice disorder created by H + and H 2+ ion bombardment. HEMTs are found to be more susceptible to plasma-induced degradation than heterojunction bipolar transistors.

  18. Influence of AlN thickness on AlGaN epilayer grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Jayasakthi, M.; Juillaguet, S.; Peyre, H.; Konczewicz, L.; Baskar, K.; Contreras, S.

    2016-10-01

    AlGaN/AlN layers were grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. The AlN buffer thickness was varied from 400 nm to 800 nm. The AlGaN layer thickness was 1000 nm. The crystalline quality, thickness and composition of AlGaN were determined using high resolution X-ray diffraction (HRXRD). The threading dislocation density (TDD) was found to decrease with increase of AlN layer thickness. Reciprocal space mapping (RSM) was used to estimate the strain and relaxation between AlGaN and AlN. The optical properties of AlGaN layers were investigated by temperature dependent photoluminescence (PL). PL intensities of AlGaN layers increases with increasing the AlN thickness. The surface morphology of AlGaN was studied by atomic force microscopy (AFM). Root mean square (RMS) roughness values were found to be decreased while increase of AlN thickness.

  19. Impact ionization in N-polar AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Killat, N. E-mail: Martin.Kuball@bristol.ac.uk; Uren, M. J.; Kuball, M. E-mail: Martin.Kuball@bristol.ac.uk; Keller, S.; Kolluri, S.; Mishra, U. K.

    2014-08-11

    The existence of impact ionization as one of the open questions for GaN device reliability was studied in N-polar AlGaN/GaN high electron mobility transistors. Electroluminescence (EL) imaging and spectroscopy from underneath the device gate contact revealed the presence of hot electrons in excess of the GaN bandgap energy even at moderate on-state bias conditions, enabling impact ionization with hole currents up to several hundreds of pA/mm. The detection of high energy luminescence from hot electrons demonstrates that EL analysis is a highly sensitive tool to study degradation mechanisms in GaN devices.

  20. Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata

    2005-01-01

    A proposed hybrid ultraviolet (UV) image sensor would comprise a planar membrane array of face-up AlGaN/GaN photodiodes integrated with a complementary metal oxide/semiconductor (CMOS) readout-circuit chip. Each pixel in the hybrid image sensor would contain a UV photodiode on the AlGaN/GaN membrane, metal oxide/semiconductor field-effect transistor (MOSFET) readout circuitry on the CMOS chip underneath the photodiode, and a metal via connection between the photodiode and the readout circuitry (see figure). The proposed sensor design would offer all the advantages of comparable prior CMOS active-pixel sensors and AlGaN UV detectors while overcoming some of the limitations of prior (AlGaN/sapphire)/CMOS hybrid image sensors that have been designed and fabricated according to the methodology of flip-chip integration. AlGaN is a nearly ideal UV-detector material because its bandgap is wide and adjustable and it offers the potential to attain extremely low dark current. Integration of AlGaN with CMOS is necessary because at present there are no practical means of realizing readout circuitry in the AlGaN/GaN material system, whereas the means of realizing readout circuitry in CMOS are well established. In one variant of the flip-chip approach to integration, an AlGaN chip on a sapphire substrate is inverted (flipped) and then bump-bonded to a CMOS readout circuit chip; this variant results in poor quantum efficiency. In another variant of the flip-chip approach, an AlGaN chip on a crystalline AlN substrate would be bonded to a CMOS readout circuit chip; this variant is expected to result in narrow spectral response, which would be undesirable in many applications. Two other major disadvantages of flip-chip integration are large pixel size (a consequence of the need to devote sufficient area to each bump bond) and severe restriction on the photodetector structure. The membrane array of AlGaN/GaN photodiodes and the CMOS readout circuit for the proposed image sensor would

  1. Electrochemical etching of p-n-GaN/AlGaN photoelectrodes

    NASA Astrophysics Data System (ADS)

    Usikov, A. S.; Helava, H.; Nikiforov, A.; Puzyk, M. V.; Papchenko, B. P.; Kovaleva, Yu. V.; Makarov, Yu. N.

    2016-05-01

    Specific features of etching of GaN/AlGaN p-n structures in a KOH-based electrolyte have been studied. It was found that the corrosion process first passes across p layers through vertical channels associated with threading structural defects. Then, the corrosion process occurs in the lateral direction along n layers of the structure, with local hollows and voids thereby formed. The lateral etching is due to the presence of positive piezoelectric charges at boundaries of n-AlGaN and n-GaN layers and positively charged ionized donors in the space-charge region of the p-n junction.

  2. Magnetic coupling in ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers

    NASA Astrophysics Data System (ADS)

    Wang, M.; Wadley, P.; Campion, R. P.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Charlton, T. R.; Kinane, C. J.; Langridge, S.

    2015-08-01

    We report on a study of ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers using magnetometry and polarized neutron reflectivity (PNR). From depth-resolved characterization of the magnetic structure obtained by PNR, we concluded that the (Ga,Mn)As and (Al,Ga,Mn)As layers have in-plane and perpendicular-to-plane magnetic easy axes, respectively, with weak interlayer coupling. Therefore, the layer magnetizations align perpendicular to each other under low magnetic fields and parallel at high fields.

  3. Ga/1-x/Al/x/As LED structures grown on GaP substrates.

    NASA Technical Reports Server (NTRS)

    Woodall, J. M.; Potemski, R. M.; Blum, S. E.; Lynch, R.

    1972-01-01

    Ga(1-x)Al(x)As light-emitting diode structures have been grown on GaP substrates by the liquid-phase-epitaxial method. In spite of the large differences in lattice constants and thermal-expansion coefficients, room-temperature efficiencies up to 5.5% in air have been observed for a peak emission of 8500 A. Using undoped GaP substrates, which are transparent to the infrared and red portions of the spectrum, thin structures of Ga(1-x)Al(x)As with large external efficiencies can now be made.

  4. Si-doped GaAs/AlGaAs TJS laser by MBE

    SciTech Connect

    Mitsunaga, K.; Fujiwara, K.; Nunoshita, M.; Nakayama, T.

    1984-04-01

    The effect of high temperature annealing on the properties of silicon-doped GaAs/AlGaAs double heterostructure (DH) grown by molecular beam expitaxy (MBE)= and its application to the fabrication of transverse junction stripe (TJS) lasers are reported. In spite of the amphoteric nature of Si, it was found that the high temperature annealing gave little influence on the electrical and optical quality of the n-type DH wafer. The TJS laser using Si-doped GaAs/AlGaAs wafer has been oscillated cw at room temperature and exhibited low threshold current of 30 mA and high quantum efficiency of 60%.

  5. Magnetic coupling in ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers

    SciTech Connect

    Wang, M.; Wadley, P.; Campion, R. P.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Charlton, T. R.; Kinane, C. J.; Langridge, S.

    2015-08-07

    We report on a study of ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers using magnetometry and polarized neutron reflectivity (PNR). From depth-resolved characterization of the magnetic structure obtained by PNR, we concluded that the (Ga,Mn)As and (Al,Ga,Mn)As layers have in-plane and perpendicular-to-plane magnetic easy axes, respectively, with weak interlayer coupling. Therefore, the layer magnetizations align perpendicular to each other under low magnetic fields and parallel at high fields.

  6. Suppression of alloy fluctuations in GaAs-AlGaAs core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Loitsch, Bernhard; Jeon, Nari; Döblinger, Markus; Winnerl, Julia; Parzinger, Eric; Matich, Sonja; Wurstbauer, Ursula; Riedl, Hubert; Abstreiter, Gerhard; Finley, Jonathan J.; Lauhon, Lincoln J.; Koblmüller, Gregor

    2016-08-01

    Probing localized alloy fluctuations and controlling them by growth kinetics have been relatively limited so far in nanoscale structures such as semiconductor nanowires (NWs). Here, we demonstrate the tuning of alloy fluctuations in molecular beam epitaxially grown GaAs-AlGaAs core-shell NWs by modifications of shell growth temperature, as investigated by correlated micro-photoluminescence, scanning transmission electron microscopy, and atom probe tomography. By reducing the shell growth temperature from T > 600 °C to below 400 °C, we find a strong reduction in alloy fluctuation mediated sharp-line luminescence, concurrent with a decrease in the non-randomness of the alloy distribution in the AlGaAs shell. This trend is further characterized by a change in the alloy compositional structure from unintentional quasi-superlattices of Ga- and Al-rich AlGaAs layers at high T to a nearly homogeneous random alloy distribution at low T.

  7. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  8. New Al0.25Ga0.75N/GaN high electron mobility transistor with partial etched AlGaN layer

    NASA Astrophysics Data System (ADS)

    Yuan, Song; Duan, Baoxing; Yuan, Xiaoning; Cao, Zhen; Guo, Haijun; Yang, Yintang

    2016-05-01

    In this letter, a new Al0.25Ga0.75N/GaN high electron mobility transistor (HEMT) with the AlGaN layer is partial etched is reported for the first time. The two-dimensional electron gas (2DEG) density in the HEMTs is changed by partially etching the AlGaN layer. A new electric field peak is introduced along the interface between the AlGaN layer and the GaN buffer by the electric field modulation effect. The high electric field near the gate in the proposed Al0.25Ga0.75N/GaN HEMT is effectively decreased, which makes the surface electric field more uniform. Compared with the conventional structure, the breakdown voltage can be improved by 58% for the proposed Al0.25Ga0.75N/GaN HEMT and the current collapse can be reduced resulting from the more uniform surface electric field.

  9. Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Duan, Xiao-Ling; Zhang, Jin-Cheng; Xiao, Ming; Zhao, Yi; Ning, Jing; Hao, Yue

    2016-08-01

    A novel groove-type channel enhancement-mode AlGaN/GaN MIS high electron mobility transistor (GTCE-HEMT) with a combined polar and nonpolar AlGaN/GaN heterostucture is presented. The device simulation shows a threshold voltage of 1.24 V, peak transconductance of 182 mS/mm, and subthreshold slope of 85 mV/dec, which are obtained by adjusting the device parameters. Interestingly, it is possible to control the threshold voltage accurately without precisely controlling the etching depth in fabrication by adopting this structure. Besides, the breakdown voltage (V B) is significantly increased by 78% in comparison with the value of the conventional MIS-HEMT. Moreover, the fabrication process of the novel device is entirely compatible with that of the conventional depletion-mode (D-mode) polar AlGaN/GaN HEMT. It presents a promising way to realize the switch application and the E/D-mode logic circuits. Project supported by the National Science and Technology Major Project, China (Grant No. 2013ZX02308-002) and the National Natural Science Foundation of China (Grant Nos. 11435010, 61474086, and 61404099).

  10. Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Duan, Xiao-Ling; Zhang, Jin-Cheng; Xiao, Ming; Zhao, Yi; Ning, Jing; Hao, Yue

    2016-08-01

    A novel groove-type channel enhancement-mode AlGaN/GaN MIS high electron mobility transistor (GTCE-HEMT) with a combined polar and nonpolar AlGaN/GaN heterostucture is presented. The device simulation shows a threshold voltage of 1.24 V, peak transconductance of 182 mS/mm, and subthreshold slope of 85 mV/dec, which are obtained by adjusting the device parameters. Interestingly, it is possible to control the threshold voltage accurately without precisely controlling the etching depth in fabrication by adopting this structure. Besides, the breakdown voltage (V B) is significantly increased by 78% in comparison with the value of the conventional MIS-HEMT. Moreover, the fabrication process of the novel device is entirely compatible with that of the conventional depletion-mode (D-mode) polar AlGaN/GaN HEMT. It presents a promising way to realize the switch application and the E/D-mode logic circuits. Project supported by the National Science and Technology Major Project, China (Grant No. 2013ZX02308-002) and the National Natural Science Foundation of China (Grant Nos. 11435010, 61474086, and 61404099).

  11. Room temperature green to red electroluminescence from (Al,Ga)As/GaP QDs and QWs

    NASA Astrophysics Data System (ADS)

    Golz, Christian; Dadgostar, Shabnam; Masselink, W. Ted; Hatami, Fariba

    2016-03-01

    We present the growth, fabrication, and characterization of light-emitting diodes based on (Al,Ga)As quantum wells and dots embedded in a p-n GaP structure. Samples were grown on Sulphur-doped GaP (001) substrate using gas-source molecular beam epitaxy. The structures include either GaAs quantum structures with nominal coverage between 1.2 and 3.6 monolayers or Al0.3Ga0.7As quantum wells. For structures with GaAs layer thicker than 1.5 monolayers the 3.6% lattice mismatch in the materials system results in formation of quantum dots via Stranski-Krastanow growth mode with areal density of about 8×1010 cm-2. The atomic-force and transmission-electron microscopy show that with increasing coverage of GaAs from 1.8 to 3.6 monolayers the average lateral size and height of dots change in the range of 17-34 nm and 0.9-2 nm, respectively. The diode structures emit light from the red to the green spectral range up to room temperature. The GaAs/GaP QDs show electroluminescence between 1.8 eV and 2 eV, whereas the Al0.3Ga0.7As quantum wells emit light between 2 eV and 2.2 eV.

  12. Nanostructure and strain properties of core-shell GaAs/AlGaAs nanowires

    NASA Astrophysics Data System (ADS)

    Kehagias, Th; Florini, N.; Kioseoglou, J.; Pavloudis, Th; Komninou, Ph; Walther, T.; Moratis, K.; Hatzopoulos, Z.; Pelekanos, N. T.

    2015-11-01

    GaAs/AlGaAs core-shell nanowires (NWs) were grown on Si(111) by Ga-assisted molecular beam epitaxy via the vapor-liquid-solid mechanism. High-resolution and scanning transmission electron microscopy observations showed that NWs were predominantly zinc-blende single crystals of hexagonal shape, grown along the [111] direction. GaAs core NWs emerged from the Si surface and subsequently, the NW growth front advanced by a continuous sequence of (111) rotational twins, while the AlGaAs shell lattice was perfectly aligned with the core lattice. Occasionally, single or multiple stacking faults induced wurtzite structure NW pockets. The AlGaAs shell occupied at least half of the NW’s projected diameter, while the average Al content of the shell, estimated by energy dispersive x-ray analysis, was x = 0.35. Furthermore, molecular dynamics simulations of hexagonal cross-section NW slices, under a new parametrization of the Tersoff interatomic potential for AlAs, showed increased atom relaxation at the hexagon vertices of the shell. This, in conjunction with the compressively strained Al0.35Ga0.65As shell close to the GaAs core, can trigger a kinetic surface mechanism that could drive Al adatoms to accumulate at the relaxed sites of the shell, namely along the diagonals of the shell’s hexagon. Moreover, the absence of long-range stresses in the GaAs/Al0.35Ga0.65As core-shell system may account for a highly stable heterostructure. The latter was consolidated by temperature-dependent photoluminescence spectroscopy.

  13. Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs

    NASA Astrophysics Data System (ADS)

    Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.

    Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.

  14. Engineering of electric field distribution in GaN(cap)/AlGaN/GaN heterostructures: theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, M.; Janicki, L.; Misiewicz, J.; Sobanska, M.; Klosek, K.; Zytkiewicz, Z. R.; Kudrawiec, R.

    2016-09-01

    Polarization engineering of GaN-based heterostructures opens a way to develop advanced transistor heterostructures, although measurement of the electric field in such heterostructures is not a simple task. In this work, contactless electroreflectance (CER) spectroscopy has been applied to measure the electric field in GaN-based heterostructures. For a set of GaN(d  =  0, 5, 15, and 30 nm)/AlGaN(20 nm)/GaN(buffer) heterostructures a decrease of electric field in the GaN(cap) layer from 0.66 MV cm-1 to 0.27 MV cm-1 and an increase of the electric field in the AlGaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 have been observed with the increase in the GaN(cap) thickness from 5-30 nm. For a set of GaN(20 nm)/AlGaN(d  =  10, 20, 30, and 40 nm)/GaN(buffer) heterostructures a decrease of the electric field in the AlGaN layer from 1.77 MV cm-1 to 0.64 MV cm-1 and an increase of the electric field in the GaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 were observed with the increase in the AlGaN thickness from 10-40 nm. To determine the distribution of the electric field in these heterostructures the Schrödinger and Poisson equations are solved in a self-consistent manner and matched with experimental data. It is shown that the built-in electric field in the GaN(cap) and AlGaN layers obtained from measurements does not reach values of electric field resulting only from polarization effects. The measured electric fields are smaller due to a screening of polarization effects by free carriers, which are inhomogeneously distributed across the heterostructure and accumulate at interfaces. The results clearly demonstrate that CER measurements supported by theoretical calculations are able to determine the electric field distribution in GaN-based heterostructures quantitatively, which is very important for polarization engineering in this material system.

  15. Engineering of electric field distribution in GaN(cap)/AlGaN/GaN heterostructures: theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, M.; Janicki, L.; Misiewicz, J.; Sobanska, M.; Klosek, K.; Zytkiewicz, Z. R.; Kudrawiec, R.

    2016-09-01

    Polarization engineering of GaN-based heterostructures opens a way to develop advanced transistor heterostructures, although measurement of the electric field in such heterostructures is not a simple task. In this work, contactless electroreflectance (CER) spectroscopy has been applied to measure the electric field in GaN-based heterostructures. For a set of GaN(d  =  0, 5, 15, and 30 nm)/AlGaN(20 nm)/GaN(buffer) heterostructures a decrease of electric field in the GaN(cap) layer from 0.66 MV cm‑1 to 0.27 MV cm‑1 and an increase of the electric field in the AlGaN layer from 0.57 MV cm‑1 to 0.99 MV cm‑1 have been observed with the increase in the GaN(cap) thickness from 5–30 nm. For a set of GaN(20 nm)/AlGaN(d  =  10, 20, 30, and 40 nm)/GaN(buffer) heterostructures a decrease of the electric field in the AlGaN layer from 1.77 MV cm‑1 to 0.64 MV cm‑1 and an increase of the electric field in the GaN layer from 0.57 MV cm‑1 to 0.99 MV cm‑1 were observed with the increase in the AlGaN thickness from 10–40 nm. To determine the distribution of the electric field in these heterostructures the Schrödinger and Poisson equations are solved in a self-consistent manner and matched with experimental data. It is shown that the built-in electric field in the GaN(cap) and AlGaN layers obtained from measurements does not reach values of electric field resulting only from polarization effects. The measured electric fields are smaller due to a screening of polarization effects by free carriers, which are inhomogeneously distributed across the heterostructure and accumulate at interfaces. The results clearly demonstrate that CER measurements supported by theoretical calculations are able to determine the electric field distribution in GaN-based heterostructures quantitatively, which is very important for polarization engineering in this material system.

  16. Graded-bandgap AlGaAs solar cells for AlGaAs/Ge cascade cells

    NASA Technical Reports Server (NTRS)

    Timmons, M. L.; Venkatasubramanian, R.; Colpitts, T. S.; Hills, J. S.; Hutchby, J. A.; Iles, P. A.; Chu, C. L.

    1991-01-01

    Some p/n graded-bandgap Al(x)Ga(1-x)As solar cells were fabricated and show AMO conversion efficiencies in excess of 15 percent without antireflection (AR) coatings. The emitters of these cells are graded between 0.008 is less than or equal to x is less than or equal to 0.02 during growth of 0.25 to 0.30 micron thick layers. The keys to achieving this performance were careful selection of organometallic sources and scrubbing oxygen and water vapor from the AsH3 source. Source selection and growth were optimized using time-resolved photoluminescence. Preliminary radiation-resistance measurements show AlGaAs cells degraded less than GaAs cells at high 1 MeV electron fluences, and AlGaAs cells grown on GaAs and Ge substrates degrade comparably.

  17. Monolithic AlGaAs second-harmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Gili, V. F.; Carletti, L.; Locatelli, A.; Rocco, D.; Finazzi, M.; Ghirardini, L.; Favero, I.; Gomez, C.; Lemaître, A.; Celebrano, M.; De Angelis, C.; Leo, G.

    2016-07-01

    We demonstrate monolithic aluminum gallium arsenide (AlGaAs) optical anoantennas. Using a selective oxidation technique, we fabricate such epitaxial semiconductor nanoparticles on an aluminum oxide substrate. Second harmonic generation from an AlGaAs nanocylinder of height h=400 nm and varying radius pumped with femtosecond pulses delivered at 1554-nm wavelength has been measured, revealing a peak conversion efficiency exceeding 10-5 for nanocylinders with an otpimized geometry.

  18. Monolithic AlGaAs second-harmonic nanoantennas.

    PubMed

    Gili, V F; Carletti, L; Locatelli, A; Rocco, D; Finazzi, M; Ghirardini, L; Favero, I; Gomez, C; Lemaître, A; Celebrano, M; De Angelis, C; Leo, G

    2016-07-11

    We demonstrate monolithic aluminum gallium arsenide (AlGaAs) optical nanoantennas. Using a selective oxidation technique, we fabricated epitaxial semiconductor nanocylinders on an aluminum oxide substrate. Second harmonic generation from AlGaAs nanocylinders of 400 nm height and varying radius pumped with femtosecond pulses delivered at 1554-nm wavelength has been measured, revealing a peak conversion efficiency exceeding 10-5 for nanocylinders with an optimized geometry. PMID:27410864

  19. Effect of nitrogen incorporation into Al-based gate insulators in AlON/AlGaN/GaN metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Asahara, Ryohei; Nozaki, Mikito; Yamada, Takahiro; Ito, Joyo; Nakazawa, Satoshi; Ishida, Masahiro; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2016-10-01

    The superior physical and electrical properties of aluminum oxynitride (AlON) gate dielectrics on AlGaN/GaN substrates in terms of thermal stability, reliability, and interface quality were demonstrated by direct AlON deposition and subsequent annealing. Nitrogen incorporation into alumina was proven to be beneficial both for suppressing intermixing at the insulator/AlGaN interface and reducing the number of electrical defects in Al2O3 films. Consequently, we achieved high-quality AlON/AlGaN/GaN metal-oxide-semiconductor capacitors with improved stability against charge injection and a reduced interface state density as low as 1.2 × 1011 cm-2 eV-1. The impact of nitrogen incorporation into the insulator will be discussed on the basis of experimental findings.

  20. Nucleation of GaN/AlN quantum dots

    SciTech Connect

    Adelmann, C; Daudin, B; Oliver, R; Briggs, G; Rudd, R

    2003-10-13

    We study the nucleation of GaN islands grown by plasma-assisted molecular-beam epitaxy on AlN in a Stranski-Krastanov mode. In particular, we assess the variation of their height and density as a function of GaN coverage. We show that the GaN growth passes four stages: initially, the growth is layer-by-layer; subsequently, bidimensional precursor islands form, which transform into genuine three-dimensional islands. During the latter stage, the height and the density of the islands increase with GaN coverage until the density saturates. During further GaN growth, the density remains constant and a bimodal height distribution appears. The variation of island height and density as a function of substrate temperature is discussed in the framework of an equilibrium model for Stranski-Krastanov growth [R. E. Rudd et al., Phys. Rev. Lett. 90, 146101 (2003)].

  1. Nanoscale investigation of AlGaN/GaN-on-Si high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Fontserè, A.; Pérez-Tomás, A.; Placidi, M.; Llobet, J.; Baron, N.; Chenot, S.; Cordier, Y.; Moreno, J. C.; Jennings, M. R.; Gammon, P. M.; Fisher, C. A.; Iglesias, V.; Porti, M.; Bayerl, A.; Lanza, M.; Nafría, M.

    2012-10-01

    AlGaN/GaN HEMTs are devices which are strongly influenced by surface properties such as donor states, roughness or any kind of inhomogeneity. The electron gas is only a few nanometers away from the surface and the transistor forward and reverse currents are considerably affected by any variation of surface property within the atomic scale. Consequently, we have used the technique known as conductive AFM (CAFM) to perform electrical characterization at the nanoscale. The AlGaN/GaN HEMT ohmic (drain and source) and Schottky (gate) contacts were investigated by the CAFM technique. The estimated area of these highly conductive pillars (each of them of approximately 20-50 nm radius) represents around 5% of the total contact area. Analogously, the reverse leakage of the gate Schottky contact at the nanoscale seems to correlate somehow with the topography of the narrow AlGaN barrier regions producing larger currents.

  2. Nanoscale investigation of AlGaN/GaN-on-Si high electron mobility transistors.

    PubMed

    Fontserè, A; Pérez-Tomás, A; Placidi, M; Llobet, J; Baron, N; Chenot, S; Cordier, Y; Moreno, J C; Jennings, M R; Gammon, P M; Fisher, C A; Iglesias, V; Porti, M; Bayerl, A; Lanza, M; Nafría, M

    2012-10-01

    AlGaN/GaN HEMTs are devices which are strongly influenced by surface properties such as donor states, roughness or any kind of inhomogeneity. The electron gas is only a few nanometers away from the surface and the transistor forward and reverse currents are considerably affected by any variation of surface property within the atomic scale. Consequently, we have used the technique known as conductive AFM (CAFM) to perform electrical characterization at the nanoscale. The AlGaN/GaN HEMT ohmic (drain and source) and Schottky (gate) contacts were investigated by the CAFM technique. The estimated area of these highly conductive pillars (each of them of approximately 20-50 nm radius) represents around 5% of the total contact area. Analogously, the reverse leakage of the gate Schottky contact at the nanoscale seems to correlate somehow with the topography of the narrow AlGaN barrier regions producing larger currents.

  3. Efficient AlGaAs shallow-homojunction solar cells

    SciTech Connect

    Gale, R.P.; Fan, J.C.C.; Turner, G.W.; Chapman, R.L.; Pantano, J.V.

    1984-03-15

    Shallow-homojunction n/sup +//p/p/sup +/ solar cells with one-sun, AM1 conversion efficiencies as high as 12.9% have been fabricated in Al/sub 0.2/Ga/sub 0.8/As epitaxial layers grown by organometallic chemical vapor deposition on single-crystal GaAs substrates. For these cells, which have n/sup +/ layers thinned by anodic oxidation to about 500 A, the quantum efficiencies in the short-wavelength portion of the spectrum are as high as the best reported for AlGaAs cells with high band-gap window layers.

  4. Aluminum and silicon diffusion in Fe-Cr-Al alloys

    SciTech Connect

    Heesemann, A.; Schmidtke, E.; Faupel, F.; Kolb-Telieps, A.; Kloewer, J.

    1999-02-05

    Foils of Fe-Cr-Al alloys containing about 20 wt% Cr, 5 wt% Al and additions of Si and reactive elements like Ce, La, Y, Hf, Zr or Ti are widely used as a substrate in metal-supported automotive catalytic converters. In the present paper the authors report on measurements of Al and Si diffusion in Fe-Cr-Al alloys. Due to a lack of suitable radiotracers concentration profiles were obtained by means of electron microprobe analysis. In connection with data evaluation they present numerical calculations assessing the accuracy of the Matano analysis and the thin-film solution of Fick`s 2nd law as function of the thickness of the initial diffusant layer. The results are of general interest, particularly for the evaluation of diffusion measurements involving industrial specimens with given geometry.

  5. Influence of FeCrAl Content on Microstructure and Bonding Strength of Plasma-Sprayed FeCrAl/Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Luo, Fa; Zhou, Wancheng; Zhu, Dongmei

    2016-02-01

    Low-power plasma-sprayed FeCrAl/Al2O3 composite coatings with 1.5 mm thickness have been fabricated for radar absorption applications. The effects of FeCrAl content on the coating properties were studied. The FeCrAl presents in the form of a few thin lamellae and numerous particles, demonstrating relatively even distribution in all the coatings. Results show that the micro-hardness and porosity decrease with the increase in FeCrAl content. With FeCrAl content increasing from 28 to 47 wt.%, the bonding strength of the coatings with 1.5 mm thickness increases from 10.5 to 27 MPa, and the failure modes are composed of cohesive and adhesive failure, which are ascribed to the coating microstructure and the residual stress, respectively.

  6. Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single AlGaN layer with low Al composition

    NASA Astrophysics Data System (ADS)

    Cheng, Jianpeng; Yang, Xuelin; Sang, Ling; Guo, Lei; Zhang, Jie; Wang, Jiaming; He, Chenguang; Zhang, Lisheng; Wang, Maojun; Xu, Fujun; Tang, Ning; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-03-01

    By employing a single AlGaN layer with low Al composition, high quality and uniformity AlGaN/GaN heterostructures have been successfully grown on Si substrates by metal-organic chemical vapor deposition (MOCVD). The heterostructures exhibit a high electron mobility of 2150 cm2/Vs with an electron density of 9.3 × 1012 cm‑2. The sheet resistance is 313 ± 4 Ω/◻ with ±1.3% variation. The high uniformity is attributed to the reduced wafer bow resulting from the balance of the compressive stress induced and consumed during the growth, and the thermal tensile stress induced during the cooling down process. By a combination of theoretical calculations and in situ wafer curvature measurements, we find that the compressive stress consumed by the dislocation relaxation (~1.2 GPa) is comparable to the value of the thermal tensile stress (~1.4 GPa) and we should pay more attention to it during growth of GaN on Si substrates. Our results demonstrate a promising approach to simplifying the growth processes of GaN-on-Si to reduce the wafer bow and lower the cost while maintaining high material quality.

  7. Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single AlGaN layer with low Al composition

    PubMed Central

    Cheng, Jianpeng; Yang, Xuelin; Sang, Ling; Guo, Lei; Zhang, Jie; Wang, Jiaming; He, Chenguang; Zhang, Lisheng; Wang, Maojun; Xu, Fujun; Tang, Ning; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-01-01

    By employing a single AlGaN layer with low Al composition, high quality and uniformity AlGaN/GaN heterostructures have been successfully grown on Si substrates by metal-organic chemical vapor deposition (MOCVD). The heterostructures exhibit a high electron mobility of 2150 cm2/Vs with an electron density of 9.3 × 1012 cm−2. The sheet resistance is 313 ± 4 Ω/◻ with ±1.3% variation. The high uniformity is attributed to the reduced wafer bow resulting from the balance of the compressive stress induced and consumed during the growth, and the thermal tensile stress induced during the cooling down process. By a combination of theoretical calculations and in situ wafer curvature measurements, we find that the compressive stress consumed by the dislocation relaxation (~1.2 GPa) is comparable to the value of the thermal tensile stress (~1.4 GPa) and we should pay more attention to it during growth of GaN on Si substrates. Our results demonstrate a promising approach to simplifying the growth processes of GaN-on-Si to reduce the wafer bow and lower the cost while maintaining high material quality. PMID:26960730

  8. Influence of internal electric fields on band gaps in short period GaN/GaAlN and InGaN/GaN polar superlattices

    SciTech Connect

    Gorczyca, I. Skrobas, K.; Suski, T.; Christensen, N. E.; Svane, A.

    2015-08-21

    The electronic structures of short period mGaN/nGa{sub y}Al{sub 1−y}N and mIn{sub y}Ga{sub 1-y}N/nGaN superlattices grown along the wurtzite c axis have been calculated for different alloy compositions y and various small numbers m of well- and n of barrier-monolayers. The general trends in gap behavior can, to a large extent, be related to the strength of the internal electric field, E, in the GaN and InGaN quantum wells. In the GaN/GaAlN superlattices, E reaches 4 MV/cm, while in the InGaN/GaN superlattices, values as high as E ≈ 6.5 MV/cm are found. The strong electric fields are caused by spontaneous and piezoelectric polarizations, the latter contribution dominating in InGaN/GaN superlattices. The influence of different arrangements of In atoms (indium clustering) on the band gap values in InGaN/GaN superlattices is examined.

  9. Identification of photoluminescence bands in AlGaAs/InGaAs/GaAs PHEMT heterostructures with donor-acceptor-doped barriers

    SciTech Connect

    Gulyaev, D. V. Zhuravlev, K. S.; Bakarov, A. K.; Toropov, A. I.

    2015-02-15

    The photoluminescence of AlGaAs/InGaAs/GaAs pseudomorphic high-electron mobility transistor heterostructures with donor-acceptor-doped AlGaAs barriers is studied. It is found that the introduction of additional p{sup +}-doped AlGaAs layers into the design brings about the appearance of new bands in the photoluminescence spectra. These bands are identified as resulting from transitions (i) in donor-acceptor pairs in doped AlGaAs layers and (ii) between the conduction subband and acceptor levels in the undoped InGaAs quantum well.

  10. Comparative Study on Intersubband Absorption in AlGaN/GaN and AlInN/GaN Heterostructures Grown on Low-Defect Substrates

    NASA Astrophysics Data System (ADS)

    Edmunds, Colin; Tang, Liang; Shao, Jiayi; Li, Donghui; Gardner, Geoff; Manfra, Michael; Malis, Oana; Grier, Andrew; Ikonic, Zoran; Harrison, Paul; Zakharov, Dimitri

    2013-03-01

    Intersubband (ISB) devices utilizing III-nitrides have attracted attention for near- and far-infrared optoelectronic applications. However, the lattice mismatch between GaN and commonly used substrates results in a high defect density that hinders the vertical transport required for these devices. Furthermore, most devices in the literature utilize AlGaN/GaN heterostructures for which there is no lattice-matched alloy composition. Due to this lattice mismatch, AlGaN is not ideal for the development of complex devices such as quantum cascade lasers that often require active-region thicknesses on the order of microns for efficient operation. Fortunately, exact lattice matching occurs in AlInN/GaN heterostructures at roughly 18% In composition. To investigate the challenges of lattice-matched nitrides, we presents a comparative study of ISB absorption in high-quality AlGaN/GaN and near lattice-matched AlInN/GaN heterostructures grown by molecular-beam epitaxy on low-defect free-standing GaN substrates. Experimental measurements of transition energy, integrated absorbance and linewidth were compared to theoretical predictions that included many-body effects, interface roughness and calculations of the transition lifetime.

  11. Process dependency on threshold voltage of GaN MOSFET on AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Qingpeng; Jiang, Ying; Miyashita, Takahiro; Motoyama, Shin-ichi; Li, Liuan; Wang, Dejun; Ohno, Yasuo; Ao, Jin-Ping

    2014-09-01

    GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with recessed gate on AlGaN/GaN heterostructure are reported in which the drain and source ohmic contacts were fabricated on the AlGaN/GaN heterostructure and the electron channel was formed on the GaN buffer layer by removing the AlGaN barrier layer. Negative threshold voltages were commonly observed in all devices. To investigate the reasons of the negative threshold voltages, different oxide thickness, etching gas and bias power of inductively-coupled plasma (ICP) system were utilized in the fabrication process of the GaN MOSFETs. It is found that positive charges of around 1 × 1012 q/cm2 exist near the interface at the just threshold condition in both silane- and tetraethylorthosilicate (TEOS)-based devices. It is also found that the threshold voltages do not obviously change with the different etching gas (SiCl4, BCl3 and two-step etching of SiCl4/Cl2) at the same ICP bias power level (20-25 W) and will become deeper when higher bias power is used in the dry recess process which may be related to the much serious ion bombardment damage. Furthermore, X-ray photoelectron spectroscopy (XPS) experiments were done to investigate the surface conditions. It is found that N 1s peaks become lower with higher bias power of the dry etching process. Also, silicon contamination was found and could be removed by HNO3/HF solution. It indicates that the nitrogen vacancies are mainly responsible for the negative threshold voltages rather than the silicon contamination. It demonstrates that optimization of the ICP recess conditions and improvement of the surface condition are still necessary to realize enhancement-mode GaN MOSFETs on AlGaN/GaN heterostructure.

  12. Analytical modeling of AlGaN/AlN/GaN heterostructures including effects of distributed surface donor states

    SciTech Connect

    Goyal, Nitin; Fjeldly, Tor A.

    2014-07-14

    In this paper, a physics based analytical model is presented for calculation of the two-dimensional electron gas density and the bare surface barrier height of AlGaN/AlN/GaN material stacks. The presented model is based on the concept of distributed surface donor states and the self-consistent solution of Poisson equation at the different material interfaces. The model shows good agreement with the reported experimental data and can be used for the design and characterization of advanced GaN devices for power and radio frequency applications.

  13. GaN-based ultraviolet light-emitting diodes with AlN/GaN/InGaN multiple quantum wells.

    PubMed

    Chang, Hung-Ming; Lai, Wei-Chih; Chen, Wei-Shou; Chang, Shoou-Jinn

    2015-04-01

    We demonstrate indium gallium nitride/gallium nitride/aluminum nitride (AlN/GaN/InGaN) multi-quantum-well (MQW) ultraviolet (UV) light-emitting diodes (LEDs) to improve light output power. Similar to conventional UV LEDs with AlGaN/InGaN MQWs, UV LEDs with AlN/GaN/InGaN MQWs have forward voltages (V(f)'s) ranging from 3.21 V to 3.29 V at 350 mA. Each emission peak wavelength of AlN/GaN/InGaN MQW UV LEDs presents 350 mA output power greater than that of the corresponding emission peak wavelength of AlGaN/InGaN MQW UV LEDs. The light output power at 350mA of AlN/GaN/InGaN MQWs UV LEDs with 375 nm emission wavelength can reach around 26.7% light output power enhancement in magnitude compared to the AlGaN/InGaN MQWs UV LEDs with same emission wavelength. But 350mA light output power of AlN/GaN/InGaN MQWs UV LEDs with emission wavelength of 395nm could only have light output power enhancement of 2.43% in magnitude compared with the same emission wavelength AlGaN/InGaN MQWs UV LEDs. Moreover, AlN/GaN/InGaN MQWs present better InGaN thickness uniformity, well/barrier interface quality and less large size pits than AlGaN/InGaN MQWs, causing AlN/GaN/InGaN MQW UV LEDs to have less reverse leakage currents at -20 V. Furthermore, AlN/GaN/InGaN MQW UV LEDs have the 2-kV human body mode (HBM) electrostatic discharge (ESD) pass yield of 85%, which is 15% more than the 2-kV HBM ESD pass yield of AlGaN/InGaN MQW UV LEDs of 70%.

  14. Robust room temperature spin injection through Fe|CrAs|GaAs structure

    NASA Astrophysics Data System (ADS)

    Xu P., X.; Zwierzycki, M.; Xia, K.; Kelly P., J.; Turek, I.; Wang E., G.

    2003-03-01

    Electronic spin injection from a metallic ferromagnet into a semiconductor was realized only very recently and with less than 10% efficiency. Even though some theoretical study showed that it is possible to achieve almost 100% spin injection through the Fe|GaAs junction in the ballistic limit. However, the symmetry sensitivity of this injection mechanism makes it very difficult to be realized. To study the spin injection effect of a Fe|CrAs (n)|GaAs structure we calculated a scattering matrix based on first-principles density functional theory. Our results show that the high efficiency of spin injection in a Fe|CrAs(n)|GaAs structure can be realized at room temperature with only a few layers of CrAs. The spin injection efficiency is affected little by the interfacial disorder. The spin-dependent resistance of Fe|CrAs|GaAs junction is also studied.

  15. Observation of large Zeeman splitting in GaGdN/AlGaN ferromagnetic semiconductor double quantum well superlattices

    NASA Astrophysics Data System (ADS)

    Zhou, YiKai; Almokhtar, Mohamed; Kubo, Hitoshi; Mori, Nobuya; Emura, Shuichi; Hasegawa, Shigehiko; Asahi, Hajime

    2012-07-01

    Symmetric GaGdN/AlGaN (Gd concentration: 2%) and GaN/AlGaN double quantum well superlattices (DQW-SLs) were grown by radio-frequency plasma-assisted molecular-beam epitaxy on GaN (0001) templates. Atomic steps were observed on all the sample surfaces by atomic force microscope. X-ray diffraction θ/2θ scan curves exhibited well-defined satellite structures. Room temperature ferromagnetism was confirmed for the GaGdN/AlGaN DQW-SL samples by using alternating gradient magnetometer. Strong photoluminescence was observed from both GaGdN and GaN QWs at higher energy side of GaN excitonic peak. Magneto-photoluminescence spectra for GaGdN/AlGaN DQW-SL samples showed a large magnetic field dependence of the excitonic energy by applying a magnetic field up to 7 T. The observed strong redshift of excitonic PL indicated an enhancement of Zeeman splitting of the free carrier energy levels in magnetic GaGdN/AlGaN DQW-SL. Enhanced g-factor was estimated to be about 60 for GaGdN/AlGaN DQW-SL sample with QW thickness of 1 nm.

  16. Parallel magnetic field-induced conductance fluctuations in GaAs/AlGaAs ballistic quantum dots.

    NASA Astrophysics Data System (ADS)

    Faniel, S.; Gustin, C.; Melinte, S.; Hackens, B.; Bayot, V.; Shayegan, M.

    2004-03-01

    We present magnetotransport measurements in ballistic quantum dots under a parallel magnetic field. The dots were fabricated on two different GaAs/AlGaAs quantum wells with thicknesses of 15 and and 45 nm and with one and two subbands occupied, respectively. The samples were patterned using e-beam lithography and wet etching. A Cr/Au electrostatic top gate was used in order to tune the width of the dot openings. The measurements were performed down to 300 mK with the magnetic field applied strictly parallel to the plane of the two-dimensional electron gas. For both dots, we observe universal conductance fluctuations and, in the case of the wide quantum well, a reduction of their amplitude at large magnetic field. We discuss these conductance fluctuations in terms of orbital effect(V.I. Fal'ko and T. Jungwirth, Phys Rev B 65), 081306 (2002) and magnetic subband depopulation.

  17. AlGaAs/GaAs photovoltaic converters for high power narrowband radiation

    SciTech Connect

    Khvostikov, Vladimir; Kalyuzhnyy, Nikolay; Mintairov, Sergey; Potapovich, Nataliia; Shvarts, Maxim; Sorokina, Svetlana; Andreev, Viacheslav; Luque, Antonio

    2014-09-26

    AlGaAs/GaAs-based laser power PV converters intended for operation with high-power (up to 100 W/cm{sup 2}) radiation were fabricated by LPE and MOCVD techniques. Monochromatic (λ = 809 nm) conversion efficiency up to 60% was measured at cells with back surface field and low (x = 0.2) Al concentration 'window'. Modules with a voltage of 4 V and the efficiency of 56% were designed and fabricated.

  18. Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy

    PubMed Central

    2014-01-01

    The band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are measured by X-ray photoemission spectroscopy. A large forward-backward asymmetry is observed in the non-polar GaN/AlN and AlN/GaN heterojunctions. The valence-band offsets in the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are determined to be 1.33 ± 0.16 and 0.73 ± 0.16 eV, respectively. The large valence-band offset difference of 0.6 eV between the non-polar GaN/AlN and AlN/GaN heterojunctions is considered to be due to piezoelectric strain effect in the non-polar heterojunction overlayers. PMID:25258600

  19. Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy.

    PubMed

    Sang, Ling; Zhu, Qin Sheng; Yang, Shao Yan; Liu, Gui Peng; Li, Hui Jie; Wei, Hong Yuan; Jiao, Chun Mei; Liu, Shu Man; Wang, Zhan Guo; Zhou, Xiao Wei; Mao, Wei; Hao, Yue; Shen, Bo

    2014-01-01

    The band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are measured by X-ray photoemission spectroscopy. A large forward-backward asymmetry is observed in the non-polar GaN/AlN and AlN/GaN heterojunctions. The valence-band offsets in the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are determined to be 1.33 ± 0.16 and 0.73 ± 0.16 eV, respectively. The large valence-band offset difference of 0.6 eV between the non-polar GaN/AlN and AlN/GaN heterojunctions is considered to be due to piezoelectric strain effect in the non-polar heterojunction overlayers.

  20. Statistical nanoscale study of localised radiative transitions in GaN/AlGaN quantum wells and AlGaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Rigutti, L.; Mancini, L.; Lefebvre, W.; Houard, J.; Hernàndez-Maldonado, D.; Di Russo, E.; Giraud, E.; Butté, R.; Carlin, J.-F.; Grandjean, N.; Blavette, D.; Vurpillot, F.

    2016-09-01

    Compositional disorder has important consequences on the optical properties of III-nitride ternary alloys. In AlGaN epilayers and AlGaN-based quantum heterostructures, the potential fluctuations induced by such disorder lead to the localisation of carriers at low temperature, which affects their transition energies. Using the correlations between micro-photoluminescence, scanning transmission electron microscopy and atom probe tomography we have analysed the optical behaviour of Al0.25Ga0.75N epilayers and that of GaN/AlGaN quantum wells, and reconstructed in three dimensions the distribution of chemical species with sub-nanometre spatial resolution. These composition maps served as the basis for the effective mass calculation of electrons and holes involved in radiative transitions. Good statistical predictions were subsequently obtained for the above-mentioned transition and localisation energies by establishing a link with their microstructural properties.

  1. Electron and hole accumulations at GaN/AlInN/GaN interfaces and conductive n-type AlInN/GaN distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Yoshida, Shotaro; Ikeyama, Kazuki; Yasuda, Toshiki; Furuta, Takashi; Takeuchi, Tetsuya; Iwaya, Motoaki; Kamiyama, Satoshi; Akasaki, Isamu

    2016-05-01

    We investigated electron and hole accumulations at GaN/AlInN/GaN interfaces by Hall effect measurement. The InN mole fraction and temperature dependences on the sheet carrier densities at the interfaces reveal that electrons and holes were induced by large positive and negative polarization charges to satisfy the charge neutrality conditions, respectively. On the basis of the above results, we then designed and demonstrated a low-resistity 10-pair Si-doped n-type AlInN/GaN distributed Bragg reflector (DBR) by using high Si doped and graded layers at the GaN/AlInN interfaces. The low-resistity n-type AlInN/GaN DBR will reduce the resistance and the internal loss in blue vertical-cavity surface emitting lasers.

  2. On the optimization of asymmetric barrier layers in InAlGaAs/AlGaAs laser heterostructures on GaAs substrates

    SciTech Connect

    Zhukov, A. E.; Asryan, L. V.; Semenova, E. S.; Zubov, F. I.; Kryzhanovskaya, N. V.; Maximov, M. V.

    2015-07-15

    Band offsets at the heterointerface are calculated for various combinations of InAlGaAs/AlGaAs heteropairs that can be synthesized on GaAs substrates in the layer-by-layer pseudomorphic growth mode. Patterns which make it possible to obtain an asymmetric barrier layer providing the almost obstruction-free transport of holes and the highest possible barrier height for electrons are found. The optimal compositions of both compounds (In{sup 0.232}Al{sup 0.594}Ga{sup 0.174}As/Al{sup 0.355}Ga{sup 0.645}As) at which the flux of electrons across the barrier is at a minimum are determined with consideration for the critical thickness of the indium-containing quaternary solid solution.

  3. Reliability comparison of GaAlAs/GaAs and aluminum-free high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Pendse, D. R.; Chin, Aland K.; Dabkowski, Ferdynand P.; Clausen, Edward M., Jr.

    1998-08-01

    Aluminum-free laser diodes are InGaAsP/GaAs devices whose epitaxial layers do not contain aluminum. Studies comparing the GaAslAs/GaAs and InGaAsP/GaAs high power laser diodes allegedly indicate that aluminum-free lasers are more reliable due to a reduction of dark-line defects, sudden failures, and gradual degradation. The improved reliability of aluminum-free lasers is presumed to result from the elimination of oxidation of the aluminum-containing epitaxial layers of the laser facets. In this presentation, the performance and reliability of GaAlAs/GaAs and InGaAsP/GaAs high power laser diodes will be reviewed and compared. The present data shows that high reliable GaAlAs/GaAs lasers can be produced with good manufacturing practices.

  4. A Method to Optimize Transport Properties of AlGaN/GaN on Silicon

    NASA Astrophysics Data System (ADS)

    Daniel, J. D.; Elhamri, S.; Berney, R.; Ahoujja, M.; Mitchel, W. C.; Roberts, J. C.; Rajagopal, P.; Cook, J. W., Jr.; Piner, E. L.; Linthicum, K. J.

    2007-10-01

    We report on a study to investigate the impact of a thin AlN interlayer on the transport properties of AlGaN/GaN heterostructures grown by MOCVD on silicon substrates. Hall and Shubnikov-de Haas (SdH) measurements were used to compare the transport parameters of the conventional, AlGaN/GaN, structure to those of an AlGaN/AlN/GaN. The results clearly indicate that the interlayer leads to an enhancement of both the mobility and the carrier density. At 300 K, the carrier density and mobility for the conventional structure were roughly 8.57x10^12 cm-2 and 1523 cm^2/Vs, respectively. For the structure containing the AlN interlayer these numbers were 10.03 x 10^12 cm-2 and 1937 cm^2/Vs respectively. While the carrier density remained relatively unchanged down to 10 K, the mobility for the modified structure increased substantially. Shubnikov-de Haas measurements confirmed the presence of a high quality 2DEG in both structures. However, the amplitudes of the SdH oscillations in the conventional structure were higher.

  5. Theoretical and experimental studies of electric field distribution in N-polar GaN/AlGaN/GaN heterostructures

    SciTech Connect

    Gladysiewicz, M. Janicki, L.; Kudrawiec, R.; Siekacz, M.; Cywinski, G.

    2015-12-28

    Electric field distribution in N-polar GaN(channel)/AlGaN/GaN(buffer) heterostructures was studied theoretically by solving Schrodinger and Poisson equations in a self-consistent manner for various boundary conditions and comparing results of these calculations with experimental data, i.e., measurements of electric field in GaN(channel) and AlGaN layers by electromodulation spectroscopy. A very good agreement between theoretical calculations and experimental data has been found for the Fermi-level located at ∼0.3 eV below the conduction band at N-polar GaN surface. With this surface boundary condition, the electric field distribution and two dimensional electron gas concentration are determined for GaN(channel)/AlGaN/GaN(buffer) heterostructures of various thicknesses of GaN(channel) and AlGaN layers.

  6. A crystalline oxide passivation for Al{sub 2}O{sub 3}/AlGaN/GaN

    SciTech Connect

    Qin, Xiaoye; Dong, Hong; Kim, Jiyoung; Wallace, Robert M.

    2014-10-06

    In situ X-ray photoelectron spectroscopy and low energy electron diffraction are performed to study the formation of a crystalline oxide on the AlGaN surface. The oxidation of the AlGaN surface is prepared by annealing and remote N{sub 2} + O{sub 2} plasma pretreatments resulting in a stable crystalline oxide. The impact of the oxide on the interface state density is studied by capacitance voltage (C-V) measurements. It is found that a remote plasma exposure at 550 °C shows the smallest frequency dispersion. Crystalline oxide formation may provide a novel passivation method for high quality AlGaN/GaN devices.

  7. Excitonic binding energies in diffused-intermixed GaAs/AlAs/AlGaAs double barrier quantum wells

    NASA Astrophysics Data System (ADS)

    Kupka, R. K.; Chen, Y.

    1995-03-01

    We report a detailed study of the exciton properties in thermally diffused GaAs/AlAs/AlxGa1-xAs double barrier quantum wells (DBQW). The interband transition energies have been calculated with a standard transfer matrix method, while the exciton binding energy is obtained by a variational approach with an elliptic exciton envelope function. It is found that the inserted thin AlAs layer between the GaAs well and the AlGaAs barriers has a substantial effect on the exciton confinement and the intermixing properties. For thin enough AlAs barriers, the exciton binding energy increases for increasing diffusion lengths, reaches a maximum and then decreases gradually. The results show that a DBQW mixes faster than a single QW, due to the additional AlAs layers. Thick AlAs barriers enable the formation of an indirect AlGaAs intermixed well region, and the effects which stem from the indirect band line up are discussed.

  8. A V-grooved AlGaAs/GaAs passivated pn junction

    NASA Technical Reports Server (NTRS)

    Bailey, S. G.; Leon, R. P.; Arrison, A.

    1987-01-01

    A passivated, V-grooved GaAs solar cell offers important advantages in terms of improved optical coupling, higher short-circuit current, and increased tolerance to particle radiation when compared to the planar cell configuration. An AlGaAs epilayer has been deposited on a p-type GaAs epilayer grown on an n-type V-grooved GaAs surface using MOCVD. A wet chemical etching process was used to produce a V-pattern with a 7.0-micron periodicity. Reflectivity measurements substantiate the expected decrease in solar reflectance. Scanning electron microscopy techniques were used to confirm the presence of the AlGaAs layer and verify the existence of a pn junction.

  9. A V-grooved AlGaAs/GaAs passivated PN junction

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Leon, Rosa P.; Arrison, Anne

    1987-01-01

    A passivated, V-grooved GaAs solar cell offers important advantages in terms of improved optical coupling, higher short circuit current, and increased tolerance to particle radiation when compared to the planar cell configuration. An AlGaAs epilayer has been deposited on a p-type GaAs epilayer grown on an n-type V-grooved GaAs surface using MOCVD. A wet chemical etching process was used to produce a V-pattern with a 7.0 micron periodicity. Reflectivity measurements substantiate the expected decrease in solar reflectance. Scanning electron microscopy techniques were used to confirm the presence of the AlGaAs layer and verify the existence of a pn junction.

  10. Low frequency noise in two-dimensional lateral GaN/AlGaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Cywiński, G.; Szkudlarek, K.; Kruszewski, P.; Yahniuk, I.; Yatsunenko, S.; Muzioł, G.; Skierbiszewski, C.; Knap, W.; Rumyantsev, S. L.

    2016-07-01

    Schottky diodes with Ni/Au contact to the side of the two dimensional channel in GaN/AlGaN system were fabricated and studied. This kind of lateral heterodimensional diodes demonstrated the ideality factor n = 1.2-1.25 and apparent barrier height φb = (0.59-0.63) eV. The noise measurements within the frequencies range from 1 Hz to 50 kHz showed that the diodes demonstrated the superposition of 1/f and generation recombination noise. In spite of extremely small area of lateral Schottky diodes, the amplitude of noise was similar or even smaller than that for AlGaN and GaN Schottky diodes with the regular contact. This makes GaN-based lateral Schottky diodes to be very promising devices for RF and terahertz applications.

  11. Si diffusion and intermixing in AlGaAs/GaAs structures using buried impurity sources

    SciTech Connect

    Beernink, K.J.; Thornton, R.L.; Anderson, G.B.; Emanuel, M.A.

    1995-05-08

    Si diffusion and impurity-induced layer intermixing from a buried impurity source have been studied by transmission electron microscopy and secondary ion mass spectroscopy of isolated, Si-doped GaAs layers in an undoped Al{sub 0.4}Ga{sub 0.6}As/GaAs superlattice and by photoluminescence measurements on Si-doped GaAs quantum wells with undoped Al{sub 0.4}Ga{sub 0.6}As barriers. In annealed samples, the Si profile suggests a Si diffusion process involving multiply ionized column III vacancies. The width of the resulting Si profile and the spatial extent and completeness of intermixing strongly depend on the initial Si concentration in the doped layer.

  12. Study and development of tunable, single mode AlGaAs/GaAs lasers

    SciTech Connect

    Yu, P.K.L.; Liu, J.C. . Dept. of Electrical and Computer Engineering)

    1990-09-01

    Liquid phase epitaxy has been employed in this study to fabricate two-section wavelength tunable lasers. GaAs/AlGaAs and In GaAsP/InP material system have been used for fabricating the lasers. Both direct (butt) coupling and evanescent coupling approaches have been studied. The complications associated with the regrowth process have been responsible for poor laser performance. Some DBR gratings for three-section lasers have been made using the electron beam lithography at UCSD. A simple set up has been tested to measure the wavelength shift of GaAs/AlGaAs lasers. Also, a simple structure which avoids the regrowth process has been proposed for the two-section laser. 9 refs., 14 figs.

  13. V-grooved AlGaAs/GaAs passivated PN junction

    SciTech Connect

    Bailey, S.G.; Leon, R.P.; Arrison, A.

    1987-05-01

    A passivated, V-grooved GaAs solar cell offers important advantages in terms of improved optical coupling, higher short circuit current, and increased tolerance to particle radiation when compared to the planar cell configuration. An AlGaAs epilayer has been deposited on a p-type GaAs epilayer grown on an n-type V-grooved GaAs surface using MOCVD. A wet chemical etching process was used to produce a V-pattern with a 7.0 micron periodicity. Reflectivity measurements substantiate the expected decrease in solar reflectance. Scanning electron microscopy techniques were used to confirm the presence of the AlGaAs layer and verify the existence of a pn junction.

  14. Hydrogenation of GaAs covered by GaAlAs and subgrain boundary passivation

    NASA Astrophysics Data System (ADS)

    Djemel, A.; Castaing, J.; Chevallier, J.; Henoc, P.

    1992-12-01

    Cathodoluminescence (CL) has been performed to study the influence of hydrogen on electronic properties of GaAs with and without a GaAlAs layer. Recombination at sub-boundaries has been examined. These extended defects have been introduced by high temperature plastic deformation. The results show that they are passivated by hydrogen. The penetration of hydrogen is slowed down by the GaAlAs layer. La cathodoluminescence (CL) a été utilisée pour étudier l'influence de l'hydrogène sur les propriétés électroniques de GaAs nu et recouvert d'une couche de GaAlAs. Le caractère recombinant des sous-joints de grains a été examiné. Ces défauts étendus ont été introduits par déformation plastique à chaud. Les résultats montrent que l'hydrogène passive ces défauts. La pénétration de l'hydrogène à l'intérieur de GaAs est retardée par la présence de la couche de GaAlAs.

  15. Electron transport through cubic InGaN/AlGaN resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    Yahyaoui, N.; Sfina, N.; Nasrallah, S. Abdi-Ben; Lazzari, J.-L.; Said, M.

    2014-12-01

    We theoretically study the electron transport through a resonant tunneling diode (RTD) based on strained AlxGa1-xN/In0.1Ga0.9N/AlxGa1-xN quantum wells embedded in relaxed n- Al0.15Ga0.85N/strained In0.1Ga0.9N emitter and collector. The aluminum composition in both injector and collector contacts is taken relatively weak; this does not preclude achieving a wide band offset at the border of the pre-confinement wells. The epilayers are assumed with a cubic crystal structure to reduce spontaneous and piezoelectric polarization effects. The resonant tunneling and the thermally activated transfer through the barriers are the two mechanisms of transport taken into account in the calculations based on the Schrödinger, Poisson and kinetic equations resolved self-consistently. Using the transfer matrix formalism, we have analyzed the influence of the double barrier height on the resonant current. With an Al composition in the barriers varying between 30% and 50%, we have found that resonant tunneling dominates over the transport mediated by the thermally activated charge transfer for low applied voltages. It is also found that the designed n-type InGaN/AlGaN RTD with 30% of Al composition in the barriers is a potential candidate for achieving a resonant tunneling diode.

  16. Fabrication and characterization of graphene/AlGaN/GaN ultraviolet Schottky photodetector

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Jeong, H.; Polat, K.; Okyay, A. K.; Lee, D.

    2016-07-01

    We report on the fabrication and characterization of a Schottky ultraviolet graphene/AlGaN/GaN photodetector (PD). The fabricated device clearly exhibits rectification behaviour, indicating that the Schottky barrier is formed between the AlGaN and the mechanically transferred graphene. The Schottky parameters are evaluated using an equivalent circuit with two diodes connected back-to-back in series. The PD shows a low dark current of 4.77  ×  10-12 A at a bias voltage of  -2.5 V. The room temperature current-voltage (I-V) measurements of the graphene/AlGaN/GaN Schottky PD exhibit a large photo-to-dark contrast ratio of more than four orders of magnitude. Furthermore, the device shows peak responsivity at a wavelength of 350 nm, corresponding to GaN band edge and a small hump at 300 nm associated to the AlGaN band edge. In addition, we examine the behaviour of Schottky PDs with responsivities of 0.56 and 0.079 A W-1 at 300 and 350 nm, respectively, at room temperature.

  17. Theoretical investigation of spin-filtering in CrAs/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Stickler, B. A.; Ertler, C.; Pötz, W.; Chioncel, L.

    2013-12-01

    The electronic structure of bulk zinc-blende GaAs, zinc-blende and tetragonal CrAs, and CrAs/GaAs supercells, computed within linear muffin-tin orbital (LMTO) local spin-density functional theory, is used to extract the band alignment for the [1,0,0] GaAs/CrAs interface in dependence of the spin orientation. With the lateral lattice constant fixed to the experimental bulk GaAs value, a local energy minimum is found for a tetragonal CrAs unit cell with a longitudinal ([1,0,0]) lattice constant reduced by ≈2%. Due to the identified spin-dependent band alignment, half-metallicity of CrAs no longer is a key requirement for spin-filtering. Based on these findings, we study the spin-dependent tunneling current in [1,0,0] GaAs/CrAs/GaAs heterostructures within the non-equilibrium Green's function approach for an effective tight-binding Hamiltonian derived from the LMTO electronic structure. Results indicate that these heterostructures are promising candidates for efficient room-temperature all-semiconductor spin-filtering devices.

  18. Theoretical investigation of spin-filtering in CrAs/GaAs heterostructures

    SciTech Connect

    Stickler, B. A.; Ertler, C.; Pötz, W.; Chioncel, L.

    2013-12-14

    The electronic structure of bulk zinc-blende GaAs, zinc-blende and tetragonal CrAs, and CrAs/GaAs supercells, computed within linear muffin-tin orbital (LMTO) local spin-density functional theory, is used to extract the band alignment for the [1,0,0] GaAs/CrAs interface in dependence of the spin orientation. With the lateral lattice constant fixed to the experimental bulk GaAs value, a local energy minimum is found for a tetragonal CrAs unit cell with a longitudinal ([1,0,0]) lattice constant reduced by ≈2%. Due to the identified spin-dependent band alignment, half-metallicity of CrAs no longer is a key requirement for spin-filtering. Based on these findings, we study the spin-dependent tunneling current in [1,0,0] GaAs/CrAs/GaAs heterostructures within the non-equilibrium Green's function approach for an effective tight-binding Hamiltonian derived from the LMTO electronic structure. Results indicate that these heterostructures are promising candidates for efficient room-temperature all-semiconductor spin-filtering devices.

  19. Growth condition optimization and mobility enhancement through prolonging the GaN nuclei coalescence process of AlGaN/AlN/GaN structure

    NASA Astrophysics Data System (ADS)

    He, Xiao-Guang; Zhao, De-Gang; Jiang, De-Sheng; Zhu, Jian-Jun; Chen, Ping; Liu, Zong-Shun; Le, Ling-Cong; Yang, Jing; Li, Xiao-Jing; Zhang, Shu-Ming; Yang, Hui

    2015-09-01

    AlGaN/AlN/GaN structures are grown by metalorganic vapor phase epitaxy on sapphire substrates. Influences of AlN interlayer thickness, AlGaN barrier thickness, and Al composition on the two-dimensional electron gas (2DEG) performance are investigated. Lowering the V/III ratio and enhancing the reactor pressure at the initial stage of the high-temperature GaN layer growth will prolong the GaN nuclei coalescence process and effectively improve the crystalline quality and the interface morphology, diminishing the interface roughness scattering and improving 2DEG mobility. AlGaN/AlN/GaN structure with 2DEG sheet density of 1.19 × 1013 cm-2, electron mobility of 2101 cm2·V-1·s-1, and square resistance of 249 Ω is obtained. Project support by the National Natural Science Foundation of China (Grant Nos. 61474110, 61377020, 61376089, 61223005, and 61176126), the National Science Fund for Distinguished Young Scholars, China (Grant No. 60925017), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  20. Hole doping in frustrated spinels, ZnCr2O4 and MgCr2O4, and their two dimensional analogue SCGO, SrCr8Ga4O19

    NASA Astrophysics Data System (ADS)

    Dutton, Sian

    2012-02-01

    Recent experiments on the complex geometrically frustrated magnet, β-CaCr2O4, clearly illustrate the divergent effect of hole and static doping on the magnetic properties [1]. Given the complex parent state of β-CaCr2O4 this is not an ideal system for studying perturbations to the magnetic interactions. However, the onset of ferromagnetic fluctuations and ferrimagnetic ordering in β-Ca1-yCr2O4 suggests that other hole doped Cr^3+/4+ systems may be of interest. The extreme sensitivity in the balance of competing magnetic interactions in geometrically frustrated magnets is illustrated clearly in Cr^3+ spinels, ACr2O4. Antiferromagnetic (AFM) ordering in ACr2O4 occurs at a spin-Peierls transition. Both the low temperature magnetic and structural regimes are found to be highly sensitive to the A cation. In the case of ZnCr2O4 we find that very fine control of the reaction conditions is necessary to make stoichiometric ZnCr2O4, rather than hole doped Zn1+xCr2-xO4 (x <= 0.04). From analysis of magnetic measurements, specific heat and neutron diffraction we have probed the nature of the transitions at TN [2]. How hole doping effects the low temperature properties and the role of the d^2 Cr^4+ cations on the isotropic d^3 Cr^3+ magnetic lattice will be discussed. Our results on the more robust MgCr2O4 spinel will also be presented. A 2D analogue of the 3D pyrochlore magnetic lattice in the ACr2O4 spinels is found in SCGO, SrCr8Ga4O19. In hole doped SCGO, SrCr8MxGa4-xO19 (M = Zn, Mg, Cu), a larger fraction of the Cr^3+ can be oxidized. Hole doping is found to have a significant effect on the magnetic fluctuations, how this depends on the nature of the dopant cation will be addressed [3]. [4pt] [1] S. E. Dutton, C. L. Broholm, and R. J. Cava, Journal of Solid State Chemistry 183, 1798 (2010). [0pt] [2] S. E. Dutton et al., Physical Review B 83, 064407 (2011). [0pt] [3] S. E. Dutton et al., Journal of Physics-Condensed Matter 23, 386001 (2011).

  1. Emergence of half-metallic ferromagnetism in Ga1- x Cr x As

    NASA Astrophysics Data System (ADS)

    Rani, Anita; Kumar, Ranjan

    2016-08-01

    We have studied the structural, electronic and half-metallic ferromagnetic properties of Ga1- x Cr x As compounds at dopant concentrations x = 0.25, 0.125 and 0.0625. First principle calculations based on density functional theories as implemented in SIESTA code using LDA + U (local density approximation + U) as exchange correlation potential have been used to study the properties of these compounds. Here, U is the Hubbard's parameter. The calculated results predict that Cr-doped GaAs diluted magnetic semiconductors exhibit half-metallic properties at different concentrations, in which Cr atoms form deep levels in forbidden energy gap. The results also predict that with increase of fraction of Cr atoms, half-metallic energy band gap of Ga1- x Cr x As decreases. Total magnetic moment of these compounds is due to Cr states, and also p-d hybridization between Ga-p and Cr-d induces small magnetic moment on nonmagnetic atoms (Ga and As) for all concentrations.

  2. MOCVD growth of AlGaN UV LEDs

    SciTech Connect

    Han, J.; Crawford, M.H.

    1998-09-01

    Issues related to the MOCVD growth of AlGaN, specifically the gas-phase parasitic reactions among TMG, TMA, and NH{sub 3}, are studied using an in-situ optical reflectometer. It is observed that the presence of the well-known gas phase adduct (TMA: NH{sub 3}) could seriously hinder the incorporation behavior of TMGa. Relatively low reactor pressures (30--50 Torr) are employed to grow an AlGaN/GaN SCH QW p-n diode structure. The UV emission at 360 nm (FWHM {approximately} 10 nm) represents the first report of LED operation from an indium-free GaN QW diode.

  3. Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Lu, Shen; Hirahara, Sota; Niwa, Kazumasa; Kamiyama, Satoshi; Ohkawa, Kazuhiro

    2016-08-01

    We investigated the effect of a combined AlN/Al0.03Ga0.97N barrier on InGaN-based amber light-emitting diodes (LEDs) grown by metalorganic vapor-phase epitaxy. InGaN-based multiple quantum wells with a combined AlN/Al0.03Ga0.97N barrier showed intense photoluminescence with a narrow full-width at half-maximum. The amber LEDs with a combined AlN/Al0.03Ga0.97N barrier achieved a light output power enhanced approximately 2.5-fold at 20 mA compared to that of the LED with a combined AlN/GaN barrier, owing to the reduction of defects in InGaN active layers. Thus, the efficiency of high-In-content InGaN-based LEDs can be improved in the spectrum range of amber.

  4. Pure AlN layers in metal-polar AlGaN/AlN/GaN and AlN/GaN heterostructures grown by low-temperature ammonia-based molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kaun, Stephen W.; Mazumder, Baishakhi; Fireman, Micha N.; Kyle, Erin C. H.; Mishra, Umesh K.; Speck, James S.

    2015-05-01

    When grown at a high temperature (820 °C) by ammonia-based molecular beam epitaxy (NH3-MBE), the AlN layers of metal-polar AlGaN/AlN/GaN heterostructures had a high GaN mole fraction (∼0.15), as identified by atom probe tomography in a previous study (Mazumder et al 2013 Appl. Phys. Lett. 102 111603). In the study presented here, growth at low temperature (<740 °C) by NH3-MBE yielded metal-polar AlN layers that were essentially pure at the alloy level. The improved purity of the AlN layers grown at low temperature was correlated to a dramatic increase in the sheet density of the two-dimensional electron gas (2DEG) at the AlN/GaN heterointerface. Through application of an In surfactant, metal-polar AlN(3.5 nm)/GaN and AlGaN/AlN(2.5 nm)/GaN heterostructures grown at low temperature yielded low 2DEG sheet resistances of 177 and 285 Ω/□, respectively.

  5. Sheet resistance under Ohmic contacts to AlGaN/GaN heterostructures

    SciTech Connect

    Hajłasz, M.; Donkers, J. J. T. M.; Sque, S. J.; Heil, S. B. S.; Gravesteijn, D. J.; Rietveld, F. J. R.; Schmitz, J.

    2014-06-16

    For the determination of specific contact resistance in semiconductor devices, it is usually assumed that the sheet resistance under the contact is identical to that between the contacts. This generally does not hold for contacts to AlGaN/GaN structures, where an effective doping under the contact is thought to come from reactions between the contact metals and the AlGaN/GaN. As a consequence, conventional extraction of the specific contact resistance and transfer length leads to erroneous results. In this Letter, the sheet resistance under gold-free Ti/Al-based Ohmic contacts to AlGaN/GaN heterostructures on Si substrates has been investigated by means of electrical measurements, transmission electron microscopy, and technology computer-aided design simulations. It was found to be significantly lower than that outside of the contact area; temperature-dependent electrical characterization showed that it exhibits semiconductor-like behavior. The increase in conduction is attributed to n-type activity of nitrogen vacancies in the AlGaN. They are thought to form during rapid thermal annealing of the metal stack when Ti extracts nitrogen from the underlying semiconductor. The high n-type doping in the region between the metal and the 2-dimensional electron gas pulls the conduction band towards the Fermi level and enhances horizontal electron transport in the AlGaN. Using this improved understanding of the properties of the material underneath the contact, accurate values of transfer length and specific contact resistance have been extracted.

  6. Sheet resistance under Ohmic contacts to AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Hajłasz, M.; Donkers, J. J. T. M.; Sque, S. J.; Heil, S. B. S.; Gravesteijn, D. J.; Rietveld, F. J. R.; Schmitz, J.

    2014-06-01

    For the determination of specific contact resistance in semiconductor devices, it is usually assumed that the sheet resistance under the contact is identical to that between the contacts. This generally does not hold for contacts to AlGaN/GaN structures, where an effective doping under the contact is thought to come from reactions between the contact metals and the AlGaN/GaN. As a consequence, conventional extraction of the specific contact resistance and transfer length leads to erroneous results. In this Letter, the sheet resistance under gold-free Ti/Al-based Ohmic contacts to AlGaN/GaN heterostructures on Si substrates has been investigated by means of electrical measurements, transmission electron microscopy, and technology computer-aided design simulations. It was found to be significantly lower than that outside of the contact area; temperature-dependent electrical characterization showed that it exhibits semiconductor-like behavior. The increase in conduction is attributed to n-type activity of nitrogen vacancies in the AlGaN. They are thought to form during rapid thermal annealing of the metal stack when Ti extracts nitrogen from the underlying semiconductor. The high n-type doping in the region between the metal and the 2-dimensional electron gas pulls the conduction band towards the Fermi level and enhances horizontal electron transport in the AlGaN. Using this improved understanding of the properties of the material underneath the contact, accurate values of transfer length and specific contact resistance have been extracted.

  7. Normally-off p-GaN/AlGaN/GaN high electron mobility transistors using hydrogen plasma treatment

    NASA Astrophysics Data System (ADS)

    Hao, Ronghui; Fu, Kai; Yu, Guohao; Li, Weiyi; Yuan, Jie; Song, Liang; Zhang, Zhili; Sun, Shichuang; Li, Xiajun; Cai, Yong; Zhang, Xinping; Zhang, Baoshun

    2016-10-01

    In this letter, we report a method by introducing hydrogen plasma treatment to realize normally-off p-GaN/AlGaN/GaN HEMT devices. Instead of using etching technology, hydrogen plasma was adopted to compensate holes in the p-GaN above the two dimensional electron gas (2DEG) channel to release electrons in the 2DEG channel and form high-resistivity area to reduce leakage current and increase gate control capability. The fabricated p-GaN/AlGaN/GaN HEMT exhibits normally-off operation with a threshold voltage of 1.75 V, a subthreshold swing of 90 mV/dec, a maximum transconductance of 73.1 mS/mm, an ON/OFF ratio of 1 × 107, a breakdown voltage of 393 V, and a maximum drain current density of 188 mA/mm at a gate bias of 6 V. The comparison of the two processes of hydrogen plasma treatment and p-GaN etching has also been made in this work.

  8. The form of the profile of heterointerfaces in (311)Ga GaAs/AlAs structures

    SciTech Connect

    Gulyaev, D. V. Zhuravlev, K. S.

    2010-03-15

    The steady-state photoluminescence and kinetics of photoluminescence of the (100)-oriented and (311)Ga-oriented type II GaAs/AlAs superlattices are studied under the effect of the electric field of the surface acoustic wave. It is found that, in the (100)-oriented structures, the drop of intensity of steady-state photoluminescence and acceleration of photoluminescence kinetics are independent of the direction of the electric field of the surface acoustic wave with respect to crystallographic directions, while in the (311)Ga-oriented structures these effects are anisotropic. It is shown that all variations in the steady-state photoluminescence and in kinetics of photoluminescence of (100)-oriented and (311)Ga-oriented structures under the effect of the electric field of the acoustic wave are associated with transfer and capture by the nonradiative recombination centers of nonequilibrium charge carriers, which are initially localized in wide quantum wells formed by fluctuations of the thickness of the layers of the structures. From the obtained experimental data, the parameters of the profile of heterointerfaces of the (311)Ga GaAs/AlAs superlattices are determined. It is established that the lateral sizes of microgrooves in the [011] direction on the direct and inverse heterointerfaces of the (311)Ga superlattices exceed 3.2 nm, while the modulation of the thickness of the AlAs layers is from 0.8 to 1.2 nm.

  9. Mismatch relaxation by stacking fault formation of AlN islands in AlGaN/GaN structures on m-plane GaN substrates

    SciTech Connect

    Smalc-Koziorowska, Julita; Sawicka, Marta; Skierbiszewski, Czeslaw; Grzegory, Izabella

    2011-08-08

    We study the mismatch relaxation of 2-5 nm thin elongated AlN islands formed during growth of AlGaN on bulk m-plane GaN by molecular beam epitaxy. The relaxation of these m-plane AlN layers is anisotropic and occurs through the introduction of stacking faults in [0001] planes during island coalescence, while no relaxation is observed along the perpendicular [1120] direction. This anisotropy in the mismatch relaxation and the formation of stacking faults in the AlN islands are explained by the growth mode of the AlN platelets and their coalescence along the [0001] direction.

  10. Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Lin; Chu, B. H.; Chen, K. H.; Chang, C. Y.; Lele, T. P.; Papadi, G.; Coleman, J. K.; Sheppard, B. J.; Dungen, C. F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.; Ren, F.

    2009-06-01

    Antibody-functionalized, Au-gated AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect Perkinsus marinus. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN/GaN HEMT drain-source current showed a rapid response of less than 5 s when the infected solution was added to the antibody-immobilized surface. The sensor can be recycled with a phosphate buffered saline wash. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN/GaN HEMTs for Perkinsus marinus detection.

  11. HgNO3 sensitivity of AlGaN/GaN field effect transistors functionalized with phytochelating peptides

    NASA Astrophysics Data System (ADS)

    Rohrbaugh, Nathaniel; Hernandez-Balderrama, Luis; Kaess, Felix; Kirste, Ronny; Collazo, Ramon; Ivanisevic, Albena

    2016-06-01

    This study examined the conductance sensitivity of AlGaN/GaN field effect transistors in response to varying Hg/HNO3 solutions. FET surfaces were covalently functionalized with phytochelatin-5 peptides in order to detect Hg in solution. Results showed a resilience of peptide-AlGaN/GaN bonds in the presence of strong HNO3 aliquots, with significant degradation in FET ID signal. However, devices showed strong and varied response to Hg concentrations of 1, 10, 100, and 1000 ppm. The gathered statistically significant results indicate that peptide terminated AlGaN/GaN devices are capable of differentiating between Hg solutions and demonstrate device sensitivity.

  12. Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties

    SciTech Connect

    Sztein, Alexander; Bowers, John E.; DenBaars, Steven P.; Nakamura, Shuji

    2014-01-27

    A novel polarization field engineering based strategy to simultaneously achieve high electrical conductivity and low thermal conductivity in thermoelectric materials is demonstrated. Polarization based electric fields are used to confine electrons into two-dimensional electron gases in GaN/AlN/Al{sub 0.2}Ga{sub 0.8}N superlattices, resulting in improved electron mobilities as high as 1176 cm{sup 2}/Vs and in-plane thermal conductivity as low as 8.9 W/mK. The resulting room temperature ZT values reach 0.08, a factor of four higher than InGaN and twelve higher than GaN, demonstrating the potential benefits of this polarization based engineering strategy for improving the ZT and efficiencies of thermoelectric materials.

  13. Estimation of excess energies and activity coefficients for the penternary Ni-Cr-Co-Al-Mo system and its subsystems

    NASA Astrophysics Data System (ADS)

    Dogan, A.; Arslan, H.; Dogan, T.

    2015-06-01

    Using different prediction methods, such as the General Solution Model of Kohler and Muggianu, the excess energy and activities of molybdenum for the sections of the phase diagram for the penternary Ni-Cr-Co-Al-Mo system with mole ratios xNi/ xMo = 1, xCr/ xMo = 1, xCo/ xMo = 1, and xAl/ xMo = r = 0.5 and 1, were thermodynamically investigated at a temperature of 2000 K, whereas the excess energy and activities of Bi for the section corresponding to the ternary Bi-Ga-Sb system with mole ratio xGa/ xSb = 1/9 were thermodynamically investigated at a temperature of 1073 K. In the case of r = 0.5 and 1 in the alloys Ni-Cr-Co-Al-Mo, a positive deviation in the activity coefficient was revealed, as molybdenum content increased. Moreover, in the calculations performed in Chou's GSM model, the obtained values for excess Gibbs energies are negative in the whole concentration range of bismuth at 1073 K and exhibit the minimum of about -2.2 kJ/mol at the mole ratio xGa/ xSb = 1/9 in the alloy Bi-Ga-Sb.

  14. InAlN/AlN/GaN heterostructures for high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Usov, S. O.; Sakharov, A. V.; Tsatsulnikov, A. F.; Lundin, V. W.; Zavarin, E. E.; Nikolaev, A. E.; Yagovkina, M. A.; Zemlyakov, V. E.; Egorkin, V. I.; Ustinov, V. M.

    2016-08-01

    The results of development of InAlN/AlN/GaN heterostructures, grown on sapphire substrates by metal-organic chemical vapour deposition, and high electron mobility transistors (HEMTs) based on them are presented. The dependencies of the InAlN/AlN/GaN heterostructure properties on epitaxial growth conditions were investigated. The optimal indium content and InAlN barrier layer thicknesses of the heterostructures for HEMT s were determined. The possibility to improve the characteristics of HEMTs by in-situ passivation by Si3N4 thin protective layer deposited in the same epitaxial process was demonstrated. The InAlN/AlN/GaN heterostructure grown on sapphire substrate with diameter of 100 mm were obtained with sufficiently uniform distribution of sheet resistance. The HEMTs with saturation current of 1600 mA/mm and transconductance of 230 mS/mm are demonstrated.

  15. Thermodynamics and surface properties of liquid Al-Ga and Al-Ge alloys

    NASA Astrophysics Data System (ADS)

    Anusionwu, B. C.; Adebayo, G. A.; Madu, C. A.

    2009-11-01

    The surface properties of Al-Ga and Al-Ge liquid alloys have been theoretically investigated at a temperature of 1100 K and 1220 K respectively. For the Al-Ga system, the quasi chemical model for regular alloy and a model for phase segregating alloy systems were applied, while for the Al-Ge system the quasi chemical model for regular and compound forming binary alloys were applied. In the case of Al-Ga, the models for the regular alloys and that for the phase segregating alloys produced the same value of order energy and same values of thermodynamic and surface properties, while for the Al-Ge system, the model for the regular alloy reproduced better the thermodynamic properties of the alloy. The model for the compound forming systems showed a qualitative trend with the measured values of the thermodynamic properties of the Al-Ge alloy and suggests the presence of a weak complex of the form Al2Ge3. The surface concentrations for the alloys show that Ga manifests some level of surface segregation in Al-Ga liquid alloy while the surface concentration of Ge in Al-Ge liquid alloy showed a near Roultian behavior below 0.8 atomic fraction of Ge.

  16. Hot Electron Energy Loss Rate in GaN/AlGaN Heterosructures

    SciTech Connect

    Katti, V. S.; Kubakaddi, S. S.

    2011-07-15

    Hot electron energy loss rate P due to acoustic phonons is studied theoretically at low electron temperatures T{sub e}(<20 K). Electron-acoustic phonon coupling is considered via screened acoustic deformation potential and piezoelectric field. Numerical calculations are made for wurtzite Al{sub 0.15}Ga{sub 0.85}N/AlN/GaN and Al{sub 0.83}In{sub 0.17}N/AlN/GaN heterojunctions and compared with the experimental results. The P vs T{sub e} behavior is agreeing reasonably well but differing in magnitude. The full form of P improves agreement rather than Bloch-Gruinesen power law formula which is often used in the literature.

  17. Trivalent cation-controlled phase space of new U(IV) fluorides, Na3MU6F30 (M = Al(3+), Ga(3+), Ti(3+), V(3+), Cr(3+), Fe(3+)): mild hydrothermal synthesis including an in situ reduction step, structures, optical, and magnetic properties.

    PubMed

    Yeon, Jeongho; Smith, Mark D; Morrison, Gregory; zur Loye, Hans-Conrad

    2015-02-16

    A series of new, complex U(IV) fluorides, namely, Na3MU6F30 (M = Al(3+), Ga(3+), Ti(3+), V(3+), Cr(3+), and Fe(3+)), containing trivalent transition- and main-group metal cations were synthesized via an in situ reduction step of U(VI) to U(IV). Single crystals of the series were grown in high yield under mild hydrothermal conditions and were characterized by single-crystal X-ray diffraction. The reported compounds crystallize in the trigonal space group P3̅c1 and exhibit complex crystal structures with a three-dimensional (3-D) framework composed of corner- and edge-shared UF9 polyhedra. The arrangement of U2F16 dimers forms two types of hexagonal channels, where MF6 polyhedra and sodium atoms are located. The most interesting structural feature is the presence of the 3-D framework that can accommodate various transition-metal ions in low oxidation states, indicating that the framework acts as an excellent host. Trivalent transition metal ions, even reduced Ti(3+) and V(3+), were stabilized by both the rigid framework and by our synthetic conditions. Utilizing ionic radii of transition metal ions, a phase boundary was investigated, suggesting that there exists a size limit for the M site in the crystal structure. The valence state of uranium was studied by U 4f X-ray photoelectron spectroscopy, which confirmed the presence of U(4+). Temperature-dependent magnetic susceptibility measurements yielded effective magnetic moments of 3.50 and 3.35 μB for Na3MU6F30 (M = Al(3+) and Ga(3+)), respectively. For the other compounds, combined effective magnetic moments of 8.93, 9.09, 9.18, and 10.39 μB were obtained for Ti, V, Cr, and Fe members, respectively. In all cases, large negative Weiss constants were observed, which are indicative of the existence of a spin gap in U(4+). Field-dependent magnetic property measurements at 2 K for Na3FeU6F30 demonstrated that U(4+) attains a nonmagnetic singlet ground state at low temperature. Optical and thermal properties were

  18. Highly efficient pseudomorphic InGaAs/GaAs/AlGaAs single quantum well lasers for monolithic integration

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Cody, J.; Forouhar, S.; Lang, R. J.

    1990-01-01

    Highly efficient ridge waveguide pseudomorphic single quantum well lasers, emitting at 980 nm, have been fabricated from an In(0.2)Ga(0.8)As/GaAs/AlGaAs graded-index separate confinement heterostructure grown by molecular beam epitaxy. The laterial index guiding provided by the ridge reduces the anomalously large lateral loss of optical power found in gain-guided structures, thereby reducing the internal loss by more than 50 percent. The low threshold current (7.6 mA) and high differential quantum efficiency (79 percent) obtained under continuous operation as well as the transparency of the GaAs substrate to the emitted radiation render these lasers attractive for Ga-As-based optoelectronic integration.

  19. Electric field driven plasmon dispersion in AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Tan, Ren-Bing; Qin, Hua; Zhang, Xiao-Yu; Xu, Wen

    2013-11-01

    We present a theoretical study on the electric field driven plasmon dispersion of the two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistors (HEMTs). By introducing a drifted Fermi—Dirac distribution, we calculate the transport properties of the 2DEG in the AlGaN/GaN interface by employing the balance-equation approach based on the Boltzmann equation. Then, the nonequilibrium Fermi—Dirac function is obtained by applying the calculated electron drift velocity and electron temperature. Under random phase approximation (RPA), the electric field driven plasmon dispersion is investigated. The calculated results indicate that the plasmon frequency is dominated by both the electric field E and the angle between wavevector q and electric field E. Importantly, the plasmon frequency could be tuned by the applied source—drain bias voltage besides the gate voltage (change of the electron density).

  20. AlGaN/GaN MOSHFET power switching transistor with embedded fast recovery diode

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Yeon; Park, Bong-Ryeol; Kim, Hyungtak; Kim, Jaehan; Cha, Ho-Young

    2014-11-01

    In this study, a novel AlGaN/GaN power-switching device is proposed for use in high-efficiency DC-DC converters. The proposed structure is composed of a normally-off AlGaN/GaN metal-oxide-semiconductor heterojunction field-effect transistor (MOSHFET) and an embedded freewheeling Schottky barrier diode (SBD). The effects of the embedded freewheeling SBD on conversion efficiency were investigated based on circuit simulation of DCDC synchronous buck converters. The SBD embedment not only reduces the chip size and cost, but also improves the power conversion efficiency at high operation frequencies, due to the reduced off-state power loss. [Figure not available: see fulltext.

  1. Composition profiling of GaAs/AlGaAs quantum dots grown by droplet epitaxy

    SciTech Connect

    Bocquel, J.; Koenraad, P. M.; Giddings, A. D.; Prosa, T. J.; Larson, D. J.; Mano, T.

    2014-10-13

    Droplet epitaxy (DE) is a growth method which can create III-V quantum dots (QDs) whose optoelectronic properties can be accurately controlled through the crystallisation conditions. In this work, GaAs/AlGaAs DE-QDs have been analyzed with the complimentary techniques of cross-sectional scanning tunneling microscopy and atom probe tomography. Structural details and a quantitative chemical analysis of QDs of different sizes are obtained. Most QDs were found to be pure GaAs, while a small proportion exhibited high intermixing caused by a local etching process. Large QDs with a high aspect ratio were observed to have an Al-rich crown above the GaAs QD. This structure is attributed to differences in mobility of the cations during the capping phase of the DE growth.

  2. Fabrication and characterization of an undoped GaAs/AlGaAs quantum dot device

    SciTech Connect

    Li, Hai-Ou; Cao, Gang; Xiao, Ming You, Jie; Wei, Da; Tu, Tao; Guo, Guang-Can; Guo, Guo-Ping; Jiang, Hong-Wen

    2014-11-07

    We demonstrate the development of a double quantum dot with an integrated charge sensor fabricated in undoped GaAs/AlGaAs heterostructures using a double top-gated design. Based on the evaluation of the integrated charge sensor, the double quantum dot can be tuned to a few-electron region. Additionally, the inter-dot coupling of the double quantum dot can be tuned to a large extent according to the voltage on the middle gate. The quantum dot is shown to be tunable from a single dot to a well-isolated double dot. To assess the stability of such design, the potential fluctuation induced by 1/f noise was measured. Based on the findings herein, the quantum dot design developed in the undoped GaAs/AlGaAs semiconductor shows potential for the future exploitation of nano-devices.

  3. A highly selective, chlorofluorocarbon-free GaAs on AlGaAs etch

    SciTech Connect

    Smith, L.E. . Solid State Technology Center)

    1993-07-01

    A highly selective reactive ion etching process using SiCl[sub 4], CF[sub 4], O[sub 2], and He is reported. The selectivity of the etch, which is adjustable, ranges from 308:1 to 428:1 for GaAs to Al[sub 0.11]Ga[sub 0.89]As. This variability in selectivity is achieved by adjusting the helium flow rate. One very attractive feature of this etch is that it uses no chlorofluorocarbons and therefore complies with future bans on these substances imposed at both federal and corporate levels. The etch is demonstrated on a GaAs field effect transistor structure with an underlying Al[sub 0.11]Ga[sub 0.89]As stop-etch layer. The etch can be used for both anisotropic and isotropic applications.

  4. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    DOE PAGES

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T.; Martinez, Julio A.

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN coremore » of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.« less

  5. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    SciTech Connect

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T.; Martinez, Julio A.

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  6. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.

    PubMed

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T; Martinez, Julio A

    2016-01-01

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  7. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.

    PubMed

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T; Martinez, Julio A

    2016-01-01

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power. PMID:26606258

  8. Photoelectric properties of an array of axial GaAs/AlGaAs nanowires

    NASA Astrophysics Data System (ADS)

    Grigor'ev, R. V.; Shtrom, I. V.; Grigor'eva, N. R.; Novikov, B. V.; Soshnikov, I. P.; Samsonenko, Yu. B.; Khrebtov, A. I.; Buravleuv, A. D.; Cirlin, G. E.

    2015-05-01

    The results of studies of photoelectric properties of an array of axial n-type GaAs/Al x Ga1 - x As ( x ≈ 0.3) nanowires grown using molecular beam epitaxy on a p-type silicon substrate are presented. The ability to separate charges efficiently in a wide spectral range (from 450 to 1100 nm) is demonstrated. Such properties are important for designing active elements of photodetectors and solar cells.

  9. Fabrication of dry etched and subsequently passivated laser facets in GaAs/AlGaAs

    SciTech Connect

    Deichsel, Eckard; Franz, Gerhard

    2004-09-01

    The aging behavior of edge emitting laser diodes based on GaAs/AlGaAs is investigated by comparing devices with facets that are alternatively cleaved or dry etched and consecutively treated with H{sub 2}S. In this work we demonstrate that an in situ exposure to H{sub 2}S gas is not sufficient to prevent ageing but an additional plasma treatment is rather required to obtain comparable ageing results to lasers with cleaved facets.

  10. Nanoscale conductive pattern of the homoepitaxial AlGaN/GaN transistor.

    PubMed

    Pérez-Tomás, A; Catalàn, G; Fontserè, A; Iglesias, V; Chen, H; Gammon, P M; Jennings, M R; Thomas, M; Fisher, C A; Sharma, Y K; Placidi, M; Chmielowska, M; Chenot, S; Porti, M; Nafría, M; Cordier, Y

    2015-03-20

    The gallium nitride (GaN)-based buffer/barrier mode of growth and morphology, the transistor electrical response (25-310 °C) and the nanoscale pattern of a homoepitaxial AlGaN/GaN high electron mobility transistor (HEMT) have been investigated at the micro and nanoscale. The low channel sheet resistance and the enhanced heat dissipation allow a highly conductive HEMT transistor (Ids > 1 A mm(-1)) to be defined (0.5 A mm(-1) at 300 °C). The vertical breakdown voltage has been determined to be ∼850 V with the vertical drain-bulk (or gate-bulk) current following the hopping mechanism, with an activation energy of 350 meV. The conductive atomic force microscopy nanoscale current pattern does not unequivocally follow the molecular beam epitaxy AlGaN/GaN morphology but it suggests that the FS-GaN substrate presents a series of preferential conductive spots (conductive patches). Both the estimated patches density and the apparent random distribution appear to correlate with the edge-pit dislocations observed via cathodoluminescence. The sub-surface edge-pit dislocations originating in the FS-GaN substrate result in barrier height inhomogeneity within the HEMT Schottky gate producing a subthreshold current.

  11. Performance improvement of GaN-based near-UV LEDs with InGaN/AlGaN superlattices strain relief layer and AlGaN barrier

    NASA Astrophysics Data System (ADS)

    Jia, Chuanyu; Yu, Tongjun; Feng, Xiaohui; Wang, Kun; Zhang, Guoyi

    2016-09-01

    The carrier confinement effect and piezoelectric field-induced quantum-confined stark effect of different GaN-based near-UV LED samples from 395 nm to 410 nm emission peak wavelength were investigated theoretically and experimentally. It is found that near-UV LEDs with InGaN/AlGaN multiple quantum wells (MQWs) active region have higher output power than those with InGaN/GaN MQWs for better carrier confinement effect. However, as emission peak wavelength is longer than 406 nm, the output power of the near-UV LEDs with AlGaN barrier is lower than that of the LEDs with GaN barrier due to more serious spatial separation of electrons and holes induced by the increase of piezoelectric field. The N-doped InGaN/AlGaN superlattices (SLs) were adopted as a strain relief layer (SRL) between n-GaN and MQWs in order to suppress the polarization field. It is demonstrated the output power of near-UV LEDs is increased obviously by using SLs SRL and AlGaN barrier for the discussed emission wavelength range. Besides, the forward voltage of near-UV LEDs with InGaN/AlGaN SLs SRL is lower than that of near-UV LEDs without SRL.

  12. Few-hole double quantum dot in an undoped GaAs/AlGaAs heterostructure

    SciTech Connect

    Tracy, L. A.; Hargett, T. W.; Reno, J. L.

    2014-03-24

    We demonstrate a hole double quantum dot in an undoped GaAs/AlGaAs heterostructure. The interdot coupling can be tuned over a wide range, from formation of a large single dot to two well-isolated quantum dots. Using charge sensing, we show the ability to completely empty the dot of holes and control the charge occupation in the few-hole regime. The device should allow for control of individual hole spins in single and double quantum dots in GaAs.

  13. Two-Color Photoexcitation in a GaNAs/AlGaAs Quantum Well Solar Cell

    NASA Astrophysics Data System (ADS)

    Elborg, Martin; Jo, Masafumi; Ding, Yi; Noda, Takeshi; Mano, Takaaki; Sakoda, Kazuaki

    2012-06-01

    We demonstrate an efficient two-color photoexcitation process in a GaNAs/AlGaAs multiple quantum well (MQW) solar cell. The introduction of N into the GaAs MQW induces a marked reduction in bandgap energy, forming a large conduction band offset, and the formation of localized states. Owning to this deep confinement, the thermal escape of photogenerated carriers from the QWs is greatly suppressed even at room temperature, resulting in a reduction in photocurrent. An additional photocurrent is generated by a two-color absorption process of sub-bandgap photons.

  14. AlGaAs/GaAs nano-hetero-epitaxy on a patterned GaAs substrate by MBE

    SciTech Connect

    Nishiwaki, T.; Yamaguchi, M.; Sawaki, N.

    2007-04-10

    An AlGaAs/GaAs resonant tunneling diode (RTD) with submicron size was fabricated on {l_brace}111{r_brace} oblique facets of GaAs with selective MBE. The method is based on the fact that a certain facet structure is formed on a patterned substrate in selective MBE because the growth rate depends strongly on the facet structure. The fabrication of a double-barrier structure was attempted on a {l_brace}111{r_brace}B facet. The current-voltage characteristics of the sample showed negative differential resistance at 77K demonstrating that we have achieved an RTD on a submicron facet.

  15. Hydrogen permeation characteristics of some Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Van Deventer, E. H.; Maroni, V. A.

    1983-01-01

    Hydrogen permeation data are reported for two Fe-Cr-Al alloys, Type-405 SS (Cr 14-A1 0.2) and a member of the Fecralloy family of alloys (Cr 16-A1 5). The hydrogen permeability of each alloy (in a partially oxidized condition) was measured over a period of several weeks at randomly selected temperatures (between 150 and 850°C) and upstream H 2 pressures (between 2 and 1.5 × 10 4 Pa). The permeabilities showed considerable scatter with both time and temperature and were 10 2 to 10 3 times lower than those of pure iron, even in strongly reducing environments. The exponent, n, for the relationship between upstream H 2 pressure, P, and permeability, φ, ( φ ~ Pn) was closer to 0.7 than to the expected 0.5, indicating a process limited by surface effects (e.g., surface oxide films) as opposed to bulk material effects. Comparison of these results with prior permeation measurements on other Fe-Cr-Al alloys, on Fe-Cr alloys, and on pure iron shows that the presence of a few weight percent aluminum offers the best prospects for achieving low tritium permeabilities with martensitic and ferritic steels used in fusion-reactor first wall and blanket applications.

  16. Study of the structural and magnetic properties and gallium exchange phenomenon in a Mn-Ga alloy doped by Cr during the milling and annealing process

    NASA Astrophysics Data System (ADS)

    Fariba, Nazari; Mohsen, Hakimi; Hossein, Mokhtari; Mohsen, Khajeh Aminian

    2015-05-01

    The effect of milling and annealing process on Cr doped Mn3Ga nanocrystallite has been investigated. Phase determination analysis shows that Ga turning to get out of Mn-Ga structure and tend to make bonding to Cr and form Cr3Ga4 product during milling process. Annealing of the new phases lead to decomposition of Cr3Ga4 and formation of a new Mn-Ga phase in reverse direction, in the other words diffusion of Ga atoms occurs from Cr3Ga4 to Mn phase and α-Mn and Cr3Ga4 change to Mn3Ga2 and Cr phases. The variation of coersivity, magnetization and magnetic state of different samples was explained according to the crystallite size of the present phases and grain boundary effects. It was also confirmed that formation of Mn-Cr clusters plays an important role in increase of saturation magnetization.

  17. DC Characteristics of AlGaN/GaN HEMTs Using a Dual-Gate Structure.

    PubMed

    Hong, Sejun; Rana, Abu ul Hassan Sarwar; Heo, Jun-Woo; Kim, Hyun-Seok

    2015-10-01

    Multiple techniques such as fluoride-based plasma treatment, a p-GaN or p-AlGaN gate contact, and a recessed gate structure have been employed to modulate the threshold voltage of AlGaN/GaN-based high-electron-mobility transistors (HEMTs). In this study, we present dual-gate AlGaN/GaN HEMTs grown on a Si substrate, which effectively shift the threshold voltage in the positive direction. Experimental data show that the threshold voltage is shifted from -4.2 V in a conventional single-gate HEMT to -2.8 V in dual-gate HEMTs. It is evident that a second gate helps improve the threshold voltage by reducing the two-dimensional electron gas density in the channel. Furthermore, the maximum drain current, maximum transconductance, and breakdown voltage values of a single-gate device are not significantly different from those of a dual-gate device. For the fabricated single- and dual-gate devices, the values of the maximum drain current are 430 mA/mm and 428 mA/mm, respectively, whereas the values of the maximum transconductance are 83 mS/mm and 75 mS/mm, respectively.

  18. Assembly of phosphonic acids on GaN and AlGaN

    NASA Astrophysics Data System (ADS)

    Simpkins, B. S.; Hong, S.; Stine, R.; Mäkinen, A. J.; Theodore, N. D.; Mastro, M. A.; Eddy, C. R., Jr.; Pehrsson, P. E.

    2010-01-01

    Self-assembled monolayers of octadecylphosphonic acid and 16-phosphonohexadecanoic acid (PHDA) were formed on the semiconductor substrates gallium nitride (GaN) and aluminium gallium nitride (AlGaN). The presence of the molecular layers was verified through x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Structural information was acquired with infrared spectroscopy which verified the bonding orientation of the carboxyl-containing PHDA. The impact of the molecular layers on the channel conductivity and the surface electronic structure of an AlGaN/GaN heterostructure was measured. Our results indicate that pinning of the surface Fermi level prohibits modification of the channel conductivity by the layer. However, a surface dipole of ~0.8 eV is present and associated with both phosphonic acid layers. These results are of direct relevance to field-effect-based biochemical sensors and metal-semiconductor contact formation for this system and provide a fundamental basis for further applications of GaN and AlGaN technology in the fields of biosensing and microelectronics.

  19. Luminescence Properties of GaN:Tb, GaN/AlGaN:Eu Superlattice, and AlN:Tb and Eu.

    NASA Astrophysics Data System (ADS)

    Lozykowski, H. J.; Jadwisienczak, W. M.; Brown, I. G.

    2001-03-01

    We report on recent progress in the investigation of cathodoluminescence (CL) of GaN doped with Tb, the visible photoluminescence (PL) and CL of GaN and Al_0.14Ga_0.86N /GaN superlattice doped with Eu, and the CL from AlN doped with Eu and Tb. The CL of GaN:Tb shows sharp emission lines corresponding to Tb^3+ ions transitions resolved in the spectral range from 350 nm to 750 nm, and observed over the temperature range of 7 - 330 K. The luminescence exhibits transitions which originate in the ^5D3 and ^5D4 levels and terminate in the ^7F manifolds. The depth resolved CL spectra analysis show a luminescence surface dead layer thickness of ~20 nm. The decay times for ^5D_3-->^7F5 (423.4nm) and ^5D_4-->^7F5 (551.6nm) transitions at 7 K are ~0.7 and ~1.8 ms, with little change with temperature. The visible PL and CL of GaN and Al_0.14Ga_0.86N/GaN superlattice doped with Eu ions, show sharp characteristic emission lines corresponding to Eu^3+ intra-4f^6-shell transitions. The luminescence shows dominant ^5D_0-->^7F_1,2,3 and weaker ^5D_0-->^7F_4,5,6 and ^5D_1-->^7F1 transitions. The intensity of Eu emission from Al_0.14Ga_0.86N/GaN superlattice annealed in N2 is ~58% stronger than from Eu in the GaN epilayer. Strong CL was observed from AlN thin single crystal films doped with Eu^3+ and Tb^3+ ions. The space group symmetry of the wurtzite AlN is C-P6_3mc and the Al cation occupies the site of point group symmetry C_3v. We assume that those implanted RE ions in AlN occupy relaxed substitutional Al-sites with hexagonal C_3v crystal symmetry. Emission lines corresponding to Eu^3+ and Tb^3+ intra-4f^n-shell transitions are resolved in the spectral range from 300 to 900 nm. The CL kinetics for several transitions of Eu^3+ (^5D_0), Tb^3+ (^5D_3,4) were analyzed. (Electronic mail: lozykows/@bobcat.ent.ohiou.edu)

  20. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  1. Optical and electron paramagnetic resonance studies of Cr doped Ga{sub 2}O{sub 3} nanoparticles

    SciTech Connect

    Popa, A. Toloman, D.; Stan, M.; Silipas, T. D.; Biris, A. R.

    2015-12-23

    In the present work we report the experimental results obtained on Ga{sub 2}O{sub 3} nanoparticles doped with Cr ions. X-ray diffraction analysis confirms the substitution of Ga ions with Cr ions. A secondary phase of Cr{sub 2}O{sub 5} oxides was evidence at high doping Cr concentration by Raman spectroscopy. Different valence state of Cr ions was highlighted by UV-VIS spectroscopy. EPR spectroscopy data show the presence of different environments for Cr ions, depending on the Cr addition.

  2. Arsenic implantation-induced intermixing effects on AlGaAs/GaAs single QW structures

    NASA Astrophysics Data System (ADS)

    Liu, X. Q.; Li, Z. F.; Chen, X. S.; Lu, W.; Shen, S. C.; Tan, H. H.; Yuan, S.; Jagadish, C.

    2000-06-01

    The effects of intermixing Al 0.54Ga 0.46As/GaAs/Al 0.54Ga 0.46As quantum well (QW) enhanced by arsenic ion implantation and subsequent annealing have been investigated by photoluminescence and photo-modulated reflectance measurements. Comparing with as-grown QW, obvious blueshifts of all the transitions were observed. The H 22 transition was found to be much less sensitive to the implantation doses than that of H 11. The experimental results are different from the theoretical results calculated by using the model of error function profile of Al composition. The results are fruitful for understanding the potential profile after intermixing enhanced by arsenic ion implantation, and also for the application of implantation enhanced intermixing effects on devices, such as QW lasers and photodetectors, opto-nonlinear devices, etc..

  3. The influences of AlN/GaN superlattices buffer on the characteristics of AlGaN/GaN-on-Si (1 1 1) template

    NASA Astrophysics Data System (ADS)

    Ni, Yiqiang; He, Zhiyuan; Zhou, Deqiu; Yao, Yao; Yang, Fan; Zhou, Guilin; Shen, Zhen; Zhong, Jian; Zhen, Yue; Zhang, Baijun; Liu, Yang

    2015-07-01

    The influence of AlN/GaN superlattices (SL) buffer on the characteristics of AlGaN/GaN-on-Si (1 1 1) template was studied in detail. There existed an optimized Relative AlN Thickness (RAT) in the superlattices buffer which can not only further filtering the edge- and screw-type dislocations to the upper epilayer and lead to a good crystal quality with narrowest (0 0 0 2) and (1 0 -1 2) full width of half maximum (FWHMs), 439″ and 843″, but also improve the surface roughness to enhance the Two dimensional electron gas (2DEG) mobility and superior electrical properties were achieved. Moreover, an optimized RAT in SL can induce a proper compressive stress to the subsequently grown GaN epilayer and protect it from crack during the cooling step, which can also lead to a better wafer bending.

  4. GaAs/AlGaAs quantum wells with indirect-gap AlGaAs barriers for solar cell applications

    SciTech Connect

    Noda, T. Otto, L. M.; Elborg, M.; Jo, M.; Mano, T.; Kawazu, T.; Han, L.; Sakaki, H.

    2014-03-24

    We have fabricated GaAs/AlGaAs quantum well (QW) solar cells in which 3 nm-thick QWs and indirect-gap Al{sub 0.78}Ga{sub 0.22}As barriers are embedded, and we studied extraction processes of photogenerated carriers in this QW system. The photocurrent under 700 nm light illumination at voltages close to the open-circuit voltage shows only a small reduction, indicating that the carrier recombination inside QWs is largely suppressed. We attribute this result to an efficient extraction of electrons from the QWs through the X-valley of AlGaAs. The insertion of QWs is shown to be effective in extending the absorption wavelengths and in enhancing the photocurrent. The use of indirect-gap materials as barriers is found to enhance carrier extraction processes, and result in an improved performance of QW solar cells.

  5. Enhanced sheet carrier densities in polarization controlled AlInN/AlN/GaN/InGaN field-effect transistor on Si (111)

    SciTech Connect

    Hennig, J. Dadgar, A.; Witte, H.; Bläsing, J.; Lesnik, A.; Strittmatter, A.; Krost, A.

    2015-07-15

    We report on GaN based field-effect transistor (FET) structures exhibiting sheet carrier densities of n = 2.9 10{sup 13} cm{sup −2} for high-power transistor applications. By grading the indium-content of InGaN layers grown prior to a conventional GaN/AlN/AlInN FET structure control of the channel width at the GaN/AlN interface is obtained. The composition of the InGaN layer was graded from nominally x{sub In} = 30 % to pure GaN just below the AlN/AlInN interface. Simulations reveal the impact of the additional InGaN layer on the potential well width which controls the sheet carrier density within the channel region of the devices. Benchmarking the In{sub x}Ga{sub 1−x}N/GaN/AlN/Al{sub 0.87}In{sub 0.13}N based FETs against GaN/AlN/AlInN FET reference structures we found increased maximum current densities of I{sub SD} = 1300 mA/mm (560 mA/mm). In addition, the InGaN layer helps to achieve broader transconductance profiles as well as reduced leakage currents.

  6. Bulk modulus and specific heat of B-site doped (La{sub 0.3}Pr{sub 0.7}){sub 0.65}Ca{sub 0.35}Mn{sub 1−x}B{sub x}O{sub 3} (B=Fe, Cr, Ru, Al, Ga)

    SciTech Connect

    Srivastava, Archana; Thakur, Rasna; Gaur, N. K.

    2014-04-24

    Specific heat (C{sub p}) thermal expansion (α) and Bulk modulus (B{sub T}) of lightly doped Rare Earth manganites (La{sub 0.3}Pr{sub 0.7}){sub 0.65}Ca{sub 0.35}Mn{sub 1−x}B{sub x}O{sub 3} (B{sup 3+} = Fe{sup 3+},Cr{sup 3+},Ga{sup 3+},Al{sup 3+},Ru4+); (0.3

  7. Bulk moduli of Cr[subscript 2]GaC and Ti[subscript 2]GaN up to 50 GPa

    SciTech Connect

    Manoun, B.; Kulkarni, S.; Pathak, N.; Saxena, S.K.; Amini, S.; Barsoum, M.W.

    2010-10-22

    Using a synchrotron radiation source and a diamond anvil cell, we measured the pressure dependencies of the lattice parameters of two Ga-containing polycrystalline MAX phases: Ti{sub 2}GaN and Cr{sub 2}GaC. The bulk moduli were calculated to be 189 {+-} 4 and 188 {+-} 5 GPa, respectively. Up to a pressure of about 50 GPa, no phase transformations were observed. Ti{sub 2}GaN compresses more easily along the c-axis, while Cr{sub 2}GaC compresses equally in both directions.

  8. Electron and proton degradation in /AlGa/As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R.; Knechtli, R. C.; Kamath, G. S.; Goldhammer, L.; Anspaugh, B.

    1978-01-01

    Results on radiation damage in (AlGa)As-GaAs solar cells by 1 MeV electron fluences up to 10 to the 16th electrons/sq cm and by 15, 20, 30 and 40 MeV proton fluences up to 5 times 10 to the 11th protons/sq cm are presented. The damage is compared with data on state-of-the-art silicon cells which were irradiated along with the gallium arsenide cells. The theoretical expectation that the junction depth has to be kept relatively shallow, to minimize radiation damage has been verified experimentally. The damage to the GaAs cells as a function of irradiation, is correlated with the change in their spectral response and dark I-V characteristics. The effect of thermal annealing on the (AlGa)As-GaAs solar cells was also investigated. This data is used to predict further avenues of optimization of the GaAs cells.

  9. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    SciTech Connect

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; Zhu, Weidi; Kim, Byung-Jae; Le, Lingcong; Ren, Fan; Lind, Aaron G.; Dahl, James; Jones, Kevin S.; Pearton, Stephen J.; Kravchenko, Ivan I.; Zhang, Ming-Lan

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and after BOE exposure.

  10. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    DOE PAGES

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; Zhu, Weidi; Kim, Byung-Jae; Le, Lingcong; Ren, Fan; Lind, Aaron G.; Dahl, James; Jones, Kevin S.; et al

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and aftermore » BOE exposure.« less

  11. AlGaN/GaN field effect transistors for power electronics—Effect of finite GaN layer thickness on thermal characteristics

    SciTech Connect

    Hodges, C. Anaya Calvo, J.; Kuball, M.; Stoffels, S.; Marcon, D.

    2013-11-11

    AlGaN/GaN heterostructure field effect transistors with a 150 nm thick GaN channel within stacked Al{sub x}Ga{sub 1−x}N layers were investigated using Raman thermography. By fitting a thermal simulation to the measured temperatures, the thermal conductivity of the GaN channel was determined to be 60 W m{sup −1} K{sup −1}, over 50% less than typical GaN epilayers, causing an increased peak channel temperature. This agrees with a nanoscale model. A low thermal conductivity AlGaN buffer means the GaN spreads heat; its properties are important for device thermal characteristics. When designing power devices with thin GaN layers, as well as electrical considerations, the reduced channel thermal conductivity must be considered.

  12. Spin injection and filtering in halfmetal/semiconductor (CrAs/GaAs) heterostructures

    NASA Astrophysics Data System (ADS)

    Stickler, B. A.; Ertler, C.; Chioncel, L.; Arrigoni, E.; Pötz, W.

    2013-12-01

    Theoretical investigations of spin-dependent transport in GaAS/CrAs/GaAs halfmetal-semiconductor heterostructures indicate that this system is a candidate for an efficient room temperature spin injector and filter. The spin dependent electronic structure of zincblende CrAs and the band offset between GaAs and CrAs are determined by ab-initio calculations within the method of linear muffin tin orbitals (LMTO). This band structure is mapped onto an effective sp3d5s* nearest neighbor tight-binding (TB) Hamiltonian and the steady-state transport characteristic is calculated within a non-equilibrium Green's function approach. Even at room temperature we find current spin polarizations up to 97%.

  13. Ultrafast Photodetection in the Quantum Wells of Single AlGaAs/GaAs-Based Nanowires

    NASA Astrophysics Data System (ADS)

    Erhard, N.; Zenger, S.; Morkötter, S.; Rudolph, D.; Weiss, M.; Krenner, H. J.; Karl, H.; Abstreiter, G.; Finley, J. J.; Koblmüller, G.; Holleitner, A. W.

    2015-10-01

    We investigate the ultrafast optoelectronic properties of single Al0.3Ga0.7As/GaAs-core-shell-nanowires. The nanowires contain GaAs-based quantum wells. For a resonant excitation of the quantum wells, we find a picosecond photocurrent which is consistent with an ultrafast lateral expansion of the photogenerated charge carriers. This Dember-effect does not occur for an excitation of the GaAs-based core of the nanowires. Instead, the core exhibits an ultrafast displacement current and a photo-thermoelectric current at the metal Schottky contacts. Our results uncover the optoelectronic dynamics in semiconductor core-shell nanowires comprising quantum wells, and they demonstrate the possibility to use the low-dimensional quantum well states therein for ultrafast photoswitches and photodetectors.

  14. GaAs/AlGaAs heterostructure point-contact concentrator cells

    NASA Technical Reports Server (NTRS)

    Gale, R. P.; Zavracky, P. M.; Mcclelland, R. W.; Fan, John C. C.

    1987-01-01

    Point-contact cells fabricated in silicon have recently achieved very high efficiencies. Applying this structure to GaAs is difficult as it requires both surface passivation of the GaAs and a film of GaAs with thickness less than 10 microns. The authors propose to overcome these difficulties by (1) using AlGaAs layers grown by OMCVD to act as front- and back-surface fields in order to confine the photogenerated minority carriers away from the surfaces, and (2) using the CLEFT technology to produce thin, separated films of this structure. It has been found that much of the necessary technologies have been developed and that the primary problem remaining to be solved is localized junction formation.

  15. Room-Temperature Transport of Indirect Excitons in (Al ,Ga )N /GaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Fedichkin, F.; Guillet, T.; Valvin, P.; Jouault, B.; Brimont, C.; Bretagnon, T.; Lahourcade, L.; Grandjean, N.; Lefebvre, P.; Vladimirova, M.

    2016-07-01

    We report on the exciton propagation in polar (Al ,Ga )N /GaN quantum wells over several micrometers and up to room temperature. The key ingredient to achieve this result is the crystalline quality of GaN quantum wells grown on GaN substrate that limits nonradiative recombination. From the comparison of the spatial and temporal dynamics of photoluminescence, we conclude that the propagation of excitons under continuous-wave excitation is assisted by efficient screening of the in-plane disorder. Modeling within drift-diffusion formalism corroborates this conclusion and suggests that exciton propagation is still limited by the exciton scattering on defects rather than by exciton-exciton scattering so that improving interface quality can boost exciton transport further. Our results pave the way towards room-temperature excitonic devices based on gate-controlled exciton transport in wide-band-gap polar heterostructures.

  16. High-field quasi-ballistic transport in AlGaN/GaN heterostructures

    SciTech Connect

    Danilchenko, B. A.; Tripachko, N. A.; Belyaev, A. E.; Vitusevich, S. A. Hardtdegen, H.; Lüth, H.

    2014-02-17

    Mechanisms of electron transport formation in 2D conducting channels of AlGaN/GaN heterostructures in extremely high electric fields at 4.2 K have been studied. Devices with a narrow constriction for the current flow demonstrate high-speed electron transport with an electron velocity of 6.8 × 10{sup 7} cm/s. Such a velocity is more than two times higher than values reported for conventional semiconductors and about 15% smaller than the limit value predicted for GaN. Superior velocity is attained in the channel with considerable carrier reduction. The effect is related to a carrier runaway phenomenon. The results are in good agreement with theoretical predictions for GaN-based materials.

  17. The structure of rapidly solidified Al- Fe- Cr alloys

    NASA Astrophysics Data System (ADS)

    Yearim, R.; Shechtman, D.

    1982-11-01

    Four aluminum alloys, designed for use at elevated temperatures, were studied. The alloys were supersaturated with iron and chromium, and one of them contained small amounts of Ti, V, and Zr. The starting materials were alloy powders made by the RSR (Rapid Solidification Rate) centrifugal atomization process. Extrusion bars were made from the four powders. The as-extruded microstructure and the microstructure of the alloys after annealing at 482 °C were investigated by optical and transmission electron microscopy and by X-ray diffraction. The microstructure consists of equiaxed grains of aluminum matrix and two types of precipitates, namely, Al3(Fe ,Cr) and a metastable phase, Al6(Fe,Cr). The precipitates were different in their shape, size, distribution, and location within the grains.

  18. Phase Separation kinetics in an Fe-Cr-Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Chao, J.

    2012-01-01

    The {alpha}-{alpha}{prime} phase separation kinetics in a commercial Fe-20 wt.% Cr-6 wt.% Al oxide dispersion-strengthened PM 2000{trademark} steel have been characterized with the complementary techniques atom probe tomography and thermoelectric power measurements during isothermal aging at 673, 708, and 748 K for times up to 3600 h. A progressive decrease in the Al content of the Cr-rich {alpha}{prime} phase was observed at 708 and 748 K with increasing time, but no partitioning was observed at 673 K. The variation in the volume fraction of the {alpha}{prime} phase well inside the coarsening regime, along with the Avrami exponent 1.2 and activation energy 264 kJ mol{sup -1}, obtained after fitting the experimental results to an Austin-Rickett type equation, indicates that phase separation in PM 2000{trademark} is a transient coarsening process with overlapping nucleation, growth, and coarsening stages.

  19. In-Situ Monitoring of GaSb, GaInAsSb, and AlGaAsSb*

    SciTech Connect

    Breiland, W.G.; Jensen, K.F.; Vineis, C.J.; Wang, C.A.

    1999-04-26

    The suitability of the wavelength range provided by silicon photodiode detector arrays for monitoring the spectral reflectance during epitaxial growth of GaSb, AlGaAsSb, and GaInAsSb, which have cutoff wavelengths at 25 degree C of 1.7, 1.2, and 2.3 um, respectively, is demonstrated. These alloys were grown lattice matched to GaSb in a vertical rotating-disk reactor, which was modified to accommodate near normal reflectance without affecting epilayer uniformity, By using a virtual interface model, the growth rate and complex refractive index at the growth temperature are extracted for these alloys over the 600 to 1000 nm spectral range. Excellent agreement is obtained between the extracted growth rate and that determined by ex-situ measurement.

  20. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  1. Nonpolar AlGaN/GaN HFETs with a normally off operation

    NASA Astrophysics Data System (ADS)

    Ishida, M.; Kuroda, M.; Ueda, T.; Tanaka, T.

    2012-02-01

    Nonpolar AlGaN/GaN heterojunction field-effect transistors (HFETs) with a normally off operation have been demonstrated. The nonpolar (1-120) a-plane's epitaxial layers are grown on (1-102) r-plane sapphire substrates by metal organic chemical vapour deposition. We have found that a thicker AlN buffer layer achieves a GaN layer with a narrower full-width at half-maximum of the x-ray rocking curve and higher electron mobility. We have fabricated AlGaN/GaN HFETs with different gate directions. It is found that the drain current strongly depends on the gate directions, and higher drain current flows to the (0001) direction that is parallel to the hair-lined morphology. To realize a complete normally off operation, we have fabricated a-plane metal-insulator-semiconductor HFETs (MIS-HFETs) with a 2 nm-thick SiN as an insulator. The fabricated MIS-HFET exhibits a threshold voltage of +1.3 V with a high drain current of 112 mA mm-1. The presented MIS-HFETs will be desirable in next-generation power switching applications.

  2. Performance characteristics of InGaAs/GaAs and GaAs/InGaAlAs coherently strained superlattice photodiodes

    NASA Technical Reports Server (NTRS)

    Das, Utpal; Zebda, Yousef; Bhattacharya, Pallab; Chin, Albert

    1987-01-01

    The properties of In(0.24)Ga(0.76)As/GaAs and GaAs/In(0.05)Ga(0.58)Al(0.37)As superlattice photodiodes grown by molecular beam epitaxy have been investigated. From the temporal response characteristics, deconvolved rise times about 60-100 ps are obtained. The measured responsivities of the photodiodes with dark currents of 5-10 nA at 10 V are about 0.4 A/W, which correspond to peak external quantum efficiencies of about 60 percent. These results indicate that very high performance photodiodes can be realized with strained layers.

  3. High-quality eutectic-metal-bonded AlGaAs-GaAs thin films on Si substrates

    NASA Astrophysics Data System (ADS)

    Venkatasubramanian, R.; Timmons, M. L.; Humphreys, T. P.; Keyes, B. M.; Ahrenkiel, R. K.

    1992-02-01

    Device quality GaAs-AlGaAs thin films have been obtained on Si substrates, using a novel approach called eutectic-metal-bonding (EMB). This involves the lattice-matched growth of GaAs-AlGaAs thin films on Ge substrates, followed by bonding onto a Si wafer. The Ge substrates are selectively removed by a CF4/O2 plasma etch, leaving high-quality GaAs-AlGaAs thin films on Si substrates. A minority-carrier lifetime of 103 ns has been obtained in a EMB GaAs-AlGaAs double heterostructure on Si, which is nearly forty times higher than the state-of-the-art lifetime for heteroepitaxial GaAs on Si, and represents the largest reported minority-carrier lifetime for a freestanding GaAs thin film. In addition, a negligible residual elastic strain in the EMB GaAs-AlGaAs films has been determined from Raman spectroscopy measurements.

  4. Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Tapajna, M.; Hilt, O.; Bahat-Treidel, E.; Würfl, J.; Kuzmík, J.

    2015-11-01

    Gate diode conduction mechanisms were analyzed in normally-off p-GaN/AlGaN/GaN high-electron mobility transistors grown on Si wafers before and after forward bias stresses. Electrical characterization of the gate diodes indicates forward current to be limited by channel electrons injected through the AlGaN/p-GaN triangular barrier promoted by traps. On the other hand, reverse current was found to be consistent with carrier generation-recombination processes in the AlGaN layer. Soft breakdown observed after ˜105 s during forward bias stress at gate voltage of 7 V was attributed to formation of conductive channel in p-GaN/AlGaN gate stack via trap generation and percolation mechanism, likely due to coexistence of high electric field and high forward current density. Possible enhancement of localized conductive channels originating from spatial inhomogeneities is proposed to be responsible for the degradation.

  5. Magnetic properties of EuCr2Al20

    NASA Astrophysics Data System (ADS)

    Swatek, Przemysław; Kaczorowski, Dariusz

    2016-10-01

    Polycrystalline sample of EuCr2Al20 was studied by means of x-ray powder diffraction, magnetization, electrical resistivity and heat capacity measurements. The compound was found to order antiferromagnetically at TN = 4.8 K due to the magnetic moments carried on divalent of Eu ions. The experimental findings are supported by the results of ab-initio band structure calculations.

  6. Two-Phase (TiAl+TiCrAl) Coating Alloys for Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialek, James L. (Inventor); Brindley, William J. (Inventor)

    1998-01-01

    A coating for protecting titanium aluminide alloys, including the TiAl gamma + Ti3Al (alpha(sub 2)) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C. is disclosed. This protective coating consists essentially of titanium, aluminum. and chromium in the following approximate atomic ratio: Ti(41.5-34.5)Al(49-53)Cr(9.5-12.5)

  7. Dual-loss modulated Nd:GGG laser with Cr4+:YAG and GaAs

    NASA Astrophysics Data System (ADS)

    Qiao, Junpeng; Zhao, Jia; Li, Yufei; Zhao, Shengzhi; Yang, Kejian; Li, Guiqiu; Li, Dechun; Qiao, Wenchao; Li, Tao; Chu, Hongwei

    2014-12-01

    We demonstrate a diode-pumped dual-loss passively Q-switched and mode-locked (DP-QML) Nd:GGG laser by simultaneously employing Cr4+:YAG and GaAs as saturable absorbers. In comparison with single passively Q-switched and mode-locked (SP-QML) Nd:GGG laser with the Cr4+:YAG or GaAs, the maximum pulse width compression and the highest peak power improvement are 76.8% and 18.5 times in DP-QML laser, with the value of 67 ns and 2.9 kW, respectively.

  8. Single-Crystal Raman Spectroscopy of the Rubidium Alums RbM(III)(SO(4))(2).12H(2)O (M(III) = Al, Ga, In, Ti, V, Cr, Fe) between 275 and 1200 cm(-)(1): Correlation between the Electronic Structure of the Tervalent Cation and Structural Abnormalities.

    PubMed

    Tregenna-Piggott, Philip L. W.; Best, Stephen P.

    1996-09-11

    Low-temperature single-crystal Raman spectra for RbM(III)(SO(4))(2).12H(2)O (M(III) = Al, Ga, In, Ti, V, Cr, Fe) and RbM(III)(SO(4))(2).12D(2)O (M(III) = Al, V) have been collected and assigned in the range 275-1200 cm(-)(1). These results permit classification of the Ti and V rubidium sulfate alums to the beta modification, whereas the remaining tervalent cations give the expected alpha modification. The dimorphism of the rubidium sulfate alums is explained in terms of the electronic structure of the tervalent cation, where the observation of the beta modification is associated with unequal occupancy of the t(2g) (O(h)()) orbitals. For the rubidium vanadium alums the (3)E(g) <-- (3)A(g) electronic Raman (eR) transition permits quantification of the trigonal field splitting of the t(2g) (O(h)()) orbitals (ca. 1940 cm(-)(1)). The profile of the eR band is sensitive both to changes in temperature and to deuteration. Analysis of the eR band profile suggests a reduced spin-orbit splitting of the (3)E(g) manifold, this being ascribed to excited state Jahn-Teller (J-T) effects. The similarity of the Raman spectra of the cesium and rubidium titanium sulfate alums suggest that they exhibit closely related structural chemistry, with both subject to phase transitions below 80 K. The observation that modes of E(g) symmetry are coupled to the structural change is consistent with the interpretation that the trigonal field leaves an orbital doublet ground term for titanium(III), leading to a cooperative J-T effect. PMID:11666769

  9. Structure and wear behavior of AlCrSiN-based coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Du, Hao; Chen, Ming; Yang, Jun; Xiong, Ji; Zhao, Haibo

    2016-05-01

    AlCrN, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings have been deposited on high-polished WC-Co cemented carbide substrate and tools by mid-frequency magnetron sputtering in Ar/N2 mixtures. Al0.6Cr0.4, Al0.6Cr0.3Si0.1, and C/Mo/Nb targets were used during the deposition. The microstructure and mechanical properties of as-deposited coatings were investigated. Investigations of the wear behaviors of coated tools were also performed. The results showed that cubic structure was formed in the coatings. Broader CrAlN (1 1 1) and (2 0 0) peaks without SiNx peak were formed in the AlCrSiN/MexN coatings, which showed a nanocomposited structure. Meanwhile, according to SEM micrographs, AlCrN exhibited a columnar structure, while, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings showed nanocrystalline morphology. The nano-multilayered coatings performed higher hardness, H/E, and H3/E2 ratios compared with AlCrN coating. Through the Rockwell adhesion test, all the coatings exhibited adhesion strength quality HF1. After turning Inconel 718 under dry condition, the nano-multilyered coatings showed better wear resistance than AlCrN coating. Due to the molybdenum and niobium in the coating, AlCrSiN/MoN and AlCrSiN/NbN coatings showed the best wear resistance.

  10. Comparison of AlCrN and AlCrTiSiN coatings deposited on the surface of plasma nitrocarburized high carbon steels

    NASA Astrophysics Data System (ADS)

    Chen, Wanglin; Zheng, Jie; Lin, Yue; Kwon, Sikchol; Zhang, Shihong

    2015-03-01

    The AlCrN and AlCrTiSiN coatings were produced on the surface of plasma nitrocarburized T10 steels by multi-arc ion plating. The comparison of the microstructures and mechanical properties of the duplex coatings were investigated by means of X-ray diffraction, optical microscope, scanning electron microscope and transmission electron microscope, in association with mechanical property measurement. The results show that the AlCrN coatings with columnar grown are mainly composed of nanocrytalline fcc-(Cr,Al)N phases with {111} preferred orientation, whereas the superlattice and nanocomposite AlCrTiSiN coatings with planar growth mainly consist of nanocrystalline fcc-(Cr,Al)N phases with {100} perfected orientation, hcp-AlN and Si3N4 amorphous phases. The AlCrTiSiN duplex coating with the compound layer reveals higher hardness, adhesion strength, load capacity and lower friction coefficient when compared with the other duplex coatings, which is due to its superlattice and nanocomposite structure. Additionally, these improved properties are related to the appearance of the γ‧-phase which plays the nucleation sites for the coating nitrides and provides a strong supporting effect for the AlCrN and AlCrTiSiN coatings. The main wear mechanism of the duplex coatings without compound layer is spalling and chipping wear as well as tribooxidation wear, whereas the main wear mechanism of the duplex coatings with compound layer is tribooxidation wear.

  11. Thermal expansion in Cr:LiSrGaF{sub 6}

    SciTech Connect

    Grzechnik, Andrzej . E-mail: andrzej@wm.lc.ehu.es; Azcona, Zunbeltz Izaola; Bereciartua, Pablo; Friese, Karen; Doyle, Stephen

    2005-11-03

    High-temperature behaviour of LiSrGaF{sub 6} doped with 1.5 at.% of Cr{sup 3+} was studied with high-resolution synchrotron angle-dispersive X-ray powder diffraction in the temperature range 298-539 K. No phase transitions were detected. The origin of negative thermal expansion along the c axis is discussed based on the temperature dependencies of structural parameters and octahedral distortions obtained with the Rietveld method. The SrF{sub 6} slab contracts with increasing temperatures because of the diminishing F-Sr-F octahedral angles without any changes in the F-F octahedral edges not only around strontium but also around lithium and gallium. At the same time, the angular distortions of the SrF{sub 6} octahedra are largely diminished. Such a behaviour is discussed in comparison with the thermal expansion of LiCaAlF{sub 6} and LiSrAlF{sub 6}.

  12. Investigation of InGaP/(In)AlGaAs/GaAs triple-junction top cells for smart stacked multijunction solar cells grown using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sugaya, Takeyoshi; Mochizuki, Toru; Makita, Kikuo; Oshima, Ryuji; Matsubara, Koji; Okano, Yoshinobu; Niki, Shigeru

    2015-08-01

    We report high-quality InGaP/(In)AlGaAs/GaAs triple-junction solar cells fabricated using solid-source molecular beam epitaxy (MBE) for the first time. The triple-junction cells can be used as top cells for smart stacked multijunction solar cells. A growth temperature of 480 °C was found to be suitable for an (In)AlGaAs second cell to obtain high-quality tunnel junctions. The properties of AlGaAs solar cells were better than those of InAlGaAs solar cells when a second cell was grown at 480 °C. The high-quality InGaP/AlGaAs/GaAs solar cell had an impressive open-circuit voltage of 3.1 V. This result indicates that high-performance InGaP/AlGaAs/GaAs triple-junction solar cells can be fabricated using solid-source MBE.

  13. AlGaN/GaN MISHEMTs with AlN gate dielectric grown by thermal ALD technique.

    PubMed

    Liu, Xiao-Yong; Zhao, Sheng-Xun; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Zhang, Chun-Min; Lu, Hong-Liang; Wang, Peng-Fei; Zhang, David Wei

    2015-01-01

    Recently, AlN plasma-enhanced atomic layer deposition (ALD) passivation technique had been proposed and investigated for suppressing the dynamic on-resistance degradation behavior of high-electron-mobility transistors (HEMTs). In this paper, a novel gate dielectric and passivation technique for GaN-on-Si AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MISHEMTs) is presented. This technique features the AlN thin film grown by thermal ALD at 400°C without plasma enhancement. A 10.6-nm AlN thin film was grown upon the surface of the HEMT serving as the gate dielectric under the gate electrode and as the passivation layer in the access region at the same time. The MISHEMTs with thermal ALD AlN exhibit enhanced on/off ratio, reduced channel sheet resistance, reduction of gate leakage by three orders of magnitude at a bias of 4 V, reduced threshold voltage hysteresis of 60 mV, and suppressed current collapse degradation.

  14. Synthesis of Nano Sized Cr2AlC Powders by Molten Salt Method.

    PubMed

    Xiao, Dan; Zhu, Jianfeng; Wang, Fen; Tang, Yi

    2015-09-01

    Cr2AlC powders were successfully synthesized by molten salt method using Cr, Al and C as starting materials. The effects of the process parameters and amount of Al addition on the purity of the Cr2AlC powders were also investigated in details. The formation mechanism of Cr2AlC powders was investigated by XRD and DSC. The results indicated that intermediates of Cr7C3 and Cr- Al intermetallics, such as CrAl17, Cr2Al, Cr2Al8, were formed by the reactions among the initial elements, then the intermediates gradually transformed to Cr2AlC. From the fixed composition of Cr:Al:C = 2:1.2:1, high purity Cr2AlC powders could be obtained with an inorganic salt KCl as a solvent at 1250 degrees C for 60 min under argon atmosphere which was lower than that (generally 1450 degrees C) of conventional solid state reaction.

  15. Integrating AlGaN/GaN high electron mobility transistor with Si: A comparative study of integration schemes

    SciTech Connect

    Mohan, Nagaboopathy; Raghavan, Srinivasan; Manikant,; Soman, Rohith

    2015-10-07

    AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 × 10{sup 9}/cm{sup 2} and <1 nm surface roughness. The 2-D electron gas channels formed at an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600–1900 cm{sup 2}/V s at a carrier concentration of 0.7–0.9 × 10{sup 13}/cm{sup 2}. Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner.

  16. Effect of impurity trapping on the capacitance-voltage characteristics of n-GaAs/N-AlGaAs heterojunctions

    SciTech Connect

    Tan, K.L.; Lundstrom, M.S.; Melloch, M.R.

    1986-02-10

    We have studied the capacitance-voltage (C-V) characteristics of Schottky barriers on inverted n-GaAs/N-AlGaAs and normal N-AlGaAs/n-GaAs heterojunctions. Impurities introduced during film growth produced a negative sheet charge of 6.0 x 10 cm S at the interface of the inverted n-GaAs/N-AlGaAs heterojunction. The effectiveness of GaAs quantum wells in trapping these impurities was investigated. GaAs quantum wells 20 A wide were placed in intervals of 2500 A for the first 0.75 m of the AlGaAs layer; in the last 0.25 m, the periodicity of the quantum wells was progressively decreased by half with the last quantum well placed at about 160 A from the GaAs/AlGaAs interface. The resulting measured interface charge concentration of 4.4 x 10 cm S is more than a magnitude lower than measured before the use of the quantum wells and is essentially at the limit of the accuracy of the C-V technique for this structure.

  17. Experimental evidence of Cr magnetic moments at low temperature in Cr2A(A=Al, Ge)C.

    PubMed

    Jaouen, M; Bugnet, M; Jaouen, N; Ohresser, P; Mauchamp, V; Cabioc'h, T; Rogalev, A

    2014-04-30

    From x-ray magnetic circular dichroism experiments performed at low temperature on Cr2AlC and Cr2GeC thin films, it is evidenced that Cr atoms carry a net magnetic moment in these ternary phases. It is shown that the Cr magnetization of the Al-based compound nearly vanished at 100 K in agreement with what has been recently observed on bulk. X-ray linear dichroism measurements performed at various angles of incidence and temperatures clearly demonstrate the existence of a charge ordering along the c axis of the structure of Cr2AlC. All these experimental observations support, in part, theoretical calculations claiming that Cr dd correlations have to be considered to correctly describe the structure and properties of these Cr-based ternary phases. PMID:24721758

  18. Effect of stress on the Al composition evolution in AlGaN grown using metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    He, Chenguang; Qin, Zhixin; Xu, Fujun; Zhang, Lisheng; Wang, Jiaming; Hou, Mengjun; Zhang, Shan; Wang, Xinqiang; Ge, Weikun; Shen, Bo

    2016-05-01

    Two series of AlGaN samples with different stresses were designed to investigate the effect of stress on the Al composition. X-ray diffraction reciprocal space mapping (XRD RSM) demonstrated that the AlGaN epilayers with different stresses have large Al composition differences despite the same growth conditions. The largest Al composition difference reached up to 21.3%, which was also confirmed using secondary ion mass spectroscopy (SIMS). This result is attributed to a large stress discrepancy in the AlGaN epilayers. Finally, the dependences of the solid-phase Al composition on the gas-phase Al composition under different stresses were systematically analyzed.

  19. Al/sub 2/O/sub 3/ adherence on CoCrAl alloys

    SciTech Connect

    Kingsley, L.M.

    1980-04-01

    Adherence of protective oxides on NiCrAl and CoCrAl superalloys has been promoted by a dispersion of a highly oxygen reactive element or its oxide being produced within the protection system. Two aspects of this subject are investigated here: the use of Al/sub 2/O/sub 3/ as both the dispersion and protective oxide; and the production of an HfO/sub 2/ dispersion while simultaneously aluminizing the alloy. It was found that an Al/sub 2/O/sub 3/ dispersion will act to promote the adherence of an external scale of Al/sub 2/O/sub 3/ to a degree comparable to previously tested dispersions and an HfO/sub 2/ dispersion comparable to that produced by a Rhines pack treatment is produced during aluminization.

  20. Lateral and Vertical Transistors Using the AlGaN/GaN Heterostructure

    SciTech Connect

    Chowdhury, S; Mishra, UK

    2013-10-01

    Power conversion losses are endemic in all areas of electricity consumption, including motion control, lighting, air conditioning, and information technology. Si, the workhorse of the industry, has reached its material limits. Increasingly, the lateral AlGaN/GaN HEMT based on gallium nitride (GaN-on-Si) is becoming the device of choice for medium power electronics as it enables high-power conversion efficiency and reduced form factor at attractive pricing for wide market penetration. The reduced form factor enabled by high-efficiency operation at high frequency further enables significant system price reduction because of savings in bulky extensive passive elements and heat sink costs. The high-power market, however, still remains unaddressed by lateral GaN devices. The current and voltage demand for high power conversion application makes the chip area in a lateral topology so large that it becomes more difficult to manufacture. Vertical GaN devices would play a big role alongside of silicon carbide (SiC) to address the high power conversion needs. In this paper, the development, performance, and status of lateral and vertical GaN devices are discussed.

  1. Scalability of the drain-current drive of AlGaN/GaN HFETs with gate-length

    NASA Astrophysics Data System (ADS)

    Sikder, Md Jahirul; Valizadeh, Pouya

    2013-11-01

    The scaling-trend of the current-drive of AlGaN/GaN Heterostructure Field Effect Transistors (HFETs) with gate-length is studied with the application of a realistic steady-state drift transport characteristics and an approximate purely-saturating drift transport characteristics. Findings show that due to an overwhelming presence of a region of negative differential mobility in the transport characteristics of GaN, a scaling-trend different from the one observed in mainstream silicon MOSFETs should be expected for AlGaN/GaN HFETs. The role of improvement in Ohmic contact technology on this scaling trend is also investigated.

  2. Chemical beam epitaxy growth of AlGaAs/GaAs tunnel junctions using trimethyl aluminium for multijunction solar cells

    SciTech Connect

    Paquette, B.; DeVita, M.; Turala, A.; Kolhatkar, G.; Boucherif, A.; Jaouad, A.; Aimez, V.; Arès, R.; Wilkins, M.; Wheeldon, J. F.; Walker, A. W.; Hinzer, K.; Fafard, S.

    2013-09-27

    AlGaAs/GaAs tunnel junctions for use in high concentration multijunction solar cells were designed and grown by chemical beam epitaxy (CBE) using trimethyl aluminium (TMA) as the p-dopant source for the AlGaAs active layer. Controlled hole concentration up to 4⋅10{sup 20} cm{sup −3} was achieved through variation in growth parameters. Fabricated tunnel junctions have a peak tunneling current up to 6140 A/cm{sup 2}. These are suitable for high concentration use and outperform GaAs/GaAs tunnel junctions.

  3. Magnetic, optical and transport properties of GaCrN-based ferromagnet/nonmagnet/ferromagnet trilayer structures

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Zhou, Y. K.; Kimura, S.; Emura, S.; Hasegawa, S.; Asahi, H.

    2005-05-01

    GaCrN-based ferromagnet/nonmagnet/ferromagnet trilayer structures were grown by radio frequency molecular beam epitaxy. During GaN and GaCrN growth, reflection high-energy electron diffraction pattern showed thin streaks and Kikuchi lines, indicating surface flatness and high crystalline quality. Clear hysteresis and saturation characteristics were observed in the magnetization versus magnetic field curves at all the measuring temperatures. The coercivity Hc was about 130 Oe at 10 K. Step-like hysteresis loops were also observed at 10 and 300 K because of different Cr concentrations in the two GaCrN layers. Photoluminescence emission was observed from GaCrN. Hysteresis loop was observed in the magnetic field dependence of vertical electrical resistance.

  4. Rapid fabrication and packaging of AlGaN/GaN high-temperature ultraviolet photodetectors using direct wire bonding

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Senesky, Debbie G.

    2016-07-01

    Cost-effective fabrication and rapid packaging of AlGaN/GaN ultraviolet (UV) photodetectors was demonstrated using direct wire bonding between aluminum wires and a GaN surface. The fabricated photodetectors showed stable dark current levels through the highly conductive 2D electron gas (2DEG), which was electrically connected to aluminum bonding wires. At room temperature, the current passing through the 2DEG rapidly increased upon exposure to UV light because of the generated electrons excited in the AlGaN/GaN layers. In addition, the devices showed consistent and reliable operation at high temperatures up to 100 °C with mechanically stable bonding wires (pull strength of 3–5.2 gram-force), supporting the use of direct wire bonding techniques to fabricate simple AlGaN/GaN sensors for UV detection within harsh environments, such as downhole and space exploration applications.

  5. Manipulation of emission energy in GaAs/AlGaAs core-shell nanowires with radial heterostructure

    SciTech Connect

    Barbosa, B. G.; Arakaki, H.; Souza, C. A. de; Pusep, Yu. A.

    2014-03-21

    Photoluminescence was studied in GaAs/AlGaAs nanowires (NWs) with different radial heterostructures. We demonstrated that manipulation of the emission energy may be achieved by appropriate choice of the shell structure. The emission at highest energy is generated in the NWs with tunneling thin AlGaAs inner shell and thin GaAs outer shell due to recombination of the photoexcited electrons confined in the outer shell with the holes in the core. Lower energy emission was shown to occur in the NWs with thick outer shell grown in the form of a short-period GaAs/AlGaAs multiple quantum well structure. In this case, the tunneling probability through the multiple quantum wells controls the energy emitted by the NWs. The doping of core results in dominated low energy emission from the GaAs core.

  6. Rapid fabrication and packaging of AlGaN/GaN high-temperature ultraviolet photodetectors using direct wire bonding

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Senesky, Debbie G.

    2016-07-01

    Cost-effective fabrication and rapid packaging of AlGaN/GaN ultraviolet (UV) photodetectors was demonstrated using direct wire bonding between aluminum wires and a GaN surface. The fabricated photodetectors showed stable dark current levels through the highly conductive 2D electron gas (2DEG), which was electrically connected to aluminum bonding wires. At room temperature, the current passing through the 2DEG rapidly increased upon exposure to UV light because of the generated electrons excited in the AlGaN/GaN layers. In addition, the devices showed consistent and reliable operation at high temperatures up to 100 °C with mechanically stable bonding wires (pull strength of 3-5.2 gram-force), supporting the use of direct wire bonding techniques to fabricate simple AlGaN/GaN sensors for UV detection within harsh environments, such as downhole and space exploration applications.

  7. Interstitial precipitation in Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Spear, W. S.; Polonis, D. H.

    1994-06-01

    Two separate stages of precipitation have been identified during the aging of ternary Fel8Cr3Al and Fel8Cr5Al alloys at temperatures in the vicinity of 475 °C. The first stage involves the formation of interstitial precipitates resulting from C and N impurities; the second and slower stage is the formation of the Cr-rich α' phase. Transmission electron microscopy (TEM) results show that carbonitride precipitation occurs preferentially at dislocations, stacking faults, and grain boundaries, and also uniformly through the matrix. Aging for times in excess of 400 hours at 475 °C promotes coarsening of the heterogeneous precipitates and dissolution of the uniformly distributed matrix particles. A resistometric analysis shows that the kinetics of the initial stages of precipitation can be described by a (time)2/3 relation. This kinetic behavior is explained in terms of stress-assisted diffusion in the highly stressed matrix resulting from coherency strains accompanying carbonitride precipitation. Experimental values of the activation energy for the first stage reaction correlate closely with those reported for the interstitial diffusion of C and N in alpha iron.

  8. Prediction of semiconducting behavior in minority spin of Co2CrZ (Z = Ga, Ge, As): LSDA

    NASA Astrophysics Data System (ADS)

    Rai, D. P.; Thapa, R. K.

    2012-12-01

    Volume optimization was performed to obtain the theoretical lattice constants by using the generalized gradient approximation (GGA). The electronic and magnetic properties of Heusler alloys Co2CrZ (Z = Ga, Ge, As) were investigated by using local spin density approximation (LSDA). Amongst the systems under investigation, Co2CrGe and Co2CrGa give 100% spin polarization at the Fermi level (EF). Co2CrGe and Co2CrGa are the most stable half-metallic ferromagnets (HMFs); their EF lie exactly at the gap of 0.24 eV and 0.38 eV, respectively, in the spin-down channel. Even though Co2CrAs gives a distinct and bigger gap as compared to Co2CrGa and Co2CrGe, its EF is not located at the middle of the gap in the spin-down channel. We have also found that the total magnetic moments increase as the Z goes from Ga to As. The calculated density of states and band structures show the HMF character for Co2CrGe and Co2CrGa.

  9. Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Woo, S. Y.; Sadaf, S. M.; Wu, Y.; Pofelski, A.; Laleyan, D. A.; Rashid, R. T.; Wang, Y.; Botton, G. A.; Mi, Z.

    2016-08-01

    Self-organized AlGaN nanowires by molecular beam epitaxy have attracted significant attention for deep ultraviolet optoelectronics. However, due to the strong compositional modulations under conventional nitrogen rich growth conditions, emission wavelengths less than 250 nm have remained inaccessible. Here we show that Al-rich AlGaN nanowires with much improved compositional uniformity can be achieved in a new growth paradigm, wherein a precise control on the optical bandgap of ternary AlGaN nanowires can be achieved by varying the substrate temperature. AlGaN nanowire LEDs, with emission wavelengths spanning from 236 to 280 nm, are also demonstrated.

  10. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    SciTech Connect

    Chen, Jr-Tai Hsu, Chih-Wei; Forsberg, Urban; Janzén, Erik

    2015-02-28

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H{sub 2} atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ∼2000 cm{sup 2}/V·s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon and oxygen concentrations were found up to ∼1 × 10{sup 20 }cm{sup −3} at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm{sup 2} SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.

  11. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    NASA Astrophysics Data System (ADS)

    Chen-Tai, Jr.; Hsu, Chih-Wei; Forsberg, Urban; Janzén, Erik

    2015-02-01

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H2 atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ˜2000 cm2/V.s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon and oxygen concentrations were found up to ˜1 × 1020 cm-3 at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm2 SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.

  12. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  13. The efficiency of UV LEDs based on GaN/AlGaN heterostructures

    NASA Astrophysics Data System (ADS)

    Evseenkov, A. S.; Tarasov, S. A.; Kurin, S. Yu; Usikov, A. S.; Papchenko, B. P.; Helava, H.; Makarov, Yu N.; Solomonov, A. V.

    2015-12-01

    The UV LED GaN/AlGaN heterostructures obtained by HVPE approach were investigated. It was shown that the peak wavelength of UV LEDs was in the range of 360-380 nm with FWHM of 10-13 nm. At operating current of 20 mA, the active region temperature Tj was 43°C, the output optical power and efficiency - 1.14 mW and 1.46%, respectively. It was shown that the use of HVPE method allowed to achieve a high degree of structural perfection of epitaxial structures.

  14. Simplified gas sensor model based on AlGaN/GaN heterostructure Schottky diode

    SciTech Connect

    Das, Subhashis Majumdar, S.; Kumar, R.; Bag, A.; Chakraborty, A.; Biswas, D.

    2015-08-28

    Physics based modeling of AlGaN/GaN heterostructure Schottky diode gas sensor has been investigated for high sensitivity and linearity of the device. Here the surface and heterointerface properties are greatly exploited. The dependence of two dimensional electron gas (2DEG) upon the surface charges is mainly utilized. The simulation of Schottky diode has been done in Technology Computer Aided Design (TCAD) tool and I-V curves are generated, from the I-V curves 76% response has been recorded in presence of 500 ppm gas at a biasing voltage of 0.95 Volt.

  15. Impedance characterization of AlGaN/GaN Schottky diodes with metal contacts

    NASA Astrophysics Data System (ADS)

    Donahue, M.; Lübbers, B.; Kittler, M.; Mai, P.; Schober, A.

    2013-04-01

    To obtain detailed information on structural and electrical properties of AlGaN/GaN Schottky diodes and to determine an appropriate equivalent circuit, impedance spectroscopy and impedance voltage profiling are employed over a frequency range of 1 MHz-1 Hz. In contrast to the commonly assumed parallel connection of capacitive and resistive elements, an equivalent circuit is derived from impedance spectra which utilizes the constant phase element and accounts for frequency dispersion and trap states. The trap density is estimated and is in good agreement with the literature values. The resulting reduced equivalent circuit consists of a capacitor and resistor connected in series.

  16. SEMICONDUCTOR DEVICES Multi-bias capacitance voltage characteristic of AlGaN/GaN HEMT

    NASA Astrophysics Data System (ADS)

    Yan, Pu; Liang, Wang; Tingting, Yuan; Sihua, Ouyang; Lei, Pang; Guoguo, Liu; Weijun, Luo; Xinyu, Liu

    2010-10-01

    The method of multi-bias capacitance voltage measurement is presented. The physical meaning of gate—source and gate—drain capacitances in AlGaN/GaN HEMT and the variations in them with different bias conditions are discussed. A capacitance model is proposed to reflect the behaviors of the gate—source and gate—drain capacitances, which shows a good agreement with the measured capacitances, and the power performance obtains good results compared with the measured data from the capacitance model.

  17. Resonant behaviour of GaAs LO phonons in a GaAs-AlAs superlattice

    NASA Astrophysics Data System (ADS)

    Zhang, Shulin; T, A. Gant; M, Delaney; M, V. Klein; J, Klem; H, Morkoc

    1988-03-01

    Resonant Raman scattering from GaAs LO phonons in a 59Å GaAs/20Å AlAs superlattice was studied. The relevant intersubband energies were determined. The results suggest that all of the exciton transitions from the hole subbands HH1, LH1, HH2, HH3, LH2 and HH4 to the electron subbands CB1 and CB2 in the energy region covered by our incident dye laser were observed and a justificative analysis may involve effects due to valence band mixing and to 3D electronic miniband structure.

  18. State-of-the-art performance of GaAlAs/GaAs avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Ga(0.15)Al(0.85)As/GaAs avalanche photodiodes have been successfully fabricated. The performance of these detectors is characterized by a rise time of less than 35 ps, an external quantum efficiency with an antireflection coating of 95% at 0.53 microns, and a microwave optical gain of 42 dB. The dark current density is in the low range (10 to the minus A/sq cm) at one-half the breakdown voltages, and rises to 0.0001 A/sq cm at 42 dB optical gain.

  19. Electron transport simulation in resonant-tunneling GaN/AlGaN heterostructures

    SciTech Connect

    Egorkin, V. I. Zhuravlev, M. N.; Kapaev, V. V.

    2011-12-15

    A numerical method for electron transport calculations in resonant-tunneling GaN/AlGaN heterostructures has been developed on the basis of a self-consistent solution of the Schroedinger and Poisson equations. Dependences of the system's transmission coefficient on the external field and of the peak current on the ratio between the well and barrier widths have been studied for a double-barrier resonant-tunneling diode. For technical applications, the optimal values of the structure's parameters have been found.

  20. Single-hole transistor in p-type GaAs /AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Grbić, Boris; Leturcq, Renaud; Ensslin, Klaus; Reuter, Dirk; Wieck, Andreas D.

    2005-12-01

    A single-hole transistor is patterned in a p-type, C-doped GaAs /AlGaAs heterostructure by scanning probe oxidation lithography. Clear Coulomb blockade resonances have been observed at Thole=300mK. A charging energy of ˜1.5meV is extracted from Coulomb diamond measurements, in agreement with the lithographic dimensions of the dot. The absence of excited states in Coulomb diamond measurements, as well as the temperature dependence of Coulomb peak heights indicate that the dot is in the multilevel transport regime. Fluctuations in peak spacings larger than the estimated mean single-particle level spacing are observed.

  1. A field induced guide-antiguide modulator of GaAs-AlGaAs

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Chung, Y.; Young, D. B.; Dagli, N.; Coldren, L. A.

    1991-01-01

    A guide-antiguide modulator of GaAs-AlGaAs using the electric-field-induced waveguide concept was demonstrated. The device was formed with a central waveguide electrode sandwiched between two antiguide electrodes on the surface of a p-i-n multiple quantum well (MQW). Switching between lateral guiding and antiguiding was accomplished by reverse biasing either the central electrode or the adjacent electrodes to increase the index beneath these respective regions. The on-off ratio was measured to be 20:1 with a propagation loss of the on-state of about 5 dB/mm.

  2. Ga, Ca, and 3d transition element (Cr through Zn) partitioning among spinel-lherzolite phases from the Lanzo massif, Italy: Analytical results and crystal chemistry

    SciTech Connect

    Wogelius, R.A.; Fraser, D.G.

    1994-06-01

    Ultramafic rocks exposed in Lanzo massif, Italy is a record of mantle geochemistry, melting, sub-solidus re-equilibration. Plagioclase(+ spinel)-lherzolite samples were analyzed by Scanning Proton Microscopy, other techniques. Previous work postulated partial melting events and a two-stage sub-solidus cooling history; this paper notes Ga enrichment on spinel-clinopyroxene grain boundaries, high Ga and transition element content of spinel, and pyroxene zonation in Ca and Al. Trace element levels in olivine and orthopyroxene are also presented. Zoning trends are interpreted as due to diffusion during cooling. Olivine-clinopyroxene Cr and Ca exchange as well as clinopyroxene and spinel zonation trends indicate that the massif experienced at least two sub-solidus cooling episodes, one at 20 kbar to 1000 C and one at 8 kbar <750C. Ga levels in cores of Lanzo high-Cr spinels are high (82-66 ppM) relative to other mantle spinels (66-40 ppM), indicating enrichment. Ga content of ultramafic spinels apparently increases with Cr content; this may be due to: increased Ga solubility stemming from crystal chemical effects and/or higher Ga activities in associated silicate melts. Thus, during melting, high-Cr residual spinel may tend to buffer solid-phase Ga level. These spinels are not only rich in Ga and Cr (max 26.37 el. wt %), but also in Fe (max 21.07 el. wt %), Mn (max 3400 ppM), and Zn (max 2430 ppM). These enrichments are again due to melt extraction and partitioning into spinel structure. Low Ni (min 1050 ppM) levels are due to unsuccessful competition of Ni with Cr for octahedral structural sites caused by crystal field. Comparisons of change in partitioning vs Cr content among several 3d transition elements for spinels from Lanzo, other localities allow us to separate crystal field effects from bulk chemical effects and to show that in typical assemblages, inversion of olivine-spinel partition coefficient for Ni from <1 to >1 should occur at 11% el. wt. Cr in spinel.

  3. Recombination-current suppression in GaAs p-n junctions grown on AlGaAs buffer layers by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Rancour, D. P.; Melloch, M. R.; Pierret, R. F.; Lundstrom, M. S.; Klausmeier-Brown, M. E.; Kyono, C. S.

    1987-08-01

    n+pp+GaAs and n+pP+ GaAs/GaAs/Al0.3Ga0.7As mesa diodes have been fabricated from films grown by molecular-beam epitaxy. The diodes made from films employing an AlGaAs buffer layer show marked improvements (a factor of 5 reduction) in recombination current densities. Deep level transient spectroscopy measurements moreover indicate that deep level concentrations are reduced by the AlGaAs buffer.

  4. Structure of ferromagnetic CrAs epilayers grown on GaAs(001).

    PubMed

    Etgens, V H; de Camargo, P C; Eddrief, M; Mattana, R; George, J M; Garreau, Y

    2004-04-23

    Magnetic and structural properties of CrAs epilayers grown on GaAs(001) by molecular beam epitaxy have been studied. CrAs epilayers are orthorhombic for all thicknesses investigated but show a structural transition from a metastable phase for very thin films, to the usual bulk MnP-type orthorhombic phase at higher thicknesses. At intermediate thicknesses, there is a predominance of the new phase, although a contribution from the usual CrAs bulk phase remains clearly present. These results strongly suggest that the ferromagnetic signal measured at room temperature comes from the new metastable orthorhombic structure with an expanded b-axis induced by the substrate strain.

  5. Structure of Ferromagnetic CrAs Epilayers Grown on GaAs(001)

    NASA Astrophysics Data System (ADS)

    Etgens, V. H.; de Camargo, P. C.; Eddrief, M.; Mattana, R.; George, J. M.; Garreau, Y.

    2004-04-01

    Magnetic and structural properties of CrAs epilayers grown on GaAs(001) by molecular beam epitaxy have been studied. CrAs epilayers are orthorhombic for all thicknesses investigated but show a structural transition from a metastable phase for very thin films, to the usual bulk MnP-type orthorhombic phase at higher thicknesses. At intermediate thicknesses, there is a predominance of the new phase, although a contribution from the usual CrAs bulk phase remains clearly present. These results strongly suggest that the ferromagnetic signal measured at room temperature comes from the new metastable orthorhombic structure with an expanded b-axis induced by the substrate strain.

  6. Realization of defect-free epitaxial core-shell GaAs/AlGaAs nanowire heterostructures

    SciTech Connect

    Tambe, Michael J.; Lim, Sung Keun; Smith, Matthew J.; Gradecak, Silvija; Allard, Lawrence F.

    2008-10-13

    We report the controlled growth of vertically aligned GaAs/AlGaAs core-shell nanowires. By optimizing the shell deposition temperature and catalyst density we maintain high temperature stability and achieve defect-free epitaxial AlGaAs shell deposition with high aluminum incorporation. Energy dispersive x-ray analysis determines the shell composition to be Al{sub 0.9}Ga{sub 0.1}As and measures the uniformity of the shell thickness. Lattice-resolved high-angle annular dark-field scanning transmission electron microscopy images confirm the core-shell interface to be defect-free, epitaxial, and atomically sharp. The ability to realize GaAs/AlGaAs core-shell nanowires with precise control over the morphology and composition is essential to the development of nanowire-based high mobility electronics.

  7. Carbon Nanostructures Grown on Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Čaplovičová, Mária; Čaplovič, Ľubomír; Búc, Dalibor; Vinduška, Peter; Janík, Ján

    2010-11-01

    The morphology and nanostructure of carbon nanotubes (CNTs), synthesized directly on Fe-Cr-Al-based alloy substrate using an alcohol catalytic chemical vapour deposition method (ACCVD), were examined by transmission electron microscopy (TEM). The grown CNTs were entangled with chain-like, bamboo-like, and necklace-like morphologies. The CNT morphology was affected by the elemental composition of catalysts and local instability of deposition process. Straight and bended CNTs with bamboo-like nanostructure grew mainly on γ-Fe and Fe3C particles. The synthesis of necklace-like nanostructures was influenced by silicon oxide, and growth of chain-like nanostructures was supported by a catalysts consisting of Fe, Si, oxygen and trace of Cr. Most of nanotubes grew according to base growth mechanism.

  8. Normal and excess nitrogen uptake by iron-based Fe-Cr-Al alloys: the role of the Cr/Al atomic ratio

    NASA Astrophysics Data System (ADS)

    Jung, K. S.; Schacherl, R. E.; Bischoff, E.; Mittemeijer, E. J.

    2011-06-01

    Upon nitriding ferritic iron-based Fe-Cr-Al alloys, containing a total of 1.50 at. % (Cr + Al) alloying elements with varying Cr/Al atomic ratio (0.21-2.00), excess nitrogen uptake occurred, i.e. more nitrogen was incorporated in the specimens than compatible with only inner nitride formation and equilibrium nitrogen solubility of the unstrained ferrite matrix. The amount of excess nitrogen increased with decreasing Cr/Al atomic ratio. The microstructure of the nitrided zone was investigated by X-ray diffraction, electron probe microanalysis, transmission electron microscopy and electron energy loss spectroscopy. Metastable, fine platelet-type, mixed Cr1- x Al x N nitride precipitates developed in the nitrided zone for all of the investigated specimens. The degree of coherency of the nitride precipitates with the surrounding ferrite matrix is discussed in view of the anisotropy of the misfit. Analysis of nitrogen-absorption isotherms, recorded after subsequent pre- and de-nitriding treatments, allowed quantitative differentiation of different types of nitrogen taken up. The amounts of the different types of excess nitrogen as function of the Cr/Al atomic ratio are discussed in terms of the nitride/matrix misfit and the different chemical affinities of Cr and Al for N. The strikingly different nitriding behaviors of Fe-Cr-Al and Fe-Cr-Ti alloys could be explained on this basis.

  9. Initial growth of CrAs on GaAs(001)-c(4 ×4) α

    NASA Astrophysics Data System (ADS)

    Yagyu, Kazuma; Kaku, Shigeru; Yoshino, Junji

    2011-03-01

    CrAs is a ferromagnetic material which has a hexagonal structure. It is, however, predicted by first-principles calculation that zincblende (ZB) CrAs shows ferromagnetism and has a halfmetaric electronic structure [1-3]. Although ferromagnetism of a CrAs epitaxial film was confirmed so far, its crystal structure is still unclear. It turned out that ferromagnetism originated at the interface. In this study, initial growth of CrAs film has been investigated with scanning tunneling microscopy at 80 K. CrAs was grown on a GaAs(001)-c(4 × 4) α surface by means of exposing Cr as well as As 4 atoms at 250° C, followed by annealing at the same temperature. Randomly grown CrAs islands were observed form larger islands in proportion to the annealing time. Dimer structure which is similar to that of the substrate was confirmed on the surface of CrAs islands. This means that a CrAs island may have a ZB structure. The detailed structure and electric state of CrAs islands are discussed in the presentation. Global Center of Excellence Program ``Nanoscience and Quantum Physics'' of Tokyo Institute of Technology.

  10. Characterization of AlGaN epitaxial layer

    NASA Astrophysics Data System (ADS)

    Parasuraman, Usha; Srinivasan, Sridhar; Ponce, Fernando; Rong, Liu; Abigail, Bell; Mei, Justin; Tanaka, S.

    2003-10-01

    Accurate aluminum compositions have been determined for AlxGa1-xN alloys whose rough compositions vary between 0AlGaN layer. TEM pictures showed the absence of misfit dislocations in the basal plane which indicated that the AlGaN layer was indeed under pseudomorphic growth. This study allows us to conclude that RBS is not a suitable technique for estimating the composition in the case of light elements such as Al. Cathodoluminescence was done to determine the band gap and the bowing parameter was calculated for the composition range 0

  11. Strain-induced lateral confinement of excitons in GaAs-AlGaAs quantum well microstructures

    SciTech Connect

    Kash, K.; Worlock, J.M.; Sturge, M.D.; Grabbe, P.; Harbison, J.P.; Scherer, A.; Lin, P.S.D.

    1988-08-29

    We report evidence for lateral confinement of excitons within a continuous two-dimensional GaAs-AlGaAs quantum well. The confinement to ''wires'' within the well was produced by partially etching a pattern through the upper AlGaAs barrier. We propose a new mechanism, that of patterned strain, for lateral quantum confinement of carriers in semiconductor microstructures, to explain our results.

  12. Influence of InGaN sub-quantum-well on performance of InAlN/GaN/InAlN resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    Chen, Haoran; Yang, Lin'an; Hao, Yue

    2014-08-01

    The resonant tunneling mechanism of the GaN based resonant tunneling diode (RTD) with an InGaN sub-quantum-well has been investigated by means of numerical simulation. At resonant-state, Electrons in the InGaN/InAlN/GaN/InAlN RTD tunnel from the emitter region through the aligned discrete energy levels in the InGaN sub-quantum-well and GaN main-quantum-well into the collector region. The implantation of the InGaN sub-quantum-well alters the dominant transport mechanism, increase the transmission coefficient and give rise to the peak current and peak-to-valley current ratio. We also demonstrate that the most pronounced negative-differential-resistance characteristic can be achieved by choosing appropriately the In composition of InxGa1-xN at around x = 0.06.

  13. Influence of InGaN sub-quantum-well on performance of InAlN/GaN/InAlN resonant tunneling diodes

    SciTech Connect

    Chen, Haoran; Yang, Lin'an Hao, Yue

    2014-08-21

    The resonant tunneling mechanism of the GaN based resonant tunneling diode (RTD) with an InGaN sub-quantum-well has been investigated by means of numerical simulation. At resonant-state, Electrons in the InGaN/InAlN/GaN/InAlN RTD tunnel from the emitter region through the aligned discrete energy levels in the InGaN sub-quantum-well and GaN main-quantum-well into the collector region. The implantation of the InGaN sub-quantum-well alters the dominant transport mechanism, increase the transmission coefficient and give rise to the peak current and peak-to-valley current ratio. We also demonstrate that the most pronounced negative-differential-resistance characteristic can be achieved by choosing appropriately the In composition of In{sub x}Ga{sub 1−x}N at around x = 0.06.

  14. Photoluminescence of GaAs/AlGaAs quantum ring arrays

    SciTech Connect

    Sibirmovskii, Yu. D. Vasil’evskii, I. S.; Vinichenko, A. N.; Eremin, I. S.; Zhigunov, D. M.; Kargin, N. I.; Kolentsova, O. S.; Martyuk, P. A.; Strikhanov, M. N.

    2015-05-15

    Samples of epitaxial structures with GaAs/AlGaAs quantum rings different in morphology are grown by droplet epitaxy. The photoluminescence spectra of the samples are recorded at temperatures of 20–90 and 300 K. Intense peaks defined by quantum confinement of the charge-carrier energy in the quantum rings are observed in the optical region. The peaks are identified by estimating the energy of the ground state of electrons and holes in GaAs quantum rings and by recording the spectra of the samples after removing the layers with the quantum rings by etching. The average dimensions of the quantum rings are determined by atomic force microscopy and scanning electron microscopy. Some inferences about the factors that influence the emission spectrum and intensity of the epitaxial structures with quantum rings are drawn.

  15. AlGaAs/InGaAlP tunnel junctions for multijunction solar cells

    SciTech Connect

    SHARPS,P.R.; LI,N.Y.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Optimization of GaInP{sub 2}/GaAs dual and GaInP{sub 2}/GaAs/Ge triple junction cells, and development of future generation monolithic multi-junction cells will involve the development of suitable high bandgap tunnel junctions. There are three criteria that a tunnel junction must meet. First, the resistance of the junction must be kept low enough so that the series resistance of the overall device is not increased. For AMO, 1 sun operation, the tunnel junction resistance should be below 5 x 10{sup {minus}2} {Omega}-cm. Secondly, the peak current density for the tunnel junction must also be larger than the J{sub sc} of the cell so that the tunnel junction I-V curve does not have a deleterious effect on the I-V curve of the multi-junction device. Finally, the tunnel junction must be optically transparent, i.e., there must be a minimum of optical absorption of photons that will be collected by the underlying subcells. The paper reports the investigation of four high bandgap tunnel junctions grown by metal-organic chemical vapor deposition.

  16. Alloy inhomogeneity and carrier localization in AlGaN sections and AlGaN/AlN nanodisks in nanowires with 240–350 nm emission

    SciTech Connect

    Himwas, C.; Hertog, M. den; Dang, Le Si; Songmuang, R.; Monroy, E.

    2014-12-15

    We present structural and optical studies of AlGaN sections and AlGaN/AlN nanodisks (NDs) in nanowires grown by plasma-assisted molecular beam epitaxy. The Al-Ga intermixing at Al(Ga)N/GaN interfaces and the chemical inhomogeneity in AlGaN NDs evidenced by scanning transmission electron microscopy are attributed to the strain relaxation process. This interpretation is supported by the three-dimensional strain distribution calculated by minimizing the elastic energy in the structure. The alloy inhomogeneity increases with the Al content, leading to enhanced carrier localization signatures in the luminescence characteristics, i.e., red shift of the emission, s-shaped temperature dependence, and linewidth broadening. Despite these effects, the emission energy of AlGaN/AlN NDs can be tuned in the 240–350 nm range with internal quantum efficiencies around 30%.

  17. Improved high-temperature characteristics of a symmetrically graded AlGaAs/InxGa1-xAs/AlGaAs pHEMT

    NASA Astrophysics Data System (ADS)

    Huang, Jun-Chin; Hsu, Wei-Chou; Lee, Ching-Sung; Chang, Wei-Chen; Huang, Dong-Hai

    2006-12-01

    This work investigates the superior high-temperature and high-linearity characteristics of a double δ-doped AlGaAs/InxGa1-xAs/AlGaAs pseudomorphic high electron mobility transistor (pHEMT) with a symmetrically linearly graded InxGa1-xAs channel and a wide energy gap AlGaAs barrier. Distinguished high-temperature device characteristics are presented, including an extrinsic transconductance (gm,max) of 182 (223) mS mm-1, a drain-source saturation current density (IDSS) of 428 (524) mA mm-1, an output conductance of 0.334 (0.352) mS mm-1, a gate-voltage swing (GVS) of 1.45 (1.5) V, a voltage gain (Av) of 505 (658) and a reverse breakdown voltage (BVGD) of -24.1 (-31.2) V at 500 (300) K, respectively, with gate dimensions of 0.65 × 200 µm2. In addition, the device demonstrates a superior stable thermal threshold coefficient (∂Vth/∂T) of -0.55 mV K-1, a thermal GVS coefficient (∂GVS/∂T) of -0.25 mV K-1 and a wide gate-bias range of 1.25 V for a unity-gain cut-off frequency (ft) of over 20 GHz. Consequently, the proposed device shows good potential for high-temperature and high-linearity circuit applications.

  18. Zener Relaxation Peak in an Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng-Cun; Cheng, He-Fa; Gong, Chen-Li; Wei, Jian-Ning; Han, Fu-Sheng

    2002-11-01

    We have studied the temperature spectra of internal friction and relative dynamic modulus of the Fe-(25 wt%)Cr-(5 wt%)Al alloy with different grain sizes. It is found that a peak appears in the internal friction versus temperature plot at about 550°C. The peak is of a stable relaxation and is reversible, which occurs not only during heating but also during cooling. Its activation energy is 2.5 (+/- 0.15) eV in terms of the Arrhenius relation. In addition, the peak is not obvious in specimens with a smaller grain size. It is suggested that the peak originates from Zener relaxation.

  19. The local structure of SrLaGaO 4:Cr 3+ crystal

    NASA Astrophysics Data System (ADS)

    Zeng, Ti-Xian; Chen, Jia-Jun; Zhao, Bei-Jun; Zhu, Shi-Fu; Huang, Yi; Chen, Tai-Hong

    2008-07-01

    The local tetragonal distortion in the vicinity of substitutional Cr 3+ impurities in SrLaGaO 4 crystal was determined by fitting the calculated optical spectra and EPR parameter to the experimental values based on Zhao's semi-SCF d-orbit wave functions model of free Cr 3+ ions, the point-charge crystal field model and Macfarlane's perturbation loop method. This paper found that the local structures of SrLaGaO 4 were: R⊥‧=0.1907 nm and R∥‧=0.2237 nm (where R⊥‧ and R∥‧ denoted Cr 3+-O 2- distances perpendicular to and parallel with the C4 axis). The results agreed well with the experimental findings.

  20. Low energy proton radiation damage to (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R.; Kamath, S.; Knechtli, R. C.

    1979-01-01

    Twenty-seven 2 times 2 sq cm (AlGa)As-GaAs solar cells were fabricated and subjected to 50 keV, 100 keV, and 290 keV of proton irradiation along with eighteen high efficiency silicon solar cells. The results of the study further corroborate the advantages for space missions offered by GaAs cells over state of the art silicon cells. Thus, even though the GaAs cells showed greater degradation when irradiated by protons with energy less than 5 MeV, the solar cells were normally protected from these protons by the glass covers used in space arrays. The GaAs cells also offered superior end of life power capability compared with silicon. The change in the open circuit voltage, short circuit current, spectral response, and dark 1-5 characteristics after irradiation at each proton energy and fluence were found to be consistent with the explanation of the effect of the protons. Also dark 1-5 characteristics showed that a new recombination center dominates the current transport mechanism after irradiation.

  1. Spin and phase relaxation dynamics in GaN and GaN/AlGaN quantum wells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Gallart, Mathieu; Ziegler, Marc; Hönerlage, Bernd H.; Gilliot, Pierre; Feltin, Eric; Carlin, Jean-François; Butté, Raphaël.; Grandjean, Nicolas

    2015-09-01

    By performing time-resolved optical non-degenerate pump-probe experiments, we study the relaxation dynamics of spin-polarized excitons in wurtzite epitaxial GaN and in nitride nanostructures. Those materials are indeed promising candidates for spintronic applications because of their weak spin-orbit coupling and large exciton binding energy (~ 17 meV and ~ 26meV in bulk GaN, respectively). In epilayers, we show that the high density of dislocations increases dramatically the spin relaxation of electrons and holes through the defect assisted Elliott-Yafet mechanism. That makes the exciton dephasing time very short. In high quality GaN/AlGaN quantum wells, both the exciton-spin lifetime S and the exciton dephasing-time T2 were determined via pump-probe spectroscopy using polarized laser pulses and time-resolved four wave-mixing experiments. The evolution of both quantities with temperature shows that spin relaxation occurs in the motional narrowing regime up to 80 K. Above this threshold, the thermal energy becomes large enough for excitons to escape from the QW. Such measurements demonstrate that GaN-based heterostructures can reach a very high degree of control that was previously mostly restricted to conventional III-V semiconductors and more specifically to the arsenide family.

  2. Gate metal dependent electrical characteristics of AlGaN/GaN HEMTs

    SciTech Connect

    Koo, Sang-Mo Kang, Min-Seok

    2014-10-15

    Highlights: • We investigated transfer characteristics of AlGaN/GaN high electron mobility transistors. • We demonstrate the effect of the barrier height of Schottky gate metals. • The conduction mechanisms examine by comparing the experimental results with numerical simulations. • 2-DEG concentration depends on the barrier height of Schottky gate metals. - Abstract: We investigated transfer characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) and the effect of the barrier height of Schottky gate metals. It is found that the threshold voltage of the HEMT structures with the Ni Schottky contact shows a positive shift compared to that of the Ti Schottky contacts (ΔV{sub th} = 2.9 V). The maximum saturation current of the HEMT structures with the Ti Schottky contact (∼1.4 × 10{sup 7} A/cm{sup 2}) is found to be ∼2.5 times higher than that of the Ni Schottky contact (2.9 × 10{sup 7} A/cm{sup 2}). The conduction mechanisms have been examined by comparing the experimental results with numerical simulations, which confirm that the increased barrier height is mainly attributed to the reduction of 2-DEG concentration.

  3. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Wang, H. T.; Ren, F.; Pearton, S. J.

    2008-08-01

    Chemical sensors can be used to analyze a wide variety of environmental and biological gases and liquids and may need to be able to selectively detect a target analyte. Different methods, including gas chromatography, chemiluminescence, selected ion flow tube, and mass spectroscopy, have been used to measure biomarkers. These methods show variable results in terms of sensitivity for some applications and may not meet the requirements for a handheld biosensor. A promising sensing technology utilizes AlGaN/GaN high electron mobility transistors (HEMTs). HEMT structures have been developed for use in microwave power amplifiers due to their high two dimensional electron gas (2DEG) mobility and saturation velocity. The conducting 2DEG channel of AlGaN/GaN HEMTs is very close to the surface and extremely sensitive to adsorption of analytes. HEMT sensors can be used for detecting gases, ions, pH values, proteins, and DNA. In this paper we review recent progress on functionalizing the surface of HEMTs for specific detection of glucose, kidney marker injury molecules, prostate cancer, and other common substances of interest in the biomedical field.

  4. Processing of AlGaAs/GaAs QC structures for terahertz laser

    NASA Astrophysics Data System (ADS)

    Szerling, A.; Kosiel, K.; Szymański, M.; Wasilewski, Z.; Gołaszewska, K.; Łaszcz, A.; Płuska, M.; Trajnerowicz, A.; Sakowicz, M.; Walczakowski, M.; Pałka, N.; Jakieła, R.; Piotrowska, A.

    2014-09-01

    We report our research on processing of AlGaAs/GaAs structures for THz quantum-cascade lasers (QCLs). We focus on the processes of fabrication of Ti/Au claddings for metal-metal waveguides and the wafer bonding with indium solder. We place special emphasis on the optimum technological conditions of these processes, leading to working devices. The wide range of technological conditions was studied, by use of test structures and analyses of their electrical, optical, chemical and mechanical properties, performed by electron microscopic techniques, energy dispersive X-ray spectrometry, secondary ion mass spectroscopy, atomic force microscopy, fourier-transform infra-red spectroscopy and circular transmission line method. On the basis of research a set of technological conditions was selected, and devices lasing at the maximum temperature 130K were fabricated from AlGaAs/GaAs structures grown by molecular beam epitaxy (MBE) technique. Their threshold-current densities were about 1.5kA/cm2. Additionally we report our initial stage research on fabrication of Cu-based claddings, that theoretically are more promising than the Au-based ones for fabrication of low-lossy waveguides for THz QCLs.

  5. Processing of AlGaAs/GaAs quantum-cascade structures for terahertz laser

    NASA Astrophysics Data System (ADS)

    Szerling, Anna; Kosiel, Kamil; Szymański, Michał; Wasilewski, Zbig; Gołaszewska, Krystyna; Łaszcz, Adam; Płuska, Mariusz; Trajnerowicz, Artur; Sakowicz, Maciej; Walczakowski, Michał; Pałka, Norbert; Jakieła, Rafał; Piotrowska, Anna

    2015-01-01

    We report research results with regard to AlGaAs/GaAs structure processing for THz quantum-cascade lasers (QCLs). We focus on the processes of Ti/Au cladding fabrication for metal-metal waveguides and wafer bonding with indium solder. Particular emphasis is placed on optimization of technological parameters for the said processes that result in working devices. A wide range of technological parameters was studied using test structures and the analysis of their electrical, optical, chemical, and mechanical properties performed by electron microscopic techniques, energy dispersive x-ray spectrometry, secondary ion mass spectroscopy, atomic force microscopy, Fourier-transform infrared spectroscopy, and circular transmission line method. On that basis, a set of technological parameters was selected for the fabrication of devices lasing at a maximum temperature of 130 K from AlGaAs/GaAs structures grown by means of molecular beam epitaxy. Their resulting threshold-current densities were on a level of 1.5 kA/cm2. Furthermore, initial stage research regarding fabrication of Cu-based claddings is reported as these are theoretically more promising than the Au-based ones with regard to low-loss waveguide fabrication for THz QCLs.

  6. High mobility AlGaN/GaN devices for β--dosimetry

    NASA Astrophysics Data System (ADS)

    Schmid, Martin; Howgate, John; Ruehm, Werner; Thalhammer, Stefan

    2016-05-01

    There is a high demand in modern medical applications for dosimetry sensors with a small footprint allowing for unobtrusive or high spatial resolution detectors. To this end we characterize the sensoric response of radiation resistant high mobility AlGaN/GaN semiconductor devices when exposed to β--emitters. The samples were operated as a floating gate transistor, without a field effect gate electrode, thus excluding any spurious effects from β--particle interactions with a metallic surface covering. We demonstrate that the source-drain current is modulated in dependence on the kinetic energy of the incident β--particles. Here, the signal is shown to have a linear dependence on the absorbed energy calculated from Monte Carlo simulations. Additionally, a stable and reproducible sensor performance as a β--dose monitor is shown for individual radioisotopes. Our experimental findings and the characteristics of the AlGaN/GaN high mobility layered devices indicate their potential for future applications where small sensor size is necessary, like for instance brachytherapy.

  7. Study of surface leakage current of AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Chen, YongHe; Zhang, Kai; Cao, MengYi; Zhao, ShengLei; Zhang, JinCheng; Hao, Yue; Ma, XiaoHua

    2014-04-14

    Temperature-dependent surface current measurements were performed to analyze the mechanism of surface conductance of AlGaN/GaN channel high-electron-mobility transistors by utilizing process-optimized double gate structures. Different temperatures and electric field dependence have been found in surface current measurements. At low electric field, the mechanism of surface conductance is considered to be two-dimensional variable range hopping. At elevated electric field, the Frenkel–Poole trap assisted emission governs the main surface electrons transportation. The extracted energy barrier height of electrons emitting from trapped state near Fermi energy level into a threading dislocations-related continuum state is 0.38 eV. SiN passivation reduces the surface leakage current by two order of magnitude and nearly 4 orders of magnitude at low and high electric fields, respectively. SiN also suppresses the Frenkel–Poole conductance at high temperature by improving the surface states of AlGaN/GaN. A surface treatment process has been introduced to further suppress the surface leakage current at high temperature and high field, which results in a decrease in surface current of almost 3 orders of magnitude at 476 K.

  8. Superconductors coupled with a two-dimensional electron gas in GaAs/AlGaAs and InAs/AlGaSb heterostructures

    NASA Astrophysics Data System (ADS)

    Gao, J. R.; Heida, J. P.; van Wees, B. J.; Klapwijk, T. M.; Borghs, G.; Foxon, C. T.

    1994-03-01

    We fabricated superconducting Sn/Pd contacts to a two-dimensional electron gas (2DEG) in GaAs/AlGaAs heterostructures by an alloying technique. A dip around zero bias and peaks at finite voltages have been observed in the differential resistance of a 2DEG between two superconductors. The resistance dip may be a result of Andreev reflection at 2DEG-superconductor interlaces and the peaks are probably due to the Josephson coupling between two very close superconducting islands in a superconducting contact region, which may be formed by alloying. Alternatively, we made superconducting Nb contacts to a 2DEG in an InAs/AlGaSb quantum well structure. The resistance of Nb-2DEG-Nb devices shows a clear indication of Andrccv reflection.

  9. Probing temperature gradients within the GaN buffer layer of AlGaN/GaN high electron mobility transistors with Raman thermography

    SciTech Connect

    Hodges, C. Pomeroy, J.; Kuball, M.

    2014-02-14

    We demonstrate the ability of confocal Raman thermography using a spatial filter and azimuthal polarization to probe vertical temperature gradients within the GaN buffer layer of operating AlGaN/GaN high electron mobility transistors. Temperature gradients in the GaN layer are measured by using offset focal planes to minimize the contribution from different regions of the GaN buffer. The measured temperature gradient is in good agreement with a thermal simulation treating the GaN thermal conductivity as homogeneous throughout the layer and including a low thermal conductivity nucleation layer to model the heat flow between the buffer and substrate.

  10. Auger effect in yellow light emitters based on InGaN-AlGaN-GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Huong Ngo, Thi; Gil, Bernard; Valvin, Pierre; Damilano, Benjamin; Lekhal, Kaddour; De Mierry, Philippe

    2016-05-01

    The Auger effect and its impact on the internal quantum efficiency (IQE) of yellow light emitters based on silicon-doped InGaN-AlGaN-GaN quantum wells are investigated by power dependence measurement and using an ABC model. Photoluminescence intensity recorded as a function of excitation power density follows a linear dependence up to a threshold P T that depends on the design of the sample. Above this threshold, the variation of the intensity becomes sublinear, which is characteristic of the onset of Auger recombination processes. After extracting the evolution of IQE with pump power from the experimental data, we use a modified ABC modeling that includes the residual n-type doping to estimate the contribution of different recombination channels. We find that the Auger effect dominates in the high-excitation regime. In addition, we find that intercalating an AlGaN-strain-compensating layer reduces not only the coefficient of nonradiative recombination rates but also reduces the onset of Auger recombination.

  11. Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs.

    PubMed

    Zhang, Yan; Ning, Yongqiang; Zhang, Lisen; Zhang, Jinsheng; Zhang, Jianwei; Wang, Zhenfu; Zhang, Jian; Zeng, Yugang; Wang, Lijun

    2011-06-20

    Vertical-cavity surface-emitting lasers emitting at 808 nm with unstrained GaAs/Al0.3Ga0.7As, tensilely strained GaAs(x)P(1-x)/Al0.3Ga0.7As and compressively strained In(1-x-y)Ga(x)Al(y)As/Al0.3Ga0.7As quantum-well active regions have been investigated. A comprehensive model is presented to determine the composition and width of these quantum wells. The numerical simulation shows that the gain peak wavelength is near 800 nm at room temperature for GaAs well with width of 4 nm, GaAs0.87P0.13 well with width of 13 nm and In0.14Ga0.74Al0.12As well with width of 6 nm. Furthermore, the output characteristics of the three designed quantum-well VCSELs are studied and compared. The results indicate that In0.14Ga0.74Al0.12As is the most appropriate candidate for the quantum well of 808-nm VCSELs.

  12. Characterization of OMVPE-grown AlGaInN heterostructures

    SciTech Connect

    Bour, D.P.; Chung, H.F.; Goetz, W.

    1997-12-31

    The authors report on the OMVPE growth and characterization of AlGaInN and its heterostructures, including measurements of electrical properties (Hall), optical properties (photo- and cathodo-luminescence), structural characteristics (x-ray diffraction and TEM); and also the emission of InGaN/AlGaN heterostructures subject to optical and electrical pumping.

  13. GaAs/AlGaAs resonant tunneling diodes with a GaInNAs absorption layer for telecommunication light sensing

    NASA Astrophysics Data System (ADS)

    Hartmann, F.; Langer, F.; Bisping, D.; Musterer, A.; Höfling, S.; Kamp, M.; Forchel, A.; Worschech, L.

    2012-04-01

    Al0.6Ga0.4As/GaAs/Al0.6Ga0.4As double-barrier resonant-tunneling diodes (RTD) were grown by molecular beam epitaxy with a nearby, lattice-matched Ga0.89In0.11N0.04As0.96 absorption layer. RTD mesas with ring contacts and an aperture for optical excitation of charge carriers were fabricated on the epitaxial layers. Electrical and optical properties of the RTDs were investigated for different thicknesses of a thin GaAs spacer layer incorporated between the AlGaAs tunnel barrier adjacent to the GaInNAs absorption layer. Illumination of the RTDs with laser light of 1.3 μm wavelength leads to a pronounced photo-effect with a sensitivities of around 103 A/W.

  14. Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission

    SciTech Connect

    Lekhal, K.; Damilano, B. De Mierry, P.; Vennéguès, P.; Ngo, H. T.; Rosales, D.; Gil, B.; Hussain, S.

    2015-04-06

    Yellow/amber (570–600 nm) emitting In{sub x}Ga{sub 1−x}N/Al{sub y}Ga{sub 1−y}N/GaN multiple quantum wells (QWs) have been grown by metal organic chemical vapor deposition on GaN-on- sapphire templates. When the (Al,Ga)N thickness of the barrier increases, the room temperature photoluminescence is red-shifted while its yield increases. This is attributed to an increase of the QW internal electric field and an improvement of the material quality due to the compensation of the compressive strain of the In{sub x}Ga{sub 1−x}N QWs by the Al{sub y}Ga{sub 1−y}N layers, respectively.

  15. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  16. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-01

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  17. Ultrasensitive detection of Hg2+ using oligonucleotide-functionalized AlGaN/GaN high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Junjie; Li, Jiadong; Miao, Bin; Wang, Jine; Wu, Zhengyan; Wu, Dongmin; Pei, Renjun

    2014-08-01

    An oligonucleotide-functionalized ion sensitive AlGaN/GaN high electron mobility transistor (HEMT) was fabricated to detect trace amounts of Hg2+. The advantages of ion sensitive AlGaN/GaN HEMT and highly specific binding interaction between Hg2+ and thymines were combined. The current response of this Hg2+ ultrasensitive transistor was characterized. The current increased due to the accumulation of Hg2+ ions on the surface by the highly specific thymine-Hg2+-thymine recognition. The dynamic linear range for Hg2+ detection has been determined in the concentrations from 10-14 to 10-8 M and a detection limit below 10-14 M level was estimated, which is the best result of AlGaN/GaN HEMT biosensors for Hg2+ detection till now.

  18. Characterization of AlInN/AlN/GaN Heterostructures with Different AlN Buffer Thickness

    NASA Astrophysics Data System (ADS)

    Çörekçi, S.; Dugan, S.; Öztürk, M. K.; Çetin, S. Ş.; Çakmak, M.; Özçelik, S.; Özbay, E.

    2016-07-01

    Two AlInN/AlN/GaN heterostructures with 280-nm- and 400-nm-thick AlN buffer grown on sapphire substrates by metal-organic chemical vapor deposition (MOCVD) have been investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and Hall-effect measurements. The symmetric (0002) plane with respect to the asymmetric (10bar{1}2) plane in the 280-nm-thick AlN buffer has a higher crystal quality, as opposed to the 400-nm-thick buffer. The thinner buffer improves the crystallinity of both (0002) and (10bar{1}2) planes in the GaN layers, it also provides a sizeable reduction in dislocation density of GaN. Furthermore, the lower buffer thickness leads to a good quality surface with an rms roughness of 0.30 nm and a dark spot density of 4.0 × 108 cm-2. The optical and transport properties of the AlInN/AlN/GaN structure with the relatively thin buffer are compatible with the enhancement in its structural quality, as verified by XRD and AFM results.

  19. Host Atom Diffusion in Ternary Fe-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Rohrberg, Diana; Spitzer, Karl-Heinz; Dörrer, Lars; Kulińska, Anna J.; Borchardt, Günter; Fraczkiewicz, Anna; Markus, Torsten; Jacobs, Michael H. G.; Schmid-Fetzer, Rainer

    2014-01-01

    In the Fe-rich corner of the Fe-Cr-Al ternary phase diagram, both interdiffusion experiments [1048 K to 1573 K (775 °C to 1300 °C)] and 58Fe tracer diffusion experiments [873 K to 1123 K (600 °C to 850 °C)] were performed along the Fe50Cr50-Fe50Al50 section. For the evaluation of the interdiffusion data, a theoretical model was used which directly yields the individual self-diffusion coefficients of the three constituents and the shift of the original interface of the diffusion couple through inverse modeling. The driving chemical potential gradients were derived using a phenomenological Gibbs energy function which was based on thoroughly assessed thermodynamic data. From the comparison of the individual self-diffusivities of Fe as obtained from interdiffusion profiles and independent 58Fe tracer diffusivities, the influence of the B2-A2 order-disorder transition becomes obvious, resulting in a slightly higher activation enthalpy for the bcc-B2 phase and a significantly lower activation entropy for this phase.

  20. Dipole defects in Al2O3:Mg,Cr.

    PubMed

    Blak, A R; Gobbi, V; Ayres, F

    2002-01-01

    In this work, dipole defects are investigated applying the thermally stimulated depolarisation currents (TSDC) technique. The TSDC spectra of Al2O3 doped with Mg and Cr show two bands centred at 230 K and 250 K, respectively. The maximum intensity of the bands increases linearly with the polarisation field, a typical behaviour of defects with dipole origin. An increase of the band at 250 K with gamma irradiation has been observed and a thermal decrease of the bands for heat treatments between 1000 K and 1400 K. Above this temperature the bands are partially recovered. Impurity neutron activation analysis shows that magnesium. chromium and iron content varies from 15 to 60 ppm. Optical absorption (AO) measurements show a broad band centred in 2.6 eV (21000 cm(-1)) associated with trapped holes localised on an O- ion adjacent to a cation site which is deficient in positive charge. It has been assumed that a substitutional Mg2+ ion occupies the cation site near a trapped hole on one of the six oxygen ions surrounding the magnesium impurity giving rise to the dipole responsible for the observed TSDC bands. Calculations carried out through defect simulation methods confirm that the probability of Al3+ being replaced by Mg2+ is higher than Mn2+, Co2+, Fe2+ and Cr2+. PMID:12382829

  1. High-temperature molecular beam epitaxial growth of AlGaN/GaN on GaN templates with reduced interface impurity levels

    SciTech Connect

    Koblmueller, G.; Chu, R. M.; Raman, A.; Mishra, U. K.; Speck, J. S.

    2010-02-15

    We present combined in situ thermal cleaning and intentional doping strategies near the substrate regrowth interface to produce high-quality AlGaN/GaN high electron mobility transistors on semi-insulating (0001) GaN templates with low interfacial impurity concentrations and low buffer leakage. By exposing the GaN templates to an optimized thermal dissociation step in the plasma-assisted molecular beam epitaxy environment, oxygen, carbon, and, to lesser extent, Si impurities were effectively removed from the regrowth interface under preservation of good interface quality. Residual Si was further compensated by C-doped GaN via CBr{sub 4} to yield highly resistive GaN buffer layers. Improved N-rich growth conditions at high growth temperatures were then utilized for subsequent growth of the AlGaN/GaN device structure, yielding smooth surface morphologies and low residual oxygen concentration with large insensitivity to the (Al+Ga)N flux ratio. Room temperature electron mobilities of the two-dimensional electron gas at the AlGaN/GaN interface exceeded >1750 cm{sup 2}/V s and the dc drain current reached {approx}1.1 A/mm at a +1 V bias, demonstrating the effectiveness of the applied methods.

  2. AlGaN/GaN-based HEMTs for electrical stimulation of neuronal cell cultures

    NASA Astrophysics Data System (ADS)

    Witte, H.; Warnke, C.; Voigt, T.; de Lima, A.; Ivanov, I.; Vidakovic-Koch, T. R.; Sundmacher, K.; Krost, A.

    2011-09-01

    Unipolar source-drain voltage pulses of GaN/AlGaN-high electron mobility transistors (HEMTs) were used for stimulation of cultured neuronal networks obtained from embryonic rat cerebral cortex. The HEMT sensor was grown by metal organic vapour phase epitaxy on a 2 inch sapphire substrate consisting of 10 single HEMTs concentrically arranged around the wafer centre. Electrolytic reactions between the HEMT sensor surface and the culture medium were not detected using cyclic voltammetry. During voltage pulses and resulting neuronal excitation, capacitances were recharged giving indications of the contributions of the AlGaN and AlOx isolation layers between the two-dimensional electron gas channel and the neuron culture. The resulting threshold current for stimulation of neuron activity strongly depended on the culture and HEMT position on the sensor surface under consideration which was caused by different impedances of each neuron culture and position within the culture. The differences of culture impedances could be explained by variations of composition, thickness and conductivity of the culture areas.

  3. Contribution of alloy clustering to limiting the two-dimensional electron gas mobility in AlGaN/GaN and InAlN/GaN heterostructures: Theory and experiment

    SciTech Connect

    Ahmadi, Elaheh; Mishra, Umesh K.; Chalabi, Hamidreza; Kaun, Stephen W.; Shivaraman, Ravi; Speck, James S.

    2014-10-07

    The influence of alloy clustering on fluctuations in the ground state energy of the two-dimensional electron gas (2DEG) in AlGaN/GaN and InAlN/GaN heterostructures is studied. We show that because of these fluctuations, alloy clustering degrades the mobility even when the 2DEG wavefunction does not penetrate the alloy barrier unlike alloy disorder scattering. A comparison between the results obtained for AlGaN/GaN and InAlN/GaN heterostructures shows that alloy clustering limits the 2DEG mobility to a greater degree in InAlN/GaN heterostructures. Our study also reveals that the inclusion of an AlN interlayer increases the limiting mobility from alloy clustering. Moreover, Atom probe tomography is used to demonstrate the random nature of the fluctuations in the alloy composition.

  4. Remotely sensed transport in microwave photoexcited GaAs/AlGaAs two-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Ye, Tianyu; Mani, R. G.; Wegscheider, W.

    2013-06-01

    We demonstrate a strong correlation between the magnetoresistive response and the concurrent microwave reflection from the microwave photo-excited GaAs/AlGaAs two-dimensional electron system (2DES). These correlations are followed as a function of the microwave power, the microwave frequency, and the applied current. Notably, the character of the reflection signal remains unchanged even when the current is switched off in the GaAs/AlGaAs Hall bar specimen. The results suggest a perceptible microwave-induced change in the electronic properties of the 2DES, even in the absence of an applied current.

  5. Enhancement of Rashba interaction in GaAs/AlGaAs quantum wells due to the incorporation of bismuth

    SciTech Connect

    Simmons, R. A.; Jin, S. R.; Sweeney, S. J.; Clowes, S. K.

    2015-10-05

    This paper reports on the predicted increase in the Rashba interaction due to the incorporation of Bi in GaAs/AlGaAs heterostructures. Band structure parameters obtained from the band anti-crossing theory have been used in combination with self-consistent Schrödinger-Poisson calculations and k.p models to determine the electron spin-splitting caused by structural inversion asymmetry and increased spin-orbit interaction. A near linear seven fold increase in the strength of the Rashba interaction is predicted for a 10% concentration of Bi in a GaAsBi/AlGaAs quantum well heterostructure.

  6. Surface donor states distribution post SiN passivation of AlGaN/GaN heterostructures

    SciTech Connect

    Goyal, Nitin; Fjeldly, Tor A.

    2014-07-21

    In this paper, we present a physics based analytical model to describe the effect of SiN passivation on two-dimensional electron gas density and surface barrier height in AlGaN/GaN heterostructures. The model is based on an extraction technique to calculate surface donor density and surface donor level at the SiN/AlGaN interface. The model is in good agreement with the experimental results and promises to become a useful tool in advanced design and characterization of GaN based heterostructures.

  7. The beam properties of high-power InGaAs/AlGaAs quantum well lasers

    NASA Astrophysics Data System (ADS)

    Wu, Xiang; Lu, Zukang; Wang, You; Takiguchi, Yoshihiro; Kan, Hirofumi

    2003-11-01

    The vertical beam quality factor of the fundamental TE propagating mode for InGaAs/AlGaAs SCH DQW lasers emitting at 940 nm is investigated by using the transfer matrix method and the non-paraxial vectorial moment theory for non-paraxial beams. An experimental approach is given for the measurement of the equivalent vertical beam quality factor of an InGaAs/AlGaAs SCH DQW laser. It has been shown that the vertical beam quality factor Mx2 is always larger than unity, whether the thickness of the active region of LDs is much smaller than the emission wavelength or not.

  8. Effect of Al-mole fraction in Al{sub x}Ga{sub 1−x}N grown by MOCVD

    SciTech Connect

    Jayasakthi, M. Ramesh, R. Prabakaran, K. Loganathan, R. Kuppulingam, B. Balaji, M. Arivazhagan, P. Sankaranarayanan, S. Singh, Shubra Baskar, K.

    2014-04-24

    AlGaN/AlN layers were grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. The Al{sub x}Ga{sub 1−x}N layer composition was varied from 15% to 25%. The crystalline quality, thickness and aluminum (Al) composition of AlGaN were determined using high resolution X-ray diffraction (HRXRD). The growth rate decreases on increasing Al composition. Reciprocal space mapping (RSM) was used to estimate the strain and relaxation between AlGaN and AlN. The optical properties of AlGaN layers were investigated by room temperature Photoluminescence (PL). The AlGaN peak shifts towards lower wavelength with Al composition. The surface morphology of AlGaN was studied by atomic force microscopy (AFM). Root mean square (RMS) roughness values were found to be increased in AlGaN layers with composition.

  9. Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys in the temperature range of 700-750 deg C

    NASA Technical Reports Server (NTRS)

    Chiang, K. T.; Meier, G. H.

    1980-01-01

    The effect of SO3 pressure in the gas phase on the Na2SO4 induced hot corrosion of Co-Cr, Ni-Cr, and Co-Cr-Al alloys was studied in the temperature range 700 to 750 C. The degradation of the Co-Cr and Ni-Cr alloys was found to be associated with the formation of liquid mixed sulfates (CoSO4-Na2SO4 or NiSO4-Na2SO4) which provided a selective dissolution of the Co or Ni and a subsequent sulfidation oxidation mode of attack which prevented the maintenance of a protective Cr2O3 film. A clear mechanism was not developed for the degradation of Co-Cr-Al alloys. A pitting corrosion morphology was induced by a number of different mechanisms.

  10. Linear and nonlinear optical properties of GaAs/Al{sub x}Ga{sub 1−x}As/GaAs/Al{sub y}Ga{sub 1−y}As multi-shell spherical quantum dot

    SciTech Connect

    Emre Kavruk, Ahmet E-mail: aekavruk@gmail.com; Koc, Fatih; Sahin, Mehmet E-mail: mehsahin@gmail.com

    2013-11-14

    In this work, the optical properties of GaAs/Al{sub x}Ga{sub 1−x}As/GaAs/Al{sub y}Ga{sub 1−y}As multi-shell quantum dot heterostructure have been studied as a function of Al doping concentrations for cases with and without a hydrogenic donor atom. It has been observed that the absorption coefficient strength and/or resonant absorption wavelength can be adjusted by changing the Al content of inner-barrier and/or outer-barrier regions. Besides, it has been shown that the donor atom has an important effect on the control of the electronic and optical properties of the structure. The results have been presented as a function of the Al contents of the inner-barrier x and outer-barrier y regions and probable physical reasons have been discussed.

  11. Electrical properties of ferromagnetic Ni{sub 2}MnGa and Co{sub 2}CrGa Heusler alloys

    SciTech Connect

    Kourov, N. I. Marchenkov, V. V.; Pushin, V. G.; Belozerova, K. A.

    2013-07-15

    The electrical properties of ferromagnetic Ni{sub 2}MnGa and Co{sub 2}CrGa Heusler alloys are measured in the temperature range 4-900 K. The effect of the energy gap near the Fermi level in the electronic spectrum on the behavior of electrical resistivity and absolute differential thermopower is discussed.

  12. Persistent photoconductivity in AlGaN/GaN heterojunction channels caused by the ionization of deep levels in the AlGaN barrier layer

    SciTech Connect

    Murayama, H.; Akiyama, Y.; Niwa, R.; Sakashita, H.; Sakaki, H.; Kachi, T.; Sugimoto, M.

    2013-12-04

    Time-dependent responses of drain current (I{sub d}) in an AlGaN/GaN HEMT under UV (3.3 eV) and red (2.0 eV) light illumination have been studied at 300 K and 250 K. UV illumination enhances I{sub d} by about 10 %, indicating that the density of two-dimensional electrons is raised by about 10{sup 12} cm{sup −2}. When UV light is turned off at 300 K, a part of increased I{sub d} decays quickly but the other part of increment is persistent, showing a slow decay. At 250 K, the majority of increment remains persistent. It is found that such a persistent increase of I{sub d} at 250 K can be partially erased by the illumination of red light. These photo-responses are explained by a simple band-bending model in which deep levels in the AlGaN barrier get positively charged by the UV light, resulting in a parabolic band bending in the AlGaN layer, while some potion of those deep levels are neutralized by the red light.

  13. Monitoring and Controlling of Strain During MOCVD of AlGaN for UV Optoelectronics

    SciTech Connect

    Han, J.; Crawford, M.H.; Shul, R.J.; Hearne, S.J.; Chason, E.; Figiel, J.J.; Banas, M.

    1999-01-14

    The grown-in tensile strain, due to a lattice mismatch between AlGaN and GaN, is responsible for the observed cracking that seriously limits the feasibility of nitride-based ultraviolet (UV) emitters. We report in-situ monitoring of strain/stress during MOCVD of AlGaN based on a wafer-curvature measurement technique. The strain/stress measurement confirms the presence of tensile strain during growth of AlGaN pseudomorphically on a thick GaN layer. Further growth leads to the onset of stress relief through crack generation. We find that the growth of AlGaN directly on low-temperature (LT) GaN or AlN buffer layers results in a reduced and possibly controllable strain.

  14. Detection of prostate-specific antigen with biomolecule-gated AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Li, Jia-dong; Cheng, Jun-jie; Miao, Bin; Wei, Xiao-wei; Xie, Jie; Zhang, Jin-cheng; Zhang, Zhi-qiang; Wu, Dong-min

    2014-07-01

    In order to improve the sensitivity of AlGaN/GaN high electron mobility transistor (HEMT) biosensors, a simple biomolecule-gated AlGaN/GaN HEMT structure was designed and successfully fabricated for prostate specific antigen (PSA) detection. UV/ozone was used to oxidize the GaN surface and then a 3-aminopropyl trimethoxysilane (APTES) self-assembled monolayer was bound to the sensing region. This monolayer serves as a binding layer for attachment of the prostate specific antibody (anti-PSA). The biomolecule-gated AlGaN/GaN HEMT sensor shows a rapid and sensitive response when the target prostate-specific antigen in buffer solution was added to the antibody-immobilized sensing area. The current change showed a logarithm relationship against the PSA concentration from 0.1 pg/ml to 0.993 ng/ml. The sensitivity of 0.215% is determined for 0.1 pg/ml PSA solution. The above experimental result of the biomolecule-gated AlGaN/GaN HEMT biosensor suggested that this biosensor might be a useful tool for prostate cancer screening.

  15. Theoretical model of the polarization Coulomb field scattering in strained AlGaN/AlN/GaN heterostructure field-effect transistors

    SciTech Connect

    Luan, Chongbiao; Lin, Zhaojun Zhao, Jingtao; Wang, Yutang; Lv, Yuanjie; Chen, Hong; Wang, Zhanguo

    2014-07-28

    The theoretical model of the polarization Coulomb field scattering (PCF) caused by the polarization charge density variation at the AlGaN/AlN interface in strained AlGaN/AlN/GaN heterostructure field-effect transistors has been developed. And the theoretical values for the electron drift mobility, which were calculated using the Matthiessen's rule that includes PCF, piezoelectric scattering, polar optical-phonon scattering, and interface roughness scattering, are in good agreement with our experimental values. Therefore, the theoretical model for PCF has been confirmed.

  16. Influence of strain induced by AlN nucleation layer on the electrical properties of AlGaN/GaN heterostructures on Si(111) substrate

    SciTech Connect

    Christy, Dennis; Watanabe, Arata; Egawa, Takashi

    2014-10-15

    The crack-free metal-organic chemical vapor deposition (MOCVD) grown AlGaN/GaN heterostructures on Si substrate with modified growth conditions of AlN nucleation layer (NL) and its influence on the electrical and structural properties of conductive GaN layer are presented. From the Hall electrical measurements, a gradual decrease of two-dimensional electron gas (2DEG) concentration near heterointerface as the function of NL thickness is observed possibly due to the reduction in difference of piezoelectric polarization charge densities between AlGaN and GaN layers. It also indicates that the minimum tensile stress and a relatively less total dislocation density for high pressure grown NL can ensure a 20 % increment in mobility at room temperature irrespective of the interface roughness. The thickness and pressure variations in NL and the subsequent changes in growth mode of AlN contributing to the post growth residual tensile stress are investigated using X-ray diffraction and Raman scattering experiments, respectively. The post growth intrinsic residual stress in top layers of heterostructures arises from lattice mismatches, NL parameters and defect densities in GaN. Hence, efforts to reduce the intrinsic residual stress in current conducting GaN layer give an opportunity to further improve the electrical characteristics of AlGaN/GaN device structures on Si.

  17. Influence of strain induced by AlN nucleation layer on the electrical properties of AlGaN/GaN heterostructures on Si(111) substrate

    NASA Astrophysics Data System (ADS)

    Christy, Dennis; Watanabe, Arata; Egawa, Takashi

    2014-10-01

    The crack-free metal-organic chemical vapor deposition (MOCVD) grown AlGaN/GaN heterostructures on Si substrate with modified growth conditions of AlN nucleation layer (NL) and its influence on the electrical and structural properties of conductive GaN layer are presented. From the Hall electrical measurements, a gradual decrease of two-dimensional electron gas (2DEG) concentration near heterointerface as the function of NL thickness is observed possibly due to the reduction in difference of piezoelectric polarization charge densities between AlGaN and GaN layers. It also indicates that the minimum tensile stress and a relatively less total dislocation density for high pressure grown NL can ensure a 20 % increment in mobility at room temperature irrespective of the interface roughness. The thickness and pressure variations in NL and the subsequent changes in growth mode of AlN contributing to the post growth residual tensile stress are investigated using X-ray diffraction and Raman scattering experiments, respectively. The post growth intrinsic residual stress in top layers of heterostructures arises from lattice mismatches, NL parameters and defect densities in GaN. Hence, efforts to reduce the intrinsic residual stress in current conducting GaN layer give an opportunity to further improve the electrical characteristics of AlGaN/GaN device structures on Si.

  18. Al Incorporation at All Growth Stages of Al x Ga1- x N Epilayers Using SiN Treatment

    NASA Astrophysics Data System (ADS)

    Benzarti, Z.; Halidou, I.; Touré, A.; El Jani, B.

    2016-02-01

    Al compositional distribution of Al x Ga1- x N epilayers grown on SiN-treated sapphire substrate by atmospheric pressure metalorganic vapor phase epitaxy is investigated. The growth process was interrupted at various stages allowing a systematic study of Al x Ga1- x N epilayers during the smoothing process. A transition from three-dimensional (3D) to two-dimensional (2D) growth mode is revealed by in situ laser reflectometry (λ = 632.8 nm) as well as by atomic force microscopic images. Then, ion mass spectrometry analysis was performed to obtain the solid Al composition ( x) profile as well as by photoluminescence measurements. Moreover, the in situ reflectivity signal is simulated; thereby Al x Ga1- x N growth rate is derived and compared with that of GaN layer in order to study the effect of the aluminum incorporation on the growth mechanism. It is worth emphasising that the growth mode of Al x Ga1- x N layers is dictated by SiN treatment, which influences the Al compositional distribution. Electron mobility and refractive index against the thickness of Al x Ga1- x N layers have similar trends, which confirm a competitive mechanism between growth mode and Al incorporation. Therefore, the correlation between the Al composition and morphological, optical, and electrical properties of Al x Ga1- x N layers is established.

  19. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  20. Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States

    USGS Publications Warehouse

    Wilshire, H.G.; Shervais, J.W.

    1975-01-01

    Ultramafic xenoliths in basalts from the western United States are divided into Al-augite and Cr-diopside groups. The Al-augite group is characterized by Al, Ti-rich augites, comparatively Fe-rich olivine and orthopyroxene, and Al-rich spinel, the Cr-diopside group by Cr-rich clinopyroxene and spinel and by Mg-rich olivine and pyroxenes. Both groups have a wide range of subtypes, but the Al-augite group is dominated by augite-rich varieties, and the Cr-diopside group by olivine-rich lherzolites. ?? 1975.

  1. Cyclic Oxidation of FeCrAlY/Al2O3 Composites

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.

    1999-01-01

    Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.

  2. Nanoscale Cellular Structures at Phase Boundaries of Ni-Cr-Al-Ti and Ni-Cr-Mo-Al-Ti Superalloys

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Dunand, David C.

    2015-06-01

    The microstructural evolution of Ni-20 pct Cr wires was studied during pack cementation where Al and Ti, with and without prior cementation with Mo, are deposited to the surface of the Ni-Cr wires and subsequently homogenized in their volumes. Mo deposition promotes the formation of Kirkendall pores and subsequent co-deposition of Al and Ti creates a triple-layered diffusional coating on the wire surface. Subsequent homogenization drives the alloying element to distribute evenly in the wires which upon further heat treatment exhibit the γ + γ' superalloy structure. Unexpectedly, formation of cellular structures is observed at some of the boundaries between primary γ' grains and γ matrix grains. Based on additional features ( i.e., ordered but not perfectly periodic structure, confinement at γ + γ' phase boundaries as a cellular film with ~100 nm width, as well as lack of topologically close-packed phases), and considering that similar, but much larger, microstructures were reported in commercial superalloys, it is concluded that the present cellular structure solidified as a thin film, composed of eutectic γ + γ' and from which the γ' phase was subsequently etched, which was created by incipient melting of a region near the phase boundary with high solute segregation.

  3. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    NASA Astrophysics Data System (ADS)

    Zawadzki, Wlodek; Raymond, Andre; Kubisa, Maciej

    2016-05-01

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov-de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov-de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of negatively

  4. In-situ monitoring of GaSb, GaInAsSb, and AlGaAsSb

    SciTech Connect

    Vineis, C.J. |; Wang, C.A.; Jensen, K.F.; Breiland, W.G.

    1998-06-01

    Suitability of silicon photodiode detector arrays for monitoring the spectral reflectance during epitaxial growths of GaSb, AlGaAsSb, and GaInAsSb, which have cutoff wavelengths of 1.7, 1.2, and 2.3 {micro}m, respectively, is demonstrated. These alloys were grown lattice matched to GaSb in a vertical rotating-disk reactor, which was modified to accommodate near normal reflectance without affecting epilayer uniformity. By using a virtual interface model, the growth rate and complex refractive index at the growth temperature are extracted for these alloys over the 600 to 950 nm spectral range. Excellent agreement is obtained between the extracted growth rate and that determined by ex-situ measurement. Optical constants are compared to theoretical predictions based on an existing dielectric function model for these materials. Furthermore, quantitative analysis of the entire reflectance spectrum yields valuable information on the approximate thickness of overlayers on the pregrowth substrate.

  5. Dual Band Deep Ultraviolet AlGaN Photodetectors

    NASA Technical Reports Server (NTRS)

    Aslam, S.; Miko, L.; Stahle, C.; Franz, D.; Pugel, D.; Guan, B.; Zhang, J. P.; Gaska, R.

    2007-01-01

    We report on the design, fabrication and characterization of a back-illuminated voltage bias selectable dual-band AlGaN UV photodetector. The photodetector can separate UVA and W-B band radiation by bias switching a two terminal n-p-n homojunction structure that is fabricated in the same pixel. When a forward bias is applied between the top and bottom electrodes, the detector can sense UV-A and reject W-B band radiation. Alternatively, under reverse bias, the photodetector can sense UV-B and reject UV-A band radiation.

  6. Anisotropic optical polarization dependence on internal strain in AlGaN epilayer grown on Al x Ga1-x N templates

    NASA Astrophysics Data System (ADS)

    Long, Hanling; Wu, Feng; Zhang, Jun; Wang, Shuai; Chen, Jingwen; Zhao, Chong; Feng, Zhe Chuan; Xu, Jintong; Li, Xiangyang; Dai, Jiangnan; Chen, Changqing

    2016-10-01

    Anisotropic optical polarization of AlGaN has been one of the major challenges responsible for the poor efficiency of AlGaN-based ultraviolet light emitting diodes (UV LEDs). In this work, we experimentally investigated the effect of internal strain on the optical polarization of AlGaN epilayers which were pseudomorphically grown on Al x Ga1-x N templates with Al composition changing from 0.1 to 0.42. High-resolution x-ray diffraction and reciprocal space mapping were conducted to determine the crystal quality and strain status. Polarization-dependent photoluminescence (PL) measurement was performed to study the degree of polarization (DOP) of light emission from lateral facet of the AlGaN epilayer. The result showed that the DOP increased from  -0.69 to  -0.24 with the in-plane strain changing from tensile status (1.19%) to compressive status (-0.70%) and it exhibited a strong dependence of the DOP on the strain. These results demonstrated that the compressive in-plane strain could facilitate TE mode emission from AlGaN, which providing a potential way to enhance the surface light emission of AlGaN-based UV LEDs via strain management of the active region.

  7. Influence of substrate quality on structural properties of AlGaN/GaN superlattices grown by molecular beam epitaxy

    SciTech Connect

    Schubert, F.; Merkel, U.; Schmult, S.; Mikolajick, T.

    2014-02-28

    Short-period AlGaN/GaN superlattices were established as versatile test structures to investigate the structural properties of molecular beam epitaxy (MBE)-grown GaN and AlGaN layers and their dependence on the GaN substrate quality. X-ray diffractometry data of the investigated superlattices allow access to relevant structural parameters such as aluminum mole fraction and layer thicknesses. The occurrence of theoretically predicted intense high-order satellite peaks and pronounced interface fringes in the diffraction pattern reflects abrupt interfaces and perfect 2-dimensional growth resulting in smooth surfaces. The data unambiguously demonstrate that the structural quality of the MBE grown layers is limited by the structural properties of the GaN substrate.

  8. Energy levels of GaAs/AlxGa1-xAs/AlAs spherical quantum dot with an impurity

    NASA Astrophysics Data System (ADS)

    Boz, Figen Karaca; Nisanci, Beyza; Aktas, Saban; Okan, S. Erol

    2016-11-01

    We have calculated the energy levels and the radial probability distributions of an electron with an impurity in a spherical quantum dot which is layered as GaAs/AlxGa1-xAs/AlAs. The numerical method used is the fourth-order Runge-Kutta method in the framework of the effective mass approximation. The variation of the energy levels have been calculated as functions of the radius of the GaAs sphere and the thickness of AlxGa1-xAs spherical layer considering effective mass and dielectric constant mismatches. The results have presented the importance of the geometry on the electronic properties of the spherical GaAs/AlxGa1-xAs/AlAs quantum dot.

  9. Photoluminescence related to the 2-dimensional electron gas in modulation doped GaN/AlGaN structures

    SciTech Connect

    Bergman, J.P.; Lundstroem, T.; Monemar, B.; Amano, H.; Akasaki, I.

    1996-11-01

    The authors report low temperature photoluminescence (PL) spectra related to a two-dimensional electron gas confined at a GaN/AlGaN heterointerface. The recombination between electrons confined in the bottom of the interface potential and photoexcited holes causes a broad PL emission about 50 meV below the bulk GaN exciton emission. A second emission, attributed to the recombination of electrons in the first excited level at the interface, is also observed close to the excitonic band gap in GaN. The data agrees with a self consistent calculation of the energy levels and the electron concentration at the interface. Similar PL data from a modulation doped AlGaN/GaN quantum well exhibit three PL emissions related to the 2D electron gas.

  10. Effects of GaN interlayer on the transport properties of lattice-matched AlInN/AlN/GaN heterostructures

    SciTech Connect

    Wu, F.; Gao, K. H. Li, Z. Q.; Lin, T.; Zhou, W. Z.

    2015-04-21

    We study the effects of GaN interlayer on the transport properties of two-dimensional electron gases confined in lattice-matched AlInN/AlN/GaN heterostructures. It is found that the Hall mobility is evidently enhanced when an additional ultrathin GaN interlayer is introduced between AlInN and AlN layers. The enhancement of the Hall mobility is especially remarkable at low temperature. The high Hall mobility results in a low sheet resistance of 23 Ω/◻ at 2 K. Meanwhile, Shubnikov-de Haas oscillations (SdH) are also remarkably enhanced due to the existence of GaN interlayer. The enhancement of the SdH oscillations is related to the larger quantum mobility μ{sub q} owing to the suppression of the interface roughness, alloy disorder, and ionized impurity scatterings by the GaN interlayer.

  11. Optical constants of GaAs-AlGaAs superlattices and multiple quantum wells

    NASA Technical Reports Server (NTRS)

    Kahen, K. B.; Leburton, J. P.

    1986-01-01

    The optical properties of GaAs-Al sub x Ga sub 1-xAs superlattices are calculated as a function of the frequency and superlattice structure. The comutations are performed using a partition method which combines the vectors k.p method with the pseudopotential technique. The influence of the super-structure on the electronic properties of the systems is accounted for by appropriate quantization conditions. The anisotropy and structure dependence of the dielectric constant result mainly from the contribution of the gamma region while the contributions of the other regions of the Brillouin zone are rather insensitive to the superlattice structure. The superlattice index of refraction values are shown to attain maxima at the various quantized transition energies, where for certain structures, the difference between the refractive indices of the superlattices and its corresponding Al sub x Ga sub 1-xAs alloy can be as large as 2%. In general results are in good agreement with the experimental data.

  12. Self-assembled GaN quantum wires on GaN/AlN nanowire templates.

    PubMed

    Arbiol, Jordi; Magen, Cesar; Becker, Pascal; Jacopin, Gwénolé; Chernikov, Alexey; Schäfer, Sören; Furtmayr, Florian; Tchernycheva, Maria; Rigutti, Lorenzo; Teubert, Jörg; Chatterjee, Sangam; Morante, Joan R; Eickhoff, Martin

    2012-12-01

    We present a novel approach for self-assembled growth of GaN quantum wires (QWRs) exhibiting strong confinement in two spatial dimensions. The GaN QWRs are formed by selective nucleation on {112[combining macron]0} (a-plane) facets formed at the six intersections of {11[combining macron]00} (m-plane) sidewalls of AlN/GaN nanowires used as a template. Based on microscopy observations we have developed a 3D model explaining the growth mechanism of QWRs. We show that the QWR formation is governed by self-limited pseudomorphic growth on the side facets of the nanowires (NWs). Quantum confinement in the QWRs is confirmed by the observation of narrow photoluminescence lines originating from individual QWRs with emission energies up to 4.4 eV. Time-resolved photoluminescence studies reveal a short decay time (~120 ps) of the QWR emission. Capping of the QWRs with AlN allows enhancement of the photoluminescence, which is blue-shifted due to compressive strain. The emission energies from single QWRs are modelled assuming a triangular cross-section resulting from self-limited growth on a-plane facets. Comparison with the experimental results yields an average QWR diameter of about 2.7 nm in agreement with structural characterization. The presented results open a new route towards controlled realization of one-dimensional semiconductor quantum structures with a high potential both for fundamental studies and for applications in electronics and in UV light generation.

  13. Identification of the Ga interstitial in Al(x)Ga(1-x)As by optically detected magnetic resonance

    NASA Technical Reports Server (NTRS)

    Kennedy, T. A.; Spencer, M. G.

    1986-01-01

    A new optically detected magnetic resonance spectrum in Al(x)Ga(1-x)As is reported and assigned to native Ga interstitials. Luminescence-quenching signals were observed over the energy region from 0.75 to 1.1 eV. The optically detected magnetic resonance is nearly isotropic, with spin-Hamiltonian parameters g = 2.025 + or - 0.006, central hyperfine splitting A(Ga-69) = 0.050 + or - 0.001/cm, and A(Ga-71) = 0.064 + or - 0.001/cm for H near the 001 line. The strong hyperfine coupling denotes an electronic state of A1 symmetry, which current theories predict for the Ga interstitial but not the Ga antisite. The slight anisotropy probably indicates that the Ga(i) is paired with a second, unknown defect.

  14. Nitrogen-concentration control in GaNAs/AlGaAs quantum wells using nitrogen δ-doping technique

    SciTech Connect

    Mano, Takaaki; Jo, Masafumi; Kuroda, Takashi; Noda, Takeshi; Sugimoto, Yoshimasa; Sakuma, Yoshiki; Elborg, Martin; Sakoda, Kazuaki

    2014-05-15

    GaNAs/Al{sub 0.35}Ga{sub 0.65}As multiple quantum wells (MQWs) with nitrogen δ-doping were fabricated on GaAs (100) substrates by plasma-assisted molecular beam epitaxy. High controllability of nitrogen-concentrations in the MQWs was achieved by tuning nitrogen δ-doping time. The maximum nitrogen concentration in the MQWs was 2.8%. The MQWs exhibit intense, narrow photoluminescence emission.

  15. Corrosion and Discharge Behaviors of Al-Mg-Sn-Ga-In in Different Solutions

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yin, Xiang; Yan, Yang; Dai, Yilong; Fan, Sufeng; Qiao, Xueyan; Yu, Kun

    2016-08-01

    Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga-0.05 wt.%In and Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga alloys were prepared by melting, casting and cold rolling. Corrosion and discharge behaviors of the two experimental alloys were investigated by electrochemical measurement, self-corrosion rate measurement, air battery testing, and scanning electron microscopy. The results showed that Al-Mg-Sn-Ga-In alloy exhibited higher electrochemical activity than Al-Mg-Sn-Ga alloy in 2 M NaCl solution, while it showed lower electrochemical activity than Al-Mg-Sn-Ga alloy in 4 M NaOH solution. By comparison with the air battery based on Al-Mg-Sn-Ga alloy, the battery with Al-Mg-Sn-Ga-In alloy cannot exhibit better discharge performance in 4 M NaOH electrolyte. However, the performance of the air battery based on Al-Mg-Sn-Ga-In alloy was greatly improved due to the In-rich inclusions and the uniform corroded morphology in 2 M NaCl electrolyte. Thus, Al-Mg-Sn-Ga-In alloy was a good anode material for Al-air battery in 2 M NaCl electrolyte.

  16. A 1100+ V AlGaN/GaN-Based Planar Schottky Barrier Diode without Edge Termination

    NASA Astrophysics Data System (ADS)

    Cao, Dong-Sheng; Lu, Hai; Chen, Dun-Jun; Han, Ping; Zhang, Rong; Zheng, You-Dou

    2011-01-01

    AlGaN/GaN-based planar Schottky barrier diodes with various spacings between ohmic and Schottky contacts are fabricated without any edge termination. The reverse leakage current of the devices quickly saturates at low reverse bias when the two-dimensional electron gas (2DEG) at the AlGaN/GaN interface is fully depleted. The corresponding breakdown voltage is found to follow a linear dependence on contact spacing and exceeds 1100 V at a contact spacing of 20 μm, yielding a high V2BR/RON value of > 280 MW·cm-2. The observations are tentatively explained by a “natural super-junction" theory, in which ionized surface states at front surface of the AlGaN barrier have to be neutralized by reverse surface leakage current from the Schottky electrode.

  17. Aging properties of AlGaAs/GaAs high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Daiminger, Franz X.; Dorsch, Friedhelm; Heinemann, Stefan

    1998-04-01

    AlGaAs/GaAs high power diode lasers with a nominal output power of 15W were aged at different conditions. At a heatsink temperature of 25 degrees C aging at constant current (CC) and constant power (CP) mode is compared for aging times of 6000 hours. We derived an end-of-life criteria that results in the same lifetime for CC and CP operation assuming identical degradation mechanisms in both cases. The degradation observed differs only significantly beyond 3000-4000 hours of aging with increasing degradation for CP operation. In constant current mode the heatsink temperature is increased resulting in a junction temperature of about 80 degrees C. Assuming an Arrhenius relation the activation energy is estimated. It turns out that different activation energies can be derived either by taking the degradation of the output power at the elevated temperature or at the reference temperature respectively.

  18. Large linear magnetoresistance in a GaAs/AlGaAs heterostructure

    SciTech Connect

    Aamir, Mohammed Ali Goswami, Srijit Ghosh, Arindam; Baenninger, Matthias; Farrer, Ian; Ritchie, David A.; Tripathi, Vikram; Pepper, Michael

    2013-12-04

    We report non-saturating linear magnetoresistance (MR) in a two-dimensional electron system (2DES) at a GaAs/AlGaAs heterointerface in the strongly insulating regime. We achieve this by driving the gate voltage below the pinch-off point of the device and operating it in the non-equilibrium regime with high source-drain bias. Remarkably, the magnitude of MR is as large as 500% per Tesla with respect to resistance at zero magnetic field, thus dwarfing most non-magnetic materials which exhibit this linearity. Its primary advantage over most other materials is that both linearity and the enormous magnitude are retained over a broad temperature range (0.3 K to 10 K), thus making it an attractive candidate for cryogenic sensor applications.

  19. Electrically biased GaAs/AlGaAs heterostructures for enhanced detection of bacteria

    NASA Astrophysics Data System (ADS)

    Aziziyan, Mohammad R.; Hassen, Walid M.; Dubowski, Jan J.

    2016-03-01

    We have examined the influence of electrical bias on immobilization of bacteria on the surface of GaAs/AlGaAs heterostructures, functionalized with an alkanethiol based architecture. A mixture of biotinylated polyethylene glycol (PEG) thiol and hexadecanethiol was applied to attach neutravidin and antibodies targeting specific immobilization of Legionella pneumophila. An electrochemical setup was designed to bias biofunctionalized samples with the potential measured versus silver/silver chloride reference electrode in a three electrode configuration system. The immobilization efficiency has been examined with fluorescence microscopy after tagging captured bacteria with fluorescein labeled antibodies. We demonstrate more than 2 times enhanced capture of Legionella pneumophila, suggesting the potential of electrically biased biochips to deliver enhanced sensitivity in detecting these bacteria.

  20. High-Voltage AlGaN/GaN-Based Lateral Schottky Barrier Diodes

    NASA Astrophysics Data System (ADS)

    Kang, He; Wang, Quan; Xiao, Hong-Ling; Wang, Cui-Mei; Jiang, Li-Juan; Feng, Chun; Chen, Hong; Yin, Hai-Bo; Wang, Xiao-Liang; Wang, Zhan-Guo; Hou, Xun

    2014-06-01

    Lateral Schottky barrier diodes (SBDs) on AlGaN/GaN heterojunctions are fabricated and studied. The characteristics of the fabricated SBDs with different Schottky contact diameters and different Schottky-Ohmic contact spacings are investigated. The breakdown voltage can be increased by either increasing the Schottky-Ohmic contact spacing or increasing the Schottky contact diameter. However, the specific on-resistance is increased at the same time. A high breakdown voltage of 1400 V and low reverse leakage current below 20nA are achieved by the device with a Schottky contact diameter of 100 μm and a contact spacing of 40 μm, yielding a high V2BR/RON,sp value of 194 MW.cm-2.

  1. Small-signal model parameter extraction for AlGaN/GaN HEMT

    NASA Astrophysics Data System (ADS)

    Le, Yu; Yingkui, Zheng; Sheng, Zhang; Lei, Pang; Ke, Wei; Xiaohua, Ma

    2016-03-01

    A new 22-element small signal equivalent circuit model for the AlGaN/GaN high electron mobility transistor (HEMT) is presented. Compared with the traditional equivalent circuit model, the gate forward and breakdown conductions (G gsf and G gdf) are introduced into the new model to characterize the gate leakage current. Additionally, for the new gate-connected field plate and the source-connected field plate of the device, an improved method for extracting the parasitic capacitances is proposed, which can be applied to the small-signal extraction for an asymmetric device. To verify the model, S-parameters are obtained from the modeling and measurements. The good agreement between the measured and the simulated results indicate that this model is accurate, stable and comparatively clear in physical significance.

  2. A dimer PT -symmetric model simulated in GaAs/AlGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Meng, Li-Chen; Zhang, Wen-Jing; Liu, Jibing; Xie, Xiao-Tao

    2016-05-01

    We perform the possibility to generate a dimer PT -symmetric model based on a double lambda four-level system in GaAs/AlGaAs quantum wells with biexcitonic transitions. By presenting the detuning management and modulating the Rabi frequencies of the two strong coupling laser fields, we show that the PT -symmetric model can be realized by the spatial evolution of the weak probe laser and four-wave mixing (FWM)-generated field along the propagation direction. The two weak fields in our model may be used to simulate two laser propagating in two PT -symmetric parallel waveguides. The diffraction effect also can be studied in some conditions. Our scheme offers two advantages: the complex refractive index is controlled by the strong coupling fields; the symmetry energy exchange between a dimer PT -symmetric structure is guaranteed by the four-wave mixing process. The present investigation may provide research opportunities in optical experiments.

  3. SEMICONDUCTOR DEVICES: A high-performance enhancement-mode AlGaN/GaN HEMT

    NASA Astrophysics Data System (ADS)

    Zhihong, Feng; Shengyin, Xie; Rui, Zhou; Jiayun, Yin; Wei, Zhou; Shujun, Cai

    2010-08-01

    An enhancement-mode AlGaN/GaN HEMT with a threshold voltage of 0.35 V was fabricated by fluorine plasma treatment. The enhancement-mode device demonstrates high-performance DC characteristics with a saturation current density of 667 mA/mm at a gate bias of 4 V and a peak transconductance of 201 mS/mm at a gate bias of 0.8 V. The current-gain cut-off frequency and the maximum oscillation frequency of the enhancement-mode device with a gate length of 1 μm are 10.3 GHz and 12.5 GHz, respectively, which is comparable with the depletion-mode device. A numerical simulation supported by SIMS results was employed to give a reasonable explanation that the fluorine ions act as an acceptor trap center in the barrier layer.

  4. Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection

    NASA Astrophysics Data System (ADS)

    Thapa, Resham; Alur, Siddharth; Kim, Kyusang; Tong, Fei; Sharma, Yogesh; Kim, Moonil; Ahyi, Claude; Dai, Jing; Wook Hong, Jong; Bozack, Michael; Williams, John; Son, Ahjeong; Dabiran, Amir; Park, Minseo

    2012-06-01

    Label-free electrical detection of deoxyribonucleic acid (DNA) hybridization was demonstrated using an AlGaN/GaN high electron mobility transistor (HEMT) based transducer with a biofunctionalized gate. The HEMT DNA sensor employed the immobilization of amine-modified single strand DNA on the self-assembled monolayers of 11-mercaptoundecanoic acid. The sensor exhibited a substantial current drop upon introduction of complimentary DNA to the gate well, which is a clear indication of the hybridization. The application of 3 base-pair mismatched target DNA showed little change in output current characteristics of the transistor. Therefore, it can be concluded that our DNA sensor is highly specific to DNA sequences.

  5. Proton implantation for the isolation of AlGaAs/GaAs quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Szerling, A.; Kosiel, K.; Kozubal, M.; Myśliwiec, M.; Jakieła, R.; Kuc, M.; Czyszanowski, T.; Kruszka, R.; Pągowska, K.; Karbownik, P.; Barcz, A.; Kamińska, E.; Piotrowska, A.

    2016-07-01

    The novel fabrication scheme of the mid-infrared (∼9.5 μm) Al0.45Ga0.55As/GaAs plasmon-enhanced-waveguide quantum cascade laser (QCL) is reported. The electric isolation was made exclusively by 6.5 μm-deep proton implantation. The applied implantation allowed us to suppress the current spreading and at the same time enabled the laser radiation confinement without any mesa formation. A galvanic gold layer at least 3.5 μm thick covering the top ohmic contact was used as a mask for implantation. This mask was not removed after the implantation, but it served for heat spreading from the laser. A considerable reduction in the necessary technological steps was obtained with the presented novel fabrication scheme, in comparison with the standard mesa-etching-based method.

  6. Helium-ion damage and nanowire fabrication in GaAs/AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Knoedler, C. M.

    1990-08-01

    Nanometer scale features (75-1000 nm) were defined on GaAs/AlGaAs heterostructure surfaces by electron beam patterning. The use of low-voltage, helium-ion damage laterally confined the two dimensional electron gas to these patterned areas. Electrical characterization of the conducting channels as well as the ion-damaged material outside the patterned areas included measurements of the Hall mobility, the carrier concentration and the sheet resistance at various temperatures. The major problem encountered with the nanowires was an increase in the wire sheet resistance over the as-grown value at 4.2 K. Process-related factors contributed to this increase, but the most probable cause is boundary scattering at the lateral edges of the nanowires.

  7. Phonon-pumped terahertz gain in n-type GaAs/AlGaAs superlattices

    NASA Astrophysics Data System (ADS)

    Sun, Gregory; Soref, Richard A.

    2001-05-01

    Local population inversion and far-IR gain are proposed and theoretically analyzed for an unbiased n-doped GaAs/Al0.15Ga0.85As superlattice pumped solely by phonons. The lasing transition occurs at the Brillouin zone boundary of the superlattice wave vector kz between the two conduction minibands CB1 and CB2 of the opposite curvature in kz space. The proposed waveguided structure is contacted above and below by heat sinks at 300 K and 77 K, respectively. Atop the superlattice, a heat buffer layer confines longitudinal optical phonons for enhanced optical-phonon pumping of CB1 electrons. A gain of 345 cm-1 at 4.5 THz is predicted for a doping density of 2.8×1016cm-3.

  8. Exciton binding energies and absorption in intermixed GaAs-AlGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Meney, Alistair T.

    1992-12-01

    The optical properties of excitons in layer-intermixed GaAs-AlGaAs quantum wells are studied theoretically. The electronic dispersion is obtained using the 6×6 Luttinger-Kohn Hamiltonian for the valence bands, and an accurate expression for the conduction band dispersion which includes the effects of nonparabolicity and warping to fourth order in k. The HH1-CB1 (1s) and LH1-CB1(1s) exciton binding energies are calculated as a function of diffusion time. The absorption for both TE and TM polarization is obtained at several wavelengths, and is seen to decrease significantly with increased intermixing. The decrease in absorption is larger for narrow wells, where the effects of intermixing are more pronounced for a given diffusion time.

  9. AlGaAs/GaAs laser diode bars (λ = 808 nm) with improved thermal stability

    SciTech Connect

    Marmalyuk, A A; Ladugin, M A; Andreev, A Yu; Telegin, K Yu; Yarotskaya, I V; Meshkov, A S; Konyaev, V P; Sapozhnikov, S M; Lebedeva, E I; Simakov, V A

    2013-10-31

    Two series of AlGaAs/GaAs laser heterostructures have been grown by metal-organic vapour phase epitaxy, and 808-nm laser diode bars fabricated from the heterostructures have been investigated. The heterostructures differed in waveguide thickness and quantum well depth. It is shown that increasing the barrier height for charge carriers in the active region has an advantageous effect on the output parameters of the laser sources in the case of the heterostructures with a narrow symmetric waveguide: the slope of their power – current characteristics increased from 0.9 to 1.05 W A{sup -1}. Thus, the configuration with a narrow waveguide and deep quantum well is better suited for high-power laser diode bars under hindered heat removal conditions. (lasers)

  10. Small signal modeling of AlGaN/GaN HEMTs with consideration of CPW capacitances

    NASA Astrophysics Data System (ADS)

    Jiangfeng, Du; Peng, Xu; Kang, Wang; Chenggong, Yin; Yang, Liu; Zhihong, Feng; Shaobo, Dun; Qi, Yu

    2015-03-01

    Given the coplanar waveguide (CPW) effect on AlGaN/GaN high electron mobility transistors at a high frequency, the traditional equivalent circuit model cannot accurately describe the electrical characteristics of the device. The admittance of CPW capacitances is large when the frequency is higher than 40 GHz; its impact on the device cannot be ignored. In this study, a small-signal equivalent circuit model considering CPW capacitance is provided. To verify the model, S-parameters are obtained from the modeling and measurements. A good agreement is observed between the simulation and measurement results, indicating the reliability of the model. Project supported by the National Natural Science Foundation of China (Nos. 61376078, 61274086) and the Fundamental Research Funds for the Central Universities of China (No. ZYGX2012J041).

  11. Room temperature spin transport in undoped (110) GaAs/AlGaAs quantum wells

    SciTech Connect

    Yokota, Nobuhide Aoshima, Yohei; Ikeda, Kazuhiro; Kawaguchi, Hitoshi

    2014-02-17

    We are reporting on our first observation of a micrometer-order electron spin transport in a (110) GaAs/AlGaAs multiple quantum well (QW) at room temperature using a space- and time-resolved Kerr rotation technique. A 37-μm transport was observed within an electron spin lifetime of 1.2 ns at room temperature when using an in-plane electric field of 1.75 kV/cm. The spatio-temporal profiles of electron spins were well reproduced by the spin drift-diffusion equations coupled with the Poisson equation, supporting the validity of the measurement. The results suggest that (110) QWs are useful as a spin transport layer for semiconductor spintronic devices operating at room temperature.

  12. Electrically detected nuclear magnetic resonance in GaAs/AlGaAs-based quantum point contacts

    NASA Astrophysics Data System (ADS)

    Keane, Zachary; Godfrey, Matthew; Burke, Adam; Chen, Jason; Fricke, Sebastian; Klochan, Oleh; Micolich, Adam; Beere, Harvey; Ritchie, Dave; Trunov, Kirill; Reuter, Dirk; Wieck, Andreas; Hamilton, Alex

    2011-03-01

    Nuclear magnetic resonance (NMR) is a well-known technique with widespread applications in physics, chemistry and medicine. Conventional NMR studies use inductive coils to detect the magnetic field produced by precessing nuclear spins; this approach requires on the order of 1012 spins for detection. Recently, resistive detection of NMR through the hyperfine interaction has been demonstrated with electrons in mesoscopic 2- and 1-dimensional devices based on high-quality GaAs/AlGaAs heterostructures. These studies are typically sensitive to 108 spins, enabling NMR on much smaller sample volumes. Holes are predicted to have much weaker nuclear spin coupling than electrons, which could be relevant to the emerging fields of spintronics and quantum information processing. We present a preliminary comparison between the magnitude of the NMR signal in electron and hole quantum point contacts.

  13. Spectroscopy in the gas phase with GaAs/AlGaAs quantum-cascade lasers.

    PubMed

    Hvozdara, L; Gianordoli, S; Strasser, G; Schrenk, W; Unterrainer, K; Gornik, E; Murthy, C S; Kraft, M; Pustogow, V; Mizaikoff, B; Inberg, A; Croitoru, N

    2000-12-20

    We demonstrate what we believe is the first application of the recently developed electrically pumped GaAs/AlGaAs quantum-cascade lasers in a spectroscopic gas-sensing system by use of hollow waveguides. Laser light with an emission maximum at 10.009 microm is used to investigate the mid-infrared absorption of ethene at atmospheric pressure. We used a 434-mm-long silver-coated silica hollow waveguide as a sensing element, which served as a gas absorption cell. Different mixtures of helium and ethene with known concentrations are flushed through the waveguide while the laser radiation that passes through the waveguide is analyzed with a Fourier-transform infrared spectrometer. The experimentally obtained discrete ethene spectrum agrees well with the calculated spectrum. A detection threshold of 250 parts per million is achieved with the current setup.

  14. The electron g factor in AlGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Li, Ming; Feng, Zhi-Bo.; Fan, Libo; Zhao, Yilong; Han, Hongpei; Feng, Tuanhui

    2016-04-01

    Considering the Rashba and Zeeman effects, the effective Hamiltonian for electrons in AlGaN/GaN quantum wells (QWs) with the magnetic field is obtained, and the effective transverse and longitudinal g-factor (g⊥,//), are derived. The small anisotropy of the g factor in bulk wurtzite materials is clearly shown, while the anisotropy in QWs induced by the quantum confined effect is evident. Moreover, the average g factor (g*) depends greatly on the position of the origin along the growth axis (c axis). With increasing well thickness, both g⊥ and g// increase, and the g-factor anisotropy first decreases and then increases slowly. Results show the g-factor and its anisotropy in III-nitride QWs can be modulated by the well thickness, and they are greatly affected by the internal electric field and the quantum confined effect.

  15. Characteristics of time-gated Raman amplification in GaP-AlGaP semiconductor waveguides

    NASA Astrophysics Data System (ADS)

    Tanabe, T.; Suto, K.; Saito, T.; Kimura, T.; Oyama, Y.; Nishizawa, J.

    2003-01-01

    Time-gated Raman amplification in the GaP-AlGaP waveguide is investigated using mode-locked Ti-sapphire pump source with 80 ps pulse width. Logarithmic Raman gain linearly increases with increasing the pump power density as long as the gain is less than about 10 dB. However, with further increasing the pump power it becomes nearly proportional to the square root of the pump power density. This is due to the fact that the equivalent linewidth of the pump pulse is comparable to the spectral full width half maximum of the Raman gain coefficient (24 GHz). Another point is that the amplified pulse broadens as the waveguide length exceeds the optical length corresponding to the pump pulse width because Raman amplification occurs mainly due to backward scattering.

  16. Microwave characterization and modeling of GaAs/AlGaAs heterojunction bipolar transistors

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Romanofsky, Robert R.

    1987-01-01

    The characterization and modeling of a microwave GaAs/AlGaAs heterojunction Bipolar Transistor (HBT) are discussed. The de-embedded scattering parameters are used to derive a small signal lumped element equivalent circuit model using EEsof's Touchstone software package. Each element in the equivalent circuit model is shown to have its origin within the device. The model shows good agreement between the measured and modeled scattering parameters over a wide range of bias currents. Further, the MAG (maximum available power gain) and the h sub 21 (current gain) calculated from the measured data and those predicted by the model are also in good agreement. Consequently, the model should also be capable of predicting the f sub max and the f sub T of other HBTs.

  17. Interaction of Cr(3+) with valence and conduction bands in the long persistent phosphor ZnGa2O4:Cr(3+), studied by ENDOR spectroscopy.

    PubMed

    Binet, Laurent; Sharma, Suchinder K; Gourier, Didier

    2016-09-28

    Cr(3+)-doped zinc gallate ZnGa2O4 is a red-near infrared (IR) long persistent phosphor that can be excited by orange-red light, in the transparency window of living tissues. With this property, persistent luminescence nanoparticles were recently used for in vivo optical imaging of tumors in mice. In order to understand the origin of the excitability of persistent luminescence by visible light in this material, a Q-band ENDOR investigation of (71/69)Ga and (53)Cr nuclei was performed in ZnGa2O4:Cr(3+) to get information on the interaction of Cr(3+) with valence and conduction bands. The positive electron spin density at Ga nuclei revealed a dominant interaction of the (4)A2 ground state of Cr(3+) with the valence band, and a weaker interaction with the conduction band. The latter may occur only in the excited (2)E and (4)T2 states of Cr(3+). It is proposed that when these two interactions are present, pairs of electrons and holes can be generated from excited Cr(3+) in distorted sites undergoing local electric field produced by neighboring defects with opposite charges. PMID:27460505

  18. Interaction of Cr3+ with valence and conduction bands in the long persistent phosphor ZnGa2O4:Cr3+, studied by ENDOR spectroscopy

    NASA Astrophysics Data System (ADS)

    Binet, Laurent; Sharma, Suchinder K.; Gourier, Didier

    2016-09-01

    Cr3+-doped zinc gallate ZnGa2O4 is a red-near infrared (IR) long persistent phosphor that can be excited by orange-red light, in the transparency window of living tissues. With this property, persistent luminescence nanoparticles were recently used for in vivo optical imaging of tumors in mice. In order to understand the origin of the excitability of persistent luminescence by visible light in this material, a Q-band ENDOR investigation of 71/69Ga and 53Cr nuclei was performed in ZnGa2O4:Cr3+ to get information on the interaction of Cr3+ with valence and conduction bands. The positive electron spin density at Ga nuclei revealed a dominant interaction of the 4A2 ground state of Cr3+ with the valence band, and a weaker interaction with the conduction band. The latter may occur only in the excited 2E and 4T2 states of Cr3+. It is proposed that when these two interactions are present, pairs of electrons and holes can be generated from excited Cr3+ in distorted sites undergoing local electric field produced by neighboring defects with opposite charges.

  19. Interaction of Cr(3+) with valence and conduction bands in the long persistent phosphor ZnGa2O4:Cr(3+), studied by ENDOR spectroscopy.

    PubMed

    Binet, Laurent; Sharma, Suchinder K; Gourier, Didier

    2016-09-28

    Cr(3+)-doped zinc gallate ZnGa2O4 is a red-near infrared (IR) long persistent phosphor that can be excited by orange-red light, in the transparency window of living tissues. With this property, persistent luminescence nanoparticles were recently used for in vivo optical imaging of tumors in mice. In order to understand the origin of the excitability of persistent luminescence by visible light in this material, a Q-band ENDOR investigation of (71/69)Ga and (53)Cr nuclei was performed in ZnGa2O4:Cr(3+) to get information on the interaction of Cr(3+) with valence and conduction bands. The positive electron spin density at Ga nuclei revealed a dominant interaction of the (4)A2 ground state of Cr(3+) with the valence band, and a weaker interaction with the conduction band. The latter may occur only in the excited (2)E and (4)T2 states of Cr(3+). It is proposed that when these two interactions are present, pairs of electrons and holes can be generated from excited Cr(3+) in distorted sites undergoing local electric field produced by neighboring defects with opposite charges.

  20. Short-wavelength, mid- and far-infrared intersubband absorption in nonpolar GaN/Al(Ga)N heterostructures

    NASA Astrophysics Data System (ADS)

    Lim, Caroline B.; Beeler, Mark; Ajay, Akhil; Lähnemann, Jonas; Bellet-Amalric, Edith; Bougerol, Catherine; Schörmann, Jörg; Eickhoff, Martin; Monroy, Eva

    2016-05-01

    This paper assesses nonpolar m-oriented GaN:Si/Al(Ga)N heterostructures grown on free-standing GaN for intersubband optoelectronics in the short-wavelength, mid- and far-infrared ranges. Characterization results are compared with reference c-plane samples and interpreted by correlation with self-consistent Schrödinger-Poisson calculations. In the near- and mid-infrared regions, we demonstrate m-GaN/Al(Ga)N multi-quantum-wells exhibiting room-temperature intersubband absorption tunable in the range of 1.5-5.8 µm (827-214 meV), the long wavelength limit being set by the second order of the Reststrahlen band in the GaN substrates. Extending the study to the far-infrared region, low-temperature intersubband transitions in the 1.5-9 THz range (6.3-37.4 meV) are observed in larger m-plane GaN/AlGaN multi-quantum-wells, covering most of the 7-10 THz band forbidden to GaAs-based technologies.

  1. Capping green emitting (Ga,In)N quantum wells with (Al,Ga)N: impact on structural and optical properties

    NASA Astrophysics Data System (ADS)

    Hussain, Sakhawat; Lekhal, Kaddour; Kim-Chauveau, Hyonju; Vennéguès, Philippe; De Mierry, Philippe; Damilano, Benjamin

    2014-03-01

    The difference of growth temperatures between InGaN quantum wells and GaN barriers has detrimental effects on the properties of the wells. Different capping processes of InGaN quantum well with a thin AlGaN layer have been investigated to prevent these effects. Both structural and optical properties of the samples, grown on c-plane sapphire substrates by metalorganic vapor phase epitaxy, were studied through transmission electron microscopy (TEM), x-ray diffraction and room temperature photoluminescence. The average quantum well thickness and its indium composition were determined by digital processing of lattice fringes in cross-sectional TEM images. From the analysis of the well thickness distribution, it is shown that AlGaN as a capping layer helps to compensate an unwanted undulation at the upper InGaN QW-barrier interface. Moreover, when deposited at the same temperature as InGaN, the AlGaN layer is effective in avoiding or reducing the evaporation and/or diffusion of indium from InGaN wells, which results in the thinning of the well. It therefore helps to extend the emission wavelength up to 540 nm with a reduced degradation of the room temperature photoluminescence efficiency.

  2. Deep-level defects and turn-on capacitance recovery characteristics in AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Nakano, Yoshitaka; Irokawa, Yoshihiro; Sumiya, Masatomo

    2015-06-01

    We report on turn-on capacitance recovery measurements as a simple short-time method of evaluating carrier-trapping phenomena in a two-dimensional electron gas (2DEG) in the bulk region of AlGaN/GaN heterostructures, employing their Schottky barrier diodes. Using this technique, we have investigated an in-depth relation between deep-level defects and 2DEG carrier trapping in an AlGaN/GaN heterostructure with a GaN buffer layer containing a high C concentration. Steady-state photo-capacitance spectroscopy measurements revealed three C-related deep-level defects located at ~2.07, ~2.80 and ~3.23 eV below the conduction band in the GaN buffer layer. Additionally, turn-on capacitance recovery measurements showed a large decrease in recovery time under white-light optical illuminations with long-pass filters between 370 and 390 nm. It is concluded that the ~3.23 eV level is mainly responsible for the 2DEG carrier-trapping phenomena in the GaN buffer layer of the AlGaN/GaN heterostructure.

  3. InGaAsSb/AlGaAsSb Heterojunction Phototransistors for Infrared Applications

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. N.; Sulima, Oleg V.; Ismail, Syed; Singh, Upendra N.

    2006-01-01

    High quality infrared (IR) quantum detectors are important for several applications, such as atmospheric remote sensing, chemical detection and absorption spectroscopy. Although several IR detectors are commercially available, with different materials and structures, they provide limited performance regarding the signal-to-noise ratio and the corresponding minimum detectable signal. InGaAsSb/AlGaAsSb heterojunction based phototransistors show strong potential for developing IR sensors with improved performance. In this paper, the performance of a novel npn InGaAsSb/AlGaAsSb heterojunction phototransistor is presented. This performance study is based on experimental characterization of the device dark current, noise and spectral response. Detectivity of 1.7x10(exp 9) cmHz(exp 1/2)/W at 2 microns was obtained at 100 C temperature and 2 V bias voltage. This corresponds to a responsivity of 94.7 A/W and an internal gain of 156 with about 37.7% quantum efficiency. Reducing the temperature to -30 C allows to increase the bias to 3V and enhance the detectivity to 8.7x10(exp 10) cmHz(exp 1/2)/W at the same wavelength, which corresponds to a responsivity of 386.5 A/W and an internal gain of 288.2 with about 83.3% quantum efficiency. The device impulse response and linearity, including the corresponding dynamic range, also are presented. Impulse response analysis indicated a settling time of about 1.1 s at 2V and 100 C, while linearity measurements indicated a constant responsivity in the radiation intensity range of 1.6x10(exp -7) W/sq cm and 31.6 mW/sq cm.

  4. High electron mobility AlGaN/AlN/GaN HEMT structure with a nano-scale AlN interlayer

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chun; Chen, Wen-Ray; Hsu, Yu-Ting; Lin, Jia-Ching; Chang, Kuo-Jen; Lin, Wen-Jen

    2012-10-01

    Epitaxies of AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with different thickness of nano-scale AlN interlayers have been realized by metalorganic chemical vapor deposition (MOCVD) technology. After epitaxy, high resolution X-ray diffraction (HRXRD), temperature-dependent Hall Effect and atomic force microscopy (AFM) measurements were used to characterize the properties of these samples. First, it was found that the Al composition of AlGaN layer increases from 21.6 to 34.2% with increasing the thickness of AlN interlayer from 0 to 5 nm under the same AlGaN growth conditions. This result may due to the influences of compressive stress and Al incorporation induced by the AlN interlayer. Then, we also found that the room-temperature (RT) electron mobility stays higher than 1500 cm2/Vs in the samples within AlN interlayer thickness range of 1.5 nm, on the other hand, the low-temperature (80K) electron mobility drops dramatically from 8180 to 5720 cm2/Vs in the samples with AlN interlayer thickness increasing from 1 to 1.5 nm. Furthermore, it was found that the two-dimensional electron gas (2DEG) density increases from 1.15×1013 to 1.58×1013 cm-2 beyond the AlN interlayer thickness of 1 nm. It was also found that the temperature independent 2DEG densities are observed in the samples with AlN interlayer thickness of 0.5 and 1 nm. The degenerated characteristics of the samples with AlN thickness thicker than 1.5 nm show the degraded crystalline quality which matched the observation of surface defects and small cracks formations from their AFM images. Finally, the 2DEG mobilities of the proposed structures can be achieved as high as 1705 and 8180 cm2/Vs at RT and 80K, respectively.

  5. An analysis of temperature dependent piezoelectric Franz-Keldysh effect in AlGaN

    NASA Astrophysics Data System (ADS)

    Hou, Y. T.; Teo, K. L.; Li, M. F.; Uchida, Kazuo; Tokunaga, Hiroki; Akutsu, Nakao; Matsumoto, Koh

    2000-02-01

    Strong Franz-Keldysh oscillations near the band gap of AlGaN are observed in the contactless electroreflectance (CER) studies of a GaN/InGaN/AlGaN multilayer structure. The line shape analysis of the CER spectra at different temperatures provides an accurate determination of the AlGaN band gap energies and the built-in electric fields. Using the existing data of the thermal expansion coefficients of GaN and sapphire, and the piezoelectric constants of AlGaN, the temperature dependence of the electric field is estimated and is in good agreement with the experimental results between 15 and 300 K. We attribute such electric field to the piezoelectric strain effect.

  6. Ga[sub 13], Al[sub 13], GaAl[sub 12], and chromium-pillared montmorillonites: Acidity and reactivity for cumene conversion

    SciTech Connect

    Bradley, S.M.; Kydd, R.A. )

    1993-05-01

    A comparison has been made of the acidic characters of a series of metal polyoxocation pillar interlayered clay minerals (M-PILCs) by studying the infrared spectra of adsorbed pyridine. These comparisons were made for Ga[sub 13]-, Al[sub 13]- and GaAl[sub 12]-PILCs, and for Na[sup +]-exchanged montmorillonite (Na-STx-1). The Ga[sub 13]-PILC, was found to exhibit the strongest Lewis acid sites, followed by the AL[sub 13]-, and GaAl[sub 12]-PILCs and then by the Ns-STx-1. The relative number of Lewis acid sites, however, was found to be much greater for the GaAl[sub 12]-PILC, particularly after calcination at higher temperatures, indicating that the Ga[sub 13] Lewis acid sites did not have as high a thermal stability. The Broensted acidic characters for the pillared clays depend on the pillar, and follow the general decreasing order of abundance of GaAl[sub 12]-, Al[sub 13], and Ga[sub 13]-PILC when expressed as absorbance per unit mass. When the acidities per unit surface area were estimated, however, the Ga[sub 13]-PILCs were found to have the greatest number. This indicated that while the pillars contribute to the PILC acidities primarily through increasing the exposed phyllosilicate sheet surface areas, there is also a significant effect arising from the acidic characters of the pillars themselves. The dehydrogenation activities of Ga[sub 13]-, GaAl[sub 12]-, Al[sub 13]-, and Na-STx-1, in addition to a chromium polyoxocation-PILC, were compared by observing the products formed upon reaction with the model compound cumene. The Ga[sub 13]- and chromium-PILCs and the Na-Stx-1 exhibited almost exclusively dehydrogenation activities, whereas the Al[sub 13]- and GaAl[sub 12]-PILCs exhibited both cracking and dehydrogenation behaviors. These results prove that the pillars themselves can very strongly effect the catalytic activities of the PILCs. 3 refs., 6 figs., 2 tabs.

  7. Impact of nanomaterial arrangement on the reliability and the electron mobility in AlGaN/GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Vidyakin, S. I.; Gudkov, A. G.; Oganesyan, G. A.; Petrov, V. N.; Sakharov, A. V.; Shabunina, E. I.; Zybin, A. A.; Parnes, Ya M.

    2016-08-01

    The obtained results demonstrate that the improvement of nanomaterial arrangement in AlGaN/GaN HEMT structures quantitatively characterized with the use of a multifractal parameter (the degree of disorder) results in the increase at several times in the electron mobility values at 2DEG channel in HEMT structures and the reliability of HEMT parameters.

  8. Channel Temperature Estimates for Microwave AlGaN/GaN Power HEMTS on SiC and Sapphire

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2003-01-01

    A simple technique to estimate the channel temperature of a generic AlGaN/GaN HEMTs on SiC or Sapphire, while incorporating temperature dependence of the thermal conductivity is presented. The procedure is validated b y comparing it's predictions with the experimentally measured temperatures in devices presented in three recently published articles.

  9. Third element effect in the surface zone of Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Airiskallio, E.; Nurmi, E.; Heinonen, M. H.; Väyrynen, I. J.; Kokko, K.; Ropo, M.; Punkkinen, M. P. J.; Pitkänen, H.; Alatalo, M.; Kollár, J.; Johansson, B.; Vitos, L.

    2010-01-01

    The third element effect to improve the high temperature corrosion resistance of the low-Al Fe-Cr-Al alloys is suggested to involve a mechanism that boosts the recovering of the Al concentration to the required level in the Al-depleted zone beneath the oxide layer. We propose that the key factor in this mechanism is the coexistent Cr depletion that helps to maintain a sufficient Al content in the depleted zone. Several previous experiments related to our study support that conditions for such a mechanism to be functional prevail in real oxidation processes of Fe-Cr-Al alloys.

  10. Plasma chemistries for dry etching GaN, AlN, InGaN and InAlN

    SciTech Connect

    Pearton, S.J.; Vartuli, C.B.; Lee, J.W.; Donovan, S.M.; MacKenzie, J.D.; Abernathy, C.R.; Shul, R.J.; McLane, G.F.; Ren, F.

    1996-04-01

    Etch rates up to 7,000 {angstrom}/min. for GaN are obtained in Cl{sub 2}/H{sub 2}/Ar or BCl{sub 3}/Ar ECR discharges at 1--3mTorr and moderate dc biases. Typical rates with HI/H{sub 2} are about a factor of three lower under the same conditions, while CH{sub 4}/H{sub 2} produces maximum rates of only {approximately}2,000 {angstrom}/min. The role of additives such as SF{sub 6}, N{sub 2}, H{sub 2} or Ar to the basic chlorine, bromine, iodine or methane-hydrogen plasma chemistries are discussed. Their effect can be either chemical (in forming volatile products with N) or physical (in breaking bonds or enhancing desorption of the etch products). The nitrides differ from conventional III-V`s in that bond-breaking to allow formation of the etch products is a critical factor. Threshold ion energies for the onset of etching of GaN, InGaN and InAlN are {ge} 75 eV.

  11. Interface states in Al2O3/AlGaN/GaN metal-oxide-semiconductor structure by frequency dependent conductance technique

    NASA Astrophysics Data System (ADS)

    Liao, Xue-Yang; Zhang, Kai; Zeng, Chang; Zheng, Xue-Feng; En, Yun-Fei; Lai, Ping; Hao, Yue

    2014-05-01

    Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/AlGaN/GaN metal-oxide-semiconductor (MOS) structures. Two types of device structures, namely, the recessed gate structure (RGS) and the normal gate structure (NGS), are studied in the experiment. Interface trap parameters including trap density Dit, trap time constant τit, and trap state energy ET in both devices have been determined. Furthermore, the obtained results demonstrate that the gate recess process can induce extra traps with shallower energy levels at the Al2O3/AlGaN interface due to the damage on the surface of the AlGaN barrier layer resulting from reactive ion etching (RIE).

  12. Study of the effects of GaN buffer layer quality on the dc characteristics of AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Le, Lingcong; Hwang, Ya-Hsi; Kim, Byung-Jae; Ren, Fan; Pearton, Stephen J.; Lind, Aaron G.; Jones, Kevin S.; Kravchenko, I. I.; Zhang, Ming-Lan

    2015-04-21

    Here we studied the effect of buffer layer quality on dc characteristics of AlGaN/GaN high electron mobility (HEMTs). AlGaN/GaN HEMT structures with 2 and 5 μm GaN buffer layers on sapphire substrates from two different vendors with the same Al concentration of AlGaN were used. The defect densities of HEMT structures with 2 and 5 μm GaN buffer layer were 7 × 109 and 5 × 108 cm₋2, respectively, as measured by transmission electron microscopy. There was little difference in drain saturation current or in transfer characteristics in HEMTs on these two types of buffer. However, there was no dispersion observed on the nonpassivated HEMTs with 5 μm GaN buffer layer for gate-lag pulsed measurement at 100 kHz, which was in sharp contrast to the 71% drain current reduction for the HEMT with 2 μm GaN buffer layer.

  13. Study of the effects of GaN buffer layer quality on the dc characteristics of AlGaN/GaN high electron mobility transistors

    DOE PAGES

    Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Le, Lingcong; Hwang, Ya-Hsi; Kim, Byung-Jae; Ren, Fan; Pearton, Stephen J.; Lind, Aaron G.; Jones, Kevin S.; et al

    2015-04-21

    Here we studied the effect of buffer layer quality on dc characteristics of AlGaN/GaN high electron mobility (HEMTs). AlGaN/GaN HEMT structures with 2 and 5 μm GaN buffer layers on sapphire substrates from two different vendors with the same Al concentration of AlGaN were used. The defect densities of HEMT structures with 2 and 5 μm GaN buffer layer were 7 × 109 and 5 × 108 cm₋2, respectively, as measured by transmission electron microscopy. There was little difference in drain saturation current or in transfer characteristics in HEMTs on these two types of buffer. However, there was no dispersionmore » observed on the nonpassivated HEMTs with 5 μm GaN buffer layer for gate-lag pulsed measurement at 100 kHz, which was in sharp contrast to the 71% drain current reduction for the HEMT with 2 μm GaN buffer layer.« less

  14. Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Li, Shuiming; Zhou, Yu; Gao, Hongwei; Dai, Shujun; Yu, Guohao; Sun, Qian; Cai, Yong; Zhang, Baoshun; Liu, Sheng; Yang, Hui

    2016-03-01

    Electrical breakdown characteristics of AlxGa1-xN buffer layers grown on Si(111) are investigated by varying the carbon concentration ([C]: from ˜1016 to 1019 cm-3), Al-composition (x = 0 and 7%), and buffer thickness (from 1.6 to 3.1 μm). A quantitative relationship between the growth conditions and carbon concentration ([C]) is established, which can guide to grow the Ga(Al)N layer with a given [C]. It is found that the carbon incorporation is sensitive to the growth temperature (T) (exponential relationship between [C] and 1/T) and the improvement of breakdown voltage by increasing [C] is observed to be limited when [C] exceeding 1019 cm-3, which is likely due to carbon self-compensation. By increasing the highly resistive (HR) Al0.07Ga0.93N buffer thickness from 1.6 to 3.1 μm, the leakage current is greatly reduced down to 1 μA/mm at a bias voltage of 1000 V.

  15. GaAs and AlGaAs APDs with GaSb absorption regions in a separate absorption and multiplication structure using a hetero-lattice interface

    NASA Astrophysics Data System (ADS)

    Marshall, A. R. J.; Craig, A. P.; Reyner, C. J.; Huffaker, D. L.

    2015-05-01

    Interfacial misfit (IMF) arrays were used to create two APD structures, allowing GaSb absorption layers to be combined with wide-gap multiplication regions, grown using GaAs and Al0.8Ga0.2As, respectively. The GaAs APD represents a proof-of-principle, which is developed in the Al0.8Ga0.2As APD to achieve reduced dark currents, of 5.07 μA cm-2 at 90% of the breakdown voltage, and values for effective k = β/α below 0.2. A random-path-length (RPL) simulation was used to model the excess noise in both structures, taking into account the effects of dead space. It is envisaged that the GaSb absorption regions could be replaced with other materials from the 6.1 Å family, allowing for long-wavelength APDs with reduced dark currents and excess noise.

  16. Near-infrared OPO in an AlGaAs/AlOx waveguide

    NASA Astrophysics Data System (ADS)

    Ozanam, C.; Savanier, M.; Lanco, L.; Lafosse, X.; Andronico, A.; Favero, I.; Ducci, S.; Leo, G.

    2013-12-01

    Within the ambitious quest for an electrically pumped version of the optical parametric oscillator (OPO), we demonstrate the first near-infrared integrated OPO in a direct gap semiconductor. This nonlinear device is based on a selectively oxidized GaAs/AlAs heterostructure, the same "AlOx" technology that is at the heart of VCSEL fabrication. The heterostructure and waveguide design allows for type-I form-birefringent phase matching, with a TM00 pump around 1 μm and TE00 signal and idler around 2 μm. Relying on the high non-resonant χ(2) of GaAs, relatively weak guided-wave optical losses, and monolithic SiO2/TiO2 dichroic Bragg mirrors, we observe a threshold of 210 mW at degeneracy in the continuous-wave regime, with a single-pass-pump doubly resonant scheme. Further improvement can be achieved by adopting a double-pump-pass scheme and, in a more fundamental way, by further optimizing the waveguide optical losses. The latter are induced by a not entirely mastered AlAs oxidation process and are of two distinct types: Rayleighlike scattering at signal and idler wavelength (α <= 1cm-1), due to the interface roughness between GaAs and AlOx layers; and absorption at pump wavelengths (α ≍ 3cm-1), due to volume defects in the GaAs layers adjacent to the aluminum oxide. This result marks a milestone for integrated nonlinear photonics and represents a significant step toward the goal of a broadly tunable coherent light source on chip.

  17. Novel attributes of AlGaN/AlN/GaN/SiC HEMTs with the multiple indented channel

    NASA Astrophysics Data System (ADS)

    Orouji, Ali A.; Ghaffari, Majid

    2015-11-01

    In this paper, a high performance AlGaN/AlN/GaN/SiC High Electron Mobility Transistor (HEMT) with the multiple indented channel (MIC-HEMT) is proposed. The main focus of the proposed structure is based on reduction of the space around the gate, stop of the spread of the depletion region around the source-drain, and decrement of the thickness of the channel between the gate and drain. Therefore, the breakdown voltage increases, meanwhile the elimination of the gate depletion layer extension to source/drain decreases the gate-source and gate-drain capacitances. The optimized results reveal that the breakdown voltage and the drain saturation current increase about 178% and 46% compared with a conventional HEMT (C-HEMT), respectively. Therefore, the maximum output power density is improved by factor 4.1 in comparison with conventional one. Also, the cut-off frequency of 25.2 GHz and the maximum oscillation frequency of 92.1 GHz for the MIC-HEMT are obtained compared to 13 GHz and 43 GHz for that of the C-HEMT and the minimum figure noise decreased consequently of reducing the gate-drain and gate-source capacitances by about 42% and 40%, respectively. The proposed MIC-HEMT shows a maximum stable gain (MSG) exceeding 24.1 dB at 3.1 GHz which the greatest gain is yet reported for HEMTs, showing the potential of this device for high power RF applications.

  18. Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.

    1982-01-01

    The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.

  19. Piezoelectric Effects on the Optical Properties of GaN/Al(x)Ga(1-x)N Multiple Quantum Wells

    SciTech Connect

    Botchkarev, A.; Chow, W.W.; Jiang, H.X.; Kim, H.S.; Lin, J.Y.; Morkoc, H.

    1998-11-10

    Piezoelectric effects on the optical properties of GaN/AlGaN multiple quantum wells (MQWS) have been investigated by picosecond time-resolved photoluminescence (PL) measurements. For MQWS with well thickness 30 and 40 the excitonic transition peak positions at 10 K in continuous wave (CW) spectra are red-shifted with respect to the GaN epilayer by 17 meV and 57 meV, respectively. The time-resolved PL spectra of the 30 and 40 well MQWS reveal that the excitonic transition is in fact blue-shifted at early delay times due to quantum confinement of carriers. The spectral peak position shifts toward lower energies as the delay time increases and becomes red-shifted at longer delay times. We have demonstrated that the results described above is due to the presence of the piezoelectric field in the GaN wells of GaN/AlGaN MQWS subject to elastic strain together with screening of the photoexcited carriers. By comparing experimental and calculation results, we conclude that the piezoelectric field strength in GaN/Al.15G~.85N MQWS has a lower limit value of about 560 kV/cm: The electron and hole wave function distributions have also been obtained. The implication of our findings on the practical applications of GaN based optoelectronic devices is also discussed.

  20. Electrically conducting n-type AlGaN/GaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Yuh-Shiuan; Haq, A. F. M. Saniul; Kao, Tsung-Ting; Mehta, Karan; Shen, Shyh-Chiang; Detchprohm, Theeradetch; Yoder, P. Douglas; Dupuis, Russell D.; Xie, Hongen; Ponce, Fernando A.

    2016-06-01

    We report an electrically conducting 40-pair silicon doped Al0.12Ga0.88N/GaN distributed Bragg reflector (DBR) grown by metalorganic chemical vapor deposition on a silicon doped n-type GaN template. Due to the relatively small lattice mismatch between AlGaN and GaN, strain managing layers are not required for crack-free n-DBR growth. The DBR demonstrates a peak reflectivity of 91.6% at 368 nm with stopband of 11 nm. In addition, the 40-pair n-DBR shows the vertical resistance of 5.5 Ω, which corresponds to bulk resistivity of 0.52 Ω cm, near the maximum measured current of 100 mA.

  1. Deep traps responsible for hysteresis in capacitance-voltage characteristics of AlGaN /GaN heterostructure transistors

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Markov, A. V.; Dabiran, A. M.; Wowchak, A. M.; Osinsky, A. V.; Cui, B.; Chow, P. P.; Pearton, S. J.

    2007-12-01

    The origin of hysteresis in capacitance-voltage (C-V) characteristics was studied for Schottky diodes prepared on AlGaN /GaN transistor structures with GaN (Fe) buffers. The application of reverse bias leads to a shift of C-V curves toward higher positive voltages. The magnitude of the effect is shown to increase for lower temperatures. The phenomenon is attributed to tunneling of electrons from the Schottky gate to localized states in the structure. A technique labeled "reverse" deep level transient spectroscopy was used to show that the deep traps responsible for the hysteresis have activation energies of 0.25, 0.6, and 0.9eV. Comparison with deep trap spectra of GaN buffers and Si doped n-GaN films prepared on GaN buffers suggests that the traps in question are located in the buffer layer.

  2. Strain dependence on polarization properties of AlGaN and AlGaN-based ultraviolet lasers grown on AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Mita, Seiji; Tweedie, James

    2015-06-08

    Since the band ordering in AlGaN has a profound effect on the performance of UVC light emitting diodes (LEDs) and even determines the feasibility of surface emitting lasers, the polarization properties of emitted light from c-oriented AlGaN and AlGaN-based laser structures were studied over the whole composition range, as well as various strain states, quantum confinements, and carrier densities. A quantitative relationship between the theoretical valence band separation, determined using k•p theory, and the experimentally measured degree of polarization is presented. Next to composition, strain was found to have the largest influence on the degree of polarization while all other factors were practically insignificant. The lowest crossover point from the transverse electric to transverse magnetic polarized emission of 245 nm was found for structures pseudomorphically grown on AlN substrates. This finding has significant implications toward the efficiency and feasibility of surface emitting devices below this wavelength.

  3. MAX phase - Alumina composites via elemental and exchange reactions in the Tin+1ACn systems (A=Al, Si, Ga, Ge, In and Sn)

    NASA Astrophysics Data System (ADS)

    Cuskelly, Dylan; Richards, Erin; Kisi, Erich

    2016-05-01

    Extension of the aluminothermal exchange reaction synthesis of Mn+1AXn phases to systems where the element 'A' is not the reducing agent was investigated in systems TiO2-A-Al-C for A=Al, Si, Ga, Ge, In and Sn as well as Cr2O3-Ga-Al-C. MAX phase-Al2O3 composites were made in all systems except those with A=Ga or In. The effectiveness of conversion to MAX phases was generally in the range 63-96% without optimisation of starting ratios. Optimisation in the Ti-Si-C system gave a MAX phase component with >98% Ti3SiC2.

  4. High electron mobility recovery in AlGaN/GaN 2DEG channels regrown on etched surfaces

    NASA Astrophysics Data System (ADS)

    Chan, Silvia H.; Keller, Stacia; Tahhan, Maher; Li, Haoran; Romanczyk, Brian; DenBaars, Steven P.; Mishra, Umesh K.

    2016-06-01

    This paper reports high two-dimensional electron gas mobility attained from the regrowth of the AlGaN gating layer on ex situ GaN surfaces. To repair etch-damaged GaN surfaces, various pretreatments were conducted via metalorganic chemical vapor deposition, followed by a regrown AlGaN/GaN mobility test structure to evaluate the extent of recovery. The developed treatment process that was shown to significantly improve the electron mobility consisted of a N2 + NH3 pre-anneal plus an insertion of a 4 nm or thicker GaN interlayer prior to deposition of the AlGaN gating layer. Using the optimized process, a high electron mobility transistor (HEMT) device was fabricated which exhibited a high mobility of 1450 cm2 V-1 s-1 (R sh = 574 ohm/sq) and low dispersion characteristics. The additional inclusion of an in situ Al2O3 dielectric into the regrowth process for MOS-HEMTs still preserved the transport properties near etch-impacted areas.

  5. Localized TiSi and TiN phases in Si/Ti/Al/Cu Ohmic contacts to AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Yoon, Seonno; Song, Yunwon; Lee, Seung Min; Lee, Hi-Deok; Oh, Jungwoo

    2016-05-01

    Microstructural changes in Si/Ti/Al/Cu (10/40/60/50 nm) Ohmic contacts to AlGaN/GaN heterostructure were investigated for complementary metal-oxide semiconductor compatible processes. Si/Ti/Al/Cu metallization exhibited a low specific contact resistance of 3.6 × 10-6 Ω-cm2 and contact resistance of 0.46 Ω-mm when a Si interfacial layer was used. Without a designated barrier metal, TiSix alloys that formed in the metallic region effectively suppressed Cu diffusion. The shallow TiN junction in AlGaN/GaN was attributed to TiSix in the metallic regions. Microstructural changes were detected by systematic physical characterization.

  6. Three-dimensional nanoscale study of Al segregation and quantum dot formation in GaAs/AlGaAs core-shell nanowires

    SciTech Connect

    Mancini, L.; Blum, I.; Vurpillot, F.; Rigutti, L.; Fontana, Y.; Conesa-Boj, S.; Francaviglia, L.; Russo-Averchi, E.; Heiss, M.; Morral, A. Fontcuberta i; Arbiol, J.

    2014-12-15

    GaAs/Al-GaAs core-shell nanowires fabricated by molecular beam epitaxy contain quantum confining structures susceptible of producing narrow photoluminescence (PL) and single photons. The nanoscale chemical mapping of these structures is analyzed in 3D by atom probe tomography (APT). The study allows us to confirm that Al atoms tend to segregate within the AlGaAs shells towards the vertices of the hexagons defining the nanowire cross section. We also find strong alloy fluctuations remaining AlGaAs shell, leading occasionally to the formation of quantum dots (QDs). The PL emission energies predicted in the framework of a 3D effective mass model for a QD analyzed by APT and the PL spectra measured on other nanowires from the same growth batch are consistent within the experimental uncertainties.

  7. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure.

    PubMed

    Wang, Weiying; Lu, Huimin; Fu, Lei; He, Chenguang; Wang, Mingxing; Tang, Ning; Xu, Fujun; Yu, Tongjun; Ge, Weikun; Shen, Bo

    2016-08-01

    Staggered AlGaN quantum wells (QWs) are designed to enhance the transverse-electric (TE) polarized optical emission in deep ultraviolet (DUV) light- emitting diodes (LED). The optical polarization properties of the conventional and staggered AlGaN QWs are investigated by a theoretical model based on the k·p method as well as polarized photoluminescence (PL) measurements. Based on an analysis of the valence subbands and momentum matrix elements, it is found that AlGaN QWs with step-function-like Al content in QWs offers much stronger TE polarized emission in comparison to that from conventional AlGaN QWs. Experimental results show that the degree of the PL polarization at room temperature can be enhanced from 20.8% of conventional AlGaN QWs to 40.2% of staggered AlGaN QWs grown by MOCVD, which is in good agreement with the theoretical simulation. It suggests that polarization band engineering via staggered AlGaN QWs can be well applied in high efficiency AlGaN-based DUV LEDs. PMID:27505782

  8. Anisotropic photoluminescence behaviour of vertical AlGaAs structures grown on gratings

    NASA Astrophysics Data System (ADS)

    Vermeire, G.; Yu, Z. Q.; Vermaerke, F.; Buydens, L.; Van Daele, P.; Demeester, P.

    1992-11-01

    The formation of vertical AlGaAs quantum wells during MOVPE growth of AlGaAs layers on submicron gratings has been investigated. The influence of the growth temperature, growth velocity, V/III ratio and the overall Al content has been examined and explained using surface diffusion effects of the group III atoms (or reactant species). 77 K PL measurements show a polarization anisotropy and indicate lateral quantum confinement. Also the growth of QWWs on submicron gratings is reported, showing very large PL intensities and polarization anisotropy. Finally the realization of QWWs has been proposed by growing Al xGa 1- xAs/Al yGa 1- yAs QWs on gratings and based on the different surface mobilities of Ga and Al.

  9. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect

    Pang, Mingjun; Zhan, Yongzhong; Du, Yong

    2013-02-15

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  10. Photoresponse and trap characteristics of transparent AZO-gated AlGaN/GaN HEMT

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Zhao, Meng-Di; He, Yun-Long; Zheng, Xue-Feng; Zhang, Kun; Wei, Xiao-Xiao; Mao, Wei; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue

    2016-10-01

    AZO-gated and Ni/Au-gated AlGaN/GaN HEMTs are fabricated successfully, and an excellent transparency of AZO-gated electrode is achieved. After a negative gate bias stress acts on two kinds of the devices, their photoresponse characteristics are investigated by using laser sources with different wavelengths. The effect of photoresponse on AZO-gated electrode device is more obvious than on Ni/Au-gated electrodes device. The electrons are trapped in the AlGaN barrier of AZO-gated HEMT after it has experienced negative gate bias stress, and then the electrons can be excited effectively after it has been illuminated by the light with certain wavelengths. Furthermore, the trap state density D T and the time constant τ T of the AZO-gated Schottky contact are extracted by fitting the measured parallel conductance in a frequency range from 10 kHz to 10 MHz. The constants of the trap range from about 0.35 μs to 20.35 μs, and the trap state density increased from 1.93 × 1013 eV-1·cm-2 at an energy of 0.33 eV to 3.07 × 1011 eV-1·cm-2 at an energy of 0.40 eV. Moreover, the capacitance and conductance measurements are used to characterize the trapping effects under different illumination conditions in AZO-gated HEMTs. Reduced deep trap states' density is confirmed under the illumination of short wavelength light. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574110, 61574112, and 61106106).

  11. Microstructural stability of Fe-Cr-Al alloys at 450-550 °C

    NASA Astrophysics Data System (ADS)

    Ejenstam, Jesper; Thuvander, Mattias; Olsson, Pär; Rave, Fernando; Szakalos, Peter

    2015-02-01

    Iron-Chromium-Aluminium (Fe-Cr-Al) alloys have been widely investigated as candidate materials for various nuclear applications. Albeit the excellent corrosion resistance, conventional Fe-Cr-Al alloys suffer from α-α‧ phase separation and embrittlement when subjected to temperatures up to 500 °C, due to their high Cr-content. Low-Cr Fe-Cr-Al alloys are anticipated to be embrittlement resistant and provide adequate oxidation properties, yet long-term aging experiments and simulations are lacking in literature. In this study, Fe-10Cr-(4-8)Al alloys and a Fe-21Cr-5Al were thermally aged in the temperature interval of 450-550 °C for times up to 10,000 h, and the microstructures were evaluated mainly using atom probe tomography. In addition, a Kinetic Monte Carlo (KMC) model of the Fe-Cr-Al system was developed. No phase separation was observed in the Fe-10Cr-(4-8)Al alloys, and the developed KMC model yielded results in good agreement with the experimental data.

  12. Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors

    SciTech Connect

    Ťapajna, M. Kuzmík, J.; Hilt, O.; Bahat-Treidel, E.; Würfl, J.

    2015-11-09

    Gate diode conduction mechanisms were analyzed in normally-off p-GaN/AlGaN/GaN high-electron mobility transistors grown on Si wafers before and after forward bias stresses. Electrical characterization of the gate diodes indicates forward current to be limited by channel electrons injected through the AlGaN/p-GaN triangular barrier promoted by traps. On the other hand, reverse current was found to be consistent with carrier generation-recombination processes in the AlGaN layer. Soft breakdown observed after ∼10{sup 5 }s during forward bias stress at gate voltage of 7 V was attributed to formation of conductive channel in p-GaN/AlGaN gate stack via trap generation and percolation mechanism, likely due to coexistence of high electric field and high forward current density. Possible enhancement of localized conductive channels originating from spatial inhomogeneities is proposed to be responsible for the degradation.

  13. Symmetries and optical transitions of hexagonal quantum dots in GaAs/AlGaAs nanowires

    NASA Astrophysics Data System (ADS)

    Svendsen, Guro K.; Skaar, Johannes; Weman, Helge; Dupertuis, Marc-André

    2015-11-01

    We investigate the properties of electronic states and optical transitions in hexagonal GaAs quantum dots within Al0.3Ga0.7As nanowires, grown in axial direction [111]. Such dots are particularly interesting due to their high degree of symmetry. A streamlined postsymmetrization technique based on class operators (PTCO) is developed which enables one to benefit from the insight brought by the maximal symmetrization and reduction of fields (MSRF) approach reported by Dalessi et al. [Phys. Rev. B 81, 125106 (2010), 10.1103/PhysRevB.81.125106], after having solved the Schrödinger equation. Definite advantages of the PTCO are that it does not require modification of existing code for the calculation of the electronic structure, and that it allows to numerically test for elevated symmetries. We show in the frame of a four-band k .p model that despite the fact that the D6 h symmetry of the nanostructure is broken at the microscopic level by the underlying zinc-blende crystal structure, the effect is quite small. Most of the particularities of the electronic states and their optical emission can be understood by symmetry elevation to D6 h and the presence of approximate azimuthal and radial quantum numbers.

  14. Open-Gated pH Sensor Fabricated on an Undoped-AlGaN/GaN HEMT Structure

    PubMed Central

    Abidin, Mastura Shafinaz Zainal; Hashim, Abdul Manaf; Sharifabad, Maneea Eizadi; Rahman, Shaharin Fadzli Abd; Sadoh, Taizoh

    2011-01-01

    The sensing responses in aqueous solution of an open-gated pH sensor fabricated on an AlGaN/GaN high-electron-mobility-transistor (HEMT) structure are investigated. Under air-exposed ambient conditions, the open-gated undoped AlGaN/GaN HEMT only shows the presence of a linear current region. This seems to show that very low Fermi level pinning by surface states exists in the undoped AlGaN/GaN sample. In aqueous solution, typical current-voltage (I-V) characteristics with reasonably good gate controllability are observed, showing that the potential of the AlGaN surface at the open-gated area is effectively controlled via aqueous solution by the Ag/AgCl gate electrode. The open-gated undoped AlGaN/GaN HEMT structure is capable of distinguishing pH level in aqueous electrolytes and exhibits linear sensitivity, where high sensitivity of 1.9 mA/pH or 3.88 mA/mm/pH at drain-source voltage, VDS = 5 V is obtained. Due to the large leakage current where it increases with the negative gate voltage, Nernstian like sensitivity cannot be determined as commonly reported in the literature. This large leakage current may be caused by the technical factors rather than any characteristics of the devices. Surprisingly, although there are some imperfections in the device preparation and measurement, the fabricated devices work very well in distinguishing the pH levels. Suppression of current leakage by improving the device preparation is likely needed to improve the device performance. The fabricated device is expected to be suitable for pH sensing applications. PMID:22163786

  15. Open-gated pH sensor fabricated on an undoped-AlGaN/GaN HEMT structure.

    PubMed

    Abidin, Mastura Shafinaz Zainal; Hashim, Abdul Manaf; Sharifabad, Maneea Eizadi; Rahman, Shaharin Fadzli Abd; Sadoh, Taizoh

    2011-01-01

    The sensing responses in aqueous solution of an open-gated pH sensor fabricated on an AlGaN/GaN high-electron-mobility-transistor (HEMT) structure are investigated. Under air-exposed ambient conditions, the open-gated undoped AlGaN/GaN HEMT only shows the presence of a linear current region. This seems to show that very low Fermi level pinning by surface states exists in the undoped AlGaN/GaN sample. In aqueous solution, typical current-voltage (I-V) characteristics with reasonably good gate controllability are observed, showing that the potential of the AlGaN surface at the open-gated area is effectively controlled via aqueous solution by the Ag/AgCl gate electrode. The open-gated undoped AlGaN/GaN HEMT structure is capable of distinguishing pH level in aqueous electrolytes and exhibits linear sensitivity, where high sensitivity of 1.9 mA/pH or 3.88 mA/mm/pH at drain-source voltage, V(DS) = 5 V is obtained. Due to the large leakage current where it increases with the negative gate voltage, Nernstian like sensitivity cannot be determined as commonly reported in the literature. This large leakage current may be caused by the technical factors rather than any characteristics of the devices. Surprisingly, although there are some imperfections in the device preparation and measurement, the fabricated devices work very well in distinguishing the pH levels. Suppression of current leakage by improving the device preparation is likely needed to improve the device performance. The fabricated device is expected to be suitable for pH sensing applications.

  16. Microstructure/Oxidation/Microhardness Correlations in Gamma-Based and Tau-Based Al-Ti-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Brady, Michael P.; Smialek, J. L.; Humphrey, D. L.

    1994-01-01

    The relationships between alloy microstructure and air oxidation kinetics and alloy microstructure and microhardness in the Al-Ti-Cr system for exposures at 800 C and 1000 C were investigated. The relevant phases were identified as tau (Ll2), gamma (LIO), r-Al2Ti, TiCrAl (laves), and Cr2AI. Protective alumina formation was associated with tau, Al-rich TiCrAl, and gamma/TiCrAl mixtures. Brittleness was associated with the TiCrAl phase and tau decomposition to A12Ti + Cr2AI. It was concluded that two-phase gamma + TiCrAl alloys offer the greatest potential for oxidation resistance and room temperature ductility in the Al-Ti-Cr system.

  17. Exciton dynamics in GaAs/(Al,Ga)As core-shell nanowires with shell quantum dots

    NASA Astrophysics Data System (ADS)

    Corfdir, Pierre; Küpers, Hanno; Lewis, Ryan B.; Flissikowski, Timur; Grahn, Holger T.; Geelhaar, Lutz; Brandt, Oliver

    2016-10-01

    We study the dynamics of excitons in GaAs/(Al,Ga)As core-shell nanowires by continuous-wave and time-resolved photoluminescence and photoluminescence excitation spectroscopy. Strong Al segregation in the shell of the nanowires leads to the formation of Ga-rich inclusions acting as quantum dots. At 10 K, intense light emission associated with these shell quantum dots is observed. The average radiative lifetime of excitons confined in the shell quantum dots is 1.7 ns. We show that excitons may tunnel toward adjacent shell quantum dots and nonradiative point defects. We investigate the changes in the dynamics of charge carriers in the shell with increasing temperature, with particular emphasis on the transfer of carriers from the shell to the core of the nanowires. We finally discuss the implications of carrier localization in the (Al,Ga)As shell for fundamental studies and optoelectronic applications based on core-shell III-As nanowires.

  18. DRAM concept based on the hole gas transient effect in a AlGaN/GaN HEMT

    NASA Astrophysics Data System (ADS)

    Bawedin, M.; Uren, M. J.; Udrea, F.

    2010-06-01

    In this paper, a concept for a 1T-DRAM in AlGaN/GaN based HEMTs is presented for the first time - the Hetero-RAM (HRAM). This memory takes advantage of the natural coexistence of both hole and electron gases and uses hole gas transient and dynamic capacitive coupling effects. It is interesting to note that up to now the hole gas has been considered as parasitic, since it was seen to trigger hysteresis and transient effects within the HEMT output characteristics. We discuss an implementation of the memory concept in a GaN/AlN/AlGaN HEMT structure with a Schottky gate, separated from the source and drain contacts via spacers which are used as storage nodes. The HRAM uses only one transistor and offers non-destructive read, relatively long retention time and fast programming while it is amenable to integration with conventional HEMT based technology.

  19. Effects of low-temperature capping on the optical properties of GaAs/AlGaAs quantum wells

    PubMed Central

    2011-01-01

    We study the effects of low-temperature capping (200-450°C) on the optical properties of GaAs/AlGaAs quantum wells. Photoluminescence measurements clearly show the formation of abundant nonradiative recombination centers in an AlGaAs capping layer grown at 200°C, while there is a slight degradation of the optical quality in AlGaAs capping layers grown at temperatures above 350°C compared to that of a high-temperature capping layer. In addition, the optical quality can be restored by post-growth annealing without any structural change, except for the 200°C-capped sample. PMID:21711596

  20. Focused ion beam etching of nanometer-size GaN/AlGaN device structures and their optical characterization by micro-photoluminescence/Raman mapping

    SciTech Connect

    Kuball, M.; Benyoucef, M.; Morrissey, F.H.; Foxon, C.T.

    2000-07-01

    The authors report on the nano-fabrication of GaN/AlGaN device structures using focused ion beam (FIB) etching, illustrated on a GaN/AlGaN heterostructure field effect transistor (HFET). Pillars as small as 20nm to 300nm in diameter were fabricated from the GaN/AlGaN HFET. Micro-photoluminescence and UV micro-Raman maps were recorded from the FIB-etched pattern to assess its material quality. Photoluminescence was detected from 300nm-size GaN/AlGaN HFET pillars, i.e., from the AlGaN as well as the GaN layers in the device structure, despite the induced etch damage. Properties of the GaN and the AlGaN layers in the FIB-etched areas were mapped using UV Micro-Raman spectroscopy. Damage introduced by FIB-etching was assessed. The fabricated nanometer-size GaN/AlGaN structures were found to be of good quality. The results demonstrate the potential of FIB-etching for the nano-fabrication of III-V nitride devices.

  1. Effects of high-temperature AIN buffer on the microstructure of AlGaN/GaN HEMTs

    SciTech Connect

    Coerekci, S.; Oeztuerk, M. K.; Yu, Hongbo; Cakmak, M.; Oezcelik, S.; Oezbay, E.

    2013-06-15

    Effects on AlGaN/GaN high-electron-mobility transistor structure of a high-temperature AlN buffer on sapphire substrate have been studied by high-resolution x-ray diffraction and atomic force microscopy techniques. The buffer improves the microstructural quality of GaN epilayer and reduces approximately one order of magnitude the edge-type threading dislocation density. As expected, the buffer also leads an atomically flat surface with a low root-mean-square of 0.25 nm and a step termination density in the range of 10{sup 8} cm{sup -2}. Due to the high-temperature buffer layer, no change on the strain character of the GaN and AlGaN epitaxial layers has been observed. Both epilayers exhibit compressive strain in parallel to the growth direction and tensile strain in perpendicular to the growth direction. However, an high-temperature AlN buffer layer on sapphire substrate in the HEMT structure reduces the tensile stress in the AlGaN layer.

  2. Electron and hole microwave cyclotron resonance in photoexcited undoped GaAs/Al0.3Ga0.7As multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, M.; Cohen, E.; Ron, Arza; Shtrikman, Hadas

    1999-12-01

    We studied the microwave cyclotron resonance (CR) of photoexcited free and weakly localized electrons and holes in undoped GaAs/Al0.3Ga0.7As multiple quantum wells (MQW's) of various well widths. The photoinduced microwave absorption was measured at a frequency of ωmw=35.6 GHz and at various lattice temperatures in the range of TL=4.2-300 K. The interband excitation intensity was very low, so that the density of photogenerated electrons and holes was of the order of n<=108 cm-2. In all the studied QW's, an electron CR was observed, while a heavy hole CR was measured only in narrow QW's. By model fitting the CR line shape, the electron and hole cyclotron masses and the electron scattering rate dependence on TL and on the microwave power were obtained. Assuming that the electron in-plane mobility at ωmw is proportional to the inverse scattering rate, we find that it varies in the range of (0.8-8)×105 cm2V-1 sec-1 for 100 Å and 200 Å MQW's. This is less than the mobility measured in modulation doped QW's of similar widths. We present a detailed analysis of the temperature dependence of the electron scattering rate by combining the electron-phonon, electron-impurity, and electron-interface roughness scattering rates. The latter is found to be an important scattering mechanism in undoped MQW's at low temperatures. The CR analysis also shows that the electron cyclotron mass varies (in the range of 0.055-0.070m0) with increasing either TL or the microwave power. These variations are interpreted in terms of weak electron localization in large area, in-plane potential fluctuations arising from interface roughness.

  3. Comparative studies on the thermal stability and corrosion resistance of CrN, CrSiN, and CrSiN/AlN coatings

    SciTech Connect

    Kim, Gwang Seok; Kim, Sung Min; Lee, Sang Yul; Lee, Bo Young

    2009-07-15

    In this work, three kinds of Cr-based nitride coatings such as monolithic CrN, CrSiN coatings, and multilayered CrSiN/AlN coating with bilayer period of 3.0 nm were deposited on both Si (100) wafer and AISI H13 steel substrates by unbalanced magnetron sputtering. Thermal stability of these coatings was evaluated by annealing the coatings at temperatures between 600 and 1000 degree sign C for 30 min in air. In addition, the corrosion behaviors of these coatings were investigated by potentiodynamic polarization tests in a deaerated 3.5 wt. % NaCl solution at 40 degree sign C. Results from annealing test show the monolithic CrN and CrSiN coatings were completely oxidized after annealed at 800 and 900 degree sign C, and their cross sectional images and atomic force microscopy showed a loose and very porous morphology due to the oxidation. Also, the hardness values of the monolithic CrN and CrSiN coatings were decreased significantly from 22 and 27 GPa to 8 and 14 GPa, respectively. However, the multilayered CrSiN/AlN coating still exhibited a dense microstructure without visible change after annealed at 1000 degree sign C, and moreover, the relatively high hardness of 25 GPa was maintained. The superior thermal stability of the CrSiN/AlN multilayer coating could be attributed to the formation of the dense and stable oxidation barrier consisted of the Al{sub 2}O{sub 3}, Cr{sub 2}O{sub 3}, and amorphous SiO{sub 2} phases near the surface region, which retard the diffusion of oxygen into the coating. In the potentiodynamic polarization test results, it was found that the significantly improved corrosion resistance of the multilayered CrSiN/AlN coating was observed in comparison with those from the monolithic CrN and CrSiN coatings, and its corrosion current density (i{sub corr}) and protective efficiency were measured to be approximately 4.21 {mu}A/cm{sup 2} and 95%, respectively.

  4. InP:Fe and GaAs:Cr picosecond photoconductive radiation detectors. Master's thesis

    SciTech Connect

    Keipper, P.J.

    1985-12-01

    The dark-current, impulse, and square-pulse response measurements of photoconductive devices fabricated from two different types of materials, gallium arsenide with chromium dopant (GaAs:r) and indium phosphide with iron dopant (InP:Fe) are reported. These devices have been subjected to irradiation from the S-band electron linear accelerator (LINAC) with an energy fo 100 MeV at room temperature. Fluence ranged between 10/sup 13/ and 10/sup 16/ electrons/sq cm. Dark/current decreases with increasing fluence for the GaAs:Cr devices whereas InP:Fe shows an increase in the dark current. Both types of materials exhibit extremely fast impulse response after the irradiation. Electron mobility, drift velocity, and response speed decrease with increasing fluence. Response speeds of < 100 ps are achieved by fast-carrier relaxation in the semiconductor due to the introduction of trapping and recombination centers resulting from the irradiation damage. The GaAs:Cr, unlike the InP:Fe, more closely follows the longer square-pulse exhibiting non nonlinearity. All results are consistent with previously investigated neutron irradiated devices.

  5. Wafer-scale crack-free AlGaN on GaN through two-step selective-area growth for optically pumped stimulated emission

    NASA Astrophysics Data System (ADS)

    Ko, Young-Ho; Bae, Sung-Bum; Kim, Sung-Bock; Kim, Dong Churl; Leem, Young Ahn; Cho, Yong-Hoon; Nam, Eun-Soo

    2016-07-01

    Crack-free AlGaN template has been successfully grown over entire 2-in. wafer by using 2-step selective-area growth (SAG). The GaN truncated structure was obtained by vertical growth mode with low growth temperature. AlGaN of second step was grown under lateral growth mode. Low pressure enhanced the relative ratio of lateral to vertical growth rate as well as absolute overall growth rate. High V/III ratio was favorable for lateral growth mode. Crack-free planar AlGaN was obtained under low pressure of 30 Torr and high V/III ratio of 4400. The AlGaN was crack-free over entire 2-in. wafer and had quite uniform Al-mole fraction. The dislocation density of the AlGaN with 20% Al-composition was as low as ~7.6×108 /cm2, measured by cathodoluminescence. GaN/AlGaN multi-quantum well (MQW) with cladding and waveguide layers were grown on the crack-free AlGaN template with low dislocation density. It was confirmed that the MQW on the AlGaN template emitted the stimulated emission at 355.5 nm through optical pumping experiment. The AlGaN obtained by 2-step SAG would provide high crystal quality for highly-efficient optoelectronic devices as well as the ultraviolet laser diode.

  6. Ar + induced interfacial mixing and phase formation in the Al/Cr system

    NASA Astrophysics Data System (ADS)

    Kim, H. K.; Kim, S. O.; Song, J. H.; Kim, K. W.; Woo, J. J.; Whang, C. N.; Smith, R. J.

    1991-07-01

    Evaporated Al/Cr bilayer thin films were irradiated by 80 keV Ar + at doses in the range from 1 × 10 15 to 2 × 10 16 Ar +/cm 2 at room temperature in order to investigate the Ar + induced interfacial mixing behavior and the phase formation and transition by Ar + bombardment. Ion bombardment induces intermixing across the Al/Cr interface and mixing variance increases with increasing ion dose. Cascade and thermal spike models are found to be not adequate for the ion beam mixing mechanism at room temperature in this system. The Al 13Cr 2 phase is formed as an initial phase by ion beam mixing and then transforms into the Al 11Cr 2 or Al 4Cr phases at subsequent ion bombardment. This result is discussed in terms of the enhanced atomic mobility and the thermodynamical driving force by introducing the concept of an effective heat of formation.

  7. Cubic AlGaN/GaN Hetero-Junction Field-Effect Transistors with Normally-on and Normally-off Characteristics

    SciTech Connect

    Tschumak, E.

    2010-11-01

    The growth of cubic group III-nitrides is a direct way to eliminate polarization effects, which inherently limit the fabrication of normally-off hetero-junction field-effect transistors (HFETs) in GaN technology. HFET structures were fabricated of non-polar cubic AlGaN/GaN hetero layers grown by plasma assisted molecular beam epitaxy on free standing 3C-SiC (001). The electrical insulation of 3C-SiC was realized by Ar{sup +} implantation before c-AlGaN/GaN growth. HFETs with normally-off and normally-on characteristics were fabricated of cubic AlGaN/GaN. Capacitance-voltage characteristics of the gate contact were performed to detect the electron channel at the c-AlGaN/GaN hetero-interface.

  8. Performance of AlGaN/GaN Nanowire Omega-Shaped-Gate Fin-Shaped Field-Effect Transistor.

    PubMed

    Lee, Dong-Gi; Sindhuri, V; Jo, Young-Woo; Son, Dong-Hyeok; Kang, Hee-Sung; Lee, Jae-Hong; Lee, Jae-Hoon; Cristoloveanu, Sorin; Im, Ki-Sik; Lee, Jung-Hee

    2016-05-01

    The AlGaN/GaN nanowire omega-shaped-gate FinFET have been successfully fabricated demonstrating much improved performance compared to conventional AlGaN/GaN MISHFET. The AlGaN/GaN omega-shaped-gate FinFET exhibited the remarkable on-state performances, such as maximum drain current of 1.1 A/mm, low on-resistance, and low current collapse compared to that of the conventional device structure. In addition, the excellent off-state performances were measured: low off-state leakage current as low as -10(-10) mA, the theoretical SS value of -62 mV/dec, and high I(ON)/I(OFF) ratio (-10(9)). Improved dc performances were obtained for omega-shaped-gate structure due to the fully depletion of the active fin body and perfectly separation of the depleted fin from the underlying thick GaN buffer layer. Furthermore, the additional reason for the enhanced device performance of the proposed device is the improved gate controllability compared to the conventional MISHFET. The proposed nano-structure device is very promising candidate for the steep switching device applications.

  9. Performance of AlGaN/GaN Nanowire Omega-Shaped-Gate Fin-Shaped Field-Effect Transistor.

    PubMed

    Lee, Dong-Gi; Sindhuri, V; Jo, Young-Woo; Son, Dong-Hyeok; Kang, Hee-Sung; Lee, Jae-Hong; Lee, Jae-Hoon; Cristoloveanu, Sorin; Im, Ki-Sik; Lee, Jung-Hee

    2016-05-01

    The AlGaN/GaN nanowire omega-shaped-gate FinFET have been successfully fabricated demonstrating much improved performance compared to conventional AlGaN/GaN MISHFET. The AlGaN/GaN omega-shaped-gate FinFET exhibited the remarkable on-state performances, such as maximum drain current of 1.1 A/mm, low on-resistance, and low current collapse compared to that of the conventional device structure. In addition, the excellent off-state performances were measured: low off-state leakage current as low as -10(-10) mA, the theoretical SS value of -62 mV/dec, and high I(ON)/I(OFF) ratio (-10(9)). Improved dc performances were obtained for omega-shaped-gate structure due to the fully depletion of the active fin body and perfectly separation of the depleted fin from the underlying thick GaN buffer layer. Furthermore, the additional reason for the enhanced device performance of the proposed device is the improved gate controllability compared to the conventional MISHFET. The proposed nano-structure device is very promising candidate for the steep switching device applications. PMID:27483869

  10. Breathing Pyrochlore Lattice Realized in the A-Site Ordered Spinel Oxides LiGaCr4O8 and LiInCr4O8

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshihiko

    2014-03-01

    A Cr spinel oxide ACr2O4 with a nonmagnetic A2+ ion at the tetrahedral site provides an interesting playground for studying magnetic frustration in a pyrochlore lattice made of Cr3+ ions with an S = 3/2 spin. We found a novel type of frustrated lattice called ``breathing'' pyrochlore lattice, which is made of Cr3+ ions in two A-site ordered spinel oxides, LiGaCr4O8 and LiInCr4O8. Because of the large size mismatch between Li+ and Ga3+/In3+ ions, they alternately occupy the tetrahedral sites so as to form a Zinc Blende lattice. This transforms the conventional pyrochlore lattice into an alternating array of small and large tetrahedra, while keeping their shapes regular. LiGaCr4O8, with a lesser degree of alternation, shows similar magnetic properties to the conventional Cr spinel oxides such as ZnCr2O4. In contrast, LiInCr4O8 shows a spin-gap behavior in its magnetic susceptibility caused by a large alternation of magnetic interaction in the more breathing pyrochlore lattice. This suggests that LiInCr4O8 exists in a proximity to an exotic singlet ground state based on a tetramer singlet formed in the smaller tetrahedron, although it finally goes to a magnetically ordered state below 13 K, which may be triggered by a structural transition. We will also present NMR and neutron scattering measurements carried out to elucidate the nature of these compounds, and our recent results on solid solutions between the two compounds.

  11. Evaluation of Ti-48Al-2Cr-2Nb Under Fretting Conditions

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.; Raj, Sai V.

    2001-01-01

    The fretting behavior of Ti-48Al-2Cr-2Nb (y-TiAl) in contact with the nickel-base superalloy 718 was examined in air at temperatures from 296 to 823 K (23 to 550 C). The interfacial adhesive bonds between Ti-48Al-2Cr-2Nb and superalloy 718 were generally stronger than the cohesive bonds within Ti-48Al-2Cr-2Nb. The failed Ti-48Al-2Cr-2Nb debris subsequently transferred to the superalloy 718. In reference experiments conducted with Ti-6Al-4V against superalloy 718 under identical fretting conditions, the degree of transfer was greater for Ti-6A1-4V than for Ti-48Al-2Cr-2Nb. Wear of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting frequency. The increasing rate of oxidation at elevated temperatures led to a drop in wear at 473 K. However, fretting wear increased as the temperature was increased from 473 to 823 K. At 723 and 823 K, oxide film disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.

  12. Cr3+-Doped Yb3Ga5O12 Nanophosphor: Synthesis, Optical, EPR, Studies

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Sivaramaiah, G.; Rao, J. L.; Singh, N.; Pathak, M. S.; Jirimali, H. D.; Singh, Pramod K.; Srivastava, Anoop K.; Dhoble, S. J.; Mohapatra, M.

    2016-08-01

    Gallium garnets of lanthanides are multifunctional materials especially known for their complicated structure and magnetic properties. In addition, with a suitable transition metal dopant ion, these matrices have been proved to be excellent materials for lasers. In particular, gallium garnet of ytterbium (Yb3Ga5O12) is known to possess excellent properties with regards to these applications. In this connection, Yb3Ga5O12 doped with Cr3+ nanophosphors were synthesized by a solution combustion route. The synthesized material was characterized by powder x-ray diffraction and scanning electron microscopy for phase purity and homogenous morphology. In order to ascertain the oxidation state of the doped ion, diffuse reflectance (DRF), photoluminescence (PL) and electron paramagnetic resonance (EPR) experiments were performed on the sample. The DRF and PL data suggested the stabilisation of the trivalent Cr ion in the matrix. The EPR spectra exhibited two resonance signals with effective g values at g ≈ 7.6 and 4. The EPR data corroborated the DRF and PL results, suggesting the stabilisation of Cr3+ in the matrix at octahedral-type geometries.

  13. Structural disorder and magnetism in the spin-gapless semiconductor CoFeCrAl

    NASA Astrophysics Data System (ADS)

    Choudhary, Renu; Kharel, Parashu; Valloppilly, Shah R.; Jin, Yunlong; O'Connell, Andrew; Huh, Yung; Gilbert, Simeon; Kashyap, Arti; Sellmyer, D. J.; Skomski, Ralph

    2016-05-01

    Disordered CoFeCrAl and CoFeCrSi0.5Al0.5 alloys have been investigated experimentally and by first-principle calculations. The melt-spun and annealed samples all exhibit Heusler-type superlattice peaks, but the peak intensities indicate a substantial degree of B2-type chemical disorder. Si substitution reduces the degree of this disorder. Our theoretical analysis also considers several types of antisite disorder (Fe-Co, Fe-Cr, Co-Cr) in Y-ordered CoFeCrAl and partial substitution of Si for Al. The substitution transforms the spin-gapless semiconductor CoFeCrAl into a half-metallic ferrimagnet and increases the half-metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of CoFeCrSi0.5Al0.5 is predicted to increase from 2.01 μB to 2.50 μB per formula unit, in good agreement with experiment.

  14. Stranski-Krastanow growth of (112¯2)-oriented GaN/AlN quantum dots

    NASA Astrophysics Data System (ADS)

    Lahourcade, L.; Valdueza-Felip, S.; Kehagias, T.; Dimitrakopulos, G. P.; Komninou, P.; Monroy, E.

    2009-03-01

    Semipolar GaN(112¯2) deposited on AlN(112¯2) by plasma-assisted molecular-beam epitaxy can follow the Frank-Van der Merwe or the Stranski-Krastanow growth mode as a function of the Ga/N ratio. N-rich grown GaN relaxes elastically at a critical thickness but the resulting GaN islands present multiple crystallographic orientations. In contrast, after deposition of a few two-dimensional GaN monolayers under Ga-rich conditions, a growth interruption in vacuum induces (112¯2)-oriented islanding. Applying this latter procedure, we have synthesized GaN/AlN quantum dot superlattices with reduced internal electric field.

  15. Stranski-Krastanow growth of (1122)-oriented GaN/AlN quantum dots

    SciTech Connect

    Lahourcade, L.; Monroy, E.; Kehagias, T.; Dimitrakopulos, G. P.; Komninou, P.

    2009-03-16

    Semipolar GaN(1122) deposited on AlN(1122) by plasma-assisted molecular-beam epitaxy can follow the Frank-Van der Merwe or the Stranski-Krastanow growth mode as a function of the Ga/N ratio. N-rich grown GaN relaxes elastically at a critical thickness but the resulting GaN islands present multiple crystallographic orientations. In contrast, after deposition of a few two-dimensional GaN monolayers under Ga-rich conditions, a growth interruption in vacuum induces (1122)-oriented islanding. Applying this latter procedure, we have synthesized GaN/AlN quantum dot superlattices with reduced internal electric field.

  16. Superior carrier confinement in InAlN/InGaN/AlGaN double heterostructures grown by metal-organic chemical vapor deposition

    SciTech Connect

    Zhao, Yi Xue, JunShuai; Zhang, JinCheng Hao, Yue

    2014-12-01

    InAlN/InGaN/AlGaN double heterostructures were grown and characterized. Temperature-dependent Hall measurements show that the two-dimensional electron gas has a steady density over the entire temperature range tested and a superior transport property compared with the traditional InAlN/GaN single heterostructure at elevated temperatures. The improved performance was attributed to the back barrier, which enhanced the carrier confinement and prevented electrons from spilling into the buffer. In addition, the room-temperature electron mobility of the double heterostructure was 1293 cm{sup 2}/Vs, which is the highest reported for an InGaN-channel heterostructure.

  17. Trap behaviours characterization of AlGaN/GaN high electron mobility transistors by room-temperature transient capacitance measurement

    NASA Astrophysics Data System (ADS)

    Dong, Bin; Lin, Jie; Wang, Ning; Jiang, Ling-li; Liu, Zong-dai; Hu, Xiaoyan; Cheng, Kai; Yu, Hong-yu

    2016-09-01

    In this paper, the trap behaviours in AlGaN/GaN high electron mobility transistors (HEMTs) are investigated using transient capacitance measurement. By measuring the transient gate capacitance variance (Δ C ) with different pulse height, the gate pulse induced trap behaviours in SiNX gate dielectric layer or at the SiNX/AlGaN interface is revealed. Based on the results, a model on electron traps in AlGaN/GaN HEMTs is proposed. The threshold voltage (Vth) instability in AlGaN/GaN HEMTs is believed to be correlated with the presence of these traps in SiNX gate dielectric layer or at the SiNX/AlGaN interface. Furthermore, trap density before and after step-stress applied on drain electrode is quantitatively analyzed based on Δ C measurement.

  18. High-power single-element pseudomorphic InGaAs/GaAs/AlGaAs single quantum well lasers for pumping Er-doped fiber amplifiers

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1991-01-01

    A 980-nm-ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs single-quantum-well laser with a maximum single-ended output power of 240 mW from a facet-coated device is fabricated from a graded-index separate-confinement heterostructure grown by molecular-beam epitaxy. The laser oscillates in the fundamental spatial mode, allowing 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. Life testing at an output power of 30 mW per facet from uncoated devices reveals a superior reliability to GaAs/AlGaAs quantum-well lasers but also the need for protective facet coatings for long term reliability at power levels required for pumping Er-doped fiber amplifiers.

  19. Comparative study of Al(x)Ga(1-x)As/GaAs photocathodes with different aluminum concentrations by surface photovoltage spectroscopy.

    PubMed

    Jiao, GangCheng; Hu, Canglu; Liu, Jian; Qian, Yunsheng

    2015-10-01

    The influence of aluminum concentration in an Al(x)Ga(1-x)As window layer on the performance of Al(x)Ga(1-x)As/GaAs photocathodes was investigated. Three types of transmission-mode photocathode materials with different aluminum concentrations were designed for the comparative research. The surface photovoltage technique was applied to prepare samples. After the Cs-O activation process, spectral response curves of Al(x)Ga(1-x)As/GaAs photocathodes were obtained. Comparative studies show that a higher aluminum composition in the window layer is beneficial to improve the response of Al(x)Ga(1-x)As/GaAs photocathodes in the shortwave region. The surface photovoltage calculation formula of photocathode materials was put forward and used to obtain key performance parameters of Al(x)Ga(1-x)As/GaAs photocathodes by fitting calculations. Through calculations, the Al(x)Ga(1-x)As/GaAs interface recombination velocity, the minority carrier diffusion length of the window layer, and the emission layer were deduced, and there is a positive correlation between the aluminum composition in the window layer and the Al(x)Ga(1-x)As/GaAs interface recombination velocity, which is negative with the performance of photocathodes.

  20. Strain modification of AlGaN layers using swift heavy ions

    NASA Astrophysics Data System (ADS)

    Sathish, N.; Pathak, A. P.; Dhamodaran, S.; Sundaravel, B.; Nair, K. G. M.; Khan, S. A.; Avasthi, D. K.; Bazzan, M.; Trave, E.; Mazzoldi, P.

    2011-11-01

    Epitaxial AlGaN/GaN layers grown by molecular beam epitaxy (MBE) on SiC substrates were irradiated with 150 MeV Ag ions at a fluence of 5×1012 ions/cm2. The samples used in this study are 50 nm Al0.2Ga0.8N/1 nm AlN/1 μ m GaN/0.1 μ m AlN grown on SI 4H-SiC. Rutherford backscattering spectrometry/channeling strain measurements were carried out on off-normal axis of irradiated and unirradiated samples. In an as-grown sample, AlGaN layer is partially relaxed with a small tensile strain. After irradiation, this strain increases by 0.22% in AlGaN layer. Incident ion energy dependence of dechanneling parameter shows E 1/2 dependence, which corresponds to the dislocations. Defect densities were calculated from the E 1/2 graph. As a result of irradiation, the defect density increased on both GaN and AlGaN layers. The effect of irradiation induced-damages are analyzed as a function of material properties. Observed results from different characterization techniques such as RBS/channeling, high-resolution XRD and AFM are compared and complemented with each other to deduce the information. Possible mechanisms responsible for the observations have been discussed in detail.

  1. X-ray photoelectron spectroscopy analysis of GaN/(0001)AlN and AlN/(0001)GaN growth mechanisms

    NASA Astrophysics Data System (ADS)

    King, S. W.; Carlson, E. P.; Therrien, R. J.; Christman, J. A.; Nemanich, R. J.; Davis, R. F.

    1999-11-01

    The mechanisms of growth of GaN on AlN and AlN on GaN via gas source-molecular beam epitaxy with NH3 as the nitrogen source have been investigated using x-ray photoelectron spectroscopy, low energy electron diffraction, and Auger electron spectroscopy. The growth of GaN on AlN at low temperatures (650-750 °C) occurs via a Stranski-Krastanov 2D→3D type mechanism with the transition to 3D growth occurring at ≈10-15 Å. The mechanism changes to Frank van der Merwe (FM)/layer-by-layer growth above 800 °C. The growth of AlN on GaN occurred via a FM layer-by-layer mechanism within the 750-900 °C temperature range investigated. We propose a model based on the interaction of ammonia and atomic hydrogen with the GaN/AlN surfaces which indicates that the surface kinetics of hydrogen desorption and ammonia decomposition are the factors that determine the GaN growth mechanism.

  2. Microstructural characterization of Al-rich Ni-Cr-Al cast alloys

    SciTech Connect

    Gonzalez-Carrasco, J.L.; Adeva, P.; Cristina, M.C.; Aballe, M. )

    1994-09-01

    Several Ni-Cr-Al alloys, with up to 30 at.% Al, were prepared in an induction furnace and cast under inert atmosphere. All alloys were homogenized for 8 h at 1,473 K under an argon atmosphere, followed by treatments at temperatures between 1,023 and 1,273 K for times up to 180 h. These alloys contain phases that are to a great extent, structurally similar. This is frequently complicated further by their particle size and their degree of order. Their characterization is not always simple and usually must be based on more than one technique. In this work the microstructural evolution was studied by means of light microscopy, scanning electron microscopy and microanalysis, and X-ray diffraction techniques. For completeness, hardness and microhardness tests were performed to evaluate the precipitation phenomenon.

  3. Improved Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors by Employing Polyimide/Chromium Composite Thin Films as Surface Passivation and High-Permittivity Field Plates

    NASA Astrophysics Data System (ADS)

    Chu, Fu-Tong; Chen, Chao; Zhou, Wei; Liu, Xing-Zhao

    2013-09-01

    The breakdown voltage of AlGaN/GaN high electron mobility transistors (HEMTs) is enhanced by employing metal chromium (Cr) nanoparticle-embedded polyimide (PI) as a high-permittivity (high-K) dielectric covering both the source-gate and gate-drain regions. The PI/Cr composite high-K dielectrics acting as a field plate prevent the occurrence of strong electric fields produced at the drain side edge of the gate electrode to obtain an optimum lateral electric flux of HEMTs. The breakdown voltage is improved by approximately 35% when using the PI/Cr thin film dielectric field plate while maintaining high performance, a high transconductance value of 122.4 mS/mm, and a large saturated drain-current value of 748 mA/mm.

  4. Novel Phase Transitions in the Breathing Pyrochlore Lattice: Li7-NMR on LiInCr4O8 and LiGaCr4O8

    NASA Astrophysics Data System (ADS)

    Tanaka, Yu; Yoshida, Makoto; Takigawa, Masashi; Okamoto, Yoshihiko; Hiroi, Zenji

    2014-11-01

    We report Li7-NMR studies on LiInCr4O8 and LiGaCr4O8, in which Cr3 + ions with spin 3 /2 form a breathing pyrochlore lattice, a network of tetrahedra with alternating sizes. In LiInCr4O8 with large alternation, the nuclear relaxation rate 1 /T1 shows an activated temperature (T ) dependence down to 18 K, indicating a singlet ground state with a spin gap. This behavior, however, is disrupted by an antiferromagnetic transition at 13 K, which is preceded by another, most likely structural, transition at 16 K. In contrast, LiGaCr4O8 with a small alternation shows no spin gap but exhibits a first-order antiferromagnetic transition over a distributed T range 13-20 K. Nevertheless, 1 /T1 of the paramagnetic phase diverges toward 13 K, indicating proximity to a second-order transition. The results indicate that LiGaCr4O8 is located in the vicinity of a tricritical point in the phase diagram.

  5. Electronic, optical, structural, and elastic properties of MAX phases and (Cr2Hf)2Al3C3

    NASA Astrophysics Data System (ADS)

    Mo, Yuxiang

    The term "MAX phase" refers to a very interesting and important class of layered ternary transition-metal carbides and nitrides with a novel combination of both metal- and ceramic-like properties that have made these materials highly regarded candidates for numerous technological and engineering applications. In the present dissertation work, the electronic structure and optical conductivities of 20 MAX phases Ti3AC2 (A = Al, Si, Ge), Ti2AC (A = Al, Ga, In, Si, Ge, Sn, P, As, S), Ti2AlN, M2AlC (M = V, Nb, Cr), and Tan+1AlC n (n = 1 to 4) are studied using the first-principles orthogonalized linear combination of atomic orbitals (OLCAO) method. It is confirmed that the N(Ef) (total density of states at the Fermi level Ef) increases as the number of valence electrons of the composing elements increases. The local feature of total density of states (TDOS) near Ef is used to predict structural stability. The calculated effective charge on each atom shows that the M (transition-metal) atoms always lose charge to the X (C or N) atoms, whereas the A-group atoms mostly gain charge but some lose charge. Bond order values are obtained and critically analyzed for all types of interatomic bonds in the 20 MAX phases. Also included in this work is the exploration [using (Cr2Hf)2Al3C3 as an example] of the possibility of incorporating more types of elements into a MAX phase while maintaining the crystallinity, instead of creating solid solution phases. The crystal structure and elastic properties of (Cr2Hf)2Al 3C3 are studied using the Vienna ab initio Simulation Package. Unlike MAX phases with a hexagonal symmetry ( P63/mmc, #194), (Cr 2Hf)2Al3C3 crystallizes in the monoclinic space group of P21/m (#11). Its structure is found to be energetically much more favorable against the allotropic segregation and solid solution phases. Calculations using a stress versus strain approach and the VRH approximation for polycrystals also show that (Cr2Hf)2Al3C3 has outstanding elastic moduli.

  6. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Deming; Chen, Guiqing; Wang, Yuesheng

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  7. Multistage symmetry breaking in the breathing pyrochlore lattice Li(Ga ,In )Cr 4O8

    NASA Astrophysics Data System (ADS)

    Lee, S.; Do, S.-H.; Lee, W.-J.; Choi, Y. S.; Lee, M.; Choi, E. S.; Reyes, A. P.; Kuhns, P. L.; Ozarowski, A.; Choi, K.-Y.

    2016-05-01

    We present magnetic susceptibility, dielectric constant, high-frequency electron spin resonance, 7Li nuclear magnetic resonance, and zero-field muon spin relaxation measurements of LiACr4O8 (A =Ga , In), towards realizing a breathing pyrochlore lattice. Unlike the uniform pyrochlore ZnCr2O4 lattice, both the In and the Ga compounds feature two-stage symmetry breaking: a magnetostructural phase transition with subsequent antiferromagnetic ordering. We find a disparate symmetry breaking process between the In and the Ga compounds, having different degrees of bond alternation. Our data reveal that the Ga compound with moderate bond alternation shows the concomitant structural and magnetic transition at TS=15.2 K, followed by the magnetic ordering at Tm=12.9 K. In contrast, the In compound with strong bond alternation undergoes a thermal crossover at T*≈20.1 K from a tetramer singlet to a dimer singlet or a correlated paramagnet with a separate weak magnetostructural transition at TS=17.6 K and the second antiferromagnetic ordering at Tm=13.7 K. This suggests that the magnetic phases and correlations of the breathing pyrochlore lattice can be determined from the competition between bond alternation and spin-lattice coupling, thus stabilizing long-range magnetic ordering against a nonmagnetic singlet.

  8. The thermal characteristics of superlattice structures based on AlGaInN solid solution

    NASA Astrophysics Data System (ADS)

    Evseenkov, A. S.; Tarasov, S. A.; Solomonov, A. V.; Altimime, S. M.; Obukhova, A. S.

    2016-08-01

    The blue light-emitting structures based on solid solutions of the system AlGaInN that contained superlattices In0.9Ga0.1N/In0.99Ga0.01N and Al0.15Ga0.85N/GaN were investigated, and its basic parameters and characteristics were defined. The main difference between the samples was an "upper blocking layer" that formed by AlGaN solid solutions with a different stoichiometric composition or as a superlattice. Spectral and thermal investigations of samples were conducted, and the temperatures of the active region were calculated. The optimal types of structures for different operation modes were offered.

  9. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    DOE PAGES

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar; Terrani, Kurt A.; Field, Kevin G.

    2016-02-17

    Model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) have been neutron irradiated at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. This is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning of the Al from themore » α' precipitates was also observed.« less

  10. Electronic correlations in short-period (CrAs)n/(GaAs)n ferromagnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Chioncel, L.; Leonov, I.; Allmaier, H.; Beiuşeanu, F.; Arrigoni, E.; Jurcuţ, T.; Pötz, W.

    2011-01-01

    We investigate half-metallicity in [001] stacked (CrAs)n/(GaAs)n heterostructures with n⩽3 by means of a combined many-body and electronic structure calculation. Interface states in the presence of strong electronic correlations are discussed for the case n=1. For n=2,3 our results indicate that the minority spin half-metallic gap is suppressed by local correlations at finite temperatures and continuously shrinks on increasing the heterostructure period. Although around room temperature the magnetization of the heterostructure deviates by only 2% from the ideal integer value, finite temperature polarization at EF is reduced by at least 25%. Below the Fermi level the minority spin highest valence states are found to localize more on the GaAs layers while lowest conduction states have a many-body origin. Our results, therefore, suggest that in these heterostructures holes and electrons remain separated among different layers.

  11. Crystal structure and band gap of AlGaAsN

    NASA Astrophysics Data System (ADS)

    Munich, D. P.; Pierret, R. F.

    1987-09-01

    Quantum dielectric theory is applied to the quaternary alloy Al xGa 1- xAs 1- yN y to predict its electronic properties as a function of Al and N mole fractions. Results are presented for the expected crystal structure, minimum electron energy band gap, and direction in k-space of the band gap minimum for all x and y values. The results suggest that, for a proper choice of x and y, Al xGa 1- xAs 1- yN y could exhibit certain advantages over Al xGa 1- xAs when utilized in field-effect transistor structures.

  12. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  13. High Quantum Efficiency AlGaN/InGaN Photodetectors

    SciTech Connect

    Buckley, James H; Leopold, Daniel

    2009-11-24

    High efficiency photon counting detectors in use today for high energy particle detection applications have a significant spectral mismatch with typical sources and have a number of practical problems compared with conventional bialkali photomultiplier tubes. Numerous high energy physics experiments that employ scintillation light detectors or Cherenkov detectors would benefit greatly from photomultipliers with higher quantum efficiencies. The need for extending the sensitivity of photon detectors to the blue and UV wavebands comes from the fact that both Cherenkov light and some scintillators have an emission spectrum which is peaked at short wavelengths. This research involves the development of high quantum efficiency, high gain, UV/blue photon counting detectors based on AlGaN/InGaN photocathode heterostructures grown by molecular beam epitaxy (MBE). The work could eventually lead to nearly ideal light detectors with a number of distinct advantages over existing technologies for numerous applications in high-energy physics and particle astrophysics. Potential advantages include much lower noise detection, better stability and radiation resistance than other cathode structures, very low radioactive background levels for deep underground experiments and high detection efficiency of individual UV-visible photons. We are also working on the development of photocathodes with intrinsic gain, initially improving the detection efficiency of hybrid semiconductor-vacuum tube devices, and eventually leading to an all-solid-state photomultiplier device.

  14. Hybrid architecture for shallow accumulation mode AlGaAs/GaAs heterostructures with epitaxial gates

    SciTech Connect

    MacLeod, S. J.; See, A. M.; Hamilton, A. R.; Farrer, I.; Ritchie, D. A.; Ritzmann, J.; Ludwig, A.; Wieck, A. D.

    2015-01-05

    Accumulation mode devices with epitaxially grown gates have excellent electrical stability due to the absence of dopant impurities and surface states. We overcome typical fabrication issues associated with epitaxially gated structures (e.g., gate leakage and high contact resistance) by using separate gates to control the electron densities in the Ohmic and Hall bar regions. This hybrid gate architecture opens up a way to make ultrastable nanoscale devices where the separation between the surface gates and the 2D electron gas is small. In this work, we demonstrate that the hybrid devices made from the same wafer have reproducible electrical characteristics, with identical mobility and density traces over a large range of 2D densities. In addition, thermal cycling does not influence the measured electrical characteristics. As a demonstration of concept, we have fabricated a hybrid single-electron transistor on a shallow (50 nm) AlGaAs/GaAs heterostructure that shows clear Coulomb blockade oscillations in the low temperature conductance.

  15. Enhanced optical property in quaternary GaInAsSb/AlGaAsSb quantum wells

    SciTech Connect

    Lin, Chien-Hung Lee, Chien-Ping

    2014-10-21

    High quality GaInAsSb/AlGaAsSb quantum wells (QWs) have been grown by molecular beam epitaxy using proper interface treatments. By controlling the group-V elements at interfaces, we obtained excellent optical quality QWs, which were free from undesired localized trap states, which may otherwise severely affect the exciton recombination. Strong and highly efficient exciton emissions up to room temperature with a wavelength of 2.2 μm were observed. A comprehensive investigation on the QW quality was carried out using temperature dependent and power dependent photoluminescence (PL) measurements. The PL emission intensity remains nearly constant at low temperatures and is free from the PL quenching from the defect induced localized states. The temperature dependent emission energy had a bulk-like behavior, indicating high quality well/barrier interfaces. Because of the uniformity of the QWs and smooth interfaces, the low temperature limit of inhomogeneous line width broadening is as small as 5 meV.

  16. Reliability of high-power AlGaAs/GaAs QW laser diodes

    NASA Astrophysics Data System (ADS)

    Dabkowski, Ferdynand P.; Pendse, D. R.; Barrett, Richard J.; Chin, Aland K.; Jollay, Richard A.; Clausen, Edward M., Jr.; Hughes, L. C.; Sanders, Neil B.

    1996-09-01

    High power laser diodes have been continuously gaining more practical applications. In the majority of these applications, device performance is a determining factor. However, device reliability determines whether a laser diode can be successfully introduced in a commercial product. We review some device reliability problems and their solutions found through customer experience while supplying packaged high power AlGaAs/GaAs quantum well laser diodes, utilized in medical, high resolution printers. The reliability problems were related to either photo-induced chemical reactions on the output facet leading to visible optical damage or the propensity of the material to rapidly develop dark line defects. To improve the reliability of high power laser diodes, we have performed numerous aging studies, followed by detailed failure mode analysis. Both hermetically packaged devices and devices exposed to air ambient were evaluated. The devices whose parameters deteriorated during aging were examined with optical microscopy, infrared microscopy, scanning electron microscopy, Auger spectroscopy, residual gas analysis and also electron beam induced current. We report the results of the failure mode analysis and suggest solutions to eliminate failures of high power laser diodes.

  17. AlGaAs/GaAs quasi-bulk effect mixers: Analysis and experiments

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. S.; Yang, J.-X.; Agahi, F.; Dai, D.; Musante, C.; Grammer, W.; Lau, K. M.

    1992-01-01

    The lowest noise temperature for any receiver in the 0.5 to 1 THz range has been achieved with the bulk InSb hot electron mixer, which unfortunately suffers from the problem of having a very narrow bandwidth (1-2 MHz). We have demonstrated a three order of magnitude improvement in the bandwidth of hot electron mixers, by using the two-dimensional electron gas (2DEG) medium at the hetero-interface between AlGaAs and GaAs. We have tested both inhouse MOCVD-grown material, and MBE materials, with similar results. The conversion loss (L(sub c)) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that L(sub c) can be decreased to about 10 dB in future devices. Calculated and measured curves of L(sub c), versus PLO and IDC, respectively, agree well. We argue that there are several different configurations of hot electron mixers, which will also show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.

  18. Forward current transport mechanisms in Ni/Au-AlGaN/GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Yan, Dawei; Jiao, Jinping; Ren, Jian; Yang, Guofeng; Gu, Xiaofeng

    2013-10-01

    The forward current transport mechanisms in Ni/Au-AlGaN/GaN Schottky diodes are studied by temperature dependent current-voltage (T-I-V) measurements from 298 to 473 K. The zero-bias barrier height qϕBn and ideality factor values determined based on the conventional thermionic-emission (TE) model are strong functions of temperature, which cannot be explained by the standard TE theory. Various transport models are considered to analyze the experimental I-V data. The fitting results indicate that the increased current at low bias is due to the trap-assisted tunneling with an effective trap density of about 8.8 × 106 cm-2, while the high-bias current flow is dominated by the TE transport mechanism, accompanied by a significant series resistance effect. By fitting the high-forward-bias I-V characteristics, the effective qϕBn values with a small negative temperature coefficient are obtained. The temperature dependence of the saturation tunneling current and qϕBn is finally explained by considering the thermally induced band gap shrinkage effect.

  19. Diffusional transport during the cyclic oxidation of gamma + beta, Ni-Cr-Al(Y, Zr) alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1988-01-01

    The cyclic oxidation behavior of several cast gamma + beta, Ni-Cr-Al(Y, Zr) alloys and one low-pressure plasma spraying gamma + beta, Ni-Co-Cr-Al(Y) alloy was studied. Cyclic oxidation was found to result in a decreasing Al concentration at the oxide-metal interface due to a high rate of Al consumption coupled with oxide scale cracking and spalling. Diffusion paths plotted on the ternary phase diagram showed higher Ni concentrations with increasing cyclic oxidation exposures. The alloy with the highest rate of Al consumption and the highest Al content underwent breakaway oxidation following 500 1-hr cycles at 1200 C.

  20. Optical bistability and multistability in a defect slab doped by GaAs/AlGaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin

    2016-05-01

    We proposed a new model for controlling the optical bistability (OB) and optical multistability (OM) in a defect slab doped with four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al0.3 Ga0.7As barriers. The effects of biexciton energy renormalization, exciton spin relaxation, and thickness of the slab on the OB and OM properties of the defect slab were theoretically investigated. We found that the transition from OB to OM or vice versa is possible by adjusting the controllable parameters in a lab. Moreover, the transmission, reflection, and absorption properties of the weak probe light through the slab were also discussed in detail.

  1. Dark current and optical properties in asymmetric GaAs/AlGaAs staircase-like multiquantum well structure

    NASA Astrophysics Data System (ADS)

    Altin, E.; Hostut, M.; Ergun, Y.

    2013-05-01

    In this study, we investigate dark current voltage characteristics of GaAs/AlGaAs staircase-like asymmetric multiquantum well structure at various temperatures experimentally. Measured dark current density-voltage (Jd-V) characteristics are compared with the Levine Model. It is seen that the model fits well with the experimental dark current density. Ground state energy of electrons, heavy holes and light holes are calculated by Kronig-Penney Model. Optical properties of sample are characterized by photoluminescence and photoconductivity measurements. The temperature-dependent photoluminescence (PL) spectra of the GaAs/GaAlAs QWIP show that the peaks corresponding interband transition from the ground heavy-hole subband to the ground electronic subband (Ehh1 - Ee1) are dominantly observed and the peak positions corresponding to the interband transitions of the PL spectrum are dependent on the temperature. Photoconductivity measurement is performed for different negative polarities at 37 K.

  2. Zinc-blende CrAs/GaAs multilayers grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Akinaga, H.; Mizuguchi, M.

    2004-12-01

    The epitaxial growth of zinc-blende CrAs/GaAs multilayers has been achieved by using the molecular-beam epitaxy method. The crystallographic quality was evaluated by reflection high-energy electron diffraction (RHEED) and cross-sectional transmission electron microscopy (TEM). The increase of the substrate temperature during growth up to 300 °C brings the RHEED pattern to a streak, in contrast to the case at 200 °C. TEM images show the atomically flat surface and interface of the multilayer.

  3. Effects of misfit dislocations and AlN buffer layer on the GaInN/GaN phase diagram of the growth mode

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuo; Ujihara, Toru; Miyashita, Satoru; Sazaki, Gen

    2001-01-01

    The thickness-composition phase diagrams of the growth modes were determined for the GaInN-on-GaN (GaInN/GaN) and the GaInN-on-AlN-on-GaN (GaInN/AlN/GaN) structures. For this determination, the strain energy was calculated by considering the stress relaxation due to introduction of misfit dislocations, the surface energy was estimated from bonding enthalpy of the nearest-neighbor bonds on the surface, and the interface energy was estimated by considering both effects of the dangling bonds due to lattice misfit and the abrupt transition of bonding species at the heterointerface. From these phase diagrams, it was found that the layer-by-layer growth such as the Frank-van der Merwe mode was very difficult to obtain for the epitaxial growth of GaInN on GaN when the InN fraction is large. The Volmer-Weber mode is dominant in the phase diagram of the GaInN/GaN structures. The influence of an AlN buffer layer with a larger surface energy was studied by introducing an AlN layer between the GaInN layer and the GaN substrate. It was known that the layer-by-layer growth could be more easily obtained if misfit dislocations were introduced and an AlN layer was used as a buffer.

  4. Large signal and noise properties of heterojunction Al x Ga1-x As/GaAs DDR IMPATTs

    NASA Astrophysics Data System (ADS)

    Banerjee, Suranjana; Mitra, Monojit

    2016-06-01

    Simulation studies are carried out on the large signal and noise properties of heterojunction (HT) Al x Ga1-x As/GaAs double drift region (DDR) IMPATT devices at V-band (60 GHz). The dependence of Al mole fraction on the aforementioned properties of the device has been investigated. A full simulation software package has been indigenously developed for this purpose. The large signal simulation is based on a non-sinusoidal voltage excitation model. Three mole fractions of Al and two complementary HT DDR structures for each mole fraction i.e., six DDR structures are considered in this study. The purpose is to discover the most suitable structure and corresponding mole fraction at which high power, high efficiency and low noise are obtained from the device. The noise spectral density and noise measure of all six HT DDR structures are obtained from a noise model and simulation method. Similar studies are carried out on homojunction (HM) DDR GaAs IMPATTs at 60 GHz to compare their RF properties with those of HT DDR devices. The results show that the HT DDR device based on N-Al x Ga1-x As/p-GaAs with 30% mole fraction of Al is the best one so far as large signal power output, DC to RF conversion efficiency and noise level are concerned.

  5. Comparison in mechanical and tribological properties of CrTiAlMoN and CrTiAlN nano-multilayer coatings deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Guojun; Jiang, Bailing

    2016-02-01

    CrTiAlN and CrTiAlMoN nano-multilayer coatings were deposited by closed field unbalanced magnetron sputtering. TiMoN and CrTiMoN nano-multilayer coatings with same Mo2N layer thickness were also prepared for comparison. The structure of these coatings is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The mechanical and tribological properties were characterized and compared by nano-indentation and ball-on-disc test. It was found that these coatings were structured by fcc metal nitride phases (including CrN, TiN, AlN and Mo2N) and the preferred orientation changed from (1 1 1) to (2 0 0) with the increase of Mo content. The TEM results showed that the coatings exhibited typical columnar structure and nano-multilayer structure with modulation periods ranged from 3.2 nm to 7.6 nm. Among these coatings, CrTiAlMoN coatings presented the highest hardness, lowest coefficient of friction (COF) and wear rate. The hardness of these nano-multilayer coatings were determined by layer interfaces: TiN/Mo2N and AlN/Mo2N layer interface showed benefit on hardness enhancement while CrN/Mo2N layer interface led to a great hardness decrement. In comparison with the other as-deposited coatings, the low COF of CrTiAlMoN coatings was not only affected by Mo addition but also related to its oxidation behaviors.

  6. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-09-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  7. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-07-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  8. Polarity control of GaN grown on pulsed-laser-deposited AlN/GaN template by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoo, Jinyeop; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    We report on the polarity control of GaN regrown on pulsed-laser-deposition-grown N-polar AlN on a metalorganic-vapor-phase-epitaxy-grown Ga-polar GaN template. The polarity of the regrown GaN, which was confirmed using aqueous KOH solutions, can be inverted from that of AlN by inserting a low-temperature GaN (LT-GaN) buffer layer. We hypothetically ascribe the Ga-polarity selection of GaN on the LT-GaN buffer layer to the mixed polarity of LT-GaN grains and higher growth rate of the Ga-polar grain, which covers up the N-polar grain during the initial stage of the high-temperature growth. The X-ray rocking curve analysis revealed that the edge-dislocation density in the N-polar regrown GaN is 5 to 8 times smaller than that in the Ga-polar regrown GaN. N-polar GaN grows directly on N-polar AlN at higher temperatures. Therefore, nucleus islands grow larger than those of LT-GaN and the area fraction of coalescence boundaries between islands, where edge dislocations emerge, becomes smaller.

  9. DC and small-signal physical models for the AlGaAs/GaAs high electron mobility transistor

    NASA Technical Reports Server (NTRS)

    Sarker, J. C.; Purviance, J. E.

    1991-01-01

    Analytical and numerical models are developed for the microwave small-signal performance, such as transconductance, gate-to-source capacitance, current gain cut-off frequency and the optimum cut-off frequency of the AlGaAs/GaAs High Electron Mobility Transistor (HEMT), in both normal and compressed transconductance regions. The validated I-V characteristics and the small-signal performances of four HeMT's are presented.

  10. Electron spin relaxation time in (110) InGaAs/InAlAs quantum wells

    SciTech Connect

    Yokota, Nobuhide; Yasuda, Yusuke; Ikeda, Kazuhiro; Kawaguchi, Hitoshi

    2014-07-14

    Electron spin relaxation time τ{sub s} in InGaAs/InAlAs quantum wells (QWs) grown on (110) and (100) InP substrates was investigated by pump-probe transmission measurements. Similar τ{sub s} of 0.83–1.0 ns were measured at room temperature for all the measured (110) and (100) QWs, indicating suppression of the D'yakonov-Perel' spin relaxation mechanism in (110) QWs is not effective in InGaAs/InAlAs QWs as opposed to GaAs/AlGaAs QWs. Contribution of the Bir-Aronov-Pikus mechanism dominant in (110) GaAs/AlGaAs QWs was found to be small in both the (110) and (100) InGaAs/InAlAs QWs from the weak dependences of τ{sub s} on pump intensity at room temperature. These results suggest that the spin relaxation mechanism dominant in InGaAs/InAlAs QWs at a temperature higher than 200 K is the Elliott-Yafet mechanism independent of the crystal orientation among the above three major mechanisms.

  11. InGaAlP and InGaN light-emitting diodes: high-power performance and reliability

    NASA Astrophysics Data System (ADS)

    Eliashevich, Ivan; Debray, Jean-Philippe M.; Tran, Chuong A.; Venugopalan, Hari S.; Karlicek, Robert F., Jr.

    2000-04-01

    Increasing optical power and electrical-to-optical conversion efficiency enable visible light-emitting diodes to advance into new applications and wider markets. InGaAlP/GaAs and InGaN/sapphire material systems cover the whole visible spectrum of saturated colors used for display, signage, and automotive use. A combination of blue InGaN LEDs with phosphor delivers a 'white' spectrum adequate for most lighting needs. Demand for high optical power requires larger chips suitable for high-current operation. Current crowding effects and their negative consequences for chip performance and reliability limit the performance of high-power chips based on both material systems. Despite the differences between InGaAlP/GaAs and InGaN/sapphire chip structures, a number of common design concepts leading to higher external efficiency and total luminous output have been proposed, including large chips operating at high drive currents. This paper highlights fundamental current spreading and reliability issues related to the chip size and operating current density, outlines a framework for quantitative analysis, proposes and compares a number of novel high-power chip designs.

  12. Inductively Coupled Plasma Reactive Ion Etching of AlGaAsSb and InGaAsSb for Quaternary Antimonide MIM Thermophotovoltaics

    SciTech Connect

    Palmisiano, M. N.; Peake, G. M.; Shul, R. J.; Ashby, C. I.; Cederberg, J. G.; Hafich, M. J.; Biefeld, R. M.

    2002-10-01

    In this letter we report on the inductively coupled plasma reactive ion etching (ICP-RIE) of InGaAsSb and AlGaAsSb for the fabrication of quaternary monolithic interconnected module (MIM) thermophotovoltaic (TPV) devices. A rapid dry etch process is described that produces smooth surfaces using BCl[sub]3 for AlGaAsSb and InGaAsSb capped with GaSb. Uncapped InGaAsSb was etched by adding an H[sub]2 plasma preclean to reduce surface oxides. InGaAsSb etch rate was studied as a function of accelerating voltage, RF power, temperature and pressure. The etch conditions found for InGaAsSb were used for AlGaAsSb etching to determine the effectiveness for isolation of the MIM cells.

  13. Trap states in AlGaN channel high-electron-mobility transistors

    SciTech Connect

    Zhao, ShengLei; Zhang, Kai; Ha, Wei; Chen, YongHe; Zhang, Peng; Zhang, JinCheng; Hao, Yue; Ma, XiaoHua

    2013-11-18

    Frequency dependent capacitance and conductance measurements were performed to analyze the trap states in the AlGaN channel high-electron-mobility transistors (HEMTs). The trap state density in the AlGaN channel HEMTs decreases from 1.26 × 10{sup 13} cm{sup −2}eV{sup −1} at the energy of 0.33 eV to 4.35 × 10{sup 11} cm{sup −2}eV{sup −1} at 0.40 eV. Compared with GaN channel HEMTs, the trap states in the AlGaN channel HEMTs have deeper energy levels. The trap with deeper energy levels in the AlGaN channel HEMTs is another reason for the reduction of the reverse gate leakage current besides the higher Schottky barrier height.

  14. Effects of light illumination on electron velocity of AlGaN/GaN heterostructures under high electric field

    SciTech Connect

    Guo, Lei; Yang, Xuelin Cheng, Jianpeng; Sang, Ling; Xu, Fujun; Tang, Ning; Feng, Zhihong; Lv, Yuanjie; Wang, Xinqiang; Shen, B.; Ge, Weikun

    2014-12-15

    We have investigated the variation of electron velocity in AlGaN/GaN heterostructures depending on illuminating light intensity and wavelength. It is shown that the electron velocity at high electric field increases under above-band light illumination. This electron velocity enhancement is found to be related to the photo-generated cold holes which interact with hot electrons and thus accelerate the energy relaxation at high electric field. The results suggest an alternative way to improve the electron energy relaxation rate and hence the electron velocity in GaN based heterostructures.

  15. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.; Unocic, Kinga A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  16. NMR study of the ternary carbides M2 AlC (M=Ti,V,Cr)

    NASA Astrophysics Data System (ADS)

    Lue, C. S.; Lin, J. Y.; Xie, B. X.

    2006-01-01

    We have performed a systematic study of the layered ternary carbides Ti2AlC , V2AlC , and Cr2AlC using Al27 NMR spectroscopy. The quadrupole splittings, Knight shifts, as well as spin-lattice relaxation times on each material have been identified. The sign of the isotropic Knight shift varies from positive for Ti2AlC and V2AlC to negative for Cr2AlC , attributed to the enhancement of hybridization with increasing valence electron count in the transition metal. Universally long relaxation times are found for these alloys. Results provide a measure of Al-s Fermi-level density of states Ns(EF) for Ti2AlC and V2AlC . In addition, the evidence that Ns(EF) correlates with the transition metal d -electron count has been explored in the present NMR investigation.

  17. Coating MCPs with AlN and GaN

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhakim; Starikov, David; Boney, Chris

    2006-01-01

    A development effort underway at the time of reporting the information for this article is devoted to increasing the sensitivity of microchannel plates (MCPs) as detectors of photons and ions by coating the MCPs with nitrides of elements in period III of the periodic table. Conventional MCPs are relatively insensitive to slowly moving, large-mass ions for example, ions of biomolecules under analysis in mass spectrometers. The idea underlying this development is to coat an MCP to reduce its work function (decrease its electron affinity) in order to increase both (1) the emission of electrons in response to impingement of low-energy, large-mass ions and (2) the multiplying effect of secondary electron emission. Of particular interest as coating materials having appropriately low or even negative electron affinities are gallium nitride, aluminum nitride, and ternary alloys of general composition Al(x)Ga(1-x)N (where 0AlN and GaN both undoped and doped with Si were deposited on commercial MCPs by radio-frequency molecular-beam epitaxy (also known as plasma-assisted molecular-beam epitaxy) at temperatures <200 C. This deposition technique is particularly suitable because (1) MCPs cannot withstand the higher deposition-substrate temperatures used to decompose constituent compounds in some other deposition techniques and (2) in this technique, the constituent Al, Ga, and N

  18. SEMICONDUCTOR DEVICES: Gate-structure optimization for high frequency power AlGaN/GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Dongfang, Wang; Tingting, Yuan; Ke, Wei; Xiaojuan, Chen; Xinyu, Liu

    2010-05-01

    The influence of gate-head and gate-source-spacing on the performance of AlGaN/GaN HEMTs was studied. Suggestions are then made to improve the performance of high frequency power AlGaN/GaN HEMTs by optimizing the gate-structure. Reducing the field-plate length can effectively enhance gain, current gain cutoff frequency and maximum frequency of oscillation. By reducing the field-plate length, devices with 0.35 μm gate length have exhibited a current gain cutoff frequency of 30 GHz and a maximum frequency of oscillation of 80 GHz. The maximum frequency of oscillation can be further optimized either by increasing the gate-metal thickness, or by using a τ-shape gate (the gate where the gate-head tends to the source side). Reducing the gate-source spacing can enhance the maximum drain-current and breakdown voltage, which is beneficial in enhancing the maximum output power of AlGaN/GaN HEMTs.

  19. Avalanche characteristics of thin GaAs/Al 0.6Ga 0.4As heterojunction avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Low, L. C.; You, A. H.; Andy, L. L. Y.; Cheang, P. L.

    2010-03-01

    The mean multiplication gain and excess noise factor of thin GaAs/Al 0.6Ga 0.4As heterojunction avalanche photodiodes (HAPDs) are simulated. The ionization coefficients of electron and hole in bulk GaAs and Al 0.6Ga 0.4As are used in this model to study the role of heterojunction in reducing excess noise. The band-edge discontinuities at the conduction and valence bands are included in our model which may influence the number of carrier crossing the heterojunction and hence modifies the dead space in the HAPDs. The mean multiplication gain and excess noise factor with electron- and hole-initiated multiplication for 0.1 and 0.2 μm multiplication lengths in GaAs/Al 0.6Ga 0.4As HAPDs are shown. By considering the dead space effect, our model demonstrated a small noise mainly due to the localization of carrier ionization and the limited carrier feedback ionization at heterointerface. In our model, most of the ionizations occur in the first-initiated multiplication layer which reduces the randomness of carrier ionization and noise.

  20. Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure

    SciTech Connect

    Khmissi, H.; Baira, M.; Bouzaieene, L.; Saidi, F.; Maaref, H.; Sfaxi, L.; Bru-Chevallier, C.

    2011-03-01

    Optical properties of InAs quantum dots (QDs) inserted in AlGaAs/GaAs modulation doped heterostructure are investigated. To study the effect of carrier transfer behavior on the luminescence of self-assembled quantum dots, a series of sample has been prepared using molecular beam epitaxy (Riber 32 system) in which we have varied the thickness separating the delta dopage and the InAs quantum dots layer. Photoluminescence spectra show the existence of two peaks that can be attributed to transition energies from the ground state (E{sub 1}-HH{sub 1}) and the first excited state (E{sub 2}-HH{sub 2}). Two antagonist effects have been observed, a blue shift of the emission energies result from electron transferred from the AlGaAs/GaAs heterojunction to the InAs quantum dots and a red shift caused by the quantum confined Stark effect due to the internal electric field existing In the AlGaAs/GaAs heterojunction.

  1. Controlling the stress of growing GaN on 150-mm Si (111) in an AlN/GaN strained layer superlattice

    NASA Astrophysics Data System (ADS)

    Lin, Po-Jung; Huang, Shih-Yung; Wang, Wei-Kai; Chen, Che-Lin; Chung, Bu-Chin; Wuu, Dong-Sing

    2016-01-01

    For growing a thicker GaN epilayer on a Si substrate, generally, a larger wafer bowing with tensile stress caused by the mismatch of thermal expansion coefficients between GaN and Si easily generates a cracked surface during cool down. In this work, wafer bowing was investigated to control stress by changing the thickness of a GaN layer from 18.6 to 27.8 nm in a 80-paired AlN/GaN strained layer superlattice (SLS) grown on a 150-mm Si (111) substrate. The results indicated that wafer bowing was inversely proportional to the total thickness of epilayer and the thickness of the GaN layer in the AlN/GaN SLS, since higher compressive stress caused by a thicker GaN layer during SLS growth could compensate for the tensile stress generated during cool down. After returning to room temperature, the stress of the AlN/GaN SLS was still compressive and strained in the a-axis. This is due to an unintended AlGaN grading layer was formed in the AlN/GaN SLS. This AlGaN layer reduced the lattice mismatch between AlN and GaN and efficiently accumulated stress without causing relaxation.

  2. Cr-Al coatings on low carbon steel prepared by a mechanical alloying technique

    NASA Astrophysics Data System (ADS)

    Hia, A. I. J.; Sudiro, T.; Aryanto, D.; Sebayang, K.

    2016-08-01

    Four different compositions of Cr and Al coatings as Cr10o, Cr87.5Al12.5, Cr5oAl5o, and Al100 have been prepared on the surface of low carbon steel by a mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Hereafter, the Cr-Al powder and substrate were mechanical alloyed in air for 1 hour. Heat treatment of coated sample were carried out at 800°C in a vacuum furnace. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The results show that Cr, Cr-Al or Al coatings were formed on the surface of low carbon steel. After heat treatment, new phases and interdiffusion zone were formed in the coating and at the coating/steel interface, depending on the coating composition.

  3. The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance

    NASA Astrophysics Data System (ADS)

    Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini

    2012-06-01

    Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.

  4. Polarization Effects of GaN and AlGaN: Polarization Bound Charge, Band Bending, and Electronic Surface States

    NASA Astrophysics Data System (ADS)

    Eller, Brianna S.; Yang, Jialing; Nemanich, Robert J.

    2014-12-01

    GaN-based devices are currently limited by reliability issues such as gate leakage and current collapse, where the mechanisms responsible for degradation are closely related to the electronic surface state configuration. Therefore, understanding the electronic surface state configuration of GaN-based materials will help improve device performance. Since GaN has an inherent polarization, these materials are also subject to a bound polarization charge, which influences the electronic state configuration. In this study, the surface band bending of N-face GaN, Ga-face GaN, and Ga-face AlGaN was measured with x-ray photoemission spectroscopy after various cleaning steps to investigate the effects of the polarization. Despite the different surface bound charge on these materials, similar band bending was observed regardless of the magnitude or direction of the charge. Specifically, the band bending varied from -0.1 eV to 0.9 eV on these samples, which supported the models of a Fermi level pinning state at ˜0.4 eV to 0.8 eV below the conduction band. Based on available literature, we suggest this pinning state is indirectly evident of a nitrogen vacancy or gallium-dangling bond.

  5. Non-equilibrium Green's function calculation of AlGaAs-well-based and GaSb-based terahertz quantum cascade laser structures

    SciTech Connect

    Yasuda, H. Hosako, I.

    2015-03-16

    We investigate the performance of terahertz quantum cascade lasers (THz-QCLs) based on Al{sub x}Ga{sub 1−x}As/Al{sub y}Ga{sub 1−y}As and GaSb/AlGaSb material systems to realize higher-temperature operation. Calculations with the non-equilibrium Green's function method reveal that the AlGaAs-well-based THz-QCLs do not show improved performance, mainly because of alloy scattering in the ternary compound semiconductor. The GaSb-based THz-QCLs offer clear advantages over GaAs-based THz-QCLs. Weaker longitudinal optical phonon–electron interaction in GaSb produces higher peaks in the spectral functions of the lasing levels, which enables more electrons to be accumulated in the upper lasing level.

  6. Influence of the crystal field effect on chemical transport in Earth's mantle: Cr 3+ and Ga 3+ diffusion in periclase

    NASA Astrophysics Data System (ADS)

    Crispin, Katherine L.; Van Orman, James A.

    2010-06-01

    Experiments were performed to determine concentration-dependent diffusion coefficients of Cr 3+ and Ga 3+ in periclase at temperatures of 1563-2273 K. Diffusion profiles measured in the quenched samples are consistent with a theoretical model in which the mobile species is a bound M 3+-vacancy pair, and each profile was fitted to determine the binding energy and diffusion coefficient of the pair. Trivalent chromium-vacancy pairs diffuse more slowly than Ga 3+-vacancy pairs, and with higher migration energy, 237 kJ/mol vs. 190 kJ/mol. Cation vacancies also bind less tightly to Cr 3+ than to Ga 3+, with average binding free energies of -22 and -83 kJ/mol, respectively. At all concentrations and temperatures, Cr 3+ diffuses much more slowly than Ga 3+, by up to two orders of magnitude. The differences between Cr 3+ and Ga 3+ cannot be explained by differences in ionic radius or dipole polarizability, but are consistent with the influence of the crystal field on the partially occupied 3d orbitals of Cr 3+. The crystal field splitting stabilizes Cr 3+ on the octahedral cation site, increasing the energy required for Cr 3+ to exchange positions with an adjacent vacancy. It also makes Cr 3+-vacancy pairs less favorable, with the presence of a nearest-neighbor vacancy disrupting the symmetry of the octahedral site, thus diminishing the crystal field stabilization. Trends in the diffusion of first-row divalent transition metals in periclase can also be explained by the crystal field effect. High-spin to low-spin transitions in Fe 2+, Co 2+ or Mn 2+ would significantly enhance their crystal field stabilization in periclase, and if such spin transitions occur in the deep mantle, they would be expected to slow the diffusivity of these ions significantly, perhaps by several orders of magnitude.

  7. Enhanced performances of AlGaInP-based light-emitting diodes with Schottky current blocking layers

    NASA Astrophysics Data System (ADS)

    Ma, Li; Shen, Guang-Di; Gao, Zhi-Yuan; Xu, Chen

    2015-09-01

    A new epitaxial structure of AlGaInP-based light-emitting diode (LED) with a 0.5-μm GaP window layer was fabricated. In addition, indium tin oxide (ITO) and localized Cr deposition beneath the p-pad electrode were used as the current spreading layer and the Schottky current blocking layer (CBL), respectively. The results indicated that ITO and the Schottky CBL improve the total light extraction efficiency by relieving the current density crowding beneath the p-pad electrode. At the current of 20 mA, the light output power of the novel LED was 40% and 19% higher than those of the traditional LED and the new epitaxial LED without CBL. It was also found that the novel LED with ITO and CBL shows better thermal characteristics. Project supported by the National Natural Science Foundation of China (Grant No. 11204009) and the Natural Science Foundation of Beijing, China (Grant No. 4142005).

  8. High-efficiency blue LEDs with thin AlGaN interlayers in InGaN/GaN MQWs grown on Si (111) substrates

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeya; Yoshida, Hisashi; Ito, Toshihide; Okada, Aoi; Uesugi, Kenjiro; Nunoue, Shinya

    2016-02-01

    We demonstrate high-efficiency blue light-emitting diodes (LEDs) with thin AlGaN interlayers in InGaN/GaN multiquantum wells (MQWs) grown on Si (111) substrates. The peak external quantum efficiency (EQE) ηEQE of 82% at room temperature and the hot/cold factor (HCF) of 94% have been obtained by using the functional thin AlGaN interlayers in the MQWs in addition to reducing threading dislocation densities (TDDs) in the blue LEDs. An HCF is defined as ηEQE(85°C)/ηEQE(25°C). The blue LED structures were grown by metal-organic chemical vapor deposition on Si (111) substrates. The MQWs applied as an active layer have 8- pairs of InGaN/AlyGa1-yN/GaN (0<=y<=1) heterostructures. Thinfilm LEDs were fabricated by removing the Si (111) substrates from the grown layers. It is observed by high-resolution transmission electron microscopy and three-dimensional atom probe analysis that the 1 nm-thick AlyGa1-yN interlayers, whose Al content is y=0.3 or less, are continuously formed. EQE and the HCFs of the LEDs with thin Al0.15Ga0.85N interlayers are enhanced compared with those of the samples without the interlayers in the low-current-density region. We consider that the enhancement is due to both the reduction of the nonradiative recombination centers and the increase of the radiative recombination rate mediated by the strain-induced hole carriers indicated by the simulation of the energy band diagram.

  9. CBED study of grain misorientations in AlGaN epilayers.

    PubMed

    Sahonta, S-L; Cherns, D; Liu, R; Ponce, F A; Amano, H; Akasaki, I

    2005-04-01

    Large angle convergent beam electron diffraction (LACBED) has been used to examine AlGaN epilayers grown by facet-controlled epitaxial lateral overgrowth on GaN/(0001) sapphire substrates in prototype UV laser structures. The substrates, defined by masks with seed openings along a <10-10> stripe direction, had GaN seed columns with {11-22} surfaces. Studies were carried out on cross-sectional samples cut perpendicular to the stripe axis. An LACBED analysis of the orientation of (000 2) planes, and of the (11-20) planes parallel to the stripe axis, revealed that the AlGaN wings were both rotated by angles of 1-2 x 10(-2)radians about the 10-10 stripe axis with respect to the underlying GaN, and distorted due to misfit strains. It is shown that the results are consistent with the observed structure of the AlGaN/GaN and the wing/wing boundaries, and with a new model for the generation of a-type misfit dislocations at the AlGaN/GaN interface. PMID:15777597

  10. Solid state reduction of chromium (VI) pollution for Al2O3-Cr metal ceramics application

    NASA Astrophysics Data System (ADS)

    Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yangai; Tang, Hao; Min, Xin; Wu, Xiaowen

    2016-04-01

    Reduction of chromium (VI) from Na2CrO4 through aluminothermic reaction and fabrication of metal-ceramic materials from the reduction products have been investigated in this study. Na2CrO4 could be successfully reduced into micrometer-sized Cr particles in a flowing Ar atmosphere in presence of Al powder. The conversion ratio of Na2CrO4 to metallic Cr attained 96.16% efficiency. Al2O3-Cr metal-ceramic with different Cr content (5 wt%, 10 wt%, 15 wt%, 20 wt%) were further prepared from the reduction product Al2O3-Cr composite powder, and aluminum oxide nanopowder via pressure-less sintering. The phase composition, microstructure and mechanical properties of metal-ceramic composites were characterized to ensure the potential of the Al2O3-Cr composite powder to form ceramic materials. The highest relative density and bending strength can reach 93.4% and 205 MP, respectively. The results indicated that aluminothermic reduction of chromium (VI) for metal-ceramics application is a potential approach to remove chromium (VI) pollutant from the environment.

  11. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    SciTech Connect

    He, Y.R.; Zheng, M.H.; Rapp, R.A.

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  12. Screw dislocation-induced growth spirals as emissive exciton localization centers in Al-rich AlGaN/AlN quantum wells

    SciTech Connect

    Funato, Mitsuru Banal, Ryan G.; Kawakami, Yoichi

    2015-11-15

    Screw dislocations in Al-rich AlGaN/AlN quantum wells cause growth spirals with an enhanced Ga incorporation, which create potential minima. Although screw dislocations and their surrounding potential minima suggest non-radiative recombination processes within growth spirals, in reality, screw dislocations are not major non-radiative sinks for carriers. Consequently, carriers localized within growth spirals recombine radiatively without being captured by non-radiative recombination centers, resulting in intense emissions from growth spirals.

  13. A novel AlGaAs/GaAs heterojunction-based Hall sensor designed for low magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Sghaier, H.; Bouzaïene, L.; Sfaxi, L.; Maaref, H.

    2004-05-01

    A self-consistent theoretical analysis, using both Schrödinger and Poisson equations, is made to investigate and propose novel Hall devices based on AlGaAs/GaAs heterostructures. The novel heterostructures are designed and optimized with respect to the measurements of low magnetic field du to their high sensitivity. In this study we attempt to show that the electron mobility of the studied heterostructure may be enhanced without loss in interface electron concentration by both increasing the spacer thickness and by inserting a -doping in a narrow quantum well within the AlGaAs barrier where the Al concentration in the well is less than in the barrier. Therefore, we predict a significant enhancement of device sensitivity to low magnetic field without compromise in noise performance.

  14. Sulfidation resistant coatings for coal gasification process equipment. Final technical report. [FeCrAl and CoCrAl alloys

    SciTech Connect

    Perkins, R.A.; Packer, C.M.

    1985-05-01

    This report presents the results of a program of research to develop and evaluate sulfidation resistant coatings for low alloy and stainless steel components of coal gasification process equipment. Furnace fused CoCrAl and FeCrAl coatings were developed for use on 304SS, and laboratory tests indicate good resistance to attack by simulated slagging gasifier atmospheres at 1000 to 1300/sup 0/F (538 to 704/sup 0/C). The CoCrAl coating exhibits the best performance and will protect 304SS at 1000 to 1600/sup 0/F (537 to 871/sup 0/C) for over 1500 hr. These coatings will protect 304SS at 1600/sup 0/F (871/sup 0/C) at the highest level of P/sub S/sub 2// for any level of P/sub O/sub 2// compared with other alloys and surface coatings. Weld parameters were studied for the deposition of FeCrAl clad layers on FeCrAl and Alloy 800 plate and on T-91 steel tube. Crack-free weld deposited layers could not be produced under any conditions for alloys with as little as 4% Al and the technical feasibility of cladding steels with weld deposited FeCrAl is considered to be poor. Similar results were obtained in tests by laser surface fusion of CoCrAl and FeCrAl coatings on 310SS and T-11 steel. The technical feasibility of aluminizing and chromizing low alloy steels by a slip pack diffusion process has been demonstrated. High quality aluminide coatings on T-11 steel resistant to CGA attack at 1000 to 1600/sup 0/F were produced. Performance was equal to or better than that of commercial pack aluminized steels. The process is considered to have the potential for a major improvement in quality and performance of large, complex components aluminized by the pack diffusion process. Development and scale up of the process is recommended. 30 refs., 63 figs., 38 tabs.

  15. Al xIn 1-xN/GaN heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Xie, J.; Ni, X.; Wu, M.; Leach, J. H.; Özgür, Ü.; Morkoç, H.

    2008-02-01

    In AlGaN/GaN heterostructure field effect transistors (HFETs), two-dimensional-electron-gas (2DEG), induced by strong piezoelectric and spontaneous polarization field, has high sheet density, and can be tuned up to 5 ×10 13 cm -2 with pure AlN barrier.[Appl. Phys. Lett. 90, 182112 (2007)].For Al compositions larger than 40%, due to the large lattice mismatch between GaN and AlGaN, strain-related issues significantly reduce the mobility for these high sheet carrier densities. Recently, using nearly lattice-matched AlInN/GaN to improve the performance of HFETs has been studied theoretically and experimentally. A high sheet density (2.42 ×10 13 cm2) with >1000 cm2/Vs mobility has been reported by inserting an AlN spacer layer between the AlGaN barrier and GaN channel. However, low-temperature mobilities for AlInN/GaN HFETs are much lower than those for AlGaN/GaN HFETs. In this paper, we study the Al 1-xIn xN/AlN/GaN (x=0.20 - 0.12) (HFETs) grown by metalorganic chemical vapor deposition. Reduction of In composition from 20% to 12% increased the room temperature equivalent two-dimensional-electron-gas (2DEG) density from 0.90×10 13 cm -2 to 1.64 ×10 13 cm -2 with corresponding electron mobilities of 1600 cm2/Vs and 1410 cm2/Vs. Furthermore, at 10 K, the mobility reached 17,600 cm2/Vs with a sheet density 9.6 ×10 12 cm -2 for the nearly lattice-matched Al 0.82In 0.18N /AlN/GaN heterostructure. The HFETs having 1 μm gate length exhibited a maximum transconductance of ~ 250 mS/mm with good pinch-off characteristics.

  16. Characterization of dislocations in GaN layer grown on 4-inch Si(111) with AlGaN/AlN strained layer superlattices

    NASA Astrophysics Data System (ADS)

    Sugawara, Yoshihiro; Ishikawa, Yukari; Watanabe, Arata; Miyoshi, Makoto; Egawa, Takashi

    2016-05-01

    Dislocations in a GaN layer grown on 4-in. Si(111) with AlGaN/AlN strained layer superlattices using a horizontal metal–organic chemical vapor deposition system were characterized by transmission electron microscopy and scanning transmission electron microscopy. Pure screw dislocations were not found in the observed area but mixed and edge dislocations were found. The dislocation density in the GaN layer decreased from the bottom (∼2 × 1010 cm‑2) to the top (∼6 × 109 cm‑2). Some dislocations were inclined from the c-axis, and half-loop dislocations were observed in the GaN layer. Plan-view weak-beam dark-field analysis indicated that the dislocation inclination was caused by climb and glide motions.

  17. Spectroscopic properties of {Cr}^{3+} in the spinel solid solution {ZnAl}_{2-x}{Cr}x{O}_4

    NASA Astrophysics Data System (ADS)

    Verger, Louisiane; Dargaud, Olivier; Rousse, Gwenaelle; Rozsályi, Emese; Juhin, Amélie; Cabaret, Delphine; Cotte, Marine; Glatzel, Pieter; Cormier, Laurent

    2016-01-01

    The evolution of the structural environment of {Cr}{^{3+}} along the solid solution {ZnAl}_{2-x}{Cr}x{O}_4 has been investigated using a multi-analytical approach. X-ray diffraction confirms that the system follows Vegard's law. Diffuse reflectance spectra show a decrease of the crystal field parameter with the Cr content, usually related to the increase of the Cr-O bond length in a point charge model. This interpretation is discussed and compared to the data obtained by first-principle calculations based on density functional theory. X-ray absorption near edge structure spectra at the Cr K-edge show a pronounced evolution in the pre-edge with the Cr content, characterised by the appearance of a third feature. Calculations enable to assign the origin of this feature to Cr neighbours. The colour change from pink to brownish pink and eventually green along the solid solution has also been quantified by calculating the L*, a*, b* and x, y coefficients in the system defined by the International Commission on Illumination.

  18. Large negative magnetoresistance induced by interplay between smooth disorder and antidots in AlGaN/GaN HEMT structures

    NASA Astrophysics Data System (ADS)

    Mishra, M. K.; Sharma, R. K.; Tyagi, R.; Manchanda, R.; Pandey, A. K.; Thakur, O. P.; Muralidharan, R.

    2016-04-01

    Large low temperature negative magnetoresistance (NMR) experimentally observed in AlGaN/GaN high electron mobility transistors (HEMT) structures grown by metalorganic chemical vapour deposition on sapphire substrate has been reported. A linear B -1 ln B dependence of magnetoresistance observed in our samples indicates the presence of random antidot array together with smooth disorder. It is proposed that the antidots are linked with high bandgap AlN rich regions formed due to possible Al-Ga segregation at the interface during growth and the smooth random disorder is due to interface roughness. The antidot density is estimated to be of ˜7 to 8 × 1010 cm-2 in our samples. The magnitude of NMR is also correlated with the extent of interface roughness indicated by x-ray reflectivity. It is also proposed that the formation of antidots is related with the lattice mismatch between substrate and epitaxial heterostructures. The NMR in AlGaN/GaN HEMT structures grown on SiC substrates having relatively lower lattice mismatch has been shown to have a usual B 2 and ln T dependences indicating only electron-electron interaction and absence of antidot-like scatterers.

  19. Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates

    SciTech Connect

    Guo, Wei Bryan, Zachary; Kirste, Ronny; Bryan, Isaac; Hussey, Lindsay; Bobea, Milena; Haidet, Brian; Collazo, Ramón; Sitar, Zlatko; Xie, Jinqiao; Mita, Seiji; Gerhold, Michael

    2014-03-14

    Optical gain spectra for ∼250 nm stimulated emission were compared in three different AlGaN-based structures grown on single crystalline AlN substrates: a single AlGaN film, a double heterostructure (DH), and a Multiple Quantum Well (MQW) structure; respective threshold pumping power densities of 700, 250, and 150 kW/cm{sup 2} were observed. Above threshold, the emission was transverse-electric polarized and as narrow as 1.8 nm without a cavity. The DH and MQW structures showed gain values of 50–60 cm{sup −1} when pumped at 1 MW/cm{sup 2}. The results demonstrated the excellent optical quality of the AlGaN-based heterostructures grown on AlN substrates and their potential for realizing electrically pumped sub-280 nm laser diodes.

  20. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  1. Characterization of AlInN/GaN structures on AlN templates for high-performance ultraviolet photodiodes

    NASA Astrophysics Data System (ADS)

    Sakai, Yusuke; Khai, Pum Chian; Ichikawa, Junki; Egawa, Takashi; Jimbo, Takashi

    2011-02-01

    The authors characterize AlInN/GaN structures on AlN templates for high-performance ultraviolet photodiodes. AlInN/GaN structures were grown with various growth parameters by metal organic chemical vapor deposition. In the case of nearly lattice-matched to GaN underlying layers, AlInN/GaN structures are found to have smooth interface. AlInN layers grown at the low pressure are confirmed to have high crystal quality from x-ray diffraction measurements and good surface morphology from atomic force microscope images. The noble AlInN-based photodiodes were fabricated. Their performances show the leakage current of 48 nA at a reverse voltage of 5 V and the cutoff wavelength around 260 nm. A cutoff-wavelength responsivity of 21.84 mA/W is obtained, corresponding to quantum efficiency of 10.6%. It may be possible to realize high-performance ultraviolet photodiodes by further optimizing AlInN/GaN structures.

  2. Analysis of current instabilities of thin AlN/GaN/AlN double heterostructure high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Zervos, Ch; Adikimenakis, A.; Bairamis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G.; Georgakilas, A.

    2016-06-01

    The current instabilities of high electron mobility transistors (HEMTs), based on thin double AlN/GaN/AlN heterostructures (˜0.5 μm total thickness), directly grown on sapphire substrates, have been analyzed and compared for different AlN top barrier thicknesses. The structures were capped by 1 nm GaN and non-passivated 1 μm gate-length devices were processed. Pulsed I-V measurements resulted in a maximum cold pulsed saturation current of 1.4 A mm-1 at a gate-source voltage of +3 V for 3.7 nm AlN thickness. The measured gate and drain lag for 500 ns pulse-width varied between 6%-12% and 10%-18%, respectively. Furthermore, a small increase in the threshold voltage was observed for all the devices, possibly due to the trapping of electrons under the gate contact. The off-state breakdown voltage of V br = 70 V, for gate-drain spacing of 2 μm, was approximately double the value measured for a single AlN/GaN HEMT structure grown on a thick GaN buffer layer. The results suggest that the double AlN/GaN/AlN heterostructures may offer intrinsic advantages for the breakdown and current stability characteristics of high current HEMTs.

  3. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Xie, Jinqiao; Mita, Seiji

    2015-04-06

    The internal quantum efficiency (IQE) of Al{sub 0.55}Ga{sub 0.45}N/AlN and Al{sub 0.55}Ga{sub 0.45}N/Al{sub 0.85}Ga{sub 0.15}N UVC MQW structures was analyzed. The use of bulk AlN substrates enabled us to undoubtedly distinguish the effect of growth conditions, such as V/III ratio, on the optical quality of AlGaN based MQWs from the influence of dislocations. At a high V/III ratio, a record high IQE of ∼80% at a carrier density of 10{sup 18 }cm{sup −3} was achieved at ∼258 nm. The high IQE was correlated with the decrease of the non-radiative coefficient A and a reduction of midgap defect luminescence, all suggesting that, in addition to dislocations, point defects are another major factor that strongly influences optical quality of AlGaN MQW structures.

  4. Oxidation behavior of arc evaporated Al-Cr-Si-N thin films

    SciTech Connect

    Tritremmel, Christian; Daniel, Rostislav; Mitterer, Christian; Mayrhofer, Paul H.; Lechthaler, Markus; Polcik, Peter

    2012-11-15

    The impact of Al and Si on the oxidation behavior of Al-Cr-(Si)-N thin films synthesized by arc evaporation of powder metallurgically prepared Al{sub x}Cr{sub 1-x} targets with x = Al/(Al + Cr) of 0.5, 0.6, and 0.7 and (Al{sub 0.5}Cr{sub 0.5}){sub 1-z}Si{sub z} targets with Si contents of z = 0.05, 0.1, and 0.2 in N{sub 2} atmosphere was studied in detail by means of differential scanning calorimetry, thermogravimetric analysis (TGA), x-ray diffraction, and Raman spectroscopy. Dynamical measurements in synthetic air (up to 1440 Degree-Sign C) revealed the highest onset temperature of pronounced oxidation for nitride coatings prepared from the Al{sub 0.4}Cr{sub 0.4}Si{sub 0.2} target. Isothermal TGA at 1100, 1200, 1250, and 1300 Degree-Sign C highlight the pronounced improvement of the oxidation resistance of Al{sub x}Cr{sub 1-x}N coatings by the addition of Si. The results show that Si promotes the formation of a dense coating morphology as well as a dense oxide scale when exposed to air.

  5. Oxidation behavior of cubic phases formed by alloying Al3Ti with Cr and Mn

    NASA Technical Reports Server (NTRS)

    Parfitt, L. J.; Nic, J. P.; Mikkola, D. E.; Smialek, J. L.

    1991-01-01

    Gravimetric, SEM, and XRD data are presented which document the significant improvement obtainable in the oxidation resistance of Al3Ti-containing alloys through additions of Cr. The L1(2) Al(67)Cr(8)Ti25 alloy exhibited excellent cyclic oxidation resistance at 1473 K, with the primary oxide formed being the ideally protective alpha-Al2O3. The Al(67)Mn(8)Ti(25) alloy also tested for comparison exhibited poor cyclic oxidation resistance, with substantial occurrence of TiO2 in the protective scales. Catastrophic oxidation was also encountered in the quaternary alloy Al(67)Mn(8)Ti(22)V(3).

  6. Structural and optical properties of Ga auto-incorporated InAlN epilayers

    NASA Astrophysics Data System (ADS)

    Taylor, E.; Smith, M. D.; Sadler, T. C.; Lorenz, K.; Li, H. N.; Alves, E.; Parbrook, P. J.; Martin, R. W.

    2014-12-01

    InAlN epilayers deposited on thick GaN buffer layers grown by metalorganic chemical vapour deposition (MOCVD) revealed an auto-incorporation of Ga when analysed by wavelength dispersive x-ray (WDX) spectroscopy and Rutherford backscattering spectrometry (RBS). Samples were grown under similar conditions with the change in reactor flow rate resulting in varying Ga contents of 12-24%. The increase in flow rate from 8000 to 24 000 sccm suppressed the Ga auto-incorporation which suggests that the likely cause is from residual Ga left behind from previous growth runs. The luminescence properties of the resultant InAlGaN layers were investigated using cathodoluminescence (CL) measurements.

  7. Rapid silicon outdiffusion from SiC substrates during molecular-beam epitaxial growth of AlGaN/GaN/AlN transistor structures

    SciTech Connect

    Hoke, W.E.; Torabi, A.; Mosca, J.J.; Hallock, R.B.; Kennedy, T.D.

    2005-10-15

    AlGaN/GaN/AlN transistor structures were grown onto SiC substrates by molecular-beam epitaxy. Under aluminum-rich growth conditions for the AlN nucleation layer, undesirable n-type conduction is observed near the GaN/AlN interface for even thick (>1000 A) AlN layers. Silicon is identified as the unwanted dopant from secondary-ion mass spectroscopy measurements. Atomic force microscopy surface maps reveal free aluminum metal on AlN surfaces grown under modest aluminum-rich conditions. It is proposed that rapid silicon migration is caused by molten aluminum reacting with the SiC substrate resulting in dissolved silicon that rapidly migrates through the growing AlN layer. This behavior is significantly reduced using a growth flux ratio of aluminum to reactive nitrogen close to unity. The resulting buffer leakage current of the GaN high electron mobility transistor structure is reduced by more than four orders of magnitude.

  8. Thermodynamic properties of La-Ga-Al and U-Ga-Al alloys and the separation factor of U/La couple in the molten salt-liquid metal system

    NASA Astrophysics Data System (ADS)

    Novoselova, A.; Smolenski, V.; Volkovich, V. A.; Ivanov, A. B.; Osipenko, A.; Griffiths, T. R.

    2015-11-01

    The electrochemical behaviour of lanthanum and uranium was studied in fused 3LiCl-2KCl eutectic and Ga-Al eutectic liquid metal alloy between 723 and 823 K. Electrode potentials were recorded vs. Cl-/Cl2 reference electrode and the temperature dependencies of the apparent standard potentials of La-(Ga-Al) and U-(Ga-Al) alloys were determined. Lanthanum and uranium activity coefficients and U/La couple separation factor were calculated. Partial excess free Gibbs energy, partial enthalpy of mixing and partial excess entropy of La-(Ga-Al) and U-(Ga-Al) alloys were estimated.

  9. Cr Isotopes in Allende Ca-Al-rich Inclusions

    NASA Technical Reports Server (NTRS)

    Bogdanovski, O.; Papanastassiou, D. A.; Wasserburg, G. J.

    2002-01-01

    We have determined Cr isotope compositions in minerals from Allende CAI in order to address the initial 53Mn (half-life 3.7 Ma) abundance in the solar system. Additional information is contained in the original extended abstract.

  10. Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment

    SciTech Connect

    Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; Coelho, A. A.; Nigam, A. K.; Johnson, D. D.; Alam, Aftab; Suresh, K. G.

    2015-07-08

    Despite a plethora of materials suggested for spintronic applications, a new class of materials has emerged, namely spin gapless semiconductors (SGS), which offers potentially more advantageous properties than existing ones. These magnetic semiconductors exhibit a finite band gap for one spin channel and a closed gap for the other. Supported by electronic-structure calculations, we report evidence of SGS behavior in equiatomic quaternary CoFeCrGa, having a cubic Heusler (prototype LiMgPdSn) structure but exhibiting chemical disorder (DO3 structure). CoFeCrGa is found to transform from SGS to half-metallic phase under pressure, which is attributed to unique electronic-structure features. The saturation magnetization (MS) was obtained at 8K agrees with the Slater-Pauling rule and the Curie temperature (TC) is found to exceed 400K. Carrier concentration (up to 250K) and electrical conductivity are observed to be nearly temperature independent, prerequisites for SGS. The anomalous Hall coefficient is estimated to be 185S/cm at 5K. Considering the SGS properties and high TC, this material appears to be promising for spintronic applications.

  11. Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; Coelho, A. A.; Nigam, A. K.; Johnson, D. D.; Alam, Aftab; Suresh, K. G.

    2015-07-01

    Despite a plethora of materials suggested for spintronic applications, a new class of materials has emerged, namely spin gapless semiconductors (SGS), which offers potentially more advantageous properties than existing ones. These magnetic semiconductors exhibit a finite band gap for one spin channel and a closed gap for the other. Here, supported by electronic-structure calculations, we report evidence of SGS behavior in equiatomic quaternary CoFeCrGa, having a cubic Heusler (prototype LiMgPdSn) structure but exhibiting chemical disorder (DO3 structure). CoFeCrGa is found to transform from SGS to half-metallic phase under pressure, which is attributed to unique electronic-structure features. The saturation magnetization (MS) obtained at 8 K agrees with the Slater-Pauling rule and the Curie temperature (TC) is found to exceed 400 K . Carrier concentration (up to 250 K ) and electrical conductivity are observed to be nearly temperature independent, prerequisites for SGS. The anomalous Hall coefficient is estimated to be 185 S /cm at 5 K . Considering the SGS properties and high TC, this material appears to be promising for spintronic applications.

  12. Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment

    DOE PAGES

    Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; Coelho, A. A.; Nigam, A. K.; Johnson, D. D.; Alam, Aftab; Suresh, K. G.

    2015-07-08

    Despite a plethora of materials suggested for spintronic applications, a new class of materials has emerged, namely spin gapless semiconductors (SGS), which offers potentially more advantageous properties than existing ones. These magnetic semiconductors exhibit a finite band gap for one spin channel and a closed gap for the other. Supported by electronic-structure calculations, we report evidence of SGS behavior in equiatomic quaternary CoFeCrGa, having a cubic Heusler (prototype LiMgPdSn) structure but exhibiting chemical disorder (DO3 structure). CoFeCrGa is found to transform from SGS to half-metallic phase under pressure, which is attributed to unique electronic-structure features. The saturation magnetization (MS) wasmore » obtained at 8K agrees with the Slater-Pauling rule and the Curie temperature (TC) is found to exceed 400K. Carrier concentration (up to 250K) and electrical conductivity are observed to be nearly temperature independent, prerequisites for SGS. The anomalous Hall coefficient is estimated to be 185S/cm at 5K. Considering the SGS properties and high TC, this material appears to be promising for spintronic applications.« less

  13. Low-temperature-grown GaAs enhanced wet thermal oxidation of Al0.98Ga0.02As

    NASA Astrophysics Data System (ADS)

    Reese, H.; Chiu, Y. J.; Hu, E.

    1998-11-01

    The effects of incorporating low-temperature-grown GaAs (LT GaAs) into the layer structure of Al0.98Ga0.02As/GaAs are studied. Results show that the structures containing a 300 nm layer of LT GaAs have faster oxidation rates and lower oxidation temperatures compared to reference samples without the LT GaAs layer. This letter will discuss the mechanisms involved in the oxidation rate increase, attributed to the LT GaAs enhancing the transport of As species during the oxidation process.

  14. Reduction of Cr (VI) by organic acids in the presence of Al (III).

    PubMed

    Chen, Na; Lan, Yeqing; Wang, Bo; Mao, Jingdong

    2013-09-15

    The effects of Al (III) on the reduction of Cr (VI) by three α-hydroxy acids, tartaric, malic and citric acids, were investigated through batch experiments at pH from 2.5 to 4.0 and temperatures from 25 °C to 35 °C. These reactions could be described as pseudo-zero-order with respect to Cr (VI) when the concentrations of α-hydroxy acids were greatly in excess. The transformation rates of Cr (VI) to Cr (III) in the presence of Al (III) without light were in the decreasing order of tartaric acid>malic acid>citric acid. This order suggested that the two α-hydroxyl groups in tartaric acid could play an important role in the reduction of Cr (VI) by organic acids. The possible mechanism was that the formed complex between organic acids and Al (III) significantly enhanced the reductivity of α-hydroxy acids and further led to the more complicated Cr (VI)-tartaric acid-Al (III) cyclic ester which greatly accelerated the reduction rate. The Cr (VI) reduction reaction rate increased with the decrease of pH but with the increase of Al (III) concentration, tartaric acid concentration, and temperature. As the pH decreased, the increase of [H(+)] led to an increase in {Al(III)H₂Tar₂}(+), the most active species, and thus the enhanced reduction rate.

  15. Optical investigation of band-edge structure and built-in electric field of AlGaN/GaN heterostructures by means of thermoreflectance, photoluminescence, and contactless electroreflectance spectroscopy.

    PubMed

    Ho, Ching-Hwa; Lee, Jheng-Wei

    2009-12-01

    The band-edge property and built-in electric fields of two different Al(x)Ga(1-x)N/GaN(AlGaN/GaN) heterostructures (HSs) with and without an additional AlGaN inserted layer were studied by thermoreflectance (TR), photoluminescence (PL), and contactless electroreflectance (CER) techniques. The PL spectra characterize the band-edge luminescence property of GaN. Free exciton transitions of AlGaN and GaN were probed experimentally by TR. Prominent Franz-Keldysh oscillations (FKOs) of GaN and the opposite FKO phase of AlGaN were simultaneously detected by the additional AlGaN inserted sample with CER owing to the enhancement effect of built-in electric fields of GaN and AlGaN with the same polarity direction. Optoelectronics properties of the two HSs were characterized by the experimental analyses.

  16. AlGaAs phased array laser for optical communications

    NASA Technical Reports Server (NTRS)

    Carlson, N. W.

    1989-01-01

    Phased locked arrays of multiple AlGaAs diode laser emitters were investigated both in edge emitting and surface emitting configurations. CSP edge emitter structures, coupled by either evanescent waves or Y-guides, could not achieve the required powers (greater than or similar to 500 mW) while maintaining a diffraction limited, single lobed output beam. Indeed, although the diffraction limit was achieved in this type of device, it was at low powers and in the double lobed radiation pattern characteristic of out-of-phase coupling. Grating surface emitting (GSE) arrays were, therefore, investigated with more promising results. The incorporation of second order gratings in distribute Bragg reflector (DBR) structures allows surface emission, and can be configured to allow injection locking and lateral coupling to populate 2-D arrays that should be able to reach power levels commensurate with the needs of high performance, free space optical communications levels. Also, a new amplitude modulation scheme was developed for GSE array operation.

  17. AlGaAs converters and arrays for laser power beaming

    SciTech Connect

    Khvostikov, Vladimir Sorokina, Svetlana; Potapovich, Nataliia; Khvostikova, Olga; Shvarts, Maxim; Timoshina, Nailya; Andreev, Viacheslav

    2015-09-28

    This study reports on the development of AlGaAs/GaAs-based laser power photovoltaic (PV) converters fabricated by LPE. The monochromatic (λ = 809 nm) conversion efficiency up to 58% is measured for cells with p-n junction in Al{sub 0.07}Ga{sub 0.93}As and low (x = 0.25-0.3) Al concentration ‘window’. Modules, which have converters of low and high power laser radiation and the voltage of 4V, have been designed and fabricated. Comparison of output parameters measured at two different conditions (i.e., under flash lamp and laser beam) has been performed.

  18. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band

    SciTech Connect

    Zhao, S.; Liu, X.; Kang, J.; Mi, Z.; Woo, S. Y.; Botton, G. A.

    2015-07-27

    We have investigated the molecular beam epitaxial growth and characterization of nearly defect-free AlGaN nanowire heterostructures grown directly on Si substrate. By exploiting the Anderson localization of light, we have demonstrated electrically injected AlGaN nanowire lasers that can operate at 262.1 nm. The threshold current density is 200 A/cm{sup 2} at 77 K. The relatively low threshold current is attributed to the high Q-factor of the random cavity and the three-dimensional quantum confinement offered by the atomic-scale composition modulation in self-organized AlGaN nanowires.

  19. High-performance AlGaInP light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Maranowski, Steven A.; Camras, Michael D.; Chen, Changhua; Cook, Lou W.; Craford, M. G.; DeFevere, Dennis C.; Fletcher, Robert M.; Hofler, Gloria E.; Kish, Frederick A.; Kuo, Chihping; Moll, A. J.; Osentowski, Tim; Park, K. G.; Peanasky, Michael J.; Rudaz, S. L.; Steigerwald, Dan A.; Steranka, Frank M.; Stockman, Steve A.; Tan, I. H.; Tarn, J.; Yu, Jingxi; Ludowise, Mike J.; Robbins, Virginia M.

    1997-04-01

    A new class of LEDs based on the AlGaInP material system first became commercially available in the early 1990's. These devices benefit from a direct bandgap from the red to the yellow-green portion of the spectrum. The high efficiencies possible in AlGaInP across this spectrum have enabled new applications for LEDs including automotive lighting, outdoor variable message signs, outdoor large screen video displays, and traffic signal lights. A review of high-brightness AlGaInP LED technology will be presented.

  20. Stable structure and magnetic state of ultrathin CrAs films on GaAs(001): A density functional theory study

    NASA Astrophysics Data System (ADS)

    Hashemifar, S. Javad; Kratzer, Peter; Scheffler, Matthias

    2010-12-01

    Density functional theory calculations using the pseudopotential-plane-wave approach are employed to investigate the structural and magnetic properties of epitaxial CrAs thin films on GaAs(001). Motivated by recent reports of ferromagnetism in this system, we compare zinc-blende CrAs films (continuing the lattice structure of the GaAs substrate) and CrAs films with a bulklike orthorhombic structure epitaxially matched to three units of the GaAs(001) lattice. We find that even for very thin films with three Cr layers the bulklike crystal structure is energetically more favorable than zinc-blende CrAs on GaAs(001). CrAs films with orthorhombic structure, even if under epitaxial strain, preserve the antiferromagnetic order of CrAs bulk. In the light of our calculations, it appears likely that the magnetic hysteresis loop measured in ultrathin CrAs/GaAs(001) films originates from uncompensated antiferromagnetic moments near the CrAs/GaAs interface. In conclusion, our results do not support earlier proposals that thick CrAs films could be employed as perfectly matched spin-injection electrode on GaAs.

  1. Raman spectroscopy of GaN and AlGaN nanowires: from ensemble to single nanowire study

    NASA Astrophysics Data System (ADS)

    Wang, J.; Bayon, C.; Demangeot, F.; Pechou, R.; Mlayah, A.; Cros, A.; Daudin, B.

    2013-03-01

    Self-assembled GaN nanowires (NWs) currently are a subject of sustained interest in the scientific community motivated by both their potential applications for new LEDs, which should take benefit of the improved crystalline quality of those nano-objects, due to a strongly reduced defects density. In addition, interest of the scientific community for these 1D nano-systems is also related to the new fundamental questions opened by their strongly anisotropic geometry, and to their potential as possible building blocks for future nano-electronic devices. In this context, Raman spectroscopy has been increasingly used to study nitride NWs and several new phenomena have been reported to date with respect to these one-dimensional structures. In this work, both GaN and AlGaN nanowires grown by plasma-assisted Molecular Beam Epitaxy (MBE) have been experimentally investigated by scanning electron microscopy, atomic force microscopy and micro-Raman spectroscopy. Experimental results are analyzed and compared to theoretical ones obtained by dielectric models and Discrete Dipole Approximation (DDA) method. Evidence is given for original surface effects in the optical phonon physics related to both structural anisotropy of the material and 1D geometry of the GaN NWs. By using UV resonant excitation for AlGaN NWs in the whole range of composition, we demonstrate the selective excitation of AlGaN with the Al composition matching the energy of the exciting photons. Finally, we analyzed Raman data from single GaN NW after deposition on a flat substrate and we discuss the nature of strongly polarized A1(TO) phonon as a function of the NWs aspect ratio.

  2. Hole spin injection from a GaMnAs layer into GaAs-AlAs-InGaAs resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    Rodrigues, D. H.; Brasil, M. J. S. P.; Orlita, M.; Kunc, J.; Galeti, H. V. A.; Henini, M.; Taylor, D.; Galvão Gobato, Y.

    2016-04-01

    We have investigated the polarization-resolved electroluminescence (EL) of a p-i-n GaAs/AlAs/InGaAs resonant tunneling diode (RTD) containing a GaMnAs (x  =  5%) spin injector under high magnetic fields. We demonstrate that under hole resonant tunneling condition, the GaMnAs contact acts as an efficient spin-polarized source for holes tunneling through the device. Polarization degrees up to 80% were observed in the device around the hole resonance at 2 K under 15 T. Our results could be valuable for improving the hole-spin injection in GaMnAs-based spintronic devices.

  3. Study of GaAs/AlGaAs quantum-well structures grown by MOVPE using tertiarybutylarsine

    NASA Astrophysics Data System (ADS)

    Lee, Hyung G.; Kim, HyungJun; Park, S. H.; Langer, Dietrich W.

    1991-03-01

    Tertiarybutylarsine (TBAs) was utilized in the fabrication of GaAs A1GaAs and GaAs/A1GaAs structures in a Low Pressure - Metal Organic Vapor Phase Epitaxy (LP-MOVPE) system. Good quality epitaxial layers were achieved at 700 C with V/LI! ratio of 50. Undoped GaAs and AI (x 3-0. 6) layers were p-type with typical background carrier concentrations of mid 1014 cm3 and 1016 cm3 range respectively. Carbon could be used as p-type dopant in A1GaAS layers by controlling the TBAs mole fraction. Double-heterostructure lasers were fabricated and showed a threshold current density of 500 A/cm2. GaAs/AlGaAs multiple quantum well structures produced photoluminescence spectra with very narrow FWHM comparable to arsine-grown samples. Electro-absorptive waveguide modulator with MQW active layer demonstrated more than 2: 1 modulation ratio at the energy far below the QW exciton absorption peak. The deposition of 111-V compound semiconductors by metalorganic vapor phase epitaxy (MOVPE) is normally accomplished with gaseous group V precursors. These sources arsine (AsH3) and phosphine (PH3) are highly toxic and are stored in high pressure cylinders. Thus careful handlings are required to avoid accidental leakage. Lately a number of less hazardous arsenic compounds have been investigated as alternative As sources Methyl ethyl and butyl groups are substituted for one or more of the hydrogen atoms in arsine. In particular Tertiarybutylarsine (TBAs) has been most successful in growing high quality GaAs and A1GaAS films and useful electronic devices have

  4. Valence band offsets of Sc x Ga1‑x N/AlN and Sc x Ga1‑x N/GaN heterojunctions

    NASA Astrophysics Data System (ADS)

    Tsui, H. C. L.; Goff, L. E.; Palgrave, R. G.; Beere, H. E.; Farrer, I.; Ritchie, D. A.; Moram, M. A.

    2016-07-01

    The valence band offsets of Sc x Ga1‑x N/AlN heterojunctions were measured by x-ray photoelectron spectroscopy (XPS) and were found to increase from 0.42 eV to 0.95 eV as the Sc content x increased from 0 to 0.15. The increase in valence band offset with increasing x is attributed to the corresponding increase in spontaneous polarization of the wurtzite structure. The Sc x Ga1‑x N/AlN heterojunction is type I, similar to other III-nitride-based heterojunctions. The data also indicate that a type II staggered heterojunction, which can enhance spatial charge separation, could be formed if Sc x Ga1‑x N is grown on GaN.

  5. Thermodynamically stable p-channel strained-layer AlGaAs/InGaAs/GaAs heterostructure field effect transistor

    NASA Astrophysics Data System (ADS)

    Baca, A. G.; Zipperian, T. E.; Howard, A. J.; Klem, J. F.; Tigges, C. P.

    1994-08-01

    Device characteristics of a thermodynamically stable p-channel, strained quantum-well heterostructure field effect transistor (HFET) are reported. The AlGaAs/InGaAs/GaAs material system was used to fabricate the p-channel HFETs with Al and In mole fractions of 0.20 and 0.18, respectively. Transconductances of 32 and 94 mS/mm were achieved at 300 and 77 K, respectively, for devices with 1.2 μm recessed gates. These numbers are comparable to InGaAs quantum-well, recessed gate pHFETs whose quantum-well thicknesses exceed the thermodynamic stability limit. These results have important implications for high performance self-aligned devices which require high-temperature processing.

  6. Thermodynamically stable [ital p]-channel strained-layer AlGaAs/InGaAs/GaAs heterostructure field effect transistor

    SciTech Connect

    Baca, A.G.; Zipperian, T.E.; Howard, A.J.; Klem, J.F.; Tigges, C.P. )

    1994-08-08

    Device characteristics of a thermodynamically stable [ital p]-channel, strained quantum-well heterostructure field effect transistor (HFET) are reported. The AlGaAs/InGaAs/GaAs material system was used to fabricate the [ital p]-channel HFETs with Al and In mole fractions of 0.20 and 0.18, respectively. Transconductances of 32 and 94 mS/mm were achieved at 300 and 77 K, respectively, for devices with 1.2 [mu]m recessed gates. These numbers are comparable to InGaAs quantum-well, recessed gate [ital p]HFETs whose quantum-well thicknesses exceed the thermodynamic stability limit. These results have important implications for high performance self-aligned devices which require high-temperature processing.

  7. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-09-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1- x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1- x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1- x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1- x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  8. Droop-multimode trade-off in GaN-InGaN LEDs: Effect of polarization-matched AlInGaN blocking layers

    NASA Astrophysics Data System (ADS)

    Pendem, Vikas; Adhikari, Sonachand; Mathew, Manish; Singh, Sumitra; Pal, Suchandan

    2015-12-01

    Polarization-matched graded AlInGaN electron blocking layer (EBL) and hole blocking layer (HBL) are proposed to reduce efficiency droop in GaN-InGaN light-emitting diodes (LEDs). Five different structures have been simulated to study the effect of different blocking layers and a significant reduction in the efficiency droop has been noticed, from 52% in conventional structure to 2% in polarization-matched graded AlInGaN EBL and HBL structure at a current density of 1000 A cm-2. This has been achieved at the cost of multimode emission from such polarization-matched blocking layers which sets a trade-off between efficiency droop and multimode emission. The AlInGaN layer can therefore be characterized by droop cut-off condition (DCC) and multimode cut-off condition (MCC). For the best structure proposed in this paper, simulations indicate a DCC having Al and In composition of 0.10 and 0.15 respectively; and an MCC having Al and In composition of 0.08 and 0.23 respectively.

  9. GaAs (AlGaAs)/CuInSe2 tandem solar cells. Technology status and future directions

    NASA Technical Reports Server (NTRS)

    Kim, N. P.; Burgess, R. M.; Gale, R. P.; Mcclelland, R. W.

    1991-01-01

    Mechanically stacked, high efficiency, lightweight, and radiation resistant photovoltaic cells based on a GaAs thin film top and CuInSe2 thin film bottom cells were developed, and are considered one of the most promising devices for planar solar array applications. The highest efficiency demonstrated so far using the 4 sq cm design is 23.1 pct. AM0, one sun efficiency when measured in four-terminal configuration. The current status of the GaAs(AlGaAs)/CuInSe2 tandem cell program is presented and future directions that will lead to cell efficiencies higher than 26 pct. Air Mass Zero (AM0). A new 8 sq cm cell design developed for a two terminal and voltage matched configuration to minimize wiring complexity is discussed. Optimization of the GaAs structure for a higher end-of-life performance and further improvement of tandem cells by utilizing AlGaAs as an top absorber are described. Results of environmental tests conducted with these thin film GaAs/CuInSe2 tandem cells are also summarized.

  10. Intersubband transitions in nonpolar GaN/Al(Ga)N heterostructures in the short- and mid-wavelength infrared regions

    SciTech Connect

    Lim, C. B.; Beeler, M.; Ajay, A.; Lähnemann, J.; Bellet-Amalric, E.; Monroy, E.; Bougerol, C.

    2015-07-07

    This paper assesses nonpolar m- and a-plane GaN/Al(Ga)N multi-quantum-wells grown on bulk GaN for intersubband optoelectronics in the short- and mid-wavelength infrared ranges. The characterization results are compared to those for reference samples grown on the polar c-plane, and are verified by self-consistent Schrödinger-Poisson calculations. The best results in terms of mosaicity, surface roughness, photoluminescence linewidth and intensity, as well as intersubband absorption are obtained from m-plane structures, which display room-temperature intersubband absorption in the range from 1.5 to 2.9 μm. Based on these results, a series of m-plane GaN/AlGaN multi-quantum-wells were designed to determine the accessible spectral range in the mid-infrared. These samples exhibit tunable room-temperature intersubband absorption from 4.0 to 5.8 μm, the long-wavelength limit being set by the absorption associated with the second order of the Reststrahlen band in the GaN substrates.

  11. Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers.

    PubMed

    Saxena, Dhruv; Jiang, Nian; Yuan, Xiaoming; Mokkapati, Sudha; Guo, Yanan; Tan, Hark Hoe; Jagadish, Chennupati

    2016-08-10

    We present the design and room-temperature lasing characteristics of single nanowires containing coaxial GaAs/AlGaAs multiple quantum well (MQW) active regions. The TE01 mode, which has a doughnut-shaped intensity profile and is polarized predominantly in-plane to the MQWs, is predicted to lase in these nanowire heterostructures and is thus chosen for the cavity design. Through gain and loss calculations, we determine the nanowire dimensions required to minimize loss for the TE01 mode and determine the optimal thickness and number of QWs for minimizing the threshold sheet carrier density. In particular, we show that there is a limit to the minimum and maximum number of QWs that are required for room-temperature lasing. Based on our design, we grew nanowires of a suitable diameter containing eight uniform coaxial GaAs/AlGaAs MQWs. Lasing was observed at room temperature from optically pumped single nanowires and was verified to be from TE01 mode by polarization measurements. The GaAs MQW nanowire lasers have a threshold fluence that is a factor of 2 lower than that previously demonstrated for room-temperature GaAs nanowire lasers. PMID:27459233

  12. Investigation of the electronic transport in GaN nanowires containing GaN/AlN quantum discs

    NASA Astrophysics Data System (ADS)

    Rigutti, Lorenzo; Jacopin, Gwénolé; De Luna Bugallo, Andres; Tchernycheva, Maria; Warde, Elias; Julien, François H.; Songmuang, Rudeesun; Galopin, Elisabeth; Largeau, Ludovic; Harmand, Jean-Christophe

    2010-10-01

    We report the investigation of electronic transport in GaN nanowires containing GaN/AlN quantum discs (QDiscs). The nanowires were grown by plasma-assisted molecular beam epitaxy and contacted by electron-beam lithography. Three nanowire samples containing QDiscs are analyzed and compared to a reference binary n-i-n GaN nanowire sample. The current-voltage measurements on single nanowires show that if the QDiscs are covered with a lateral GaN shell, the current mainly flows through the shell close to the lateral surface and the wire conductivity is extremely sensitive to the environmental conditions. On the contrary, if no GaN shell is present, the current flows through the QDisc region and a reproducible negative differential resistance related to electron tunneling through the QDiscs can be observed for temperatures up to 250 K. The demonstration of the resonant tunneling in GaN/AlN superlattices is of major importance for the development of nitride-based far-infrared quantum cascade lasers operating at high temperature.

  13. Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers.

    PubMed

    Saxena, Dhruv; Jiang, Nian; Yuan, Xiaoming; Mokkapati, Sudha; Guo, Yanan; Tan, Hark Hoe; Jagadish, Chennupati

    2016-08-10

    We present the design and room-temperature lasing characteristics of single nanowires containing coaxial GaAs/AlGaAs multiple quantum well (MQW) active regions. The TE01 mode, which has a doughnut-shaped intensity profile and is polarized predominantly in-plane to the MQWs, is predicted to lase in these nanowire heterostructures and is thus chosen for the cavity design. Through gain and loss calculations, we determine the nanowire dimensions required to minimize loss for the TE01 mode and determine the optimal thickness and number of QWs for minimizing the threshold sheet carrier density. In particular, we show that there is a limit to the minimum and maximum number of QWs that are required for room-temperature lasing. Based on our design, we grew nanowires of a suitable diameter containing eight uniform coaxial GaAs/AlGaAs MQWs. Lasing was observed at room temperature from optically pumped single nanowires and was verified to be from TE01 mode by polarization measurements. The GaAs MQW nanowire lasers have a threshold fluence that is a factor of 2 lower than that previously demonstrated for room-temperature GaAs nanowire lasers.

  14. Piezoelectric polarization and quantum size effects on the vertical transport in AlGaN/GaN resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    H, Dakhlaoui; S, Almansour

    2016-06-01

    In this work, the electronic properties of resonant tunneling diodes (RTDs) based on GaN-Al x Ga(1-x)N double barriers are investigated by using the non-equilibrium Green functions formalism (NEG). These materials each present a wide conduction band discontinuity and a strong internal piezoelectric field, which greatly affect the electronic transport properties. The electronic density, the transmission coefficient, and the current-voltage characteristics are computed with considering the spontaneous and piezoelectric polarizations. The influence of the quantum size on the transmission coefficient is analyzed by varying GaN quantum well thickness, Al x Ga(1-x)N width, and the aluminum concentration x Al. The results show that the transmission coefficient more strongly depends on the thickness of the quantum well than the barrier; it exhibits a series of resonant peaks and valleys as the quantum well width increases. In addition, it is found that the negative differential resistance (NDR) in the current-voltage (I-V) characteristic strongly depends on aluminum concentration x Al. It is shown that the peak-to-valley ratio (PVR) increases with x Al value decreasing. These findings open the door for developing vertical transport nitrides-based ISB devices such as THz lasers and detectors. Project supported by the Deanship of Scientific Research of University of Dammam (Grant No. 2014137).

  15. Degradation mechanisms of 2 MeV proton irradiated AlGaN/GaN HEMTs

    SciTech Connect

    Greenlee, Jordan D. Anderson, Travis J.; Koehler, Andrew D.; Weaver, Bradley D.; Kub, Francis J.; Hobart, Karl D.; Specht, Petra; Dubon, Oscar D.; Luysberg, Martina; Weatherford, Todd R.

    2015-08-24

    Proton-induced damage in AlGaN/GaN HEMTs was investigated using energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM), and simulated using a Monte Carlo technique. The results were correlated to electrical degradation using Hall measurements. It was determined by EDS that the interface between GaN and AlGaN in the irradiated HEMT was broadened by 2.2 nm, as estimated by the width of the Al EDS signal compared to the as-grown interface. The simulation results show a similar Al broadening effect. The extent of interfacial roughening was examined using high resolution TEM. At a 2 MeV proton fluence of 6 × 10{sup 14} H{sup +}/cm{sup 2}, the electrical effects associated with the Al broadening and surface roughening include a degradation of the ON-resistance and a decrease in the electron mobility and 2DEG sheet carrier density by 28.9% and 12.1%, respectively.

  16. Optoelectronic properties of eutectic-metal-bonded (EMB) GaAs-AlGaAs structures on Si substrates

    NASA Astrophysics Data System (ADS)

    Venkatasubramanian, R.; Timmons, M. L.

    1994-11-01

    Device-quality GaAsAlGaAs thin-film hetero-structures have been obtained on Si substrates using a novel approach called eutectic-metal-bonding (EMB). The optoelectronic material properties of the thin-films have been evaluated by a variety of techniques including, Raman spectroscopy, room temperature photoluminescence (PL), and cathodoluminescence (CL) imaging. Transient PL measurement indicates that the minority-carrier lifetime in an EMB GaAs-on-Si thin-film is about 40 times higher than that in state-of-the-art hetero-epitaxial GaAs-on-Si layer. The PL characteristics of the EMB GaAs-on-Si structures have been used to obtain the long-wavelength dispersion values for GaAs thin-film structures. The minority carrier device quality of these thin-films have been evaluated using dark log I- V measurements on n+- p GaAs diodes, spectral-response characterization and solar cell performance data.

  17. Strain management of AlGaN-based distributed Bragg reflectors with GaN interlayer grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Yuh-Shiuan; Wang, Shuo; Xie, Hongen; Kao, Tsung-Ting; Mehta, Karan; Jia, Xiao Jia; Shen, Shyh-Chiang; Yoder, P. Douglas; Ponce, Fernando A.; Detchprohm, Theeradetch; Dupuis, Russell D.

    2016-08-01

    We report the crack-free growth of a 45-pair Al0.30Ga0.70N/Al0.04Ga0.96N distributed Bragg reflector (DBR) on 2 in. diameter AlN/sapphire template by metalorganic chemical vapor deposition. To mitigate the cracking issue originating from the tensile strain of Al0.30Ga0.70N on GaN, an AlN template was employed in this work. On the other hand, strong compressive strain experienced by Al0.04Ga0.96N favors 3D island growth, which is undesired. We found that inserting an 11 nm thick GaN interlayer upon the completion of AlN template layer properly managed the strain such that the Al0.30Ga0.70N/Al0.04Ga0.96N DBR was able to be grown with an atomically smooth surface morphology. Smooth surfaces and sharp interfaces were observed throughout the structure using high-angle annular dark-field imaging in the STEM. The 45-pair AlGaN-based DBR provided a peak reflectivity of 95.4% at λ = 368 nm with a bandwidth of 15 nm.

  18. InAlAs/InGaAs/InP sub-micron HEMTs grown by CBE

    NASA Astrophysics Data System (ADS)

    Munns, G. O.; Sherwin, M. E.; Brock, T.; Haddad, G. I.; Kwon, Y.; Ng, G. I.; Pavlidis, D.

    1992-05-01

    The paper describes the growth of InGaAs/InAlAs and InP/InAlAs high-electron-mobility transistors (HEMTs), using InAlAs grown by chemical beam epitaxy (CBE) with trimethyl amine alane (TMAA). The InAlAs bulk layers showed background carrier concentrations of 2 x 10 exp 14/cu cm, with 15 K photoluminescence FWHM of only 18.5 meV. Planar doped InAlAs/InGaAS HEMTs grown by CBE showed f(t) values of 150 GHz and f(max) values of 160 GHz.

  19. Microwave performance of an optically controlled AlGaAs/GaAs high electron mobility transistor and GaAs MESFET

    NASA Astrophysics Data System (ADS)

    Simons, Rainee N.; Bhasin, Kul. B.

    Direct current and also the microwave characteristics of optically illuminated AlGaAs/GaAs HEMT are experimentally measured for the first time and compared with that of GaAs MESFET. The results showed that the average increase in the gain is 2.89 dB under 1.7 nW/sq cm optical intensity at 0.83 microns. Further, the effect of illumination on S-parameters is more pronounced when the devices are biased close to pinch off. Novel applications of optically illuminated HEMT as a variable gain amplifier, high speed high frequency photo detector, and mixer are demonstrated.

  20. Microwave performance of an optically controlled AlGaAs/GaAs high electron mobility transistor and GaAs MESFET

    NASA Astrophysics Data System (ADS)

    Simons, Rainee N.

    1987-12-01

    Direct current and also the microwave characteristics of optically illuminated AlGaAs/GaAs HEMT are experimentally measured for the first time and compared with that of GaAs MESFET. The results showed that the average increase in the gain is 2.89 dB under 1.7 mW optical intensity at 0.83 microns. Further, the effect of illumination on S-parameters is more pronounced when the devices are biased close to pinch off. Novel applications of optically illuminated HEMT as a variable gain amplifier, high speed high frequency photodetector, and mixer are demonstrated.