Science.gov

Sample records for al cr mg

  1. Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method

    NASA Astrophysics Data System (ADS)

    Ateia, Ebtesam. E.; Mohamed, Amira. T.

    2017-03-01

    The spinel ferrite Mg0.7Cr0.3Fe2O4, and Mg0.7Al0.3Fe2O4 were prepared by the citrate technique. All samples were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Micrographs (HRTEM), Energy Dispersive X ray Spectroscopy (EDAX) and Atomic Force Microscope (AFM). XRD confirmed the formation of cubic spinel structure of the investigated samples. The average crystallite sizes were found to be between 24.7 and 27.5 nm for Al3+ and Mg2+ respectively. The substitution of Cr3+/Al3+ in place of Mg2+ ion initiates a crystalline anisotropy due to large size mismatch between Cr /Al and Mg2+, which creates strain inside the crystal volume. According to VSM results, by adding Al3+ or Cr3+ ions at the expense of Mg2+, the saturation magnetization increased. The narrow hysteresis loop of the samples indicates that the amount of dissipated energy is small, which is desirable for soft magnetic applications. Magnetic dynamics of the samples were studied by measuring magnetic susceptibility versus temperature at different magnetic fields. The band gap energy, which was calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function, decreases with increasing the particle size. Furthermore, the band gaps were quite narrow (1.5-1.7 eV), hence the investigated samples could act as visible light driven photo catalysts. To sum up the addition of trivalent Al3+, and Cr3+ ions enhanced the optical, magnetic and structure properties of the samples. Mg0.7 Cr0.3Fe2O4 sample will be a better candidate for the optical applications and will also be a guaranteeing hopeful for technological applications.

  2. High-pressure behaviour of Cr-Fe-Mg-Al spinels: applications to diamond geobarometry

    NASA Astrophysics Data System (ADS)

    Periotto, Benedetta; Bruschini, Enrico; Nestola, Fabrizio; Lenaz, Davide; Princivalle, Francesco; Andreozzi, Giovanni B.; Bosi, Ferdinando

    2014-05-01

    Spinels belonging to the chromite - magnesiochromite - hercynite (FeCr2O4-MgCr2O4-FeAl2O4) system are among the most common inclusions found in diamonds (Stachel and Harris 2008). In particular, although FeCr2O4 and MgCr2O4 components sum to between 85 and 88% of spinels found in diamonds, hercynite FeAl2O4 plays a not negligible role in determining their thermo-elastic properties with concentrations reaching 7-9 % (other minor end-members like MgAl2O4, MgFe2O4 and Fe2O3 rarely reach 2-3% in total, see Lenaz et al. 2009). Recent studies were focused on the determination of the diamond formation pressure by the so-called "elastic method" (see for example Nestola et al. 2011 and references therein). It was demonstrated that accurate and precise thermo-elastic parameters are fundamental to minimize the uncertainty of formation pressure. In this work we have determined the equations of state at room temperature of three synthetic spinel end-members chromite - magnesiochromite - hercynite and one natural spinel crystal extracted from a diamond (from Udachnaya mine, Siberia, Russia) by single-crystal X-ray diffraction in situ at high-pressure. A diamond-anvil cell was mounted on a STADI IV diffractometer equipped with a point detector and motorized by SINGLE software (Angel and Finger 2011). The natural crystal was investigated to test (and possibly validate) the "empirical prediction model", capable to provide bulk modulus and its first pressure derivative only knowing the composition of the spinels found in diamonds. Such prediction model could be used to obtain pressure of formation for the diamond-spinel pair through the elastic method. Details and results will be discussed. The research was funded by the ERC Starting Grant to FN (grant agreement n° 307322). References Angel R.J., Finger L.W. (2011) SINGLE A program to control single-crystal diffractometers. Journal of Applied Crystallography, 44, 247-251. Lenaz D., Logvinova A.M., Princivalle F., Sobolev N. (2009

  3. Propane dehydrogenation over PtSnMg/Cr2O3·Al2O3 catalysts: effect of the amount of Mg loading

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Guan, Yunfei; Wang, Yanmei; Guo, Xianzhi; Zhang, Jingya; Du, Zongjie; Zhang, Shoumin; Xie, Qinxing; Wu, Shihua

    2017-01-01

    A series of PtSnMg/Cr2O3·Al2O3 catalysts with different Mg loading amounts were synthetized by chemical co-deposition method and their propane dehydrogenation catalytic performances were tested. The catalysts were characterized by XRD, BET, TG, XPS. It was found that alkali metal Mg can reduce the surface acidity of carrier, improve the catalytic performance. Propane conversion peaks at Mg loading of 0.6wt.%, increasing Mg loading further than this saw a decline in conversion.

  4. Three-dimensional hierarchical flower-like Mg-Al-layered double hydroxides: highly efficient adsorbents for As(v) and Cr(vi) removal

    NASA Astrophysics Data System (ADS)

    Yu, Xin-Yao; Luo, Tao; Jia, Yong; Xu, Ren-Xia; Gao, Chao; Zhang, Yong-Xing; Liu, Jin-Huai; Huang, Xing-Jiu

    2012-05-01

    3D hierarchical flower-like Mg-Al-layered double hydroxides (Mg-Al-LDHs) were synthesized by a simple solvothermal method in a mixed solution of ethylene glycol (EG) and water. The formation mechanism of the flower-like Mg-Al-LDHs was proposed. After calcination, the flower-like morphology could be completely preserved. With relatively high specific surface areas, Mg-Al-LDHs and calcined Mg-Al-LDHs with 3D hierarchical nanostructures were tested for their application in water purification. When tested as adsorbents in As(v) and Cr(vi) removal, the as-prepared calcined Mg-Al-LDHs showed excellent performance, and the adsorption capacities of calcined Mg-Al-LDHs for As(v) and Cr(vi) were better than those of Mg-Al-LDHs. The adsorption isotherms, kinetics and mechanisms for As(v) and Cr(vi) onto calcined Mg-Al-LDHs were also investigated. The high uptake capability of the as-prepared novel 3D hierarchical calcined Mg-Al-LDHs make it a potentially attractive adsorbent in water purification. Also, this facile strategy may be extended to synthesize other LDHs with 3D hierarchical nanostructures, which may find many other applications due to their novel structural features.3D hierarchical flower-like Mg-Al-layered double hydroxides (Mg-Al-LDHs) were synthesized by a simple solvothermal method in a mixed solution of ethylene glycol (EG) and water. The formation mechanism of the flower-like Mg-Al-LDHs was proposed. After calcination, the flower-like morphology could be completely preserved. With relatively high specific surface areas, Mg-Al-LDHs and calcined Mg-Al-LDHs with 3D hierarchical nanostructures were tested for their application in water purification. When tested as adsorbents in As(v) and Cr(vi) removal, the as-prepared calcined Mg-Al-LDHs showed excellent performance, and the adsorption capacities of calcined Mg-Al-LDHs for As(v) and Cr(vi) were better than those of Mg-Al-LDHs. The adsorption isotherms, kinetics and mechanisms for As(v) and Cr(vi) onto calcined

  5. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  6. Synthesis and energy transfer studies of LaMgAl{sub 11}O{sub 19}:Cr{sup 3+}, Nd{sup 3+} phosphors

    SciTech Connect

    Zhu, Jicheng; Xia, Zhiguo; Liu, Quanlin

    2016-02-15

    Highlights: • Cr{sup 3+}/Nd{sup 3+} co-doped LaMgAl{sub 11}O{sub 19} phosphors were synthesized. • The energy transfer mechanism is ascribed to the dipole–quadrupole interaction. • The materials can convert the UV–vis light into near-infrared emission. - Abstract: Cr{sup 3+}/Nd{sup 3+} co-activated LaMgAl{sub 11}O{sub 19} phosphors have been synthesized by high temperature solid-state method. In the LaMgAl{sub 11}O{sub 19}:Cr{sup 3+}/Nd{sup 3+} system, Cr{sup 3+} can absorb the UV–vis photons (350–650 nm), and then energy transfer takes place between Cr{sup 3+} and Nd{sup 3+}, and finally the samples give near infrared emission originated from Nd{sup 3+}. Energy transfer from Cr{sup 3+} to Nd{sup 3+} is discussed via the variations of the lifetime values of Cr{sup 3+}, and the mechanism has been ascribed to the dipole–quadrupole interaction. The absorption of Cr{sup 3+} in the visible region and the following energy transfer from Cr{sup 3+} to Nd{sup 3+} indicated that the material can potentially serve as spectral convertors to improve the photovoltaic conversion efficiency of silicon-based solar cell.

  7. Viscosity Measurement and Structure Analysis of Cr2O3-Bearing CaO-SiO2-MgO-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Li, Qiuhan; Gao, Jintao; Zhang, Yanling; An, Zhuoqing; Guo, Zhancheng

    2017-02-01

    In this study, the effects of different Cr2O3 contents and optical basicity (denoted by Λ) on the viscosity and structure of the Cr2O3-bearing CaO-SiO2-MgO-Al2O3 slag were investigated. The viscosities of Cr2O3-bearing CaO-SiO2-MgO-Al2O3 slags in the liquid phase below 1823 K (1550 °C) were measured by rotating-cylinder method, and the structures of the slags were examined via Raman spectroscopy. Three different parameters were used to characterize the structures of the slags. The results showed that the viscosity of the slags increased as the Cr2O3 content increased, but decreased as Λ increased. The Cr3+ ions acted as network formers and increased the degree of polymerization (DOP), and thus, the addition of Cr2O3 to the slag increased the number of bridging oxygen atoms in the silicate structural units. Generally, the viscosity increased by increasing DOP. In addition, there was a linear inverse relationship between the viscous activation energy ( E μ ) and Λ. Furthermore, as the Cr2O3 content increased, the gradients of the plots of E μ vs Λ decreased. This indicates that for a slag with a high Cr2O3 content, trying to improve the fluidity of the slag by increasing Λ has a limited effect.

  8. Hydrogenation properties of mechanically milled Mg2Ni0.8Cr0.2-CoO/Al2O3 composites.

    PubMed

    Wang, Xiu-Li; Tu, Jiang-Ping; Chen, Chang-Pin; Zhang, Xiao-Bin; Zhao, Xin-Bing

    2005-03-01

    Mg2Ni0.8Cr0.2-x wt.% CoO/Al2O3 (x=0.5, 1, 2 and 3) composites were prepared by mechanically milling sintered Mg2Ni0.8Cr0.2 alloy and CoO/Al2O3 compound for 45 h. The addition of CoO/Al2O3 compound resulted in the good kinetics properties of hydriding/dehydriding reaction of the composites. The composite with 1.0 wt.% CoO/Al2O3 catalyst could reach the maximum hydrogen absorption capacity (2.9 wt.%) within 5 min at 393 K under H2 pressure of 4 MPa, and can desorb rapidly at 493 K. The decomposition and synthesis of hydrogen molecule on Mg2Ni0.8Cr0.2 alloy surface was promoted by addition of CoO/Al2O3 catalyst. In addition, the formation of metallic Ni particles, strain and defects during the ball milling process also resulted in the improved hydrogenation performance of Mg2Ni-based alloys.

  9. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions.

    PubMed

    Lei, Chunsheng; Zhu, Xiaofeng; Zhu, Bicheng; Jiang, Chuanjia; Le, Yao; Yu, Jiaguo

    2017-01-05

    The preparation of hierarchical porous materials as catalysts and sorbents has attracted much attention in the field of environmental pollution control. Herein, Ni/Mg/Al layered double hydroxides (NMA-LDHs) hierarchical flower-like hollow microspheres were synthesized by a hydrothermal method. After the NMA-LDHs was calcined at 600°C, NMA-LDHs transformed into Ni/Mg/Al layered double oxides (NMA-LDOs), which maintained the hierarchical flower-like hollow structure. The crystal phase, morphology, and microstructure of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy elemental mapping, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption methods. Both the calcined and non-calcined NMA-LDHs were examined for their performance to remove Congo red (CR) and hexavalent chromium (Cr(VI)) ions in aqueous solution. The maximum monolayer adsorption capacities of CR and Cr(VI) ions over the NMA-LDOs sample were 1250 and 103.4mg/g at 30°C, respectively. Thermodynamic studies indicated that the adsorption process was endothermic in nature. In addition, the addition of coexisting anions negatively influenced the adsorption capacity of Cr(VI) ions, in the following order: CO3(2-)>SO4(2-)>H2PO4(-)>Cl(-). This work will provide new insight into the design and fabrication of advanced adsorption materials for water pollutant removal.

  10. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting

    SciTech Connect

    Meng, Yi Cui, Jianzhong; Zhao, Zhihao; He, Lizi

    2014-06-01

    The Al-1.6Mg-1.2Si-1.1Cu-0.15Cr (all in wt. %) alloys with and without Zr addition prepared by low frequency electromagnetic casting process were investigated by using the optical microscope, scanning electron microscope and transmission electron microscope equipped with energy dispersive analytical X-ray. The effects of Al{sub 3}Zr phases on the microstructures and mechanical properties during solidification, homogenization, hot extrusion and solid solution were studied. The results show that Al{sub 3}Zr phases reduce the grain size by ∼ 29% and promote the formation of an equiaxed grain structure during solidification. Numerous spherical Al{sub 3}Zr dispersoids with 35–60 nm in diameters precipitate during homogenization, and these fine dispersoids change little during subsequent hot extrusion and solid solution. Adding 0.15 wt. % Zr results in no recrystallization after hot extrusion and partial recrystallization after solid solution, while the recrystallized grain size is 400–550 μm in extrusion direction in the Zr-free alloy. In addition, adding 0.15 wt. % Zr can obviously promote Q′ phase precipitation, while the β″ phases are predominant in the alloy without Zr. Adding 0.15 wt. % Zr, the ultimate tensile strength of the T6 treated alloy increases by 45 MPa, while the elongation remains about 16.7%. - Highlights: • Minor Zr can refine as-cast grains of the LFEC Al-Mg-Si-Cu-Cr alloy. • L1{sub 2} Al{sub 3}Zr phases with 35–60 nm in diameter precipitate during homogenization. • L1{sub 2} and DO{sub 22} Al{sub 3}Zr phases result in partial recrystallization after solid solution. • Minor Zr can promote the precipitation of Q′ phases. • Mechanical properties of Al-Mg-Si-Cu-Cr-Zr alloy are higher than those of AA7005.

  11. The effect of Al2O3, CaO, Cr2O3 and MgO on devitrification of silica

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1988-01-01

    The effect of doping on devitrification of vitreous silica was studied at 1100, 1200, and 1300 C. Dispersion of dopants on a molecular scale was accomplished via a sol-gel technique. All dopants accelerated the devitrification of silica but to different degrees. The most active was CaO followed by MgO, Al2O3, and Cr2O3. Pure silica and silica containing Cr2O3 and Al2O3 devitrified to alpha-cristobalite only, whereas silica doped with CaO and MgO produced alpha-quartz and alpha-cristobalite. It appears that prolonged heat treatment would cause alpha-quartz to transform to alpha-cristobalite.

  12. Studies of the optical and EPR data and the defect structure for the trigonal Cr3+ center in LaMgAl11O19 crystal

    NASA Astrophysics Data System (ADS)

    Yang, Li-Rong; Liu, Chang; Mei, Yang; Zheng, Wen-Chen

    2017-04-01

    The complete diagonalization (of energy matrix) method based on the two-spin-orbit-parameter model (which takes into account of the contributions from both the spin-orbit parameter of dn ions in the traditional crystal field theory and that of ligand ions via covalence effect) is adopted to calculate uniformly the optical and EPR data of the trigonal Cr3+ center in LaMgAl11O19 crystal. The calculated results demonstrate that the observed nine optical and EPR data (six optical bands and three spin-Hamiltonian parameters g//, g⊥ and D) can be explained reasonably, which proves the effectiveness and practicality of the method in the unified calculations of optical and EPR data for crystals doped with d3 ions. The defect structure of Cr3+ center in LaMgAl11O19 crystal due to the size mismatch is also estimated.

  13. Crystal structure of Cr-bearing Mg3BeAl8O16, a new polytype of magnesiotaaffeite-2N′2S

    PubMed Central

    Malcherek, Thomas; Schlüter, Jochen

    2016-01-01

    The crystal structure of a new polytype of magnesiotaaffeite-2N′2S, ideally Mg3BeAl8O16 (trimagnesium beryllium octa­aluminium hexa­deca­oxide), is described in space-group symmetry P-3m1. It has been identified in a fragment of a mineral sample from Burma (Myanmar). The new polytype is composed of two Mg2Al4O8 (S)- and two BeMgAl4O8 (N′)-modules in a stacking sequence N′SSN′′ which differs from the N′SN′S-stacking sequence of the known magnesiotaaffeite-2N′2S polytype. The crystal structure can be derived from a close-packed arrangement of O atoms and is discussed with regard to its polytypism and its Cr3+ chromophore content. PMID:27555963

  14. Crystal structure of Cr-bearing Mg3BeAl8O16, a new polytype of magnesiotaaffeite-2N'2S.

    PubMed

    Malcherek, Thomas; Schlüter, Jochen

    2016-07-01

    The crystal structure of a new polytype of magnesiotaaffeite-2N'2S, ideally Mg3BeAl8O16 (trimagnesium beryllium octa-aluminium hexa-deca-oxide), is described in space-group symmetry P-3m1. It has been identified in a fragment of a mineral sample from Burma (Myanmar). The new polytype is composed of two Mg2Al4O8 (S)- and two BeMgAl4O8 (N')-modules in a stacking sequence N'SSN'' which differs from the N'SN'S-stacking sequence of the known magnesiotaaffeite-2N'2S polytype. The crystal structure can be derived from a close-packed arrangement of O atoms and is discussed with regard to its polytypism and its Cr(3+) chromophore content.

  15. Effects of MgO and Al2O3 Addition on Redox State of Chromium in CaO-SiO2-CrO x Slag System by XPS Method

    NASA Astrophysics Data System (ADS)

    Wang, Li-jun; Yu, Ji-peng; Chou, Kuo-chih; Seetharaman, Seshadri

    2015-08-01

    The effects of MgO and Al2O3 on the redox state of chromium in CaO-SiO2-CrO x system have been investigated at 1873 K (1600 °C) under Ar-CO-CO2 atmosphere and analyzed by means of X-ray photoelectron spectroscopy. From the analysis of the Cr 2p core level spectra, it was found that both Cr(II) and Cr(III) exist simultaneously in CaO-MgO/Al2O3-SiO2-CrO x , and the quantitative ratio Cr(II)/Cr(III) has been obtained by deducing from the area under the computer-resolved peaks. Substitutions of CaO by MgO, SiO2 by Al2O3 favored the Cr(II) state existing in the system in the composition ranges of 3 to 10 wt pct MgO and 5 to 20 pct Al2O3. Meanwhile, from the analysis of the O1s spectra in CaO-MgO-SiO2-CrO x , it was found that the ratio of the non-bridging oxygen content increased first due to the CrO contribution to the electron distribution uniformly as O- at MgO low content. Afterward, it went to decreasing with continuing addition of MgO because ionic contribution of MgO is less than that of CaO and the influence of the CrO clustering on the non-Bridging oxygen is limited due to only 5 wt pct CrO x . In CaO-Al2O3-SiO2-CrO x system, Cr(II) acts as a network modifier to compensate Al3+ charge balance to make the structure stable, so the non-bridge oxygen in this system continues decreasing.

  16. Optical properties and storage capabilities in AB2O4:Cr3+ (A=Zn, Mg, B=Ga, Al)

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Bessiere, A.; Gourier, D.; Sraiki, G.; Viana, B.; Dereń, P. J.; Rudnicka, D.; Watras, A.; Basavaraju, N.; Priolkar, K. R.; Maldiney, T.; Scherman, D.; Richard, C.

    2014-03-01

    Red emitting long-lasting phosphorescence (LLP) material, are useful biomarker for small animal in vivo imaging. We report here our investigations on the optical features of chromium doped AB2O4 spinels (A=Zn, Mg and B=Ga, Al…) suitable for such applications. It is possible to tune the emission wavelengths of Cr3+ by a crystal field variation to be well centered in the biological window and it is also possible to adjust the traps depth in order to better control the release of the traps. These traps are therefore stable at room temperature and could be emptied by thermal or near infrared source making this material a potential new photostimulated/optically compound. Photoluminescence (PL) and thermally stimulated luminescence (TSL) studies are reported.

  17. Crystal structure, vibrational properties and luminescence of NaMg{sub 3}Al(MoO{sub 4}){sub 5} crystal doped with Cr{sup 3+} ions

    SciTech Connect

    Hermanowicz, K.; Maczka, M. . E-mail: m.maczka@int.pan.wroc.pl; Wolcyrz, M.; Tomaszewski, P.E.; Pasciak, M.; Hanuza, J.

    2006-03-15

    Crystals of NaMg{sub 3}Al(MoO{sub 4}){sub 5} doped with 0.5% Cr{sup 3+} ions have been synthesized and characterized by a single-crystal X-ray structure analysis and IR, Raman, electron absorption and luminescence spectroscopic studies. It has been shown that NaMg{sub 3}Al(MoO{sub 4}){sub 5} crystallizes in the P1-bar structure, with a=6.8744(8) A, b=6.9342(7) A, c=17.605(2) A, {alpha}=87.788(8){sup o}, {beta}=87.727(9){sup o}, {gamma}=78.501(9){sup o}, Z=2. The characteristic feature of the structure is its enormously large thermal displacement parameter for sodium, even at 105K. The IR and Raman spectra indicate significant interactions between the MoO{sub 4}{sup 2-} ions in the structure. The electron absorption, excitation and luminescence studies have shown that there are at least two different sites of incorporated Cr{sup 3+} ions in the NaMg{sub 3}Al(MoO{sub 4}){sub 5} crystal structure. They differ themselves by strength of crystalline field. One of them is characterized by Cr{sup 3+} in low ligand field and {sup 4}T{sub 2}->{sup 4}A{sub 2} emission whereas the second is characterized by higher strength of the crystal field and dominant {sup 2}E->{sup 4}A{sub 2} emission. Temperature-dependent studies show that the compound does not exhibit any phase transition.0.

  18. Equilibria involving the reciprocal spinel solid solution (Mg x Fe1- x ) (Al y Cr1- y )2O4: modeling and experiment

    NASA Astrophysics Data System (ADS)

    Jacob, K. T.; Behera, C. K.

    2000-12-01

    Developed in this article is a model for calculating cation distribution and activities in the reciprocal spinel solid solution (Mg X Fe1- X )(Al Y Cr1- Y )2O4 based on octahedral site preference energies of cations independent of composition and temperature, random distribution of ions on tetrahedral and octahedral sites, entropy of randomization of Jahn-Teller distortions associated with Fe2+ ions on the tetrahedral site, and the standard Gibbs energies of formation of the four pure spinel compounds. Enthalpy of mixing of this reciprocal solid solution caused by the large difference of ionic radii of Al3+ and Cr3+ present on the octahedral site was modeled based on experimental data on the binary systems. The tie-line compositions corresponding to the equilibria between the spinel solid solution and the sesquioxide solid solution (Al Z Cr1- Z )2O3 with corundum structure were computed. Values for activities in the corundum solid solution were taken from the literature. The oxygen potential corresponding to the three-phase equilibrium involving metallic iron, the spinel solid solution, and corundum solid solution was computed as a function of composition of the spinel solid solution. The computed results were verified by measurements on nine compositions inside the square representing the reciprocal system. The compositions of coexisting solid solutions were determined by electron-probe microanalysis (EPMA) and lattice parameter measurement using X-ray diffraction (XRD). The activities of FeAl2O4 and FeCr2O4 and oxygen potentials for three-phase equilibria were measured using two independent solid-state cells incorporating a bielectrolyte chain. Both cells gave consistent results within experimental error. The experimental results are in excellent agreement with the computed results, thus validating the model for the reciprocal spinel solid solution.

  19. Structural and tribological properties of CrTiAlN coatings on Mg alloy by closed-field unbalanced magnetron sputtering ion plating

    NASA Astrophysics Data System (ADS)

    Shi, Yongjing; Long, Siyuan; Yang, Shicai; Pan, Fusheng

    2008-09-01

    In this paper, a series of multi-layer hard coating system of CrTiAlN has been prepared by closed-field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique in a gas mixture of Ar + N 2. The coatings were deposited onto AZ31 Mg alloy substrates. During deposition step, technological temperature and metallic atom concentration of coatings were controlled by adjusting the currents of different metal magnetron targets. The nitrogen level was varied by using the feedback control of plasma optical emission monitor (OEM). The structural, mechanical and tribological properties of coatings were characterized by means of X-ray photoelectron spectrometry, high-resolution transmission electron microscope, field emission scanning electron microscope (FESEM), micro-hardness tester, and scratch and ball-on-disc tester. The experimental results show that the N atomic concentration increases and the oxide on the top of coatings decreases; furthermore the modulation period and the friction coefficient decrease with the N 2 level increasing. The outstanding mechanical property can be acquired at medium N 2 level, and the CrTiAlN coatings on AZ31 Mg alloy substrates outperform the uncoated M42 high speed steel (HSS) and the uncoated 316 stainless steel (SS).

  20. The Molar Volume of FeO-MgO-Fe2O3-Cr2O3-Al2O3-TiO2 Spinels

    NASA Astrophysics Data System (ADS)

    Hamecher, E. A.; Antoshechkina, P. M.; Ghiorso, M. S.; Asimow, P. D.

    2011-12-01

    A new model of molar volume has been calibrated in the spinel supersystem (Mg,Fe2+)(Al,Cr,Fe3+)2O4 - (Mg,Fe2+)2TiO4. A total of 832 X-ray and neutron diffraction experiments performed on spinels at ambient and in situ high-P, T conditions (from the American Mineralogist Crystal Structure Database (Downs and Hall-Wallace, 2003) and other sources) were used to calibrate end-member equations of state and an excess volume model for this system. The effect on molar volume of cation ordering over the octahedral and tetrahedral sites is captured with linear dependence on Mg2+, Al3+, and Fe3+ site occupancy terms. We allowed standard state volumes and coefficients of thermal expansion of the end members to vary within their uncertainties during extraction of the mixing properties, in order to achieve the best fit. Published equations of states of the various spinel end members were analyzed to obtain optimal values of the bulk modulus and its pressure derivative, for each explicit end member. For any spinel composition in the supersystem, the model molar volume is obtained by adding excess volume and cation order-dependent terms to a linear combination of the five end member volumes, estimated at pressure and temperature using the high-T Vinet equation of state. The model has a total of 31 parameters and fits nearly all experiments to within 0.02 J/bar/mol, or better than 0.5% in volume. The model is compared to the current MELTS (Ghiorso and Sack, 1995; Ghiorso et al., 2002) spinel model with a demonstration of the impact of the model difference on the estimated spinel-garnet lherzolite transition pressure. Our primary motivation in this work is the development of a comprehensive spinel molar volume model for use in calibration of activity-composition models of garnet and pyroxene solid solutions. The thermodynamic models, along with a new silicate liquid equation of state, will be incorporated into the next generation MELTS model, xMELTS. The new solid solution models

  1. Persistent luminescence of AB2O4:Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: New biomarkers for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Gourier, D.; Viana, B.; Maldiney, T.; Teston, E.; Scherman, D.; Richard, C.

    2014-09-01

    Recently red emitting long-lasting phosphorescence (LLP) materials have been demonstrated to be useful biomarkers for small animal in vivo imaging. We report here our investigations on the optical properties of chromium doped AB2O4 spinels (with A = Zn, Mg and B = Ga, Al) suitable for such applications. It is possible to tune the absorption wavelengths of Cr3+ by a crystal field variation and also slightly vary the emission to be better centered in the biological window and to adjust the trap depth in order to better control the release of the charges. These traps are therefore stable at room temperature and could be emptied by thermal or near infrared source, which makes these materials potential new optically photo-storage compounds.

  2. ⁵³Mn-⁵³Cr and ²⁶Al-²⁶Mg ages of a feldspathic lithology in polymict ureilites

    SciTech Connect

    Goodrich, Cyrena Anne; Hutcheon, Ian D.; Kita, Noriko T.; Huss, Gary R.; Cohen, Barbara Anne; Keil, Klaus

    2010-07-01

    We report 53Mn–53Cr and 26Al–26Mg isotopic data, obtained by in-situ SIMS analysis, for feldspathic clasts in polymict ureilites DaG 319 and DaG 165. The analyzed clasts belong to the “albitic lithology,” the most abundant population of indigenous feldspathic materials in polymict ureilites, and are highly fractionated igneous assemblages of albitic plagioclase, Fe-rich pyroxenes, phosphates, ilmenite, silica, and Fe(Mn, K, P, Ti)-enriched glass. Glass in DaG 165 clast 19 has extremely high and variable 55Mn/52Cr ratios (500–58,000) and shows correlated 53Cr excesses up to ~ 1500‰, clearly indicating the presence of live 53Mn at the time of formation. The slope of the well-correlated isochron defined by glass and pyroxenes from this clast corresponds to (53Mn/55Mn) = (2.84 ± 0.10) × 10-6 (2σ). Data for less 55Mn/52Cr-enriched glasses from DaG 319 clast B1, as well as phosphates from several other clasts, are consistent with this isochron. The 53Mn/55Mn ratio obtained from the isochron implies that these clasts are 0.70 ± 0.18 Ma younger than the D'Orbigny angrite, corresponding to the absolute age of 4563.72 ± 0.22 Ma. Plagioclase in DaG 319 clast B1 has a fairly constant 27Al/24Mg ratio of ~ 900 and shows resolvable 26Mg excesses of ~ 2‰. The slope of the isochron defined by pyroxene and plagioclase in this clast is (3.0 ± 1.1) × 10-7 (2σ), corresponding to a time difference of 5.4 (-0.3/+0.5) Ma after CAI (assuming the canonical initial 26Al/27Al ratio of 5 × 10-5) and an age 0.5 (-0.3/+0.5) Ma younger than D'Orbigny. Its absolute age (relative to D'Orbigny) is 4563.9 (+ 0.4/-0.5) Ma, in agreement with the 53Mn–53Cr age from clast 19. These data provide the first high

  3. The Deformation Behavior and Microstructure Evolution of a Mn- and Cr-Containing Al-Mg-Si-Cu Alloy During Hot Compression and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Nagaumi, Hiromi; Han, Yi; Zhang, Gongwang; Zhai, Tongguang

    2017-01-01

    Hot compression tests on a newly developed Mn- and Cr-containing Al-Mg-Si-Cu alloy were carried out at temperatures ranging from 623 K (350 °C) to 823 K (550 °C) and strain rates between 0.001 and 1 s-1 after casting and subsequent homogenization heat treatment. The true stress-true strain curves of the alloy exhibited a peak stress at a small plastic strain followed by dynamic flow softening. Using the constitutive equation containing the strain rate, peak stress, and temperature, the activation energy for hot deformation in the alloy was determined to be 249.67 kJ/mol, much higher than that (143.4 kJ/mol) for self-diffusion in pure Al. Scanning transmission electron microscopy experiments revealed that Mn- and Cr-containing α-dispersoids formed during homogenization showed a strong pinning effect on dislocations and grain boundaries, which was responsible for the increase in activation energy for hot deformation in the alloy. A threshold stress was consequently introduced and determined in the constitutive equation to count for the dispersoid hardening effect on hot deformation in the alloy. Electron back-scatter diffraction measurements revealed that the softening occurred in the alloy was mainly due to dynamic recovery taking place at relatively large Z values, and that it was dominated by continuous dynamic recrystallization at relatively low Z. In subsequent annealing after hot deformation at large Z, abnormal grain growth could occur, as a result of the critical strain-annealing effect. After upsetting at higher temperatures, the alloy showed superior tensile properties due to a high non-recrystallized area fraction.

  4. The Deformation Behavior and Microstructure Evolution of a Mn- and Cr-Containing Al-Mg-Si-Cu Alloy During Hot Compression and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Nagaumi, Hiromi; Han, Yi; Zhang, Gongwang; Zhai, Tongguang

    2017-03-01

    Hot compression tests on a newly developed Mn- and Cr-containing Al-Mg-Si-Cu alloy were carried out at temperatures ranging from 623 K (350 °C) to 823 K (550 °C) and strain rates between 0.001 and 1 s-1 after casting and subsequent homogenization heat treatment. The true stress-true strain curves of the alloy exhibited a peak stress at a small plastic strain followed by dynamic flow softening. Using the constitutive equation containing the strain rate, peak stress, and temperature, the activation energy for hot deformation in the alloy was determined to be 249.67 kJ/mol, much higher than that (143.4 kJ/mol) for self-diffusion in pure Al. Scanning transmission electron microscopy experiments revealed that Mn- and Cr-containing α-dispersoids formed during homogenization showed a strong pinning effect on dislocations and grain boundaries, which was responsible for the increase in activation energy for hot deformation in the alloy. A threshold stress was consequently introduced and determined in the constitutive equation to count for the dispersoid hardening effect on hot deformation in the alloy. Electron back-scatter diffraction measurements revealed that the softening occurred in the alloy was mainly due to dynamic recovery taking place at relatively large Z values, and that it was dominated by continuous dynamic recrystallization at relatively low Z. In subsequent annealing after hot deformation at large Z, abnormal grain growth could occur, as a result of the critical strain-annealing effect. After upsetting at higher temperatures, the alloy showed superior tensile properties due to a high non-recrystallized area fraction.

  5. Oxidative dehydrogenation of propane on Ni{sub x}Mg{sub 1{minus}x}Al{sub 2}O{sub 4} and NiCr{sub 2}O{sub 4} spinels

    SciTech Connect

    Sloczynski, J.; Ziolkowski, J.; Grzybowska, B.; Grabowski, R.; Jachewicz, D.; Wcislo, K.; Gengembre, L.

    1999-10-25

    The Ni{sub x}Mg{sub 1{minus}x}Al{sub 2}O{sub 4}, NiCr{sub 2}O{sub 4}, and MgCr{sub 2}O{sub 4} spinels have been synthesized, characterized with the XRD and XPS methods, and tested in the oxidative dehydrogenation of propane. The crystallochemical model of solid surfaces, CMSS, has been used to calculate the oxygen cation's bond energies in the spinels. For the NiMgAl spinels the activity and selectivity to propene increase with the increase in the Ni content. The Ni ions surrounded by oxygen in the spinel structure are proposed as active centers for oxidative dehydrogenation to propene. The NiCr spinel is more active but less selective than the NiMgAl spinels; the difference in catalytic behavior has been ascribed to different coordination of Ni ions in the two groups of the spinels and to the lower oxygen cation's bond energy in the NiCr spinel.

  6. Cross sections for He and Ne isotopes in natural Mg, Al, and Si, He isotopes in CaF2, Ar isotopes in natural Ca, and radionuclides in natural Al, Si, Ti, Cr, and stainless steel induced by 12- to 45-MeV protons

    NASA Technical Reports Server (NTRS)

    Walton, J. R.; Heymann, D.; Yaniv, A.; Edgerley, D.; Rowe, M. W.

    1976-01-01

    Stacks of thin Mg, Al, Si, Ca, CaF2, Ti, and stainless steel foils were bombarded in twelve irradiations by a variable energy cyclotron. Cross sections are reported for He and Ne in natural Mg, Al, and Si, and for He in CaF2, and for Ar in natural Ca, as determined from mass spectrometer analysis of the inert gases. In addition, cross sections of Na-22 in natural Al and Si, of V-48 in natural Ti, and of Cr-51, Mn-52, and Co-57 in stainless steel are reported. From these were deduced Cr-51 and Mn-52 cross sections in natural Cr.

  7. β-alumina-14H and β-alumina-21R: Two chromic Na2-δ(Al,Mg,Cr)17O25 polysomes observed in slags from the production of low-carbon ferrochromium

    NASA Astrophysics Data System (ADS)

    Hejny, Clivia; Kahlenberg, Volker; Schmidmair, Daniela; Tribus, Martina; deVilliers, Johan

    2016-09-01

    The crystal structures of unknown phases found in slags from the production of low-carbon ferrochromium were studied by powder and single-crystal X-ray diffraction. Two phases of Na2-δ(Al, Mg, Cr)17O25 composition were found to be composed of an alternating stacking of a spinel-type and a Na-hosting block. Similar structures are known for β-alumina and β"-alumina, NaAl11O17. However, the spinel-type block in Na2-δ(Al, Mg, Cr)17O25 is composed of five cation layers in contrast to three cation layers in the β-alumina spinel-block. The two new phases, β-alumina-14H, P63/mmc, a=5.6467(2), c=31.9111(12) Å, and β-alumina-21R, R 3 ̅m, a=5.6515(3), c=48.068(3) Å have a 14-layer and 21-layer stacking with a 2 × (cccccch) and a 3 × (ccccccc) repeat sequence of oxygen layers in cubic and hexagonal close packing, respectively.

  8. New series of triple molybdates AgA3R(MoO4)5 (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) with framework structures and mobile silver ion sublattices

    NASA Astrophysics Data System (ADS)

    Kotova, Irina Yu.; Solodovnikov, Sergey F.; Solodovnikova, Zoya A.; Belov, Dmitry A.; Stefanovich, Sergey Yu.; Savina, Aleksandra A.; Khaikina, Elena G.

    2016-06-01

    Triple molybdates AgA3R(MoO4)5 (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg3In(MoO4)5 type were synthesized and single crystals of AgMg3R(MoO4)5 (R=Cr, Fe) were grown. In their structures, the MoO4 tetrahedra, pairs and trimers of edge-shared (Mg, R)O6 octahedra are connected by common vertices to form a 3D framework. Large framework cavities involve Ag+ cations disordered on three nearby positions with CN=3+1 or 4+1. Alternating (Mg, R)O6 octahedra and MoO4 tetrahedra in the framework form quadrangular windows penetrable for Ag+ at elevated temperatures. Above 653-673 K, the newly obtained molybdates demonstrate abrupt reduction of the activation energy to 0.4-0.6 eV. At 773 K, AgMg3Al(MoO4)5 shows electric conductivity 2.5·10-2 S/cm and Ea=0.39 eV compatible with characteristics of the best ionic conductors of the NASICON type.

  9. Preparation and characterization of (Ba,Cs)(M,Ti) 8O 16 (M = Al 3+, Fe 3+, Ga 3+, Cr 3+, Sc 3+, Mg 2+) hollandite ceramics developed for radioactive cesium immobilization

    NASA Astrophysics Data System (ADS)

    Aubin-Chevaldonnet, V.; Caurant, D.; Dannoux, A.; Gourier, D.; Charpentier, T.; Mazerolles, L.; Advocat, T.

    2007-06-01

    Among the different matrices proposed for selective and durable immobilization of radioactive cesium, (Ba x,Cs y)(M,Ti) 8O 16 hollandite ceramics, with x + y < 2 and M = divalent or trivalent cation appeared as the best candidates. In this study, hollandite ceramics were prepared using oxide route from oxide, carbonate and nitrate powders with and without Cs for different cations M (Al 3+, Cr 3+, Ga 3+, Fe 3+, Mg 2+, Sc 3+) of increasing size, in order to evaluate the effect of composition on ceramics microstructure and structure and on cesium incorporation. To reduce the risks of Cs vaporization during synthesis, calcined powders were sintered in air at moderate temperature (1200 °C). This oxide route appeared as an alternative to the alkoxide route generally proposed to prepare hollandite waste form. For y = 0, single phase Ba x(M,Ti) 8O 16 was obtained only for M 3+ = Al 3+, Cr 3+ and Fe 3+. For y ≠ 0 and Fe 3+, all cesium was incorporated in hollandite and ceramic was well densified. For Cr 3+ and Ga 3+, only 46% and 63%, respectively, of Cs were retained in hollandite phase. For these samples, a high fraction of Cs was either evaporated and/or concentrated in a Cs-rich parasitic phase. Mixed hollandite samples with M 3+ = Ga 3+ + Al 3+ and M 3+ = Fe 3+ + Al 3+ were also synthesized and the best results regarding Cs immobilization and ceramic density were obtained with iron + aluminum but the sample porosity was higher than that of the sample containing only iron. All results were discussed by considering cations size and refractory character of oxides and hollandite ceramics.

  10. Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain-boundary relaxation of Al-4.9Mg alloy

    NASA Astrophysics Data System (ADS)

    Mikhailovskaya, A. V.; Golovin, I. S.; Zaitseva, A. A.; Portnoi, V. K.; Dröttboom, P.; Cifre, J.

    2013-03-01

    Methods of microstructural analysis, measurements of hardness, and temperature and time dependences of internal friction (TDIF and TDIF(iso), respectively) have been used to study recrystallization in cold-rolled alloys and grain-boundary relaxation in annealed alloys. A complex analysis of the effect of additions of transition metals (Mn, Cr) on the magnitude of the activation energy of the background of the internal friction in deformed and annealed states and on the activation parameters of grain-boundary relaxation has been performed. Methods of amplitude dependences of internal friction (ADIF) have been used to determine the critical amplitude that corresponds to the beginning of microplastic deformation in the alloys at different temperatures.

  11. Influence of RCS on Al-3Mg and Al-3Mg-0.25Sc alloys

    NASA Astrophysics Data System (ADS)

    Bhovi, Prabhakar M.; Venkateswarlu, K.

    2016-02-01

    An influence of repetitive corrugation and straightening (RCS) was studied on Al-3Mg and Al-3Mg-0.25Sc alloys up to eight passes. Each pass consist of a corrugation and followed by straightening. This has resulted in introducing large plastic strain in sample, and thus led to formation of sub-micron grain sizes with high angle grain boundaries. These sub grain formation was eventually resulted in improved mechanical properties. The average grain size of Al-3Mg-0.25Sc alloy after 8 passes yielded to ∼0.6pm. Microhardness, strength properties were evaluated and it suggests that RCS was responsible for high hardness values as compared to the as cast samples. The microhardness values after RCS were 105 HV and 130 HV for Al-3Mg and Al-3Mg-0.25Sc alloys, respectively. Similarly, ∼ 40% improvement in tensile strength from 240 MPa to 370 MPa was observed for Al- 3Mg-0.25Sc alloy after RCS process.Al-3Mg and Al-3Mg-0.25Scalloys exhibited maximum strength of 220 MPa and 370 MPa, respectively. It is concluded that RCS process has a strong influence on Al- 3Mg and Al-3Mg-0.25Sc alloys for obtaining improved mechanical properties and grain refinement. In addition to RCS process and presence of AESc precipitates in Al-3Mg-0.25Sc alloy had a significant role in grain refinement and improved mechanical properties as compared to Al-3Mg alloy.

  12. Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States

    USGS Publications Warehouse

    Wilshire, H.G.; Shervais, J.W.

    1975-01-01

    Ultramafic xenoliths in basalts from the western United States are divided into Al-augite and Cr-diopside groups. The Al-augite group is characterized by Al, Ti-rich augites, comparatively Fe-rich olivine and orthopyroxene, and Al-rich spinel, the Cr-diopside group by Cr-rich clinopyroxene and spinel and by Mg-rich olivine and pyroxenes. Both groups have a wide range of subtypes, but the Al-augite group is dominated by augite-rich varieties, and the Cr-diopside group by olivine-rich lherzolites. ?? 1975.

  13. Enhanced magnetization at the Cr/MgO(001) interface

    SciTech Connect

    Leroy, M.-A.; Bataille, A. M. Ott, F.; Wang, Q.; Fitzsimmons, M. R.; Bertran, F.; Le Fèvre, P.; Taleb-Ibrahimi, A.; Vlad, A.; Coati, A.; Garreau, Y.; Hauet, T.; Andrieu, S.; Gatel, C.

    2015-12-21

    We report on the magnetization at the Cr/MgO interface, which we studied through two complementary techniques: angle-resolved photoemission spectroscopy and polarized neutron reflectivity. We experimentally observe an enhanced interface magnetization at the interface, yet with values much smaller than the ones reported so far by theoretical and experimental studies on Cr(001) surfaces. Our findings cast some doubts on the interpretations on previous works and could be useful in antiferromagnetic spin torque studies.

  14. Interdiffusion in the Mg-Al system and Intrinsic Diffusion in (Al3Mg2) Phase

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Kulkarni, Nagraj S; Sohn, Yong Ho

    2011-01-01

    Increasing use and development of lightweight Mg-alloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As a strengthening component, Al is one of the most important and common alloying elements for Mg-alloys. In this study, solid-to-solid diffusion couple techniques were employed to examine the interdiffusion between pure Mg and Al. Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopies (SEM) were employed to observe the formation of the intermetallics -Al12Mg17 and -Al3Mg2, but not -phase. Concentration profiles were determined using X-ray energy dispersive spectroscopy (XEDS). The growth constants and activation energies were determined for each intermetallic phase.

  15. Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Nagashima, Kazuhide; Krot, Alexander N.; Ogliore, Ryan C.; Yin, Qing-Zhu; Amelin, Yuri; Stirling, Claudine H.; Kaltenbach, Angela

    2017-03-01

    We report on the mineralogy, petrography, and in situ measured oxygen- and magnesium-isotope compositions of eight porphyritic chondrules (seven FeO-poor and one FeO-rich) from the Renazzo-like carbonaceous (CR) chondrites Graves Nunataks 95229, Grosvenor Mountains 03116, Pecora Escarpment 91082, and Queen Alexandra Range 99177, which experienced minor aqueous alteration and very mild thermal metamorphism. We find no evidence that these processes modified the oxygen- or Al-Mg isotope systematics of chondrules in these meteorites. Olivine, low-Ca pyroxene, and plagioclase within an individual chondrule have similar O-isotope compositions, suggesting crystallization from isotopically uniform melts. The only exceptions are relict grains in two of the chondrules; these grains are 16O-enriched relative to phenocrysts of the host chondrules. Only the FeO-rich chondrule shows a resolvable excesses of 26Mg, corresponding to an inferred initial 26Al/27Al ratio [(26Al/27Al)0] of (2.5 ± 1.6) × 10-6 (±2SE). Combining these results with the previously reported Al-Mg isotope systematics of CR chondrules (Nagashima et al., 2014, Geochem. J. 48, 561), 7 of 22 chondrules (32%) measured show resolvable excesses of 26Mg; the presence of excess 26Mg does not correlate with the FeO content of chondrule silicates. In contrast, virtually all chondrules in weakly metamorphosed (petrologic type 3.0-3.1) unequilibrated ordinary chondrites (UOCs), Ornans-like carbonaceous (CO) chondrites, and the ungrouped carbonaceous chondrite Acfer 094 show resolvable excesses of 26Mg. The inferred (26Al/27Al)0 in CR chondrules with resolvable excesses of 26Mg range from (1.0 ± 0.4) × 10-6 to (6.3 ± 0.9) × 10-6, which is typically lower than (26Al/27Al)0 in the majority of chondrules from UOCs, COs, and Acfer 094. Based on the inferred (26Al/27Al)0, three populations of CR chondrules are recognized; the population characterized by low (26Al/27Al)0 (<3 × 10-6) is dominant. There are no noticeable

  16. Creep and Toughness of Cryomilled NiAl Containing Cr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Aikin, Beverly; Salem, Jon

    2000-01-01

    NiAl-AlN + Cr composites were produced by blending cryomilled NiAl powder with approx. 10 vol % Cr flakes. In comparison to the as-consolidated matrices, hot isostatically pressed Cr-modified materials did not demonstrate any significant improvement in toughness. Hot extruded NiAl-AlN+10.5Cr, however, possessed a toughness twice that determine for the base NiAl-AlN alloy. Measurement of the 1200 to 1400 K plastic flow properties revealed that the strength of the composites was completely controlled by the properties of the NiAl-AlN matrices. This behavior could be successfully modeled by the Rule-of-Mixtures, where load is shed from the weak Cr to the strong matrix.

  17. Chemical ordering in Cr3Al and relation to semiconducting behavior

    NASA Astrophysics Data System (ADS)

    Boekelheide, Z.; Stewart, D. A.; Hellman, F.

    2012-08-01

    Cr3Al shows semiconductor-like behavior which has been attributed to a combination of antiferromagnetism and chemical ordering of the Cr and Al atoms on the bcc sublattice. This article presents a detailed theoretical and experimental study of the chemical ordering in Cr3Al. Using density functional theory within the Korringa-Kohn-Rostoker (KKR) formalism, we consider five possible structures with the Cr3Al stoichiometry: a bcc solid solution, two-phase C11b Cr2Al+Cr, off-stoichiometric C11b Cr3Al, D03 Cr3Al, and X-phase Cr3Al. The calculations show that the chemically ordered, rhombohedrally distorted X-phase structure has the lowest energy of those considered and should, therefore, be the ground state found in nature, while the D03 structure has the highest energy and should not occur. While KKR calculations of the X phase indicate a pseudogap in the density of states, additional calculations using a full potential linear muffin-tin orbital approach and a plane-wave technique show a narrow band gap. Experimentally, thin films of Cr1-xAlx were grown and the concentration, growth temperature, and substrate were varied systematically. The peak resistivity (2400 μΩ-cm) is found for films with x=0.25, grown epitaxially on a 300 ∘C MgO substrate. At this x, a transition between nonmetallic and metallic behavior occurs at a growth temperature of about 400 ∘C, which is accompanied by a change in chemical ordering from X phase to C11b Cr3Al. These results clarify the range of possible structures for Cr3Al and the relationship between chemical ordering and electronic transport behavior.

  18. Magnetic properties of Al/57Fe/Cr multilayers

    NASA Astrophysics Data System (ADS)

    Jani, Snehal; Lakshmi, N.; Jain, Vishal; Reddy, V. R.; Gupta, Ajay; Venugopalan, K.

    2013-06-01

    Conversion Electron Mössbauer Spectroscopy (CEMS) and DC magnetization are used to compare magnetic properties of as-deposited multilayer (MLS) and Fe2CrAl thin film made from Al/57Fe/Cr MLS deposited by ion beam sputtering and then annealed in UHV. Interdiffusion of elements on annealing sample-1 at 500°C leads to formation of a single, disordered film of Fe2CrAl as evidenced by hyperfine field values obtained by CEMS in the film which compares well with that in bulk Fe2CrAl. CEMS also shows contributions from Fe, Fe/Cr and Fe/Al interfaces in the MLS. Saturation magnetization of as-deposited sample-1 is much less than pure Fe due to reduced Fe thickness because of interface formation and also reduction in Fe-Fe interaction due to intervening Al and Cr layers.

  19. Observation of ferromagnetism above 900 K in Cr-GaN and Cr-AlN

    NASA Astrophysics Data System (ADS)

    Liu, H. X.; Wu, Stephen Y.; Singh, R. K.; Gu, Lin; Smith, David J.; Newman, N.; Dilley, N. R.; Montes, L.; Simmonds, M. B.

    2004-11-01

    We report ferromagnetism at over 900K in Cr-GaN and Cr-AlN thin films. The magnetic properties vary as a function of Cr concentration with 60%, and 20%, of the Cr being magnetically active at 3% doping in GaN, and 7% in AlN, respectively. In the GaN sample with the highest magnetically active Cr (60%), channeling Rutherford backscattering indicates that over 70% of Cr impurities are located on substitutional sites. These results give indisputable evidence that substitutional Cr defects are involved in the magnetic behavior. While Cr-AlN is highly resistive, Cr-GaN exhibits properties characteristic of hopping conduction including T-1/2 resistivity dependence and small Hall mobility (0.06cm2/Vs). A large negative magnetoresistance is attributed to the influence of the magnetic field on the quantum interference between the many paths linking two hopping sites. The results strongly suggest that ferromagnetism in Cr-GaN and Cr-AlN can be attributed to the double exchange mechanism as a result of hopping between near-midgap substitutional Cr impurity bands.

  20. Hot Corrosion Performance of AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa Coatings Deposited by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Tao, Chong; Wang, Lei; Cheng, Nailiang; Hu, Hengfa; Liu, Yang; Song, Xiu

    2016-04-01

    AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa coatings were deposited on 316L stainless steel substrate using atmospheric plasma spraying, respectively, in order to improve the oxidation and corrosion resistance. The hot corrosion performance of the coatings at 700 and 900 °C were studied, and the detailed microstructures and phase composition of the coatings were analyzed using x-ray diffraction, scanning electron microscope with energy dispersive spectrometer, and transmission electron microscope. The results show that both coatings are structurally featured by slatted layers, consisting of amorphous phase, Cr2O3, Ni3Al, and Al2O3. The hot corrosion resistance of AlO-CrO/NiCoCrAlYTa coating is better than that of AlO/NiCoCrAlYTa coating. This improvement is attributed to lower porosity and more compact Cr2O3 in AlO-CrO/NiCoCrAlYTa coating which performs better than Al2O3 in blocking further inward progress of corrosion and oxidization.

  1. Interdiffusion and Intrinsic Diffusion in the Mg-Al System

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho; Kulkarni, Nagraj S

    2012-01-01

    Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electron microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in the -Al

  2. Magnetic Properties of Cr-based Ternary Compound CrAlGe

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Soshi; Mitsui, Yoshifuru; Umetsu, Rie Y.; Koyama, Keiichi

    Structural and magnetic properties of Cr-based compound CrAlGe were investigated. The crystal structure was found to be an orthorhombic TiSi2-type with lattice parameters a = 0.4770 nm, b = 0.8254 nm and c = 0.8725 nm at room temperature. Magnetization curve of CrAlGe showed the ferromagnetic behavior. The saturation magnetic moment, spontaneous magnetic moment and Curie temperature of CrAlGe were determined to be 0.45 μB/f.u., 0.41 μB/f.u. and TC = 80 K, respectively. For the temperature T below 30 K, the decrease in the square of the spontaneous magnetization M0(T)2 was proportional to T2. However, for 30 CrAlGe is a weak itinerant electron ferromagnet.

  3. Thermodynamic Modeling of the Al-Cr-Mn Ternary System

    NASA Astrophysics Data System (ADS)

    Cui, Senlin; Jung, In-Ho

    2017-03-01

    The phase diagram information available in the literature on the Al-Cr-Mn system was comprehensively evaluated and optimized for the first time to obtain a set of Gibbs energies of all the solid and liquid phases in the Al-Cr-Mn system. The Modified Quasi-chemical Model (MQM) was utilized to describe the Gibbs energy of the liquid phase of the Al-Cr-Mn system. The Compound Energy Formalism (CEF) was used to model the solid solution phases. A revision of the Al-Mn system was simultaneously conducted to consider the γ_H (Al8Mn5) phase. The liquid Cr-Mn phase was also remodeled using the Modified Quasi-chemical Model (MQM) to obtain a consistent description of the ternary Al-Cr-Mn liquid phase. Accurate description of the phase diagram of the entire Al-Cr-Mn system was obtained from the thermodynamic models with optimized parameters in the present study, and the model parameters can be used to predict the thermodynamic properties of the ternary system.

  4. TI--CR--AL--O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  5. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  6. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    SciTech Connect

    He, Y.R.; Zheng, M.H.; Rapp, R.A.

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  7. The in vitro biocompatibility and macrophage phagocytosis of Mg17Al12 phase in Mg-Al-Zn alloys.

    PubMed

    Liu, Chen; He, Peng; Wan, Peng; Li, Mei; Wang, Kehong; Tan, Lili; Zhang, Yu; Yang, Ke

    2015-07-01

    Mg alloys are gaining interest for applications as biodegradable medical implant, including Mg-Al-Zn series alloys with good combination of mechanical properties and reasonable corrosion resistance. However, whether the existence of second phase particles in the alloys exerts influence on the biocompatibility is still not clear. A deeper understanding of how the particles regulate specific biological responses is becoming a crucial requirement for their subsequent biomedical application. In this work, the in vitro biocompatibility of Mg17Al12 as a common second phase in biodegradable Mg-Al-Zn alloys was investigated via hemolysis, cytotoxicity, cell proliferation, and cell adhesion tests. Moreover, osteogenic differentiation was evaluated by the extracellular matrix mineralization assay. The Mg17Al12 particles were also prepared to simulate the real situation of second phase in the in vivo environment in order to estimate the cellular response in macrophages to the Mg17Al12 particles. The experimental results indicated that no hemolysis was found and an excellent cytocompatibility was also proved for the Mg17Al12 second phase when co-cultured with L929 cells, MC3T3-E1 cells and BMSCs. Macrophage phagocytosis co-culture test revealed that Mg17Al12 particles exerted no harmful effect on RAW264.7 macrophages and could be phagocytized by the RAW264.7 cells. Furthermore, the possible inflammatory reaction and metabolic way for Mg17Al12 phase were also discussed in detail.

  8. LiCaAl/sub 6/:Cr/sup 3+/

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Smith, L.K.; Krupke, W.F. )

    1988-11-01

    The authors report the discovery of a new laser, LiCaAIF/sub 6/:Cr/sup 3/ (Cr/sup 3+/ :LiCAF). The intrinsic (extrapolated maximum) slope efficiency was found to be 67 percent. For comparison, they also measured the intrinsic slope efficiencies of BeAl/sub 2/O/sub 4/:Cr/sup 3+/ (alexandrite), Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, and ScBO/sub 3/:Cr/sup 3+/, and obtained values of 65,28, and 26 percent, respectively. The tuning range of LiCaAIF/sub 6/:Cr/sup 3+/ was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well.

  9. Pretreatment of Al and Mg Alloys - Structural and Electronic

    DTIC Science & Technology

    2007-05-17

    specific to discussion Applications on structural alloys and castings OEM and depot/repair/rebuild operations Magnesium Alloys Castings – AZ91 , ZE41...in repair/rework – TCP as conversion coating for both Mg and Al?? Needs for Mg Mg specific resin systems for barrier properties – Nonchromate

  10. Photocatalytic decomposition of Congo red under visible light irradiation using MgZnCr-TiO2 layered double hydroxide.

    PubMed

    Ma, Chi; Wang, Fenghua; Zhang, Chang; Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Li, Yongqiu; Li, Zihao; Zhu, Mengying; Shen, Liuqing; Zeng, Guangming

    2017-02-01

    The new nanophotocatalyst MgZnCr-TiO2 was prepared by co-precipitation under different molar ratio of metals (Zn:Cr) and the loaded amount of TiO2. And it was characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy et al. Langmuir model fitted well the adsorption isotherm with the value of R(2) 0.9765, the maximum adsorption capacity was 526.32 mg g(-1), the adsorption followed pseudo second order kinetic by MgZnCr-TiO2 (1:1:2-0.05). The photocatalytic oxidation of Congo red was used to determine the photocatalytic performance of MgZnCr-TiO2 (1:1:2-0.05) under visible light irradiation, and the removal rate reached 98% after reaction for 40 min. The degradation mechanism of Congo red also was proposed, and the MgZnCr-TiO2 (1:1:2-0.05) was stable after five cycles. Compared to the adsorption, Congo red was removed fundamentally by photocatalysis and it is expected to be an effective way to eliminate Congo red.

  11. Laser-Ultrasonic Inspection of MG/AL Castings

    SciTech Connect

    Blouin, Alain; Levesque, Daniel; Monchalin, Jean-Pierre; Baril, Eric; Fischersworring-Bunk, Andreas

    2005-04-09

    Laser-ultrasonics is used to assess the metallurgical bond between Mg/Al materials in die-cast Magnesium/Aluminum composite. The acoustic impedances of Mg, Al and air are such that the amplitude of ultrasonic echoes reflected back from a void is many times larger than the amplitude of those reflected back from a well-bonded interface. In addition, the polarity of echoes from a void is inverted compared to that from a well-bonded interface. Laser-ultrasonic F-SAFT is also used for imaging tilted Mg/Al interfaces. Experimental setup, signal processing and results for detecting voids in the Mg/Al interface of cast parts are presented.

  12. Spontaneously intermixed Al-Mg barriers enable corrosion-resistant Mg/SiC multilayer coatings

    DOE PAGES

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; ...

    2012-07-24

    Magnesium/silicon carbide (Mg/SiC) has the potential to be the best-performing reflective multilayercoating in the 25–80 nm wavelength region but suffers from Mg-related corrosion, an insidious problem which completely degrades reflectance. We have elucidated the origins and mechanisms of corrosion propagation within Mg/SiC multilayers. Based on our findings, we have demonstrated an efficient and simple-to-implement corrosion barrier for Mg/SiC multilayers. In conclusion, the barrier consists of nanometer-scale Mg and Al layers that intermix spontaneously to form a partially amorphous Al-Mg layer and is shown to prevent atmospheric corrosion while maintaining the unique combination of favorable Mg/SiC reflective properties.

  13. Al addition effect of bulk MgB 2 superconductor

    NASA Astrophysics Data System (ADS)

    Shinohara, K.; Ikeda, H.; Yoshizaki, R.

    2007-10-01

    The properties of transport and magnetization have been investigated for bulk MgB2Alx superconductor with Al addition (x = 0, 0.5, 1 wt%). MgB2 bulk samples sintered at different temperatures at 650-740 °C were prepared in the undoped state. The temperature and applied field dependencies of resistivity and magnetization were measured for the samples. The sample sintered at 690 °C exhibited the highest critical current density (Jc) and the lowest resistivity. This undoped sample was chosen as a criterion sample, and the effect of Al addition on the MgB2 bulk was studied from the transport and magnetization properties in a magnetic field. For MgB2Alx bulk samples sintered at 690 °C, the resistivity increased and Jc decreased as amount of Al was increased.

  14. Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    NASA Astrophysics Data System (ADS)

    Yan, F.; McKay, B. J.; Fan, Z.; Chen, M. F.

    2012-01-01

    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg2Si particles evenly distributed throughout an α-Al matrix with a β-Al3Mg2 fully divorced eutectic phase observed in interdendritic regions. The Mg2Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg2Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al3Mg2 eutectic phase with no evidence of any effect on the primary Mg2Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS.

  15. Colour due to Cr3+ ions in oxides: a study of the model system MgO:Cr3+.

    PubMed

    Aramburu, J A; García-Fernández, P; García-Lastra, J M; Barriuso, M T; Moreno, M

    2013-05-01

    Seeking to understand why the cubic centre in MgO:Cr(3+) has the same 10Dq value as emerald, ab initio cluster and periodic supercell calculations have been performed. It is found that the equilibrium Cr(3+)-O(2-) distance, R, in MgO:Cr(3+) is equal to 2.03 Å and thus 0.06 Å higher than that measured for the emerald. Calculations carried out on the isolated CrO(6)(9-) complex at R = 2.03 Å give 10Dq = 14,510 cm(-1), which is 10% smaller than the experimental figure for MgO:Cr(3+). Nevertheless, when the internal electric field, ER(r), due to the rest of the lattice ions is also taken into account, the calculated 10Dq = 16,210 cm(-1) coincides with the experimental value. Accordingly, the colour shift for different oxides doped with Cr(3+) can be well understood on the basis of this extrinsic contribution to 10Dq usually ignored in a ligand field description. The calculated electrostatic potential, VR(r), related to ER(r), is found to be attractive when the electronic density is lying along <110> directions and |r| > 1 Å driven by the first shell of twelve Mg(2+) ions. The action of VR(r) upon the CrO(6)(9-) complex slightly decreases the energy of t2g(xy,xz,yz) orbitals with respect to that for eg(3z(2) - r(2),x(2) - y(2)) orbitals, thus enhancing the 10Dq value by 0.2 eV. However, the addition of VR(r) induces very small changes in the electronic density, a relevant fact that is related to the (2)E(t(2g)(3)) −> (4)A(2)(t(2g)(3)) emission energy being nearly independent of the host lattice along the series of Cr(3+)-doped oxides.

  16. Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating

    NASA Astrophysics Data System (ADS)

    Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong

    2017-03-01

    The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating < the stainless steel with Al-Si coating < the stainless steel without any coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.

  17. Vanadium, Cr, Si, and the Mg/Si Ratio of the Earth

    NASA Technical Reports Server (NTRS)

    Drake, Michael J.; Domanik, Kenneth; Bailey, Edward

    2003-01-01

    Experiments investigating the partitioning of V, Cr, and Si between metal and silicate at various pressures, temperatures, redox state, and composition demonstrate that V and Cr are always more siderophile than Si. The relatively high abundances of V and Cr in the Earth's upper mantle indicate that the high Mg/Si ratio of the Earth's upper mantle cannot be attributed to extraction of Si into the core and must be an intrinsic bulk property of the silicate Earth.

  18. Morphological instabilities in Mg-7.7 at % Al

    SciTech Connect

    Maitrejean, S.; Veron, M.; Brechet, Y.; Purdy, G.R.

    1999-11-05

    The process of solid-solid discontinuous precipitation in the undercooled state is increasingly well documented. However, rather less is known about the stability of the discontinuous transformation products against prolonged ageing or against dissolution on reheating. In this contribution, the authors report on the response to ageing and to re-heating of the discontinuous precipitation product in an Mg-Al alloy. This system was chosen in part because of the well-established kinetic and compositional data now available for the discontinuous product, a lamellar composite of the solid solution {alpha} phase (an h.c.p. solution of Al in Mg), which grows at lower temperatures in concert with the intermediate compound Mg{sub 17}Al{sub 12}.

  19. The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions.

    PubMed

    See, Kimberly A; Chapman, Karena W; Zhu, Lingyang; Wiaderek, Kamila M; Borkiewicz, Olaf J; Barile, Christopher J; Chupas, Peter J; Gewirth, Andrew A

    2016-01-13

    Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, (27)Al and (35)Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore the active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ-Cl)3·6THF](+) complex that is observed in the solid state structure. Additionally, conditioning creates free Cl(-) in the electrolyte solution, and we suggest the free Cl(-) adsorbs at the electrode surface to enhance Mg electrodeposition.

  20. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  1. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids have been observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. It was postulated that the voids resulted from an excess number of oxygen vacancies near the oxide-metal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidations of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al,Cr)2O3 and Ni(Al,Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationships between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  2. Heterogeneity of Mg Isotopes and Variable ^26Al/^27Al Ratio in FUN CAIs

    NASA Astrophysics Data System (ADS)

    Park, C.; Nagashima, K.; Hutcheon, I. D.; Wasserburg, G. J.; Papanastassiou, D. A.; Davis, A. M.; Huss, G. R.; Krot, A. N.

    2013-09-01

    We report high-precision Mg-isotope data of individual minerals from the Axtell 2271, BG82DH8, EK1-4-1, C1, TE, and CG14 FUN CAIs, which shows variations in both Mg-isotope ratio and ^26Al/^27Al ratio.

  3. Removal of boron and fluoride in wastewater using Mg-Al layered double hydroxide and Mg-Al oxide.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2017-03-01

    Mg-Al layered double hydroxide intercalated with NO3(-) and Mg-Al oxide were found to remove hazardous materials such as B and As, as well as Cl(-) and SO4(2-), from artificial and real hot spring wastewater. However, compared with the mixture of Al2(SO4)3 and Ca(OH)2, both adsorbents were inferior for the removal of B from real hot spring wastewater. Both adsorbents were also found to remove F(-) and PO4(3-) from artificial semiconductor plant wastewater. Both adsorbents have the same ability to remove B from landfill wastewater as the mixture of Al2(SO4)3 and Ca(OH)2; furthermore, both remove Cl(-), Br(-), and SO4(2-). The benefit of Mg-Al layered double hydroxide intercalated with NO3(-) is that it does not require neutralization after the treatment. Overall, it can be stated that among the materials tested, Mg-Al layered double hydroxide intercalated with NO3(-) is the most suitable adsorbent for the treatment of hot spring and landfill wastewater.

  4. Half-metallicity in highly L21-ordered CoFeCrAl thin films

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Valloppilly, S. R.; Li, X.-Z.; Kim, D. R.; Zhao, G. J.; Chen, T. Y.; Choudhary, R.; Kashyap, A.; Skomski, R.; Sellmyer, D. J.

    2016-10-01

    The structural, magnetic, and electron-transport properties of Heusler-ordered CoFeCrAl thin films are investigated experimentally and theoretically. The films, sputtered onto MgO and having thicknesses of about 100 nm, exhibit virtually perfect single-crystalline epitaxy and a high degree of L21 chemical order. X-ray diffraction and transmission-electron microscopy show that the structure of the films is essentially of the L21 Heusler type. The films are ferrimagnetic, with a Curie temperature of about 390 K, and a net moment of 2 μB per formula unit. The room temperature resistivity is 175 μΩ cm; the carrier concentration and mobility determined from the low temperature (5 K) measurement are 1.2 × 1018 cm-3 and 33 cm2/V s, respectively. In contrast to the well-investigated Heusler alloys such as Co2(Cr1-xFex)Al, the CoFeCrAl system exhibits two main types of weak residual A2 disorder, namely, Co-Cr disorder and Fe-Cr disorder, the latter conserving half-metallicity. Point-contact Andreev reflection yields a lower bound for the spin polarization, 68% at 1.85 K, but our structural and magnetization analyses suggest that the spin polarization at the Fermi level is probably higher than 90%. The high resistivity, spin polarization, and Curie temperature are encouraging in the context of spin electronics.

  5. Model for nonprotective oxidation of Al-Mg alloys

    SciTech Connect

    Zayan, M.H. )

    1990-12-01

    The oxidation of Al-5Mg alloy has been studied at 550 C in dry air. Morphological details of the MgO layers which develop on this alloy during high-temperature oxidation have been studied by scanning electron microscopy (SEM). A localized detachment of the protective, adherent MgO layer was found, which is caused by voids formed by vacancy condensation at the metal-oxide interface. The source of these vacancies was the outward diffusion of Mg though the oxide layer. Continuing growth of these voids was responsible for cracking of oxide ridges and nodules, as well as the growth of new MgO having a cauliflower morphology. A model describing the process of the outward diffusion is given.

  6. Phase Separation kinetics in an Fe-Cr-Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Chao, J.

    2012-01-01

    The {alpha}-{alpha}{prime} phase separation kinetics in a commercial Fe-20 wt.% Cr-6 wt.% Al oxide dispersion-strengthened PM 2000{trademark} steel have been characterized with the complementary techniques atom probe tomography and thermoelectric power measurements during isothermal aging at 673, 708, and 748 K for times up to 3600 h. A progressive decrease in the Al content of the Cr-rich {alpha}{prime} phase was observed at 708 and 748 K with increasing time, but no partitioning was observed at 673 K. The variation in the volume fraction of the {alpha}{prime} phase well inside the coarsening regime, along with the Avrami exponent 1.2 and activation energy 264 kJ mol{sup -1}, obtained after fitting the experimental results to an Austin-Rickett type equation, indicates that phase separation in PM 2000{trademark} is a transient coarsening process with overlapping nucleation, growth, and coarsening stages.

  7. Hot corrosion of CoCrAlY alloys

    SciTech Connect

    Hwang, S.Y.

    1989-01-01

    The kinetics and mechanisms of the hot corrosion of CoCrAlY alloys over wide ranges of temperature (600-1000{degree}C) and Pso{sub 3} (10{sup {minus}6}-10{sup {minus}3} atm) were studied. Isothermal and cyclic experiments were performed to study the kinetics, and microstructures were examined by scanning electron microscopy. After interpreting these results, the hot corrosion mechanisms of the CoCrAlY alloys were proposed to explain the observed behavior. The reaction mechanism governing hot corrosion is thought to be as follows. At low temperature (600-800{degree}C), SO{sub 3} and CoO react and form a molten Na{sub 2}SO{sub 4}-CoSO{sub 4} salt mixture. Aluminum diffuses through the alloy, is oxidized, and the alumina which is formed becomes subject to basic fluxing. While alumina is subject to the Rapp-Goto mechanism, chromia may not be subject to this mechanism. Since Co is left behind in the alloy, the basic fluxing of alumina seems to be the cause for formation of nonprotective scales. Sulfides can form during low temperature hot corrosion and considerable sulfide formation is observed at 900-850{degree}C, but the sulfidation process is less likely to be the major cause of LTHC. Also, the sulfite formation mechanism is evaluated, and the activity of aluminum sulfite is found to be too low for this compound to exist. At high temperature (900-1000{degree}C), the CoCrAlY alloy was in the initiation stage due to the formation of protective alumina during isothermal tests. The mode of degradation of the CoCrAlY alloy at 1000{degree}C in pure oxygen during the cyclic tests was basic fluxing of alumina and chromia accompanied by spalling and cracking of oxides.

  8. Magnetic properties of EuCr2Al20

    NASA Astrophysics Data System (ADS)

    Swatek, Przemysław; Kaczorowski, Dariusz

    2016-10-01

    Polycrystalline sample of EuCr2Al20 was studied by means of x-ray powder diffraction, magnetization, electrical resistivity and heat capacity measurements. The compound was found to order antiferromagnetically at TN = 4.8 K due to the magnetic moments carried on divalent of Eu ions. The experimental findings are supported by the results of ab-initio band structure calculations.

  9. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  10. Oxidation and Hot Corrosion Behavior of Plasma-Sprayed MCrAlY-Cr2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Huang, Chuanbing; Lan, Hao; Du, Lingzhong; Zhang, Weigang

    2016-08-01

    The oxidation and hot corrosion behavior of two atmospheric plasma-sprayed NiCoCrAlY-Cr2O3 and CoNiCrAlY-Cr2O3 coatings, which are primarily designed for wear applications at high temperature, were investigated in this study. The two coatings were exposed to air and molten salt (75%Na2SO4-25%NaCl) environment at 800 °C under cyclic conditions. Oxidation and hot corrosion kinetic curves were obtained by thermogravimetric technique. X-ray diffraction analysis and scanning electron microscopy with energy-dispersive x-ray spectrometry were employed to characterize the coatings' microstructure, surface oxides, and composition. The results showed that both coatings provided the necessary oxidation resistance with oxidation rates of about 1.03 × 10-2 and 1.36 × 10-2 mg/cm2 h, respectively. The excellent oxidation behavior of these two coatings is attributed to formation of protective (Ni,Co)Cr2O4 spinel on the surface, while as-deposited Cr2O3 in the coatings also acted as a barrier to diffusion of oxidative and corrosive substances. The greater presence of Co in the CoNiCrAlY-Cr2O3 coating restrained internal diffusion of sulfur and slowed down the coating's degradation. Thus, the CoNiCrAlY-Cr2O3 coating was found to be more protective than the NiCoCrAlY-Cr2O3 coating under hot corrosion condition.

  11. Two-Phase (TiAl+TiCrAl) Coating Alloys for Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialek, James L. (Inventor); Brindley, William J. (Inventor)

    1998-01-01

    A coating for protecting titanium aluminide alloys, including the TiAl gamma + Ti3Al (alpha(sub 2)) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C. is disclosed. This protective coating consists essentially of titanium, aluminum. and chromium in the following approximate atomic ratio: Ti(41.5-34.5)Al(49-53)Cr(9.5-12.5)

  12. Production of Mg and Al Auger electrons by noble gas ion bombardment of Mg and Al surfaces

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Pepper, S. V.

    1976-01-01

    Relative production efficiencies of Mg and Al Auger electrons by He, Ne, Ar, Kr, and Xe ion bombardment are reported as a function of ion energy for energies not exceeding 3 keV. The experimental apparatus employed consisted of a LEED-Auger system equipped with an ion gun and a four-grid retarding-potential analyzer. It is found that: (1) the shape of the ion-excited Auger signal was independent of the rare gas and quite symmetric; (2) the Al signal was about an order of magnitude smaller than the Mg signal for a given bombarding species and ion-gun voltage; (3) no signal was observed for He(+) bombardment under any of the experimental conditions; (4) signal strengths were independent of temperature and ion dose; (5) the Auger production efficiencies differed by no more than a factor of two among the different gases - except for He(+) - on a given metal; (6) all the signal strengths increased with increasing ion-gun voltage, with no maximum exhibited; and (7) the apparent threshold energy for the Al signal was higher than that for the Mg signal. The differences between the results for the two metals are attributed to the fact that the Al 2p orbital lies deeper in energy and closer to the nucleus than the corresponding Mg orbital.

  13. Structure and wear behavior of AlCrSiN-based coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Du, Hao; Chen, Ming; Yang, Jun; Xiong, Ji; Zhao, Haibo

    2016-05-01

    AlCrN, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings have been deposited on high-polished WC-Co cemented carbide substrate and tools by mid-frequency magnetron sputtering in Ar/N2 mixtures. Al0.6Cr0.4, Al0.6Cr0.3Si0.1, and C/Mo/Nb targets were used during the deposition. The microstructure and mechanical properties of as-deposited coatings were investigated. Investigations of the wear behaviors of coated tools were also performed. The results showed that cubic structure was formed in the coatings. Broader CrAlN (1 1 1) and (2 0 0) peaks without SiNx peak were formed in the AlCrSiN/MexN coatings, which showed a nanocomposited structure. Meanwhile, according to SEM micrographs, AlCrN exhibited a columnar structure, while, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings showed nanocrystalline morphology. The nano-multilayered coatings performed higher hardness, H/E, and H3/E2 ratios compared with AlCrN coating. Through the Rockwell adhesion test, all the coatings exhibited adhesion strength quality HF1. After turning Inconel 718 under dry condition, the nano-multilyered coatings showed better wear resistance than AlCrN coating. Due to the molybdenum and niobium in the coating, AlCrSiN/MoN and AlCrSiN/NbN coatings showed the best wear resistance.

  14. Characterization of Al-Mg Alloy Aged at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Yi, Gaosong; Cullen, David A.; Littrell, Kenneth C.; Golumbfskie, William; Sundberg, Erik; Free, Michael L.

    2017-02-01

    Long-term aged [343 K (70 °C) for 30 months and natural exposure for over 10 years] Al 5456 H116 samples were characterized using electron backscatter diffraction (EBSD), scanning transmission electron microscopy (STEM), state-of-the-art energy-dispersive X-ray spectroscopy (EDS) systems, and small-angle neutron scattering (SANS). ASTM G-67 mass loss tests of the sensitized Al 5456 alloy samples were conducted. Intragranular Mg-rich precipitates, such as Guinier-Preston (GP) zones, were confirmed in Al 5456 H116 aged at 343 K (70 °C) for 30 months, and the volume of these precipitates is 1.39 pct. β' phase is identified at the grain boundary of a navy ship sample, while high-resolution STEM results reveal no intragranular precipitates. Intergranular corrosion (IGC) of Al 5456 was found to be related to the continuity of intergranular precipitates.

  15. Characterization of Al-Mg Alloy Aged at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Yi, Gaosong; Cullen, David A.; Littrell, Kenneth C.; Golumbfskie, William; Sundberg, Erik; Free, Michael L.

    2017-04-01

    Long-term aged [343 K (70 °C) for 30 months and natural exposure for over 10 years] Al 5456 H116 samples were characterized using electron backscatter diffraction (EBSD), scanning transmission electron microscopy (STEM), state-of-the-art energy-dispersive X-ray spectroscopy (EDS) systems, and small-angle neutron scattering (SANS). ASTM G-67 mass loss tests of the sensitized Al 5456 alloy samples were conducted. Intragranular Mg-rich precipitates, such as Guinier-Preston (GP) zones, were confirmed in Al 5456 H116 aged at 343 K (70 °C) for 30 months, and the volume of these precipitates is 1.39 pct. β' phase is identified at the grain boundary of a navy ship sample, while high-resolution STEM results reveal no intragranular precipitates. Intergranular corrosion (IGC) of Al 5456 was found to be related to the continuity of intergranular precipitates.

  16. Divorced Eutectic Solidification of Mg-Al Alloys

    NASA Astrophysics Data System (ADS)

    Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo

    2015-08-01

    We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

  17. Al/sub 2/O/sub 3/ adherence on CoCrAl alloys

    SciTech Connect

    Kingsley, L.M.

    1980-04-01

    Adherence of protective oxides on NiCrAl and CoCrAl superalloys has been promoted by a dispersion of a highly oxygen reactive element or its oxide being produced within the protection system. Two aspects of this subject are investigated here: the use of Al/sub 2/O/sub 3/ as both the dispersion and protective oxide; and the production of an HfO/sub 2/ dispersion while simultaneously aluminizing the alloy. It was found that an Al/sub 2/O/sub 3/ dispersion will act to promote the adherence of an external scale of Al/sub 2/O/sub 3/ to a degree comparable to previously tested dispersions and an HfO/sub 2/ dispersion comparable to that produced by a Rhines pack treatment is produced during aluminization.

  18. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    SciTech Connect

    Lu, Yuan; Zuo, Xu; Feng, Min; Shao, Bin

    2014-05-07

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  19. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Feng, Min; Shao, Bin; Zuo, Xu

    2014-05-01

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  20. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  1. Al-26-Mg-26 ages of iron meteorites

    NASA Technical Reports Server (NTRS)

    Herzog, G. F.; Souzis, A. E.; Xue, S.; Klein, J.; Juenemann, D.; Middleton, R.

    1993-01-01

    An exposure age for an iron meteorite can be calculated from measurements of a radioactive nuclide and a stable nuclide that are produced by similar sets of nuclear reactions, provided that the stable nuclide is present with low initial abundance. The standard methods rely on either K-40 (t(sub 1/2) = 1.26 Gy), K-39, and K-41 or on a shorter-lived radionuclide and a stable, noble gas isotope. Widely used pairs of this type include Cl-36/Ar-36 and Al-26/Ne-21. Other pairs that may serve the purpose for iron meteorites contain many stable isotopes besides those of K and the noble gases that are produced partly by cosmic rays. We consider here the calculation of exposure ages, t(sub 26), from measurements of Al-26 (t(sub 1/2) = 0.7 My) and (stable) Mg-26. Ages based on Al-26/Mg-26 ratios, like those based on Cl-36/Ar-36 ratios, are 'buffered' against changes in relative production rates due to shielding because decay of the radioactive nuclide accounts for a good part of the inventory of the stable nuclide.

  2. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    NASA Astrophysics Data System (ADS)

    Kim, Sun Kyu; Pham, Vuong-Hung; Kim, Chong-Hyun

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  3. Stabilization mechanism of γ-Mg17Al12 and β-Mg2Al3 complex metallic alloys

    NASA Astrophysics Data System (ADS)

    Vrtnik, S.; Jazbec, S.; Jagodič, M.; Korelec, A.; Hosnar, L.; Jagličić, Z.; Jeglič, P.; Feuerbacher, M.; Mizutani, U.; Dolinšek, J.

    2013-10-01

    Large-unit-cell complex metallic alloys (CMAs) frequently achieve stability by lowering the kinetic energy of the electron system through formation of a pseudogap in the electronic density of states (DOS) across the Fermi energy ɛF. By employing experimental techniques that are sensitive to the electronic DOS in the vicinity of ɛF, we have studied the stabilization mechanism of two binary CMA phases from the Al-Mg system: the γ-Mg17Al12 phase with 58 atoms in the unit cell and the β-Mg2Al3 phase with 1178 atoms in the unit cell. Since the investigated alloys are free from transition metal elements, orbital hybridization effects must be small and we were able to test whether the alloys obey the Hume-Rothery stabilization mechanism, where a pseudogap in the DOS is produced by the Fermi surface-Brillouin zone interactions. The results have shown that the DOS of the γ-Mg17Al12 phase exhibits a pronounced pseudogap centered almost exactly at ɛF, which is compatible with the theoretical prediction that this phase is stabilized by the Hume-Rothery mechanism. The disordered cubic β-Mg2Al3 phase is most likely entropically stabilized at high temperatures, whereas at lower temperatures stability is achieved by undergoing a structural phase transition to more ordered rhombohedral β‧ phase at 214 ° C, where all atomic sites become fully occupied. No pseudogap in the vicinity of ɛF was detected for the β‧ phase on the energy scale of a few 100 meV as determined by the ‘thermal observation window’ of the Fermi-Dirac function, so that the Hume-Rothery stabilization mechanism is not confirmed for this compound. However, the existence of a much broader shallow pseudogap due to several critical reciprocal lattice vectors \\buildrel{\\rightharpoonup}\\over{G} that simultaneously satisfy the Hume-Rothery interference condition remains the most plausible stabilization mechanism of this phase. At Tc = 0.85 K, the β‧ phase undergoes a superconducting transition

  4. Irradiation-induced formation of a spinel phase at the FeCr/MgO interface

    DOE PAGES

    Xu, Yun; Yadav, Satyesh Kumar; Aguiar, Jeffery A.; ...

    2015-04-27

    Oxide dispersion strengthened ferritic/martensitic alloys have attracted significant attention for their potential uses in future nuclear reactors and storage vessels, as the metal/oxide interfaces act as stable high-strength sinks for point defects while also dispersing helium. Here, in order to unravel the evolution and interplay of interface structure and chemistry upon irradiation in these types of materials, an atomically sharp FeCr/MgO interface was synthesized at 500 °C and separately annealed and irradiated with Ni3+ ions at 500 °C. After annealing, a slight enrichment of Cr atoms was observed at the interface, but no other structural changes were found. However, undermore » irradiation, sufficient Cr diffuses across the interface into the MgO to form a Cr-enriched transition layer that contains spinel precipitates. First-principles calculations indicate that it is energetically favorable to incorporate Cr, but not Fe, substitutionally into MgO. Furthermore, our results indicate that irradiation can be used to form new phases and complexions at interfaces, which may have different radiation tolerance than the pristine structures.« less

  5. Irradiation-induced formation of a spinel phase at the FeCr/MgO interface

    SciTech Connect

    Xu, Yun; Yadav, Satyesh Kumar; Aguiar, Jeffery A.; Anderoglu, Osman; Baldwin, Jon Kevin; Wang, Yongqiang; Misra, Amit; Luo, Hongmei; Uberuaga, Blas P.; Li, Nan

    2015-04-27

    Oxide dispersion strengthened ferritic/martensitic alloys have attracted significant attention for their potential uses in future nuclear reactors and storage vessels, as the metal/oxide interfaces act as stable high-strength sinks for point defects while also dispersing helium. Here, in order to unravel the evolution and interplay of interface structure and chemistry upon irradiation in these types of materials, an atomically sharp FeCr/MgO interface was synthesized at 500 °C and separately annealed and irradiated with Ni3+ ions at 500 °C. After annealing, a slight enrichment of Cr atoms was observed at the interface, but no other structural changes were found. However, under irradiation, sufficient Cr diffuses across the interface into the MgO to form a Cr-enriched transition layer that contains spinel precipitates. First-principles calculations indicate that it is energetically favorable to incorporate Cr, but not Fe, substitutionally into MgO. Furthermore, our results indicate that irradiation can be used to form new phases and complexions at interfaces, which may have different radiation tolerance than the pristine structures.

  6. Metastability in the MgAl2O4-Al2O3 System

    DOE PAGES

    Wilkerson, Kelley R.; Smith, Jeffrey D.; Hemrick, James G.

    2014-07-22

    Aluminum oxide must take a spinel form ( γ-Al2O3) at elevated temperatures in order for extensive solid solution to form between MgAl2O4 and α-Al2O3. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al2O3 at 1500°C, 83.0 wt% Al2O3 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been defined at temperatures up to 1700°C which could have significant implications for material processing and properties. Additionally, initial processing could have major implications on final chemistry. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevatedmore » temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present, resulting in no eutectic crystal formation during solidification.« less

  7. Luminescence of Ni2+ and Cr3+ centres in MgSiO3 enstatite crystals

    NASA Astrophysics Data System (ADS)

    Moncorgé, R.; Bettinelli, M.; Guyot, Y.; Cavalli, E.; Capobianco, J. A.; Girard, S.

    1999-09-01

    Emission and excitation spectra and luminescence decay curves of enstatite MgSiO3 single crystals nominally doped with Ni and Cr have been measured at temperatures down to 10 K. For all the crystals under investigation, the emission band peaking at about 1520 nm is assigned to the 3T2icons/Journals/Common/to" ALT="to" ALIGN="TOP"/> 3A2 transition of octahedral Ni2+ centres, whilst the luminescence around 800 nm is assigned to the 4T2icons/Journals/Common/to" ALT="to" ALIGN="TOP"/> 4A2 transition of octahedral Cr3+ centres. Chemical analysis has confirmed the presence of Ni impurities in the nominally Cr doped crystals, and Cr impurities in the nominally Ni doped crystals. The peak stimulated emission cross section of the 1520 nm emission of Ni2+ is 3 × 10-20 cm2.

  8. Development and High Temperature Property Evaluation of Ni-Co-Cr-Al Composite Electroforms

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Siju; Balaraju, J. N.; Ravisankar, B.

    2015-05-01

    Ni-Co-Cr-Al composite electroforms were developed with cobalt content of 10 and 40 wt.%. Cr and Al nano-particles were suspended in sulphamate electrolyte and co-deposited in the Ni-Co matrices. The surface morphology was investigated using field emission scanning electron microscope and the composition analyzed by energy-dispersive x-ray analysis. The oxidation resistance of the electroforms was studied from 600 to 1000 °C. The weight gain of Ni-10 wt.%Co-Cr-Al was less (better oxidation resistance) compared to Ni-Cr-Al and Ni-40 wt.%Co-Cr-Al. The x-ray diffraction studies revealed that the oxidation product formed on the surface of Ni-Cr-Al and Ni-10 wt.%Co-Cr-Al consisted of NiO and Al2O3, while Ni-40 wt.%Co-Cr-Al comprised oxides such as NiCo2O4, CrO3, CoO, NiO, and Al2O3. The hot corrosion behavior was investigated in 75%Na2SO4 + 25%NaCl environment at 800 °C. It was found that the hot corrosion resistance of the composite coating improved with increase in cobalt content. The probable composition suitable for high-temperature applications was found to be Ni-10 wt.%Co-Cr-Al.

  9. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Bhushan, Bharat

    2016-08-01

    Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  10. Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys in the temperature range of 700-750 deg C

    NASA Technical Reports Server (NTRS)

    Chiang, K. T.; Meier, G. H.

    1980-01-01

    The effect of SO3 pressure in the gas phase on the Na2SO4 induced hot corrosion of Co-Cr, Ni-Cr, and Co-Cr-Al alloys was studied in the temperature range 700 to 750 C. The degradation of the Co-Cr and Ni-Cr alloys was found to be associated with the formation of liquid mixed sulfates (CoSO4-Na2SO4 or NiSO4-Na2SO4) which provided a selective dissolution of the Co or Ni and a subsequent sulfidation oxidation mode of attack which prevented the maintenance of a protective Cr2O3 film. A clear mechanism was not developed for the degradation of Co-Cr-Al alloys. A pitting corrosion morphology was induced by a number of different mechanisms.

  11. Thermoluminescence of K-Mg-Al-Zn fluorophosphate glass

    NASA Astrophysics Data System (ADS)

    Thomas, Sunil; Chithambo, M. L.

    2017-02-01

    The thermoluminescence of beta irradiated K-Mg-Al-Zn fluorophosphate glass is reported. A glow-curve corresponding to 10 Gy measured at 1 °C/s shows two peaks, a weaker-intensity one at 70 °C and a more prominent one at 235 °C, the subject of this report. The main peak was observed to fade with delay between irradiation and measurement and specifically, by 11% in 15 h. Its dose response is superlinear in the dose range 1-190 Gy although the change was linear for the initial 10 Gy. Regarding kinetic analysis, the activation energy of the higher temperature peak was evaluated as 1.31 eV and that of the lower temperature peak was found as 0.47 eV. It was also noted that the main peak is affected by thermal quenching with an activation energy for thermal quenching equal to 1.37 eV. It is proposed that the mechanism associated with the thermoluminescence in K-Mg-Al-Zn fluorophosphate glass is that electrons trapped by the metal cations are released during heating and then recombine with holes at oxygen sites.

  12. Cyclic Oxidation of FeCrAlY/Al2O3 Composites

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.

    1999-01-01

    Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.

  13. A sulfur segregation study of PWA 1480, NiCrAl, and NiAl alloys

    NASA Technical Reports Server (NTRS)

    Jayne, D. T.; Smialek, J. L.

    1993-01-01

    Some nickel based superalloys show reduced oxidation resistance from the lack of an adherent oxide layer during high temperature cyclic oxidation. The segregation of sulfur to the oxide-metal interface is believed to effect oxide adhesion, since low sulfur alloys exhibit enhanced adhesion. X ray Photoelectron Spectroscopy (XPS) was combined with an in situ sample heater to measure sulfur segregation in NiCrAl, PWA 1480, and NiAl alloys. The polished samples with a 1.5 to 2.5 nm (native) oxide were heated from 650 to 1100 C with hold times up to 6 hr. The sulfur concentration was plotted as a function of temperature versus time at temperature. One NiCrAl sulfur study was performed on the same casting used by Browning to establish a base line between previous Auger Electron Spectroscopy (AES) results and the XPS results of this study. Sulfur surface segregation was similar for PWA 1480 and NiCrAl and reached a maximum of 30 at% at 800 to 850 C. Above 900 C the sulfur surface concentration decreased to about 3 at% at 1100 C. These results are contrasted to the minimal segregation observed for low sulfur hydrogen annealed materials which exhibit improved scale adhesion.

  14. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  15. Deposition of LaMO3 (M=Ni,Co,Cr,Al)-Oriented Films by Spray Combustion Flame Technique

    NASA Astrophysics Data System (ADS)

    Ichinose, Hiromichi; Shiwa, Yuzo; Nagano, Masamitsu

    1994-10-01

    LaMO3 (M=Ni,Co,Cr,Al) films were prepared on sintered alumina, sapphire (001) and MgO(100) at 500 900°C by spraying ultrasonically atomized aqueous solutions of nitrates into a combustion flame (spray combustion flame technique). LaNiO3 and LaCoO3 on MgO(100) crystallized in high-temperature phases (cubic) while LaCrO3 and LaAlO3 crystallized in room-temperature phases. LaMO3 (M=Ni,Co,Cr,Al) films on MgO(100) were highly oriented to (100), (100), (001) and (100), respectively, while the films on sintered alumina and sapphire were not. The electric resistivities of the dense LaMO3 (M=Ni,Co,Cr) films were as low as those of bulk ceramics. LaNiO3 film deposited on MgO above 700°C showed the lowest resistivity of about 6×10-6 Ω m. It was suggested that the reactivities of the constituent metal atoms with OH in the flame are associated with the preferred phase and the morphology of the films.

  16. High-spin states in 29Al and 27Mg

    NASA Astrophysics Data System (ADS)

    Dungan, R.; Tabor, S. L.; Lubna, R. S.; Volya, A.; Tripathi, Vandana; Abromeit, B.; Caussyn, D. D.; Kravvaris, K.; Tai, P.-L.

    2016-12-01

    The structure of 29Al and 27Mg was investigated using the reactions 18O(14C,p 2 n ) and 18O(14C,α n ) at 40 MeV. The charged particles were detected and identified with a Δ E -E telescope in coincidence with γ radiation detected in the Florida State University Compton suppressed γ detector array. The level and decay schemes of both nuclei have been expanded at higher spins and excitation energies. The positive-parity states up to 3.5-4.5 MeV agree well with shell model calculations using the USDA interaction. The negative-parity states in 27Mg are reproduced relatively well by one-particle-one-hole calculations with the WBP-a interaction. Three 27Mg states unbound by 0.4-1.4 MeV to neutron decay were observed to decay radiatively. One of these states had been previously observed to γ decay in a (d ,p γ ) experiment along with a surprising 16 other neutron unbound states. The competition between neutron and γ decay in these states is discussed in terms of angular momentum barriers and spectroscopic factors.

  17. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    SciTech Connect

    Zheng, M.; He, Y.R.; Rapp, R.A.

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  18. The electrochemical behaviors of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn in sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Lv, Yanzhuo; Liu, Min; Xu, Yan; Cao, Dianxue; Feng, Jing

    2013-03-01

    The electrochemical oxidation behaviors of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn electrodes in 0.7 mol L-1 NaCl solution are investigated by methods of potentiodynamic polarization, potentiostatic oxidation, electrochemical impedance spectroscopy and scanning electron microscopy. The phase composition of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn alloys is analyzed conducted by X-ray diffraction. The performances of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn as the anode of Mg-H2O2 semi fuel cells are determined. The effect of Zn content on the corrosion resistant of these Mg-Li-based alloys is studied. It is found that the Mg-8Li-3Al-0.5Zn electrode has higher discharge activity and less corrosion resistance than that of Mg-8Li-3Al-1.0Zn electrode in 0.7 mol L-1 NaCl solution. The Mg-H2O2 semi fuel cell with Mg-8Li-3Al-0.5Zn anode presents a maximum power density of 100 mW cm-2 at room temperature, which is higher than that of Mg-8Li-3Al-1.0Zn anode (80 mW cm-2). The performance of semi fuel cell with the Mg-8Li-3Al-0.5Zn electrode is better than that with Mg-8Li-3Al-1.0Zn electrode, especially at higher current density (>30 mA cm-2).

  19. Epitaxial growth of the Heusler alloy Co2Cr1-xFexAl

    NASA Astrophysics Data System (ADS)

    Kelekar, R.; Clemens, B. M.

    2004-07-01

    We report a method for the growth of single-phase epitaxial thin films of compounds from the family of Heusler alloys Co2Cr1-xFexAl. Elemental targets were dc magnetron sputtered in 1.5 mtorr Ar gas onto MgO substrates held at 500 °C at a total growth rate of ≈0.8 Å/s. As the Fe content increases, the structural quality improves, the level of chemical ordering increases, and the slope of the resistivity versus temperature, dρ/dt, above 50 K changes from negative to positive. An extraordinary Hall resistivity exceeding 1×10-8 Ω m is observed in the Cr-containing alloys at low temperature and room temperature. Preliminary work on the incorporation of a single quaternary alloy into spin valves shows maximum giant magnetoresistances ranging from 4% at 15 K to 2% at room temperature.

  20. Al, Ti, and Cr: Complex Zoning in Synthetic and Natural Nakhlite Pyroxenes

    NASA Technical Reports Server (NTRS)

    McKay, G.; Le, L.; Mikouchi, T.

    2007-01-01

    Nakhlites are olivine-bearing clinopyroxene cumulates. The cumulus pyroxenes have cores that are relatively homogeneous in Fe, Mg, and Ca, but show complex zoning of minor elements, especially Al, Ti, and Cr. Zoning patterns contain information about crystallization history parent magma compositions. But it has proven difficult to decipher this information and translate the zoning patterns into petrogenetic processes. This abstract reports results of high-precision Electron Probe MicroAnalysis (EPMA) analysis of synthetic nakhlite pyroxenes run at fO2 from IW to QFM. It compares these with concurrent analyses of natural nakhlite MIL03346 (MIL), and with standardprecision analyses of Y000593 (Y593) collected earlier. Results suggest that (1) different processes are responsible for the zoning of MIL and other more slowly-cooled nakhlites such as Y593, and (2) changes in oxidation conditions during MIL crystallization are not responsible for the unusual Cr zoning pattern

  1. Wettability of AlSi5Mg on Spodumene

    NASA Astrophysics Data System (ADS)

    Fankhänel, Beate; Stelter, Michael; Voigt, Claudia; Aneziris, Christos G.

    2015-02-01

    The development of new filters for the aluminum industry requires investigations on the wettability of aluminum and its alloys on novel filter materials. The requested filter effects require not only an adequate wetting but also information about the interaction between the filter material and the metal. In the present work the wettability of an AlSi5Mg alloy on spodumene (LiAl[Si2O6]) containing substrates is investigated using the sessile drop technique. These measurements were carried out at 1223 K (950 °C) under vacuum. The spodumene-based substrates showed a completely different wetting behavior compared with an alumina substrate. The contact angel reduced more quickly and leveled out at a lower value (75 ± 2 deg) than in case of a pure alumina substrate (90 ± 1 deg). The reason for this behavior is a reaction between the LiAl(Si2O6) and the alloy droplet which supported deoxidation and formed a silica-rich reaction layer at the droplet/substrate interface.

  2. The effect of dispersoid particle size on the superplasticity of Al-Mg alloy

    SciTech Connect

    Chanda, T.; Ghosh, A.K.; Lavender, C.

    1995-12-31

    An Al-Mg alloy containing dispersoid forming elements such as Mn, Cr and Zr was thermomechanically processed with variations in processing history to produce nearly the same grain size ({approximately}6 {micro}m), but different distribution of size and density of intermetallic particles. Mechanical response of these materials were studied within the superplastic deformation regime in terms of stress-strain, stress-strain rate characteristics, cavitation and grain growth, and superplastic tensile elongation. In this work particles of approximately 500 nm size have been found to cause grain refinement after 90% rolling reduction contrary to previous findings of 2 {micro}m particles in an Al-0.45% Cu alloy. Particles with 200 to 500 nm size favorably influence superplastic elongation, but particle sizes in the range of 600 to 900 nm appear to have adverse effect in terms of superplastic flow properties, due to excessive cavitation.

  3. Improvement of physico-mechanical properties of Mg-Zn nanoferrites via Cr3+ doping

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; Abdo, M. A.; El-Dek, S. I.

    2017-01-01

    A series of Mg0.8Zn0.2CrxFe2-xO4 (0≤x≤0.025) nanoferrites were prepared by citrate-nitrate auto-combustion method. X-ray diffraction assured the formation of the ferrites in nanoscale and in single phase spinel structure. The magnetic and mechanical properties were investigated. All the elastic moduli values increase slowly and steadily with increasing Cr3+ content reaching the critical composition x=0.02. The magnetic parameters increased up to x=0.02 and then decreased with further Cr doping. Versatile applications were recommended owing to the porous nature of the nanoferrites.

  4. Diffusive Interaction Between Ni-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Tkacz-Śmiech, Katarzyna; Danielewski, Marek; Bożek, Bogusław; Berent, Katarzyna; Zientara, Dariusz; Zajusz, Marek

    2017-03-01

    In high-temperature coatings, welded parts, and a range of other applications, components in the contact zone interdiffuse at elevated temperatures and may react to change the phase composition. The diffusion zone can be complex and can consist of sequential layers of intermediate phases, solid solutions, and in the case of multicomponent systems also of multiphase layers. In this work, the interdiffusion in Ni-Cr-Al alloys is studied experimentally and modeled numerically. The diffusion multiples were prepared by hot isostatic pressing and post-annealing at 1473 K (1200 °C). The concentration profiles were measured with wide-line EDS technique which allowed obtaining high-accuracy diffusion paths. The experimental profiles and diffusion paths were compared with numerical results simulated with application of very recent model of interdiffusion in muticomponent-multiphase systems. The calculated and experimental data show good agreement.

  5. Ab initio study of structural stability and electronic properties of Ti{sub 1-x}Mg{sub x}Cr{sub 2} and TiMg{sub x}Cr{sub 2-x} laves phase

    SciTech Connect

    Sari, A. Merad, G.

    2015-03-30

    The structural stability and electronic properties of TiMgCr{sub 2} laves phase have been calculated and compared. It is found that Mg prefer to substitutes titanium than chromium. The values of entalpies of formation show that Ti{sub 1-x}Mg{sub x}Cr{sub 2} may exist for only one concentration x=0.125 and the more favorable alloy is Ti{sub 0.875}Mg{sub 0.125}Cr{sub 2}. For TiCr{sub 2}, the optimized structural parameters were in good agreement with experimental values, while for TiMgCr{sub 2}, there is not experimental data. The electronic densities of states (DOS) are given and the nature of bonds are also discussed.

  6. Adherent Al2O3 scales produced on undoped NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1986-01-01

    Repeated oxidation and polishing of high purity Ni-15Cr-13Al has dramatically changed its cyclic oxidation behavior from nonadherent to adherent. No apparent change in scale phase, morphology or interface structure occurred during this transition, dismissing any mechanism based on pegging, vacancy sink, or growth stress. The principle change that did occur was a reduction in the sulfur content from 10 ppmw to 3 ppmw after 25 cycles at 1120 C. These observations are used to support the model of Al2O3 scale adherence put forth by Smeggil et al. which claims that Al2O3 scale spallation occurs due to sulfur segregation and bond deterioration at the oxide-metal interface.

  7. Optical, scintillation and dosimeter properties of MgO translucent ceramic doped with Cr3+

    NASA Astrophysics Data System (ADS)

    Kato, Takumi; Okada, Go; Yanagida, Takayuki

    2016-04-01

    We have investigated the photoluminescence (PL), scintillation and thermally-stimulated luminescence (TSL) dosimeter properties of MgO translucent ceramic doped with Cr3+ ion (0.001, 0.01 and 0.1%). The ceramic samples were synthesized by a Spark Plasma Sintering (SPS) technique. The broad and sharp emission peaks appeared around 600-850 nm in all the samples. The PL decay time constants of all the samples were a few ms which were on the typical order of Cr3+ doped phosphors. As with the PL, the peak resulted from Cr3+ ion was detected in the scintillation spectra. The TSL glow curves showed the main peak around 140 °C. The TSL response was confirmed to be linear to the irradiation dose over the dose range from 0.1 to 1000 mGy.

  8. Microstructure development in Al-Cu-Ag-Mg quaternary alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Froyen, L.

    2012-01-01

    The solidification behaviour of multi-component and multi-phase systems has been largely investigated in binary and ternary alloys. In the present study, a quaternary model system is proposed based on the well known Al-Cu-Ag and Al-Cu-Mg ternary eutectic alloys. The quaternary eutectic composition and temperature were determined by EDS (Energy Dispersive Spectrometry) and DSC (Differential Scanning Calorimetry) analysis, respectively. The microstructure was then characterised by SEM (Scanning Electron Microscope). In the DSC experiments, two types of quaternary eutectics were determined according to their phase composition. For each type of eutectic, various microstructures were observed, which result in different eutectic compositions. Only one of the determined eutectic compositions was further studied by the controlled growth technique in a vertical Bridgeman type furnace. In the initial part of the directionally solidified sample, competing growth between two-phase dendrites and three-phase eutectics was obtained, which was later transformed to competing growth between three-phase and four-phase eutectics. Moreover, silver enrichment was measured at the solidification front, which is possibly caused by Ag sedimentation due to gravity and Ag rejection from dendritic and three-phase eutectic growth, and its accumulation at the solidification front.

  9. Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Jiang, Li; Jiang, Hui; Pan, Xuemin; Cao, Zhiqiang; Deng, Dewei; Wang, Tongmin; Li, Tingju

    2015-10-01

    A series of Al2CrFeNiMo x ( x = 0 to 2.0 at.%) high-entropy alloys coatings was synthesized on stainless steel by laser cladding. The effect of Mo content on the microstructures and mechanical properties of Al2CrFeNiMo x coatings was studied. The results show that the laser clad layer consists of the cladding zone, bonding zone, and heat-affected zone. The Al2CrFeNiMo x coatings are composed of two simple body-center cubic phases and the cladding zone is mainly composed of equiaxed grains. When the content of Mo reaches 2 at.%, a eutectic structure is found in the interdendritic regions. The surface microhardness of the Al2CrFeNiMo2 coating is 678 HV, which is about three times higher than that of the substrate (243 HV). Compared with stainless steel, the wear resistance of the coatings has been improved greatly. The wear mass loss of the Al2CrFeNiMo alloy is 9.8 mg, which is much less than that of the substrate (18.9 mg) and its wear scar width is the lowest among the Al2CrFeNiMo x coatings, indicating that the wear resistance of the Al2CrFeNiMo is the best.

  10. Recyclable Mg-Al layered double hydroxides for fluoride removal: Kinetic and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-12-30

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg-Al LDH) and Cl(-) (Cl · Mg-Al LDH) were found to adsorb fluoride from aqueous solutions. Fluoride is removed by anion exchange in solution with NO3(-) and Cl(-) intercalated in the LDH interlayer. In both cases, the residual F concentration is lower than the effluent standards for F in Japan (8 mg/L). The rate-determining step in the removal of F using NO3 · Mg-Al and Cl · Mg-Al LDH is chemical adsorption involving F(-) anion exchange with intercalated NO3(-) and Cl(-) ions. The removal of F is described by pseudo-second-order reaction kinetics, with Langmuir-type adsorption. The values obtained for the maximum adsorption and the equilibrium adsorption constant are respectively 3.3 mmol g(-1) and 2.8 with NO3 · Mg-Al LDH, and 3.2 mmol g(-1) and 1.5 with Cl · Mg-Al LDH. The F in the F · Mg-Al LDH produced in these reactions was found to exchange with NO3(-) and Cl(-) ions in solution. The regenerated NO3 · Mg-Al and Cl · Mg-Al LDHs thus obtained can be used once more to capture aqueous F. This suggests that NO3 · Mg-Al and Cl · Mg-Al LDHs can be recycled and used repeatedly for F removal.

  11. Effect of reaction time and (Ca+Mg)/Al molar ratios on crystallinity of Ca-Mg-Al layered double Hydroxide

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Nugrahaningtyas, K. D.; Sanjaya, F. B.; Darojat, A. A.; Handayani, D. S.; Hidayat, Y.

    2016-02-01

    Ca-Mg-Al Layered Double Hydroxides (Ca-Mg-Al-LDH) compounds were successfully synthesized from brine water and AlCl3.6H2O as the starting materials by coprecipitation method. The product result was characterized by X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR). The effects of the reaction time and the molar ratios of the raw material on the crystallinity of Ca-Mg-Al-LDH were examining. Results show that increasing reaction time (30; 60 and 90 min.) could improve the crystallinity and monodispersity of layered double hydroxide compounds particles. The well-defined Ca-Mg- Al-LDH could be prepared with (Ca+Mg)/Al molar ratios 0.5.

  12. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect

    Pang, Mingjun; Zhan, Yongzhong; Du, Yong

    2013-02-15

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  13. Corrosion of MgO-MgAl{sub 2}O{sub 4} spinel refractory bricks by calcium aluminosilicate slag

    SciTech Connect

    Goto, Kiyoshi; Argent, B.B.; Lee, W.E.

    1997-02-01

    Microstructural analysis of MgO-MgAl{sub 2}O{sub 4} refractory bricks corroded at 1,400--1,500 C by calcium aluminosilicate slag reveals secondary spinel, monticellite, merwinite, and MgO as microscopic corrosion products, generally forming in this sequence as the brick is penetrated. The secondary spinel forms an incomplete layer close to (but not at) the MgO grain. Thermodynamic calculations are used to support a detailed model of the corrosion mechanism.

  14. Electronic, magnetic and Fermi properties investigates on quaternary Heusler NiCoCrAl, NiCoCrGa and NiFeCrGa

    NASA Astrophysics Data System (ADS)

    Wei, Xiao-Ping; Zhang, Ya-Ling; Chu, Yan-Dong; Sun, Xiao-Wei; Sun, Ting; Guo, Peng; Deng, Jian-Bo

    2015-07-01

    Using the full-potential local-orbital minimum-basis method within the framework of density functional theory, we study the electronic, magnetic and Fermi properties of three quaternary Heusler compounds: NiCoCrAl, NiCoCrGa and NiFeCrGa. Results identify that these compounds are half-metallic ferromagnets with integer spin magnetic moment, and their spin moments follow the Slater-Pauling rule. Accordingly, the origin of gap and magnetic moment are also discussed. In addition, the Fermi surface is further plotted to explore the behavior of electronic states in the vicinity of Fermi level for these compounds. Finally, we argue the influence of tetragonal deformation on electronic and magnetic properties. Meanwhile, the possible L21 disorder is also discussed for NiCoCrAl and NiCoCrGa.

  15. The effect of Mg location on Co-Mg-Ru/γ-Al2O3 Fischer–Tropsch catalysts

    PubMed Central

    Combes, Gary B.; Ozkaya, Don; Enache, Dan I.; Ellis, Peter R.; Kelly, Gordon; Rosseinsky, Matthew J.

    2016-01-01

    The effectiveness of Mg as a promoter of Co-Ru/γ-Al2O3 Fischer–Tropsch catalysts depends on how and when the Mg is added. When the Mg is impregnated into the support before the Co and Ru addition, some Mg is incorporated into the support in the form of MgxAl2O3+x if the material is calcined at 550°C or 800°C after the impregnation, while the remainder is present as amorphous MgO/MgCO3 phases. After subsequent Co-Ru impregnation MgxCo3−xO4 is formed which decomposes on reduction, leading to Co(0) particles intimately mixed with Mg, as shown by high-resolution transmission electron microscopy. The process of impregnating Co into an Mg-modified support results in dissolution of the amorphous Mg, and it is this Mg which is then incorporated into MgxCo3−xO4. Acid washing or higher temperature calcination after Mg impregnation can remove most of this amorphous Mg, resulting in lower values of x in MgxCo3−xO4. Catalytic testing of these materials reveals that Mg incorporation into the Co oxide phase is severely detrimental to the site-time yield, while Mg incorporation into the support may provide some enhancement of activity at high temperature. PMID:26755760

  16. First-principles study on Al4Sr as the heterogeneous nucleus of Mg2Si

    NASA Astrophysics Data System (ADS)

    Xia, Zhi; Li, Ke

    2016-12-01

    The interfacial structure, electronic structure, work of adhesion and interfacial energy of the Al4Sr(100)/Mg2Si(100) interface have been studied with first-principles calculations to clarify the heterogeneous nucleation potential of the Al4Sr particle for a primary Mg2Si phase. Eight models of the Al4Sr(100)/Mg2Si(100) interface with OT and HCP stacking were adopted for the interfacial model geometries. The results show that the Al-Mg terminations of HCP and Al-Si terminations of OT stacking, with lower interfacial spacing and higher interfacial adhesion, are the most favorable structures after relaxation. Al-Mg- and Al-Si-terminated interfaces, with a lower interfacial distance, form chemical bonds more easily. Metallic bonds are formed near the Al-Mg-terminated interface, while the Al-Si-terminated interface exhibits predominantly covalent bond characteristics. Moreover, the calculated interfacial energies of both terminations are negative in conditions involving excess Mg atoms. The interfacial energies of Al-Si are lower than those of Al-Mg termination, indicating that the Al-Si-terminated interface is more stable. From thermodynamic analysis, we discover that the Al4Sr particle can be an effective heterogeneous nucleation substrate for Mg2Si in a Mg-Al-Si alloy melt.

  17. Deposition of LaMO 3 (M=Co, Cr, Al) films by spray pyrolysis in inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Ichinose, Hiromichi; Katsuki, Hiroaki; Nagano, Masamitsu

    1994-11-01

    LaMO 3 (M=Co, Cr, Al) films were prepared on substrates by introducing ultrasonically atomized metal nitrate solutions into an inductively coupled plasma under atmospheric pressure (spray-ICP technique). Dense perovskite-type oxide films of LaCoO 3 and LaCrO 3 were obtained at 600-900°C, while the LaAiO 3 films consisted of loosely packed aggregates. Deposition rates of the films were 6-35 nm/min at 600-900°C. The high temperature phases (cubic) of LaCoO 3 and LaAlO 3 crystallized due to effect of grain size. LaCrO 3 film crystallized in the room temperature phase (orthorhombic). LaCoO 3 was highly oriented to (100) on MgO(100), and LaCrO 3 to (011) and (101) on sapphire(001). Lowest electric resistivities of LaCoO 3 and LaCrO 3 film on MgO were 9.8X10 -3 and 2.7X10 -1 Ω m, respectively, at room temperature.

  18. Microstructure/Oxidation/Microhardness Correlations in Gamma-Based and Tau-Based Al-Ti-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Brady, Michael P.; Smialek, J. L.; Humphrey, D. L.

    1994-01-01

    The relationships between alloy microstructure and air oxidation kinetics and alloy microstructure and microhardness in the Al-Ti-Cr system for exposures at 800 C and 1000 C were investigated. The relevant phases were identified as tau (Ll2), gamma (LIO), r-Al2Ti, TiCrAl (laves), and Cr2AI. Protective alumina formation was associated with tau, Al-rich TiCrAl, and gamma/TiCrAl mixtures. Brittleness was associated with the TiCrAl phase and tau decomposition to A12Ti + Cr2AI. It was concluded that two-phase gamma + TiCrAl alloys offer the greatest potential for oxidation resistance and room temperature ductility in the Al-Ti-Cr system.

  19. Removal of SO2 with a Mg-Al oxide slurry via reconstruction of a Mg-Al layered double hydroxide.

    PubMed

    Kameda, Tomohito; Kodama, Aki; Fubasami, Yuki; Kumagai, Shogo; Yoshioka, Toshiaki

    2012-06-01

    Although effective treatments of SO(x) are essential for preventing air pollution, current methods pose other environmental problems such as increased amounts of desulfurized gypsum and reduced landfill lifetimes. We report a process for removing SO(2) from waste streams using a Mg-Al oxide slurry. The ability of the mixed oxide to remove SO(2) increased with slurry quantity and temperature but decreased with time. SO(2) was removed through the reconstruction of a Mg-Al layered double hydroxide (Mg-Al LDH) intercalated with SO(3)(2-), which was derived from the dissociation of H(2)SO(3) upon dissolution of SO(2) in the slurry. SO(2) was not adsorbed onto the surface of the Mg-Al oxide. These results suggest that SO(2) removal using a Mg-Al oxide slurry may be possible without the concomitant problems of conventional treatment methods.

  20. Study on biodegradation of the second phase Mg17Al12 in Mg-Al-Zn alloys: in vitro experiment and thermodynamic calculation.

    PubMed

    Liu, Chen; Yang, Huazhe; Wan, Peng; Wang, Kehong; Tan, Lili; Yang, Ke

    2014-02-01

    The in vitro biodegradation behavior of Mg17Al12 as a second phase in Mg-Al-Zn alloys was investigated via electrochemical measurement and immersion test. The Hank's solutions with neutral and acidic pH values were adopted as electrolytes to simulate the in vivo environment during normal and inflammatory response process. Furthermore, the local orbital density functional theory approach was employed to study the thermodynamical stability of Mg17Al12 phase. All the results proved the occurrence of pitting corrosion process with crackings for Mg17Al12 phase in Hank's solution, but with a much lower degradation rate compared with both AZ31 alloy and pure magnesium. Furthermore, a preliminary explanation on the biodegradation behaviors of Mg17Al12 phase was proposed.

  1. High temperature oxidation resistant coatings for the directionally solidified Ni-Nb-Cr-Al eutectic superalloy

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Ulion, N. E.; Felten, E. J.

    1977-01-01

    Protective coatings required for the Ni-Nb-Cr-Al directionally solidified eutectic superalloy were developed and evaluated on the basis of oxidation resistance, diffusional stability, thermal fatigue, and creep resistance. NiCrAlY+Pt and NiCrAlY physical vapor-deposition coating systems exhibited the best combination of properties. Burner-rig testing indicated that the useful life of a 127-micron-thick NiCrAlY+Pt coating exceeds 1000 h at 1366 K. Eutectic-alloy creep lives at 1311 K and a stress of 151.7 MN/sq m were greater for NiCrAlY+Pt-coated specimens than for uncoated specimens by a factor of two.

  2. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities.

    PubMed

    Bakhsheshi-Rad, H R; Hamzah, E; Low, H T; Kasiri-Asgarani, M; Farahany, S; Akbari, E; Cho, M H

    2017-04-01

    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5MgAl-0.3MgAl-0.1MgAl. The cytotoxicity tests exhibited that the Zn-0.5Al-0.5Mg alloy presents higher viability of MC3T3-E1 cell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material.

  3. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  4. Evaluation of Ti-48Al-2Cr-2Nb Under Fretting Conditions

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.; Raj, Sai V.

    2001-01-01

    The fretting behavior of Ti-48Al-2Cr-2Nb (y-TiAl) in contact with the nickel-base superalloy 718 was examined in air at temperatures from 296 to 823 K (23 to 550 C). The interfacial adhesive bonds between Ti-48Al-2Cr-2Nb and superalloy 718 were generally stronger than the cohesive bonds within Ti-48Al-2Cr-2Nb. The failed Ti-48Al-2Cr-2Nb debris subsequently transferred to the superalloy 718. In reference experiments conducted with Ti-6Al-4V against superalloy 718 under identical fretting conditions, the degree of transfer was greater for Ti-6A1-4V than for Ti-48Al-2Cr-2Nb. Wear of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting frequency. The increasing rate of oxidation at elevated temperatures led to a drop in wear at 473 K. However, fretting wear increased as the temperature was increased from 473 to 823 K. At 723 and 823 K, oxide film disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.

  5. Selective optical bleaching of Cr3+ luminescence at low temperature in MgO codoped near stoichiometric LiNbO3:Cr crystals

    NASA Astrophysics Data System (ADS)

    Han, T. P.; Jaque, F.; Arizméndi, L.; Bermúdez, V.; Suchocki, A.; Kaminska, A.; Kobyakov, S.

    2003-10-01

    Selective R-line emission of the Cr3+ ions in near stoichiometric LiNbO3 crystals codoped with MgO has been studied at low temperature under excitation into the 4A2→4T1 transition. The emission intensity of R lines associated with Cr3+ ions located in Nb5+ sites, [Cr]Nb centers, was observed to decrease with the illumination time, whereas those ascribed to other Cr3+ ions, such as those located in the Li site, [Cr]Li centers, are optically stable. The selective bleaching is explained by considering the photoinization of Cr3+ ions in Nb sites and the formation of Nb4+ complexes (small polaron).

  6. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Deming; Chen, Guiqing; Wang, Yuesheng

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  7. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    SciTech Connect

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar; Terrani, Kurt A.; Field, Kevin G.

    2016-02-17

    We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning of the Al from the α' precipitates was also observed.

  8. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    DOE PAGES

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; ...

    2016-02-17

    We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning ofmore » the Al from the α' precipitates was also observed.« less

  9. High spin polarization and spin splitting in equiatomic quaternary CoFeCrAl Heusler alloy

    NASA Astrophysics Data System (ADS)

    Bainsla, Lakhan; Mallick, A. I.; Coelho, A. A.; Nigam, A. K.; Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K.; Alam, Aftab; Suresh, K. G.; Hono, K.

    2015-11-01

    In this paper, we investigate CoFeCrAl alloy by means of ab-initio electronic structure calculations and various experimental techniques. The alloy is found to exist in the B2-type cubic Heusler structure, which is very similar to Y-type (or LiMgPdSn prototype) structure with space group F-43m (#216). Saturation magnetization (MS) of about 2 μB/f.u. is observed at 8 K under ambient pressure, which is in good agreement with the Slater-Pauling rule. MS values are found to be independent of pressure, which is a prerequisite for half-metals. The ab-initio electronic structure calculations predict half-metallicity for the alloy with a spin slitting energy of 0.31 eV. Importantly, this system shows a high current spin polarization value of 0.67±0.02, as deduced from the point contact Andreev reflection measurements. Linear dependence of electrical resistivity with temperature indicates the possibility of reasonably high spin polarization at elevated temperatures (~150 K) as well. All these suggest that CoFeCrAl is a promising material for the spintronic devices.

  10. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  11. Band Structure Simulations of the Photoinduced Changes in the MgB2:Cr Films

    PubMed Central

    Kityk, Iwan V.; Fedorchuk, Anatolii O.; Ozga, Katarzyna; AlZayed, Nasser S.

    2015-01-01

    An approach for description of the photoinduced nonlinear optical effects in the superconducting MgB2:Cr2O3 nanocrystalline film is proposed. It includes the molecular dynamics step-by-step optimization of the two separate crystalline phases. The principal role for the photoinduced nonlinear optical properties plays nanointerface between the two phases. The first modified layers possess a form of slightly modified perfect crystalline structure. The next layer is added to the perfect crystalline structure and the iteration procedure is repeated for the next layer. The total energy here is considered as a varied parameter. To avoid potential jumps on the borders we have carried out additional derivative procedure.

  12. Phosphatizing of Mg particles to improve the protective performance of Mg-rich primer on A2024 Al alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Zuo, Yu; Tang, Yuming; Lu, Xiangyu

    2014-02-01

    Mg-rich primer as a new type protective coating provides cathodic protection for Al alloy. In this paper, a kind of phosphatizing surface treatment on Mg particles was studied in order to improve the protective performance of Mg-rich primer. After treated with phosphoric acid, a protective magnesium phosphate layer was formed on the surface of Mg particles, which had no negative influence on the cathodic protection of the Mg-rich primer for Al alloy. The coating resistance of the treated Mg-rich primer was bigger than that of untreated primer, meanwhile the coating capacitance of the treated Mg-rich primer was smaller than that of untreated primer, suggesting that the barrier effect of the primer was improved and the lifetime was extended. The magnesium phosphate layer could reduce the consumption rate of Mg particles. Meanwhile, the phosphate radicals transported to Al alloy substrate to form a product layer composed of magnesium phosphate and aluminum phosphate on the substrate surface, which decreased the corrosion rate of Al alloy and improved the protective performance of the primer.

  13. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-09-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  14. High Strength, Nano-Structured Mg-Al-Zn Alloy

    DTIC Science & Technology

    2011-01-01

    nanocrystalline (nc) Mg AZ80 alloy, synthesized via a cryomilling and spark plasma sintering (SPS) approach are reported and discussed. The effects of...nanocrystalline (nc) Mg AZ80 alloy, synthesized via a cryomilling and spark plasma sintering (SPS) approach are reported and discussed. The effects of...forging capability [23,24]. Therefore, the Mg AZ80 alloy system was selected and processed using a cryomilling and spark plasma sintering (SPS

  15. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy.

    PubMed

    Manzoni, A; Daoud, H; Völkl, R; Glatzel, U; Wanderka, N

    2013-09-01

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al-Ni rich matrix and Cr-Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr-Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr-Fe-rich precipitates.

  16. Nucleosynthesis in AGB stars: Observation of Mg-25 and Mg-26 in IRC+10216 and possible detection of Al-26

    NASA Technical Reports Server (NTRS)

    Guelin, M.; Forestini, M.; Valiron, P.; Ziurys, L. M.; Anderson, M. A.; Cernicharo, J.; Kahane, C.

    1995-01-01

    We report the detection in the circumstellar envelope IRC+10216 of millimeter lines of the rare isotopomers (25)MgNC and (26)MgNC, as well as of a line at 234433 MHz, which could be the J= 7-6 transition of (26)AlF (an alternate, although less likely identified would be the J= 9-8 transition of NaF). The derived Mg-24:Mg-25:Mg-26 isotopic abundance ratios (78 : 11+/- 1 : 11 +/-1) are consistent with the solar system values (79.0:10.0:11.0), following Anders & Grevesse 1989). According to new calculations of evolutionary models of 3 solar mass and 5 solar mass asymptotic giant branch (AGB) stars, these ratios and the previously measured N, O and Si isotopic ratios imply that the central star had an initial mass 3 solar mass (less than or equal to M(sub *, ini) less than 5 solar mass and has already experienced many 3rd dredge-up events. From this, it can be predicted that the Al-26/Al-27 isotopics ratio lies between 0.01 and 0.08; in fact, the value derived in the case that U234433 arises from (26)AlF is Al-26/Al-27 = 0.04. The identification of the (25)MgNC and (26)MgNC lines was made possible by ab-initio quantum mechanical calculations of the molecule geometrical structure. It was confirmed through millimeter-wave laboratory measurements. The quantum mechanical calculations are briefly described and the laboratory results presented in some detail. The rotation constants B, D, H and the spin-rotation constant gamma of (25)MgNC and (26)MgNC are determined from a fit of laboratory and astronomical data.

  17. Synthetic spinels in the (Mg, Fe2+)(Cr, Fe3+)2O4 join: Mossbauer, optical absorption, single crystal XRD and electron microprobe analyses

    NASA Astrophysics Data System (ADS)

    Lenaz, D.; Skogby, H.; Princivalle, F.; Halenius, U.

    2003-04-01

    Single crystals along the Mg-chromite -- Mg-ferrite and Mg-chromite -- chromite joins were synthesized using a flux-growth method (24 hours at 1200^oC and 4^oC/h cooling rate to 900^oC in air and gas-controlled atmosphere) in order to evaluate the influence of composition on structure and cation distribution using optical absorption (OAS), Mössbauer (MS), single-crystal X-ray diffraction (XRD) and microprobe analyses (EPMA). At present, most of the analyses were carried out on the (Mg,Fe2+)Cr_2O_4 series. MgCr_2O_4 end-member: OAS shows prominent absorption bands at 23,700 and 17,300 cm-1. XRD analyses on three single crystals show a_0 equal to 8.3329 (1) Å and u (oxygen positional parameter) equal to 0.2612 (1), close to the values reported by O'Neill and Dollase (1994) as determined by powder diffraction on samples annealed at 900 to 1400^oC. The T-O and M-O calculated bond distances are equal to 1.965 and 1.995, respectively. These results are consistent with the set of optimised bond distances for Mg and Cr proposed by Lavina et al. (2002). (Mg,Fe2+)Cr_2O_4 series: Mössbauer spectra were measured at room temperature on different samples with nominal chromite components in the 10 to 70 mol % range. All the spectra show a single absorption line. For compositions close to the Mg-chromite end-member the line is narrow, however, for intermediate compositions the line broadens progressively and is best fitted with a quadrupole doublet (dq=0.22 for 50 mol % chromite). Towards the chromite end-member the peak becomes narrower again. XRD data shows that there is a linear positive correlation between a_0 and u with increasing Fe2+.

  18. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.; Unocic, Kinga A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  19. Kinetics of borided 31CrMoV9 and 34CrAlNi7 steels

    SciTech Connect

    Efe, Goezde Celebi; Ipek, Mediha; Ozbek, Ibrahim; Bindal, Cuma

    2008-01-15

    In this study, kinetics of borides formed on the surface of 31CrMoV9 and 34CrAlNi7 steels borided in solid medium consisting of Ekabor II at 850-900-950 deg. C for 2, 4, 6 and 8 h were investigated. Scanning electron microscopy and optical microscopy examinations showed that borides formed on the surface of borided steels have columnar morphology. The borides formed in the coating layer confirmed by X-ray diffraction analysis are FeB, Fe{sub 2}B, CrB, and Cr{sub 2}B. The hardnesses of boride layers are much higher than that of matrix. It was found that depending on process temperature and time the fracture toughness of boride layers ranged from 3.93 to 4.48 MPa m{sup 1/2} for 31CrMoV9 and from 3.87 to 4.40 MPa m{sup 1/2} for 34CrAlNi7 steel. Activation energy, growth rate and growth acceleration of boride layer calculated according to these kinetic studies revealed that lower activation energy results in the fast growth rate and high growth acceleration.

  20. Cr-Al coatings on low carbon steel prepared by a mechanical alloying technique

    NASA Astrophysics Data System (ADS)

    Hia, A. I. J.; Sudiro, T.; Aryanto, D.; Sebayang, K.

    2016-08-01

    Four different compositions of Cr and Al coatings as Cr10o, Cr87.5Al12.5, Cr5oAl5o, and Al100 have been prepared on the surface of low carbon steel by a mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Hereafter, the Cr-Al powder and substrate were mechanical alloyed in air for 1 hour. Heat treatment of coated sample were carried out at 800°C in a vacuum furnace. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The results show that Cr, Cr-Al or Al coatings were formed on the surface of low carbon steel. After heat treatment, new phases and interdiffusion zone were formed in the coating and at the coating/steel interface, depending on the coating composition.

  1. The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance

    NASA Astrophysics Data System (ADS)

    Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini

    2012-06-01

    Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.

  2. Characterisation of magnesium oxide and its interface with α-Mg in Mg-Al-based alloys

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fan, Z.; Zhou, X.; Thompson, G. E.

    2011-08-01

    Magnesium oxide (MgO) films and particles have been collected by pressurised filtration of a Mg-8.6wt%Al-0.67wt%Zn (AZ91D) alloy melt. The morphology of the oxides and their interfaces with the α-Mg phase were investigated by high-resolution transmission electron microscopy. It was found that the oxide films consisted of large numbers of sub-micrometre-sized MgO particles, and that melt shearing can effectively break up the oxide films and disperse the oxide particles. For the first time, orientation relationships (ORs) of OR I: [1 overline 1 1]MgO∼2° from (0 0 0 1)α-Mg and (0 1 1)MgO //[2 overline 1 overline 1 0)α-Mg; and OR II: (overline 1 overline 1 1)MgO//(1 overline 1 0 1)α-Mg and [0 1 1]MgO//[overline 1 2 overline 1 1]α-Mg, were observed between the MgO particles and the α-Mg matrix. The calculated Bramfitt planar disregistries were 5.5% and 2.5% for the two ORs, respectively, indicating good lattice matching between MgO and α-Mg at the interface. With the evidence of grain refinement effect observed in the sheared AZ91D magnesium alloy, the possibility of MgO particles to act as potent nucleants for heterogeneous nucleation of α-Mg grains is discussed in terms of the crystallographic criterion.

  3. Solid state reduction of chromium (VI) pollution for Al2O3-Cr metal ceramics application

    NASA Astrophysics Data System (ADS)

    Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yangai; Tang, Hao; Min, Xin; Wu, Xiaowen

    2016-04-01

    Reduction of chromium (VI) from Na2CrO4 through aluminothermic reaction and fabrication of metal-ceramic materials from the reduction products have been investigated in this study. Na2CrO4 could be successfully reduced into micrometer-sized Cr particles in a flowing Ar atmosphere in presence of Al powder. The conversion ratio of Na2CrO4 to metallic Cr attained 96.16% efficiency. Al2O3-Cr metal-ceramic with different Cr content (5 wt%, 10 wt%, 15 wt%, 20 wt%) were further prepared from the reduction product Al2O3-Cr composite powder, and aluminum oxide nanopowder via pressure-less sintering. The phase composition, microstructure and mechanical properties of metal-ceramic composites were characterized to ensure the potential of the Al2O3-Cr composite powder to form ceramic materials. The highest relative density and bending strength can reach 93.4% and 205 MP, respectively. The results indicated that aluminothermic reduction of chromium (VI) for metal-ceramics application is a potential approach to remove chromium (VI) pollutant from the environment.

  4. Spectroscopic properties of {Cr}^{3+} in the spinel solid solution {ZnAl}_{2-x}{Cr}x{O}_4

    NASA Astrophysics Data System (ADS)

    Verger, Louisiane; Dargaud, Olivier; Rousse, Gwenaelle; Rozsályi, Emese; Juhin, Amélie; Cabaret, Delphine; Cotte, Marine; Glatzel, Pieter; Cormier, Laurent

    2016-01-01

    The evolution of the structural environment of {Cr}{^{3+}} along the solid solution {ZnAl}_{2-x}{Cr}x{O}_4 has been investigated using a multi-analytical approach. X-ray diffraction confirms that the system follows Vegard's law. Diffuse reflectance spectra show a decrease of the crystal field parameter with the Cr content, usually related to the increase of the Cr-O bond length in a point charge model. This interpretation is discussed and compared to the data obtained by first-principle calculations based on density functional theory. X-ray absorption near edge structure spectra at the Cr K-edge show a pronounced evolution in the pre-edge with the Cr content, characterised by the appearance of a third feature. Calculations enable to assign the origin of this feature to Cr neighbours. The colour change from pink to brownish pink and eventually green along the solid solution has also been quantified by calculating the L*, a*, b* and x, y coefficients in the system defined by the International Commission on Illumination.

  5. Microstructure and Sliding Wear Performance of Cr7C3-(Ni,Cr)3(Al,Cr) Coating Deposited from Cr7C3 In Situ Formed Atomized Powder

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Bin; Shen, Jie; Gao, Feng; Yu, Yueguang; Li, Changhai

    2017-01-01

    This work is aimed at developing a new type of Cr7C3-(Ni,Cr)3(Al,Cr) coating for parts used in heavy-duty diesel engines. The feedstock, in which the stripe-shaped Cr7C3 was in situ formed, was firstly prepared by vacuum melting and gas atomization and then subjected by high-velocity oxy-fuel spraying to form the coatings. The carbon content, microstructure and phase constitution of the powders, as well as the sprayed coatings, were analyzed by chemical analysis, SEM and XRD. The hardness and sliding wear performance of the sprayed coatings were also tested and compared to a commercial Cr3C2-NiCr coating used on piston rings. The results showed that the content of carbon in feedstock was almost the same as designed, and that the volume content of in situ formed Cr7C3 was increased with carbon and chromium added. The major phases of the powders and sprayed coatings are Cr7C3 and Cr-alloyed Ni3Al. Only a small amount of carbon lost during the spraying process. As Cr7C3 content increased in the coatings, the microhardness at room temperature was firstly increased to about 1000Hv0.3. The microhardness of the coatings stayed almost constant, while the testing temperature was raised up to 700 °C for 0.5 h, which illustrates the potential application of the investigated coatings under high temperature conditions. The coatings containing 70 and 77 vol.% Cr7C3 showed the most promising wear resistance, lower friction coefficient and better tribological compatibility to gray cast iron counterpart than other tested Cr7C3-(Ni,Cr)3(Al,Cr) coatings and the reference Cr3C2-NiCr coating.

  6. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  7. Structural Disorder and Magnetism in the Spin-Gapless Semiconductor CoFeCrAl

    DTIC Science & Technology

    2016-08-24

    semiconductor CoFeCrAl into a half- metallic ferrimagnet and increases the half- metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of...magnets. However, Si addition improves the degree of Heusler ordering and changes the electronic structure from a SGS to a half- metal with increased...total moment per relaxed unit cell are 1.71 µB (I), –0.60 µB (II), and 1.05 µB (III). None of the disordered CoFeCrAl structures is energetically

  8. IMPACT OF A REVISED {sup 25}Mg(p, {gamma}){sup 26}Al REACTION RATE ON THE OPERATION OF THE Mg-Al CYCLE

    SciTech Connect

    Straniero, O.; Cristallo, S.; Imbriani, G.; DiLeva, A.; Limata, B.; Strieder, F.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Corvisiero, P.; Costantini, H.; Lemut, A.; Formicola, A.; Gustavino, C.; Junker, M.; Elekes, Z.; Fueloep, Zs.; Gyuerky, Gy.; Gervino, G.; Guglielmetti, A.; and others

    2013-02-15

    Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the {sup 25}Mg(p, {gamma}){sup 26}Al reaction affect the production of radioactive {sup 26}Al{sup gs} as well as the resulting Mg/Al abundance ratio. Reliable estimations of these quantities require precise measurements of the strengths of low-energy resonances. Based on a new experimental study performed at the Laboratory for Underground Nuclear Astrophysics, we provide revised rates of the {sup 25}Mg(p, {gamma}){sup 26}Al{sup gs} and the {sup 25}Mg(p, {gamma}){sup 26}Al {sup m} reactions with corresponding uncertainties. In the temperature range 50-150 MK, the new recommended rate of {sup 26}Al {sup m} production is up to five times higher than previously assumed. In addition, at T = 100 MK, the revised total reaction rate is a factor of two higher. Note that this is the range of temperature at which the Mg-Al cycle operates in a H-burning zone. The effects of this revision are discussed. Due to the significantly larger {sup 25}Mg(p, {gamma}){sup 26}Al {sup m} rate, the estimated production of {sup 26}Al{sup gs} in H-burning regions is less efficient than previously obtained. As a result, the new rates should imply a smaller contribution from Wolf-Rayet stars to the galactic {sup 26}Al budget. Similarly, we show that the asymptotic giant branch (AGB) extra-mixing scenario does not appear able to explain the most extreme values of {sup 26}Al/{sup 27}Al, i.e., >10{sup -2}, found in some O-rich presolar grains. Finally, the substantial increase of the total reaction rate makes the hypothesis of self-pollution by massive AGBs a more robust explanation for the Mg-Al anticorrelation observed in globular-cluster stars.

  9. Properties of Cr2AlC MAX phase thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Buck, Zachary; Donato, Tyler; Rotella, Christopher; Lunk, Carl; Lofland, S. E.; Hettinger, J. D.

    2012-02-01

    Mn+ 1AXn (MAX) phases, where n is 1, 2, and 3, M is an early transition metal, A is an A-group element, and X is either C or N, are ternary carbides with unique properties such as low density, easy machinability, and good oxidation resistance. The MAX phase Cr2AlC is of particular interest for industrial applications to its excellent high-temperature oxidation resistance and relatively low synthesis temperature. We prepared Cr2AlC thin films on c-axis oriented single crystal Al2O3, glassy carbon and Si thermal oxide substrates using reactive magnetron sputtering as precursor materials for carbide-derived carbon (CDC) films for ``on-chip'' supercapacitors. Film deposition was optimized using elemental composition data obtained by WDXRF. Optimized films were characterized using XRD and scanning electron microscopy. It was found that textured Cr2AlC films only form when the composition was Al-rich allowing the formation of a Cr5Al8 interfacial layer. As film composition was optimized, the interfacial layer did not form but the XRD peaks associated with the Cr2AlC also decreased in magnitude. Extremely high-textured films were grown when a thin buffer layer of CrAl2 was deposited on the substrate before depositing the Cr2AlC films. This result suggests that Cr2AlC films may not be ideal for CDC applications since the films may ``lift-off'' during conversion due to the existence of the naturally occurring buffer-layer.

  10. Oxidation behavior of cubic phases formed by alloying Al3Ti with Cr and Mn

    NASA Technical Reports Server (NTRS)

    Parfitt, L. J.; Nic, J. P.; Mikkola, D. E.; Smialek, J. L.

    1991-01-01

    Gravimetric, SEM, and XRD data are presented which document the significant improvement obtainable in the oxidation resistance of Al3Ti-containing alloys through additions of Cr. The L1(2) Al(67)Cr(8)Ti25 alloy exhibited excellent cyclic oxidation resistance at 1473 K, with the primary oxide formed being the ideally protective alpha-Al2O3. The Al(67)Mn(8)Ti(25) alloy also tested for comparison exhibited poor cyclic oxidation resistance, with substantial occurrence of TiO2 in the protective scales. Catastrophic oxidation was also encountered in the quaternary alloy Al(67)Mn(8)Ti(22)V(3).

  11. Reduction of Cr (VI) by organic acids in the presence of Al (III).

    PubMed

    Chen, Na; Lan, Yeqing; Wang, Bo; Mao, Jingdong

    2013-09-15

    The effects of Al (III) on the reduction of Cr (VI) by three α-hydroxy acids, tartaric, malic and citric acids, were investigated through batch experiments at pH from 2.5 to 4.0 and temperatures from 25 °C to 35 °C. These reactions could be described as pseudo-zero-order with respect to Cr (VI) when the concentrations of α-hydroxy acids were greatly in excess. The transformation rates of Cr (VI) to Cr (III) in the presence of Al (III) without light were in the decreasing order of tartaric acid>malic acid>citric acid. This order suggested that the two α-hydroxyl groups in tartaric acid could play an important role in the reduction of Cr (VI) by organic acids. The possible mechanism was that the formed complex between organic acids and Al (III) significantly enhanced the reductivity of α-hydroxy acids and further led to the more complicated Cr (VI)-tartaric acid-Al (III) cyclic ester which greatly accelerated the reduction rate. The Cr (VI) reduction reaction rate increased with the decrease of pH but with the increase of Al (III) concentration, tartaric acid concentration, and temperature. As the pH decreased, the increase of [H(+)] led to an increase in {Al(III)H₂Tar₂}(+), the most active species, and thus the enhanced reduction rate.

  12. Corrosion and Discharge Behaviors of Al-Mg-Sn-Ga-In in Different Solutions

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yin, Xiang; Yan, Yang; Dai, Yilong; Fan, Sufeng; Qiao, Xueyan; Yu, Kun

    2016-08-01

    Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga-0.05 wt.%In and Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga alloys were prepared by melting, casting and cold rolling. Corrosion and discharge behaviors of the two experimental alloys were investigated by electrochemical measurement, self-corrosion rate measurement, air battery testing, and scanning electron microscopy. The results showed that Al-Mg-Sn-Ga-In alloy exhibited higher electrochemical activity than Al-Mg-Sn-Ga alloy in 2 M NaCl solution, while it showed lower electrochemical activity than Al-Mg-Sn-Ga alloy in 4 M NaOH solution. By comparison with the air battery based on Al-Mg-Sn-Ga alloy, the battery with Al-Mg-Sn-Ga-In alloy cannot exhibit better discharge performance in 4 M NaOH electrolyte. However, the performance of the air battery based on Al-Mg-Sn-Ga-In alloy was greatly improved due to the In-rich inclusions and the uniform corroded morphology in 2 M NaCl electrolyte. Thus, Al-Mg-Sn-Ga-In alloy was a good anode material for Al-air battery in 2 M NaCl electrolyte.

  13. Band edge modulation and interband optical transition in AlN:Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} nanotubes

    NASA Astrophysics Data System (ADS)

    Huang, Pu; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Zhong, Hong-xia; Ding, Yi-min; Lu, Jing; Wang, Xihua

    2014-04-01

    AlN nanotubes (NTs) have many novel characteristics and great potential applications in electronic and optoelectronic nanodevices. However, little is known about the influence of Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} co-doping effects on their optical properties. Here, we focus on investigating the electronic structures, clarify the interband optical transition mechanism and give a clear atomic picture for the important electron/hole localization centre in AlN:Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} NTs using the GGA-1/2 method. We find that the Mg_{{\\rm{Al}}} doping efficiency can be improved effectively due to O_{{\\rm{N}}} doping in AlN NTs. The Mg_{{\\rm{Al}}} and O_{{\\rm{N}}} form Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} defect complex easily along the AlN NT axis (C-axis). The Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} defect complex can result in a remarkable charge transfer around it and modify the valence band maximum and conduction band minimum significantly. Meanwhile, the Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} defect complex also forms the important exciton localization centre and effectively enhances the interband radiative recombination rate. Moreover, the light emission/absorption sensitively depends on its polarization. The parallel polarized light ({\\mathbf{E}}\\shortparallel {\\rm{C}}) is much stronger than the perpendicular one ({\\mathbf{E}}\\bot {\\rm{C}}). The Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} co-doping thus paves a new way for improving the performance of electronic and optoelectronic nanodevices based on AlN NTs.

  14. Luminescence Spectra of ZnAl 2 O 4 {:}Cr 3+ Spinel Nanopowders

    NASA Astrophysics Data System (ADS)

    Luc, H. H.; Nguyen, T. K.; Nguyen, V. M.; Suchocki, A.; Kamiñska, A.; Le, V. K.; Nguyen, V. H.; Luong, T. T.

    2002-12-01

    The synthetic ZnAl 2 O 4 spinels doped with Cr 3+ ions are prepared from ZnSO,dwi{4}>, Al 2 (SO 4 ) 3 , and Cr 2 (SO 4 ) 3 . The spinel single phase is detected from X-ray diffraction. Luminescence properties of Cr 3+ in ZnAl 2 O 4 were studied by low temperature luminescence and decay measurements. Four luminescence lines at 14570, 14520, 14460, and 14330 cm -1 were found to originate from structure distortion and the line at 14175 cm -1 - from chromium pairs. The broad emission band at about 13540 cm -1 is considered to arise from a new Cr 3+ center in ZnCr 2 O 4 .

  15. Evaluation of commercially available bulk Mg and Al oxides and hydroxides for the production of transparent MgAl2O4

    NASA Astrophysics Data System (ADS)

    Sutorik, Anthony C.; Gilde, Gary; Kilczewski, Steven M.; Lidie, Ashley

    2009-05-01

    A significant challenge in the fielding of transparent MgAl2O4 (spinel) ceramic parts for a variety of military applications is the limited availability and fairly high cost of starting powder with consistent quality and performance. In addition, available powders often require additional processing (particularly the addition of a sintering aid such as LiF) prior to ceramic forming and sintering. Although the current sources of commercial spinel powder are limited, separate Mg and Al oxides or hydroxides are among the most widely produced ceramic powders on the market. If stoichiometric combinations of such powders could be substituted with modest effort into existing procedures for transparent spinel manufacture, significant gains could be made in cost, availability, and consistency of the resulting ceramic bodies. To this end we have studied the suitability of various commercial sources of MgO, Mg(OH)2, γ-Al2O3, and AlOOH for transparent MgAl2O4 production. Our methods have been kept simple to facilitate comparisons between trials and to maintain a focus on eventual manufacturing feasibility. Stoichiometric mixtures of Mg and Al powders are thoroughly mixed in an aqueous slurry. The solids are collected, dried, calcined, milled with LiF (as a sintering aid), and sieved. The powders are sintered into dense ceramics with standard hot pressing and hot isostatic pressing procedures. Resulting ceramic transmission is measured and correlated with the purity, surface area, and phase composition of the prepared powders.

  16. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-09-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1- x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1- x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1- x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1- x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  17. Thermal diffusivity of Al-Mg based metallic matrix composite reinforced with Al2O3 ceramic particles

    NASA Astrophysics Data System (ADS)

    Cruz-Orea, A.; Morales, J. E.; Saavedra S, R.; Carrasco, C.

    2010-03-01

    Thermal diffusivities of Al-Mg based metallic matrix composite reinforced with ceramic particles of Al2O3 are reported in this article. The samples were produced by rheocasting and the studied operational condition in this case is the shear rate: 800, 1400 and 2000 rpm. Additionally, the AlMg base alloy was tested. Measurements of thermal diffusivity were performed at room temperature by using photoacoustic technique.

  18. Influence of homogenization and artificial aging heat treatments on corrosion behavior of Mg-Al alloys

    SciTech Connect

    Beldjoudi, T.; Fiaud, C.; Robbiola, L. . Lab. d'Etudes de la Corrosion)

    1993-09-01

    The influence of heat treatment on corrosion behavior of magnesium-aluminum (Mg-9Al) alloys was investigated by studying the electrochemical properties of Mg-9Al in the solution-treated (T4) and artificially aged (T6) conditions. The alloys' properties were compared to those of pure Mg, the intermetallic Mg[sub 17]Al[sub 12] phase, and different Mg-Al-based alloys (Mg-3Al, AZ91). The Mg-9Al alloy exhibited better corrosion resistance in the T6 condition than in the T4 condition because of the intermetallic Mg[sub 17]Al[sub 12] precipitates present n the T6 alloy. The mechanism responsible for this behavior was attributed to a more protective porous film on the T6 matrix alloy than on the T4 alloy. Addition of zinc did not modify these results. Localized corrosion testing showed the Mg-Al alloys were attacked preferentially in relation to magnesium silicide (Mg[sub 2]Si) precipitates which were characterized clearly using metallurgical examinations.

  19. Thermodynamic analysis and experimental study on the oxidation of the Zn-Al-Mg coating baths

    NASA Astrophysics Data System (ADS)

    Su, Xuping; Zhou, Jie; Wang, Jianhua; Wu, Changjun; Liu, Ya; Tu, Hao; Peng, Haoping

    2017-02-01

    Surface oxidation of molten Zn-6Al baths containing 0.0, 3.0 and 6.0 wt. % Mg were analyzed using X-ray photoelectron spectroscopy. γ-Al2O3 is formed on the surface of the Zn-6Al bath, while MgAl2O4 and MgO occur at 460 °C in the Zn-6Al-3Mg and Zn-6Al-6Mg baths, respectively. Thermodynamic analysis on the oxidation of the Zn-Al-Mg baths was performed. Calculated phase diagrams at 460 °C and 560 °C show good agreements with the experimental results. MgO or MgAl2O4 exists in almost the entire composition range of the calculated oxidation diagrams. According to the calculation, oxidation products depend on the composition and temperature of the baths. The primary and secondary oxidation products of the Zn-Al-Mg baths can be reasonably explained by oxidation phase diagrams. Utilizing these results, the favorable practical bath melts and operating conditions can be designed.

  20. A study on atomic diffusion behaviours in an Al-Mg compound casting process

    SciTech Connect

    Liu, Yongning; Chen, Yiqing; Yang, Chunhui

    2015-08-15

    Al and Mg alloys are main lightweight alloys of research interest and they both have superb material properties, i.e., low density and high specific strength, etc. Being different from Al alloys, the corrosion of Mg alloys is much more difficult to control. Therefore to combine merits of these two lightweight alloys as a composite-like structure is an ideal solution through using Al alloys as a protective layer for Mg alloys. Compound casting is a realistic technique to manufacture such a bi-metal structure. In this study, a compound casting technique is employed to fabricate bi-layered samples using Al and Mg and then the samples are analysed using electron probe micro-analyzer (EPMA) to determine diffusion behaviours between Al and Mg. The diffusion mechanism and behaviours between Al and Mg are studied numerically at atomic scale using molecular dynamics (MD) and parametric studies are conducted to find out influences of ambient temperature and pressure on the diffusion behaviours between Al and Mg. The results obtained clearly show the effectiveness of the compound casting process to increase the diffusion between Al and Mg and thus create the Al-base protection layer for Mg.

  1. Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: a combined EMP, SREF, FTIR and Raman study

    NASA Astrophysics Data System (ADS)

    Bosi, Ferdinando; Skogby, Henrik; Lazor, Peter; Reznitskii, Leonid

    2015-06-01

    A study of natural oxy-tourmalines belonging to the system oxy-dravite-chromo-alumino-povondraite-oxy-chromium-dravite from the Sludyanka crystalline complex (Southern Baikal region, Russia) was carried out to explore the characteristic vibrational bands in the principal (OH)-stretching frequency and their relations to the O3 anion site of the tourmaline structure. Relevant information was obtained using electron microprobe analysis (EMPA), structural refinement (SREF), infrared (IR) and Raman single-crystal spectroscopy. The studied oxy-tourmalines are characterized by the substitution AlCr, which is accompanied by redistribution of Mg over the Y and Z sites. The occurrence of strong correlations between relative peak area intensities for two IR bands at 3,565 and 3,519 cm-1 and cation site populations derived from SREF and EMP data allowed assignment of the band at 3,565 cm-1 to the cluster [ Y Mg Z Al Z (Al,Mg)]-O3 and the band at 3,519 cm-1 to the cluster [ Y Cr Z (Cr,Al) Z (Cr,Al,Mg))]-O3. It appears that the combination of polarized IR and Raman spectra collected with the electric vector E⊥ c and E// c may provide a useful characterization of the local (OH) environments around the O3 site of the tourmaline structure.

  2. Process for producing Ti-Cr-Al-O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2001-01-01

    Thin films of Ti-Cr-Al-O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti-Cr-Al-O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti-Cr-Al-O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti-Cr-Al-O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  3. Flat panel display using Ti-Cr-Al-O thin film

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2002-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  4. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    SciTech Connect

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; Gao, Michael C.; Tang, Zhi; Poplawsky, Jonathan D.; Liaw, Peter K.

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result, the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.

  5. Effect of Mg or Ag addition on the evaporation field of Al.

    PubMed

    Aruga, Yasuhiro; Nako, Hidenori; Tsuneishi, Hidemasa; Hasegawa, Yuki; Tao, Hiroaki; Ichihara, Chikara; Serizawa, Ai

    2013-09-01

    It is known that the distribution of the charge-states as well as the evaporation field shift to higher values as the specimen temperature is decreased at a constant rate of evaporation. This study has explored the effect of Mg or Ag addition on the evaporation field of Al in terms of the charge state distribution of the field evaporated Al ions. The fractional abundance of Al(2+) ions with respect to the total Al ions in Al-Mg alloy is lower than that in pure Al, whereas it shows higher level in the Al-Ag alloy at lower temperatures. The temperature dependence of the fractional abundance of Al(2+) ions has been also confirmed, suggesting that Al atoms in the Al-Mg alloy need lower evaporation field, while higher field is necessary to evaporate Al atoms in the Al-Ag alloy, compared with pure Al. This tendency is in agreement with that of the evaporation fields estimated theoretically by means of measurements of the work function and calculations of the binding energy of the pure Al, Al-Mg and Al-Ag alloys.

  6. Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen

    NASA Astrophysics Data System (ADS)

    Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.

    2017-02-01

    Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.

  7. Effect of Thermomechanical Processing on the Elevated Temperature Behavior of Lithium-Containing High-Mg, Al-Mg Alloys.

    DTIC Science & Technology

    1986-06-01

    predict as accurately as possible the true elongations from the charted values, a scale factor equal to the ratio of the measured elongation at...the volume fraction of precipitated B, Mg5AI8 , is the most influential factor affecting flow stress and strain-rate sensitivity. How Li additions...of 13 precipitated is the most influential factor affecting flow stress, - and strain-rate sensitivity coefficient, m. 7. The Al-Mg-Li alloys tested

  8. NiAl-based Polyphase in situ Composites in the NiAl-Ta-X (X = Cr, Mo, or V) Systems

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Polyphase in situ composites were generated by directional solidification of ternary eutectics. This work was performed to discover if a balance of properties could be produced by combining the NiAl-Laves phase and the NiAl-refractory metal phase eutectics. The systems investigated were the Ni-Al-Ta-X (X = Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and the eutectic composition, temperature, and morphology were determined. The ternary eutectic systems examined were the NiAl-NiAlTa-(Mo, Ta), NiAl-(Cr, Al) NiTa-Cr, and the NiAl-NiAlTa-V systems. Each eutectic consists of NiAl, a C14 Laves phase, and a refractory metal phase. Directional solidification was performed by containerless processing techniques in a levitation zone refiner to minimize alloy contamination. Room temperature fracture toughness of these materials was determined by a four-point bend test. Preliminary creep behavior was determined by compression tests at elevated temperatures, 1100-l400 K. Of the ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr, Al)NiTa-Cr eutectic was intermediate between the values of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  9. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGES

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; ...

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  10. Viability of thin wall tube forming of ATF FeCrAl

    SciTech Connect

    Maloy, Stuart Andrew; Aydogan, Eda; Anderoglu, Osman; Lavender, Curt; Yamamoto, Yukinori

    2016-09-16

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  11. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    SciTech Connect

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  12. Modeling degradation and failure of Ni-Cr-Al overlay coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    Degradation of a Ni-16Cr-25Al-0.06Zr overlay coating on a Ni-22Cr substrate was examined after oxidation accompanied by thermal cycling. Concentration/distance profiles were measured in the coating and substrate after various one-hour cycles at 1150 C. A numerical model was developed to simulate coating degradation by simultaneous oxidation and coating/substrate interdiffusion. The validity of the model was confirmed by comparison of predicted and measured concentration/distance profiles. The ability of the model to identify critical system parameters was demonstrated for the case of the initial Al and Cr content of the coating and substrate.

  13. Synthesis and optical properties of ZnAl2O4:Cr3+, Tb3+ powders

    NASA Astrophysics Data System (ADS)

    Thi Loan, Trinh; Thi Thuy, Nguyen; Long, Nguyen Ngoc

    2013-10-01

    ZnAl2O4:Cr3+, Tb3+ powders with different dopant contents have been synthesized by sol-gel method using the following precursors: zinc nitrate (Zn(NO3)2), aluminum nitrate (Al(NO3)3), terbium nitrate (Tb(NO3)3), chrome nitrate (Cr(NO3)3), and citric acid. The effect of the Cr3+, Tb3+ concentration and heat-treating temperature on structural and optical properties of the synthesized samples has been studied. International Workshop on Advanced Materials and Nanotechnology 2012 (IWAMN 2012).

  14. Ab initio calculations of elastic properties of bcc Fe-Mg and Fe-Cr random alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Hualei; Johansson, Börje; Vitos, Levente

    2009-06-01

    Using the ab initio exact muffin-tin orbitals method in combination with the coherent-potential approximation, we have calculated the elastic parameters of ferromagnetic Fe1-mMgm (0≤m≤0.1) and Fe1-cCrc (0≤c≤0.2) random alloys in the body-centered cubic (bcc) crystallographic phase. Results obtained for Fe1-cCrc demonstrate that the employed theoretical approach accurately describes the experimentally observed composition dependence of the polycrystalline elastic moduli of Fe-rich alloys encompassing maximum ˜10% Cr. The elastic parameters of Fe-Cr alloys are found to exhibit anomalous composition dependence around 5% Cr. The immiscibility between Fe and Mg at ambient conditions is well reproduced by the present theory. The calculated lattice parameter for the Fe-Mg regular solid solution increases by ˜1.95% when 10% Mg is introduced in Fe, which corresponds approximately to 11% decrease in the average alloy density, in perfect agreement with the experimental finding. At the same time, we find that all of the elastic parameters of bcc Fe-Mg alloys decrease almost linearly with increasing Mg content. The present results show a much stronger alloying effect for Mg on the elastic properties of α-Fe than that for Cr. Our results call for further experimental studies on the mechanical properties of the Fe-Mg system.

  15. Melatonin administration in diabetes: regulation of plasma Cr, V, and Mg in young male Zucker diabetic fatty rats.

    PubMed

    Navarro-Alarcon, Miguel; Ruiz-Ojeda, Francisco J; Blanca-Herrera, Rosa M; Kaki, Abdullah; Adem, Abdu; Agil, Ahmad

    2014-03-01

    The use of melatonin, a neurohormone present in plants, represents an exciting approach for the maintenance of optimum health conditions. Melatonin administration ameliorates glucose homeostasis in Zucker diabetic fatty (ZDF) rats. The objective of this study was to investigate the effects of melatonin in diabetes in relation to the levels and regulation of plasma chromium (Cr), vanadium (V), and magnesium (Mg) in Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats. At the age of 6 weeks, ZDF (n = 30) and ZL (n = 30) groups were each subdivided into three groups: control (C) (n = 10), vehicle-treated (V') (n = 10) and melatonin-treated (M) (10 mg kg(-1) per day; n = 10) groups for a 6 week period. After treatment, plasma mineral concentrations were measured by flame (Mg) and electrothermal (Cr and V) atomic absorption spectrometry. No significant differences were found between the C and V' groups (p > 0.05). Plasma Mg levels were significantly lower in C-ZDF vs. C-ZL rats, demonstrating the presence of hypomagnesemia in this diabetes mellitus model. Plasma V and Cr levels were significantly higher in M-ZDF vs. C-ZDF rats. Plasma Mg levels in ZDF rats were not affected by melatonin treatment (p > 0.05). Melatonin administration ameliorates the diabetic status of ZDF rats by enhancing plasma Cr and V concentrations. This appears to be the first report of a beneficial effect of melatonin treatment on plasma Cr and V regulation in ZDF rats.

  16. TL and OSL studies of carbon doped magnesium aluminate (MgAl2O4:C)

    NASA Astrophysics Data System (ADS)

    Raj, Sanu S.; Mishra, D. R.; Soni, Anuj; Grover, V.; Polymeris, G. S.; Muthe, K. P.; Jha, S. K.; Tyagi, A. K.

    2016-10-01

    The MgAl2O4:C has been synthesized by using two different methods by electron gun and vacuum assisted melting of MgAl2O4 in presence of graphite. The MgAl2O4:C phosphor thus developed by these two different methods have similar types of the TL/OSL defects with multiple overlapping TL glow peaks from 100 °C to 400 °C. The Computerized Curve De-convolution Analysis (CCDA) has been used to measure TL parameters such as thermal trap depth, frequency factor and order of kinetic associated with charge transfer process in TL phenomenon. The investigated TL/OSL results show that these two methods of incorporating carbon in MgAl2O4 have generated closely resemble the defects of similar types in MgAl2O4:C lattice. However, the MgAl2O4:C synthesized by electron gun shows relatively larger concentration of the TL/OSL defects as compared to MgAl2O4:C synthesized using vacuum assisted melting method. The photo-ionization cross-section (PIC) associated with fastest OSL component of MgAl2O4: C is found to be ∼ 0.5 times than that of fastest OSL component of commercially available dosimetric grade α-Al2O3:C. The MgAl2O4:C thus developed shows good dynamic OSL dose linearity from few mGy to 1 Gy. This work reveals that MgAl2O4:C could be developed as potential tissue equivalent OSL / TL material.

  17. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  18. Diffusional transport during the cyclic oxidation of. gamma. +. beta. , Ni-Cr-Al(Y, Zr) alloys

    SciTech Connect

    Nesbitt, J.A.; Heckel, R.W. )

    1988-02-01

    The cyclic oxidation behavior of several cast {gamma} + {beta}, Ni-Cr-Al(Y, Zr) alloys and one LPPS {gamma} + {beta}, Ni-Co-Cr-Al(Y) alloy was examined ({gamma}, fcc; {beta}, NiAl structure). Cyclic oxidation was performed by cycling between 1200{degree}C and approximately 70{degree}C. Oxide morphologies and microstructural changes during cyclic oxidation were noted. Recession of the high-Al {beta} phase was nonparabolic with time. Kirkendall porosity resulting from diffusional transport within the alloy was observed in the near-surface {gamma}-phase layer of one alloy. Concentration profiles for Ni, Cr, and Al were measured in the {gamma}-phase layer after various cyclic oxidation exposures. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide-metal interface due to a high demand for Al (a high rate of Al consumption) associated with oxide scale cracking and spalling. In addition, diffusion paths plotted on the ternary phase diagram shifted to higher Ni concentrations with increasing cyclic oxidation exposures. The alloy with the highest rate of Al consumption, and highest Al content, underwent breakway oxidation after 500 1-hr cycles at 1200{degree}C. Breakaway oxidation occurred when the Al concentration at the oxide-metal interface approached zero. The relationship between the Al transport in the alloy and breakaway oxidation is discussed.

  19. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    SciTech Connect

    Field, Kevin G.; Howard, Richard H.

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C to a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.

  20. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures.

    PubMed

    Vamsi Krishna, B; Xue, Weichang; Bose, Susmita; Bandyopadhyay, Amit

    2008-05-01

    Functionally graded, hard and wear-resistant Co-Cr-Mo alloy was coated on Ti-6Al-4V alloy with a metallurgically sound interface using Laser Engineering Net Shaping (LENS). The addition of the Co-Cr-Mo alloy onto the surface of Ti-6Al-4V alloy significantly increased the surface hardness without any intermetallic phases in the transition region. A 100% Co-Cr-Mo transition from Ti-6Al-4V was difficult to produce due to cracking. However, using optimized LENS processing parameters, crack-free coatings containing up to 86% Co-Cr-Mo were deposited on Ti-6Al-4V alloy with excellent reproducibility. Human osteoblast cells were cultured to test in vitro biocompatibility of the coatings. Based on in vitro biocompatibility, increasing the Co-Cr-Mo concentration in the coating reduced the live cell numbers after 14 days of culture on the coating compared with base Ti-6Al-4V alloy. However, coated samples always showed better bone cell proliferation than 100% Co-Cr-Mo alloy. Producing near net shape components with graded compositions using LENS could potentially be a viable route for manufacturing unitized structures for metal-on-metal prosthetic devices to minimize the wear-induced osteolysis and aseptic loosening that are significant problems in current implant design.

  1. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  2. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    PubMed Central

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  3. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  4. Thermodynamically destabilized hydride formation in "bulk" Mg-AlTi multilayers for hydrogen storage.

    PubMed

    Kalisvaart, Peter; Shalchi-Amirkhiz, Babak; Zahiri, Ramin; Zahiri, Beniamin; Tan, XueHai; Danaie, Mohsen; Botton, Gianluigi; Mitlin, David

    2013-10-21

    Thermodynamic destabilization of MgH2 formation through interfacial interactions in free-standing Mg-AlTi multilayers of overall "bulk" (0.5 μm) dimensions with a hydrogen capacity of up to 5.5 wt% is demonstrated. The interfacial energies of Mg-AlTi and Mg-Ti (examined as a baseline) are calculated to be 0.81 and 0.44 J m(-2). The enhanced interfacial energy of AlTi opens the possibility of creating ultrathin alloy interlayers that provide further thermodynamic improvements in metal hydrides.

  5. Electrical modulus and dielectric behavior of Cr3+ substituted Mg-Zn nanoferrites

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; Abdo, M. A.

    2017-04-01

    The dielectric parameters and ac electrical conductivity of Mg0.8Zn0.2CrxFe2-xO4; (0≤x≤0.025) nanoferrites synthesized citrate-nitrate auto-combustion method were studied using the complex impedance technique in the frequency and temperature ranges 4 Hz-5 MHz and 303-873 K respectively. Hopping of charge carriers plus interfacial polarization could interpret the behaviors of dielectric constant (ε‧), dielectric loss tangent (tanδ) and ac electrical conductivity (σac) with frequency, temperatures and composition. The up-normal behavior observed in tanδ trend with temperatures confirms the presence of relaxation loss (dipoles losses). Correlated barrier hopping (CBH) of electron is the conduction mechanism of the investigated nanoferrites. Cole-Cole plots at different temperatures emphasize the main role of grain and grain boundaries in the properties of the investigated nanoferrites. Cr3+ substitution can control the dielectric parameters and ac electrical conductivity of Mg-Zn nanoferrites making it candidates for versatile applications.

  6. Reactive wetting of amorphous silica by molten Al-Mg alloys and their interfacial structures

    NASA Astrophysics Data System (ADS)

    Shi, Laixin; Shen, Ping; Zhang, Dan; Jiang, Qichuan

    2016-07-01

    The reactive wetting of amorphous silica substrates by molten Al-Mg alloys over a wide composition range was studied using a dispensed sessile drop method in a flowing Ar atmosphere. The effects of the nominal Mg concentration and temperature on the wetting and interfacial microstructures were discussed. The initial contact angle for pure Al on the SiO2 surface was 115° while that for pure Mg was 35° at 1073 K. For the Al-Mg alloy drop, it decreased with increasing nominal Mg concentration. The reaction zone was characterized by layered structures, whose formation was primarily controlled by the variation in the alloy concentration due to the evaporation of Mg and the interfacial reaction from the viewpoint of thermodynamics as well as by the penetration or diffusion of Mg, Al and Si from the viewpoint of kinetics. In addition, the effects of the reaction and the evaporation of Mg on the movement of the triple line were examined. The spreading of the Al-Mg alloy on the SiO2 surface was mainly attributed to the formation of Mg2Si at the interface and the recession of the triple line to the diminishing Mg concentration in the alloy.

  7. Effect of delayed aging on mechanical properties of an Al-Cu-Mg alloy

    SciTech Connect

    Ravindranathan, S.P.; Kashyap, K.T.; Kumar, S.R.; Ramachandra, C.; Chatterji, B.

    2000-02-01

    The effect of delayed aging on mechanical properties is characteristically found in Al-Mg-Si alloys. Delayed aging refers to the time elapsed between solutionizing and artificial aging. Delayed aging leads to inferior properties. This effect was investigated in an Al-Cu-Mg alloy (AU2GN) of nominal composition Al-2Cu-1.5Mg-1Fe-1Ni as a function of delay. This alloy also showed a drop in mechanical properties with delay. The results are explained on the basis of Pashley's kinetic model to qualitatively explain the evolution of a coarse precipitate structure with delay. It is found that all the results of delayed aging in the Al-Cu-Mg alloys are similar to those found in Al-Mg-Si alloys.

  8. Mg/Al double-metal hydroxide regeneration of anion exchange resin by electric field intensification.

    PubMed

    Wang, Ying; Li, Zhun; Li, Yansheng; Liu, Zhigang

    2017-03-01

    Fouled anion exchange resins were regenerated by electric field intensification of Mg/Al double-metal hydroxides. Regenerative experiments were performed with varying voltages (10-30 V) and dosages of Mg/Al hydroxides (0.045-0.135 mol and 0.015-0.045 mol, respectively) for 1-5 h. Optimal results were obtained under the following regenerative conditions: 20 V, 4 h, and 0.09/0.03 mol of Mg/Al hydroxides. The maximum regenerative capacity of resins was increased to 41.07%. The regenerative mechanism was presented by Fourier-transform infrared spectrum of resins and Mg/Al hydroxides, and the regenerative degree was analyzed with respect to conductivity, pH value, and electric current. Mg/Al hydroxides were also recycled after the regeneration. This method was proven to be cost-effective and environmentally friendly.

  9. Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization

    NASA Astrophysics Data System (ADS)

    Wang, Linzhi; Liu, Ying; Chang, Sen

    2016-05-01

    Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.

  10. Geometric and Chemical Composition Effects on Healing Kinetics of Voids in Mg-bearing Al Alloys

    NASA Astrophysics Data System (ADS)

    Song, Miao; Du, Kui; Wang, Chunyang; Wen, Shengping; Huang, Hui; Nie, Zuoren; Ye, Hengqiang

    2016-05-01

    The healing kinetics of nanometer-scale voids in Al-Mg-Er and Al-Mg-Zn-Er alloy systems were investigated with a combination of in situ transmission electron microscopy and electron tomography at different temperatures. Mg was observed completely healing the voids, which were then rejuvenated to the alloy composition with further aging, in the Al-Mg-Er alloy. On the contrary, Mg51Zn20 intermetallic compound was formed in voids in the Al-Mg-Zn-Er alloy, which leads to complete filling of the voids but not rejuvenation for the material. For voids with different geometrical aspects, different evolution processes were observed, which are related to the competition between bulk and surface diffusion of the alloys. For voids with a large size difference in their two ends, a viscous flow of surface atoms can be directly observed with in situ electron microscopy, when the size of one end becomes less than tens of nanometers.

  11. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    DOE PAGES

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  12. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    SciTech Connect

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  13. Removal of borate by coprecipitation with Mg/Al layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Kurashina, Masashi; Inoue, Tatsuki; Tajima, Chihiro; Kanezaki, Eiji

    2015-03-01

    Borate has been used for various industrial products and excessive dose of boron is harmful to humans. We investigated the removal of borate by direct coprecipitation with Mg/Al layered double hydroxide. In this study, the maximum removal of boron was 90% when Mg 30 mmol and Al 15 mmol at pH = 10 were used for 498 mg/l as B. The boron adsorption isotherms could be fitted to Langmuir model. The calculated constant Ws, saturation limit of boron adsorption, is 25 ± 2 mg/g and it is larger than that of ion exchange reaction (Ws = 15±1 mg/g).

  14. Transient Oxidation of a γ-Ni-28Cr-11Al Alloy

    SciTech Connect

    Hu, L; Hovis, D B; Heuer, A H

    2012-04-02

    γ-NiCrAl alloys with relatively low Al contents tend to form a layered oxide scale during the early stages of oxidation, rather than an exclusive α-Al2O3 scale, the so-called 'thermally grown oxide' (TGO). A layered oxide scale was established on a model γ-Ni-28Cr-11Al (at.%) alloy after isothermal oxidation for several minutes at 1100 °C. The layered scale consisted of an NiO layer at the oxide/gas interface, an inner Cr2O3 layer, and an α-Al2O3 layer at the oxide/alloy interface. The evolution of such an NiO/Cr2O3/Al2O3 layered structure on this alloy differs from that proposed in earlier work. During heating, a Cr2O3 outer layer and a discontinuous inner layer of Al2O3 initially formed, with metallic Ni particles dispersed between the two layers. A rapid transformation occurred in the scale shortly after the sample reached maximum temperature (1100°C), when two (possibly coupled) phenomena occurred: (i) the inner transition alumina transformed to α-Al2O3, and (ii) Ni particles oxidized to form the outer NiO layer. Subsequently, NiO reacted with Cr2O3 and Al2O3 to form spinel. Continued growth of the oxide scale and development of the TGO was dominated by growth of the inner α-Al2O3 layer.

  15. Al-Mg Isotope Study of Allende 5241

    NASA Technical Reports Server (NTRS)

    Kerekgyarto, A. G.; Jeffcoat, C. R.; Lapen, T. J.; Andreasen, R.; Righter, M.; Ross, D. K.; Simon, J. I.

    2016-01-01

    The defining characteristic of type B1 CAIs is a large (.5- 3mm) concentric melilite mantle [1]. In [2] we presented two isochrons from separate traverses across the melilite mantle of Allende EK 459-5-1. The primary petrographic differences between the traverses was the preservation of strong oscillatory zoning. The traverse that crossed the distinctive oscillatory zone produced a pristine internal isochron, while the other that did not have a strongly preserved oscillatory zone produced a disturbed isochron indicated by more scatter (higher MSWD) and a positive (delta)26Mg* intercept. The implication simply being that the oscillatory zone may represent varying conditions during the mantle formation event. We targeted a similar texture in Allende 5241 using the same methodology in an attempt to achieve similar results.

  16. Plasma electrolytic oxidation coating of synthetic Al-Mg binary alloys

    SciTech Connect

    Tarakci, Mehmet

    2011-12-15

    The binary Al-Mg synthetic alloys were prepared in a vacuum/atmosphere controlled furnace with the addition of 0.5, 1, 2, 4, 7, and 15 wt.% pure Mg into pure aluminum as substrate material. The surfaces of the Al-Mg alloys and pure aluminum were coated for 120 min by plasma electrolytic oxidation in the same electrolyte of 12 g/L sodium silicate and 2 g/L KOH in distilled water. The coating was characterized by X-ray diffraction, scanning electron microscopy, profilometry and Vickers microhardness measurements. There regions of loose outer layer, dense inner layer with precipitate like particles of {alpha}-Al{sub 2}O{sub 3} and a thin transition layer were identified for the coated samples. The coating thickness increases from 85 to 150 {mu}m with Mg contents in the alloys. The surface morphology becomes more porous and consequently surface roughness tends to increase with plasma electrolytic oxidation treatment and further with Mg content. The increase in magnesium content reduces the formation of {alpha}-Al{sub 2}O{sub 3} and crystalline mullite phases in the coating and decreases microhardness of coating. The Mg concentration is constant throughout the other loose and dense regions of coating though it gradually decreases in the thin inner region. - Research Highlights: Black-Right-Pointing-Pointer The average thickness of PEO coating of Al-Mg alloys increases with Mg content. Black-Right-Pointing-Pointer The addition of Mg reduces and prevents the formation of {alpha}-Al{sub 2}O{sub 3} and mullite. Black-Right-Pointing-Pointer The surface roughness increases with Mg content in the Al-Mg alloys. Black-Right-Pointing-Pointer The hardness values of the coating decreases with the Mg amount in the substrate. Black-Right-Pointing-Pointer The Mg concentration is constant throughout the main regions of coating.

  17. Thermal stability and thermo-mechanical properties of magnetron sputtered Cr-Al-Y-N coatings

    SciTech Connect

    Rovere, Florian; Mayrhofer, Paul H.

    2008-01-15

    Cr{sub 1-x}Al{sub x}N coatings are promising candidates for advanced machining and high temperature applications due to their good mechanical and thermal properties. Recently the authors have shown that reactive magnetron sputtering using Cr-Al targets with Al/Cr ratios of 1.5 and Y contents of 0, 2, 4, and 8 at % results in the formation of stoichiometric (Cr{sub 1-x}Al{sub x}){sub 1-y}Y{sub y}N films with Al/Cr ratios of {approx}1.2 and YN mole fractions of 0%, 2%, 4%, and 8%, respectively. Here, the impact of Y on thermal stability, structural evolution, and thermo-mechanical properties is investigated in detail. Based on in situ stress measurements, thermal analyzing, x-ray diffraction, and transmission electron microscopy studies the authors conclude that Y effectively retards diffusional processes such as recovery, precipitation of hcp-AlN and fcc-YN, grain growth, and decomposition induced N{sub 2} release. Hence, the onset temperature of the latter shifts from {approx}1010 to 1125 deg. C and the hardness after annealing at T{sub a}=1100 deg. C increases from {approx}32 to 39 GPa with increasing YN mole fraction from 0% to 8%, respectively.

  18. Preliminary Study on Fatigue Strengths of Fretted Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2002-01-01

    The fatigue behavior (stress-life curve) of gamma titanium aluminide (Ti-48Al-2Cr-2Nb, atomic percent) was examined by conducting two tests: first, a fretting wear test with a fatigue specimen in contact with a typical nickel-based superalloy contact pad in air at temperatures of 296 and 823 K and second, a high-cycle fatigue test of the prefretted Ti-48Al-2Cr-2Nb fatigue specimen at 923 K. Reference high-cycle fatigue tests were also conducted with unfretted Ti-48Al-2Cr-2Nb specimens at 923 K. All Ti-48Al-2Cr-2Nb fatigue specimens were machined from cast slabs. The results indicate that the stress-life results for the fretted Ti-48Al-2Cr-2Nb specimens exhibited a behavior similar to those of the unfretted Ti-48Al-2Cr-2Nb specimens. The values of maximum stress and life for the fretted specimens were almost the same as those for the unfretted specimens. The resultant stress-life curve for the unfretted fatigue specimens was very flat. The flat appearance in the stress-life curve of the unfretted specimens is attributed to the presence of a high density of casting pores. The fatigue strengths of both the fretted and unfretted specimens can be significantly affected by the presence of this porosity, which can decrease the fatigue life of Ti-48Al-2Cr-2Nb. The presence of the porosity made discerning the effect of fretting damage on fatigue strength and life of the specimens difficult.

  19. Kinetic parameters and structural variations in Cu-Al-Mn and Cu-Al-Mn-Mg shape memory alloys

    NASA Astrophysics Data System (ADS)

    Canbay, Canan Aksu

    2017-02-01

    In this work polycrystalline Cu-Al-Mn and Cu-Al-Mn-Mg SMAs were fabricated by arc melting. The thermal analysis was made to determine the characteristic transformation temperatures of the samples and kinetic parameters. Also the effect of Mg on transformation temperatures and kinetic parameters detected. The structural analysis was made to designate the diffraction planes of martensite phase at room temperature and this was supported by optical measurement observations.

  20. Optical properties of undoped and Mg doped CuCrO{sub 2} powders synthesized by sol-gel route

    SciTech Connect

    Srinivasan, Radhakrishnan; Bolloju, Satish

    2014-01-28

    In this work, CuCrO{sub 2} was synthesized by sol-gel method using citric acid as a gelling agent. The different parameters like ratio of citric acid to metal ions, calcination temperature, and duration were studied. A green colored powder with particle size around 300 nm was formed at the calcination temperature of 800 °C for four hours duration. The increase in temperature has a profound impact on crystallite size and in turn effected the optical properties. Band gap of the obtained CuCrO{sub 2} has varied from 2.3 to 1.7 eV by increasing the temperature from 800 °C to 900 °C. Doping studies were performed by introducing Mg{sup 2+} ion to substitute Cr{sup 3+} in CuCrO{sub 2}. X-ray powder diffraction and SEM studies on 2% Mg doped samples indicated a clear formation of side phases. According to the X-ray powder patterns, the reflections from side phases were increasing with the increase in doping concentrations of Mg from 2 to 5%. The side phases were found to be MgCr{sub 2}O{sub 4} spinel and CuO. The band gap has decreased for doped samples in comparison to undoped one. In this paper, sol-gel synthesis and characterization by Xray powder diffraction, SEM studies and UV-Vis-Diffuse Reflectance spectra are presented.

  1. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  2. On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Gillet, P.; Reynard, B.

    1991-01-01

    The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the Cp0data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S2980-S00was calculated to be 541.2??3.0 J??mol-1??K-1. Our value for S2980-S00is 12.0 J??mol-1??K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2??3.0, is within 6.2 J??mol-1??K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J??mol-1??K-1. ?? 1991 Springer-Verlag.

  3. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    DOE PAGES

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; ...

    2015-07-14

    The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition.more » Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.« less

  4. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    SciTech Connect

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; Yamamoto, Yukinori; Snead, Lance Lewis

    2015-07-14

    The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition. Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.

  5. First stage of reaction of molten Al with MgO substrate

    SciTech Connect

    Morgiel, J.; Sobczak, N.; Pomorska, M.; Nowak, R.

    2015-05-15

    The Al/MgO couple was produced in vacuum (~ 5 × 10{sup −} {sup 4} Pa) by contact heating from RT up to 1000 °C and holding at that temperature for 1 h of a small 4 × 4 × 4 mm aluminium (5 N) sample placed on the [100] MgO single crystal substrate. TEM observations backed with electron diffraction analysis indicated that the interaction between liquid aluminium and MgO starts from a redox reaction producing a continuous layer of MgAl{sub 2}O{sub 4} spinel on the substrate surface. Its growth is controlled by solid state out-diffusion of magnesium and oxygen towards the surface being in contact with liquid metal. The thickening of spinel layer is accompanied by its cracking and infiltration with aluminium. The above process enables local dissolution of the MgO substrate and formation in it of a thin region of interpenetrating metallic channels walled with spinel. The removal of dissolved magnesium through open aluminium channels towards the drop and to vacuum locally produces areas of aluminium enriched with dissolved oxygen, which results in the nucleation of α-Al{sub 2}O{sub 3} at spinel clad walls. The growth of α-Al{sub 2}O{sub 3} is controlled only by the dissolution rate of MgO by aluminium, liquid state diffusion of Mg to drop/vacuum and oxygen to the front of the of α-Al{sub 2}O{sub 3} crystallites growing into MgO substrate. - Highlights: • New unique evidence of first stages of interaction of liquid Al with MgO substrates • Interaction of liquid Al with MgO starts with the formation of a layer MgAl{sub 2}O{sub 4}. • Growth of MgAl{sub 2}O{sub 4} is slow as controlled by solid state out-diffusion of Mg and O. • MgAl{sub 2}O{sub 4} serves as a nucleation site for Al{sub 2}O{sub 3} and consumed by it soon after. • Growth of Al{sub 2}O{sub 3} is fast as controlled by diffusion in liquid state.

  6. Electrochemical Codeposition of Al-Li-Mg Alloys at Solid Aluminum Electrode from LiCl-KCl-MgCl2 Molten Salt System

    NASA Astrophysics Data System (ADS)

    Ye, Ke; Zhang, Mi Lin; Chen, Ye; Han, Wei; de Yan, Yong; Cao, Peng

    2010-06-01

    The electrochemical codeposition of Mg and Li at an aluminium electrode in LiCl-KCl (50:50 wt pct) melts containing different concentrations of MgCl2 at 893 K (620 °C) to form Al-Li-Mg alloys was investigated. Cyclic voltammograms showed that the potential of Li metal deposition at an Al electrode, before the addition of MgCl2, is more positive than that of Li metal deposition at an Mo electrode, which indicated the formation of an Al-Li alloy. The underpotential deposition of magnesium at an aluminium electrode leads to the formation of Al-Mg alloys, and the succeeding underpotential deposition of lithium on predeposited Al-Mg alloys leads to the formation of Al-Li-Mg alloys. Chronopotentiometric measurements indicated that the codeposition of Mg and Li occurs at current densities lower than -0.668 A cm-2 in LiCl-KCl-MgCl2 (8 wt pct) melts at an aluminium electrode. The chronoamperometric studies indicated that the onset potential for the codeposition of Mg and Li is -2.000 V, and the codeposition of Mg and Li at an aluminium electrode is formed into Al-Li-Mg alloys when the applied potentials are more negative than -2.000 V. X-ray diffraction and inductively coupled plasma analysis indicated that Al-Li-Mg alloys with different lithium and magnesium contents were prepared via potentiostatic and galvanostatic electrolysis. The microstructure of typical dual phases of the Al-Li-Mg alloy was characterized by an optical microscope and by scanning electron microscopy. The analysis of energy dispersive spectrometry showed that the elements of Al and Mg distribute homogeneously in the Al-Li-Mg alloy. The lithium and magnesium contents of Al-Li-Mg alloys can be controlled by MgCl2 concentrations and by electrolytic parameters.

  7. Simultaneous Modification of Alumina and MgO·Al2O3 Inclusions by Calcium Treatment During Electroslag Remelting of Stainless Tool Steel

    NASA Astrophysics Data System (ADS)

    Shi, Cheng-Bin; Yu, Wen-Tao; Wang, Hao; Li, Jing; Jiang, Min

    2017-02-01

    Calcium modification of both alumina and MgO·Al2O3 inclusions during protective gas electroslag remelting (P-ESR) of 8Cr17MoV stainless steel and its effect on nitrides and primary carbides were studied by analyzing the transient evolution of oxide and sulfide inclusions in the P-ESR process. The oxide inclusions that were not removed during P-ESR without calcium treatment were found to retain their original state until in as-cast ingot. Calcium treatment modified all MgO·Al2O3 and alumina inclusions that had not been removed in the P-ESR process to liquid/partially liquid CaO-Al2O3-(MgO) with uniformly distributed elements, in addition to a small proportion of partially modified inclusions of a CaO-MgO-Al2O3 core surrounded by a liquid CaO-Al2O3. The modification of low-MgO-containing MgO·Al2O3 inclusions involves the preferential reduction of MgO from the MgO·Al2O3 inclusion by calcium and the reaction of calcium with Al2O3 in the inclusion. It is the incomplete/complete reduction of MgO from the spinel by calcium that contributes to the modification of spinels. Alumina inclusions were liquefied by direct reaction with calcium. Calcium treatment during P-ESR refining also provided an effective approach to prevent the formation of nitrides and primary carbides in stainless steel through modifying their preferred nucleation sites (alumina and MgO·Al2O3 inclusions) to calcium aluminates, which made no contribution to improving the steel cleanliness.

  8. Optimized Gen-II FeCrAl cladding production in large quantity for campaign testing

    SciTech Connect

    Yamamoto, Yukinori; Sun, Zhiqian; Pint, Bruce A.; Terrani, Kurt A.

    2016-06-03

    There are two major objectives in this report; (1) to optimize microstructure control of ATF FeCrAl alloys during tube drawing processes, and (2) to provide an update on the progress of ATF FeCrAl tube production via commercial manufacturers. Experimental efforts have been made to optimize the process parameters balancing the tube fabricability, especially for tube drawing processes, and microstructure control of the final tube products. Lab-scale sheet materials of Gen II FeCrAl alloys (Mo-containing and Nb-containing FeCrAl alloys) were used in the study, combined with a stepwise warm-rolling process and intermediate annealing, aiming to simulate the tube drawing process in a commercial tube manufacturer. The intermediate annealing at 650ºC for 1h was suggested for the tube-drawing process of Mo-containing FeCrAl alloys because it successfully softened the material by recovering the work hardening introduced through the rolling step, without inducing grain coarsening due to recrystallization. The final tube product is expected to have stabilized deformed microstructure providing the improved tensile properties with sufficient ductility. Optimization efforts on Nb-containing FeCrAl alloys focused on the effect of alloying additions and annealing conditions on the stability of deformed microstructure. Relationships between the second-phase precipitates (Fe2Nb-Laves phase) and microstructure stability are discussed. FeCrAl tube production through commercial tube manufacturers is currently in progress. Three different manufacturers, Century Tubes, Inc. (CTI), Rhenium Alloys, Inc. (RAI), and Superior Tube Company, Inc. (STC), are providing capabilities for cold-drawing, warm-drawing, and HPTR cold-pilgering, respectively. The first two companies are currently working on large quantity tube production (expected 250 ft length) of Gen I model FeCrAl alloy (B136Y3, at CTI) and Gen II (C35M4, at RAI), with the process parameters obtained from the experimental

  9. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    NASA Astrophysics Data System (ADS)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  10. Precise lattice location of substitutional and interstitial Mg in AlN

    SciTech Connect

    Amorim, L. M.; Pereira, L. M. C.; Decoster, S.; Temst, K.; Vantomme, A.; Wahl, U.; Correia, J. G.; Silva, D. J.; Silva, M. R. da; Gottberg, A.

    2013-12-23

    The lattice site location of radioactive {sup 27}Mg implanted in AlN was determined by means of emission channeling. The majority of the {sup 27}Mg was found to substitute for Al, yet significant fractions (up to 33%) were also identified close to the octahedral interstitial site. The activation energy for interstitial Mg diffusion is estimated to be between 1.1 eV and 1.7 eV. Substitutional Mg is shown to occupy ideal Al sites within a 0.1 Å experimental uncertainty. We discuss the absence of significant displacements from ideal Al sites, in the context of the current debate, on Mg doped nitride semiconductors.

  11. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-10-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  12. Interdiffusion and impurity diffusion in polycrystalline Mg solid solution with Al or Zn

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Sohn, Yong Ho

    2014-01-01

    Interdiffusion and impurity diffusion in Mg binary solid solutions, Mg(Al) and Mg(Zn) were investigated at temperatures ranging from 623 to 723 K. Interdiffusion coef cients were determined via the Boltzmann Matano Method using solid-to-solid diffusion couples assembled with polycrystalline Mg and Mg(Al) or Mg(Zn) solid solutions. In addition, the Hall method was employed to extrapolate the impurity diffusion coef cients of Al and Zn in pure polycrystalline Mg. For all diffusion couples, electron micro-probe analysis was utilized for the measurement of concentration pro les. The interdiffusion coef cient in Mg(Zn) was higher than that of Mg(Al) by an order of magnitude. Additionally, the interdiffusion coef cient increased signi cantly as a function of Al content in Mg(Al) solid solution, but very little with Zn content in Mg(Zn) solid solution. The activation energy and pre-exponential factor for the average effective interdiffusion coef cient in Mg(Al) solid solution were determined to be 186.8 ( 0.9) kJ/mol and 7.69 x 10-1 ( 1.80 x 10-1) m2/s, respectively, while those determined for Mg(Zn) solid solution were 139.5 ( 4.0) kJ/mol and 1.48 x 10-3 ( 1.13 x 10-3) m2/s. In Mg, the Zn impurity diffusion coef cient was an order of magnitude higher than the Al impurity diffusion coef cient. The activation energy and pre-exponential factor for diffusion of Al impurity in Mg were determined to be 139.3 ( 14.8) kJ/mol and 6.25 x 10-5 ( 5.37 x 10-4) m2/s, respectively, while those for diffusion of Zn impurity in Mg were determined to be 118.6 ( 6.3) kJ/mol and 2.90 x 10-5 ( 4.41 x 10-5) m2/s.

  13. Further Precipitation Reactions Associated with Beta’ (Al3Zr) Particles in Al-Li-Cu-Mg-Zr Alloys

    DTIC Science & Technology

    1988-12-01

    Gregson 8’ precipitation in Al-Li-Mg-Cu-Zr alloys. H.M. Flower J. Mater. Sci. Lett., 3, 829 (1984) 5 P.L. Makin On the ageing of an aluminium-lithium...Technol., 2, 349 (1986) 8 H.M. Flower The effect of composition and heat treatment upon the et al microstructure/property relationships in Al-Li-Cu-Mg...1119 REFERENCES concluded) No. Author Title, etc 10 P.J. Gregon Microstructural control of toughness in aluminium- H.M. Flower lithium alloys. Acta

  14. Effect of Melt-to-Solid Insert Volume Ratio on Mg/Al Dissimilar Metals Bonding

    NASA Astrophysics Data System (ADS)

    Emami, S. M.; Divandari, M.; Arabi, H.; Hajjari, E.

    2013-01-01

    Compound casting is used as a process to join various similar and dissimilar metallic couples. The ratio of melt-to-solid volume is one of the main factors that can affect the contact time between melt and the solid insert. In this investigation, magnesium and aluminum metals (magnesium as the cast metal and aluminum as the solid insert) having melt-to-solid volume ratios ( V m/ V s) of 1.25, 3, and 5.25 were successfully bonded via compound casting. Results demonstrated that by increasing the ratio of V m/ V s from 1.25 to 5.25, the thickness of the reaction interface between Al and Mg varies within the range of 200 to 1800 μm. X-ray diffraction, scanning electron microscopy, and Vickers microhardness study of the bonding of these two metals showed that the interface consisted of three separate sub-layers within reaction layer. These sub-layers had higher hardness than those of the Al and Mg bulk metals. In all specimens, composition of the sub-layer adjacent to Al (layer I) was Al3Mg2 and that adjacent to Mg (layer III) was Al12Mg17/(Mg) eutectic structure. The intermediate layer composition (layer II) in specimens with volume ratio of 1.25 and 3 was a single-phase Al12Mg17, while for the case of volume ratio 5.25 this sub-layer consisted of Al12Mg17/(Mg) eutectic dispersed in Al12Mg17 intermetallic. The results of this research showed that in low melt/solid volume ratios, diffusion-reaction was the dominant mechanism for formation of Al-Mg intermetallic. However, when V m/ V s and the melt/solid insert contact time increased, the dominant mechanism of Al-Mg intermetallics changed to fusion-solidification due to increase in surface melting of the solid insert. Also the results of push-out tests showed that shear strengths of the interface decrease from 27.1 to 15.1 and 8.3 MPa for the Al/Mg couples prepared at 1.25, 3, and 5.25 V m/ V s respectively.

  15. Decay of the excited compound system 48Cr* formed through 24Mg + 24Mg , 36Ar + 12C and 20Ne + 28Si reactions

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Subha, P. V.; Priyanka, B.

    2016-05-01

    The total cross section, the intermediate mass fragment (IMF) production cross section, and the cross section for the formation of light particle (LP) for the decay of 48Cr* formed through the entrance channel 24Mg + 24Mg , have been evaluated using the barrier penetration model, taking the scattering potential as the sum of the Coulomb and nuclear proximity potential, for various ECM values. The computed results have been compared with the available experimental data of the total cross section corresponding to E CM = 44.4 MeV for the entrance channel 24Mg + 24Mg , and were found to be in good agreement. The experimental values for the LP production cross section for the channel 24Mg + 24Mg were also seen to be agreeing with our calculations. Hence we have extended our studies and have thus computed the total cross section, IMF cross section and LP cross section for the decay of 48Cr* formed through the other two entrance channels 36Ar + 12C , and 20Ne + 28Si with different ECM values. It was found that the computed total cross sections for the entrance channel 36Ar + 12C with E CM = 47 MeV agree well with the corresponding experimental values. Hence, we hope that our predictions on the evaluations of the IMF cross sections and the light charged particle cross sections for the decay of 48Cr* , formed through the two entrance channels 36Ar + 12C , and 20Ne + 28Si , can be used for further experimental studies.

  16. Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe Cr Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Pimentel, G.; Chao, J.

    2012-01-01

    The effect of different starting microstructures on the kinetics of Fe-rich ({alpha}) and Cr-rich ({alpha}') phase separation during aging of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys has been analyzed with a combination of atom probe tomography and thermoelectric power measurements. The results revealed that the high recrystallization temperature necessary to produce a coarse grained microstructure in Fe-base ODS alloys affects the randomness of Cr-atom distributions and defect density, which consequently affect the phase separation kinetics at low annealing temperatures.

  17. Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): The effect of Eudragit S 100 covering

    SciTech Connect

    Arco, M. del; Fernandez, A.; Martin, C.; Rives, V.

    2010-12-15

    Following different preparation routes, fenbufen has been intercalated in the interlayer space of layered double hydroxides with Mg{sup 2+} and Al{sup 3+} or Mg{sup 2+}, Al{sup 3+} and Fe{sup 3+} in the layers. Well crystallized samples were obtained in most of the cases (intercalation was not observed by reconstruction of the MgAlFe matrix), with layer heights ranging between 16.1 and 18.8 A. The presence of the LDH increases the solubility of fenbufen, especially when used as a matrix. The dissolution rate of the drug decreases when the drug is intercalated, and is even lower in those systems containing iron; release takes place through ionic exchange with phosphate anions from the solution. Preparation of microspheres with Eudragit S 100 leads to solids with an homogeneous, smooth surface with efficient covering of the LDH surface, as drug release was not observed at pH lower than 7. - Graphical abstract: LDHs containing Mg, Al, Fe increase fenbufen solubility, release takes place through ionic exchange with phosphate anions from the medium. Spherical solids with homogeneous, smooth surface are formed when using Eudragit S 100, efficiently covering the LDH surface. Display Omitted

  18. Fermi surface-Brillouin-zone-induced pseudogap in γ-Mg17Al12 and a possible stabilization mechanism of β-Al3Mg2

    NASA Astrophysics Data System (ADS)

    Mizutani, U.; Kondo, Y.; Nishino, Y.; Inukai, M.; Feuerbacher, M.; Sato, H.

    2010-12-01

    The electronic structure of γ phase in the system Mg17Al12 containing 58 atoms per unit cell with space group I\\bar {4}3m has been calculated by using the WIEN2k-FLAPW program package. A pseudogap is found across the Fermi level. The FLAPW-Fourier spectra at the symmetry points N and Γ of the bcc Brillouin zone revealed that electronic states across the Fermi level at these symmetry points are dominated by |G|2 = 26 and 24 states corresponding to centers of {510} + {431} and {422} zone planes, respectively. The 1253-wave nearly-free-electron (NFE) band calculations identified that a combination of the two Fermi surface-Brillouin-zone (FsBz) interactions associated with |G|2 = 26 and 24 account well for the observed DOS pseudogap in γ-Mg17Al12, most likely leading to the stabilization of this complex metallic compound. The β-Al3Mg2 containing 1178 atoms per cubic unit cell is suggested to be stabilized by satisfying the Hume-Rothery matching condition expressed in terms of e/uc, the number of electrons per unit cell, versus critical |G|2. A critical |G|2 is predicted to be 200 in β-Al3Mg2, which results in 84 Brillouin zone planes interacting almost simultaneously with a more or less spherical Fermi surface.

  19. Revisiting 26Al-26Mg systematics of plagioclase in H4 chondrites

    NASA Astrophysics Data System (ADS)

    Telus, M.; Huss, G. R.; Nagashima, K.; Ogliore, R. C.

    2014-06-01

    Zinner and Göpel found clear evidence for the former presence of 26Al in the H4 chondrites Ste. Marguerite and Forest Vale. They assumed that the 26Al-26Mg systematics of these chondrites date "metamorphic cooling of the H4 parent body." Plagioclase in these chondrites can have very high Al/Mg ratios and low Mg concentrations, making these ion probe analyses susceptible to ratio bias, which is inversely proportional to the number of counts of the denominator isotope (Ogliore et al.). Zinner and Göpel used the mean of the ratios to calculate the isotope ratios, which exacerbates this problem. We analyzed the Al/Mg ratios and Mg isotopic compositions of plagioclase grains in thin sections of Ste. Marguerite, Forest Vale, Beaver Creek, and Sena to evaluate the possible influence of ratio bias on the published initial 26Al/27Al ratios for these meteorites. We calculated the isotope ratios using total counts, a less biased method of calculating isotope ratios. The results from our analyses are consistent with those from Zinner and Göpel, indicating that ratio bias does not significantly affect 26Al-26Mg results for plagioclase in these chondrites. Ste. Marguerite has a clear isochron with an initial 26Al/27Al ratio indicating that it cooled to below 450 °C 5.2 ± 0.2 Myr after CAIs. The isochrons for Forest Vale and Beaver Creek also show clear evidence that 26Al was alive when they cooled, but the initial 26Al/27Al ratios are not well constrained. Sena does not show evidence that 26Al was alive when it cooled to below the Al-Mg closure temperature. Given that metallographic cooling rates for Ste. Marguerite, Forest Vale, and Beaver Creek are atypical (>5000 °C/Myr at 500 °C) compared with most H4s, including Sena, which have cooling rates of 10-50 °C/Myr at 500 °C (Scott et al.), we conclude that the Al-Mg systematics for Ste. Marguerite, Forest Vale, and Beaver Creek are the result of impact excavation of these chondrites and cooling at the surface of the

  20. Investigation of structure in Al23 via resonant proton scattering of Mg22+p and the 22Mg(p,γ) Al23 astrophysical reaction rate

    NASA Astrophysics Data System (ADS)

    He, J. J.; Kubono, S.; Teranishi, T.; Notani, M.; Baba, H.; Nishimura, S.; Moon, J. Y.; Nishimura, M.; Iwasaki, H.; Yanagisawa, Y.; Hokoiwa, N.; Kibe, M.; Lee, J. H.; Kato, S.; Gono, Y.; Lee, C. S.

    2007-11-01

    Proton resonant states in Al23 have been investigated for the first time by the resonant elastic and inelastic scattering of Mg22+p with a Mg22 beam at 4.38 MeV/nucleon bombarding a thick (CH2)n target. The low-energy Mg22 beam was separated by the CNS radioactive ion beam separator (CRIB). The energy spectra of recoiled protons were measured at average scattering angles of θlab≈4°,17° and 23°. A new state has been observed at Ex=3.00 MeV with a spin-parity assignment of (3/2+). In addition, resonant inelastic scattering has populated three more states at excitation energies of 3.14, 3.26, and 3.95 MeV, with proton decay to the first excited state in Mg22 being observed. The new state at 3.95 MeV has been assigned a spin-parity of Jπ=(7/2+). The resonant parameters were determined by an R-matrix analysis of the excitation functions with a SAMMY-M6-BETA code. The core-excited structure of Al23 is discussed within a shell-model picture. The stellar reaction rate of the Mg22(p,γ)Al23 reaction has been reevaluated, and the revised total reaction rate is about 40% greater than the previous result for temperatures beyond T9=0.3.

  1. Role of Y in the oxidation resistance of CrAlYN coatings

    NASA Astrophysics Data System (ADS)

    Domínguez-Meister, S.; El Mrabet, S.; Escobar-Galindo, R.; Mariscal, A.; Jiménez de Haro, M. C.; Justo, A.; Brizuela, M.; Rojas, T. C.; Sánchez-López, J. C.

    2015-10-01

    CrAlYN coatings with different aluminum (4-12 at.%) and yttrium (2-5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N2 mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr2N, and a more effective Fe and C blocking.

  2. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  3. Spin dependent transport properties of Mn-Ga/MgO/Mn-Ga magnetic tunnel junctions with metal(Mg, Co, Cr) insertion layer

    SciTech Connect

    Liang, S. H.; Tao, L. L.; Liu, D. P. Han, X. F.; Lu, Y.

    2014-04-07

    We report a first principles theoretical investigation of spin polarized quantum transport in Mn{sub 2}Ga/MgO/Mn{sub 2}Ga and Mn{sub 3}Ga/MgO/Mn{sub 3}Ga magnetic tunneling junctions (MTJs) with the consideration of metal(Mg, Co, Cr) insertion layer effect. By changing the concentration of Mn, our calculation shows a considerable disparity in transport properties: A tunneling magnetoresistance (TMR) ratio of 852% was obtained for Mn{sub 2}Ga-based MTJs, however, only a 5% TMR ratio for Mn{sub 3}Ga-based MTJs. In addition, the influence of insertion layer has been considered in our calculation. We found the Co insertion layer can increase the TMR of Mn{sub 2}Ga-based MTJ to 904%; however, the Cr insertion layer can decrease the TMR by 668%; A negative TMR ratio can be obtained with Mg insertion layer. Our work gives a comprehensive understanding of the influence of different insertion layer in Mn-Ga based MTJs. It is proved that, due to the transmission can be modulated by the interfacial electronic structure of insertion, the magnetoresistance ratio of Mn{sub 2}Ga/MgO/Mn{sub 2}Ga MTJ can be improved by inserting Co layer.

  4. Fabrication and Characterization of Ni-P-CoNiCrAlY Composite Coatings

    NASA Astrophysics Data System (ADS)

    Heydari, H.; Monirvaghefi, S. M.; Hadipour, Ali

    2017-02-01

    In this study, Ni-P-CoNiCrAlY composite coatings were deposited on 310 stainless steel. The surface morphology and cross-sectional observations were carried out using scanning electron microscopy and optical microscopy. The high-temperature corrosion of all coatings was evaluated by cyclic oxidation method. According to the results, the amounts of CoNiCrAlY particles co-deposited in all samples coated at pH = 4.7 were higher than that of those produced at pH = 6.7. Also, the surface roughness of all composite coatings coated at pH = 6.7 is lower than the coatings produced at pH = 4.7. The Ni-P-(3 g/l) CoNiCrAlY deposit produced at pH = 6.7 had the best corrosion resistance among other coatings.

  5. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approx. 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  6. Fabrication and Characterization of Ni-P-CoNiCrAlY Composite Coatings

    NASA Astrophysics Data System (ADS)

    Heydari, H.; Monirvaghefi, S. M.; Hadipour, Ali

    2017-03-01

    In this study, Ni-P-CoNiCrAlY composite coatings were deposited on 310 stainless steel. The surface morphology and cross-sectional observations were carried out using scanning electron microscopy and optical microscopy. The high-temperature corrosion of all coatings was evaluated by cyclic oxidation method. According to the results, the amounts of CoNiCrAlY particles co-deposited in all samples coated at pH = 4.7 were higher than that of those produced at pH = 6.7. Also, the surface roughness of all composite coatings coated at pH = 6.7 is lower than the coatings produced at pH = 4.7. The Ni-P-(3 g/l) CoNiCrAlY deposit produced at pH = 6.7 had the best corrosion resistance among other coatings.

  7. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33 Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approximately 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  8. BeAl6O10: Cr3+: a promising active medium for femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Petrov, V. V.; Pestryakov, Efim V.; Trunov, V. I.; Kirpichnikov, A. V.; Alimpiev, A. I.

    2003-10-01

    The new laser crystals BeAl6O10:Cr3+ were grown, spectral-luminescence and CW laser properties were investigated and compared with those of well-known laser medium-alexandrite (BeAl2O4:Cr3+). CW laser generation on vibronic transition 4T2-4A2 of Cr3+ ions in BeAl6O10 crystals was realized in the range of 800-880 nm under Ar+ laser pumping. The emission cross-section of laser transition was estimated about 6×10-20 cm2. We confirmed these crystals are perspective for generation of femtosecond pulses in the near IR region under LD pumping.

  9. Microstructural characterization of Ni-22Fe-22Cr-6Al metallic foam by transmission electron microscopy.

    PubMed

    Kim, Hyung Giun; Lee, Taeg Woo; Lee, Jae Young; Lee, Eui Sung; Oh, Kwon Oh; Lee, Chang Woo; Lim, Sung Hwan

    2012-01-01

    Ni-22Fe-22Cr-6Al metallic foam, prepared using a thermomechanical treatment and alloying elements, was studied via transmission electron microscopy (TEM) in order to clarify the relationship between the mechanical properties and the nanoscale microstructural characteristics. Due to the unique porous structure of the metallic foam, TEM specimens were prepared using an embedding-process-assisted-ion-milling technique and a focused-ion-beam method. The Cr-, Fe- and Al-clustered regions around the surface of the metallic foam were investigated using elemental maps. The Ni(3)Al (γ') precipitates, which can affect the mechanical properties of the Ni-Fe-Cr (γ) matrix, were characterized in the metallic foam.

  10. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice.

    PubMed

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-14

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  11. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  12. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    PubMed Central

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-01-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN. PMID:28290480

  13. Structural Characterization of Mg/Al hydrotalcite-like Compounds and their Thermal Stability

    NASA Astrophysics Data System (ADS)

    Zhang, Shuhua; Yang, Siyuan; Wang, Cheng; Liu, Weijun; Gu, Xiaodan; Gan, Wenjun; Xue, Xiaoyu

    2014-03-01

    Hydrotalcite-like compounds, repersented by the formula [M1-x 2 + Mx3+ (OH)2]Xx/n n - . nH2O (M2+ = Ni2+, Mg2+, Cu2+,etc; M3+ = Al3+, Fe3+, etc; Xn- = CO32- , NO3-,etc) possess the brucite-like layers [Mg(OH)2] with positive charge and anionic compounds in the interlayer to form neutral materials. Catalytic effects to decompose NOx from automobile exhaust were highly related with the difference of M2+ and thermal stability because the catylists locate are about 200 ~ 500°. In this paper, Mg-Al-Cu and Mg-Al-Ni hydrotalcite-like compounds were characterized by XRD and FT-IR spectra and the thermal stability were analyzed by TGA and DTA. Even though they both have the typical diffraction peaks of hydrotalcites, but their interlayer spaces are different. Some weak chemical bonds were observed to be formed in Mg-Al-Ni hydrotalcites by FT-IR. Mg-Al-Ni hydrotalcite-like compound degraded at lower temperature, by contrast, Mg-Al-Cu hydrotalcite has the better structural stablilty and thermal stability.

  14. Reflection polarizers for the vacuum ultraviolet using Al + MgF2 mirrors and an MgF2 plate

    NASA Technical Reports Server (NTRS)

    Hass, G.; Hunter, W. R.

    1978-01-01

    Consideration is given to the design and operation of a three-mirror reflecting polarizer where one of the reflecting surfaces is an MgF2 plate, the other surfaces are Al + MgF2 coatings, and one reflection occurs at or near the true Brewster angle. It is found that the polarizer is most efficient in the 1200-2000 A wavelength region, and that by optimum selection of the angle of incidence on the MgF2 plate, polarization values of 100 and over are yielded from 900 to 3000 A. The polarizer may be used at wavelengths as short as 500 A, although it is observed that at such wavelengths the polarization value decreases to about 10. It is noted that all reflecting polarizers operating in the vacuum ultraviolet wavelength may manifest changing characteristics as their mirrors become contaminated, and that polarization must therefore be occasionally remeasured.

  15. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  16. Deformation and annealing study of NiCrAlY

    NASA Technical Reports Server (NTRS)

    Ebert, L. J.; Trela, D. M.

    1978-01-01

    The elevated temperature properties (tensile and creep) of NiCrALY, a nickel base alloy containing nominally 16% chromium, 4% aluminum, and 2 to 3% yttria (Y2O3) were evaluated and the optimal combination of thermomechanical treatments for maximum creep resistance was determined. Stored strain energy in as-extruded bars (14:1 extrusion ratio) permitted the development of a large grain size in the material when it was annealed at the maximum safe temperature 2450 F (1343 C). With a one-hour anneal at this temperature, the relatively fine grain size of the as-extruded material was changed to one in which the average grain diameter approached 1 mm, and the aspect ratio was about 10. The material was capable of being cold worked (by rolling) in amounts greater than 30% reduction in area. When the cold worked material was given a relaxation treatment, consisting of heating one hour at 1600 F(871 C), and then a high temperature anneal at 2450 F (1343 C) for one hour, both the high temperature strength and the high temperature creep resistance of the material was further enhanced.

  17. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The SAP technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of the alloy Ni-17Cr-5Al-0.2 Y. SAP-NiCrAl was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. A variety of annealing treatments were applied after working to determine the recrystallization response. NiCrAlY, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl of this study exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl as has been reported for other oxide dispersion strengthened alloys. In contrast, unoxidized NiCrAlY exhibited only primary recrystallization.

  18. Terahertz Spectroscopy of CrH (X 6Σ+) and AlH (X 1Σ+)

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Ziurys, L. M.

    2016-12-01

    New laboratory measurements of hydrides have been carried out using terahertz direct absorption spectroscopy. Spin components of the N=2≤ftarrow 1 transition of the free radical CrH (X 6Σ+) have been recorded in the range 730-734 GHz, as well as a new measurement of the J=2≤ftarrow 1 line of AlH (X 1Σ+) near 755 GHz. Both species were created in an AC discharge of H2, argon, and metal vapor. For CrH, the chromium source was Cr(CO)6, while AlH was produced from Al(CH3)3. The J=4.5≤ftarrow 3.5 and 3.5≤ftarrow 2.5 fine-structure components were recorded for CrH, each which consists of resolved proton hyperfine doublets. For AlH, the two main quadrupole components, F=4.5≤ftarrow 3.5 and 3.5≤ftarrow 2.5, of the J=2≤ftarrow 1 transition were observed as blended features. These data were analyzed with previous 1≤ftarrow 0 millimeter/submillimeter measurements with 6Σ and 1Σ Hamiltonians for chromium and aluminum hydrides, respectively, and rotational, fine-structure (CrH only), and hyperfine constants were derived. The new measurements have resulted in refined spectroscopic parameters for both species, as well as direct measurement of the respective 2≤ftarrow 1 rotational transitions. This work also resolves a 10 MHz discrepancy in the frequency of the AlH line. CrH and AlH have already been observed in the photospheres of stars via their electronic transitions. These data will facilitate their discovery at submillimeter/terahertz wavelengths in circumstellar envelopes and perhaps in diffuse clouds.

  19. Synthesis of MgO nanoparticle loaded mesoporous Al2O3 and its defluoridation study

    NASA Astrophysics Data System (ADS)

    Dayananda, Desagani; Sarva, Venkateswara R.; Prasad, Sivankutty V.; Arunachalam, Jayaraman; Parameswaran, Padmanabhan; Ghosh, Narendra N.

    2015-02-01

    MgO nanoparticle loaded mesoporous alumina has been synthesized using a simple aqueous solution based cost effective method for removal of fluoride from water. Wide angle powder X-ray diffraction, nitrogen adsorption desorption analysis, transmission electron microscopy techniques and energy dispersive X-ray spectroscopy were used to characterize the synthesized adsorbents. Synthesized adsorbents possess high surface area with mesoporous structure. The adsorbents have been thoroughly investigated for the adsorption of F- using batch adsorption method. MgO nanoparticle loading on mesoporous Al2O3 enhances the F- adsorption capacity of Al2O3 from 56% to 90% (initial F- concentration = 10 mg L-1). Kinetic study revealed that adsorption kinetics follows the pseudo-second order model, suggesting the chemisorption mechanism. The F- adsorption isotherm data was explained by both Langmuir and Freundlich model. The maximum adsorption capacity of 40MgO@Al2O3 was 37.35 mg g-1. It was also observed that, when the solutions having F- concentration of 5 mg L-1 and 10 mg L-1 was treated with 40MgO@Al2O3, the F- concentration in treated water became <1 mg L-1, which is well below the recommendation of WHO.

  20. Equation of State of an AlCoCrCuFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Li, Gong; Xiao, Daihong; Yu, Pengfei; Zhang, Lijun; Liaw, Peter K.; Li, Yanchun; Liu, Riping

    2015-08-01

    The pressure-volume (P-V) relationship of the AlCoCrCuFeNi high-entropy alloy (HEA) at room temperature has been studied using in situ high-pressure energy-dispersive x-ray diffraction with synchrotron radiation at high pressures. The equation of state of the AlCoCrCuFeNi HEA is determined by the calculation of the radial distribution function. The experimental results indicate that the HEA keeps a stable face-centered-cubic + body-centered-cubic structure in the experimental pressure range from 0 GPa to 24 GPa.

  1. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    SciTech Connect

    Thompson, Zachary T.; Terrani, Kurt A.; Yamamoto, Yukinori

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  2. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    SciTech Connect

    Yamamoto, Yukinori

    2015-09-01

    Development and quality assessment of the 2nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  3. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Douglass, D. L.; Nasrallah, M.

    1974-01-01

    The investigation reported included a determination of the optimum composition of a Ni-Cr-Al ternary alloy with respect to oxidation resistance and minimum film-spalling tendencies. Yttrium and thorium in small amounts were added to the ternary alloy and an investigation of the oxidation mechanism and the oxide scale adherence was conducted. It was found that the oxidation mechanism of Ni-Cr-Al ternary alloys depends upon the composition of the alloy as well as the time, oxygen pressure, and temperature of oxidation.

  4. Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Kempen, K.; Thijs, L.; Van Humbeeck, J.; Kruth, J.-P.

    Selective Laser Melting (SLM) is an Additive Manufacturing (AM) technique in which a part is built up in a layer- by-layer manner by melting the top surface layer of a powder bed with a high intensity laser according to sliced 3D CAD data. In this work, mechanical properties like tensile strength, elongation, Young's modulus, impact toughness and hardness are investigated for SLM-produced AlSi10Mg parts, and compared to conventionally cast AlSi10Mg parts. It is shown that AlSi10Mg parts with mechanical properties comparable or even exceeding to those of conventionally cast AlSi10Mg can be produced by SLM.

  5. Structure and electromagnetic properties of FeSiAl particles coated by MgO

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhou, Ting-dong

    2017-03-01

    FeSiAl particles with a layer of MgO surface coating have excellent soft magnetic and electromagnetic properties. In order to obtain the FeSiAl/MgO composites, Mg(OH)2 sol prepared by sol-gel process was well-mixed with FeSiAl flake particles, and then treated by calcination at 823 K in vacuum. The microstructural, morphological and electromagnetic parameters of FeSiAl/MgO particles were tested. Accordingly, the electromagnetic wave reflection loss in the frequency range of 0.5-18 GHz was calculated. The results show that the surface coating increases coercivity Hc and decreases complex permittivity, leading to a good impedance matching. When the coating amount was 7.5%, reflection loss of the composite particles can reach to -33 dB.

  6. Effect of scandium on the microstructure and ageing behaviour of cast Al-6Mg alloy

    SciTech Connect

    Kaiser, M.S.; Datta, S.; Roychowdhury, A. Banerjee, M.K.

    2008-11-15

    Microstructural modification and grain refinement due to addition of scandium in Al-6Mg alloy has been studied. Transmission electron microscopy is used to understand the microstructure and precipitation behaviour in Al-6Mg alloy doped with scandium. It is seen from the microstructure that the dendrites of the cast Al-6Mg alloy have been refined significantly due to addition of scandium. Increasing amount of scandium leads to a greater dendrite refinement. The age hardening effect in scandium added Al-6Mg alloys has been studied by subjecting the alloys containing varying amount of scandium ranging from 0.2 wt.% to 0.6 wt.% to isochronal and isothermal ageing at various temperatures for different times. It is observed that significant hardening takes place in the aged alloys due to the precipitation of scandium aluminides.

  7. 26Al-26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Nagashima, Kazuhide; Krot, Alexander N.; Komatsu, Mutsumi

    2017-03-01

    We report the mineralogy, petrography, and in situ measured 26Al-26Mg systematics in chondrules from the least metamorphosed CV3 (Vigarano-type) chondrites, Kaba and Yamato (Y) 980145. Two Y 980145 chondrules measured show no resolvable excesses in 26Mg (26Mg∗), a decay product of a short-lived (t1/2 ∼0.7 Ma) radionuclide 26Al. Plagioclase in one of the chondrules is replaced by nepheline, indicative of thermal metamorphism. The lack of 26Mg∗ in the Y 980145 chondrules is most likely due to disturbance of their 26Al-26Mg systematics during the metamorphism. Although Kaba experienced extensive metasomatic alteration (<300 °C), it largely avoided subsequent thermal metamorphism, and the 26Al-26Mg systematics of its chondrules appear to be undisturbed. All eight Kaba chondrules measured show 26Mg∗, corresponding to the initial 26Al/27Al ratios [(26Al/27Al)0] ranging from (2.9 ± 1.7) × 10-6 to (6.3 ± 2.7) × 10-6. If CV parent asteroid accreted rapidly after chondrule formation, the inferred (26Al/27Al)0 ratios in Kaba chondrules provide an upper limit on 26Al available in this asteroid at the time of its accretion. The estimated initial abundance of 26Al in the CV asteroid is too low to melt it and contradicts the existence of a molten core in this body suggested from the paleomagnetic records of Allende [Carporzen et al. (2011) Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proc. Natl. Acad. Sci. USA108, 6386-6389] and Kaba [Gattacceca et al. (2013) More evidence for a partially differentiated CV parent body from the meteorite Kaba. Lunar Planet. Sci.44, abstract#1721].

  8. Al-to-Mg Friction Stir Welding: Effect of Material Position, Travel Speed, and Rotation Speed

    NASA Astrophysics Data System (ADS)

    Firouzdor, Vahid; Kou, Sindo

    2010-11-01

    Because joining dissimilar metals is often difficult by fusion joining, interest has been growing rapidly in using friction stir welding (FSW), which is considered a revolutionary solid-state welding process, as a new way to join dissimilar metals such as Al alloys to Mg alloys, Cu, and steels. Butt FSW of Al to Mg alloys has been studied frequently recently, but the basic issue of how the welding conditions affect the resultant joint strength still is not well understood. Using the widely used alloys 6061 Al and AZ31 Mg, the current study investigated the effect of the welding conditions, including the positions of Al and Mg with respect to the welding tool, the tool travel speed, and the tool rotation speed on the weld strength. Unlike previous studies, the current study (1) determined the heat input by both torque and temperature measurements during FSW, (2) used color metallography with Al, Mg, Al3Mg2, and Al12Mg17 all shown in different colors to reveal clearly the formation of intermetallic compounds and material flow in the stir zone, which are known to affect the joint strength significantly, and (3) determined the windows for travel and rotation speeds to optimize the joint strength for various material positions. The current study demonstrated clearly that the welding conditions affect the heat input, which in turn affects (1) the formation of intermetallics and even liquid and (2) material flow. Thus, the effect of welding conditions in Al-to-Mg butt FSW on the joint strength now can be explained.

  9. Thermodynamics-Based Computational Design of Al-Mg-Sc-Zr Alloys

    NASA Astrophysics Data System (ADS)

    Haidemenopoulos, G. N.; Katsamas, A. I.; Kamoutsi, H.

    2010-04-01

    Alloying additions of Sc and Zr raise the yield strength of Al-Mg alloys significantly. We have studied the effects of Sc and Zr on the grain refinement and recrystallization resistance of Al-Mg alloys with the aid of computational alloy thermodynamics. The grain refinement potential has been assessed by Scheil-Gulliver simulations of solidification paths, while the recrystallization resistance (Zener drag) has been assessed by calculation of the precipitation driving forces of the Al3Sc and Al3Zr intermetallics. Microstructural performance indices have been derived, used to rank several alloy composition variants, and finally select the variant with the best combination of grain refinement and recrystallization resistance. The method can be used, with certain limitations, for a thermodynamics-based design of Al-Mg and other alloy compositions.

  10. Evaluation of corrosion behavior of Al-Mg-Li alloys in seawater

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Abdul Aleem, B. J.

    1996-04-01

    Weldalite 050, a high-strength Al-Mg-Li alloy, was evaluated for its corrosion resistance in deaerated and air saturated Arabian Gulf water to determine its suitability for marine applications. Weight loss and electrochemical studies showed that the alloy had minimum corrosion rates of 1.82 and 4.82 mpy (mils per year), respectively, in deaerated and air saturated Arabian Gulf water with very high total dissolved solids (TDS) content. Weldalite 050 exhibited good resistance to corrosion at velocities up to 3.9 m/s. The formation of Al2MgLi, Al-Li, Al12Mg17, and Al-Li precipitates has a pronounced effect on its corrosion resistance. The corrosion resistance of Weldalite 050 compares favorably with that of alloys 5052 and 5054, wrought alloys 6061 and 6013, and silicon carbide (SiC) reinforced alloys 6061 and 6013.

  11. The Nature of Interfaces in Al-1050/Al-1050 and Al-1050/Mg-AZ31 Couples Joined by Magnetic Pulse Welding (MPW)

    NASA Astrophysics Data System (ADS)

    Stern, A.; Aizenshtein, M.; Moshe, G.; Cohen, S. R.; Frage, N.

    2013-07-01

    The microstructure and the phase composition of the interfaces of Al-1050/Al-1050 and Al-1050/Mg-AZ31 magnetic pulse welding (MPW) joints were characterized by SEM and TEM analyses. The mechanical properties were tested by nanoindentation. Properties of the Al-1050/Al-1050 interface joint were established. The interface is almost free from Al3Fe precipitates, which are present in the base metal. The hardness value is higher than that of the base metal; however, values of the Young's modulus of the interface and base metal are similar. It was suggested that the interface evolution in the Al-1050/Al-1050 system includes local melting and rapid solidification of the base materials. A wavy shaped heterogeneous interface was detected in the Al-1050/Mg-AZ31 joints. Some areas are free from visible intermetallic phases (IMPs), while others contain pockets of relatively coarse intermetallic precipitates. The presence of a relatively large fraction of globular porosity at the interface indicates that local melting takes place in the course of MPW. TEM characterization of regions free of IMPs at the interface reveals regions consisting of fcc supersaturated Al-Mg solid solution, apparently formed as a result of local mechanical alloying during MPW. In other regions, the composition and structure correspond to the Mg17Al12 phase, which was probably formed by local melting and rapid solidification.

  12. Fiber optic thermometer using Cr-doped GdAlO3 broadband emission decay

    NASA Astrophysics Data System (ADS)

    Eldridge, Jeffrey I.; Chambers, Matthew D.

    2015-09-01

    Luminescence decay temperature measurements are performed from 800 to 1200 °C using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor tip on a YAG single crystal fiber. As a thermographic phosphor, Cr:GdAlO3 combines the intense luminescence of transition metal dopants with the high temperature long decay times usually exhibited only by rare earth dopants. The proposed mechanism is emission by the Cr3+ dopant via the spin-allowed 4T2  →  4A2 transition supported by a reservoir state in 2E which populates {}4{{\\text{T}}2} (2E  →  {}4{{\\text{T}}2} ) through thermal equilibration. The relative energy levels and transition probabilities associated with the strong crystal field at the Al3+ site in the perovskite structure of GdAlO3 are favorable for suppressing thermal quenching of luminescence. Results from a single-fiber configuration sensor, based on a YAG fiber for its low background luminescence, are presented. Using a decay curve fitting procedure that accounts for background fluorescence, accuracies of better than  ±5 °C are demonstrated.

  13. Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Grant, P. S.; O'Reilly, K. A. Q.

    2016-06-01

    The evolution of iron (Fe) bearing intermetallics (Fe-IMCs) during direct chill casting and homogenization of a grain-refined 6063 aluminum-magnesium-silicon (Al-Mg-Si) alloy has been studied. The as-cast and homogenized microstructure contained Fe-IMCs at the grain boundaries and within Al grains. The primary α-Al grain size, α-Al dendritic arm spacing, IMC particle size, and IMC three-dimensional (3D) inter-connectivity increased from the edge to the center of the as-cast billet; both α c-AlFeSi and β-AlFeSi Fe-IMCs were identified, and overall α c-AlFeSi was predominant. For the first time in industrial billets, the different Fe-rich IMCs have been characterized into types based on their 3D chemistry and morphology. Additionally, the role of β-AlFeSi in nucleating Mg2Si particles has been identified. After homogenization, α c-AlFeSi predominated across the entire billet cross section, with marked changes in the 3D morphology and strong reductions in inter-connectivity, both supporting a recovery in alloy ductility.

  14. Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides

    SciTech Connect

    Wang Jun; Zhou Jideng; Li Zhanshuang; He Yang; Lin Shuangshuang; Liu Qi; Zhang Milin; Jiang Zhaohua

    2010-11-15

    We report the preparation of mesoporous mixed metal oxides (MMOs) through a soft template method. Different amounts of P123 were used as structure directing agent to synthesize P123-templated Mg-Al layered double hydroxides (LDHs). After calcination of as-synthesized LDHs at 500 {sup o}C, the ordered mesopores were obtained by removal of P123. The mesoporous Mg-Al MMOs fabricated by using 2 wt% P123 exhibited a high specific surface area of 108.1 m{sup 2}/g, and wide distribution of pore size (2-18 nm). An investigation of the 'memory effect' of the mesoporous MMOs revealed that they were successfully reconstructed to ibuprofen intercalated LDHs having different gallery heights, which indicated different intercalation capacities. Due to their mesoporosity these unique MMOs have particular potential as drug or catalyst carriers. - Graphical abstract: Ordered mesoporous Mg-Al MMOs can be obtained through the calcination of P123-templated Mg-Al-CO{sub 3} LDHs. The pore diameter is 2.2 nm. At the presence of ibuprofen, the Mg-Al MMOs can recover to Mg-Al-IBU LDHs, based on its 'remember effect'. Display Omitted

  15. Crystal growth and spectroscopic properties of Cr3+-doped CaGdAlO4

    NASA Astrophysics Data System (ADS)

    Zhang, Zhu; Huang, Yisheng; Zhang, Lizhen; Sun, Shijia; Yuan, Feifei; Lin, Zhoubin

    2017-04-01

    A Cr3+:CaGdAlO4 single crystal with dimensions of ∅21 × 33 mm3 was grown successfully by Czochralski method for the first time. Its spectral properties including polarized absorption spectra, polarized fluorescence spectra, excitation spectrum and fluorescence decay curves were investigated in detail. The absorption cross-sections at around 573 nm corresponding to the 4A2 → 4T2 transition of Cr3+ ions are 4.75 × 10-20 and 2.56 × 10-20 cm2 for σ- and π-polarizations, respectively. The excitation spectrum shows two broad and intense absorption bands at about 390 nm and 570 nm, which are associated with the 4A2 → 4T1 and 4A2 → 4T2 transitions of Cr3+ ions, respectively. The emission band with peak at around 744 nm is ascribed to the 2E → 4A2 transition of Cr3+ ions, with the emission cross-sections of 5.55 × 10-22 and 5.41 × 10-22 cm2 for σ- and π-polarizations, respectively. The fluorescence lifetime is 4.35 ms at room temperature. The Dq/B value is 2.72, which means that Cr3+ ions occupy the lattice sites with strong crystal field strength. The results show that Cr3+:CaGdAlO4 crystal can be regarded as a potential laser gain medium.

  16. Transition metal complexes coupled to vacancies in oxides: origin of different properties of Cr3+ in MgO bounded to a <100> or <110> Mg2+ vacancy.

    PubMed

    Aramburu, J A; García-Fernández, P; Barriuso, M T; Moreno, M

    2013-11-27

    Despite the importance of vacancies over the properties of insulating oxides its influence on neighboring transition metal ions is far from being understood. This work is devoted to find the origin of various up to now unexplained properties of chromium bounded either to a <100> or a <110> Mg(2+) vacancy in MgO. In these model systems particular attention is paid to understand, by means of ab initio calculations, why the cubic field splitting parameter, 10Dq, is surprisingly 1600 cm(-1) higher for a <100> than for a <110> vacancy, a fact behind the suppression of the sharp (2)E → (4)A2 luminescence in the latter case. Our calculations, which reproduce the main experimental facts, prove that the average Cr(3+)-O(2-) distance is the same within 0.8% for both systems, and thus, the low 10Dq value for a <110> vacancy is shown to be due mainly to the electrostatic potential from the missing Mg(2+) ion, which increases the energy of antibonding t(2g) (∼xy, xz, yz) levels. By contrast, for a <100> Mg(2+) vacancy that potential provides a supplementary increase of the e(g) (∼x(2) - y(2), 3z(2 )- r(2)) level energy and thus of 10Dq. The existence of the (2)E → (4)A2 luminescence for Cr(3+)-doped MgO under perfect cubic symmetry or with a <100> vacancy is shown to be greatly helped by the internal electric field created by the rest of the lattice ions on the CrO6(9-) unit, whose importance is usually ignored. The present results underline the role of ab initio calculations for unveiling the subtle effects induced by a close vacancy on the properties of transition metal ions in oxides. At the same time they stress the failure of the empirical superposition model for deriving the equilibrium geometry of C4v and C2v centers in MgO:Cr(3+).

  17. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    SciTech Connect

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explain that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.

  18. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    SciTech Connect

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; Hoelzer, David T.

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.

  19. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    DOE PAGES

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; ...

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is amore » general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.« less

  20. Effect of Al2Gd on microstructure and properties of laser clad Mg-Al-Gd coatings

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Zhang, Ke; Yao, Chengwu; Dong, Jie; Li, Zhuguo; Emmelmann, Claus

    2015-03-01

    In order to investigate the effects of Gd addition on the microstructures and properties of magnesium coatings, the Mg-7.5Al-xGd (x = 0, 2.5, 5.0 and 7.5 wt.%) coatings on cast magnesium alloy were fabricated by laser cladding with wire feeding. The results indicated that the gadolinium (Gd) addition led to the formation of a cubic Al2Gd phase as well as suppressed the precipitation of eutectic Mg17Al12 phase. The laser clad coating containing nominally 7.5 wt.% Gd presented the highest microhardness, ultimate tensile strength and yield strength at both room temperature and high temperatures. The enhancement of heat resistant capacities was chiefly attributed to the existence of thermally stable Al2Gd particles, which prevented tiny liquation of eutectic phases along the grain boundaries and made great contributions on maintaining high yield ratio during high-temperature deformation.

  1. Role of Grain Boundaries in the Mechanism of Plasma Hydrogenation of Nanocrystalline MgAl Films

    SciTech Connect

    Milcius, Darius; Pranevicius, Liudas; Templier, Claude; Bobrovaite, Birute; Barnackas, Irmantas

    2006-05-24

    Nanocrystalline aluminum hydrides (alanates) are potential hydrogen storage materials for PEM fuel cell applications. One of candidates is magnesium alanate, Mg(AlH4)2, which contains 9.3 wt. % of hydrogen. In the present work, the effects of Ti catalyst in improving the kinetics of hydrogen uptake and release are investigated. The 2-5 {mu}m thick MgAl films have been hydrogenated employing plasma immersion ion implantation technique as a function of Ti-content. Nanocrystalline MgAl films were prepared by magnetron sputter deposition in vacuum. Titanium atoms were incorporated simultaneously into the growing film. Morphological and structural properties were studied by scanning electron and atomic force microcopies and X-ray diffraction technique. It is shown that the microstructure of the hydrided/dehydrided MgAl film is highly defected and demonstrates dispersed/amorphous cluster-like structure. Ti atoms in MgAl film kinetically enhance the dehydrogenation of magnesium alanate film. For Ti-doped MgAl film the dehydrogenation process becomes about 1.5 times shorter and the dehydrogenation temperature about 50 K less than for Ti-undoped film for the temperature rise rate equal to 18 K-min-1. It is shown when hydrogenated MgAl film is exposed to air a compact amorphous Al2O3 layer with typically 3-5 nm thickness grows on the surface. Thin native oxide acts as a permeation barrier for hydrogen. It has been found that the major part of hydrogen effuses at {approx}630 K and the effusion process is controlled by the migration of hydrogen through the surface oxide layer.

  2. Hafnium influence on the microstructure of FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Geanta, V.; Voiculescu, I.; Stanciu, E.-M.

    2016-06-01

    Due to their special properties at high temperatures, FeCrAl alloys micro-alloyed with Zr can be regarded as potential materials for use at nuclear power plants, generation 4R. These materials are resistant to oxidation at high temperatures, to corrosion, erosion and to the penetrating radiations in liquid metal environments. Also, these are able to form continuously, by the self-generation process of an oxide coating with high adhesive strength. The protective oxide layers must be textured and regenerable, with a good mechanical strength, so that crack and peeling can not appear. To improve the mechanical and chemical characteristics of the oxide layer, we introduced limited quantities of Zr, Ti, Y, Hf, Ce in the range of 1-3%wt in the FeCrAl alloy. These elements, with very high affinity to the oxygen, are capable to stabilize the alumina structure and to improve the oxide adherence to the metallic substrate. FeCrAl alloys microalloyed with Hf were prepared using VAR (Vacuum Arc Remelting) unit, under high argon purity atmosphere. Three different experimental alloys have been prepared using the same metallic matrix of Fe-14Cr-5Al, by adding of 0.5%wt Hf, 1.0%wt Hf and respectively 1.5%wt Hf. The microhardness values for the experimental alloys have been in the range 154 ... 157 HV0.2. EDAX analyses have been performed to determine chemical composition on the oxide layer and in the bulk of sample and SEM analyze has been done to determine the microstructural features. The results have shown the capacity of FeCrAl alloy to form oxide layers, with different texture and rich in elements such as Al and Hf.

  3. Cetyltrimethyl ammonium bromide-Mg/Al hydrotalcite for removal phenol in water

    NASA Astrophysics Data System (ADS)

    Kurniawati, Puji; Wiyantoko, Bayu; Purbaningtias, Tri Esti; Muzdalifah

    2017-03-01

    Hydrotalcite materials was synthesized by using Cetyltrimethyl Ammonium Bromide (CTAB) and Mg/Al layered double hydroxide with ratio molar 3:1. Synthesis of CTAB-Mg/Al hydrotalcite was carried out using ex situ co-precipitation method at pH 10±0.5. Removal of phenol was optimum at medium pH 6 and it had optimum contact time in 300 min. It followed pseudo second order with adsorption rate constant was 1.15.10-4 mM-1.min-1. The maximum adsorption capacities obtained from the Langmuir model was 35.71 mg.g-1 at room temperature.

  4. Progress in the material development of LiCaAlF sub 6 :Cr sup 3+ laser crystals

    SciTech Connect

    Michelle D. Shinn.; Chase, L.L.; Caird, J.A.; Payne, S.A.; Atherton, L.J.; Kway, W.L.

    1990-03-01

    High Cr{sup 3+} doping levels, up to 8 mole percent, and low losses have been obtained with the tunable solid-state laser material LiCaAlF{sub 6}:Cr{sup 3+} (Cr:LiCAF). Measurements and calculations show that high pumping and extraction efficiencies are possible with the improved material. 13 refs., 4 figs., 1 tab.

  5. Thermoelectric properties of Al doped Mg{sub 2}Si material

    SciTech Connect

    Kaur, Kulwinder Kumar, Ranjan; Rani, Anita

    2015-08-28

    In the present paper we have calculated thermoelectric properties of Al doped Mg{sub 2}Si material (Mg{sub 2−x}Al{sub x}Si, x=0.06) using Pseudo potential plane wave method based on DFT and Semi classical Boltzmann theory. The calculations showed n-type conduction, indicating that the electrical conduction are due to electron. The electrical conductivity increasing with increasing temperature and the negative value of Seebeck Coefficient also show that the conduction is due to electron. The thermal conductivity was increased slightly by Al doping with increasing temperature due to the much larger contribution of lattice thermal conductivity over electronic thermal conductivity.

  6. Ultra-Fine Grain Structures Of Model Al-Mg-Si Alloys Produced By Hydrostatic Extrusion

    NASA Astrophysics Data System (ADS)

    Adamczyk-Cieślak, Bogusława; Mizera, Jarosław

    2011-01-01

    Microstructure and mechanical properties were studied in model Al-Mg-Si alloys (Al-1 % Mg-0.8% Si and Al-0.5% Mg-0.3% Si-wt %) deformed by hydrostatic extrusion (HE) to strains of 1.4 and 3.8. In these alloys the different percentage of two hardening second-phase precipitates (Mg2Si and Si) were observed. The microstructure was characterized by transmission electron microscopy and optical microscopy. The microstructure of the alloys in the initial state was built of coarse grains of an average diameter of ˜30 rim. The refined microstructure was examined qualitatively and quantitatively using the stereological method and a computer image analysis. The deformation-processed structures evolved very rapidly, forming ultrafine grained (UFG) materials with grains of about 0.4 μm. In addition, the grain refinement in the HE-treated materials has a substantial effect on their properties, such as the mechanical strength and micro-hardness which increase significantly. It has been found that, after ɛ = 3.8 in the Al-1% Mg-0.8% Si alloy, the micro-hardness increases approximately twofold. The yield stress is more than four times higher in the UFG alloys, in comparison to the initial state. Similar results were identified in the Al-0.5% Mg-0.3% Si. This is due to the very rapid refinement of the microstructure during the deformation and presence of second-phase particles.

  7. Ultra-Fine Grain Structures Of Model Al-Mg-Si Alloys Produced By Hydrostatic Extrusion

    SciTech Connect

    Adamczyk-Cieslak, Boguslawa; Mizera, Jaroslaw

    2011-01-17

    Microstructure and mechanical properties were studied in model Al-Mg-Si alloys (Al-1 % Mg-0.8% Si and Al-0.5% Mg-0.3% Si-wt %) deformed by hydrostatic extrusion (HE) to strains of 1.4 and 3.8. In these alloys the different percentage of two hardening second-phase precipitates (Mg{sub 2}Si and Si) were observed. The microstructure was characterized by transmission electron microscopy and optical microscopy. The microstructure of the alloys in the initial state was built of coarse grains of an average diameter of {approx}30 rim. The refined microstructure was examined qualitatively and quantitatively using the stereological method and a computer image analysis. The deformation-processed structures evolved very rapidly, forming ultrafine grained (UFG) materials with grains of about 0.4 {mu}m. In addition, the grain refinement in the HE-treated materials has a substantial effect on their properties, such as the mechanical strength and micro-hardness which increase significantly. It has been found that, after {epsilon} = 3.8 in the Al-1% Mg-0.8% Si alloy, the micro-hardness increases approximately twofold. The yield stress is more than four times higher in the UFG alloys, in comparison to the initial state. Similar results were identified in the Al-0.5% Mg-0.3% Si. This is due to the very rapid refinement of the microstructure during the deformation and presence of second-phase particles.

  8. Study of the effects of implantation on the high Fe-Ni-Cr and Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Ribarsky, M. W.

    1985-01-01

    A theoretical study of the effects of implantation on the corrosion resistance of Fe-Ni-Cr and Ni-Cr-Al alloys was undertaken. The purpose was to elucidate the process by which corrosion scales form on alloy surfaces. The experiments dealt with Ni implanted with Al, exposed to S at high temperatures, and then analyzed using scanning electron microscopy, scanning Auger spectroscopy and X-ray fluorescence spectroscopy. Pair bonding and tight-binding models were developed to study the compositions of the alloys and as a result, a new surface ordering effect was found which may exist in certain real alloys. With these models, the behavior of alloy constituents in the presence of surface concentrations of O or S was also studied. Improvements of the models to take into account the important effects of long- and short-range ordering were considered. The diffusion kinetics of implant profiles at various temperatures were investigated, and it was found that significant non-equilibrium changes in the profiles can take place which may affect the implants' performance in the presence of surface contaminants.

  9. Solute transport during the cyclic oxidation of Ni-Cr-Al alloys. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.

    1982-01-01

    Important requirements for protective coatings of Ni-Cr-Al alloys for gas turbine superalloys are resistance to oxidation accompanied by thermal cycling, resistance to thermal fatigue cracking. The resistance to oxidation accompanied by thermal cycling is discussed. The resistance to thermal fatigue cracking is also considered.

  10. Database on Performance of Neutron Irradiated FeCrAl Alloys

    SciTech Connect

    Field, Kevin G.; Briggs, Samuel A.; Littrell, Ken; Parish, Chad M.; Yamamoto, Yukinori

    2016-08-01

    The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerance of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.

  11. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE PAGES

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; ...

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  12. Ion irradiation testing and characterization of FeCrAl candidate alloys

    SciTech Connect

    Anderoglu, Osman; Aydogan, Eda; Maloy, Stuart Andrew; Wang, Yongqiang

    2014-10-29

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels. This effort involves development of fuel cladding materials that will be resistant to oxidizing environments for extended period of time such as loss of coolant accident. Ferritic FeCrAl alloys are among the promising candidates due to formation of a stable Al₂O₃ oxide scale. In addition to being oxidation resistant, these promising alloys need to be radiation tolerant under LWR conditions (maximum dose of 10-15 dpa at 250 – 350°C). Thus, in addition to a number of commercially available alloys, nuclear grade FeCrAl alloys developed at ORNL were tested using high energy proton irradiations and subsequent characterization of irradiation hardening and damage microstructure. This report summarizes ion irradiation testing and characterization of three nuclear grade FeCrAl cladding materials developed at ORNL and four commercially available Kanthal series FeCrAl alloys in FY14 toward satisfying FCRD campaign goals.

  13. Spin Polarization of Mg-23 in Mg-24 + Au, Cu and Al Collisions at 91 A MeV

    NASA Technical Reports Server (NTRS)

    Matsuta, K.; Fukuda, S.; Izumikawa, T.; Tanigaki, M.; Fukuda, M.; Nakazato, M.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Miyake, T.

    1994-01-01

    Spin polarization of beta-emitting fragment Mg-23(I(sup pi) = 3/2(sup +), T(sub 1/2 = l1.3 s) produced through the projectile fragmentation process in Mg-24 + Au, Cu and Al collisions has been observed at 91 AMeV. General trend in the observed momentum dependence of polarization is reproduced well qualitatively by a simple fragmentation model based on the participant-spectator picture, for heavy and light targets. However the polarization behavior differs from this model in tern of zero crossing momentum, which become prominent in the case of Cu target, where the polarization is not monotone function of the fragment momentum.

  14. Optoelectronic properties of delafossite structure CuCr0.93Mg0.07O2 sputter deposited coatings

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Arab Pour Yazdi, Mohammad; Sanchette, Frederic; Billard, Alain

    2016-05-01

    CuCr0.93Mg0.07O2 thin films with improved optoelectronic properties were deposited by reactive magnetron sputtering on fused quartz substrates. The influence of annealing temperature under vacuum on optoelectronic properties of the films was investigated. The amorphous films annealed under vacuum at temperatures higher than 923 K are single-phased delafossite structure, while impurity phases like CuCr2O4 that affect the optoelectronic properties of the films are detected below 873 K. c-axis orientation is observed for CuCr0.93Mg0.07O2 layers and the annealing temperature window in which the films are single-phased delafossite is much larger with Mg doping (923 K  →  1073 K) than that for undoped films (~953 K). The optical and electrical behaviours of the films are enhanced by Mg substitution and their direct band gap energy of about 3.12-3.14 eV is measured. The film possesses the optimum properties after annealing under vacuum at about 1023 K its average transmittance in the visible region can reach 54.23% while the film’s conductivity is about 0.27 S cm-1.

  15. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    SciTech Connect

    Sweet, Ryan; George, Nathan M.; Terrani, Kurt A.; Wirth, Brian

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  16. The oxidation behavior of Ni-Cr-Al-2ThO2 alloys at 1093 and 1204 C.

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wilcox, B. A.; Stringer, J.

    1972-01-01

    A pack diffusion process has been developed which permits the introduction of nearly 6 wt % Al into solid solution in the near surface region of TDNiCr (Ni-20 wt % Cr-2 vol % ThO2) and Ni-20Cr. Alumina scales, adherent under cyclic heating and cooling conditions, were produced on TDNiCr-5.86Al upon exposure to an environment of 1330 N/sq m (10 torr) or 101,000 N/sq m (760 torr) air at temperatures of 1093 and 1204 C. While the same oxidation kinetics were observed in isothermal tests for Ni-14.6Cr-5.86Al as were obtained for the TDNiCr-5.86Al, the dispersion-strengthened alloy exhibited superior oxide scale adhesion during cyclic testing. At 1204 C, continuous weight gains were observed under all test conditions for TDNiCr-5.86Al, in contrast to the weight loss with time which occurred several hours after exposure of TDNiCr to an oxidizing environment. TDNiCr with an initial aluminum surface concentration of 4.95 wt % has nearly comparable oxidation resistance to the TDNiCr-5.86Al alloy.

  17. Formation of (Cr, Al)UO4 from doped UO2 and its influence on partition of soluble fission products

    NASA Astrophysics Data System (ADS)

    Cooper, M. W. D.; Gregg, D. J.; Zhang, Y.; Thorogood, G. J.; Lumpkin, G. R.; Grimes, R. W.; Middleburgh, S. C.

    2013-11-01

    CrUO4 and (Cr, Al)UO4 have been fabricated by a sol-gel method, studied using diffraction techniques and modelled using empirical pair potentials. Cr2O3 was predicted to preferentially form CrUO4 over entering solution into hyper-stoichiometric UO2+x by atomic scale simulation. Further, it was predicted that the formation of CrUO4 can proceed by removing excess oxygen from the UO2 lattice. Attempts to synthesise AlUO4 failed, instead forming U3O8 and Al2O3. X-ray diffraction confirmed the structure of CrUO4 and identifies the existence of a (Cr, Al)UO4 phase for the first time (with a maximum Al to Cr mole ratio of 1:3). Simulation was subsequently used to predict the partition energies for the removal of fission products or fuel additives from hyper-stoichiometric UO2+x and their incorporation into the secondary phase. The partition energies are consistent only with smaller cations (e.g. Zr4+, Mo4+ and Fe3+) residing in CrUO4, while all divalent cations are predicted to remain in UO2+x. Additions of Al had little effect on partition behaviour. The reduction of UO2+x due to the formation of CrUO4 has important implications for the solution limits of other fission products as many species are less soluble in UO2 than UO2+x.

  18. A new scaling relation for n-AlN doped superconducting MgB2

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Dey, T. K.

    2013-09-01

    The scaling behavior of nano-aluminum nitride added polycrystalline MgB2 superconductor is discussed. A series of polycrystalline MgB2 samples with different amounts of nanosized AlN addition are synthesized by solid reaction. All the synthesized pellets are subjected to x-ray diffraction, field emission gun scanning electron microscopy (FEG-SEM), and transmission electron microscopy (TEM) to examine their micro-structural features. A marginal decrease in lattice parameters of pure MgB2 with AlN nanoparticles addition is observed. Surface morphology reveals randomly oriented hexagonal MgB2 grains decorated with AlN nanoparticles between the grain boundaries and also scattered on the grain surface. For higher concentration, n-AlN agglomerates are visible. Resistivity data confirm a decrease in superconducting transition temperature (Tc) from 38.5 to 37 K and increase in transition width (ΔTc) with increased loading of n-AlN in MgB2. The critical current density (Jc) of the pellets at 4, 10, 20, and 30 K is evaluated from the magnetization data between ±6 T and is explained well in the framework of collective pinning model. The normalized pinning force density of n-AlN doped MgB2 at various temperatures indicates an excellent scaling with respect to Hn (the field corresponding to which Fp drops to half of its maximum value) as the scaling field. A new scaling expression derived, using the expression of field dependence of Jc proposed by "collective pinning model" in small bundle regime, demonstrates an excellent agreement with the measured normalized pinning force density (viz., Fp/Fpmax vs. hn) of the AlN nanoparticles doped MgB2 superconductors.

  19. Dual-scale phase-field simulation of Mg-Al alloy solidification

    NASA Astrophysics Data System (ADS)

    Monas, A.; Shchyglo, O.; Höche, D.; Tegeler, M.; Steinbach, I.

    2015-06-01

    Phase-field simulations of the nucleation and growth of primary α-Mg phase as well as secondary, β-phase of a Mg-Al alloy are presented. The nucleation model for α- and β-Mg phases is based on the “free growth model” by Greer et al.. After the α-Mg phase solidification we study a divorced eutectic growth of α- and β-Mg phases in a zoomed in melt channel between α-phase dendrites. The simulated cooling curves and final microstructures of α-grains are compared with experiments. In order to further enhance the resolution of the interdendritic region a high-performance computing approach has been used allowing significant simulation speed gain when using supercomputing facilities.

  20. A declaration of independence for Mg/Si. [Al/Si intensity ratio predictive usefulness for Mg/Si intensity ratio in lunar X-ray fluorescence

    NASA Technical Reports Server (NTRS)

    Hubbard, N.; Keith, J. E.

    1978-01-01

    The weak covariation that exists between Al/Si and Mg/Si for large areas of the lunar surface is little, if any, stronger than that forced on a random set of numbers that are subject to closure. The Mg and Al variations implied by the Mg/Si and Al/Si intensity ratio data are qualitatively like those seen in lunar soil sample data. Two petrogenetic provinces are suggested for terra materials; one appears to have 50% higher Mg values than the other. Using the improved data, Mg/Si variations can be studied at a signal-to-noise ratio greater than 5/1.

  1. All-3 d Electron-Hole Bilayers in CrN /MgO (111 ) Multilayers for Thermoelectric Applications

    NASA Astrophysics Data System (ADS)

    Botana, Antia S.; Pardo, Victor; Pickett, Warren E.

    2017-02-01

    CrN /MgO (111 ) multilayers modeled via ab initio calculations give rise to nanoscale, scalable, spatially separated two-dimensional electron and hole gases, each confined to its own CrN interface. Because of the Cr 3 d3 configuration, both electron and hole gases are based on correlated transition-metal layers involving bands of 3 d character. Transport calculations predict each subsystem will have a large thermopower, on the order of 250 μ V /K at room temperature. These heterostructures combine a large thermoelectric efficiency with scalable nanoscale conducting sheets; for example, operating at a temperature difference of 50 K, 40 bilayers could produce a 1-V voltage with a film thickness of 100 nm.

  2. Advanced ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N; Unocic, Kinga A; Hoelzer, David T; Pint, Bruce A

    2014-09-01

    ODS FeCrAl alloys are being developed with optimum composition and properties for accident tolerant fuel cladding. Two oxide dispersion strengthened (ODS) Fe-15Cr-5Al+Y2O3 alloys were fabricated by ball milling and extrusion of gas atomized metallic powder mixed with Y2O3 powder. To assess the impact of Mo on the alloy mechanical properties, one alloy contained 1%Mo. The hardness and tensile properties of the two alloys were close and higher than the values reported for fine grain PM2000 alloy. This is likely due to the combination of a very fine grain structure and the presence of nano oxide precipitates. The nano oxide dispersion was however not sufficient to prevent grain boundary sliding at 800 C and the creep properties of the alloys were similar or only slightly superior to fine grain PM2000 alloy. Both alloys formed a protective alumina scale at 1200 C in air and steam and the mass gain curves were similar to curves generated with 12Cr-5Al+Y2O3 (+Hf or Zr) ODS alloys fabricated for a different project. To estimate the maximum temperature limit of use for the two alloys in steam, ramp tests at a rate of 5 C/min were carried out in steam. Like other ODS alloys, the two alloys showed a significant increase of the mas gains at T~ 1380 C compared with ~1480 C for wrought alloys of similar composition. The beneficial effect of Yttrium for wrought FeCrAl does not seem effective for most ODS FeCrAl alloys. Characterization of the hardness of annealed specimens revealed that the microstructure of the two alloys was not stable above 1000 C. Concurrent radiation results suggested that Cr levels <15wt% are desirable and the creep and oxidation results from the 12Cr ODS alloys indicate that a lower Cr, high strength ODS alloy with a higher maximum use temperature could be achieved.

  3. High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey; Chambers, Matthew

    2011-01-01

    A new concept has been developed for a high-temperature luminescence-based optical thermometer that both shows the desired temperature sensitivity in the upper temperature range of present state-of-the-art luminescence thermometers (above 1,300 C), while maintaining substantial stronger luminescence signal intensity that will allow these optical thermometers to operate in the presence of the high thermal background radiation typical of industrial applications. This objective is attained by using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor with an orthorhombic perovskite structure, resulting in broadband luminescence that remains strong at high temperature due to the favorable electron energy level spacing of Cr:GdAlO3. The Cr:GdAlO3 temperature (and pressure) sensor can be incorporated into, or applied onto, a component s surface when a non-contact surface temperature measurement is desired, or alternatively, the temperature sensor can be attached to the end of a fiber-optic probe that can then be positioned at the location where the temperature measurement is desired. In the case of the fiber-optic probe, both the pulsed excitation and the luminescence emission travel through the fiber-optic light guide. In either case, a pulsed light source provides excitation of the luminescence, and the broadband luminescence emission is collected. Real-time temperature measurements are obtain ed using a least-squares fitting algorithm that determines the luminescence decay time, which has a known temperature dependence established by calibration. Due to the broad absorption and emission bands for Cr:GdAlO3, there is considerable flexibility in the choice of excitation wavelength and emission wavelength detection bands. The strategic choice of the GdAlO3 host is based on its high crystal field, phase stability, and distorted symmetry at the Cr3+ occupation sites. The use of the broadband emission for temperature sensing at high temperatures is a key feature of the invention and is

  4. Fretting corrosion of CoCrMo and Ti6Al4V interfaces.

    PubMed

    Swaminathan, Viswanathan; Gilbert, Jeremy L

    2012-08-01

    Mechanically assisted corrosion (fretting corrosion, tribocorrosion etc.,) of metallic biomaterials is a primary concern for numerous implant applications, particularly in the performance of highly-loaded medical devices. While the basic underlying concepts of fretting corrosion or tribocorrosion and fretting crevice corrosion are well known, there remains a need to develop an integrated systematic method for the analysis of fretting corrosion involving metal-on-metal contacts. Such a method can provide detailed and quantitative information on the processes present and explore variations in surfaces, alloys, voltages, loadings, motion and solution conditions. This study reports on development of a fretting corrosion test system and presents elements of an in-depth theoretical fretting corrosion model that incorporates both the mechanical and the electrochemical aspects of fretting corrosion. To demonstrate the capabilities of the new system and validate the proposed model, experiments were performed to understand the effect of applied normal load on fretting corrosion performance of Ti6Al4V/Ti6Al4V, CoCrMo/Ti6Al4V, and CoCrMo/CoCrMo material couples under potentiostatic conditions with a fixed starting surface roughness. The results of this study show that fretting corrosion is affected by material couples, normal load and the motion conditions at the interface. In particular, fretting currents and coefficient of friction (COF) vary with load and are higher for Ti6Al4V/Ti6Al4V couple reaching 3 mA/cm(2) and 0.63 at about 73 MPa nominal contact stress, respectively. Ti6Al4V coupled with CoCrMo displayed lower currents (0.6 mA/cm(2)) and COF (0.3), and the fretting corrosion behavior was comparable to CoCrMo/CoCrMo couple (1.2 mA/cm(2) and 0.3, respectively). Information on the mechanical energy dissipated at the interface, the sticking behavior, and the load dependence of the inter-asperity distance calculated using the model elucidated the influence of

  5. Annealing effect on the electrical properties and composition of a NiCrAl thin film resistor

    NASA Astrophysics Data System (ADS)

    Chuang, Nai-Chuan; Lin, Jyi-Tsong; Chen, Huey-Ru

    2015-12-01

    The composition of NiCrAl thin film resistors, under different annealing conditions in a N2 atmosphere, was investigated. The Auger electron spectrum (AES) has been used in studying the composition of NiCrAl thin films. The concentration ratio of Cr to Ni decreases when the annealing temperature increases. The electrical properties of a NiCrAl thin film resistor are affected by the concentrations of Cr and Ni, which lead to a higher temperature coefficient of resistance (TCR) and a lower sheet resistivity. The TCR of a NiCrAl thin film resistor is -5 ppm/°C at a 250 °C annealing temperature.

  6. Evaluation of the microstructure of Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 4

    NASA Technical Reports Server (NTRS)

    Pickens, Joseph R.; Kumar, K. S.; Brown, S. A.; Gayle, Frank W.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy designed to have ultrahigh strength and to serve in aerospace applications. The alloy displays significantly higher strength than competitive alloys in both naturally aged and artificially aged tempers. The strengthening phases in such tempers have been identified to, in part, explain the mechanical properties attained. In general, the alloy is strengthened by delta prime Al3Li and Guinier-Preston (GP) zones in the naturally aged tempers. In artificially aged tempers in slightly underaged conditions, strengthening is provided by several phases including GP zones, theta prime Al2Cu, S prime Al2CuMg, T(sub 1) Al2CuLi, and possibly a new phase. In the peak strength artificially aged tempers, T(sub 1) is the predominant strengthening phase.

  7. Postperovskite phase equilibria in the MgSiO3-Al2O3 system.

    PubMed

    Tsuchiya, Jun; Tsuchiya, Taku

    2008-12-09

    We investigate high-P,T phase equilibria of the MgSiO(3)-Al(2)O(3) system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh(2)O(3)(II) phase, present calculations demonstrate that (i) dissolving Al(2)O(3) tends to decrease the postperovskite transition pressure of MgSiO(3) but the effect is not significant ( approximately -0.2 GPa/mol% Al(2)O(3)); (ii) Al(2)O(3) produces the narrow perovskite+postperovskite coexisting P,T area (approximately 1 GPa) for the pyrolitic concentration (x(Al2O3) approximately 6 mol%), which is sufficiently responsible to the deep-mantle D'' seismic discontinuity; (iii) the transition would be smeared (approximately 4 GPa) for the basaltic Al-rich composition (x(Al2O3) approximately 20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh(2)O(3)(II) with increasing the Al concentration involving small displacements of the Mg-site cations.

  8. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices

    PubMed Central

    Zheng, T. C.; Lin, W.; Liu, R.; Cai, D. J.; Li, J. C.; Li, S. P.; Kang, J. Y.

    2016-01-01

    A novel multidimensional Mg-doped superlattice (SL) is proposed to enhance vertical hole conductivity in conventional Mg-doped AlGaN SL which generally suffers from large potential barrier for holes. Electronic structure calculations within the first-principle theoretical framework indicate that the densities of states (DOS) of the valence band nearby the Fermi level are more delocalized along the c-axis than that in conventional SL, and the potential barrier significantly decreases. Hole concentration is greatly enhanced in the barrier of multidimensional SL. Detailed comparisons of partial charges and decomposed DOS reveal that the improvement of vertical conductance may be ascribed to the stronger pz hybridization between Mg and N. Based on the theoretical analysis, highly conductive p-type multidimensional Al0.63Ga0.37N/Al0.51Ga0.49N SLs are grown with identified steps via metalorganic vapor-phase epitaxy. The hole concentration reaches up to 3.5 × 1018 cm−3, while the corresponding resistivity reduces to 0.7 Ω cm at room temperature, which is tens times improvement in conductivity compared with that of conventional SLs. High hole concentration can be maintained even at 100 K. High p-type conductivity in Al-rich structural material is an important step for the future design of superior AlGaN-based deep ultraviolet devices. PMID:26906334

  9. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Chen, X. F.; Johnson, D. R.; Noebe, R. D.; Oliver, B. F.

    1995-01-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  10. Effects of electron-irradiation darkening and its posterior bleaching by light in novel Cr-Mg-YAS fiber

    NASA Astrophysics Data System (ADS)

    Kir'yanov, A. V.; Dutta, D.; Barmenkov, Y. O.; Das, S.; Dhar, A.; Paul, M. C.; Didenko, S. I.; Legotin, S. A.; Tapero, K. I.

    2016-12-01

    Two remarkable effects for the recently invented chromium-magnesium (Cr-Mg) co-doped yttria-alumino-silicate fiber are reported: (i) strong and spectrally peculiar darkening under the action of energetic (6 MeV) β-electrons with dosage up to 1.0  ×  1015 cm-2 and (ii) posterior optical bleaching of the darkening loss at exposure to low-power (of a mW-range) 633 nm light. Both phenomena are revealed to be conspecific to co-doping the fiber with Mg and to the presence of versatile valence forms of Cr ions. The reported results seem to be impactful for exploiting fiber of such type for dosimetry and in space technology.

  11. Fatigue characteristics and microcosmic mechanism of Al-Si-Mg alloys under multiaxial proportional loadings

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Song; He, Guo-Qiu; Liu, Bing; Zhu, Zheng-Yu; Zhang, Wei-Hua

    2011-08-01

    With the increasing use of Al-Si-Mg alloys in the automotive industry, the fatigue performance of Al-Si-Mg alloy has become a major concern with regard to their reliability. The fatigue characteristics and microcosmic mechanism of an Al-Si-Mg alloy under multiaxial proportional loadings were investigated in this research. As low cycle fatigue life and material strengthening behavior are closely related, the effect of equivalent strain amplitude on the multiaxial fatigue properties was analyzed. Fatigue tests were conducted to determine the influence of equivalent strain amplitude on the multiaxial proportional fatigue properties. The fatigue life exhibits a stable behavior under multiaxial proportional loadings. The dislocation structures of the Al-Si-Mg alloy were observed by transmission electron microscopy (TEM). The dislocation structure evolution of the Al-Si-Mg alloy under multiaxial proportional loadings during low cycle fatigue develops step by step by increasing fatigue cycles. Simultaneously, the dislocation structure changes with the change in equivalent strain amplitude under multiaxial proportional loadings. The experimental evidence indicates that the multiaxial fatigue behavior and life are strongly dependent on the microstructure of the material, which is caused by multiaxial proportional loadings.

  12. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries

    PubMed Central

    Yan, Jianfeng; Heckman, Nathan M.; Velasco, Leonardo; Hodge, Andrea M.

    2016-01-01

    The sensitization and subsequent intergranular corrosion of Al-5.3 wt.% Mg alloy has been shown to be an important factor in stress corrosion cracking of Al-Mg alloys. Understanding sensitization requires the review of grain boundary character on the precipitation process which can assist in developing and designing alloys with improved corrosion resistance. This study shows that the degree of precipitation in Al-Mg alloy is dependent on grain boundary misorientation angle, adjacent grain boundary planes and grain boundary types. The results show that the misorientation angle is the most important factor influencing precipitation in grain boundaries of the Al-Mg alloy. Low angle grain boundaries (≤15°) have better immunity to precipitation and grain boundary acid attack. High angle grain boundaries (>15°) are vulnerable to grain boundary acid attack. Grain boundaries with adjacent plane orientations near to {100} have potential for immunity to precipitation and grain boundary acid attack. This work shows that low Σ (Σ ≤ 29) coincident site lattice (CSL) grain boundaries have thinner β precipitates. Modified nitric acid mass loss test and polarization test demonstrated that the global corrosion resistance of sputtered Al-Mg alloy is enhanced. This may be attributed to the increased fractions of low Σ (Σ ≤ 29) CSL grain boundaries after sputtering. PMID:27230299

  13. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries

    NASA Astrophysics Data System (ADS)

    Yan, Jianfeng; Heckman, Nathan M.; Velasco, Leonardo; Hodge, Andrea M.

    2016-05-01

    The sensitization and subsequent intergranular corrosion of Al-5.3 wt.% Mg alloy has been shown to be an important factor in stress corrosion cracking of Al-Mg alloys. Understanding sensitization requires the review of grain boundary character on the precipitation process which can assist in developing and designing alloys with improved corrosion resistance. This study shows that the degree of precipitation in Al-Mg alloy is dependent on grain boundary misorientation angle, adjacent grain boundary planes and grain boundary types. The results show that the misorientation angle is the most important factor influencing precipitation in grain boundaries of the Al-Mg alloy. Low angle grain boundaries (≤15°) have better immunity to precipitation and grain boundary acid attack. High angle grain boundaries (>15°) are vulnerable to grain boundary acid attack. Grain boundaries with adjacent plane orientations near to {100} have potential for immunity to precipitation and grain boundary acid attack. This work shows that low Σ (Σ ≤ 29) coincident site lattice (CSL) grain boundaries have thinner β precipitates. Modified nitric acid mass loss test and polarization test demonstrated that the global corrosion resistance of sputtered Al-Mg alloy is enhanced. This may be attributed to the increased fractions of low Σ (Σ ≤ 29) CSL grain boundaries after sputtering.

  14. Simultaneous removal of SO2 and NO2 using a Mg-Al oxide slurry treatment.

    PubMed

    Kameda, Tomohito; Kodama, Aki; Yoshioka, Toshiaki

    2013-11-01

    SO2 and NO2 were simultaneously removed from a mixed gas using a Mg-Al oxide slurry treatment. Both adsorption to the oxide material itself and dissolution of the gases in the aqueous slurry contributed to the removal. A comparison was made between removal of the two gases separately and the simultaneous process. The removal of SO2 using both the simultaneous and individual process was similar; however, the removal of NO2 was lower for the simultaneous process. For the individual treatments, SO2 and NO2 were separately dissolved in the Mg-Al oxide slurry to produce SO3(2-), NO2(-), and NO3(-), which were subsequently removed by the Mg-Al oxide. However, when the simultaneous process was employed, the dissolved gases were seen to have a significant effect on each other. It was speculated that the production of NO2(-) was increased by the reduction of NO2 by SO3(2-). On increasing the quantity of the Mg-Al oxide, or on raising the temperature of the system, the removal of SO2 increased, with a concurrent decrease in NO2 removal. The increase in removal of SO3(2-) was speculated to hinder the conversion of NO2 to NO2(-), therefore decreasing the removal of the nitrogen species. The results demonstrate that the Mg-Al oxide slurry was highly effective for simultaneously removing NO2 and SO2 from a mixed gas.

  15. Correlating Hardness Retention and Phase Transformations of Al and Mg Cast Alloys for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Kasprzak, W.; Czerwinski, F.; Niewczas, M.; Chen, D. L.

    2015-03-01

    The methodology based on correlating hardness and phase transformations was developed and applied to determine the maximum temperature of hardness retention of selected Al-based and Mg-based alloys for aerospace applications. The Al alloys: A356, F357, and C355 experienced 34-66% reduction of the initial hardness, in comparison to 4-22% hardness reduction observed in Mg alloys: QE22A, EV31A, ZE41A, and WE43B after the same annealing to 450 °C. For Al alloys the hardness reduction showed a steep transition between 220 and 238 °C. In contrast, Mg alloys showed a gradual hardness decrease occurring at somewhat higher temperatures between 238 and 250 °C. The hardness data were correlated with corresponding phase transformation kinetics examined by dilatometer and electrical resistivity measurements. Although Mg alloys preserved hardness to higher temperatures, their room temperature tensile strength and hardness were lower than Al alloys. The experimental methodology used in the present studies appears to be very useful in evaluating the softening temperature of commercial Al- and Mg-based alloys, permitting to assess their suitability for high-temperature applications.

  16. Cage Structure Formation of Singly Doped Aluminum Cluster Cations Al n TM + ( TM = Ti, V, Cr)

    NASA Astrophysics Data System (ADS)

    Lang, Sandra M.; Claes, Pieterjan; Neukermans, Sven; Janssens, Ewald

    2011-09-01

    Structural information on free transition metal doped aluminum clusters, Al n TM + ( TM = Ti, V, Cr), was obtained by studying their ability for argon physisorption. Systematic size ( n = 5 - 35) and temperature ( T = 145 - 300 K) dependent investigations reveal that bare Al n + clusters are inert toward argon, while Al n TM + clusters attach one argon atom up to a critical cluster size. This size is interpreted as the geometrical transition from surface-located dopant atoms to endohedrally doped aluminum clusters with the transition metal atom residing in an aluminum cage. The critical size, n crit , is found to be surprisingly large, namely n crit = 16 and n crit = 19 - 21 for TM = V, Cr, and TM = Ti, respectively. Experimental cluster-argon bond dissociation energies have been derived as function of cluster size from equilibrium mass spectra and are in the 0.1-0.3 eV range.

  17. Evolution of Inclusions in Fe-13Cr Treated by CaO-SiO2-Al2O3-Based Top Slag

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Lijun; Zhai, Jun; Li, Jianmin; Chou, Kuo-Chih

    2017-02-01

    Experiments were carried out to determine the effect of Al2O3 in the slag of the CaO-SiO2-Al2O3-MgO-CaF2 system on the cleanness of Fe-13Cr stainless steel deoxidized by ferrosilicon. Increasing the Al2O3 content in basicity = 2.28 slag can reduce the usage of CaF2 and benefit the obtainment of a good kinetic condition for inclusion removal, but over 21 pct would lead to a higher total oxygen content in the melt and make the inclusion composition more complex. It is found that increasing basicity in 16 pct Al2O3 slag would have a good deoxidation ability and accelerate the transformation from high Al2O3 inclusions to low melting point CaO-Al2O3-SiO2-MgO system inclusions, but basicity over 2.58 would lead to high content of [Al] in liquid steel, which would promote the formation of MgO-Al2O3 inclusions. Therefore, it is not suitable to add a high content of Al2O3 into high-basicity slag. Adding Al2O3 into slag of 2.28 in basicity until a content of 16 pct could achieve inclusion plastication within 45 minutes without Ca treatment, which has potential application in industrial production.

  18. Use of Mg-Al oxide for boron removal from an aqueous solution in rotation: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2016-01-01

    Mg-Al oxide prepared through the thermal treatment of [Formula: see text] intercalated Mg-Al layered double hydroxides (CO3·Mg-Al LDH) was found to remove boron (B) from an aqueous solution. B was removed by the rehydration of Mg-Al oxide accompanied by combination with [Formula: see text] . When using twice the stoichiometric quantity of Mg-Al oxide for Mg/Al = 4, the residual concentration of B dropped from 100 to 2.8 mg/L in 480 min, and for Mg/Al = 2, it decreased from 100 to 2.5 mg/L in 240 min. In both cases, the residual concentration of B was highlighted to be lower than the current Japanese effluent standards (10 mg/L). The removal of B can be explained by way of pseudo-first-order reaction kinetics. The apparent activation energy of 63.5 kJ mol(-1), calculated from the Arrhenius plot indicating that a chemical reaction dominates the removal of B by Mg-Al oxide (Mg/Al = 2). The adsorption of B acts upon a Langmuir-type phenomena. The maximum adsorption (qm) and equilibrium adsorption constants (KL) were 7.4 mmol g(-1) and 1.9 × 10(3), respectively, for Mg-Al oxide (Mg/Al = 2). [Formula: see text] in B(OH)4·Mg-Al LDH produced by the removal of B was observed to undergo anion exchange with [Formula: see text] in solution. Following regeneration, the Mg-Al oxide maintained the ability to remove B from an aqueous solution. This study has clarified the possibility of recycling Mg-Al oxide for B removal.

  19. Conduction electron spin resonance in Mg 1 - x Al x B2

    NASA Astrophysics Data System (ADS)

    Likodimos, V.; Koutandos, S.; Pissas, M.; Papavassiliou, G.; Prassides, K.

    2003-01-01

    Conduction electron spin resonance is employed to study the interplay of the electronic and structural properties in the normal state of Mg 1 - x Al x B2 alloys as a function of Al-doping for 0 <= x <= 1. The x-dependence of the spin susceptibility reveals considerable reduction of the total density of states N(EF) with increasing Al concentration, complying with theoretical predictions for a predominant filling effect of the hole σ bands by electron doping. The CESR linewidth exhibits significant broadening, especially prominent in the high-Al-content region, indicative of the presence of enhanced structural disorder, consistent with the presence of compositional fluctuations.

  20. A combined APT and SANS investigation of α' phase precipitation in neutron-irradiated model FeCrAl alloys

    DOE PAGES

    Briggs, Samuel A.; Edmondson, Philip D.; Littrell, Kenneth C.; ...

    2017-03-01

    Here, FeCrAl alloys are currently under consideration for accident-tolerant fuel cladding applications in light water reactors owing to their superior high-temperature oxidation and corrosion resistance compared to the Zr-based alloys currently employed. However, their performance could be limited by precipitation of a Cr-rich α' phase that tends to embrittle high-Cr ferritic Fe-based alloys. In this study, four FeCrAl model alloys with 10–18 at.% Cr and 5.8–9.3 at.% Al were neutron-irradiated to nominal damage doses up to 7.0 displacements per atom at a target temperature of 320 °C. Small angle neutron scattering techniques were coupled with atom probe tomography to assessmore » the composition and morphology of the resulting α' precipitates. It was demonstrated that Al additions partially destabilize the α' phase, generally resulting in precipitates with lower Cr contents when compared with binary Fe-Cr systems. The precipitate morphology evolution with dose exhibited a transient coarsening regime akin to previously observed behavior in aged Fe-Cr alloys. Similar behavior to predictions of the LSW/UOKV models suggests that α' precipitation in irradiated FeCrAl is a diffusion-limited process with coarsening mechanisms similar to those in thermally aged high-Cr ferritic alloys.« less

  1. Study of Different Al/Mg Powders in Hydroreactive Fuel Propellant Used for Water Ramjet

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Tao; Zou, Mei-Shuai; Guo, Xiao-Yan; Yang, Rong-Jie; Li, Yun-Kai; Jiang, En-Zhou; Li, Zhong-Shan

    2014-05-01

    Experiments were conducted to study the effect of magnesium-aluminum alloy on the combustion performance of hydroreactive fuel propellants. The raw metal powders added to the propellants were ball-milled magnesium-50% aluminum alloy (m-AM), magnesium-50% aluminum alloy (AM), and Al and magnesium (Mg) powders, which were characterized using scanning electron microscopy, X-ray diffraction (XRD), and simultaneous thermogravimetric analysis (TGA). A high-pressure combustor and a metal/steam reactor were used to simulate the two-stage combustion of hydroreactive propellants used for a water ramjet. The combustion performance of the metal powders in propellant was studied experimentally, and the efficiency of the Al reaction in the propellants during the two-stage combustion was calculated. TGA traces in air indicated that the oxidation onset temperature of AM powders is much lower than for both Mg and Al powders. The XRD patterns for the AM and m-AM alloys exhibited Al12Mg17 diffraction peaks. The hydroreactive fuel propellant systems with added m-AM powder exhibited good performance in terms of burning rate, combustion heat, and the Al reaction efficiency, which was better than that for the propellants containing AM, Mg, and Al powders. At the pressure studied (3.0 MPa), the burning rate of the m-AM-containing propellant was found to be 15 mm s-1, and the heat of primary combustion was 6,878.1 kJ kg-1.

  2. Phase transformations in rapidly quenched Al-Cr-Zr alloys during heat treatment

    NASA Astrophysics Data System (ADS)

    Zvereva, N. L.; Kazakova, E. F.; Dmitrieva, N. E.

    2017-02-01

    Results from studying the effect zirconium has on solid-phase processes in aluminum-chromium alloys are presented. Rapidly quenched alloys are prepared via melt spinning. The quenching rate is 106 K/s. By means of physicochemical analysis, it is shown that doping Al-Cr alloys with zirconium improves the thermal stability of supersaturated solid solutions and stabilizes their microcrystalline structure; this hinders the coagulation of intermetallic phases and thus improves the hardness of the alloys. It is found that supersaturated solid solutions of Cr and Zr in aluminum undergo stepwise decomposition; the temperature and time parameters of each step are shown in TTT diagrams.

  3. Cr:YSO Saturable Absorber for the Three-Level Cr:BeAl2O4 Laser at 680.4 nm

    NASA Astrophysics Data System (ADS)

    Kuo, Yen-Kuang; Chen, Horng-Min

    2000-12-01

    In addition to being an efficient saturable absorber Q switch for the tunable Cr:BeAl2O4 laser for its entire tuning range from 700 to 818 nm, the Cr:YSO is shown to be an effective saturable absorber Q switch for the 3-level Cr:BeAl2O4 laser at 680.4 nm. The passive Q-switching performance of this 3-level laser is similar to that of the passively Q-switched ruby laser.

  4. Tunable Cr:YSO Q-Switched Cr:BeAl2O4 Laser: Numerical Study on Laser Performance along Three Principal Axes of the Q Switch

    NASA Astrophysics Data System (ADS)

    Kuo, Yen-Kuang; Chang, Jih-Yuan; Lin, Chia-Ching; Chen, Horng-Min

    2000-07-01

    Numerical simulation of the Cr:YSO Q-switched Cr:BeAl2O4 tunable laser is studied along the three principal axes of the Cr:YSO saturable absorber. The n1 axis has the best Q-switching performance when compared to the n2 and n3 axes. Theoretical expressions of important parameters such as the laser population inversion at various stages, the peak photon number inside the laser resonator, and the output energy and the pulsewidth of the Q-switched laser pulses are derived and used to evaluate the characteristics of the Cr:YSO Q-switched Cr:BeAl2O4 laser system.

  5. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy

    NASA Astrophysics Data System (ADS)

    Cai, Yuan-hua; Wang, Cong; Zhang, Ji-shan

    2013-07-01

    Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like β/δ-AlFeSi white intermetallics, and Chinese script-like α-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like β-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like δ-phase does not show any morphological and size changes. Phase transitions from β-AlFeSi to α-AlFeSi and from δ-AlFeSi to β-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.

  6. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  7. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  8. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  9. Removal of perchlorate in water by calcined MgAl-CO3 layered double hydroxides.

    PubMed

    Yang, Yiqiong; Gao, Naiyun; Deng, Yang; Yu, Guoping

    2013-04-01

    Perchlorate is widely known as an inorganic endocrine disruptor. In this study, MgAl-CO3 layered double hydroxides with different Mg/Al molar ratios were prepared using a coprecipitation method and followed by a calcination process at a temperature range of 300 to 700 degrees C. Results showed that the best synthesis conditions were a calcination temperature of 550 degrees C and Mg/Al molar ratio of 3. Further, the adsorbent and its adsorption product were characterized by x-ray diffraction, Fourier transform-infrared spectroscopy, and thermogravimetric-differential thermal analysis. The layered double hydroxides structures in the adsorbent were lost during calcination at 550 degrees C but were reconstructed subsequent to adsorption of perchlorate, indicating that the "memory effect" appeared to play an important role in perchlorate adsorption. The perchlorate adsorption pattern was best described by the pseudo-second-order kinetics model, while the Freundlich isotherms appropriately explained perchlorate adsorption data.

  10. [Adsorption of perchlorate by calcined Mg/Zn/Al layered double hydroxides].

    PubMed

    Wang, Hong-Yu; Liu, Yan

    2014-07-01

    The adsorption capacity of perchlorate by Mg/Zn/Al layered double hydroxides was investigated. The samples were characterized by X-ray diffraction (XRD) and the adsorption isothermal model and dynamic model were discussed. The effect of calcination temperature, Mg/Zn/Al molar ratio, pH value of solution, adsorption time and dosage on the adsorption capacity of samples were studied. The experiment results showed that the removal ratio and adsorption capacity reached the highest and the pH value had good applicability when the molar ratio was Mg/Zn/Al = 2: 1 : 1. The adsorption of perchlorate basically conformed to the pseudo-second kinetics and Langmuir, Freundlich isotherm model.

  11. Long-term high-velocity oxidation and hot corrosion testing of several NiCrAl and FeCrAl base oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.; Whittenberger, J. D.

    1982-01-01

    Several oxide dispersion strengthened (ODS) alloys have been tested for cyclic, long-term, high gas-velocity resistance to oxidation at 1100 C and hot corrosion at 900 C. Both nominally Ni-16Cr-4Al and Fe-20Cr-4.5Al ODS alloys were subjected up to about 2500 cycles, where each cycle consisted of 1 hr in a hot, Mach 0.3 combusted gas stream followed by a 3-min quench in an ambient temperature, Mach 0.3 air blast. For comparison to existing technology, a coated superalloy was simultaneously tested. The ODS iron alloy exhibited clearly superior behavior, surviving 3800 oxidation and 2300 hot corrosion cycles essentially unscathed. While the ODS nickel alloys exhibited adequate oxidation resistance, the long-term hot corrosion resistance could be marginal, since the best life for such alloys under these conditions was only about 1100 cycles. However, the hot corrosion resistance of the ODS Ni-base alloys is excellent in comparison to that of traditional superalloys.

  12. Intruder configurations in the A=33 isobars: 33Mg and 33Al.

    PubMed

    Tripathi, Vandana; Tabor, S L; Mantica, P F; Utsuno, Y; Bender, P; Cook, J; Hoffman, C R; Lee, Sangjin; Otsuka, T; Pereira, J; Perry, M; Pepper, K; Pinter, J S; Stoker, J; Volya, A; Weisshaar, D

    2008-10-03

    The beta decay of 33Mg (N=21) presented in this Letter reveals intruder configurations in both the parent and the daughter nucleus. The lowest excited states in the N=20 daughter nucleus, 33Al, are found to have nearly 2p-2h intruder configuration, thus extending the "island of inversion" beyond Mg. The allowed direct beta-decay branch to the 5/2{+} ground state of the daughter nucleus 33Al implies positive parity for the ground state of the parent 33Mg, contrary to an earlier suggestion of negative parity from a g-factor measurement. An admixture of 1p-1h and 3p-3h configurations is proposed for the ground state of 33Mg to explain all of the experimental observables.

  13. Intruder Configurations in the A=33 Isobars: {sup 33}Mg and {sup 33}Al

    SciTech Connect

    Tripathi, Vandana; Tabor, S. L.; Bender, P.; Hoffman, C. R.; Lee, Sangjin; Perry, M.; Pepper, K.; Volya, A.; Mantica, P. F.; Utsuno, Y.; Cook, J.; Pereira, J.; Weisshaar, D.; Otsuka, T.; Pinter, J. S.; Stoker, J.

    2008-10-03

    The {beta} decay of {sup 33}Mg (N=21) presented in this Letter reveals intruder configurations in both the parent and the daughter nucleus. The lowest excited states in the N=20 daughter nucleus, {sup 33}Al, are found to have nearly 2p-2h intruder configuration, thus extending the 'island of inversion' beyond Mg. The allowed direct {beta}-decay branch to the 5/2{sup +} ground state of the daughter nucleus {sup 33}Al implies positive parity for the ground state of the parent {sup 33}Mg, contrary to an earlier suggestion of negative parity from a g-factor measurement. An admixture of 1p-1h and 3p-3h configurations is proposed for the ground state of {sup 33}Mg to explain all of the experimental observables.

  14. Characteristics of Pt-K/MgAl2O4 lean NOx trap catalysts

    SciTech Connect

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos; Zhu, Haiyang; Kwak, Ja Hun; Peden, Charles HF

    2012-04-30

    We report the various characteristics of Pt-K/MgAl{sub 2}O{sub 4} lean NOx trap (LNT) catalysts including the effect of K loading on nitrate formation/decomposition, NOx storage activity and durability. Upon the adsorption of NO{sub 2} on K/MgAl{sub 2}O{sub 4} samples, potassium nitrates formed on Mg-related sites in MgAl{sub 2}O{sub 4} support are observed, in addition to the typical two potassium nitrates (ionic and bidentate) formed also on Al{sub 2}O{sub 3} supported sample. Based on NO{sub 2} TPD and FTIR results, the Mg-bound KNO{sub 3} thermally decompose at higher temperature than Al-bound KNO{sub 3}, implying its superior thermal stability. At a potassium loading of 5wt%, the temperature of maximum NOx uptake (T{sub max}) is 300 C. Increasing the potassium loading from 5wt% to 10 wt%, the T{sub max} gradually shifted from 300 C to 450 C, indicating the dependence of T{sub max} on the potassium loading. However, increase in potassium loading above 10 wt% only gives rise to the reduction in the overall NOx storage capacity. This work also underlines the obstacles these materials have prior to their practical application (e.g., durability and sulfur poisoning/ removal). This work provides fundamental understanding of Pt-K/MgAl{sub 2}O{sub 4}-based lean NOx trap catalysts, which could be good candidates for high temperature LNT applications.

  15. A Pyrolitic Lower Mantle with (Mg,Fe3+)(Si,Al3+)O3 Bridgmanite

    NASA Astrophysics Data System (ADS)

    Wang, X.; Tsuchiya, T.

    2014-12-01

    To better understand the Earth's lower mantle (LM), thermodynamic properties (TDPs) of LM minerals should be illustrated clearly. We have so far reported the TDPs of Fe (and Al)-bearing MgO, MgSiO3 bridgmanite (Br) and post bridgmanite [1-5] by using the internally consistent LSDA+U method and the lattice dynamics method. In this work, two spin states, the high (HS) and low spin (LS) state, and several possible distribution configurations are considered in the LM pressure range. For Fe incorporated in Br, only Fe3+ at the Si site undergoes a HS to LS transition. However, this is suppressed by Al incorporation, because Al3+ prefers the Si site and attracts HS Fe3+ at the adjacent Mg site forming Fe3+-Al3+ pair. Br with geophysically relevant 6.25 mol% Fe2+ or Fe3+-Al3+ pair is found vibrationally stable. Incorporation of these elements increases the Br volume a little but gives marginal effects on the TDPs. Simulated densities, adiabatic bulk moduli, and bulk sound velocities of possible LM mineral aggregations show that a composition close to pyrolite with (Mg,Fe3+)(Si,Al3+)O3 Br is accountable for the reference Earth model, while Fe2+-bearing Br instead gives unignorable disagreements in deeper part. Neither Si-richer nor Si-poorer composition improves the disagreements. This indicates that Fe in LM bridgmanite should predominantly be ferric acquiring the HS state, and pyrolitic composition with (Mg,Fe3+)(Si,Al3+)O3 Br is a reasonable LM model. References:[1] A. Metsue, and T. Tsuchiya, J. Geophys. Res. 116, B08207 (2011). [2] A. Metsue, and T. Tsuchiya, Geophys. J. Int. 190, 310 (2012). [3] H. Fukui, T. Tsuchiya, and A. Q. R. Baron, J. Geophys. Res. 117, B12202 (2012). [4] T. Tsuchiya, and X. Wang, J. Geophys. 118, 83 (2013). [5] X. Wang, and T. Tsuchiya, under reviewing.

  16. Melting and thermodynamic properties of pyrope (Mg3Al2Si3O12)

    USGS Publications Warehouse

    Tequi, C.; Robie, R.A.; Hemingway, B.S.; Neuville, D.R.; Richet, P.

    1991-01-01

    The heat capacity of Mg3Al2Si3O12 glass has been measured from 10 to 1000 K by adiabatic and differential scanning calorimetry. The heat capacity of crystalline pyrope has been determined from drop-calorimetry measurements between 820 and 1300 K. From these and previously published results a consistent set of thermodynamic data is presented for pyrope and Mg3Al2Si3O12 glass and liquid for the interval 0-2000 K. The enthalpy of fusion at 1570 ?? 30 K, the metastable congruent 1-bar melting point, is 241 ?? 12 kJ/mol. ?? 1991.

  17. P- T- X controls on Ca and Na distribution between Mg-Al tourmaline and fluid

    NASA Astrophysics Data System (ADS)

    Berryman, Eleanor J.; Wunder, Bernd; Rhede, Dieter; Schettler, Georg; Franz, Gerhard; Heinrich, Wilhelm

    2016-04-01

    Ca-Na partitioning between tourmaline and a coexisting fluid is investigated in the system CaO-Na2O-B2O3-Al2O3-MgO-SiO2-H2O-Cl between 0.2-4.0 GPa and 500-700 °C. The synthesis experiments produced a mineral assemblage of tourmaline, coesite/quartz, and in some cases additional phases, typically comprising <1 wt% of the solid product. The synthesized tourmalines are solid solutions of dravite [NaMg3Al6Si6O18(BO3)3(OH)3(OH)], "oxy-uvite" (i.e. "Ca-Mg-O root name") [CaMg3Al6Si6O18(BO3)3(OH)3O], and magnesio-foitite [☐(Mg2Al)Al6Si6O18(BO3)3(OH)3(OH)]. Starting materials comprised a fluid of constant ionic strength (2.00 m) and an oxide mixture with a constant Mg/Al ratio. As a result, the number of vacancies at the X site and the Mg/Al ratio of tourmaline crystals synthesized at the same temperature vary only slightly. The major solid solution is Ca-Na exchange at the X site via the exchange vector X Ca W O[ X Na W (OH)]-1, with the exchange vector X (Ca☐)[ X Na2]-1 serving as a secondary Ca-incorporation mechanism. Tourmaline's X-site composition reflects the fluid composition, whereby the Ca (or Na) concentration in the fluid corresponds with the Ca (or Na) content in tourmaline at each pressure and temperature. At 0.2 GPa, 700 °C, Ca preferentially partitions into tourmaline, producing the most Ca-rich tourmaline crystals synthesized here. At pressures >1.0 GPa, Ca partitions preferentially into the fluid, resulting in Na-dominant tourmaline compositions. Temperature has a secondary effect on Ca-Na partitioning, with higher temperatures correlating with increased Ca incorporation in tourmaline. Based on the experimental findings, tourmaline is expected to have Ca-rich compositions when it forms in low pressure, high-temperature Ca-rich rocks, consistent with the current record of tourmaline occurrence. The bulk Mg/Al ratio and the pH of the tourmaline-forming system may also affect Ca incorporation in tourmaline, but remain to be investigated experimentally.

  18. Mass spectrometric study of the evaporation of MgAl2O4 spinel

    NASA Astrophysics Data System (ADS)

    Shornikov, S. I.

    2017-01-01

    The evaporation of MgAl2O4 spinel is studied via high-temperature Knudsen effusion mass spectrometry in the temperature range of 1850-2250 K. In the gas phase, molecular components typical of the simple oxides in the spinel and traces of gaseous complex oxide MgAlO are identified above the samples. The resulting values of the partial vapor pressures of the molecular components contained in the gas phase over the spinel are compared with those corresponding to simple oxides for the first time.

  19. The Portevin-Le Chatelier effect in an Al-Mg alloy

    NASA Astrophysics Data System (ADS)

    Mogucheva, Anna; Saenko, Mikhail; Kaibyshev, Rustam

    2016-11-01

    The Portevin-Le Chatelier (PLC) effect has been studied in an Al-Mg alloy. A series off tensile tests was carried out at temperatures ranging from -100 to 150°C at plastic strain rates ranging from a low 10-1 s-1 to a high of 10-5 s-1. The coarse-grained material displays tensile curves typical of Al-Mg alloys with an extensive initial strain hardening and an overall parabolic shape until necking. Mixed type (A + B) serrations take place during the strain hardening stage.

  20. O-18 tracer studies of Al2O3 scale formation on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Reddy, K. P. R.; Cooper, A. R.; Smialek, J. L.

    1982-01-01

    Diffusion processes in Al2O3 scales formed on NiCrAl + Zr alloys were studied by the proton activation technique employing the O-18 isotope as a tracer. The O-18 profiles identified a zone of oxide penetration beneath the external scale. Both this subscale formation and the outer Al2O3 scale thickness were shown by this technique to increase with Zr content in the alloy. Estimated kp's from scale thicknesses were in agreement with gravimetric measurements for various Zr levels. Alternate exposures in O-16 and O-18 revealed that oxygen inward transport was the primary growth mechanism. A qualitative analysis of these O-18 profiles indicated that the oxygen transport was primarily via short-circuit paths, such as grain boundaries.

  1. Kerr rotation and perpendicular magnetic anisotropy of CoCr films with Al ultrathin interlayers and single-layer CoCr films

    NASA Astrophysics Data System (ADS)

    Hirata, Toyoaki; Takahashi, Takakazu; Hoshi, Youichi; Naoe, Masahiko

    1991-11-01

    The Co81Cr19/Al multilayered films were prepared by using the plasma-free sputtering apparatus. The specimen films with the thicknesses of Co81Cr19 and Al layers lCo-Cr and lAl of 50-170 and 7-14 Å, respectively, were investigated for the Kerr rotation angle θK and the reflectance R of the multilayered films with total thickness of 1500 Å. Films with lCo-Cr and lAl of 138 and 7 Å, respectively, had a θK of 0.21° and R of 0.7 which is larger than Co81Cr19 single-layer films prepared by conventional sputtering where θK and R are 0.036° and 0.4-0.5, respectively. These results indicate that the films were entirely homogeneous, that is, the surface and interior of the films may be almost the same for composition, microstructure and magnetic properties. Consequently, the Co81Cr19 thin films with Al ultrathin interlayers may be useful for microcrystalline magneto-optical media with a high C/N ratio.

  2. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature.

    PubMed

    Hamon, Lomig; Serre, Christian; Devic, Thomas; Loiseau, Thierry; Millange, Franck; Férey, Gérard; De Weireld, Guy

    2009-07-01

    Hydrogen sulfide gravimetric isotherm adsorption measurements were carried out on MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks (MOFs). A two-step adsorption mechanism related to a breathing effect was observed for MIL-53 terephthalate-based MOFs. Methane adsorption measurements highlighted the regenerability of MIL-53(Al, Cr) and MIL-47(V) MOFs after H(2)S treatment, whereas MIL-100 and MIL-101 CH(4) adsorption capacities were significantly decreased.

  3. Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg

    SciTech Connect

    Nandipati, Giridhar; Govind, Niranjan; Andersen, Amity; Rohatgi, Aashish

    2016-03-16

    Atomistic on-lattice self-learning kinetic Monte Carlo (SLKMC) method was used to examine the vacancy-mediated diffusion of an Al atom in pure hcp Mg. Local atomic environment dependent activation barriers for vacancy-atom exchange processes were calculated on-the-fly using climbing image nudged-elastic band method (CI-NEB) and using a Mg-Al binary modified embedded-atom method (MEAM) interatomic potential. Diffusivities of vacancy and Al atom in pure Mg were obtained from SLKMC simulations and are compared with values available in the literature that are obtained from experiments and first-principle calculations. Al Diffusivities obtained from SLKMC simulations are lower, due to larger activation barriers and lower diffusivity prefactors, than those available in the literature but have same order of magnitude. We present all vacancy-Mg and vacancy-Al atom exchange processes and their activation barriers that were identified in SLKMC simulations. We will describe a simple mapping scheme to map a hcp lattice on to a simple cubic lattice that would enable hcp lattices to be simulated in an on-lattice KMC framework. We also present the pattern recognition scheme used in SLKMC simulations.

  4. The β Decay of 35Mg and the Structure of 35Al

    NASA Astrophysics Data System (ADS)

    Carls, A. B.; Rajabali, M. M.; Ash, J. E.; Griffin Collaboration

    2016-09-01

    Far from the line of beta-stability, the well described shell structure of nuclei falls apart. Near the N = 20 shell closure lies the ``island of inversion'', an area in which the nuclei exhibit ground states deformed with an intruder configuration. The 35Al nucleus is near this region and whether it belongs to the island is a focus of this study. The experiment to study the β decay of 35Mg was performed at TRIUMF Laboratory. Studying the resulting data provides the information to obtain half-life measurements for 35Mg and 35Al, new level information for 35Al, and provides branching ratios for the feeding of the Si decay chain from Mg. Analyzing the data from the isotope implantation and decay cycles yielded spectra featuring the exponential decay of the nuclei. Fitting this curve will provide the desired half-lives for 35Mg and 35Al. The level scheme for 35Al will be pieced together through a methodical study of the γ - γ coincidences with in a β - γ time difference gate. A detailed description of the methods for eliminating erroneous and unnecessary data will be presented along with the results. This work is funded in part by the Office of Provost and Research Office of Tennessee Tech University.

  5. Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy)acetic acid (MCPA): systems Mg-Al, Mg-Fe and Mg-Al-Fe.

    PubMed

    Bruna, F; Celis, R; Pavlovic, I; Barriga, C; Cornejo, J; Ulibarri, M A

    2009-09-15

    Hydrotalcite-like compounds [Mg(3)Al(OH)(8)]Cl x 4H(2)O; [Mg(3)Fe(OH)(8)]Cl x 4H(2)O; [Mg(3)Al(0.5)Fe(0.5)(OH)(8)]Cl x 4H(2)O (LDHs) and calcined product of [Mg(3)Al(OH)(8)]Cl x 4H(2)O, Mg(3)AlO(4.5) (HT500), were studied as potential adsorbents of the herbicide MCPA [(4-chloro-2-methylphenoxy)acetic acid] as a function of pH, contact time and pesticide concentration, and also as support for the slow release of this pesticide, with the aim to reduce the hazardous effects that it can pose to the environment. The information obtained in the adsorption study was used for the preparation of LDH-MCPA complexes. The results showed high and rapid adsorption of MCPA on the adsorbents as well as that MCPA formulations based on LDHs and HT500 as pesticide supports displayed controlled release properties and reduced herbicide leaching in soil columns compared to a standard commercial MCPA formulation. Thereby, we conclude that the LDHs employed in this study can be used not only as adsorbents to remove MCPA from aqueous solutions, but also as supports for the slow release of this highly mobile herbicide, thus controlling its immediate availability and leaching.

  6. The β decay of 34,35Mg and the structure of 34Al

    NASA Astrophysics Data System (ADS)

    Rajabali, Mustafa; Griffin Collaboration On Experiment S1367 Team

    2016-09-01

    Nuclei in the island of inversion, near the N = 20 shell closure, exhibit a fascinating behavior where the nuclear ground states show deformed configurations dominated by particle-hole excitations across the neutron shell gap. The 31-35Mg nuclei are in or at the border of this island displaying intruder ground-state configurations, while the 31-35Al isotopes are suggested to have mixed ground-state configurations of normal and intruder type and thus serve as a transition from intruder dominated Mg isotopes to the normal ground-state configuration in Si isotopes. An experiment was performed at the TRIUMF-ISAC-I facility with the goal of populating states in 33-35Al via the beta decay of 33-35Mg. Mg ions were produced, transported and implanted onto a moving Mylar tape at the center of the GRIFFIN spectrometer. Results obtained from the analysis of the 34,35Mg decay data from this experiment will be presented. This includes the half-lives of 34,35Mg and 34,35Al which clarify current conflicting information in the literature. This work is supported by Tennessee Technological University Research Office, the Canadian Founda- tion for Innovation, the National Research Council of Canada and the Natural Sciences and Engineering Research Council of Canada.

  7. Thermal evolution of Mg-Al and Ni-Al layered double hydroxides: the structure of the dehydrated phase.

    PubMed

    Cherepanova, Svetlana; Leont'eva, Natalya; Drozdov, Vladimir; Doronin, Vladimir

    2016-11-01

    Simulation of X-ray diffraction patterns on the basis of the models of one-dimensional disordered crystals was used to investigate the structure of the dehydrated phase produced by dehydration of Mg-Al and Ni-Al layered double hydroxides at a temperature of ∼473-498 K. It was found that the removal of water molecules transforms the initial structure, which is a mixture of 3R1 and 2H1 polytypes, into a structure that comprises preferentially fragments of 3R2 and 1H polytypes and has some turbostratic disorder.

  8. X-ray Diffraction Analysis on Post Treatment of Ca-Mg-Al-Layered Double Hydroxide Slurry

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Nugrahaningtyas, K. D.; Heriyanto

    2017-02-01

    This research objectives to study post treatment on Ca-Mg-Al-Layered Double Hydroxide (Ca-Mg-Al-LDH) slurry which was prepared from brine water by cooling treatment. The cooling rate was varied from 1 to 3 °C/min by using stirring and without stirring, and the cooling time was done at 0, 30 minutes and 24 hours. The quantitative X-ray diffraction (QXRD) was employed on Ca-Mg-Al-LDH using Le Bail refinement method. The refinement results found another Mg-Al-LDH and Ca-Al-LDH phases, such as Mg(OH)2, Al(OH)3 and CaCO3. The highest phase composition on material Ca-Mg-Al-LDH using Le Bail refinement was showed by Al(OH)3.

  9. Relative phase and physical properties of CrN/AlN multilayer: A DFT study

    NASA Astrophysics Data System (ADS)

    Cudris, E. F.; Díaz F, J. H.; Espita R, M. J.

    2016-08-01

    Using first principles total-energy calculations within the framework of density functional theory, we studied the relative stability and the structural and electronic properties of multilayer CrN/AlN in the sodium chloride (NaCl), cesium chloride (CsCl), nickel arsenide (NiAs), zinc-blende, and wurtzite structures. The calculations were carried out using the method based on pseudopotentials, employed exactly as implemented in Quantum-ESPRESSO code. Based on total energy minimization, we found that the minimum global energy of CrN/AlN is obtained for the zincblende structure. Additionally, at high pressure our calculations show the possibility of a phase transition from the zincblende to NaCl structure. For the zincblende phase, the density of states analysis reveals that the multilayer exhibits a half-metallic behavior with a magnetic moment of 3.0^p/Cr-atom. These properties come essentially from the polarization of Cr-d and N-p states that cross the Fermi level. Due to these properties, the multilayer can potentially be used in the field of spintronics or spin injectors.

  10. In situ transmission electron microscopy observations of precipitation and a new orientation relationship between γ-Mg17Al12 and magnesium-based matrix in an Mg-Al-Zn-Sn alloy

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Zhao, Dongshan; Nie, Xin; Tao, Hongyu; Wang, Jianbo; Gui, Jianian

    2012-12-01

    An in situ observation of the precipitation of γ-Mg17Al12 phase in a die-cast Mg-Al-Zn-Sn alloy was performed using a transmission electron microscope equipped with a heating stage maintained at 403 K for 100 min. The addition of a small amount of Sn to the AZ91 system accelerates the development of the γ-Mg17Al12 phase formed during continuous precipitation. A new orientation relationship between the γ-Mg17Al12 precipitate and α-Mg matrix was identified as ? .

  11. Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides

    SciTech Connect

    Shimamura, Akihiro; Kanezaki, Eiji; Jones, Mark I.; Metson, James B.

    2012-02-15

    The grafting of interlayer phosphate in synthetic Mg/Al layered double hydroxides with interlayer hydrogen phosphate (LDH-HPO{sub 4}) has been studied by XRD, TG/DTA, FT-IR, XPS and XANES. The basal spacing of crystalline LDH-HPO{sub 4} decreases in two stages with increasing temperature, from 1.06 nm to 0.82 nm at 333 K in the first transition, and to 0.722 nm at 453 K in the second. The first stage occurs due to the loss of interlayer water and rearrangement of the interlayer HPO{sub 4}{sup 2-}. In the second transition, the interlayer phosphate is grafted to the layer by the formation of direct bonding to metal cations in the layer, accompanied by a change in polytype of the crystalline structure. The grafted phosphate becomes immobilized and cannot be removed by anion-exchange with 1-octanesulfonate. The LDH is amorphous at 743 K but decomposes to Mg{sub 3}(PO{sub 4}){sub 2}, AlPO{sub 4}, MgO and MgAl{sub 2}O{sub 4} after heated to 1273 K. - Graphical abstract: The cross section of the synthetic Mg, Al layered double hydroxides in Phase 1, with interlayer hydrogen phosphate Phase 2, and with grafted phosphate, Phase 3. Highlights: Black-Right-Pointing-Pointer The grafting of hydrogen phosphate intercalated Mg/Al-LDH has been studied. Black-Right-Pointing-Pointer The basal spacing of crystalline LDH-HPO{sub 4} decreases in two stages with increasing temperature. Black-Right-Pointing-Pointer The first decrease is due to loss of interlayer water, the second is attributed to phosphate grafting. Black-Right-Pointing-Pointer The grafted interlayer phosphate becomes immobilized and cannot be removed by anion-exchange.

  12. Phosphate adsorption ability of biochar/Mg-Al assembled nanocomposites prepared by aluminum-electrode based electro-assisted modification method with MgCl₂ as electrolyte.

    PubMed

    Jung, Kyung-Won; Jeong, Tae-Un; Hwang, Min-Jin; Kim, Kipal; Ahn, Kyu-Hong

    2015-12-01

    In this work, the textural properties and phosphate adsorption capability of modified-biochar containing Mg-Al assembled nanocomposites prepared by an effective electro-assisted modification method with MgCl2 as an electrolyte have been determined. Structure and chemical analyses of the modified-biochar showed that nano-sized stonelike or flowerlike Mg-Al assembled composites, MgO, spinel MgAl2O4, AlOOH, and Al2O3, were densely grown and uniformly dispersed on the biochar surface. The adsorption isotherm and kinetics data suggested that the biochar/Mg-Al assembled nanocomposites have an energetically heterogeneous surface and that phosphate adsorption could be controlled by multiple processes. The maximum phosphate adsorption capacity was as high as 887 mg g(-1), as fitted by the Langmuir-Freundlich model, and is the highest value ever reported. It was concluded that this novel electro-assisted modification is a very attractive method and the biochar/Mg-Al assembled nanocomposites provide an excellent adsorbent that can effectively remove phosphate from aqueous solutions.

  13. Experimental investigation of the stability of clinopyroxene in mid-ocean ridge basalts: The role of Cr and Ca/Al

    NASA Astrophysics Data System (ADS)

    Voigt, Martin; Coogan, Laurence A.; von der Handt, Anette

    2017-03-01

    The change in the stability field of clinopyroxene in mid-ocean ridge basalt (MORB) as a function of pressure has been used widely as a geobarometer. Based on results from crystallization experiments using MORB-like compositions it has been suggested that MORB differentiation occurs at relatively high pressures at ultraslow- and slow-spreading ridges. However, differentiation requires the loss of substantial heat and it is unclear how this is possible at elevated pressures. To better understand the controls on the stability field of clinopyroxene in MORB-like compositions we report a series of experiments performed at 0.1 MPa in which the temperature of clinopyroxene saturation was determined in melts with variable Cr, Ca/Al and fO2. The results show that increased Cr and Ca/Al lead to an expansion of the clinopyroxene stability field. Incorporating these results into a new model of MORB differentiation shows that realistic parental melt Cr contents can increase the temperature at which clinopyroxene saturation occurs relative to assuming a Cr-free melt (as is commonly the case). Likewise, high Ca/Al melts will saturate clinopyroxene earlier than low Ca/Al melts and their crystallization may provide an explanation for high Mg# clinopyroxene in oceanic gabbros. The newly calibrated geobarometer gives lower crystallization pressures for MORB at the slow-spreading SWIR than previous calibrations, but still suggests relatively higher pressures of crystallization with decreasing spreading rate.

  14. Electronic structure of AlCrN films investigated using various photoelectron spectroscopies and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Tatemizo, N.; Imada, S.; Miura, Y.; Yamane, H.; Tanaka, K.

    2017-03-01

    The valence band (VB) structures of wurtzite AlCrN (Cr concentration: 0-17.1%), which show optical absorption in the ultraviolet-visible-infrared light region, were investigated via photoelectron yield spectroscopy (PYS), x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), and ab initio density of states (DOS) calculations. An obvious photoelectron emission threshold was observed ~5.3 eV from the vacuum level for AlCrN, whereas no emission was observed for AlN in the PYS spectra. Comparisons of XPS and UPS VB spectra and the calculated DOS imply that Cr 3d states are formed both at the top of the VB and in the AlN gap. These data suggest that Cr doping could be a viable option to produce new materials with relevant energy band structures for solar photoelectric conversion.

  15. Status Report on Irradiation Capsules Containing Welded FeCrAl Specimens for Radiation Tolerance Evaluation

    SciTech Connect

    Field, Kevin G.; Howard, Richard H.

    2016-02-26

    This status report provides the background and current status of a series of irradiation capsules, or “rabbits”, that were designed and built to test the contributions of microstructure, composition, damage dose, and irradiation temperature on the radiation tolerance of candidate FeCrAl alloys being developed to have enhanced weldability and radiation tolerance. These rabbits will also test the validity of using an ultra-miniature tensile specimen to assess the mechanical properties of irradiated FeCrAl base metal and weldments. All rabbits are to be irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) to damage doses up to ≥15 dpa at temperatures between 200-550°C.

  16. Synthesis of Waste Form in the Gd-Fe-Al-Ni-Mn-Cr-O System

    SciTech Connect

    Chae, S.C.; Jang, Y.N.; Bae, I.K.; Ryu, K.W.

    2006-07-01

    Poly-phase waste form which was the mixture of Gd{sub 3}Fe{sub 2}Al{sub 3}O{sub 12} and (Ni{sub x}Mn{sub 1-x})(Fe{sub y}Cr{sub 1-y}){sub 2}O{sub 4} was synthesized. Also, we are intended to examine phase relation and physicochemical properties of coexisted phases in the compositions and to confirm accommodation relation of elements and phases. Two types of phase series were observed: Garnet-perovskite-spinel and Garnet-spinel. The compositions of garnets and spinels were nonstoichiometric, and especially, this poly-phase ceramics may be in a good waste form. The excessive Gd in garnets indicated the immobilization of higher content of actinides. The nonstoichiometric compositions of garnet and spinel were attributed to the formation of perovskite in that perovskite contained Gd, Fe and Al from garnet and Cr from spinel. (authors)

  17. The Temporal Evolution of the Nanostructure of a Model Ni-Al-Cr Superalloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Yoon, Kevin E.; Noebe, Ronald D.; Seidman, David N.

    2004-01-01

    The early to the later stages of precipitation of ordered gamma'-precipitates (L1(sub 2)) in Ni-5.2 Al-14.2 Cr (at.%) are studied at 873 K. Precipitates with radii as small as 0.45 nm are characterized fully by three-dimensional atom-probe (3DAP) microscopy. Contrary to what is often assumed by theory or in models, the average precipitate composition is shown to evolve with time, such that solute concentrations decrease toward an equilibrium value given by the solvus lines. Power-law time dependencies of the number density, mean radius, and supersaturations of Al and Cr are discussed in light of theoretical predictions for Ostwald ripening.

  18. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    SciTech Connect

    George, Nathan; Sweet, Ryan; Maldonado, G. Ivan; Wirth, Brian D.; Powers, Jeffrey J.; Worrall, Andrew

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  19. 1300 K Compressive Properties of Directionally Solidified Ni-33Al-33Cr-1Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, Ivan E.

    2000-01-01

    The Ni-33Al-33Cr-1Mo eutectic has been directionally solidified by a modified Bridgeman technique at growth rates ranging from 7.6 to 508 mm/h to produce grain/cellular microstructures, containing alternating plates of NiAl and Cr alloyed with Mo. The grains had sharp boundaries for slower growth rates (< 12.7 mm/h), while faster growth rates (> 25.4 mm/h) lead to cells bounded by intercellular regions. Compressive testing at 1300 K indicated that alloys DS'ed at rates between 25.4 to 254 mm/h possessed the best strengths which exceed that for the as-cast alloy.

  20. Chemically sensitive amorphization process in the nanolaminated Cr2AC (A = Al or Ge) system from TEM in situ irradiation

    NASA Astrophysics Data System (ADS)

    Bugnet, Matthieu; Mauchamp, Vincent; Oliviero, Erwan; Jaouen, Michel; Cabioc'h, Thierry

    2013-10-01

    The effect of 320 keV Xe2+ ion-irradiation in Cr2AlC and Cr2GeC is investigated in situ in the transmission electron microscope. Both compounds amorphize at moderate fluences (1013-1014 Xe cm-2) but exhibit different amorphization mechanisms, bearing witness of the major influence of the chemical composition of the nanolaminated Mn+1AXn phases. It is proposed that amorphization takes place via a direct impact amorphization process in Cr2GeC whereas it is governed by a defect accumulation process in Cr2AlC.

  1. Thermodynamic Descriptions of NI Alloys Containing AL, CR, and RU: A Computational Thermodynamic Approach Coupled with Experiments

    DTIC Science & Technology

    2006-09-03

    the present study is to adopt the Calphad approach to develop thermodynamic descriptions of Ni alloys containing elements such as Al, Cr , Ru, etc and...Fig. 2(b), the agreement between calculated 0.0 Al 0 cr three phases SLiquidus o two phases 0.2 0.2 bcc 02 02 O . O 0.2 040. 08 000 0.2 0406 O . 10 44 40...experimentation is achieved. 8 0.7, 0.7, U_. 0.01 0.01 - yphase Y phase Miyazaki 1994 Miyazaki 1994 •Ni, 0 AI, -V Cr , XRe & Ni, o AI, Cr , X Re IE-3 I

  2. Atomic simulation of mechanical behavior of Mg in a super-lattice of nanocrystalline Mg and amorphous Mg-Al alloy

    SciTech Connect

    Song, H. Y.; An, M. R.; Li, Y. L. Deng, Q.

    2014-12-07

    The mechanical properties of a super-lattice architecture composed of nanocrystalline Mg and Mg-Al amorphous alloy are investigated using molecular dynamics simulation. The results indicate that deformation mechanism of nanocrystalline Mg is obviously affected by the amorphous boundary spacing and temperature. The strength of the material increases with the decrease of amorphous boundary spacing, presenting a Hall-Petch effect at both 10 K and 300 K. A stress platform and following stiffness softening, as well as a linear strengthening in the plastic stage, are observed when the amorphous boundary spacing below 8.792 nm at 10 K. The implying reason may be that the amorphous boundary acts as the dislocations emission and absorption source. However, the second stress peak is not observed for the models at 300 K. Instead, the flow stress in plastic stage is a nearly constant value. The simulation demonstrates the emergence of the new grain, accompanied by the deformation twins and stacking faults associated with the plastic behaviors at 300 K. The general conclusions derived from this work may provide a guideline for the design of high-performance hexagonal close-packed metals.

  3. The effect of zirconium on the cyclic oxidation of NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Khan, A. S.; Lowell, C. E.

    1981-01-01

    This paper examines results with cyclic oxidation tests of Ni(9-20) Cr(15-30) Al-(x)Zr alloys carried out at 1100 C and 1200 C in static air. The concentration of zirconium varies from 0 to 0.63 atomic percent. Significant aluminum penetration is found in metallographic and electron microscopic examination of oxidized surfaces. Small amounts of zirconium lead to minimal penetration, and with increased zirconium content pronounced oxide penetration is observed.

  4. Electrodeposition of Mg-Li-Al-La Alloys on Inert Cathode in Molten LiCl-KCl Eutectic Salt

    NASA Astrophysics Data System (ADS)

    Han, Wei; Chen, Qiong; Sun, Yi; Jiang, Tao; Zhang, Milin

    2011-12-01

    Electrochemical preparation of Mg-Li-Al-La alloys on inert electrodes was investigated in LiCl-KCl melt at 853 K (580 °C). Cyclic voltammograms (CVs) and square wave voltammograms (SWVs) show that the existence of AlCl3 or AlF3 could promote La deposition on an active Al substrate, which is predeposited on inert electrodes. All electrochemical tests show that the reduction of La3+ is a one-step reduction process with three electrons exchanged. The reduction of La(III)→La(0) occurred at -2.04 V, and the underpotential deposition (UPD) of La was detected at -1.55 V ( vs Ag/AgCl). The same phenomena concerning La UPD were observed on two inert cathodes, W and Mo. In addition, Mg-Li-Al-La alloys were obtained by galvanostatic electrolysis on the W cathode from La2O3 in LiCl-KCl-MgCl2-KF melts with aluminum as the anode. X-ray diffraction (XRD) measurements indicated that various phases like the Al2La, Al12Mg17, and βLi phase (LiMg/Li3Mg7) existed in the Mg-Li-Al-La alloys. The distribution of Mg, Al, and La in Mg-Li-Al-La alloys from the analysis of a scan electron micrograph (SEM) and energy dispersive spectrometry (EDS) indicated that the elements Mg, Al, and La distributed homogeneously in the alloys.

  5. Characterization of Al-Cu-Mg-Ag Alloy RX226-T8 Plate

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Domack, Marcia S.

    2003-01-01

    Aluminum-copper-magnesium-silver (Al-Cu-Mg-Ag) alloys that were developed for thermal stability also offer attractive ambient temperature strength-toughness combinations, and therefore, can be considered for a broad range of airframe structural applications. The current study evaluated Al-Cu-Mg-Ag alloy RX226-T8 in plate gages and compared performance with sheet gage alloys of similar composition. Uniaxial tensile properties, plane strain initiation fracture toughness, and plane stress tearing resistance of RX226-T8 were examined at ambient temperature as a function of orientation and thickness location in the plate. Properties were measured near the surface and at the mid-plane of the plate. Tensile strengths were essentially isotropic, with variations in yield and ultimate tensile strengths of less than 2% as a function of orientation and through-thickness location. However, ductility varied by more than 15% with orientation. Fracture toughness was generally higher at the mid-plane and greater for the L-T orientation, although the differences were small near the surface of the plate. Metallurgical analysis indicated that the microstructure was primarily recrystallized with weak texture and was uniform through the plate with the exception of a fine-grained layer near the surface of the plate. Scanning electron microscope analysis revealed Al-Cu-Mg second phase particles which varied in composition and were primarily located on grain boundaries parallel to the rolling direction. Fractography of toughness specimens for both plate locations and orientations revealed that fracture occurred predominantly by transgranular microvoid coalescence. Introduction High-strength, low-density Al-Cu-Mg-Ag alloys were initially developed to replace conventional 2000 (Al-Cu-Mg) and 7000 (Al-Zn-Cu-Mg) series aluminum alloys for aircraft structural applications [1]. During the High Speed Civil Transport (HSCT) program, improvements in thermal stability were demonstrated for candidate

  6. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Shenoy, R. N.

    1991-01-01

    The present study evaluates the effect of the systematic variation of copper, chromium, and zirconium contents on the microstructure and mechanical properties of a 7000-type aluminum alloy. Fracture toughness and tensile properties are evaluated for each alloy in both the peak aging, T8, and the overaging, T73, conditions. Results show that dimpled rupture essentially characterize the fracture process in these alloys. In the T8 condition, a significant loss of toughness is observed for alloys containing 2.5 pct Cu due to the increase in the quantity of Al-Cu-Mg-rich S-phase particles. An examination of T8 alloys at constant Cu levels shows that Zr-bearing alloys exhibit higher strength and toughness than the Cr-bearing alloys. In the T73 condition, Cr-bearing alloys are inherently tougher than Zr-bearing alloys. A void nucleation and growth mechanism accounts for the loss of toughness in these alloys with increasing copper content.

  7. Evaluation of Al3Mg2 precipitates and Mn-rich phase in aluminum-magnesium alloy based on scanning transmission electron microscopy imaging

    SciTech Connect

    Zhu, Yakun; Cullen, David A; Kar, Soumya; Free, Michael P; Allard Jr, Lawrence Frederick

    2012-01-01

    Scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) were used to observe intergranular and intragranular -phase (Al3Mg2) formation and growth in as-received sample and long-term (~ 1 year) thermally treated samples of 5083-H131 alloy. Rod-shaped and equiaxed particles rich in Mn, Fe, and Cr were present in the as-received and heat treated samples. The -phase precipitated along grain boundaries as well as around and between preexisting Mn-Fe-Cr rich particles. The measured thickness of -phase along grain boundaries was lower than Zener Hillert diffusion model predicted value and the potential reasons were theoretically analyzed. Dislocation networks, grain boundaries, and different preexisting particles were observed to contribute to Mg diffusion and -phase precipitation.

  8. Effect of thermally stable Cu- and Mg-rich aluminides on the high temperature strength of an AlSi12CuMgNi alloy

    SciTech Connect

    Asghar, Z.

    2014-02-15

    The internal architecture of an AlSi12CuMgNi piston alloy, revealed by synchrotron tomography, consists of three dimensional interconnected hybrid networks of Cu-rich aluminides, Mg-rich aluminides and eutectic/primary Si embedded in an α-Al matrix. The strength at room temperature and at 300°C is studied as a function of solution treatment time at 490°C and compared with results previously reported for an AlSi12Ni alloy. The addition of 1 wt% Cu and 1 wt% Mg to AlSi12CuMgNi increases the room temperature strength by precipitation hardening while the strength at 300°C is similar for both alloys in as-cast condition. The strength of AlSi12CuMgNi decreases with solution treatment time and stabilizes at 4 h solution treatment. The effect of solution treatment time on the strength of the AlSi12CuMgNi alloy is less pronounced than for the AlSi12Ni alloy both at room temperature and at 300°C. - Highlights: • The 3D microstructure of AlSi12CuMgNi is revealed by synchrotron tomography. • An imaging analysis procedure to segment phases with similar contrasts is presented. • 1 wt% Cu and Mg results in the formation of 3D networks of rigid phases. • AlSi12CuMgNi is stronger than AlSi12Ni owing to the stability of the 3D networks.

  9. A Study of Phase Composition and Structure of Alloys of the Al - Mg - Si - Fe System

    NASA Astrophysics Data System (ADS)

    Mailybaeva, A. D.; Zolotorevskii, V. S.; Smagulov, D. U.; Islamkulov, K. M.

    2017-03-01

    The Thermo-Calc software is used to compute the phase transformations occurring during cooling of alloys. Polythermal and isothermal sections of the phase diagram of the Al - Mg - Si - Fe system are plotted. The phase composition and the structure of aluminum alloys in cast condition and after a heat treatment are studied experimentally.

  10. Effect of Rolling on High-Cycle Fatigue and Fracture of an Al - Mg - Sc Alloy

    NASA Astrophysics Data System (ADS)

    Zhemchuzhnikova, D. A.; Petrov, A. P.; Eremeev, N. V.; Eremeev, V. V.; Kaibyshev, R. O.

    2016-07-01

    The tensile strength and fatigue properties of alloy 1575 of the Al - Mg - Sc system are studied after hot deformation (at 360°C) and subsequent cold rolling with different reduction ratios. The effect of the deformed structure on the properties and mechanisms of fracture of the alloy under cyclic tests is determined.

  11. Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.

    2015-01-01

    The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.

  12. Synthesis of low-moment CrVTiAl: A potential room temperature spin filter

    NASA Astrophysics Data System (ADS)

    Stephen, G. M.; McDonald, I.; Lejeune, B.; Lewis, L. H.; Heiman, D.

    2016-12-01

    The efficient production of spin-polarized currents at room temperature is fundamental to the advancement of spintronics. Spin-filter materials—semiconductors with unequal band gaps for each spin channel—can generate spin-polarized current without the need for spin-polarized contacts. In addition, a spin-filter material with zero magnetic moment would have the advantage of not producing strong fringing fields that would interfere with neighboring electronic components and limit the volume density of devices. The quaternary Heusler compound CrVTiAl has been predicted to be a zero-moment spin-filter material with a Curie temperature in excess of 1000 K. In this work, CrVTiAl has been synthesized with a lattice constant of a = 6.15 Å. Magnetization measurements reveal an exceptionally low moment of μ = 2.3 × 10-3 μB/f.u. at a field of μ0H = 2 T that is independent of temperature between T = 10 K and 400 K, consistent with the predicted zero-moment ferrimagnetism. Transport measurements reveal a combination of metallic and semiconducting components to the resistivity. Combining a zero-moment spin-filter material with nonmagnetic electrodes would lead to an essentially nonmagnetic spin injector. These results suggest that CrVTiAl is a promising candidate for further research in the field of spintronics.

  13. Structural and magnetic properties of Co 2CrAl Heusler alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hakimi, M.; Kameli, P.; Salamati, H.

    2010-11-01

    Mechanical alloying has been used to produce nanocrystalline samples of Co 2CrAl Heusler alloys. The samples were characterized by using different methods. The results indicate that, it is possible to produce L2 1-Co 2CrAl powders after 15 h of ball-milling. The grain size of 15 h ball milled L2 1-Co 2CrAl Heusler phase, calculated by analyzing the XRD peak broadening using Williamson and Hall approach was 14 nm. The estimated magnetic moment per formula unit is ˜2 μ B. The obtained magnetic moment is significantly smaller than the theoretical value of 2.96 μ B for L2 1 structure. It seems that an atomic disorder from the crystalline L2 1-type ordered state and two-phase separation depresses the ferromagnetic ordering in alloy. Also, the effect of annealing on the structural and magnetic properties of ball milled powders was investigated. Two structures were identified for annealed sample, namely L2 1 and B2. The obtained value for magnetic moment of annealed sample is smaller than the as-milled sample due to the presence of disordered B2 phase and improvement of phase separation.

  14. Effects of Solute Concentrations on Kinetic Pathways in Ni-Al-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Booth-Morrison, Christopher; Weninger, Jessica; Sudbrack, Chantal K.; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.

    2008-01-01

    The kinetic pathways resulting from the formation of coherent gamma'-precipitates from the gamma-matrix are studied for two Ni-Al-Cr alloys with similar gamma'-precipitate volume fractions at 873 K. The details of the phase decompositions of Ni-7.5Al-8.5Cr at.% and Ni-5.2Al-14.2Cr at.% for aging times from 1/6 to 1024 h are investigated by atom-probe tomography, and are found to differ significantly from a mean-field description of coarsening. The morphologies of the gamma'-precipitates of the alloys are similar, though the degrees of gamma'-precipitate coagulation and coalescence differ. Quantification within the framework of classical nucleation theory reveals that differences in the chemical driving forces for phase decomposition result in differences in the nucleation behavior of the two alloys. The temporal evolution of the gamma'-precipitate average radii and the gamma-matrix supersaturations follow the predictions of classical coarsening models. The compositional trajectories of the gamma-matrix phases of the alloys are found to follow approximately the equilibrium tie-lines, while the trajectories of the gamma'-precipitates do not, resulting in significant differences in the partitioning ratios of the solute elements.

  15. Effect of Si, Sc, Cr doping on the structural, optical and discharge characteristics of MgO thin films as protective layer for plasma display panels

    NASA Astrophysics Data System (ADS)

    Singh, Chandra Bhal; Barik, U. K.; Sarkar, Surajit; Singh, Vandana; Ram, Sanjay K.; Dwivedi, Harish K.; Kumar, Satyendra

    2012-10-01

    We report the effect of Si, Cr, Sc doping in the crystalline structure, optical and discharge characteristics of MgO thin films. Silicon and multiple (Si, Cr, Sc) doped MgO thin films demonstrate higher secondary electron emission (SEE). Si doping with Cr and Sc doping in MgO films shows much higher SEE as compared to pure and only Si doped MgO films. The importance of optimum amount of Sc doping is seen in our study where SEE reduced with further increase in Sc doping. The structural attributes of MgO films are correlated to the observed changes in discharge characteristics in the context of varying amount of Si, Sc, and Cr doping.

  16. Defects in Mg doped (Al,In)GaN thin films and nanostructures

    NASA Astrophysics Data System (ADS)

    Shahedipour-Sandvik, Fatemeh

    2009-03-01

    Development of p-type (Al,In)GaN revolutionized the field of solid state lighting in the way that it was hard to imagine, development and introduction to market of light emitters in short period of time and tremendous amount of progress in other areas that was enabled by such development. Although many studies have been done to understand the defects related to Mg incorporation in epitaxially grown AlInGaN films, there are still many open questions. These include the relationship between the defects (type and density) and Mg incorporated and the electrical property of the film. An interesting open question is how optical characteristics of Mg doped (Al, In) GaN can predict its electrical property. In this presentation, we try to address this question. Recent advances in development of nanostructures based on III-nitrides include growth of high quality GaN nanowires. Although large body of work exists in growth and characterization of Si doped GaN nanowires the report work on Mg doped GaN is scarce. In the present work, we will discuss our recent progress in studying optical and electrical characteristics of Mg doped GaN nanowires and defect stabilization in nanostructure and thin films.[4pt] In collaboration with M. Reshchikov, Department of Physics, Virginia Commonwealth University, Richmond, VA 23284; N. Tripathi, B. J. Messer, and M. Tungare, College of Nanoscale Science and Engineering, UAlbany-State University of New York, Albany, NY 12203

  17. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    SciTech Connect

    Robb, Kevin R

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.

  18. Dynamic Wetting of CaO-Al2O3-SiO2-MgO Liquid Oxide on MgAl2O4 Spinel

    NASA Astrophysics Data System (ADS)

    Abdeyazdan, Hamed; Dogan, Neslihan; Rhamdhani, M. Akbar; Chapman, Michael W.; Monaghan, Brian J.

    2015-02-01

    Inclusion type and content in steel is critical in steelmaking, affecting both productivity through clogging, and downstream physical properties of the steel. They are normally removed from steel by reacting with a slag (liquid oxide) phase. For efficient inclusion removal, the inclusions must attach/bond with this liquid phase. The strength of the attachment can be in part characterized by the wettability of the liquid oxide on the inclusions. In this study, the dynamic wetting of liquid oxides of the CaO-Al2O3-SiO2-MgO system on a solid spinel (MgAl2O4) substrate with low porosity of 1.9 pct was measured at 1773 K (1500 °C) using a modified sessile drop technique. The dynamic contact angle between the liquid and solid spinel was determined for different CaO/Al2O3 mass percent ratios ranging from 0.98 to 1.55. Characteristic curves of wettability ( θ) vs time showed a rapid decrease in wetting in the first 10 seconds tending to a plateau value at extended times. A mathematical model for spreading behavior of liquid oxides by Choi and Lee was adopted and shown to provide a reasonable representation of the spreading behavior with time. The chemical interaction at the interface between spinel (MgAl2O4) and slag was analyzed by carrying out detailed thermodynamic evaluation and characterization using scanning electron microscopy/energy dispersive spectroscopy. There is evidence of liquid penetrating the substrate via pores and along grain boundaries, forming a penetration layer in the substrate. The depth of the penetration layer was found to be a function of substrate porosity and sample cooling rate. It decreased from ~350 µm for 6.7 pct-porous substrate to ~190 µm for substrate with porosity of 1.9 pct and from ~190 µm to ~50 µm for a slow-cooled liquid oxide-spinel substrate sample in the furnace to a rapidly cooled liquid cooled-spinel substrate sample, respectively.

  19. Interfacial Characterization of Dissimilar Joints Between Al/Mg/Al-Trilayered Clad Sheet to High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Macwan, A.; Jiang, X. Q.; Chen, D. L.

    2015-07-01

    Magnesium (Mg) alloys are increasingly used in the automotive and aerospace sectors to reduce vehicle weight. Al/Mg/Al tri-layered clad sheets are deemed as a promising alternative to improve the corrosion resistance and formability of Mg alloys. The structural application of Al/Mg/Al tri-layered clad sheets inevitably involves welding and joining in the multi-material vehicle body manufacturing. This study aimed to characterize the bonding interface microstructure of the Al/Mg/Al-clad sheet to high-strength low-alloy steel with and without Zn coating using ultrasonic spot welding at different levels of welding energy. It was observed that the presence of Zn coating improved the bonding at the interface due to the formation of Al-Zn eutectic structure via enhanced diffusion. At a higher level of welding energy, characteristic flow patterns of Zn into Al-clad layer were observed with an extensive penetration mainly along some high angle grain boundaries. The dissimilar joints without Zn coating made at a high welding energy of 800 J failed partially from the Al/Fe weld interface and partially from the Al/Mg clad interface, while the joints with Zn coating failed from the Al/Mg clad interface due to the presence of brittle Al12Mg17 phase.

  20. Crystal Chemistry of MgAl2O4 Spinel Solid Solution

    NASA Astrophysics Data System (ADS)

    Yoshiasa, Akira; Maekawa, Hidemi; Sugiyama, Kazumasa

    Considerable efforts have been devoted to the structural studies of spinel group minerals or type compounds because of their importance as constituents of the Earth’s crust and mantle. Despite their simple structures, many spinel type compounds exhibit complex disordering phenomena involving the mixing of cation on two sites, which have important consequences for both thermodynamic and physical properties. The cation distributions and the structural variation in MgAl2-xGaxO4 solid-solution have been clarified using 27Al MAS NMR measurements and single crystal X-ray diffraction. The determined local distance in the solid solution corresponds with the bond distance expected from the effective ionic radii except Al-O distance in the tetrahedral site. We have revealed that the Al-O distance in the tetrahedral site in spinel solid solution is about 0.15 Å longer than the expected value. Boron is the same group element as Al and Ga and its ionic radius is considerably small. Single crystals of MgAl2-xBxO4 spinel were synthesized under high pressure and high temperature. The maximum content of boron was about x = 0.13 at 1273 K and 11 GPa. The smallest B ion occupies the octahedral site in top priority in the spinel solid solution of the Mg-Al-B systems. The B3+ ions can replace considerably bigger Al3+ ion under pressure. These spinel solid-solutions are largely disordered crystals. Only the positional shifts of oxygen ion have been relaxing the disorder in the solid solution.

  1. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys.

    PubMed

    Chen, J H; Costan, E; van Huis, M A; Xu, Q; Zandbergen, H W

    2006-04-21

    Atomic-resolution electron microscopy reveals that pillarlike silicon double columns exist in the hardening nanoprecipitates of AlMgSi alloys, which vary in structure and composition. Upon annealing, the Si2 pillars provide the skeleton for the nanoparticles to evolve in composition, structure, and morphology. We show that they begin as tiny nuclei with a composition close to Mg2Si2Al7 and a minimal mismatch with the aluminum matrix. They subsequently undergo a one-dimensional growth in association with compositional change, becoming elongated particles. During the evolution toward the final Mg5Si6 particles, the compositional change is accompanied by a characteristic structural change. Our study explains the nanoscopic reasons that the alloys make excellent automotive materials.

  2. h -AlN-Mg(OH)2 van der Waals bilayer heterostructure: Tuning the excitonic characteristics

    NASA Astrophysics Data System (ADS)

    Bacaksiz, C.; Dominguez, A.; Rubio, A.; Senger, R. T.; Sahin, H.

    2017-02-01

    Motivated by recent studies that reported the successful synthesis of monolayer Mg (OH) 2 [Suslu et al., Sci. Rep. 6, 20525 (2016), 10.1038/srep20525] and hexagonal (h -)AlN [Tsipas et al., Appl. Phys. Lett. 103, 251605 (2013), 10.1063/1.4851239], we investigate structural, electronic, and optical properties of vertically stacked h -AlN and Mg (OH) 2 , through ab initio density-functional theory (DFT), many-body quasiparticle calculations within the GW approximation and the Bethe-Salpeter equation (BSE). It is obtained that the bilayer heterostructure prefers the A B' stacking having direct band gap at the Γ with Type-II band alignment in which the valance band maximum and conduction band minimum originate from different layer. Regarding the optical properties, the imaginary part of the dielectric function of the individual layers and heterobilayer are investigated. The heterobilayer possesses excitonic peaks, which appear only after the construction of the heterobilayer. The lowest three exciton peaks are analyzed in detail by means of band decomposed charge density and the oscillator strength. Furthermore, the wave function calculation shows that the first peak of the heterobilayer originates from spatially indirect exciton where the electron and hole localized at h -AlN and Mg (OH) 2 , respectively, which is important for the light harvesting applications.

  3. Yttrium influence on the alumina growth mechanism on an FeCr23Al5 alloy

    NASA Astrophysics Data System (ADS)

    Huntz, A. M.; Abderrazik, G. Ben; Moulin, G.; Young, E. W. A.; De Wit, J. H. W.

    1987-07-01

    The mechanism by which yttrium modifies alumina growth was studied by comparing the behaviour of a high purity FeCr23Al5 alloy, either undoped or Y doped by implantation. By combining several techniques, in particular XPS, nuclear reaction analyses and electrochemical measurements, it is shown that the growth of Al2O3 scales on pure samples is mainly ensured by aluminum short-circuit diffusion. The presence of yttrium promotes the oxygen diffusion along grain boundaries, while retarding Al short-circuit diffusion and increasing Al lattice diffusion. From this growth mechanism with both cationic amd anionic diffusion along different paths, suggestions for the improvement of scale adherence due to yttrium are proposed. The simultaneous study of C- and Y-doped samples indicates that synergetic effects occur.

  4. Variations of Microsegregation and Second Phase Fraction of Binary Mg-Al Alloys with Solidification Parameters

    NASA Astrophysics Data System (ADS)

    Paliwal, Manas; Kang, Dae Hoon; Essadiqi, Elhachmi; Jung, In-Ho

    2014-07-01

    A systematic experimental investigation on microsegregation and second phase fraction of Mg-Al binary alloys (3, 6, and 9 wt pct Al) has been carried out over a wide range of cooling rates (0.05 to 700 K/s) by employing various casting techniques. In order to explain the experimental results, a solidification model that takes into account dendrite tip undercooling, eutectic undercooling, solute back diffusion, and secondary dendrite arm coarsening was also developed in dynamic linkage with an accurate thermodynamic database. From the experimental data and solidification model, it was found that the second phase fraction in the solidified microstructure is not determined only by cooling rate but varied independently with thermal gradient and solidification velocity. Lastly, the second phase fraction maps for Mg-Al alloys were calculated from the solidification model.

  5. Tensile strength of Al matrix with nanoscale Cu, Ti and Mg inclusions

    NASA Astrophysics Data System (ADS)

    Pogorelko, V. V.; Mayer, A. E.

    2016-11-01

    Molecular-dynamic investigations of Al+Cu, Al+Ti and Al+Mg nanocomposite strength under high-rate uniaxial tension were carried out in this work. We consider two different mechanisms of reduction of the tensile strength of a material with inclusions in comparison with a pure material of matrix. The first mechanism is connected with a stress concentration in matrix near a stiff and strong inclusion (Ti, Cu); in this case, the fracture occurs inside the matrix and does not touch the inclusion. The second mechanism acts in the case of a soft and weak inclusion (Mg); the fracture begins inside the inclusion and thereafter propagates into the matrix. The tensile strength of the systems is determined at varied strain rates (in the range from 0.1/ns to 30/ns at the temperature 300 K) and varied temperatures (in the range from 300 K to 900 K at the strain rate 1/ns).

  6. Analysis of the microstructure of Cr-Ni surface layers deposited on Fe{sub 3}Al by TIG

    SciTech Connect

    Ma Haijun . E-mail: hjma123@mail.sdu.edu.cn; Li Yajiang; Wang Juan

    2006-12-15

    A series of Cr-Ni alloys were overlaid on a Fe{sub 3}Al surface by tungsten inert gas arc welding (TIG) technology. The microstructure of the Cr-Ni surface layers were analysed by means of optical metallography, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that when the appropriate TIG parameters were used and Cr25-Ni13 and Cr25-Ni20 alloys were used for the overlaid materials, the Cr-Ni surface layers were crack-free. The matrix of the surface layer was austenite (A), pro-eutectoid ferrite (PF), acicular ferrite (AF), carbide-free bainite (CFB) and lath martensite (LM), distributed on the austenitic grain boundaries as well as inside the grains. The phase constituents of the Cr25-Ni13 surface layer were {gamma}-Fe, Fe{sub 3}Al, FeAl, NiAl, an Fe-C compound and an Fe-C-Cr compound. The microhardness of the fusion zone was lower than that of the Fe{sub 3}Al base metal and Cr25-Ni13 surface layer.

  7. The Al-Rich Part of the System CaO-Al 2O 3-MgO . Part I. Phase Relationships

    NASA Astrophysics Data System (ADS)

    Göbbels, M.; Woermann, E.; Jung, J.

    1995-12-01

    In the Al-rich part of the ternary system CaO-Al 2O 3MgO two new ternary phases Ca 2Mg 2Al 28O 46 (CAM-I) and CaMg 2Al 16O 27 (CAM-II) with limited solid solution ranges were found. Due to the fact that the compositions of the Mg-rich end members of these solid solutions lie on the join between hibonite (CaAl 12O 19) and spinel (MgAl 2O 4), the model of the crystal structures of these phases can be constructed by a suitable combination of hibonite and spinel units. Both phases, CAM-I and CAM-II, exhibit solid solution ranges described by a substitution mechanism also found in the binary spinel phase, MgAl 2O 4: 3 Mg 2+ = 2 Al 3+ + □. Thus the ternary phases can be expressed by the chemical formulas. Ca 2Mg 2-3 xAl 28+2 x□ xO 46 for CAM-I with 0 ≤ x ≤ 0.30 and CaMg 2-3 yAl 16+2 y□ yO 27 for CAM-II with 0 ≤ y ≤ 0.2.

  8. New treatment method for boron in aqueous solutions using Mg-Al layered double hydroxide: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-08-15

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg - Al LDHs) and with Cl(-) (Cl · Mg - Al LDHs) were found to take up boron from aqueous solutions. Boron was removed by anion exchange of B(OH)4(-) in solution with NO3(-) and Cl(-) intercalated in the interlayer of the LDH. Using three times the stoichiometric quantity of NO3 · Mg-Al LDH, the residual concentration of B decreased from 100 to 1.9 mg L(-1) in 120 min. Using five times the stoichiometric quantity of Cl · Mg - Al LDH, the residual concentration of B decreased from 100 to 5.6 mg L(-1) in 120 min. It must be emphasized that, in both cases, the residual concentration of B was less than the effluent standards in Japan (10 mg L(-1)). The rate-determining step of B removal by the NO3 · Mg - Al and Cl · Mg - Al LDHs was found to be chemical adsorption involving anion exchange of B(OH)4(-) with intercalated NO3(-) and Cl(-). The removal of B was well described by a pseudo second-order kinetic equation. The adsorption of B by NO3 · Mg - Al LDH and Cl · Mg - Al LDH followed a Langmuir-type adsorption. The values of the maximum adsorption and the equilibrium adsorption constant were 3.6 mmol g(-1) and 1.7, respectively, for NO3 · Mg - Al LDH, and 3.8 mmol g(-1) and 0.7, respectively, for Cl · Mg-Al LDH. The B(OH)4(-) in B(OH)4 · Mg - Al LDH produced by removal of B was found to undergo anion exchange with NO3(-) and Cl(-) in solution. The NO3 · Mg - Al and Cl · Mg - Al LDHs obtained after this regeneration treatment were able to remove B from aqueous solutions, indicating the possibility of recycling NO3 · Mg - Al and Cl · Mg - Al LDHs for B removal.

  9. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  10. Microstructural development in Al/MgAl2O4in situ metal matrix composite using value-added silica sources.

    PubMed

    Madathil Sreekumar, Vadakke; Marimuthu Pillai, Raman; Chandrasekhara Pai, Bellampettu; Chakraborty, Madhusudhan

    2008-01-01

    Al/MgAl2O4in situ metal matrix composites have been synthesized using value-added silica sources (microsilica and rice husk ash) containing ∼97% SiO2 in Al-5 wt.% Mg alloy. The thermodynamics and kinetics of MgAl2O4 formation are discussed in detail. The MgO and MgAl2O4 phases were found to dominate in microsilica (MS) and rice husk ash (RHA) value-added composites, respectively, during the initial stage of holding the composites at 750 °C. A transition phase between MgO and MgAl2O4 was detected by the scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS) analysis of the particles extracted from the composite using 25% NaOH solution. This confirms that MgO is gradually transformed to MgAl2O4 by the reaction 3SiO2(s)+2MgO(s)+4Al(l)→2MgAl2O4(s)+3Si(l). The stoichiometry of MgAl2O4, n, computed by a new methodology is between 0.79 and 1.18. The reaction between the silica sources and the molten metal stopped after 55% of the silica source was consumed. A gradual increase in mean MgAl2O4 crystallite size, D, from 24 to 36 nm was observed in the samples held for 10 h.

  11. Microstructural development in Al/MgAl2O4 in situ metal matrix composite using value-added silica sources

    PubMed Central

    Madathil Sreekumar, Vadakke; Marimuthu Pillai, Raman; Chandrasekhara Pai, Bellampettu; Chakraborty, Madhusudhan

    2008-01-01

    Al/MgAl2O4 in situ metal matrix composites have been synthesized using value-added silica sources (microsilica and rice husk ash) containing ∼97% SiO2 in Al-5 wt.% Mg alloy. The thermodynamics and kinetics of MgAl2O4 formation are discussed in detail. The MgO and MgAl2O4 phases were found to dominate in microsilica (MS) and rice husk ash (RHA) value-added composites, respectively, during the initial stage of holding the composites at 750 °C. A transition phase between MgO and MgAl2O4 was detected by the scanning electron microscopy and energy-dispersive spectroscopy (SEM–EDS) analysis of the particles extracted from the composite using 25% NaOH solution. This confirms that MgO is gradually transformed to MgAl2O4 by the reaction 3SiO2(s)+2MgO(s)+4Al(l)→2MgAl2O4(s)+3Si(l). The stoichiometry of MgAl2O4, n, computed by a new methodology is between 0.79 and 1.18. The reaction between the silica sources and the molten metal stopped after 55% of the silica source was consumed. A gradual increase in mean MgAl2O4 crystallite size, D, from 24 to 36 nm was observed in the samples held for 10 h. PMID:27877941

  12. Degradation of Aluminide Coatings in Fe-Al-Cr Alloy on the Isothermal Oxidation

    NASA Astrophysics Data System (ADS)

    Juwita, L.; Prajitno, D. H.; Soedarsono, J. W.; Manaf, A.

    2008-03-01

    Fe base superalloy has a good mechanical strength to be used as component operating at high temperature with oxidative environment. Although, the oxidation rate can not be tolerated as it will be oxidized and form oxide scale of un-protective FeO. Coating is a proper solution that this alloy can be used at high temperature. In this research, pack aluminizing on sample was conducted with temperatures of 900 °C, 1000 °C and 1100 °C for 10 hours in inert (argon) environment and then an oxidation test was carried out at temperature of 650 °C by an isothermal method for 10 hours in air environment. It was carried out an analysis for characteristics of coating and oxide scale formed in Fe-Al-Cr super alloy resulted from pack aluminizing. From this experiment, it was indicated by XRD analysis that the coating formed on substrate was a layer of FeAl2 compound, other than coating it was found a diffused zone, where in this area it occurred movement of Fe and Cr atoms from substrate toward coating, while Al atoms moved from coating to substrate. The increase of temperature of pack aluminizing process will affect settling rate of Al and coating growth.

  13. Investigation of fluorine adsorption on nitrogen doped MgAl2O4 surface by first-principles

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-07-01

    The nature of fluorine adsorption on pure and N doped MgAl2O4 surface has been investigated by first-principles calculations based on the density functional theory. Calculated results indicate that MgAl2O4 surface is fluorine-loving, not hydrophilic. Nitrogen doped MgAl2O4 (100) surface shows the highest fluorine adsorption performance and fluorine atom preferentially adsorbs on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: Nitrogen doped MgAl2O4 (100) > Al2O3 (0001) > MgAl2O4 (100) > MgO (100). In-depth PDOS analysis suggested that 2p orbitals of F atom strongly hybridized with 3s- and 3p-orbitals of Al atom contribute to its high adsorption intensity. According to the analysis of Hirshfeld charge, the excellent fluorine adsorption performance of nitrogen doped MgAl2O4 attributes to the electron compensation effect of nitrogen atom and strong electrostatic interactions. All these evidences demonstrate a fact nitrogen doped MgAl2O4 is a promising candidate for fluorine removal.

  14. Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Perry, Kelly A; Belova, Irina; Murch, Prof. Graeme; Sohn, Yong Ho

    2013-08-01

    Increasing use and development of lightweight Mgalloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As property enhancing components, Al and Zn are two of the most important and common alloying elements for Mg-alloys. We have investigated the concentration dependent interdiffusion of Al and Zn in Mg using diffusion couples of pure polycrystalline Mg mated to Mg solid solutions containing either <9 at.% Al or <3 at.% Zn. Concentration profiles were determined by electron micro-probe microanalysis of the diffusion zone. The interdiffusion coefficients were determined by the classical Boltzmann-Matano method within the Mg solid solution. As the concentration of Al or Zn approaches the dilute ends, we employ an analytical approach based on the Hall method to estimate the impurity diffusion coefficients. Results of Al and Zn impurity diffusion in Mg are reported and compared to published impurity diffusion coefficients typically determined by thin film techniques.

  15. Interdiffusion in (fcc) Ni-Cr-X (X = Al, Si, Ge or Pd) Alloys at 700?aC

    SciTech Connect

    Garimella, N; Brady, Michael P; Sohn, Yong Ho

    2007-01-01

    Interdiffusion at 700 aC for Ni-22at.%Cr (fcc ^ phase) alloys with small additions of Al, Si, Ge, or Pd was examined using solid-to-solid diffusion couples. Rods of Ni-22at.%Cr, Ni-21at.%Cr-6.2at.%Al, Ni-22at.%Cr-4.0at.%Si, Ni-22at.%Cr-1.6at.%Ge and Ni-22at.%Cr-1.6at.%Pd alloys were cast using arc-melt and homogenized at 900 aC for 168 hours. The diffusion couples were assembled with alloy disks in Invar steel jig, encapsulated in Argon after several hydrogen flushes, and annealed at 700 XC for 720 hours. Experimental concentration profiles were determined from polished cross-sections by using electron probe microanalysis with pure standards of Ni, Cr, Al, Si, Ge and Pd. Interdiffusion fluxes of individual components were calculated directly from the experimental concentration profiles, and the moments of interdiffusion fluxes were examined to determine average ternary interdiffusion coefficients. Effects of ternary alloying additions on the interdiffusional behavior of Ni-Cr-X alloys at 700 XC are presented in the light of the diffusional interactions and the formation of protective Cr2O3 scale.

  16. Tailoring acidity of HZSM-5 nanoparticles for methyl bromide dehydrobromination by Al and Mg incorporation

    PubMed Central

    2014-01-01

    Three kinds of HZSM-5 nanoparticles with different acidity were tailored by impregnating MgO or varying Si/Al ratios. Both the textural and acidic properties of the as-prepared nanoparticles were characterized by nitrogen adsorption-desorption measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature-programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy (FTIR or Py-FTIR). It was found that the intensity of Lewis acid sites with weak strength was enhanced by impregnating MgO or reducing Al concentration, and such an enhancement could be explained by the formation of Mg(OH)+ or charge unbalance of the MgO framework on the surface of HZSM-5 support. The effect of HZSM-5 nanoparticles' acidity on methyl bromide dehydrobromination as catalyst was evaluated. As the results, MgHZ-360 catalyst with the highest concentration of Lewis acid sites showed excellent stability, which maintained methyl bromide conversion of up 97% in a period of 400 h on stream. Coke characterization by BET measurements and TGA/DTA and GC/MS analysis revealed that polymethylated naphthalenes species were formed outside the channels of the catalyst with higher acid intensity and higher Brønsted acid concentration during the initial period of reaction, while graphitic carbon formed in the channels of catalyst with lower acid intensity and higher Lewis acid concentration during the stable stage. PMID:25328502

  17. Pulsed laser deposition of AlMgB14 thin films

    SciTech Connect

    Britson, Jason Curtis

    2008-11-18

    Hard, wear-resistant coatings of thin film borides based on AlMgB14 have the potential to be applied industrially to improve the tool life of cutting tools and pump vanes and may account for several million dollars in savings as a result of reduced wear on these parts. Past work with this material has shown that it can have a hardness of up to 45GPa and be fabricated into thin films with a similar hardness using pulsed laser deposition. These films have already been shown to be promising for industrial applications. Cutting tools coated with AlMgB14 used to mill titanium alloys have been shown to substantially reduce the wear on the cutting tool and extend its cutting life. However, little research into the thin film fabrication process using pulsed laser deposition to make AlMgB14 has been conducted. In this work, research was conducted into methods to optimize the deposition parameters for the AlMgB14 films. Processing methods to eliminate large particles on the surface of the AlMgB14 films, produce films that were at least 1m thick, reduce the surface roughness of the films, and improve the adhesion of the thin films were investigated. Use of a femtosecond laser source rather than a nanosecond laser source was found to be effective in eliminating large particles considered detrimental to wear reduction properties from the films. Films produced with the femtosecond laser were also found to be deposited at a rate 100 times faster than those produced with the nanosecond laser. However, films produced with the femtosecond laser developed a relatively high RMS surface roughness around 55nm. Attempts to decrease the surface roughness were largely unsuccessful. Neither increasing the surface temperature of the substrate during deposition nor using a double pulse to ablate the material was found to be extremely successful to reduce the surface roughness. Finally, the adhesion of the thin films to M2 tool steel

  18. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility

    NASA Astrophysics Data System (ADS)

    Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner

    2015-03-01

    Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.

  19. Thermo-mechanical processing (TMP) of Ti-48Al-2Nb-2Cr based alloys

    SciTech Connect

    Fuchs, G.E.

    1995-02-01

    The effects of heat treatment and deformation processing on the microstructures and properties of {gamma}-TiAl based alloys produced by ingot metallurgy (I/M) and powder metallurgy (P/M) techniques were examined. The alloy selected for this work is the second generation {gamma}-TiAl based alloy -- Ti-48Al-2Nb-2Cr (at %). Homogenization of I/M samples was performed at a variety of temperatures, followed by hot working by isothermal forging. P/M samples were prepared from gas atomized powders, consolidated by both HIP and extrusion and some of the HIPed material was then hot worked by isothermal forging. The effects of processing, heat treatment and hot working on the microstructures and properties will be discussed.

  20. Large magnetization and high Curie temperature in highly disordered nanoscale Fe2CrAl thin films

    NASA Astrophysics Data System (ADS)

    Dulal, Rajendra P.; Dahal, Bishnu R.; Forbes, Andrew; Pegg, Ian L.; Philip, John

    2017-02-01

    We have successfully grown nanoscale Fe2CrAl thin films on polished Si/SiO2 substrates using an ultra-high vacuum deposition with a base pressure of 9×10-10 Torr. The thickness of thin films ranges from 30 to 100 nm. These films exhibit cubic crystal structure with lattice disorder and display ferromagnetic behavior. The Curie temperature is greater than 400 K, which is much higher than that reported for bulk Fe2CrAl. The magnetic moments of the films varies from 2.5 to 2.8 μB per formula unit, which is larger than the reported bulk values. Thus, the disordered nanoscale Fe2CrAl films exhibit strong Fe-Fe exchange interactions through Fe-Cr-Fe and Fe-Al-Fe layers, resulting in both a large magnetization and a high Curie temperature.

  1. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  2. Timing and extent of Mg and Al isotopic homogenization in the early inner Solar System

    NASA Astrophysics Data System (ADS)

    Mishra, Ritesh Kumar; Chaussidon, Marc

    2014-03-01

    The first million years of the Solar System is a key period when the first solids were formed from the nebula gas. The chronology of the different processes at the origin of these solids is still largely unknown and relies strongly on the assumption made of homogeneous distribution for short-lived radioactive nuclides such as 26Al. This assumption is questioned. In this study, in situ 26Al-26Mg isotope systematics was studied with high precision in 12 calcium, aluminum-rich inclusions (CAIs) (1 type A, 2 type B, 5 type C, and 4 fine grained spinel-rich), 2 amoeboid olivine aggregates (AOAs), and 2 Al-rich chondrules from Efremovka and Vigarano. The (26Al/27Al)i in these early Solar System solids (the subscript ‘i’ stands for the initial isotope ratio obtained from the mineral 26Al isochron) range from ∼6.5×10-5 to 0.2×10-5 with δMgi*26 from -0.08 to +0.37‰. The (26Al/27Al)i and δMgi*26 of CAIs and chondrules can be explained by formation of their precursors from a homogeneous reservoir (Solar System Initial, noted hereafter SSI) with initial magnesium isotopic composition of δMgSSI*26=-0.052±0.013‰ and initial (26Al/27Al)SSI abundance of (5.62±0.42)×10-5. The high precision magnesium isotope data obtained in the present study and literature data allows identifying a few epochs of formation/reprocessing of CAIs. The time periods of these epochs correspond well with the median life times of the pre-main sequence evolution of stars of Solar mass if we anchor the (Al26/Al27)SSI=(5.62±0.42)×10-5 to the beginning of class I phase. This provides a natural explanation to the range of (26Al/27Al)i - (∼6 to 0.02) × 10-5 seen in corundum grains, FUN (Fractionation and Unidentified Nuclear Effects) CAIs, ultrarefractory CAIs, normal CAIs, and chondrules, and suggests a possible relationship between the astrophysical conditions and the formation of these early solids. Corundum grains, FUN CAIs, ultrarefractory CAIs would have formed during the class 0 of

  3. Cyclic Corrosion and Chlorination of an FeCrAl Alloy in the Presence of KCl

    DOE PAGES

    Israelsson, Niklas; Unocic, Kinga A.; Hellström, K.; ...

    2015-05-30

    The KCl-induced corrosion of the FeCrAl alloy Kanthal® APMT in an O2 + N2 + H2O environment was studied at 600 °C. The samples were pre-oxidized prior to exposure in order to investigate the protective nature of alumina scales in the present environment. The microstructure and composition of the corroded surface was investigated in detail. Corrosion started at flaws in the pre-formed α-alumina scales, i.e. α-alumina was protective in itself. Consequently, KCl-induced corrosion started locally and, subsequently, spread laterally. An electrochemical mechanism is proposed here by which a transition metal chloride forms in the alloy and K2CrO4 forms at themore » scale/gas interface. Scale de-cohesion is attributed to the formation of a sub-scale transition metal chloride.« less

  4. High hardness and superlative oxidation resistance in a pseudo-icosahehdral Cr-Al binary

    NASA Astrophysics Data System (ADS)

    Simonson, J. W.; Rosa, R.; Antonacci, A. K.; He, H.; Bender, A. D.; Pabla, J.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Aronson, M. C.

    Improving the efficiency of fossil fuel plants is a practical option for decreasing carbon dioxide emissions from electrical power generation. Present limits on the operating temperatures of exposed steel components, however, restrict steam temperatures and therefore energy efficiency. Even as a new generation of creep-resistant, high strength steels retain long term structural stability to temperatures as high as ~ 973 K, the low Cr-content of these alloys hinders their oxidation resistance, necessitating the development of new corrosion resistant coatings. We report here the nearly ideal properties of potential coating material Cr55Al229, which exhibits high hardness at room temperature as well as low thermal conductivity and superlative oxidation resistance at 973 K, with an oxidation rate at least three times smaller than those of benchmark materials. These properties originate from a pseudo-icosahedral crystal structure, suggesting new criteria for future research.

  5. Chemical zoning and diffusion of Ca, Al, Mn, and Cr in olivine of springwater pallasite

    NASA Technical Reports Server (NTRS)

    Zhou, Y.; Steele, Ian M.

    1993-01-01

    The pallasites, consisting mainly of Fe-Ni metal and olivine, are thought to represent the interior of a planetary body which slowly cooled from high temperature. Although the olivines are nearly homogeneous, ion microprobe studies revealed variations of Ca, Ti, Co, Cr, and Ni near grain edges. These variations were thought to represent diffusion in response to falling temperature of the parent body. Pallasite cooling rates have been estimated based on kamacite taenite textures but results differ by x100. In principle elemental profiles in olivine can allow estimates of cooling rate if diffusion coefficients are known; in addition, given a cooling rate, diffusion coefficients could be derived. Data are presented which show that apparent diffusion profiles can be measured for Al, Ca, Cr, and Mn which qualitatively agree with expected diffusion rates and have the potential of providing independent estimates of pallasite cooling rates.

  6. Potential and frequency effects on fretting corrosion of Ti6Al4V and CoCrMo surfaces.

    PubMed

    Swaminathan, Viswanathan; Gilbert, Jeremy L

    2013-09-01

    Fretting corrosion has been reported at the metal-metal interfaces of a wide range of medical devices, including total joint replacements, spinal devices, and overlapping cardiovascular stents. Currently, the fretting corrosion phenomenon associated with metal-on-metal contacts is not fully understood. This study investigated the effect of potential and fretting frequency on the fretting corrosion performance of Ti6Al4V/Ti6Al4V, Ti6Al4V/CoCrMo, and CoCrMo/CoCrMo alloy combinations at fixed normal load and displacement conditions using a custom built fretting corrosion test system. The results showed that the fretting current densities increased with increases in potential and were highest for Ti6Al4V/Ti6Al4V couple (1.5 mA/cm(2) at 0 V vs. Ag/AgCl). The coefficient of friction varied with potential and was about two times higher for Ti6Al4V/Ti6Al4V (0.71 V at 0 V vs. Ag/AgCl). In most of the potential range tested, the fretting corrosion behavior of CoCrMo/Ti6Al4V and CoCrMo/CoCrMo was similar and dominated by the CoCrMo surface. Increase in applied fretting frequency linearly increased the fretting current densities in the regions where the passive film is stable. Also, the model-based fretting current densities were in excellent agreement with the experimental results. Overall, Ti6Al4V/Ti6Al4V couple was more susceptible to fretting corrosion compared with other couples. However, the effects of these processes on the biological system were not assessed.

  7. Assessment of retrogression and re-aging treatment on microstructural and mechanical properties of Al-Zn-Mg-Cu P/M alloy

    NASA Astrophysics Data System (ADS)

    Naeem, Haider T.; Mohammad, Kahtan S.; Hussin, Kamarudin; Tan, T. Qing; Idris, M. Sobri

    2015-05-01

    In order to understand the importance of the retrogression and re-aging as a heat treatment for improving microstructural and mechanical properties of the Al-Zn-Mg-Cu powder metallurgy alloys, Al-Zn-Mg-Cu-Fe-Cr alloys were fabricated from the elemental powders. Green compacts are compressed under compaction pressure about 370 MPa. The sintering process carried out for the samples of aluminum alloys at temperature was 650°C under argon atmosphere for two hours. The sintered compacts were subjected into homogenizing condition at 470°C for 1.5 hours and then aged at 120°C for 24 hours (T6 temper) after that it carried out the retrogressed at 180°C for 30 min., and then re-aged at 120°C for 24 hours (RRA). Observations microstructures were examined using optical, scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray diffraction. Density and porosity content was conducted for the samples of alloys. The result showing that the highest Vickers hardness exhibited for an Al-Zn-Mg-Cu alloy after underwent the retrogression and reaging treatment. Increasing in hardness was because of the precipitation hardening through precipitate the (Mg Zn) and (Mg2Zn11) phases during matrix of aluminum-alloy.

  8. Assessment of retrogression and re-aging treatment on microstructural and mechanical properties of Al-Zn-Mg-Cu P/M alloy

    SciTech Connect

    Naeem, Haider T.; Mohammad, Kahtan S.; Hussin, Kamarudin; Tan, T. Qing; Idris, M. Sobri

    2015-05-15

    In order to understand the importance of the retrogression and re-aging as a heat treatment for improving microstructural and mechanical properties of the Al-Zn-Mg-Cu powder metallurgy alloys, Al-Zn-Mg-Cu-Fe-Cr alloys were fabricated from the elemental powders. Green compacts are compressed under compaction pressure about 370 MPa. The sintering process carried out for the samples of aluminum alloys at temperature was 650°C under argon atmosphere for two hours. The sintered compacts were subjected into homogenizing condition at 470°C for 1.5 hours and then aged at 120°C for 24 hours (T6 temper) after that it carried out the retrogressed at 180°C for 30 min., and then re-aged at 120°C for 24 hours (RRA). Observations microstructures were examined using optical, scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray diffraction. Density and porosity content was conducted for the samples of alloys. The result showing that the highest Vickers hardness exhibited for an Al-Zn-Mg-Cu alloy after underwent the retrogression and reaging treatment. Increasing in hardness was because of the precipitation hardening through precipitate the (Mg Zn) and (Mg{sub 2}Zn{sub 11}) phases during matrix of aluminum-alloy.

  9. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  10. Partition coefficients for Al, Ca, Ti, Cr, and Ni in olivine obtained by melting experiment on an LL6 chondrite

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Mikouchi, T.; Mckay, G. A.

    1994-01-01

    We report the partition coefficients for Ca, Al, Ti, Cr, and Ni in olivine obtained through a series of melting experiments on an LL6 chondrite under varying conditions of temperature and oxygen fugacity. It is necessary to examine the variation of partition coefficients up to extremely reducing conditions in order to study meteoritic olivines. For Ca, Al, and Cr, the partition coefficients tend to decrease as temperature increases, but do not change even under extremely reducing conditions.

  11. Structure and composition of higher-rhenium-content superalloy based on La-alloyed Ni-Al-Cr

    SciTech Connect

    Kozlov, Eduard V.; Koneva, Nina A.; Nikonenko, Elena L.; Popova, Natalya A.; Fedorischeva, Marina V.

    2015-10-27

    The paper presents the transmission and scanning electronic microscope investigations of Ni-Al-Cr superalloy alloyed with additional Re and La elements. This superalloy is obtained by a directional solidification method. It is shown that such additional elements as Re and La result in formation of new phases in Ni-Al-Cr accompanied by considerable modifications of quasi-cuboid structure in its γ’-phase.

  12. Electronic structure and electrical transport in ternary Al-Mg-B films prepared by magnetron sputtering

    SciTech Connect

    Yan, C.; Qian, J. C.; He, B.; Ng, T. W.; Zhang, W. J.; Bello, I.; Jha, S. K.; Zhou, Z. F.; Li, K. Y.; Klemberg-Sapieha, J. E.; Martinu, L.

    2013-03-25

    Nanostructured ternary Al-Mg-B films possess high hardness and corrosion resistance. In the present work, we study their electronic structure and electrical transport. The films exhibit semiconducting characteristics with an indirect optical-bandgap of 0.50 eV, as deduced from the Tauc plots, and a semiconductor behavior with a Fermi level of {approx}0.24 eV below the conduction band. Four-probe and Hall measurements indicated a high electrical conductivity and p-type carrier mobility, suggesting that the electrical transport is mainly due to hole conduction. Their electrical properties are explained in terms of the film nanocomposite microstructure consisting of an amorphous B-rich matrix containing AlMgB{sub 14} nanoparticles.

  13. Interdiffusion in the MgO-Al2O3 spinel with or without some dopants

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Debroy, T.; Seetharaman, S.

    1996-08-01

    With a view to seek an improved understanding of the DIMOX process, interdiffusion of polycrystalline MgO and Al2O3 in the temperature range 1473 to 1873 K was studied by diffusion couple experiments. The interdiffusivities in the spinel layer were calculated as functions of composition and temperature. The spinel portion of the phase diagram in the system MgO-Al2O3 was determined from carefully measured compositions at the phase boundaries, and the low temperature spinel region of the phase diagram was confirmed from the present results. For Zn2+ as dopant in alumina, the growth rate of spinel thickness seems to increase when compared with that of the diffusion couples without dopant. The samples containing Si4+ as dopant reveal the formation of a glass phase, and the effect of Si4+ on the diffusion process appears to be negligible.

  14. [NOx storage and decomposition behavior of Cu-Mg-Al catalyst].

    PubMed

    Kang, Shou-fang; Li, Jun-hua; Fu, Li-xin; Hao, Zheng-ping

    2007-05-01

    Cu-Mg-Al hydrotalcite mixed oxide was prepared by co-precipitation. The mixed oxide and its procurer were characterized by XRD. NO, storage performance and decomposition of the stored NO, over the catalyst were investigated by NO, storage experiment at constant temperature, temperature programmed desorption (TPD) and temperature programmed surface reaction (TPSR), respectively. The results indicate that Cu-Mg-Al hydrotalcite mixed oxide has a good performance of NO, storage. The formed nitrate can be decomposed to gaseous NOx rapidly in the investigated temperature range of 160-360 degrees C, and a small amount of gaseous NO, can be reduced by C3 H6 with increasing the concentration of C3 H6 in the inlet gas.

  15. Formation of incoherent deformation twin boundaries in a coarse-grained Al-7Mg alloy

    NASA Astrophysics Data System (ADS)

    Jin, S. B.; Zhang, K.; Bjørge, R.; Tao, N. R.; Marthinsen, K.; Lu, K.; Li, Y. J.

    2015-08-01

    Deformation twinning has rarely been observed in coarse grained Al and its alloys except under some extreme conditions such as ultrahigh deformation strain or strain rates. Here, we report that a significant amount of Σ3 deformation twins could be generated in a coarse-grained Al-7 Mg alloy by dynamic plastic deformation (DPD). A systematic investigation of the Σ3 boundaries shows that they are Σ3{112} type incoherent twin boundaries (ITBs). These ITBs have formed by gradual evolution from copious low-angle deformation bands through <111>-twist Σ boundaries by lattice rotation. These findings provide an approach to generate deformation twin boundaries in high stacking fault energy metallic alloys. It is suggested that high solution content of Mg in the alloy and the special deformation mode of DPD played an important role in formation of the Σ and ITBs.

  16. Quantitative determination of Mg in Al-alloys by ion-exchange TLC

    SciTech Connect

    Petrovic, M.; Kastelan-Macan, M. . Lab. for Analytical Chemistry); Turina, S.; Ivankovic, V. . Faculty of Mechanical Engineering and Naval Architecture)

    1993-01-01

    Analytical procedure for the quantitative determination of Mg in Al-alloys using ion-exchange thin layer chromatography is described. Chromatographic plates were coated with Amberlite IRP-69 (strong-acid cation exchanger in H[sup +]-form) mixed in different ratios with microcrystalline cellulose. Solutions of HCl and HNO[sub 3] respectively, in the concentration range from 0.5-2.0 mol dm[sup [minus]3] were used as developers. Chromatograms were visualized by spraying with ethanolic solution of 8-hydroxyquinoline and spots were scanned using Camag Turner Fluorometer 111. The optical separation was obtained on TLC plates containing 23% of ion-exchanger (particle size < 60 [mu]m) and by eluting with 1.25 M HCl. R[sub F] (Al) = 0.12, R[sub F](Mg) = 0.41.

  17. Elasticity and inelasticity of the SiC/Al-13Si-9Mg biomorphic metal ceramics

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Orlova, T. S.; Smirnov, B. I.; Wilkes, T. E.; Faber, K. T.

    2008-10-01

    The acoustic investigations of the elastic (Young’s modulus) and microplastic properties of a composite material, the SiC/Al-13Si-9Mg biomorphic metal ceramic, were performed. The ceramic was prepared by infiltration of the Al-13Si-9Mg melt into porous silicon carbide derived from wood of two species of trees, beech and sapele. The measurements were performed with a composite piezoelectric vibrator under resonance conditions, with rod-shaped samples vibrated longitudinally at about 100 kHz over a wide range of vibrational strain amplitudes, which included both the linear (amplitude-independent) and nonlinear (microplastic) regions. It was shown that the Young’s modulus and the microplastic properties of the composite are anisotropic and depend substantially on the tree species, particularly when longitudinal vibrations are excited in samples cut along the tree fibers.

  18. Cryogenic mechanical properties of low density superplastic Al-Mg-Sc alloys

    SciTech Connect

    Verzasconi, S.L.; Morris, J.W. Jr. )

    1989-06-01

    Spacecraft cryogenic fuel tankage made from superplastic materials is a possible new application for low density aluminum alloys such as Al-Mg-Sc. Examples from this alloy system were examined for cryogenic strength and toughness. Alloys studied were received in the superplastically formable condition, in sheet form. Alloy 2219-T87 sheet was also tested for comparison, since 2219-T8X is currently used in cryogenic tankage. Five compositions of Al-Mg-Sc alloys were tested at 77 and 4 K. Alloys showed the expected increase in strength with decreasing temperature, accompanied by a general slight decrease in elongation and the Kahn tear-yield ratio toughness indicator; however, the strength-tear toughness relationship of this alloy class was as good as or better than that of 2219-T87. Correlations found between the properties, microstructure, and fracture surfaces are discussed. 8 refs., 1 fig., 3 tabs.

  19. Computer Modelling of Age Hardening for Isothermally Aged Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Wu, Linda; Ferguson, W. George

    Computer modelling, due to it saving time and money, has been widely used in industrial simulation. The present model, which is based on the Shercliff-Ashby methodology for the ageing of aluminum alloys, can be used to predict the yield strength (or hardness) of Al-Mg-Si alloys for the artificial ageing temperature below the solvus temperature as a function of time. With suitable input data, this model can be applied to most Al-Mg-Si alloys, wrought or cast. In the present model, input data for aluminium alloys of A356, A357 and 6061 is taken from the open literature, and then the unknown constants are calibrated from these data. After calibration, the ageing curves are constructed for different isothermal ageing temperatures. Finally, experimentally ageing heat treatments at different temperatures for casting alloys of A356 were done to validate the model.

  20. Friction Stir Welding of a Thick Al-Zn-Mg Alloy Plate

    NASA Astrophysics Data System (ADS)

    Buchibabu, V.; Reddy, G. M.; Kulkarni, D.; De, A.

    2016-03-01

    Al-Zn-Mg alloys are widely used as structural materials due to high strength-to-weight ratio and impact toughness. As fusion welds in these alloys commonly face hot cracking and macro porosity, friction stir welding is increasingly becoming the preferred recourse. We report here a detailed experimental study on friction stir welding of a specific Al-Zn-Mg alloy with its chemical compositions close to AA7039. The effect of tool rotational speed and welding speed on the weld profile, joint microstructure, and mechanical properties is studied extensively. The results show sound weld profiles and joint properties within the selected range of process conditions. Within the selected range of welding conditions, the welds made at a tool rotational speed of 350 rpm and welding speed of 3 mm/s have showed joint structure, tensile, and impact toughness properties fairly close to that of the base material.

  1. An investigation of microstructural stability in an Al-Mg alloy with submicrometer grain size

    SciTech Connect

    Wang, J.; Iwahashi, Y.; Horita, Z.; Furukawa, M.; Nemoto, M.; Valiev, R.Z.; Langdon, T.G.

    1996-07-01

    The microstructural stability of an Al-3%Mg solid solution alloy with a submicrometer-grained (SMG) structure ({approximately}0.2 {micro}m) was evaluated using both static annealing and transmission electron microscopy over a range of temperatures from 443 to 803 K and differential scanning calorimetry (DSC) up to 773 K. The results show that the SMG structure contains many non-equilibrium grain boundaries but recrystallization occurs at the higher temperatures giving large grains with boundaries having high-angle equilibrium configurations. There are significant differences between the DSC curves of the SMG alloy and a standard cold-rolled Al-3%Mg alloy, due primarily to the advent of significant heat release at low temperatures in the SMG alloy because of recovery at the non-equilibrium grain boundaries. A temperature of {approximately}500 K, close to half the absolute melting temperature, represents an effective upper limit for utilization of the SMG structure in this material.

  2. On the Precipitation Hardening of Selective Laser Melted AlSi10Mg

    NASA Astrophysics Data System (ADS)

    Aboulkhair, Nesma T.; Tuck, Chris; Ashcroft, Ian; Maskery, Ian; Everitt, Nicola M.

    2015-08-01

    Precipitation hardening of selective laser melted AlSi10Mg was investigated in terms of solution heat treatment and aging duration. The influence on the microstructure and hardness was established, as was the effect on the size and density of Si particles. Although the hardness changes according to the treatment duration, the maximum hardening effect falls short of the hardness of the as-built parts with their characteristic fine microstructure. This is due to the difference in strengthening mechanisms.

  3. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  4. Characterization of DC magnetron plasma in Ar/Kr/N2 mixture during deposition of (Cr,Al)N coating

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Bagcivan, N.; Theiß, S.; Brugnara, R.; Bibinov, N.; Awakowicz, P.

    2017-02-01

    Reactive sputter deposition of (Cr,Al)N coatings in DC magnetron plasmas containing Ar/Kr/N2 mixtures is characterized by applying a combination of voltage–current measurement, optical emission spectroscopy (OES) and numerical simulation. Theoretical and experimental methods supplement each other and their combination permits us to obtain the most reliable information about the processes by physical vapor deposition. Gas temperature (T g) and plasma parameters, namely electron density n e and electron temperature T e are determined by spatial resolved measurements of molecular nitrogen photoemission. Steady-state densities of Cr and Al atoms are measured using OES. The sputtering of Cr and Al atoms is simulated using the TRIDYN code, measured electric current and applied voltage. Transport of sputtered atoms through the plasma volume is simulated by adopting a Monte-Carlo code. In order to quantify the ‘poisoning’ of the target surface with nitrogen, simulated steady state densities of Al and Cr atoms at different states of poisoning and at different distances from the target are compared with the measured densities. In addition, simulated fluxes of Cr and Al atoms to the substrate are compared with the measured deposition rates of the (Cr,Al)N coating.

  5. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The sintered aluminum powder (SAP) technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of a nickel alloy containing, by weight, 17% Cr, 5% Al, and 0.2% Y. The SAP-NiCrAl alloy (without the ytterbium removed by oxdation) was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. Annealing treatments were applied after working to determine the recrystallization response. The NiCrAlY alloy, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl alloy exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl alloy as has been reported for other oxide dispersion strengthened alloys. In contrast, the unoxidized NiCrAlY alloy exhibited only primary recrystallization.

  6. Microstructure evolution and tensile mechanical properties of thixoformed high performance Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Chen, Qiang; Wang, Bo; Du, Zhi-ming

    2015-09-01

    Al-Zn-Mg-Cu alloys are the strongest aluminum alloys which have been widely used for aerospace applications. They are usually machined from the wrought state usually with a high waste percentage. To reduce waste, it is important to thixoform these alloys in near net shape. In this work, the thixoformability of a commercial high performance Al-Zn-Mg-Cu alloy 7075 was studied. A novel multistep reheating regime was developed in recrystallization and partial melting (RAP) route to obtain spheroidal semi-solid microstructures. The as-extruded 7075 alloy was fully recrystallized for a short holding time using the multistep reheating regime. Semi-solid microstructures with fine and spherical solid grains with a grain size of 40-50 μm embedded in liquid matrix were obtained. The advantage of the multistep reheating regimes over those conventional routes was also discussed. Some wheel-shaped components were thixoformed from the as-received 7075 alloy. The ultimate tensile strength, yield strength and elongation to fracture of the thixoformed component based on multistep reheating regime, are 510 MPa, 446 MPa and 17.5% respectively. These values are superior to those of the products manufactured with the conventional RAP route. As the results indicated, thixoforming could be conducted based on commercial extruded Al-Zn-Mg-Cu alloys, which has important practical significance.

  7. Probing the defect state of individual precipitates grown in an Al-Mg-Si alloy

    SciTech Connect

    Klobes, Benedikt; Korff, Bjoern; Balarisi, Osman; Eich, Patrick; Haaks, Matz; Maier, Karl; Sottong, Reinhard; Huehne, Sven-Martin; Mader, Werner; Staab, Torsten E. M.

    2010-08-01

    Precipitates forming in decomposable aluminum alloys such as Al-Mg-Si evolve toward the corresponding intermetallic phase, which is {beta} (Mg{sub 2}Si) in this case, depending on heat-treatment conditions. Individual {beta} precipitates were produced in an Al-1.11 at. % Mg-0.77 at. % Si alloy and identified using optical as well as electron microscopy. The individual {beta} precipitates could be investigated with regard to their intrinsic crystal defects using a finely focused positron microbeam provided by the Bonn Positron Microprobe. Comparison with theoretical calculations of the Doppler broadening of annihilation radiation reveals that {beta} precipitates most likely do not contain vacancies in either sublattice and that 0.16 is the upper bound of the fraction of trapped positrons. The usage of different enhancement factors had only little influence on the calculations whereas the general gradient approximation affected the contribution of Si orbitals, in particular. Additional measurements of the Doppler broadening based on the radioactive source {sup 68}Ge, which emits high-energy positrons probing bulk regions of the sample, were carried out. These measurements show that {beta} precipitates are sparsely distributed in the Al matrix.

  8. Adsorption of methyl orange from aqueous solutions by calcined ZnMgAl hydrotalcite

    NASA Astrophysics Data System (ADS)

    Yuan, Dong; Zhou, Liangqin; Fu, Dayou

    2017-02-01

    The calcined ZnMgAl hydrotalcite was used for degration of methyl orange (MO). The adsorbent was characterized by XRD, SEM, and FT-IR. The results reveal that the ZnMgAl layered structures were disappeared after calcining for 5 h at 500 °C, then were recovered to layer hydrotalcite structure after adsorbing MO anions. The several important affecting factors of adsorption behavior, including the initial pH value of solution, adsorbent dosage, and the initial concentration of solution, were also discussed. The adsorption kinetic processes were fitted with the equations of pseudo-first-order, pseudo-second-order, and intraparticle diffusion, respectively, in which the pseudo-second-order equation fitting results was the better. The equilibrium isotherm of MO was described by both Langmuir and Freundlich model, but better complys with the Langmuir model ( R 2 > 0.98). The possible adsorption mechanism has been presumed. The adsorption experiments indicated that the ZnMgAl hydrotalcite had good adsorption ability to methyl orange in wastewater.

  9. Unique mechanical properties of nanostructured transparent MgAl2O4 ceramics

    PubMed Central

    2013-01-01

    Nanoindentation tests were performed on nanostructured transparent magnesium aluminate (MgAl2O4) ceramics to determine their mechanical properties. These tests were carried out on samples at different applied loads ranging from 300 to 9,000 μN. The elastic recovery for nanostructured transparent MgAl2O4 ceramics at different applied loads was derived from the force-depth data. The results reveal a remarkable enhancement in plastic deformation as the applied load increases from 300 to 9,000 μN. After the nanoindetation tests, scanning probe microscope images show no cracking in nanostructured transparent MgAl2O4 ceramics, which confirms the absence of any cracks and fractures around the indentation. Interestingly, the flow of the material along the edges of indent impressions is clearly presented, which is attributed to the dislocation introduced. High-resolution transmission electron microscopy observation indicates the presence of dislocations along the grain boundary, suggesting that the generation and interaction of dislocations play an important role in the plastic deformation of nanostructured transparent ceramics. Finally, the experimentally measured hardness and Young’s modulus, as derived from the load–displacement data, are as high as 31.7 and 314 GPa, respectively. PMID:23724845

  10. Auto-combustion synthesis and characterization of Mg doped CuAlO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Naqvi, A. H.

    2015-06-01

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO2nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO2 sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO2 has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  11. Factors Affecting the Hydrogen Environment Assisted Cracking Resistance of an AL-Zn-Mg-(Cu) Alloy

    SciTech Connect

    Young, G A; Scully, J R

    2002-04-09

    Precipitation hardenable Al-Zn-Mg alloys are susceptible to hydrogen environment assisted cracking (HEAC) when exposed to aqueous environments. In Al-Zn-Mg-Cu alloys, overaged tempers are used to increase HEAC resistance at the expense of strength but overaging has little benefit in low copper alloys. However, the mechanism or mechanisms by which overaging imparts HEAC resistance is poorly understood. The present research investigated hydrogen uptake, diffusion, and crack growth rate in 90% relative humidity (RH) air for both a commercial copper bearing Al-Zn-Mg-Cu alloy (AA 7050) and a low copper variant of this alloy in order to better understand the factors which affect HEAC resistance. Experimental methods used to evaluate hydrogen concentrations local to a surface and near a crack tip include nuclear reaction analysis (NRA), focused ion beam, secondary ion mass spectroscopy (FIB/SIMS) and thermal desorption spectroscopy (TDS). Results show that overaging the copper bearing alloys both inhibits hydrogen ingress from oxide covered surfaces and decreases the apparent hydrogen diffusion rates in the metal.

  12. Unique mechanical properties of nanostructured transparent MgAl2O4 ceramics.

    PubMed

    Zhang, Jie; Lu, Tiecheng; Chang, Xianghui; Wei, Nian; Qi, Jianqi

    2013-06-01

    Nanoindentation tests were performed on nanostructured transparent magnesium aluminate (MgAl2O4) ceramics to determine their mechanical properties. These tests were carried out on samples at different applied loads ranging from 300 to 9,000 μN. The elastic recovery for nanostructured transparent MgAl2O4 ceramics at different applied loads was derived from the force-depth data. The results reveal a remarkable enhancement in plastic deformation as the applied load increases from 300 to 9,000 μN. After the nanoindetation tests, scanning probe microscope images show no cracking in nanostructured transparent MgAl2O4 ceramics, which confirms the absence of any cracks and fractures around the indentation. Interestingly, the flow of the material along the edges of indent impressions is clearly presented, which is attributed to the dislocation introduced. High-resolution transmission electron microscopy observation indicates the presence of dislocations along the grain boundary, suggesting that the generation and interaction of dislocations play an important role in the plastic deformation of nanostructured transparent ceramics. Finally, the experimentally measured hardness and Young's modulus, as derived from the load-displacement data, are as high as 31.7 and 314 GPa, respectively.

  13. Auto-combustion synthesis and characterization of Mg doped CuAlO{sub 2} nanoparticles

    SciTech Connect

    Agrawal, Shraddha Parveen, Azra; Naqvi, A. H.

    2015-06-24

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO{sub 2}nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO{sub 2} sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO{sub 2} has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  14. Microstructure-property relationships in Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 2

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    The microstructure and mechanical properties of the ultrahigh strength Al-Cu-Li-Ag-Mg alloy, Weldalite (tm) 049, were studied. Specifically, the microstructural features along with tensile strength, weldability, Young's modulus and fracture toughness were studied for Weldalite (tm) 049 type alloys with Li contents ranging from 1.3 to 1.9 wt. pct. The tensile properties of Weldalite 049 and Weldalite 049 reinforced with TiB2 particles fabricated using the XD (tm) process were also evaluated at cryogenic, room, and elevated temperatures. In addition, an experimental alloy, similar in composition to Weldalite 049 but without the Ag+Mg, was fabricated. The microstructure of this alloy was compared with that of Weldalite 049 in the T6 condition to assess the effect of Ag+Mg on nucleation of strengthening phases in the absence of cold work.

  15. Low-strain plasticity in a high pressure die cast Mg-Al alloy

    NASA Astrophysics Data System (ADS)

    Vanna Yang, K.; Cáceres, C. H.; Nagasekhar, A. V.; Easton, M. A.

    2012-03-01

    The Kocks-Mecking method was used to compare the strain-hardening behavior at low strains of high pressure die cast Mg-9 mass% Al alloy and gravity cast fine grained pure Mg specimens. The alloy specimens exhibited a rounded flow curve in contrast with the pure metal's for which macroscopic yielding occurred at a well-defined stress. Microhardness mapping of the cross-section of an alloy specimen showed a surface layer, or skin, with hardness values ˜20 HV above those of the centre or core region. On the assumption that the core strain hardens at the same rate as the pure Mg specimen, it was estimated that ˜20% of the alloy specimen's cross-section was still elastic when the core reached full plasticity. The micromechanics of the elasto-plastic transition in the alloy specimens are discussed.

  16. Li0.5Al0.5Mg2(MoO4)3

    PubMed Central

    Ennajeh, Ines; Zid, Mohamed Faouzi; Driss, Ahmed

    2013-01-01

    The title compound, lithium/aluminium dimagnesium tetra­kis­[orthomolybdate(VI)], was prepared by a solid-state reaction route. The crystal structure is built up from MgO6 octa­hedra and MoO4 tetra­hedra sharing corners and edges, forming two types of chains running along [100]. These chains are linked into layers parallel to (010) and finally linked by MoO4 tetra­hedra into a three-dimensional framework structure with channels parallel to [001] in which lithium and aluminium cations equally occupy the same position within a distorted trigonal–bipyramidal coordination environment. The title structure is isotypic with LiMgIn(MoO4)3, with the In site becoming an Mg site and the fully occupied Li site a statistically occupied Li/Al site in the title structure. PMID:24426975

  17. Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties.

    PubMed

    Singh, S; Wanderka, N; Kiefer, K; Siemensmeyer, K; Banhart, J

    2011-05-01

    Splat-quenched, as-cast and aged (2h at 600 °C after casting) AlCoCrCuFeNi high entropy alloys were investigated by means of transmission electron microscopy and three-dimensional atom probe (3D-AP). 3D-AP revealed anti-correlated fluctuations of the Cr and Fe-Co compositions in Cr-Fe-Co-rich regions of the as-cast alloy. The ferromagnetic behavior of AlCoCrCuFeNi high entropy alloy was correlated with the decomposition of the Cr-Fe-Co-rich regions into ferromagnetic Fe-Co-rich and antiferromagnetic Cr-rich domains, the size of which was determined by statistical analysis of 3D-AP data. The splat-quenched alloy showed a softer magnetic behavior as compared to the as-cast and aged alloys. The aged alloy possessed a higher saturation magnetization and coercivity as compared to the as-cast alloy.

  18. Elastic moduli of nanocrystalline binary Al alloys with Fe, Co, Ti, Mg and Pb alloying elements

    NASA Astrophysics Data System (ADS)

    Babicheva, Rita I.; Bachurin, Dmitry V.; Dmitriev, Sergey V.; Zhang, Ying; Kok, Shaw Wei; Bai, Lichun; Zhou, Kun

    2016-05-01

    The paper studies the elastic moduli of nanocrystalline (NC) Al and NC binary Al-X alloys (X is Fe, Co, Ti, Mg or Pb) by using molecular dynamics simulations. X atoms in the alloys are either segregated to grain boundaries (GBs) or distributed randomly as in disordered solid solution. At 0 K, the rigidity of the alloys increases with decrease in atomic radii of the alloying elements. An addition of Fe, Co or Ti to the NC Al leads to increase in the Young's E and shear μ moduli, while an alloying with Pb decreases them. The elastic moduli of the alloys depend on a distribution of the alloying elements. The alloys with the random distribution of Fe or Ti demonstrate larger E and μ than those for the corresponding alloys with GB segregations, while the rigidity of the Al-Co alloy is higher for the case of the GB segregations. The moduli E and μ for polycrystalline aggregates of Al and Al-X alloys with randomly distributed X atoms are estimated based on the elastic constants of corresponding single-crystals according to the Voigt-Reuss-Hill approximation, which neglects the contribution of GBs to the rigidity. The results show that GBs in NC materials noticeably reduce their rigidity. Furthermore, the temperature dependence of μ for the NC Al-X alloys is analyzed. Only the Al-Co alloy with GB segregations shows the decrease in μ to the lowest extent in the temperature range of 0-600 K in comparison with the NC pure Al.

  19. Observation and Prediction of the Hot Tear Susceptibility of Ternary Al-Si-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Easton, Mark A.; Wang, Hao; Grandfield, John; Davidson, Cameron J.; StJohn, David H.; Sweet, Lisa D.; Couper, Malcolm J.

    2012-09-01

    An investigation into the hot tear susceptibility of ternary Al-Si-Mg alloys has been made using direct crack observation, measurement of load response, and predictions made by a modified Rappaz-Drezet-Gremaud (RDG) hot tearing model. A peak in both the hot tear susceptibility and the load at solidus occurred at approximately 0.2Si and 0.15Mg, and then the hot tear susceptibility decreased as the total solute content increased. In general, a good correlation was found among the observation of cracks, the load at solidus, and the predictions of the RDG hot tearing model, although it was shown that correlation with the RDG model depended critically on the fraction solid at which solid coalescence was assumed to occur. A combination of these approaches indicated that when the total Si+Mg content and the Si:Mg ratio increased toward four, a decrease occurred in the hot tear susceptibility because of an increase in the amount of final eutectic formed. At the lowest Si:Mg ratio of 0.25, the RDG model also predicted a lower relative hot tear susceptibility than that measured by the load at solidus. In these alloys, the final stages of solidification are predicted to occur over a large temperature range, and hence, both the predictions of the RDG model and the measurement of the load were dependent on which fraction solid was chosen for grain coalescence. In the alloys studied in this article, the formation of small amounts of the ternary eutectic Al+Mg2Si+Si caused the highest hot tear susceptibility.

  20. Theoretical study of the coordination of the Cr3+ ion in α-Al2O3

    NASA Astrophysics Data System (ADS)

    Franco, R.; Recio, J. M.; Pendas, A. Martín; Francisco, E.; Luaña, V.; Pueyo, L.

    1995-12-01

    The local arrangement of a substitutional Cr3+ ion for an Al3+ ion in corundum is studied by means of first-principles pairwise simulations and quantum-mechanical ab initio Perturbed Ion calculations. Our investigation is organized in two steps. First, we determine the cohesive properties of the host lattice by calculating the set of four crystalline parameters that makes minimum the total energy of corundum. Secondly, we solve cluster models of increasing complexity centered at the Cr3+ site and embedded in the previously computed crystal potential. This is a consistent strategy that contributes to determine the local geometry of Cr3+ in α-Al2O3.

  1. Atomic-scale microstructure underneath nanoindentation in Al-Cr-N ceramic films

    SciTech Connect

    Zhuang, Chunqiang Li, Zhipeng; Lin, Songsheng

    2015-12-15

    In this work, Al-Cr-N ceramic films deformed by nanoindentation were peeled off from silicon substrates and their atomic-scale microstructures underneath the indenter were investigated by high resolution transmission electron microscope (HR-TEM). Dislocations were formed underneath the indenter and they accumulated along nano-grain boundaries. The accumulative dislocations triggered the crack initiation along grain boundaries, and further resulted in the crack propagation. Dislocations were also observed in nano-grains on the lateral contact area. A model was proposed to describe the variation of microstructures under nanoindentation.

  2. Atomic-scale microstructure underneath nanoindentation in Al-Cr-N ceramic films

    NASA Astrophysics Data System (ADS)

    Zhuang, Chunqiang; Li, Zhipeng; Lin, Songsheng

    2015-12-01

    In this work, Al-Cr-N ceramic films deformed by nanoindentation were peeled off from silicon substrates and their atomic-scale microstructures underneath the indenter were investigated by high resolution transmission electron microscope (HR-TEM). Dislocations were formed underneath the indenter and they accumulated along nano-grain boundaries. The accumulative dislocations triggered the crack initiation along grain boundaries, and further resulted in the crack propagation. Dislocations were also observed in nano-grains on the lateral contact area. A model was proposed to describe the variation of microstructures under nanoindentation.

  3. Hydrogen embrittlement of aged and retrogressed-reaged Al-Li-Cu-Mg alloys

    SciTech Connect

    Thakur, C.; Balasubramaniam, R.

    1997-04-01

    The hydrogen embrittlement (HE) of Al-2.30 Li-1.24 Cu-0.80 Mg-0.12 Zr and Al-1.90 Li-1.80 Cu-1 Mg-0.09 Zr alloys in different artificial aging tempers and after retrogression and reaging (RRA) treatments has been investigated by tensile testing hydrogen precharged specimens. The influence of RRA and hydrogen charging on the dislocation structure was studied by TEM. The under-aged temper was the most susceptible while the peak-aged temper was the most resistant to HE. The RRA treatment improved the HE resistance of all the tempers. This has been attributed to the reduction in dislocation density upon retrogression and reaging. The alloy with the lower Li content exhibited improved HE resistance. Flat fractographic features near the surface of the hydrogen charged specimen have been correlated to the depth of hydrogen penetration. The formation of LiAlH{sub 4} and LiH in hydrogen charged Al-Li alloys has been confirmed by X-ray diffraction studies. The hydrogen-dislocation interaction and hydride cracking mechanisms of HE have been addressed.

  4. Interdiffusion in ? (fcc) Ni-Cr-X (X=Al, Si, Ge or Pd) Alloys at 900?C

    SciTech Connect

    Garimella, N; Brady, Michael P; Sohn, Yong Ho

    2006-01-01

    Interdiffusion in Ni-Cr (fcc phase) alloys with small additions of Al, Si, Ge, or Pd was investigated using solid-to-solid diffusion couples. Ni-Cr-X alloys having compositions of Ni- 22at.%Cr, Ni-21at.%Cr-6.2at.%Al, Ni-22at.%Cr-4.0at.%Si, Ni-22at.%Cr-1.6at.%Ge and Ni- 22at.%Cr-1.6at.%Pd were manufactured by arc-casting. The diffusion couples were assembled in an Invar steel jig, encapsulated in Ar after several hydrogen purges, and annealed at 900 C in a three-zone tube furnace for 168 hours. Experimental concentration profiles were determined from polished cross-section of these couples by using electron probe microanalysis with pure element standards. Interdiffusion fluxes of individual components were calculated directly from the experimental concentration profiles, and the moments of interdiffusion fluxes were examined to determine average ternary interdiffusion coefficients. Effects of ternary alloying additions on the diffusional behavior of Ni-Cr-X alloys are presented in the light of the diffusional interactions and the formation of a protective Cr2O3 scale

  5. Feasibility study of the direct mechano-chemical synthesis of nanostructured magnesium tetrahydroaluminate (alanate) [Mg(AlH(4))(2)] complex hydride.

    PubMed

    Varin, R A; Chiu, Ch; Czujko, T; Wronski, Z

    2005-10-01

    The present work reports a feasibility study of the direct mechano-chemical synthesis by controlled reactive mechanical alloying (CRMA) in a magneto-ball mill of the nanostructured magnesium tetrahydroaluminate (magnesium alanate) Mg(AlH(4))(2) complex hydride. Three stoichiometric Mg-2Al mixtures, (a) elemental Mg and Al powders, (b) elemental Al powder and commercial AZ91 alloy (Mg-Al-Zn alloy) and (c) powder of as-cast Mg-2Al alloy, have been used. No successful synthesis of Mg(AlH(4))(2) has been achieved. The only nanocrystalline hydride formed up to 270 h of CRMA is beta-MgH(2), and it does not react with Al and H(2) to form Mg(AlH(4))(2). It has been found that there is strong competition between formation of Al(Mg) solid solution and the beta-MgH(2) hydride occurring to a various extent up to approximately 10 h of CRMA in all three Mg-2Al mixtures. It is hypothesized that the presence of Al(Mg) solid solution inhibits the reaction of beta-MgH(2), Al and H(2) to form Mg(AlH(4))(2). Furthermore, despite the fact that after prolonged milling the Al(Mg) solution eventually decomposes into secondary Al(s) (derived from solid solution), the latter retains its physico-chemical characteristics of the former solid solution which still inhibits the reaction to form Mg(AlH(4))(2). Experimental evidence from DSC measurements shows increasing ranges of the melting enthalpy with increasing amounts of Al(Mg) solid solution and consequently the secondary Al(s) for all the three Mg-2Al mixtures. This strongly supports the hypothesis about the different nature of Al(Mg) and the secondary Al(s) as compared to the primary elemental Al powder.

  6. Direct observation of atomic-scale origins of local dissolution in Al-Cu-Mg alloys

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Wang, J.; Wu, B.; Oguzie, E. E.; Luo, K.; Ma, X. L.

    2016-12-01

    Atomistic chemical inhomogeneities are anticipated to induce dissimilarities in surface potentials, which control corrosion initiation of alloys at the atomic scale. Precise understanding of corrosion is therefore hampered by lack of definite information describing how atomistic heterogeneities regulate the process. Here, using high-angle annular dark-field (HAADF) scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS) techniques, we systematically analyzed the Al20Cu2Mn3 second phase of 2024Al and successfully observed that atomic-scale segregation of Cu at defect sites induced preferential dissolution of the adjacent zones. We define an “atomic-scale galvanic cell”, composed of zones rich in Cu and its surrounding matrix. Our findings provide vital information linking atomic-scale microstructure and pitting mechanism, particularly for Al-Cu-Mg alloys. The resolution achieved also enables understanding of dealloying mechanisms and further streamlines our comprehension of the concept of general corrosion.

  7. Direct observation of atomic-scale origins of local dissolution in Al-Cu-Mg alloys

    PubMed Central

    Zhang, B.; Wang, J.; Wu, B.; Oguzie, E. E.; Luo, K.; Ma, X. L.

    2016-01-01

    Atomistic chemical inhomogeneities are anticipated to induce dissimilarities in surface potentials, which control corrosion initiation of alloys at the atomic scale. Precise understanding of corrosion is therefore hampered by lack of definite information describing how atomistic heterogeneities regulate the process. Here, using high-angle annular dark-field (HAADF) scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS) techniques, we systematically analyzed the Al20Cu2Mn3 second phase of 2024Al and successfully observed that atomic-scale segregation of Cu at defect sites induced preferential dissolution of the adjacent zones. We define an “atomic-scale galvanic cell”, composed of zones rich in Cu and its surrounding matrix. Our findings provide vital information linking atomic-scale microstructure and pitting mechanism, particularly for Al-Cu-Mg alloys. The resolution achieved also enables understanding of dealloying mechanisms and further streamlines our comprehension of the concept of general corrosion. PMID:28000750

  8. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application.

    PubMed

    Zhou, W R; Zheng, Y F; Leeflang, M A; Zhou, J

    2013-11-01

    Mg-Li-based alloys were investigated for future cardiovascular stent application as they possess excellent ductility. However, Mg-Li binary alloys exhibited reduced mechanical strengths due to the presence of lithium. To improve the mechanical strengths of Mg-Li binary alloys, aluminum and rare earth (RE) elements were added to form Mg-Li-Al ternary and Mg-Li-Al-RE quarternary alloys. In the present study, six Mg-Li-(Al)-(RE) alloys were fabricated. Their microstructures, mechanical properties and biocorrosion behavior were evaluated by using optical microscopy, X-ray diffraction, scanning electronic microscopy, tensile tests, immersion tests and electrochemical measurements. Microstructure characterization indicated that grain sizes were moderately refined by the addition of rare earth elements. Tensile testing showed that enhanced mechanical strengths were obtained, while electrochemical and immersion tests showed reduced corrosion resistance caused by intermetallic compounds distributed throughout the magnesium matrix in the rare-earth-containing Mg-Li alloys. Cytotoxicity assays, hemolysis tests as well as platelet adhesion tests were performed to evaluate in vitro biocompatibilities of the Mg-Li-based alloys. The results of cytotoxicity assays clearly showed that the Mg-3.5Li-2Al-2RE, Mg-3.5Li-4Al-2RE and Mg-8.5Li-2Al-2RE alloys suppressed vascular smooth muscle cell proliferation after 5day incubation, while the Mg-3.5Li, Mg-8.5Li and Mg-8.5Li-1Al alloys were proven to be tolerated. In the case of human umbilical vein endothelial cells, the Mg-Li-based alloys showed no significantly reduced cell viabilities except for the Mg-8.5Li-2Al-2RE alloy, with no obvious differences in cell viability between different culture periods. With the exception of Mg-8.5Li-2Al-2RE, all of the other Mg-Li-(Al)-(RE) alloys exhibited acceptable hemolysis ratios, and no sign of thrombogenicity was found. These in vitro experimental results indicate the potential of Mg-Li-(Al

  9. Preparation of Mg/Al-LDHs intercalated with dodecanoic acid and investigation of its antiwear ability

    SciTech Connect

    Zhao, Dong; Bai, Zhimin; Zhao, Fuyan

    2012-11-15

    Graphical abstract: Comparable studies of nano Mg/Al-LDHs powder on the anti-wear properties of lubricating oil were carried out on four-ball and gear testing machine. Mg/Al-NO{sub 3}{sup −}-LDHs and Mg/Al-DA-LDHs powder in base oil possess an excellent friction-reducing property, with a friction coefficient at 23.9% and 22.2% which are lower than that of the base oil Highlights: ► We synthesized nano Mg/Al-NO{sub 3}{sup −}(DA)-LDHs via coprecipitation and anion exchange. ► The optimal exchanging condition is as follows: water dispersion and pH value of 5. ► The tribological properties of LDHs were studied on four-ball and gear machine. ► We reported nano LHDs as anti-wear materials in lubricates for the first time. ► The greatest decline in friction coefficient of lubricates with LDHs is up to 23.9%. -- Abstract: Layered double hydroxides (LDHs) intercalated with dodecanoic acid have been prepared by anion exchange with Mg/Al-NO{sub 3}{sup −}-LDHs as the precursor under acid condition with water and ethanol as the dispersion medium. The obtained materials were characterized by X-ray diffraction (XRD), thermogravimetric and differential thermal analyser (TG–DTA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and BET. Patterns of XRD and FTIR show that interlayer nitrate ions have substituted with dodecanoic acid and the gallery height has increased from 0.88 nm to 1.99 nm. The interlayer distance of the intercalated materials increases with the increase of pH value due to the different arrangement of interlayer anions. The tribological performance of LDHs precursor and intercalated LDHs in base oil were studied for the first time by using four-ball wear machine and gear testing machine. Experimental results show that the LDHs precursor and intercalated LDHs powder are excellent in friction-reducing, with decreases in friction coefficient by 23.9% and 22.2% respectively comparing with base oil.

  10. Weldability of Fe-Al-Cr Overlay Coatings for CorrosionProtection in Oxidizing/Sulfidizing Environments

    SciTech Connect

    Regina, JR

    2003-03-04

    The effect of chromium additions to the weldability of Fe-Al based overlay claddings are currently being investigated for the corrosion protection of boiler tubes in Low NOx furnaces. The primary objective of this research is to identify weldable (crack-free) Fe-Al-Cr weld overlay coating compositions that provide corrosion resistance over long exposure times. During the current project phase, preliminary corrosion testing was conducted on several ternary Fe-Al-Cr alloys in two types of gaseous corrosion environments. These long-term corrosion tests were used to develop a target weld composition matrix and serve as a base line for future corrosion tests. Preliminary Fe-Al based welds with various aluminum concentrations and one ternary Fe-Al-Cr weld overlay were successfully deposited using a Gas Tungsten Arc Welding (GTAW) process and cracking susceptibility was evaluated on these coatings.

  11. Interdiffusion in epitaxial ultrathin Co2FeAl/MgO heterostructures with interface-induced perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Hadorn, Jason Paul; Okabayashi, Jun; Sukegawa, Hiroaki; Ohkubo, Tadakatsu; Inomata, Koichiro; Mitani, Seiji; Hono, Kazuhiro

    2017-01-01

    The interfacial atomic structure of epitaxial ultrathin Co2FeAl/MgO(001) heterostructures, which is related to the interface-induced perpendicular magnetic anisotropy (PMA), was investigated using scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray magnetic circular dichroism. Al atoms from the Co2FeAl layer significantly interdiffused into MgO, forming an Al-deficient Co-Fe-Al/Mg-Al-O structure near the Co2FeAl/MgO interface. This atomic replacement may have enhanced the PMA, which is consistent with the observed large perpendicular orbital magnetic moments of Fe atoms at the interface. This work suggests that control of interdiffusion at ferromagnet/barrier interfaces is critical for designing an interface-induced PMA system.

  12. Red persistent luminescence in MgGa2O4 : Cr3+ a new phosphor for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Basavaraju, N.; Sharma, S.; Bessière, A.; Viana, B.; Gourier, D.; Priolkar, K. R.

    2013-09-01

    A new red-emitting long-lasting phosphorescence (LLP) material useful as biomarker for small animal in vivo imaging is presented. X-ray irradiated MgGa2O4 : Cr3+ is shown to be a suitable persistent phosphor emitting in the range 650-770 nm. In vivo re-excitation of its persistent luminescence is also possible with 580 nm excitation. MgGa2O4 : Cr3+ has almost 44% cationic site inversion. Cr3+ ion occupies octahedral site resulting in a broad emission peaking at 707 nm corresponding to Cr3+ 2E(2G) → 4A2(4F) transition. LLP is most intense for the compound with nominal Mg deficiency which also has the highest cation inversion. It is proposed that structural defects occurring due to cation inversion are responsible for LLP.

  13. The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys.

    PubMed

    Goldberg, Jay R; Gilbert, Jeremy L

    2004-02-01

    The mechanical and electrochemical behavior of the surface oxides of CoCrMo and Ti6Al4V alloys during fracture and repassivation play an important role in the corrosion of the taper interfaces of modular hip implants. This behavior was investigated in one group of CoCrMo and Ti6Al4V alloy samples passivated with nitric acid and another group coated with a novel TiN/AlN coating. The effects of mechanical load and sample potential on peak currents and time constants resulting from fracture of the surface oxide or coating, and the effects of mechanical load on scratch depth were investigated to determine the mechanical and electrochemical properties of the oxides or coating. The polarization behavior of the samples after fracture of the oxide or coating was also investigated. CoCrMo had a stronger surface oxide and higher interfacial adhesion strength, making it more resistant to fracture than Ti6Al4V. If undisturbed, the oxide on the surface of Ti6Al4V significantly reduced dissolution currents at a wider range of potentials than CoCrMo, making Ti6Al4V more resistant to corrosion. The TiN/AlN coating had a higher hardness and modulus of elasticity than CoCrMo and Ti6Al4V. It was much less susceptible to fracture, had a higher interfacial adhesion strength, and was a better barrier to ionic diffusion than the surface oxides on CoCrMo and Ti6Al4V. The coating provided increased corrosion and fretting resistance to the substrate alloys.

  14. Structural changes in the FeAl2O4-FeCr2O4 solid solution series and their consequences on natural Cr-bearing spinels

    NASA Astrophysics Data System (ADS)

    Lenaz, Davide; Skogby, Henrik

    2013-07-01

    The influence of Al-Cr substitution on the spinel structure was studied in synthetic single crystals belonging to the FeCr2O4-FeAl2O4 series produced by flux growth at 1,000-1,300 °C in controlled atmosphere. Samples were characterized by single-crystal X-ray diffraction, electron microprobe analyses and Mössbauer spectroscopy. Crystals of sufficient size and quality for single-crystal X-ray diffraction were obtained in the ranges Chr0-0.45 and Chr70-100 but not for intermediate compositions, possibly due to a reduced stability in this range. The increase in chromite component leads to an increase in the cell edge from 8.1534 (6) to 8.3672 (1) Å and a decrease in the u parameter from 0.2645 (2) to 0.2628 (1). Chemical analyses show that Fe2+ is very close to 1 apfu (0.994-1.007), Al is in the range 0.0793-1.981 apfu, Cr between 0 and 1.925 apfu. In some cases, Fe3+ is present in amounts up to 0.031 apfu. Spinels with intermediate Cr content (Chr component between 40 and 60) are strongly zoned with Cr-rich cores and Cr-poor rims. Mössbauer analyses on powdered spinels of the runs from which single crystal has been used for X-ray structural data show values of Fe3+/Fetot consistently larger than that calculated by EMPA on single crystals, presumably due to chemical variation between single crystals from the same runs. The synthesis runs ended at a temperature of 1,000 °C, but it is possible that cation ordering continued in the Cr-poor samples towards lower temperatures, possibly down to 700 °C.

  15. The effect of magnetron pulsing on the structure and properties of tribological Cr-Al-N coatings.

    PubMed

    Lin, Jianliang; Moore, John J; Mishra, Brajendra; Sproul, Williams D; Rees, John A

    2010-02-01

    The paper will discuss the effect of pulsing single or two unbalanced magnetrons in a closed magnetic field configuration on the structure and properties of tribological Cr-Al-N coatings. Nanocrystalline Cr-Al-N coatings were reactively deposited from Cr and Al elemental targets using two unbalanced magnetrons, which were powered in both dc, pulsing only Al target and asynchronously pulsing both Cr and Al targets at 100 kHz and 50% duty cycle conditions. The ion energy distributions of these deposition and pulsing conditions were characterized using a Hiden Electrostatic QuadruPole Plasma Analyzer. It was found that pulsing two magnetrons asynchronously at 100 kHz and 50% duty cycle produced higher ion energies and significant increased ion fluxes than pulsing none or pulsing only one (Al) target. The structure and properties of Cr-Al-N coatings synthesized under different dc and pulsing conditions were investigated using X-ray diffraction, scanning electron microscopy, nanoindentation and ball-on-disk wear test, and were correlated with the effects of ion energies and ion flux regimes observed in the plasma diagnostics. The advantages of using pulsed magnetron sputtering producing different energetic ion regimes to enhance the ion bombardment on the growing films and therefore achieving the improved density, refinement of grain size and properties are illustrated.

  16. Effect of Surplus Phase on the Microstructure and Mechanical Properties in Al-Cu-Mg-Ag Alloys with High Cu/Mg Ratio

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofeng; Zhao, Yuguang; Wang, Xudong; Zhang, Ming; Ning, Yuheng

    2015-11-01

    In order to examine the effect of surplus phase on the microstructure and mechanical properties, different compositions with high Cu/Mg ratio of the T6-temper extruded Al-Cu-Mg-Ag alloys were studied in this investigation. The results show that the Al-5.6Cu-0.56Mg-0.4Ag alloy obtains superior mechanical properties at room temperature, while the yield strength of Al-6.3Cu-0.48Mg-0.4Ag alloy is 378 MPa at 200 °C, which is 200 MPa higher than that of Al-5.6Cu-0.56Mg-0.4Ag alloy. Although the excessive Cu content causes the slight strength loss and elongation decrease in the Al-6.3Cu-0.48Mg-0.4Ag alloy at room temperature, the surplus phases and recrystallized microstructure will play an effective role in strengthening the alloy at elevated temperature.

  17. Effects of Heat Treatment on Grain-Boundary β-Mg17Al12 and Fracture Properties of Resistance Spot-Welded AZ80 Mg Alloy

    NASA Astrophysics Data System (ADS)

    Niknejad, Seyed Tirdad; Liu, Lei; Nguyen, Tam; Lee, Mok-Young; Esmaeili, Shahrzad; Zhou, Norman Y.

    2013-08-01

    The distribution and morphology of β-Mg17Al12 intermetallic phase in resistance spot-welded AZ80 Mg alloy were investigated by means of optical microscopy, scanning electron microscopy, and X-ray diffraction. The influence of intermetallic phase on mechanical strength was studied by tensile shear testing and fractography. The results showed that continuous networks of β-Mg17Al12 formed along grain boundaries in both the nugget and heat-affected zone of the spot-welded AZ80 Mg alloy. Those continuous grain-boundary β-Mg17Al12 networks acted as effective crack propagation paths, which had negative effects on the weld strength. Post-weld solution heat treatment effectively reduced the amount of β-Mg17Al12 and broke the grain-boundary intermetallic networks in both the nugget and heat-affected zone. This significantly increased the weld strength of AZ80 Mg alloy and changed the fracture mode from nugget pull-out in the as-welded condition to through-thickness after heat treatment.

  18. Three-Ply Al/Mg/Al Clad Sheets Fabricated by Twin-Roll Casting and Post-treatments (Homogenization, Warm Rolling, and Annealing)

    NASA Astrophysics Data System (ADS)

    Park, Jaeyeong; Song, Hyejin; Kim, Jung-Su; Sohn, Seok Su; Lee, Sunghak

    2017-01-01

    When thin Al alloy sheets are clad on to twin-roll-cast Mg alloy melt, inherent drawbacks of Mg alloys such as poor formability, corrosion resistance, and surface quality can be effectively complemented. In this study, three-ply Al/Mg/Al clad sheets were fabricated by twin-roll casting and post-treatments. Brittle interfacial layers composed of γ (Mg17Al12) and β (Mg2Al3) phases were inevitably formed, but their proper thickening during the post-treatments led to improvement of interfacial bonding and resultant tensile properties. In particular, warm rolling was an effective way to modify interfacial microstructures and tensile properties by minimizing deformation inhomogeneity and stress concentration.

  19. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    NASA Astrophysics Data System (ADS)

    Enamullah; Venkateswara, Y.; Gupta, Sachin; Varma, Manoj Raama; Singh, Prashant; Suresh, K. G.; Alam, Aftab

    2015-12-01

    We present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB , 866 K and 0.9 μB , 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y -type structure while CMCA has L 21 disordered structure. The antisite disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.

  20. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    SciTech Connect

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; Varma, Manoj Raama; Singh, Prashant; Suresh, K. G.; Alam, Aftab

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB, 866 K and 0.9 μB, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L21 disordered structure. The antisite disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.

  1. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    DOE PAGES

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; ...

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB, 866 K and 0.9 μB, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L21 disordered structure. The antisite disorder adds amore » somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.« less

  2. Synthesis of CORONA 5 (Ti-4.5Al-5Mo-1.5Cr)

    NASA Astrophysics Data System (ADS)

    Froes, F. H.; Highberger, W. T.

    1980-05-01

    The synthesis of CORONA 5 (Ti-4.5Al-5Mo-1.5Cr) is described from the viewpoints of alloy chemistry and microstructure. Lenticular alpha is shown to maximize fracture resistance parameters, while a globular alpha optimizes hightemperature flow characteristics. The processing and application of CORONA 5 as forging, plate, sheet and powder metallurgy products are presented. The weldability of the alloy is described and potential use of the alloy for engine applications discussed. The improved mechanical property behavior over the "workhorse" Ti-6Al-4V alloy combined with cost-effective production should result in use of CORONA 5 in many applications. Future developments for CORONA 5 are suggested both in terms of further mechanical property optimization and in light of the economics of producing the alloy.

  3. Investigation of superparamagnetism in MgCr0.9Fe1.1O4 nano-ferrites synthesized by the Citrate-gel method

    NASA Astrophysics Data System (ADS)

    Raghasudha, M.; Ravinder, D.; Veerasomaiah, P.

    2014-04-01

    MgFe2O4 and MgCr0.9Fe1.1O4 nano-ferrites were synthesized using Citrate-gel technique and the magnetic properties were studied. The crystallite sizes of the prepared MgFe2O4 and MgCr0.9Fe1.1O4 nano-particles were estimated from X-ray diffraction patterns as 23 nm and 7.6 nm respectively. Magnetization as a function of field (±10 T) and temperature was measured using a vibrating sample magnetometer for temperature ranging from 5 K to 300 K. From the temperature dependence of both the field cooled (FC) and the zero-field cooled (ZFC) magnetization measurements under a field of 100 Oe, blocking temperature (Tb) for MgFe2O4 was obtained at above room temperature whereas for MgCr0.9Fe1.1O4 it was obtained at 94 K. The M-H curves for MgCr0.9Fe1.1O4 nanoferrites indicated the presence of ferromagnetic behavior with hysteresis below the blocking temperature (Tb). A large coercive force of about 1100 Oe was found at 5 K. The phenomenon suggests that the synthesized Cr substituted Mg nano-ferrite with chemical composition MgCr0.9Fe1.1O4 shows superparamagnetic behavior above the blocking temperature 94 K. This nature makes these materials to be used in biomedical applications like magnetically guided drug delivery and Magnetic Resonance Imaging (MRI).

  4. Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites

    NASA Astrophysics Data System (ADS)

    Meng, Guanghui; Yue, T. M.; Lin, Xin; Yang, Haiou; Xie, Hui; Ding, Xu

    2015-07-01

    Traditionally, the laser melt injection (LMI) technique can only be used for forming ceramic particles reinforced metal matrix composites (MMCs) for enhancing surface properties of lightweight engineering materials. In this research, the LMI method was employed to form metal particles reinforced MMCs on AZ91D instead. This was viable because of the unique properties of the AlCoCrCuFeNi high-entropy alloy (HEA) metal particles used. The large difference in melting point between the HEA and the substrate material (AZ91D), and the limited reaction and the lack of fusion between the HEA and Mg have made it possible that a metal particles reinforced AZ91D composite material was produced. The reason of limited reaction was considered mainly due to the relatively high mixing enthalpy between the HEA constituent elements and Mg. Although there was some melting occurred at the particles surface with some solute segregation found in the vicinity close to the surface, intermetallic compounds were not observed. With regard to the wear resistance of the MMCs, it was found that when the volume fraction of the reinforcement phase, i.e. the HEA particles, reached about 0.4, the wear volume loss of the coating was only one-seventh of that of the substrate material.

  5. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    NASA Astrophysics Data System (ADS)

    Lukaszkowicz, Krzysztof; Sondor, Jozef; Balin, Katarzyna; Kubacki, Jerzy

    2014-09-01

    Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction <3 1 1> is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  6. Study on catalytic incineration of methane using Cr2O3/gamma-Al2O3 as the catalyst.

    PubMed

    Wang, Ching-Huei; Lin, Shiow-Shyung

    2004-01-01

    A fixed bed reactor was employed to investigate the catalytic incineration of CH4 by various supported transition metal oxide catalysts, with a view of finding the optimal one. Results indicated that the active species, the support, the metal content, the weight hourly space velocity (WHSV), and the inlet CH4 concentration were all important factors affecting CH4 oxidation. Cr2O3/gamma-Al2O3 was found to be the most active catalyst among the seven gamma-Al2O3-supported metal oxide catalysts tested. With Cr2O3 as the active species, gamma-Al2O3 was the most suitable of six supports tested. Furthermore, the optimal Cr content of Cr2O3/ gamma-Al2O3 was 9 wt.%. X-ray diffraction (XRD) patterns showed that it was formation of CrO3 crystals that caused a decline in catalyst activity at Cr content above 9wt.%. Using the optimal Cr2O3/gamma-Al2O3 catalyst, CH4 was completely oxidized at about 390 degrees C. much lower than the temperature required by noble metal catalysts for the same outcome. The stability of Cr2O3/gamma-Al2O3 was good and was not affected by the reaction temperature, demonstrated by a nearly constant conversion rate of CH4 of 57% at 350 degrees C and 97% at 380 degrees C during a 20 h on-stream test. However, WHSV and inlet concentration of CH4 did affect CH4 conversion noticeably. For complete oxidation of CH4, the reaction temperature required increased with WHSV and inlet CH4 concentration.

  7. Removal of HCl, SO₂, and NO by treatment of acid gas with Mg-Al oxide slurry.

    PubMed

    Kameda, Tomohito; Uchiyama, Naoya; Yoshioka, Toshiaki

    2011-01-01

    Although effective treatment of acid gases such as HCl, SO(x), and NO(x) is essential for preventing air pollution, current methods pose other environmental problems such as CaCl₂ leaching, reduced landfill lifetimes, and solid waste production. Here we show that acid gases can be treated simply with a Mg-Al oxide slurry. The contribution of Mg-Al oxide to HCl and SO₂ removal increased as a function of the quantity and temperature of Mg-Al oxide. HCl was removed by the reconstruction of Mg-Al layered double hydroxide (Mg-Al LDH) intercalated with Cl⁻ dissociated from HCl in the slurry. SO₂ was oxidized into SO₃ by oxygen in the air flow, dissolved in an aqueous solution, and removed by the reconstruction of Mg-Al LDH intercalated with dissociated SO₄²⁻. Although less pronounced because of surface adsorption, NO was nonetheless removed by Mg-Al oxide. Our results suggest that simultaneous removal of HCl, SO₂, and NO using a Mg-Al oxide slurry may be possible without the concomitant problems of conventional treatment methods.

  8. Magnetite activities across the MgAl2O4-Fe3O4 spinel join, with application to thermobarometric estimates of upper mantle oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Mattioli, Glen S.; Wood, Bernard J.

    1988-02-01

    The activity of Fe3O4 component in MgAl2O4-Fe3O4 spinels has been measured at 900° and 1000° C and 1 atm total pressure using a zirconia oxygen electrolyte. As previously reported for the dilute Fe3O4 concentration region (Mattioli and Wood 1986a), magnetite activity at 1000° C is greater than at 900° C at constant Fe3O4 mole fraction, for compositions across the MgAl2O4-Fe3O4 join between 20 and 80 mol% Fe3O4 component. The 1-atm solvus crest lies between 900° and 1000° C and, at 900° C the limbs are at Fe3O4 mole fractions of 0.2 and 0.6 approximately. Application of the O'Neill and Navrotsky (1983, 1984) cation distribution model indicates that the unusual activity — composition behavior of Fe3O4 is caused by changes in the equilibrium state of disorder of mixed MgAl2O4-Fe3O4 spinels relative to the disordered Fe3O4 standard state. In addition, both stoichiometric volumes (Mattioli et al. 1987) and activities across the MgAl2O4-Fe3O4 join suggest that short range order is significant for this binary. Excess free energy terms must be added to “ideal” Fe3O4 activities formulated from equilibrium cation distributions in complex MgAl2O4-Fe3O4 spinels in order to increase Fe3O4 activities to values consistent with observation and to generate the apparent region of immiscibility at 900° C. We have applied our activity data to the estimation of upper mantle spinel-lherzolite oxygen fugacities. We calculated that minimum f_{O_2 }'s are about 2 log units below the synthetic QFM buffer at 15 kbar total pressure for Fe3O4 concentration of 2 mol%, in a Cr-free spinel phase. If a preliminary calibration of an additional 25 mol% Fe2+-substitution as FeCr2O4 or FeAl2O4 component is incorporated into Fe3O4 activity, then olivine-orthopyroxene-spinel assemblages of depleted-Type 1-spinel-lherzolite xenoliths indicate f_{O_2 }'s close to QFM at 15 kbar. This is in good agreement with previous thermobarometric f_{O_2 } estimates and in sharp contrast to 1 atm

  9. A Study of Pack Aluminizing Process for NiCrAlY Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Huang, Xiao; Liu, Rong; Yang, Qi

    2014-01-01

    Aluminizing process is widely used to provide additional Al deposition onto superalloy surface for enhanced oxidation and corrosion resistance. In this research, an aluminizing process—pack cementation process, is used to deposit Al onto the surface of NiCrAlY coatings for increasing environmental protection. The experiment is designed using Box-Behnken approach, in which three parameters, the Al content, Ni content of the pack powder, and the temperature of the process, are selected as factors; and the thickness and Al/Ni ratio of the coatings are selected as responses. The effects of the factors on the responses are analyzed and modeled empirically. It is found that these empirical models correlate well with the results from additional sets of experiment. These models can be used to produce aluminized NiCrAlY coatings with specific thicknesses and Al/Ni ratios.

  10. Structural, Magnetic and Electron Transport Properties of Rapidly Quenched CoFeCrAl Nanostructures

    NASA Astrophysics Data System (ADS)

    Kharel, P.; Fuglsby, R.; Gilbert, S.; Huh, Y.; Zhang, W.; Valloppilly, S.; Skomski, R.; Sellmyer, D. J.

    2015-03-01

    Materials with moderate magnetization, high spin polarization at the Fermi level and high Curie temperature well above room temperature have huge potential for spin-based electronic devices. Several Heusler compounds including a quaternary compound CoFeCrAl are predicted to have these interesting materials properties. We have used a rapid quenching technique to prepare single-phase CoFeCrAl nanostructured ribbons in a cubic L21 crystal structure and have investigated the magnetic and electrical properties. As-quenched ribbons are ferrimagnetic at room temperature with a Curie temperature of about 500 K. The saturation magnetization is 1.9 μB/f.u, which is very close to the value predicted by the Slater-Pauling Rule. The ribbons are conducting with a room temperature resistivity of about 80 m Ωcm, but the resistivity is almost independent of temperature. The thermal coefficient of resistivity is very small and it is negative. These ribbons show a small positive magnetoresistance (1.5% at 5 K) between 5 K and 300 K. We will also discuss the effect of vacuum annealing on the structural and magnetic properties of this material. This research is supported by DOE/BES (DE-FG02-04ER46152) and NCMN. The work at SDSU is supported by the Department of Physics.

  11. Plasma Nitriding Behavior of Fe-C-M (M = Al, Cr, Mn, Si) Ternary Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Tomio, Yusaku; Kitsuya, Shigeki; Oh-ishi, Keilchiro; Hono, Kazuhiro; Miyamoto, Goro; Furuhara, Tadashi

    2014-01-01

    Change in surface hardness and nitrides precipitated in Fe-0.6C binary and Fe-0.6 mass pct C-1 mass pct M (M = Al, Cr, Mn, Si) ternary martensitic alloys during plasma nitriding were investigated. Surface hardness was hardly increased in the Fe-0.6C binary alloy and slightly increased in Fe-0.6C-1Mn and Fe-0.6C-1Si alloys. On the other hand, it was largely increased in Fe-0.6C-1Al and Fe-0.6C-1Cr alloys. In all the Fe-0.6C-1M alloys except for the Si-added alloy, fine platelet alloy nitrides precipitated inside martensite laths. In the Fe-0.6C-1Si alloy, Si-enriched film was observed mainly at a grain boundary and an interface between cementite and matrix. Crystal structure of nitrides observed in the martensitic alloys was similar to those in Fe-M binary ferritic alloys reported previously. However, there was a difference in hardening behavior between ferrite and martensite due to a high density of dislocations acting as a nucleation site of the nitrides and partitioning of an alloying element between martensite and cementite changing the driving force of precipitation of the nitrides.

  12. Submission of FeCrAl Feedstock for Support of AFC ATR-2 Irradiations

    SciTech Connect

    Field, Kevin G.; Barrett, Kristine E.; Sun, Zhiqian; Yamamoto, Yukinori

    2016-09-16

    The Advanced Test Reactor (ATR) is currently being used to test accident tolerant fuel (ATF) forms destined for commercial nuclear power plant deployment. One irradiation program using the ATR for ATF concepts, Accident Tolerant Fuel-2 (ATF-2), is a water loop irradiation test using miniaturized fuel pins as test articles. This complicated testing configuration requires a series of pre-test experiments and verification including a flowing loop autoclave test and a sensor qualification test (SQT) prior to full test train deployment within the ATR. In support of the ATF-2 irradiation program, Oak Ridge National Laboratory (ORNL) has supplied two different Generation II FeCrAl alloys in rod stock form to Idaho National Laboratory (INL). These rods will be machined into dummy pins for deployment in the autoclave test and SQT. Post-test analysis of the dummy pins will provide initial insight into the performance of Generation II FeCrAl alloys in the ATF-2 irradiation experiment as well as within a commercial nuclear reactor.

  13. Effect of Ti/Al ratio and Cr, Nb, and Hf additions on material factors and mechanical properties in TiAl

    NASA Astrophysics Data System (ADS)

    Kawabata, T.; Tamura, T.; Izumi, O.

    1993-01-01

    The effect of the Ti/Al ratio and Cr, Nb, and Hf additions on material factors, such as the grain size, second phase, la tice parameters and the axial ratio, and on mechanical properties in TiAl-base alloys has been studied. The grain size was decreased by the deviation from the stoichiometric composition o the Ti-rich side and the addition of the third elements. The Cr element was contained a little more in Ti3Al phase than in TiAl phase in two-phase Ti-rich alloys. The lattice parameters, a and c, and the axial ratio, c/a, of the binary alloys varied linearly with decreasing Al content even in the dual-phase region. The Cr addition decreased the a and c and also c/a. The Nb addition increased weakly the a and c and c/a. On the contrary, the Hf addition increased the a and c but decreased the c/a ratio. In the Cr added alloys, the decrease of volume of a unit cell, due to the substitution of Cr atoms for Ti and Al atoms, was larger than that expected from the difference of atom sizes. The Nb addition should decrease the volume of a unit cell, but it increased the volume. The Hf addition caused a larger increase of volume of a unit cell than that expected from the difference of atom sizes. We suggested that the Cr addition increases and the Nb and Hf additions decrease the bond strength in TiAl. The deviation from stoichiometry and the addition of third elements caused an increase of work-hardening rate. The alloys with Ti-rich composition have superior mechanical properties compared to those of alloys vith Al-rich composition. The Cr addition resulted in high solution hardening, and the Ti-47A1 3Cr (in atomic percent) alloys had the highest fracture strain of 2.7 pct in all alloys tested. The Nb addition resulted in poor ductility in both Ti- and Al-rich alloys. The Hf additions to the Ti-rich composition caused better mechanical properties than those of Al-rich alloys. Thi; trend was also similar to the Nb-added alloys. In the Hf-added alloys, the Ti-49Al-2Hf

  14. Nano Mg1-xNixAl2O4 spinel pigments for advanced applications

    NASA Astrophysics Data System (ADS)

    Sadek, H. E. H.; Khattab, R. M.; Gaber, A. A.; Zawrah, M. F.

    Nano Mg1-xNixAl2O4 spinel pigments were synthesized via polymeric combustion technique upon heat treatment at 210 °C. Citric acid in the presence of ethylene glycol polymer, with mass ratio of 60:40, was successfully used as a host network for the synthesis process. The obtained spinel was calcined at different temperatures; 300-1200 °C and investigated by thermal analysis (TG-DTG/DTA), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). UV-Vis and diffuse reflectance spectroscopy (DRS) using CIE-Lab/parameters methods have been used for color measurements. The addition of colored pigment on different types of glazes was studied. The results revealed that NiMgAl2O4 spinel beside MgNiO phases were crystallized with particle sizes of 9-21 nm at 600 °C and 52-180 nm at 1200 °C. All prepared samples exhibited green to pale green colors due to the inclusion of Ni2+ inside the spinel structure. The pale green color intensity increased with increasing calcination temperature. The prepared pigment was suitable to convert commercial and opaque glazes to color product to be used in different applications.

  15. MgAl2O4 spinel refractory as containment liner for high-temperature alkali salt containing environments

    DOEpatents

    Peascoe-Meisner, Roberta A [Knoxville, TN; Keiser, James R [Oak Ridge, TN; Hemric, James G [Knoxville, TN; Hubbard, Camden R [Oak Ridge, TN; Gorog, J Peter [Kent, WA; Gupta, Amul [Jamestown, NY

    2008-10-21

    A method includes containing a high-temperature alkali salt containing environment using a refractory containment liner containing MgAl.sub.2O.sub.4 spinel. A method, includes forming a refractory brick containing MgAl.sub.2O.sub.4 spinel having an exterior chill zone defined by substantially columnar crystallization and an interior zone defined by substantially equiaxed crystallization; and removing at least a portion of the exterior chill zone from the refractory brick containing MgAl.sub.2O.sub.4 spinel by scalping the refractory brick containing MgAl.sub.2O.sub.4 spinel to define at least one outer surface having an area of substantially equiaxed crystallization. A product of manufacture includes a refractory brick containing MgAl.sub.2O.sub.4 spinel including an interior zone defined by substantially equiaxed crystallization; and at least one outer surface having an area of substantially equiaxed crystallization.

  16. A first-principles study of the tetragonal and hexagonal R 2Al (R = Cr, Zr, Nb, Hf, Ta) phases

    NASA Astrophysics Data System (ADS)

    Shang, Xiu; Shen, Jiang; Tian, Fuyang

    2016-10-01

    The crystal structures, elastic moduli, electronic structure, and phonon dispersion of the tetragonal R 2Al (R = Cr, Zr, Nb, Hf, Ta) intermetallic compounds are investigated by using the first-principles method. The space group number is 139 for tetragonal Cr2Al, 136 for tetragonal Nb2Al and Ta2Al, and the space group numbers are 140 and 194 for tetragonal and hexagonal Zr2Al and Hf2Al, respectively. The results of elastic constants and phonon dispersion indicate that the present intermetallic compounds are thermodynamically stable. The stability of hexagonal Zr2Al and Hf2Al is analyzed via the electronic density of state, compared to the tetragonal Zr2Al and Hf2Al compounds. For the R2Al intermetallic compounds, the less ductility and strong anisotropy are predicted. The more negative formation enthalpy and thermodynamic stability of R2Al (R = Nb, Zr, Hf) shed light on the Nb2Al, Zr2Al, Hf2Al phases found experimentally in refractory high entropy alloys.

  17. Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Connie, Ashfiqua Tahseen; Zhao, Songrui; Sadaf, Sharif Md.; Shih, Ishiang; Mi, Zetian; Du, Xiaozhang; Lin, Jingyu; Jiang, Hongxing

    2015-05-25

    In this paper, the optical and electrical properties of Mg-doped AlN nanowires are discussed. At room temperature, with the increase of Mg-doping concentration, the Mg-acceptor energy level related optical transition can be clearly measured, which is separated about 0.6 eV from the band-edge transition, consistent with the Mg activation energy in AlN. The electrical conduction measurements indicate an activation energy of 23 meV at 300 K–450 K temperature range, which is significantly smaller than the Mg-ionization energy in AlN, suggesting the p-type conduction being mostly related to hopping conduction. The free hole concentration of AlN:Mg nanowires is estimated to be on the order of 10{sup 16 }cm{sup −3}, or higher.

  18. Influence of strontium addition on the mechanical properties of gravity cast Mg-3Al-3Sn alloy

    SciTech Connect

    Germen, Gülşah Şevik, Hüseyin; Kurnaz, S. Can

    2013-12-16

    In this study, the effect of strontium (0.01, 0.1, 0.5, 1 wt%) addition on the microstructure and mechanical properties of the gravity cast Mg-3Al-3Sn alloy were investigated. X-ray diffractometry revealed that the main phases are α−Mg, β−Mg{sub 17}Al{sub 12} and Mg{sub 2}Sn in the Mg-3Al-3Sn alloy. With addition The tensile testing results showed that the yield and ultimate tensile strength and elongation of Mg-3Al-3Sn alloy increased by adding Sr up to 0.1 wt.% and then is gradually decreased with the addition of more alloying element.

  19. Elaboration of AlSi10Mg casting alloys using directional solidification processing

    NASA Astrophysics Data System (ADS)

    Ghedjati, Khadoudja; Fleury, Eric; Hamani, Mohamed Seghir; Benchiheub, Mostefa; Bouacha, Khaider; Bolle, Bernard

    2015-05-01

    The effects of pulling velocity on the solidification behavior and microstructural parameters of AlSi10Mg alloys prepared in a Bridgman-type directional solidification furnace were investigated. The microstructure, particularly the secondary dendritic arm spacing (SDAS), and the Brinell hardness (BH) of the solidified AlSi10Mg alloys were characterized for samples with cylindrical shapes and different conicities ( θ = 0°, 5°, and 10°). Microstructural studies revealed an increased density of α-Al phase dendrites and a decreased interdendritic distance with increasing pulling velocity. The dendrites were found to be preferentially oriented along the pulling direction for low pulling velocities. For larger pulling velocities, the dendrites grew first in the cooling direction but then broke as others nucleated and coarsened. The HB values of the solidified samples increased as the pulling velocity increased. In regard to sample conicity, smaller dendrites were observed for an apex angle of θ = 5°, resulting in the largest HB value. This result was interpreted in terms of the favorable orientation of the dendrite along the pulling direction.

  20. Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.

    2016-09-01

    Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.

  1. High strain rate superplasticity in a continuously recrystallized Al-6%Mg-0.3%Sc alloy

    SciTech Connect

    Nieh, T.G.; Hsiung, L.M.; Wadsworth, J.; Kaibyshev, R.

    1998-05-01

    The superplastic properties of a cold-rolled Al-6Mg-0.3Sc alloy were studied at temperatures between 450 and 560 C and strain rates between 10{sup {minus}4} and 10{sup 0} s{sup {minus}1}. The alloy was observed to exhibit superplasticity over wide temperature (475--520 C) and strain rate ranges ({approximately} 10{sup {minus}3}--10{sup {minus}1} s{sup {minus}1}). It was found that the addition of Sc to Al-Mg alloys resulted in a uniform distribution of fine coherent Al{sub 3}Sc precipitates which effectively pinned subgrain and grain boundaries during static and dynamic recrystallization. In this paper, the microstructural evolution during superplastic deformation was systematically examined using both optical and transmission electron microscopy. Based upon this microstructural examination, a mechanism is proposed to explain the observed high strain rate superplasticity in the alloy. A model is also proposed that describes grain boundary sliding accommodated by dislocations gliding across grains containing coherent precipitates.

  2. High strain rate superplasticity in an Al-Mg alloy containing scandium

    SciTech Connect

    Komura, Shogo; Horita, Zenji; Nemoto, Minoru; Berbon, P.B.; Langdon, T.G.; Furukawa, Minoru

    1998-05-12

    Superplastic forming is a well-established industrial process for the fabrication of complex shapes in sheet metals. It has been suggested that it may be possible to achieve superplasticity at high strain rates in conventional materials by making a substantial reduction in the grain size. This may be achieved by using a process such as equal-channel angular (ECA) pressing, where the sample is subjected to intense plastic straining in simple shear, because it is well established that ECA pressing leads to significant grain refinement in large-grained polycrystalline materials down to the submicrometer or even the nanometer level. High strain rate superplasticity (HSR SP) has been widely documented in a range of metal matrix composites, mechanically alloyed materials and in alloys fabricated using powder metallurgy procedures and very recently there was a report of HSR SP in commercial cast Al-based alloys after ECA pressing. The present investigation was initiated in order to evaluate the potential for achieving HSR SP in an Al-3% Mg alloy containing a scandium addition. Scandium was selected for use in this investigation because it is well established that dilute amounts of scandium in the Al-Mg system lead to a considerable enhancement in both the strength and the thermal stability of the material.

  3. Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides

    PubMed Central

    Kostadinova, Dessislava; Cenacchi Pereira, Ana; Lansalot, Muriel; D’Agosto, Franck; Bourgeat-Lami, Elodie; Leroux, Fabrice; Taviot-Guého, Christine; Cadars, Sylvian

    2016-01-01

    Increasing attention has been devoted to the design of layered double hydroxide (LDH)-based hybrid materials. In this work, we demonstrate the intercalation by anion exchange process of poly(acrylic acid) (PAA) and three different hydrophilic random copolymers of acrylic acid (AA) and n-butyl acrylate (BA) with molar masses ranging from 2000 to 4200 g mol−1 synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, into LDH containing magnesium(II) and aluminium(III) intralayer cations and nitrates as counterions (MgAl-NO3 LDH). At basic pH, the copolymer chains (macroRAFT agents) carry negative charges which allowed the establishment of electrostatic interactions with the LDH interlayer and their intercalation. The resulting hybrid macroRAFT/LDH materials displayed an expanded interlamellar domain compared to pristine MgAl-NO3 LDH from 1.36 nm to 2.33 nm. Depending on the nature of the units involved into the macroRAFT copolymer (only AA or AA and BA), the intercalation led to monolayer or bilayer arrangements within the interlayer space. The macroRAFT intercalation and the molecular structure of the hybrid phases were further characterized by Fourier transform infrared (FTIR) and solid-state 13C, 1H and 27Al nuclear magnetic resonance (NMR) spectroscopies to get a better description of the local structure. PMID:28144548

  4. Electronic structure, magnetism and stability of Co2CrX (X =Al, Ga, In) ab initio study

    NASA Astrophysics Data System (ADS)

    Dahmane, F.; Mesri, D.; Tadjer, A.; Khenata, R.; Benalia, S.; Djoudi, L.; Doumi, B.; Boumia, L.; Aourag, H.

    2016-01-01

    The structural, electronic as well as the magnetic properties of the Co2CrX (X =Al, Ga and In) full-Heusler alloy have been studied using first-principles calculations performed in the framework of density functional theory (DFT) within the generalized gradient approximation (GGA). It was taken into account both possible L21 structures (i.e. Hg2CuTi- and Cu2MnAl-type). Basically, for all compounds, the Cu2MnAl-type structure is energetically more stable than Hg2CuTi-type structure at the equilibrium volume. The electronic structure calculations for Co2CrAl reveal that half-metallic (HM) character in Cu2MnAl-type structure, Co2CrGa show nearly HM behavior and Co2CrIn has a metallic character. The predicted total magnetic moment is 3μB for Co2CrX (X =Al, Ga) which is in good convergence with the Slater-Pauling (SP) rule.

  5. Studies on the Sliding Wear Performance of Plasma Spray Ni-20Cr and Ni3Al Coatings

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Singh, Harpreet; Singh, Balraj; Singh, Bhupinder

    2010-01-01

    Two metallic powders namely Ni-20Cr and Ni3Al were coated on AISI 309 SS steel by shrouded plasma spray process. The wear behavior of the bare, Ni-20Cr and Ni3Al-coated AISI 309 SS steel was investigated according to ASTM Standard G99-03 on a Pin-on-Disc Wear Test Rig. The wear tests were carried out at normal loads of 30 and 50 N with a sliding velocity of 1 m/s. Cumulative wear rate and coefficient of friction (μ) were calculated for all the cases. The worn-out surfaces were then examined by scanning electron microscopy analysis. Both the as-sprayed coatings exhibited typical splat morphology. The XRD analysis indicated the formation of Ni phase for the Ni-20Cr coating and Ni3Al phase for the Ni3Al coating. It has been concluded that the plasma-sprayed Ni-20Cr and Ni3Al coatings can be useful to reduce the wear rate of AISI 309 SS steel. The coatings were found to be adherent to the substrate steel during the wear tests. The plasma-sprayed Ni3Al coating has been recommended as a better choice to reduce the wear of AISI 309 SS steel, in comparison with the Ni-20Cr coating.

  6. Creep behavior of a {beta}{prime}(NiAl) precipitation strengthened ferritic Fe-Cr-Ni-Al alloy

    SciTech Connect

    Zhu, S.M.; Tjong, S.C.; Lai, J.K.L.

    1998-05-22

    Creep in precipitation-strengthened alloys usually exhibits a pronounced transition in the stress vs creep rate relationship due to dislocations bypassing of particles by climb at low stresses. In the present study, a single-slope behavior is observed in creep of {beta}{prime}(NiAl) strengthened ferritic Fe-19Cr-4Ni-2Al alloy in the temperature range 873--923 K. The alloy exhibits anomalously high values of apparent stress exponent and activation energy (980 kJ/mol). Transmission electron microscopy examination of the deformation microstructure reveals the occurrence of attractive dislocation/particle interaction, a feature which is usually observed in dispersion-strengthened alloys. Such an attractive dislocation particle interaction makes the local climb of dislocations over particles a realistic configuration at low stresses. The creep data are analyzed by the back-stress approach and by the recent dislocation-climb theories based on attractive interaction between dislocations and particles. By considering a back stress, all data can be rationalized by a power-law with a stress exponent of 4 and a creep activation energy close to the self-diffusion energy of the matrix lattice. Local climb together with the attractive but not strong interactions between the dislocations and particles is suggested to be the operative deformation mechanism at low stresses and to account for the single-slope behavior in the stress/creep rate relationship of this alloy.

  7. Can Cr( iii ) substitute for Al( iii ) in the structure of boehmite?

    SciTech Connect

    Chatterjee, Sayandev; Conroy, Michele A.; Smith, Frances N.; Jung, Hee-Joon; Wang, Zheming; Peterson, Reid A.; Huq, Ashfia; Burtt, David G.; Ilton, Eugene S.; Buck, Edgar C.

    2016-01-01

    The dissolution of boehmite is a technical issue for the Al industry because of its recalcitrant nature. In fact, a similar problem exists with boehmite in nuclear waste sludge at the Hanford site in eastern Washington State, USA. Dissolution of Al phases is required to reduce the waste loadings in the final borosilicate glass waste form. Although not the most common Al-bearing species in the sludge, boehmite may become a rate limiting step in the processing of the wastes. Hanford boehmite is an order of magnitude more resistant to dissolution in hot caustic solutions than expected from surface-normalized rates. We are exploring potential intrinsic and extrinsic effects that may limit boehmite reactivity; one clue comes from microstructural analyses that indicate an association of Cr with Al in the Hanford nuclear waste. Hence, in this first paper, we investigated the potential role of chromium on the reactivity of boehmite in caustic solution. An important finding was that irrespective of the synthesis pathway, amount of Cr(III), or the resultant morphology, there was no evidence for Cr incorporation in the bulk structure, in agreement with QM calculations. In fact, electron microscopic (EM) and spectroscopic analyses showed that Cr was enriched at the (101) edges of the boehmite. However, Cr had no measurable effect on the morphology during the synthesis step. In contrast, comparison of the morphologies of the synthetic Cr-doped and pure boehmite samples after exposure to caustic solutions provided evidence that Cr inhibited the corrosion. TEM showed that Cr was not homogeneously distributed at the surface. Consequently, Cr may have partially passivated the surface by blocking discrete energetic sites on the lateral surfaces of boehmite.

  8. Flow stress of rapidly solidified Al-5Cr-2Zr alloy as a function of processing variables

    SciTech Connect

    Brahmi, A.; Gerique, T.; Torralba, M.; Lieblich, M.

    1997-12-01

    In a previous work, Lieblich et al. determined that room temperature hardness and tensile strength of as-extruded Al-5Cr-2Zr (wt.%) alloys obtained by gas atomization increased with decreasing powder particle size and extrusion temperature, and depended only very little on extrusion ratio and ram speed. The aim of the present study was to determine the influence of powder particle diameter and extrusion temperature on the flow stress of Al-5Cr-2Zr at temperatures ranging from 373 to 773 K. The contribution to the flow stress of different strengthening mechanisms is evaluated and related to the processing parameters.

  9. Dendritic Growth, Solidification Thermal Parameters, and Mg Content Affecting the Tensile Properties of Al-Mg-1.5 Wt Pct Fe Alloys

    NASA Astrophysics Data System (ADS)

    Gomes, Leonardo F.; Silva, Bismarck L.; Garcia, Amauri; Spinelli, José E.

    2017-04-01

    Al-Mg-Fe alloys are appointed as favorable ones with respect to the costs and all the required properties for successful vessel service. However, the experimental inter-relations of solidification thermal parameters, microstructure, and mechanical strength are still undetermined. In the present research work, the dependences of tensile properties on the length scale of the dendritic morphology of ternary Al-1.2 wt pct Mg-1.5 wt pct Fe and Al-7 wt pct Mg-1.5 wt pct Fe alloys are examined. Transient heat flow conditions during solidification have been achieved by the use of a directional solidification system, thus permitting a comprehensive characterization of the dendritic microstructures to be performed. Thermo-Calc computations, X-ray diffraction, and scanning electron microscopy analyses are carried out to give support to the extensive microstructural evaluation performed with both ternary Al-Mg-Fe alloys. Experimental growth relations of primary, λ 1, and secondary, λ 2, dendrite arm spacings with cooling rate ( {\\dot T}_{{L}} ) and of tensile properties with λ 2 are proposed. For both alloys examined, Hall-Petch type formulas show that the tensile strength increases with the decrease in λ 2. The soundest strength-ductility balance is exhibited by the Al-7 wt pct Mg-1.5 wt pct Fe alloy specimen with refined microstructure. This is shown to be due to a more homogeneous distribution of intermetallic particles in connection with solid solution strengthening propitiated by Mg. Functional experimental inter-relations of tensile properties with growth ( V L) and cooling rates ( {\\dot T}_{{L}} ) for both ternary Al-Mg-Fe alloys have also been derived.

  10. Dendritic Growth, Solidification Thermal Parameters, and Mg Content Affecting the Tensile Properties of Al-Mg-1.5 Wt Pct Fe Alloys

    NASA Astrophysics Data System (ADS)

    Gomes, Leonardo F.; Silva, Bismarck L.; Garcia, Amauri; Spinelli, José E.

    2017-02-01

    Al-Mg-Fe alloys are appointed as favorable ones with respect to the costs and all the required properties for successful vessel service. However, the experimental inter-relations of solidification thermal parameters, microstructure, and mechanical strength are still undetermined. In the present research work, the dependences of tensile properties on the length scale of the dendritic morphology of ternary Al-1.2 wt pct Mg-1.5 wt pct Fe and Al-7 wt pct Mg-1.5 wt pct Fe alloys are examined. Transient heat flow conditions during solidification have been achieved by the use of a directional solidification system, thus permitting a comprehensive characterization of the dendritic microstructures to be performed. Thermo-Calc computations, X-ray diffraction, and scanning electron microscopy analyses are carried out to give support to the extensive microstructural evaluation performed with both ternary Al-Mg-Fe alloys. Experimental growth relations of primary, λ 1, and secondary, λ 2, dendrite arm spacings with cooling rate ( {dot T}_{{L}} ) and of tensile properties with λ 2 are proposed. For both alloys examined, Hall-Petch type formulas show that the tensile strength increases with the decrease in λ 2. The soundest strength-ductility balance is exhibited by the Al-7 wt pct Mg-1.5 wt pct Fe alloy specimen with refined microstructure. This is shown to be due to a more homogeneous distribution of intermetallic particles in connection with solid solution strengthening propitiated by Mg. Functional experimental inter-relations of tensile properties with growth (V L) and cooling rates ( {dot T}_{{L}} ) for both ternary Al-Mg-Fe alloys have also been derived.

  11. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  12. Equation of State of Lower Mantle (Al,Fe)-MgSiO3 Perovskite

    NASA Astrophysics Data System (ADS)

    Prewitt, C. T.; Andrault, D.; Bolfan-Casanova, N.; Guignot, N.

    2001-12-01

    The compression behavior of various (Al,Fe)-MgSiO3 perovskites was investigated by powder X-ray diffraction up to 70 GPa on the ID30 beamline of ESRF (Grenoble). We used diamond anvil cell coupled with CO2 laser-heating, a most powerful technique to relax stresses and perform reliable equation of state up to typical lower mantle pressures. In contrast to Fe which essentially increases the room pressure unit cell volume [1], the effect of Al is to increase the bulk modulus of silicate perovskite. This result contrast with previous determinations performed at pressures below 10 GPa on samples synthesized in the multi-anvil press [2, 3]. Such a difference can be explained by a change in the substitution mechanism of Al in MgSiO3 with increasing pressure and temperature, in agreement with recent ab-initio calculations [4]. Our results confirm that the Earth's lower mantle (Mg+Fe)/Si ratio is greater than unity, because of the high stiffness of silicate perovskite. 1- H.K. Mao, R.J. Hemley, Y. Fei, J.F. Shu, L.C. Chen, A.P. Jephcoat, Y. Wu and W.A. Basset, Journal of Geophysical Research 96(B5), 8069-8079, 1991. 2- A. Kubo, T. Yagi, S. Ono and M. Akaogi, in: Proceeding of the Japan Academy 76, pp. 103-107, 2000. 3- J. Zhang and D.J. Weidner, Science 284, 782-784, 1999. 4- J.P. Brodholt, Nature 407, 620-622, 2000.

  13. The feasibility of isobaric suppression of 26Mg via post-accelerator foil stripping for the measurement of 26Al [The feasibility of isobaric suppression of 26Mg via post-accelerator foil stripping for the measurement of 26Al.

    DOE PAGES

    Tumey, Scott J.; Brown, Thomas A.; Finkel, Robert C.; ...

    2012-09-13

    Most accelerator mass spectrometry measurements of 26Al utilize the Al- ion despite lower source currents compared with AlO- since the stable isobar 26Mg does not form elemental negative ions. A gas-filled magnet allows sufficient suppression of 26Mg thus enabling the use of the more intense 26AlO- ion. However, most AMS systems do not include a gas-filled magnet. We therefore explored the feasibility of suppressing 26Mg by using a post-accelerator stripping foil. With this approach, combined with the use of alternative cathode matrices, we were able to suppress 26Mg by a factor of twenty. This suppression was insufficient to enable themore » use of 26AlO-, however further refinement of our system may permit its use in the future.« less

  14. First-principles study of the structural and elastic properties of Cr{sub 2}AlX (X=N, C) compounds

    SciTech Connect

    Cui Shouxin; Wei Dongqing; Hu Haiquan; Feng Wenxia; Gong Zizheng

    2012-07-15

    The structural, electronic and elastic properties of Cr{sub 2}AlX, with X=N, C, have been investigated at the density functional theory level by applying a plane-wave pseudopotential approach. The band structure and density of states reveal the metallic features of Cr{sub 2}AlX. The total and projected density of states indicate that the bonding is achieved through a hybridization of Cr 3d states with Al and X-atom p states. The Cr 3d-X2p bonds are lower in energy and are stiffer than Cr 3d-Al 3p bonds. The charge density distributions indicate that there exist soft Cr-Al and relatively strong Cr-X covalent bonds, which might be responsible for their hardness. The elastic constants were obtained in the pressure range 0-100 GPa, and satisfy the stability conditions for hexagonal crystal, which indicates that these two compounds are stable in the pressure regime studied. By analyzing bulk modulus to shear modulus ratio and Cauchy pressure, Cr{sub 2}AlC is predicted to be brittleness and Cr{sub 2}AlN is ductile. The Debye temperature was obtained from the average sound velocity. - Graphical abstract: The heterogeneity of chemical bonds in Cr{sub 2}AlX (X=N, C) is observed: soft Cr-Al and relatively strong Cr-X covalent bonds might be contributed to their hardness. Highlights: Black-Right-Pointing-Pointer Cr 3d-X2p (X=N, C) bonds are lower in energy and stiffer than Cr 3d-Al 3p bonds for Cr{sub 2}AlX. Black-Right-Pointing-Pointer The hardness of Cr{sub 2}AlX might be ascribed to soft Cr-Al and relatively strong Cr-X covalent bonds. Black-Right-Pointing-Pointer The predicted brittleness of Cr{sub 2}AlC and ductility of Cr{sub 2}AlN originated from their novel structure.

  15. Nucleation mechanism of discontinuous precipitation in Mg-Al alloys and relation with the morphology

    SciTech Connect

    Duly, D. . Dept. of Engineering); Brechet, Y. . Lab. de Thermodynamique et Physico-Chimie Metallurgiques)

    1994-09-01

    The nucleation rate of discontinuous precipitation in Mg-Al has been measured as a function of temperature, initial grain size and solute content. From these measurements, it appears that at high temperatures (T [ge] 220 C) all precipitation nodules nucleate via Fournelle and Clark's mechanism, whereas at lower temperatures (T [approximately] 140 C), at least one of the mechanisms identified by Tu and Turnbull or Purdy and Lange is also active. The proportion of double seam nodules determined by optical microscopy decreases from more than 1/2 to 0 when the temperature increases. In the low temperature domain, this behavior is in agreement with that predicted by Baumann, Williams and Michael.

  16. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Pistorius, Petrus Christiaan

    2017-01-01

    AlSi10Mg cylinders produced by laser powder-bed fusion have somewhat different yield behavior for cylinders with XY orientation and Z orientation. Earlier yielding for Z-oriented samples is likely related to micro-residual stress, resulting from the difference in thermal expansion of the aluminum matrix and cellular silicon. Smaller tensile reduction in area of Z-oriented samples is related to tearing along the softer region at the boundaries of melt pools, where the silicon cell spacing is larger. Indentation measurements confirmed the lower hardness at the edges of melt pools.

  17. On the microstructural evolution of cold-rolled Al+5at.% Mg

    SciTech Connect

    Dirras, G.F.; Biget, M.P.; Rey, C.

    1995-09-01

    The present study shows that the deformation microstructures of cold-rolled Al+5at.%Mg evolve according to the grain subdivision principles as reported elsewhere. The saturation of microband is a basic phenomenon and is clearly evidenced here. It results in: (1) The triggering of S-type MBs because of continuous accommodation requirements. These MBs are found to incorporate an intense localized shear on {l_brace}111{r_brace} slip planes. (2) The bending of saturated MBs when the surrounding matrix exhibits a non-negligible gradient of deformation.

  18. Optical spectra of rare earth ions in Mg-Al spinnel crystals

    NASA Astrophysics Data System (ADS)

    Gritsyna, V. T.; Kolner, V. B.; Damburg, N. A.; Mironova, N. A.; Skvortsova, V. N.

    1985-05-01

    X-ray luminescence and photoluminescence spectra have been obtained for MgO-nAl2O3 crystals doped with alkaline rare earth elements. The crystals were grown according to the Verneuil method. Transitions are presented in Tb3(+), Dy3(+), and Er(+), Er3(+) ions in nonstoichiometric crystals, and the parameters of the corresponding luminescence lines are given. Inhomogeneous broadening of the spectral lines is attributed to deformation of polyhedra due to cation mixing and defects of the nonstoichiometric crystal structure. The X-ray and photoluminescence spectra are of the crystals are reproduced in graphic form.

  19. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Pistorius, Petrus Christiaan

    2017-03-01

    AlSi10Mg cylinders produced by laser powder-bed fusion have somewhat different yield behavior for cylinders with XY orientation and Z orientation. Earlier yielding for Z-oriented samples is likely related to micro-residual stress, resulting from the difference in thermal expansion of the aluminum matrix and cellular silicon. Smaller tensile reduction in area of Z-oriented samples is related to tearing along the softer region at the boundaries of melt pools, where the silicon cell spacing is larger. Indentation measurements confirmed the lower hardness at the edges of melt pools.

  20. Creep forming of an Al-Mg-Li alloy for aeronautic application

    NASA Astrophysics Data System (ADS)

    Younes, Wael; Giraud, Eliane; Fredj, Montassar; Dal Santo, Philippe; van der Veen, Sjoerd

    2016-10-01

    Creep forming of Al-Mg-Li alloy sheets is studied. An instrumented bulging machine is used to form a double curvature panel at a reduced scale. The deformation of the work-sheet is ensured by a 7475 aluminum alloy lost sheet deformed by a gas pressure applied on its upper surface. A numerical model using the ABAQUS software is developed in order to obtain the pressure law and to ensure the forming conditions during the cycle. This model is validated by comparing experiments and numerical results in terms of deformed shape and thickness evolution.

  1. Kinetic Research on Catalytic Degradation of Rhodamine B with Cobalt Phthalocyanine Supported Mg-Al Hydrotalcite.

    PubMed

    Xu, Minhong; Cao, Yongyong; Ma, Xinyue

    2016-01-01

    Rhodamine B dye wastewater was degraded using cobalt phthalocyanine supported Mg-Al hydrotal- cite and H₂O₂. The effects of H₂O₂, temperature and concentration of Rhodamine B on the reaction kinetics were studied. The results indicate that the degradation process conforms to the equation of first order kinetics. The fastest rate constant k observed was 66.2 x 10⁻⁴/min⁻¹ at 62.5 °C, and the correlation coefficient R2 was 0.99733.

  2. Continuous recrystallization during thermomechanical processing of a superplastic Al-10Mg-0.1Zr alloy

    NASA Technical Reports Server (NTRS)

    Hales, S. J.; Mcnelley, T. R.; Crooks, R.

    1990-01-01

    Microstructural evolution via static continuous recrystallization during thermomechanical processing of an Al-Mg-Zr alloy is addressed. Mechanical property data demonstrated that as-rolled material was capable of superplastic response without further treatment. Further, superplastic ductility at 300 C was enhanced by a factor of five by increasing the reheating time between rolling passes during processing also at 300 C. This enhanced ductility was associated with a Cu-texture and a microstructure consisting of predominantly high-angle boundaries. Processing to minimize recovery resulted in a strong Brass-texture component, a predominantly low-angle boundary microstructure and poorer ductility.

  3. High resolution microstructure characterization of the interface between cold sprayed Al coating and Mg alloy substrate

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Qiu, Dong; Xiong, Yuming; Birbilis, Nick; Zhang, Ming-Xing

    2014-01-01

    High-resolution transmission electron microscopy (HR-TEM) has validated the intimate metallurgical (atomic) bond formed along the interface of a cold-sprayed Al coating upon an Mg-alloy (AZ91) substrate. The compressive impact led to the formation of nanostructured layers of about 300-500 nm into the substrate. A highly distorted lattice structure with the inclusion of small amorphous zones was observed at the periphery of the particle/substrate interface, as a result of adiabatic shear plastic deformation at a high strain rate.

  4. Thermodynamic properties of spinel MgAl2O4: A mass spectrometric study

    NASA Astrophysics Data System (ADS)

    Shornikov, S. I.

    2017-02-01

    The activities of oxides in stoichiometric spinel MgAl2O4 in the temperature range 1851-2298 K were determined from the data obtained by the Knudsen effusion mass spectrometry. The resulting Gibbs energies of spinel formation from simple oxides, the enthalpies and entropies of spinel formation from simple oxides (-12.02 ± 1.14 kJ/mol and 5.03 ± 0.56 J/(mol K), respectively), and the spinel melting enthalpy (55.81 ± 4.62 kJ/mol) satisfactorily agree with the available thermodynamic data.

  5. Nano-hardness and microstructure of selective laser melted AlSi10Mg scan tracks

    NASA Astrophysics Data System (ADS)

    Aboulkhair, Nesma T.; Maskery, Ian; Tuck, Chris; Ashcroft, Ian; Everitt, Nicola

    2015-07-01

    Selective laser melting (SLM) of aluminium alloys faces more challenges than other ongoing alloys such as stainless steels and titanium alloys because of the material's properties. It is important to study single scan tracks if high density large parts are to be made since they are the primary building blocks. In this study, the geometrical features of AlSi10Mg tracks indicated keyhole mode melting domination. Chemical composition mapping and nanoindentation showed enhanced nano-hardness in SLM material over conventional material with no spatial variation. This is due to a homogeneous elemental distribution and fine microstructure developed by fast solidification.

  6. A hybrid Mg-Al layered double hydroxide/graphene nanostructure obtained via hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaodong; Cao, Jian-Ping; Zhao, Jun; Hu, Guo-Hua; Dang, Zhi-Min

    2014-06-01

    A hybrid Mg-Al layered double hydroxide/graphene (LDH-GR) material nanostructure has been fabricated by employing the hydrothermal treatment at 140 °C for 10 h. Graphene oxide is simultaneously reduced to graphene during the hydrothermal treatment. The LDH and LDH-GR have high degree of crystallinity and assembled layer structure, which is attributed to electrostatic interaction mechanism. The obtained hybrid nanostructure materials can be used as flame retardant or conductor of electricity and heat due to the combination of different properties arising from graphene and LDH.

  7. Evolution of grain boundary structure in submicrometer-grained Al-Mg alloy

    SciTech Connect

    Horita, Zenji; Nemoto, Minoru; Smith, D.J.; Furukawa, Minoru; Valiev, R.Z.; Langdon, T.G.

    1996-11-01

    This paper presents high-resolution electron microscopy studies of grain boundary structures in a submicrometer-grained Al-3%Mg solid solution alloy produced by an intense plastic straining technique. The studies include the effect of static annealing on the grain boundary structure. Many grain boundaries are in a high-energy nonequilibrium state in the as-strained sample. The nonequilibrium character is retained on some grain boundaries in samples annealed at temperatures below the onset of significant grain growth. The effect of electron irradiation on the grain boundary structure also is examined.

  8. Perpendicular magnetic anisotropy in Ta/Co2FeAl/MgO multilayers

    NASA Astrophysics Data System (ADS)

    Gabor, M. S.; Petrisor, T.; Tiusan, C.; Petrisor, T.

    2013-08-01

    In this paper, we demonstrate the stabilization of perpendicular magnetic anisotropy (PMA) in Ta/Co2FeAl/MgO multilayers sputtered on thermally oxidized Si(100) substrates. The magnetic analysis points out that these films show significant interfacial anisotropy even in the as-deposited state, KS=0.67 erg/cm2, enough to provide PMA for the as-deposited films with thicknesses below 1.5 nm. Moreover, the interfacial anisotropy is enhanced by thermal annealing up to 300 °C. The presence of a magnetic dead layer, whose thickness increases with annealing temperature, was also identified.

  9. Microwave assisted sintering of Al-Cu-Mg-Si-Sn alloy.

    PubMed

    Padmavathi, Chandran; Upadhyaya, Anish; Agrawal, Dinesh

    2012-01-01

    Microwave sintering has been a well-established technique to consolidate metal powders due to its instantaneous volumetric and rapid heating as compared to conventional heating. Al-3.8Cu-1Mg-0.8Si-0.3Sn (2712) alloy powders were compacted (200 and 400 MPa) and microwave sintered at different temperatures (570 to 630 degrees C) under different atmospheres (vacuum, N2, Ar and H2). Increasing sintering temperature enhanced sintered density from 91% to 98%. Sintering under vacuum at 590 degrees C was more efficient with a densification parameter of 0.36 followed by N2, Ar and H2. Regardless of the sintering condition, phase analysis via XRD revealed the presence of only alpha-Al peak attributed to lesser time available for diffusion of alloying elements. In addition, microstructural inhomogeneity leading to more intergranular melt formation was observed for all sintered compacts. Contrasting to densification, sintering in N2 resulted in better corrosion resistance.

  10. Precipitation Sequence of a SiC Particle Reinforced Al-Mg-Si Alloy Composite

    NASA Astrophysics Data System (ADS)

    Shen, Rujuan; Wang, Yihan; Guo, Baisong; Song, Min

    2016-11-01

    In this study, the precipitation sequence of a 5 vol.% SiC particles reinforced Al-1.12 wt.%Mg-0.77 wt.%Si alloy composite fabricated by traditional powder metallurgy method was investigated by transmission electron microscopy and hardness measurements. The results indicated that the addition of SiC reinforcements not only suppresses the initial aging stage but also influences the subsequent precipitates. The precipitation sequence of the composite aged at 175 °C can be described as: Guinier-Preston (G.P.) zone → β″ → β' → B', which was confirmed by high-resolution transmission electron microscopy. This work might provide the guidance for the design and fabrication of hardenable automobile body sheet by Al-based composites with enhanced mechanical properties.

  11. Fatigue Performance of Friction-Stir-Welded Al-Mg-Sc Alloy

    NASA Astrophysics Data System (ADS)

    Zhemchuzhnikova, Daria; Mironov, Sergey; Kaibyshev, Rustam

    2017-01-01

    Fatigue behavior of a friction-stir-welded Al-Mg-Sc alloy was examined in cast and hot-rolled conditions. In both cases, the joints failed in the base material region and therefore the joint efficiency was 100 pct. The specimens machined entirely from the stir zone demonstrated fatigue strength superior to that of the base material in both preprocessed tempers. It was shown that the excellent fatigue performance of friction-stir joints was attributable to the ultra-fine-grained microstructure, the low dislocation density evolved in the stir zone, and the preservation of Al3Sc coherent dispersoids during welding. The formation of such structure hinders the initiation and growth of fatigue microcracks that provides superior fatigue performance of friction-stir welds.

  12. A new synthetic route to MgO-MgAl2O4-ZrO2 highly dispersed composite material through formation of Mg5Al2.4Zr1.7O12 metastable phase: synthesis and physical properties

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Yin, Guo-xiang; Yan, Ming-wei; Sun, Jia-lin; Li, Bin; Li, Yong

    2017-03-01

    Mg5Al2.4Zr1.7O12 metastable phase was successfully synthesized from analytical-grade MgO, α-Al2O3, MgAl2O4, and ZrO2 under an N2 atmosphere. The sintering temperature was varied from 1650 to 1780°C, and the highest amount of Mg5Al2.4Zr1.7O12 appeared in the composite material when the sintering temperature was 1760°C. According to our research of the formation mechanism of Mg5Al2.4Zr1.7O12, the formation and growth of MgAl2O4 dominated when the temperature was not higher than 1650°C. When the temperature was higher than 1650°C, MgO and ZrO2 tended to diffuse into MgAl2O4 and the Mg5Al2.4Zr1.7O12 solid solution was formed. When the temperature reached 1760°C, the formation of Mg5Al2.4Zr1.7O12 was completed. The effect of MgAl2O4 spinel crystals was also studied, and their introduction into the composite material promoted the formation and growth of Mg5Al2.4Zr1.7O12. A highly dispersed MgO-MgAl2O4-ZrO2 composite material was prepared through the decomposition of the Mg5Al2.4Zr1.7O12 metastable phase. The as-prepared composite material showed improved overall physical properties because of the good dispersion of MgO, MgAl2O4, and ZrO2 phases.

  13. Experimental and first-principles investigation of the electronic structure anisotropy of Cr2AlC

    NASA Astrophysics Data System (ADS)

    Bugnet, M.; Jaouen, M.; Mauchamp, V.; Cabioc'h, T.; Hug, G.

    2014-11-01

    The anisotropy of the electronic structure of the MAX phase Cr2AlC has been investigated by electron-energy-loss spectroscopy (EELS) at the C K edge, and x-ray-absorption spectroscopy (XAS) at the Al K , Cr L2 ,3, and Cr K edges. The experimental spectra were interpreted using either a multiple-scattering approach or a full-potential band-structure method. The anisotropy is found to be small around C atoms because of the rather isotropic nature of the octahedral site, and of the averaging of the empty C p states probed by EELS at the C K edge. In turn, a pronounced anisotropy of the charge distribution around Al atoms is evidenced from polarized XAS measurements performed on textured Cr2AlC sputtered thin films. From the analysis of the XAS data using the multiple-scattering feff code, it is demonstrated that the probed thin film is constituted of 70 % (0001) and 30 % (10 1 ¯3 ) grains oriented parallel to the film surface. A decomposition of the calculated spectrum in coordination shells allows for the ability to connect XAS fine structures to the Cr2AlC structure. Combining high-resolution data with up-to-date multiple-scattering calculations, it is shown that the crystalline orientations of the grains present in a probe of 100 ×100 μ m 2 can be determined from the Cr K edge. Interestingly, it is also revealed that a static disorder is involved in the studied thin films. These findings highlight that, given the overall agreement between experimental and calculated spectra, the Cr2AlC electronic structure is accurately predicted using density functional theory.

  14. The Behaviour of Bifilm Defects in Cast Al-7Si-Mg Alloy

    PubMed Central

    2016-01-01

    Double oxide films (bifilms) are significant defects in the casting of light alloys, and have been shown to decrease tensile and fatigue properties, and also to increase their scatter, making casting properties unreproducible and unreliable. A bifilm consists of doubled-over oxide films containing a gas-filled crevice and is formed due to surface turbulence of the liquid metal during handling and/or pouring. Previous studies has shown that the nature of oxide film defects may change with time, as the atmosphere inside the bifilm could be consumed by reaction with the surrounding melt, which may enhance the mechanical properties of Al alloy castings. As a proxy for a bifilm, an air bubble was trapped within an Al-7wt.%Si-0.3wt.%Mg (2L99) alloy melt, subjected to stirring. The effect of different parameters such as the holding time, stirring velocity and melt temperature on the change in gas composition of the bubble was investigated, using a design of experiments (DoE) approach. Also, the solid species inside the bubbles solidified in the melt were examined using SEM. The results suggested that both oxygen and nitrogen inside the bifilm would be consumed by reaction with the surrounding melt producing MgAl2O4 and AlN, respectively. Also, hydrogen was suggested to consistently diffuse into the defect. The reaction rates and the rate of H diffusion were shown to increase upon increasing the holding time and temperature, and stirring velocity. Such significant effect of the process parameters studied on the gaseous content of the bubble suggesting that a careful control of such parameters might lead to the deactivation of bifilm defects, or at least elimination of their deteriorous effect in light alloy castings. PMID:27529350

  15. Chronology of chrondrule and CAI formation: Mg-Al isotopic evidence

    NASA Technical Reports Server (NTRS)

    Macpherson, G. J.; Davis, A. M.

    1994-01-01

    Details of the chondrule and Ca-Al-rich inclusion (CAI) formation during the earliest history of the solar system are imperfectly known. Because CAI's are more 'refractory' than ferromagnesian chondrules and have the lowest recorded initial Sr-87/Sr-86 ratios of any solar system materials, the expectation is that CAI's formed earlier than chondrules. But it is not known, for example, if CAI formation had stopped by the time chondrule formation began. Conventional (absolute) age-dating techniques cannot adequately resolve small age differences (less than 10(exp 6) years) between objects of such antiquity. One approach has been to look at systematic differences in the daughter products of short-lived radionuclides such as Al-26 and I-129. Unfortunately, neither system appears to be 'well-behaved.' One possible reason for this circumstance is that later secondary events have partially reset the isotopic systems, but a viable alternative continues to be large-scale (nebular) heterogeneity in initial isotopic abundances, which would of course render the systems nearly useless as chronometers. In the past two years the nature of this problem has been redefined somewhat. Examination of the Al-Mg isotopic database for all CAI's suggests that the vast majority of inclusions originally had the same initial Al-26/Al-27 abundance ratio, and that the ill-behaved isotopic systematics now observed are the results of later partial reequilibration due to thermal processing. Isotopic heterogeneities did exist in the nebula, as demonstrated by the existence of so-called FUN inclusions in CV3 chondrites and isotopically anomalous hibonite grains in CM2 chondrites, which had little or no live Al-26 at the time of their formation. But, among the population of CV3 inclusions at least, FUN inclusions appear to have been a relatively minor nebular component.

  16. The fracture resistance of 1420 and 1421 Al-Mg-Li alloys

    SciTech Connect

    Birt, M.J.; Hafley, R.A.; Wagner, J.A.; Lisagor, W.B. )

    1993-04-15

    Aluminum-magnesium-lithium alloy 1420 was developed in the form USSR as a lightweight, weldable, corrosion resistant alloy for aerospace applications. The alloy is primarily strengthened upon aging by the homogeneous precipitation of metastable [delta][prime] (Al[sub 3]Li). The equilibrium T-phase (Al[sub 2]MgLi) also precipitated during aging on grain boundaries and dislocations but does not contribute to strength and can have deleterious effects on fracture toughness. The addition of scandium, which refines the ingot grain structure, led to the evolution of alloy 1421 which exhibits higher strength and superior weldability compared to the earlier 1420 alloy. Zirconium is added to both alloys and forms a coherent precipitate, [beta][prime] (Al[sub 3]Zr), which acts as a recrystallization inhibitor. The fracture resistance of alloys 1420 and 1421 in the T6 temper has been examined by R-curve determination and the observed behavior has been compared with Al alloy, 2219-T87. The center-cracked (M(T)) sheet panels tested in this study were of sufficient width to produce stable crack growth to a [Delta]a of [approximately] 25 mm and the R-curves that were generated allowed for a comparison to be made of the stable crack growth resistance between the alloys in accordance with ASTM E561-86. The data presented are part of an extensive collaborative test program involving both private industry and government laboratories to evaluate the 1420 and 1421 alloys.

  17. Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments

    NASA Astrophysics Data System (ADS)

    Holroyd, N. J. Henry; Scamans, G. M.

    2013-03-01

    Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack ("pop-in" vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies ( E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (<0.2 wt pct) are typically ranging from

  18. Effects of particle size and forming pressure on pore properties of Fe-Cr-Al porous metal by pressureless sintering

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Uk; Yi, Yujeong; Lee, Minjeong; Kim, Byoung-Kee

    2017-03-01

    With increased hydrogen consumption in ammonia production, refining and synthesis, fuel cells and vehicle industries, development of the material components related to hydrogen production is becoming an important factor in industry growth. Porous metals for fabrication of hydrogen are commonly known for their relative excellence in terms of large area, lightness, lower heat capacity, high toughness, and permeability. Fe-Cr-Al alloys not only have high corrosion resistance, heat resistance, and chemical stability but also ductility, excellent mechanical properties. In order to control powder size and sintering temperature effects of Fe-Cr-Al porous metal fabrication, Fe-Cr-Al powder was classified into 25-35 μm, 35-45 μm, 45-75 μm using an auto shaking sieve machine and then classified Fe-Cr-Al powders were pressed into disk shapes using a uniaxial press machine and CIP. The pelletized Fe-Cr-Al specimens were sintered at various temperatures in high vacuum. Properties such as pore size, porosity, and air permeability were evaluated using perm-porosimetry. Microstructure and phase changes were observed with SEM and XRD. Porosity and relative density were proportionated to increasing sintering temperature. With sufficient sintering at increasing temperatures, the pore size is expected to be gradually reduced. Porosity decreased with increasing sintering temperature and gradually increased necking of the powder.

  19. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Pint, B. A.; Terrani, K. A.; Field, K. G.; Yang, Y.; Snead, L. L.

    2015-12-01

    Development of nuclear grade, iron-based wrought FeCrAl alloys has been initiated for light water reactor (LWR) fuel cladding to serve as a substitute for zirconium-based alloys with enhanced accident tolerance. Ferritic alloys with sufficient chromium and aluminum additions can exhibit significantly improved oxidation kinetics in high-temperature steam environments when compared to zirconium-based alloys. In the first phase, a set of model FeCrAl alloys containing 10-20Cr, 3-5Al, and 0-0.12Y in weight percent, were prepared by conventional arc-melting and hot-working processes to explore the effect of composition on the properties of FeCrAlY alloys. It was found that the tensile properties were insensitive to the alloy compositions studied; however, the steam oxidation resistance strongly depended on both the chromium and the aluminum contents. The second phase development focused on strengthening Fe-13Cr-5Al with minor alloying additions of molybdenum, niobium, and silicon. Combined with an optimized thermo-mechanical treatment, a thermally stable microstructure was produced with improved tensile properties at temperatures up to 741 °C.

  20. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors

    DOE PAGES

    Yamamoto, Yukinori; Pint, Bruce A.; Terrani, Kurt A.; ...

    2015-10-19

    Development of nuclear grade, iron-based wrought FeCrAl alloys has been initiated for light water reactor (LWR) fuel cladding to serve as a substitute for zirconium-based alloys with enhanced accident tolerance. Ferritic alloys with sufficient chromium and aluminum additions can exhibit significantly improved oxidation kinetics in high-temperature steam environments when compared to zirconium-based alloys. In the first phase, a set of model FeCrAl alloys containing 10–20Cr, 3–5Al, and 0–0.12Y in weight percent, were prepared by conventional arc-melting and hot-working processes to explore the effect of composition on the properties of FeCrAlY alloys. It was found that the tensile properties were insensitivemore » to the alloy compositions studied; however, the steam oxidation resistance strongly depended on both the chromium and the aluminum contents. The second phase development focused on strengthening Fe-13Cr-5Al with minor alloying additions of molybdenum, niobium, and silicon. Combined with an optimized thermo-mechanical treatment, a thermally stable microstructure was produced with improved tensile properties at temperatures up to 741°C.« less