Science.gov

Sample records for al cr mn

  1. Oxidation behavior of cubic phases formed by alloying Al3Ti with Cr and Mn

    NASA Technical Reports Server (NTRS)

    Parfitt, L. J.; Nic, J. P.; Mikkola, D. E.; Smialek, J. L.

    1991-01-01

    Gravimetric, SEM, and XRD data are presented which document the significant improvement obtainable in the oxidation resistance of Al3Ti-containing alloys through additions of Cr. The L1(2) Al(67)Cr(8)Ti25 alloy exhibited excellent cyclic oxidation resistance at 1473 K, with the primary oxide formed being the ideally protective alpha-Al2O3. The Al(67)Mn(8)Ti(25) alloy also tested for comparison exhibited poor cyclic oxidation resistance, with substantial occurrence of TiO2 in the protective scales. Catastrophic oxidation was also encountered in the quaternary alloy Al(67)Mn(8)Ti(22)V(3).

  2. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  3. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  4. Electronic and magnetic properties of Cr-Mn-Ni-Al compound with LiMgPdSb-type structure

    NASA Astrophysics Data System (ADS)

    Wang, L. Y.; Wang, X. T.; Guo, R. K.; Lin, T. T.; Liu, G. D.

    2016-10-01

    We investigate the electronic and magnetic properties of Cr-Mn-Ni-Al compound with a LiMgPdSn-type structure in three different atomic arrangement configurations (AAC) by using the first-principles calculations. It was found that Cr-Mn-Ni-Al compound with type I AAC exhibits a spin-gapless semiconductive characteristic. The type II AAC is the most stable one and exhibits an especial band structure where the Fermi level slightly crosses the top of the valence bands in spin-up channel and the bottom of conductive bands in spin-down channel, which leads to the electronic transport with the spin-resolved carrier type. The Cr-Mn-Ni-Al compound shows an ordinary metallic behavior in type III AAC. The three nonequivalent atomic arrangement configurations of Cr-Mn-Ni-Al are all in ferromagnetic ground state under their equilibrium lattice parameters.

  5. Iron-base superalloys - A phase analysis of the multicomponent system (Fe-Mn-Cr-Mo-Nb-Al-Si-C)

    NASA Technical Reports Server (NTRS)

    Gupta, H.; Nowotny, H.; Lemkey, F. D.

    1988-01-01

    In the course of studies on the iron-rich multicomponent system Fe-Mn-Cr-Mo-Nb-Al-Si-C, work was concentrated on pertinent quinary and six-component combinations namely Fe-Mn-Al-Si-C, Fe-Cr-Al-Si-C and Fe-Mn-Cr-Al-Si-C which had been elaborated at 65, 72, and 80 wt pct Fe. Manganese acts as a strong stabilizer for the cementite carbide. Chromium seems to stabilize the iron aluminide Fe2Al5 which forms in a considerable amount within an alloy of nominal composition Fe(65)Mn(15)Cr(12)Al(5)Si(2)C(1) (percent by weight). Although the Mn3AlC carbide is, like Fe3AlC, a perovskite carbide, manganese does not appear to favor the formation of the perovskite carbide. Because of the relatively low sintering temperature (700 C), for al large portion of the samples equilibria conditions are not always reached.

  6. Chemical zoning and diffusion of Ca, Al, Mn, and Cr in olivine of springwater pallasite

    NASA Technical Reports Server (NTRS)

    Zhou, Y.; Steele, Ian M.

    1993-01-01

    The pallasites, consisting mainly of Fe-Ni metal and olivine, are thought to represent the interior of a planetary body which slowly cooled from high temperature. Although the olivines are nearly homogeneous, ion microprobe studies revealed variations of Ca, Ti, Co, Cr, and Ni near grain edges. These variations were thought to represent diffusion in response to falling temperature of the parent body. Pallasite cooling rates have been estimated based on kamacite taenite textures but results differ by x100. In principle elemental profiles in olivine can allow estimates of cooling rate if diffusion coefficients are known; in addition, given a cooling rate, diffusion coefficients could be derived. Data are presented which show that apparent diffusion profiles can be measured for Al, Ca, Cr, and Mn which qualitatively agree with expected diffusion rates and have the potential of providing independent estimates of pallasite cooling rates.

  7. Effects of C and Cr content on high-temperature microstructures of Fe-9Al-30Mn-xC-yCr alloys

    SciTech Connect

    Chen, May-Show; Cheng, Hsin-Chung; Huang, Chiung-Fang; Chao, Chih-Yeh; Ou, Keng-Liang; Yu, Chih-Hua

    2010-02-15

    This investigation elucidated the effects of C and Cr content on the high-temperature microstructures of Fe-9Al-30Mn-xC-yCr alloys by means of optical microscopy and transmission electron microscopy. With increasing Cr content, the phase transition sequence within the {alpha} phase was found to be {alpha} + B2 {yields} {alpha} + B2 + DO{sub 3} {yields} {alpha} + DO{sub 3}. And with increasing C content, a {gamma} {yields} ({gamma} + {kappa}) phase transition was observed within the {gamma} phase. The {kappa} phase carbides ((Fe,Mn){sub 3}AlC{sub x}) had an ordered L'1{sub 2}-type structure with lattice parameter a = 0.368 nm and were formed by a spinodal decomposition during quenching. The amounts of Cr{sub 7}C{sub 3} increased with the C and Cr content. Moreover, the Al and Mn content played important roles in expanding the ({alpha} + {gamma}) region. These features have not been previously reported in the Fe-Al-Mn-C-Cr alloy system.

  8. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  9. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    DOE PAGES

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; Varma, Manoj Raama; Singh, Prashant; Suresh, K. G.; Alam, Aftab

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB, 866 K and 0.9 μB, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L21 disordered structure. The antisite disorder adds amore » somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.« less

  10. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    SciTech Connect

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; Varma, Manoj Raama; Singh, Prashant; Suresh, K. G.; Alam, Aftab

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB, 866 K and 0.9 μB, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L21 disordered structure. The antisite disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.

  11. Oxidation behavior of Mn and Mo alloyed Fe-16Ni-(5-8)Cr-3. 2Si-1. 0Al

    SciTech Connect

    Rawers, J.C.; Oh, J.M.; Dunning, J. )

    1990-02-01

    Oxidation tests were conducted on a master alloy, Fe-16Ni-(5-8)Cr-3Si-1Al, to which (0-4) wt/o pct Mn and/or Mo were added. Tests were conducted at temperatures ranging from 1,073-1,273 K for times up to 1,000 hr. Additions of Mn resulted in formation of a dual oxide structure and decreased oxidation protection. Addition of Mo significantly improved oxidation protection by formation of an intermetallic Fe(Mo)Si precipitate that eventually formed a protective SiO{sub 2} oxide sublayer. The oxidation protection was related to the alloy components and concentration.

  12. Carbides in iron-rich Fe-Mn-Cr-Mo-Al-Si-C systems

    NASA Technical Reports Server (NTRS)

    Lemkey, F. D.; Gupta, H.; Nowotny, H.; Wayne, S. F.

    1984-01-01

    The optimization of high carbon iron-base superalloy properties with duplex microstructure gamma + M7C3 carbide requires analysis in the context of a seven-component system. Data are first provided here for the Fe-Mn-Cr-Mo-C quinary system, at 30 at. pct carbon. A characterization of competing carbides, according to a pseudoternary phase diagram at 35 wt pct iron, is made from isothermal sections. It is noted that while M7C3 and M3C carbides' occurrences are respectively favored at the Cr and Mn corners, the M2C carbide and molybdenum cementite are predominant with increasing amounts of Mo. Lattice parameters are reported for the various carbides.

  13. Crystal growth and magnetic properties of Ln-Mn-Al (Ln=Gd, Yb) compounds of the CaCr{sub 2}Al{sub 10} and ThMn{sub 12} structure types

    SciTech Connect

    Fulfer, Bradford W.; Haldolaarachchige, Neel; Young, David P.; Chan, Julia Y.

    2012-10-15

    We report the growth and characterization of LnMn{sub 2+x}Al{sub 10-x} (Ln=Gd, Yb) crystals adopting the CaCr{sub 2}Al{sub 10} and ThMn{sub 12} structure types. Single crystals of LnMn{sub 2+x}Al{sub 10-x} were synthesized via the self-flux method and characterized with single crystal X-ray diffraction. We compare LnMn{sub 2+x}Al{sub 10-x} compounds adopting the CaCr{sub 2}Al{sub 10} and ThMn{sub 12} structure types, and outline synthesis methods to obtain each polymorph. Magnetic susceptibility measurements show paramagnetic behavior down to 3 K for both CaCr{sub 2}Al{sub 10}- and ThMn{sub 12}-type compounds, with observed magnetic moments of 1.3{mu}{sub B} for compounds adopting the CaCr{sub 2}Al{sub 10} structure type to 4.2{mu}{sub B} for those adopting the ThMn{sub 12} structure type. Compounds of both structure type exhibit metallic resistivity, with upturns at low temperature attributed to Kondo scattering. - Graphical abstract: We report the growth and characterization of LnMn{sub 2+x}Al{sub 10-x} (Ln=Gd, Yb) crystals adopting the CaCr{sub 2}Al{sub 10} and ThMn{sub 12} structure types. Single crystals of LnMn{sub 2+x}Al{sub 10-x} were synthesized via the self-flux method and characterized with single crystal X-ray diffraction. We compare LnMn{sub 2+x}Al{sub 10-x} compounds adopting the CaCr{sub 2}Al{sub 10} and ThMn{sub 12} structure types, and outline synthesis methods to obtain each polymorph. Magnetic susceptibility measurements show paramagnetic behavior down to 3 K for both CaCr{sub 2}Al{sub 10}- and ThMn{sub 12}-type compounds, with observed magnetic moments of 1.3{mu}{sub B} for compounds adopting the CaCr{sub 2}Al{sub 10} structure type to 4.2{mu}{sub B} for those adopting the ThMn{sub 12} structure type. Compounds of both structure type exhibit metallic resistivity, with upturns at low temperature attributed to Kondo scattering. Highlights: Black-Right-Pointing-Pointer We have grown Ln (Mn,Al){sub 12} (Ln=Gd, Yb) single crystals of the ThMn{sub 12

  14. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.

  15. Interdiffusion between the L1(2) trialuminides Al66Ti25Mn9 and Al67Ti25Cr8

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    Concentration-distance profiles obtained from Al66Ti25Mn9/Al67Ti25Cr8 diffusion couples are used to determine the interdiffusion coeffients in the temperature range 1373-1073 K. The couples are treated as pseudobinaries, and the diffusion coefficients are determined using the Matano approach. The results are then used to compute the activation energies for diffusion, and a comparison is made with some existing data for the activation energy for creep of Al22Ti8Fe3.

  16. Galvanomagnetic properties of Fe{sub 2}YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    SciTech Connect

    Kourov, N. I. Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-15

    The Hall effect and the magnetoresistance of Fe{sub 2}YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit (H > 10 kOe), the value and the sign of the normal (R{sub 0}) and anomalous (R{sub s}) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R{sub s} in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio (R{sub s} ∝ ρ{sub 0}{sup 3.1}), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  17. Galvanomagnetic properties of Fe2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-01

    The Hall effect and the magnetoresistance of Fe2YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3 d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit ( H > 10 kOe), the value and the sign of the normal ( R 0) and anomalous ( R s ) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R s in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio ( R s ∝ ρ 0 3.1 ), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  18. Compression, bend, and tension studies on forged Al67Ti25Cr8 and Al66Ti25Mn(g) L1(2) compounds

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Whittenberger, J. D.

    1991-01-01

    Cast, homogenized, and isothermally forged aluminum-rich L1(2) compounds Al67Ti25Cr8 and Al66Ti25Mn(g) were tested in compression as a function of temperature and as a function of strain rate at elevated temperatures (1000 K and 1100 K). Three-point bend specimens were tested as a function of temperature in the range 300 K to 873 K. Strain gages glued on the tensile side of the ambient and 473 K specimens enabled direct strain measurements. A number of 'buttonhead' tensile specimens were electro-discharge machined, fine polished, and tested between ambient and 1073 K for yield strength and ductility as a function of temperature. Scanning electron microscope (SEM) examination of fracture surfaces from both the bend and tensile specimens revealed a gradual transition from transgranular cleavage to intergranular failure with increasing temperature.

  19. Low-temperature heat capacity upon the transition from paramagnetic to ferromagnetic Heusler alloys Fe2 MeAl ( Me = Ti, V, Cr, Mn, Fe, Co, Ni)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Korolev, A. V.; Lukoyanov, A. V.

    2016-07-01

    The heat capacity of band magnets Fe2 MeAl ( Me = Ti, V, Cr, Mn, Fe, Co, Ni) ordered in crystal structure L21 has been measured in the range 2 K ≤ T ≤ 50 K. The dependences of the Debye temperature ΘD, the Sommerfeld coefficient γ, and the temperature-independent contribution to heat capacity C 0 on the number of valence electrons z in the alloys have been determined.

  20. High-field magnetization of heusler alloys Fe2 XY ( X = Ti, V, Cr, Mn, Fe, Co, Ni; Y = Al, Si)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Korolev, A. V.; Belozerova, K. A.; Weber, H. W.

    2015-10-01

    The magnetization curves of ferromagnetic Heusler alloys Fe2 XY (where X = Ti, V, Cr, Mn, Fe, Co, Ni are transition 3 d elements and Y = Al, Si are the s and p elements of the third period of the Periodic Table) have been measured at T = 4.2 K in the field range H ≤ 70 kOe. It has been shown that the high-field ( H ≥ 20 kOe) magnetization is described within the Stoner model.

  1. Structural Investigation and Indium Substitution in the Thermoelectric Mn2.7Cr0.3Si4Al2- x In x Series

    NASA Astrophysics Data System (ADS)

    Barbier, Tristan; Combe, Emmanuel; Funahashi, Ryoji; Takeuchi, Tomonori; Kubouchi, Masataka; Miyazaki, Yuzuru; Guilmeau, Emmanuel; Suzuki, Ryosuke O.

    2016-03-01

    Following the recent discovery of the promising Mn2.7Cr0.3Si4Al2 thermoelectric compound (having, e.g., automotive, industrial, and solar conversion applications), structural characterization by x-ray single-crystal diffraction analysis has been performed. This layered material is composed of two distinct crystallographic sites where both (Mn, Cr) and (Al, Si) are randomly distributed. The deduced crystallographic parameters were then confirmed by powder x-ray diffraction analysis through a temperature dependence of the phase stability, showing at the same time chemical stability up to 873 K. Taking into account the two distinct crystallographic sites highlighted, samples possessing two guest elements, one on each site, were then synthesized to improve the thermoelectric properties. A solid solution is found in the system Mn2.7Cr0.3Si4Al2- x In x with x varying from 0 to 0.2. Thus, double-substituted samples were studied by x-ray diffraction, electrical, and thermal measurements. The present paper describes and discusses the experimental results obtained.

  2. Catalytic oxidation of 2-Propanol over (Cr,Mn,Fe)-Pt/gamma-Al2O3 bimetallic catalysts and modeling of experimental results by artificial neural networks.

    PubMed

    Niaei, A; Salari, D; Aghazadeh, F; Caylak, N; Sepehrianazar, A

    2010-01-01

    The catalytic activity of transition metals (Cr,Mn,Fe) supported on the Pt/gamma -Al(2)O(3) industrial catalyst was investigated to bring about the complete oxidation of 2-Propanol. Catalytic studies were carried out under atmospheric pressure in a fixed bed reactor. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and ICP-AES techniques were used to characterize a series of catalysts. Results showed that the Pt-Mn/gamma -Al(2)O(3) (3.88 wt.%Mn) at calcination temperature of 300 degrees C was the most promising catalyst based on activity, which might be contributed to the quantity of manganese loading, the favorable synergetic effects between Pt and Mn and the well-dispersed bimetallic phase. An artificial neural networks (ANN) model was developed to predict the performance of catalytic oxidation process over Pt-Mn/gamma -Al(2)O(3) bimetallic catalyst based on experimental data. For this purpose the Levenberg-Marquardt (LM) learning algorithm was employed to train the model by using laboratory experimental data. A comparison between the predicted results of the designed ANN model and experimental data was also conducted. The developed model can describe the catalytic oxidation over bimetallic catalysts under different conditions. PMID:20390890

  3. Lunar highland rocks - Element partitioning among minerals. II - Electron microprobe analyses of Al, P, Ca, Ti, Cr, Mn and Fe in olivine

    NASA Technical Reports Server (NTRS)

    Smith, J. V.; Hansen, E. C.; Steele, I. M.

    1980-01-01

    Lunar olivines from anorthosites, granulitic impactites, and rocks in the Mg-rich plutonic trend were subjected to electron probe measurements for Al, P, Ca, Ti, Cr and Mn, which show that the FeO/MnO ratio for lunar olivines lies between 80 and 110 with little difference among the rock types. The low values of Ca in lunar olivines indicate slow cooling to subsolidus temperatures, with blocking temperatures of about 750 C for 67667 and 1000 C for 60255,73-alpha determined by the Finnerty and Boyd (1978) experiments. An important paradox is noted in the low Ti content of Fe-rich olivines from anorthosites, although both Ti and Fe tend to become enriched in liquid during fractional distillation. Except for Ca and Mn, olivine from anorthosites has lower minor element values than other rock types. Formation from a chemically distinct system is therefore implied.

  4. The Mechanical and Corrosion Behaviors of As-cast and Re-melted AlCrCuFeMnNi Multi-Component High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Soare, Vasile; Mitrica, Dumitru; Constantin, Ionut; Popescu, Gabriela; Csaki, Ioana; Tarcolea, Mihai; Carcea, Ioan

    2015-04-01

    A multi-component AlCrCuFeMnNi high-entropy alloy, prepared by vacuum induction melting, was investigated for structural, mechanical, and corrosion characteristics, before and after the re-melting process. Optical microscopy analysis revealed a dendritic solidification behavior. The interdendritic area contains two main phases and occasionally small hard phases. The re-melting process produced a finer dendritic structure, with rounded dendrites and reduced interdendritic hard phases. The SEM-EDAX analysis showed that the dendrite region contains a Widmanstatten type of structure and are composed of Cr-Fe rich phases, whereas the interdendrite region contains Cu and Mn rich phases. XRD analysis revealed two disordered BCC type A2 structures with high Cr and Fe content and an FCC A12 type of structure for the Cu and Mn rich interdendritic phase. The lattice constants, determined by X-ray diffraction, are 2.87 and 2.91 Å for the A2 phases and 3.67 Å for A1 phase. The Vickers micro hardness increased with the homogeneity of the alloy, having a maximum value of 4370 MPa for the re-melted sample. Corrosion tests carried out in 3.5 wt pct sodium chloride aerated solution indicated that the corrosion resistance improved with the re-melting process, being 1.5 to 2 times better than that of 304 stainless steel.

  5. Microstructures and Mechanical Performance of Plasma-Nitrided Al0.3CrFe1.5MnNi0.5 High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Tang, Wei-Yeh; Chuang, Ming-Hao; Lin, Su-Jien; Yeh, Jien-Wei

    2012-07-01

    This study investigates the effect of plasma nitriding at 798 K (525 °C) on microstructures and the mechanical performance of Al0.3CrFe1.5MnNi0.5 high-entropy alloys (HEAs) obtained using different cast and wrought processing. All the alloys can be well nitride, with a thickness of around 80 μm, and attain a peak hardness level around Hv 1300 near the surface. The main nitride phases are CrN, AlN, and (Mn, Fe)4N. Those of the substrates are bcc, fcc, Al-, and Ni-rich B2 precipitates, and ρ phase. Their relative amounts depend on the prior processing and also change under the heat treatment during nitriding. The formation of ρ phase during nitriding could in-situ harden the substrate to attain the suitable level required for wear applications. This gives the advantage in simplifying the processing for making a wear-resistance component or a mold since austenitizing, quench hardening, and tempering required for steels such as SACM and SKD steels are no longer required and final finishing can be accomplished before nitriding. Nitrided Al0.3CrFe1.5MnNi0.5 samples have much better wear resistance than un-nitrided ones by 49 to 80 times and also exhibit superior adhesive wear resistance to conventional nitrided alloys: nitriding steel SACM-645 (AISI 7140), 316 stainless steel, and hot-mold steel SKD-61 (AISI H13) by 22 to 55 times depending on prior processing. The superiority is due to the fact that the present nitrided alloys possess a much thicker highly hardened layer than the conventional alloys.

  6. Heat transfer and fluid flow during electron beam welding of 21Cr-6Ni-9Mn steel and Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Rai, R.; Burgardt, P.; Milewski, J. O.; Lienert, T. J.; Roy, T. Deb

    2009-01-01

    Electron beam welding (EBW) of two important engineering alloys, Ti-6Al-4V and 21Cr-6Ni-9Mn, was studied experimentally and theoretically. The temperatures at several monitoring locations in the specimens were measured as a function of time during welding and the cross-sections of the welds were examined by optical microscopy. The theoretical research involved numerical simulation of heat transfer and fluid flow during EBW. The model output included temperature and velocity fields, fusion zone geometry and temperature versus time results. The numerically computed fusion zone geometry and the temperature versus time plots were compared with the corresponding experimentally determined values for each weld. Both the experimental and the modelling results were compared with the corresponding results for the keyhole mode laser beam welding (LBW). Both experimental and modelling results demonstrate that the fusion zone size in Ti-6Al-4V alloy was larger than that of the 21Cr-6Ni-9Mn stainless steel during both the electron beam and laser welding. Higher boiling point and lower solid state thermal conductivity of Ti-6Al-4V contributed to higher peak temperatures in Ti-6Al-4V welds compared with 21Cr-6Ni-9Mn stainless steel welds. In the EBW of both the alloys, there were significant velocities of liquid metal along the keyhole wall driven by the Marangoni convection. In contrast, during LBW, the velocities along the keyhole wall were negligible. Convective heat transfer was important in the transport of heat in the weld pool during both the laser and the EBW. The computed keyhole wall temperatures during EBW at low pressures were lower than those during the LBW at atmospheric pressure for identical heat input.

  7. Specific features of the electrical resistivity of half-metallic ferromagnets Co2 MeAl ( Me = Ti, V, Cr, Mn, Fe)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Perevozchikova, Yu. A.; Weber, H. W.; Marchenkov, V. V.

    2016-07-01

    The transport properties of half-metallic ferromagnetic Heusler alloys Co2 MeAl ( Me = Ti, V, Cr, Mn, Fe are transition 3 d metals) have been measured in the temperature range of 4-900 K. The specific features of the behavior of the resistivity have been considered in the framework of the two-current model of conductivity that takes into account the existence of the energy gap in the electronic spectra of the alloys near the Fermi level of one of electron subbands that differs in the spin direction.

  8. Specific features of the electrical resistivity of half-metallic ferromagnets Fe2MeAl (Me = Ti, V, Cr, Mn, Fe, Ni)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2014-03-01

    The transport properties of half-metallic ferromagnetic Heusler alloys Fe2MeAl (where Me = Ti, V, Cr, Mn, Fe, and Ni are 3 d transition elements) have been measured in the temperature range of 4-900 K. The specific features in the behavior of the electrical resistivity have been considered in terms of the two-current conduction model, which takes into account the presence of an energy gap in the electron spectrum of the alloys near the Fermi level.

  9. ⁵³Mn-⁵³Cr and ²⁶Al-²⁶Mg ages of a feldspathic lithology in polymict ureilites

    SciTech Connect

    Goodrich, Cyrena Anne; Hutcheon, Ian D.; Kita, Noriko T.; Huss, Gary R.; Cohen, Barbara Anne; Keil, Klaus

    2010-07-01

    We report 53Mn–53Cr and 26Al–26Mg isotopic data, obtained by in-situ SIMS analysis, for feldspathic clasts in polymict ureilites DaG 319 and DaG 165. The analyzed clasts belong to the “albitic lithology,” the most abundant population of indigenous feldspathic materials in polymict ureilites, and are highly fractionated igneous assemblages of albitic plagioclase, Fe-rich pyroxenes, phosphates, ilmenite, silica, and Fe(Mn, K, P, Ti)-enriched glass. Glass in DaG 165 clast 19 has extremely high and variable 55Mn/52Cr ratios (500–58,000) and shows correlated 53Cr excesses up to ~ 1500‰, clearly indicating the presence of live 53Mn at the time of formation. The slope of the well-correlated isochron defined by glass and pyroxenes from this clast corresponds to (53Mn/55Mn) = (2.84 ± 0.10) × 10-6 (2σ). Data for less 55Mn/52Cr-enriched glasses from DaG 319 clast B1, as well as phosphates from several other clasts, are consistent with this isochron. The 53Mn/55Mn ratio obtained from the isochron implies that these clasts are 0.70 ± 0.18 Ma younger than the D'Orbigny angrite, corresponding to the absolute age of 4563.72 ± 0.22 Ma. Plagioclase in DaG 319 clast B1 has a fairly constant 27Al/24Mg ratio of ~ 900 and shows resolvable 26Mg excesses of ~ 2‰. The slope of the isochron defined by pyroxene and plagioclase in this clast is (3.0 ± 1.1) × 10-7 (2σ), corresponding to a time difference of 5.4 (-0.3/+0.5) Ma after CAI (assuming the canonical initial 26Al/27Al ratio of 5 × 10-5) and an age 0.5 (-0.3/+0.5) Ma younger than D'Orbigny. Its absolute age (relative to D'Orbigny) is 4563.9 (+ 0.4/-0.5) Ma, in agreement with the 53Mn–53Cr age from clast 19. These data provide the first high

  10. [Determination of Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se and Tl in whole blood by atomic absorption spectrometry without preliminary sample digestion].

    PubMed

    Ivanenko, N B; Ivanenko, A A; Solov'ev, N D; Navolotskiĭ, D V; Pavlova, O V; Ganeev, A A

    2014-01-01

    Methods of whole blood trace element determination by Graphite furnace atomic absorption spectrometry (in the variant of Zeeman's modulation polarization spectrometry) have been proposed. They do not require preliminary sample digestion. Furnace programs, modifiers and blood dilution factors were optimized. Seronorm™ human whole blood reference materials were used for validation. Dynamic ranges (for undiluted blood samples) were: Al 8 ¸ 210 мg/L; Be 0.3 ¸ 50 мg/L; Cd 0.2 ¸ 75 мg/L; Сo 5 ¸ 350 мg/L; Cr 10 ¸ 100 мg/L; Mn 6 ¸ 250 мg/L; Ni 10 ¸ 350 мg/L; Pb 3 ¸ 240 мg/L; Se 10 ¸ 500 мg/L; Tl 2 ¸ 600 мg/L. Precision (RSD) for the middle of dynamic range ranged from 5% for Mn to 11 for Se.

  11. Mn-Cr Dating of Enstatite Chondrites

    NASA Astrophysics Data System (ADS)

    Hopp, J.; Trieloff, M.; Storck, J.-C.; Ludwig, T.; Meyer, H. P.; Altherr, R.; El Goresy, A.

    2016-08-01

    We will present new 53Mn-53Cr age data of enstatite chondrites, analysed with the new Cameca 1280 HR ionprobe facility at Heidelberg University, Germany. Excess 53Cr was detected in several sphalerites, which was the major high Mn/Cr target mineral.

  12. Investigation of magnetic properties and electronic structure of layered-structure borides AlT{sub 2}B{sub 2} (T=Fe, Mn, Cr) and AlFe{sub 2–x}Mn{sub x}B{sub 2}

    SciTech Connect

    Chai, Ping; Stoian, Sebastian A.; Tan, Xiaoyan; Dube, Paul A.; Shatruk, Michael

    2015-04-15

    The ternary phases AlT{sub 2}B{sub 2} (T=Fe, Mn, Cr) and quaternary phases AlFe{sub 2–x}Mn{sub x}B{sub 2} have been synthesized by arc-melting and characterized by powder X-ray diffraction, magnetic measurements, Mössbauer spectroscopy, and electronic band structure calculations. All the compounds adopt the AlFe{sub 2}B{sub 2}-type structure, in which infinite zigzag chains of B atoms are connected by Fe atoms into [Fe{sub 2}B{sub 2}] slabs that alternate with layers of Al atoms along the b axis. The magnetic measurements reveal that AlFe{sub 2}B{sub 2} is a ferromagnet with T{sub C}=282 K while AlMn{sub 2}B{sub 2} and AlCr{sub 2}B{sub 2} do not show magnetic ordering in the studied temperature range of 1.8–400 K. A systematic investigation of solid solutions AlFe{sub 2−x}Mn{sub x}B{sub 2} showed a non-linear change in the structural and magnetic behavior. The ferromagnetic ordering temperature is gradually decreased as the Mn content (x) increases. The Mössbauer spectra reveal the presence of non-magnetic (NM) and ferromagnetic (FM) spectral components in all Mn-containing samples, with the amount of NM fraction increasing as the Mn content increases. While for the AlFe{sub 2−x}Mn{sub x}B{sub 2} samples with x=0.0 and 0.4 the hyperfine splitting of the FM spectral component collapses at temperatures close to the Curie temperatures determined from the magnetic measurements, for the x=1.2 and 1.6 samples the FM fraction exhibits a sizable unquenched hyperfine splitting at room temperature, a finding that is inconsistent with the observed magnetic properties. Along with the increase in the amount of the NM fraction, this observation suggests formation of Fe-rich and Mn-rich regions in the structure of the solid solutions. Quantum-chemical calculations and crystal orbital Hamilton population analysis provide a clear explanation of the distinction in properties for this series of compounds and also reveal the importance of electronic factors in modifying the

  13. Influence of deformation on the structure and the mechanical properties of a high-entropy Fe25Cr20Ni20Co10Mn15Al10 alloy

    NASA Astrophysics Data System (ADS)

    Gorban', B. F.; Nazarenko, V. A.; Danilenko, N. I.; Karpets, M. V.; Krapivka, N. A.; Firstov, S. A.; Makarenko, E. S.

    2014-10-01

    The phase composition, the hardness, and the elasticity modulus of a high-entropy Fe25Cr20Ni20Co10Mn15Al10 alloy have been studied in the as-cast state, after rolling deformation, and after subsequent high-temperature annealing. The alloy consists of the following two phases: solid substitutional solutions with bcc and fcc crystal lattices; in the as-cast state and after annealing the bcc solid solution is ordered according to B2 type (CsCl). The mixture rule is applied for the calculation of the electron density, the atomic radius, and the melting point at grain boundaries and in the grain volume of the alloy after deformation and annealing. The obtained data demonstrate that the alloy is thermally stable.

  14. Band gap tuning in ferroelectric Bi4Ti3O12 by alloying with LaTMO3 (TM = Ti, V, Cr, Mn, Co, Ni, and Al)

    SciTech Connect

    Choi, Woo Seok; Lee, Ho Nyung

    2012-01-01

    We fabricated ferroelectric Bi{sub 4}Ti{sub 3}O{sub 12} (BiT) single crystalline thin films site-specifically substituted with LaTMO{sub 3} (TM = Al, Ti, V, Cr, Mn, Co, and Ni) on SrTiO{sub 3} substrates by pulsed laser epitaxy. When transition metals are incorporated into a certain site of BiT, some of BiT-LaTMO{sub 3} showed a substantially decreased band gap, coming from the additional optical transition between oxygen 2p and TM 3d states. Specifically, all alloys with Mott insulators revealed a possibility of band gap reduction. Among them, BiT-LaCoO{sub 3} showed the largest band gap reduction by {approx}1 eV, positioning itself as a promising material for highly efficient opto-electronic devices.

  15. Diffusion kinetics of Cr in spinel: Experimental studies and implications for 53Mn-53Cr cosmochronology

    NASA Astrophysics Data System (ADS)

    Posner, Esther S.; Ganguly, Jibamitra; Hervig, Richard

    2016-02-01

    The 53Mn-53Cr decay system, in which 53Mn decays to 53Cr (t1/2 = 3.7 Ma) has been widely used to construct 53Cr/52Cr vs. 55Mn/52Cr isochrons and thus determine relative ages of early solar system objects or events, assuming that the initial Cr isotopic ratio, (53Cr/52Cr)o, equals (53Mn/52Cr)o. With the primary objective of interpretation of these ages within a diffusion kinetic framework, we have determined the tracer diffusion coefficient of Cr in natural spinels, which are very close to the MgAl2O4 end-member composition, as a function of temperature and oxygen fugacity (f(O2)). It is found that the diffusion coefficient of Cr, D(Cr), in two stocks of spinels (referred to as cut-gems and gem-gravels) with very similar major element chemistry is consistently different, but the data in each stock yield well defined Arrhenius relations that show a difference of log D of 0.6-1.0, depending on temperature, with the D(Cr) in gem-gravel being higher than that in the cut-gem stock. The D(Cr) was found to have a positive dependence on f(O2) in the range of f(O2) of around ±2 log units relative to that of the wüstite-magnetite buffer. The difference in the D(Cr) between the two stocks and the observed D(Cr) vs. f(O2) relation has been explained in terms of a change of point defect concentration resulting from heterovalent substitution of trace elements and equilibration with the imposed f(O2) conditions, respectively. Assuming a homogeneous semi-infinite matrix, the closure temperature (Tc) of Cr diffusion in spinel has been calculated as a function of grain size, cooling rate, peak temperature (To) and f(O2). Also the dependence of D(Cr) and Tc(Cr) on the Cr# (i.e. Cr/(Cr + Al) ratio) has been accounted for using available D(Cr) vs. Cr# data in Suzuki et al. (2008). We argue, on the basis of crystal chemical considerations and available diffusion kinetic data for minerals, that the Tc for Mn should be much lower than that for Cr in spinel, olivine and orthopyroxene, and

  16. Microwave-assisted synthesis: A fast and efficient route to produce LaMO{sub 3} (M = Al, Cr, Mn, Fe, Co) perovskite materials

    SciTech Connect

    Prado-Gonjal, J.; Arevalo-Lopez, A.M.; Moran, E.

    2011-02-15

    Research highlights: {yields} Lanthanum perovskites can be prepared by microwave irradiation in a domestic set-up. {yields} Microwave-assisted synthesis yields well crystallized and pure materials, sometimes nanosized. {yields} Rietveld analysis has been performed to refine the structures. {yields} Magnetic and electric measurements are similar to those previously reported. {yields} Microwave-assisted synthesis is a fast and efficient method for the synthesis of lanthanum perovskites. -- Abstract: A series of lanthanum perovskites, LaMO{sub 3} (M = Al, Cr, Mn, Fe, Co), having important technological applications, have been successfully prepared by a very fast, inexpensive, reproducible, environment-friendly method: the microwave irradiation of the corresponding mixtures of nitrates. Worth to note, the microwave source is a domestic microwave oven. In some cases the reaction takes place in a single step, while sometimes further annealings are necessary. For doped materials the method has to be combined with others such as sol-gel. Usually, nanopowders are produced which yield high density pellets after sintering. Rietveld analysis, oxygen stoichiometry, microstructure and magnetic measurements are presented.

  17. Comparative Study of Absorption Spectra of V2+, Cr3+, and Mn4+ in α-Al2O3 Based on First-Principles Configuration--Interaction Calculations

    NASA Astrophysics Data System (ADS)

    Novita, Mega; Ogasawara, Kazuyoshi

    2012-10-01

    First-principles configuration--interaction (CI) calculations of the multiplet structures and the ground-state (GS) absorption spectra of isoelectronic 3d3 ions such as V2+, Cr3+, and Mn4+ in α-Al2O3 have been performed. The results of the molecular orbital (MO) calculations without lattice-relaxation effect indicated that the GSMOs are not appropriate for the calculation of the absorption spectra in the case of V2+ in α-Al2O3 (α-Al2O3:V2+) due to the strong mixing between the V 3d orbitals and the conduction band. Therefore we investigated the effect of orbital-relaxation by tentatively performing CI calculations using MOs obtained for several excited states and the CI calculation using the MOs in the intermediate t2g{}1.5eg{}1.5 configuration was found to give reasonable theoretical spectra. The theoretical peak energies and the relative peak intensities were improved further for α-Al2O3:V2+ and α-Al2O3:Cr3+ by consideration of energy corrections such as configuration-dependent correction (CDC) and correlation correction (CC). The comparison between the theoretical spectra and the experimental ones indicated that the theoretical spectra were significantly improved for α-Al2O3:V2+ and α-Al2O3:Cr3+ by consideration of the lattice-relaxation effect. As a result, the tendency of the variation of the peak energies among the isoelectronic 3d3 ions was clearly reproduced by the first-principles calculations. It was also found that none of the orbital-relaxation, the lattice-relaxation, CDC, and CC has significant effects on the absorption spectra of Mn4+ in α-Al2O3.

  18. Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain-boundary relaxation of Al-4.9Mg alloy

    NASA Astrophysics Data System (ADS)

    Mikhailovskaya, A. V.; Golovin, I. S.; Zaitseva, A. A.; Portnoi, V. K.; Dröttboom, P.; Cifre, J.

    2013-03-01

    Methods of microstructural analysis, measurements of hardness, and temperature and time dependences of internal friction (TDIF and TDIF(iso), respectively) have been used to study recrystallization in cold-rolled alloys and grain-boundary relaxation in annealed alloys. A complex analysis of the effect of additions of transition metals (Mn, Cr) on the magnitude of the activation energy of the background of the internal friction in deformed and annealed states and on the activation parameters of grain-boundary relaxation has been performed. Methods of amplitude dependences of internal friction (ADIF) have been used to determine the critical amplitude that corresponds to the beginning of microplastic deformation in the alloys at different temperatures.

  19. XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia.

    PubMed

    Fandeur, Dik; Juillot, Farid; Morin, Guillaume; Olivi, Luca; Cognigni, Andrea; Webb, Samuel M; Ambrosi, Jean-Paul; Fritsch, Emmanuel; Guyot, François; Brown, Gordon E

    2009-10-01

    Although several laboratory studies showed that Mn-oxides are capable of oxidizing Cr(II) to Cr(VI), very few have reported evidence for such a reaction in natural systems. This study presents new evidence for this redox reaction between Cr(III) and Mn-oxides in a lateritic regolith developed on ultramafic rocks in New Caledonia. The studied lateritic regolith presents several units with contrasting amounts of major (Fe, Al, Si, and Mg) and trace (Mn, Cr, Ni, Co) elements, which are related to varying mineralogical compositions. Bulk XANES analyses show the occurrence of Cr(VI) (up to 20 wt % of total chromium) in the unit of the regolith which is also enriched in Mn (up to 21.7 wt % MnO), whereas almost no Cr(VI) is detected elsewhere. X-ray powder diffraction indicates that the large amounts of Mn in this unit of the regolith are due to the occurrence of Mn-oxides (identified as a mixture of asbolane, lithiophorite and birnessite) and Mn K-edge XANES data indicate that Mn occurs mainly as Mn(IV) in this unit, although small amounts of Mn(III) could also be detected. These results strongly suggest a direct role of the Mn-oxides on the occurrence of Cr(VI) through a redox reaction between Cr(III) and Mn(IV) and/or Mn(III). Owing to the much larger toxicity and solubility of Cr(VI), such a co-occurrence of Cr and Mn-oxides in these soils could then represent an important risk for the environment. However, the significant amounts of Cr(VI) released after reacting the samples from the studied sequence with a 0.1 M (NH)4H2PO4 solution, designed to remove tightly sorbed chromate species, suggest that Cr(VI) mainly occurs as sorption complexes. This hypothesis is reinforced by spatially resolved XANES analyses, which show that Cr(VI) is associated with both Mn- and Fe-oxides, and especially at the boundary between these two mineral species. Such a distribution of Cr(VI) suggests a possible readsorption of Cr(VI) onto surrounding Fe-oxyhydroxides (mainly goethite) after

  20. Eutectic equilibria in the quaternary system Fe-Cr-Mn-C

    NASA Technical Reports Server (NTRS)

    Nowotny, H.; Wayne, S.; Schuster, J. C.

    1982-01-01

    The constitution of the quaternary system, Fe-Cr-Mn-C and to a lesser extent of the quinary system, Fe-Cr-Mn-Al-C were examined for in situ composite alloy candidates. Multivariant eutectic compositions were determined from phase equilibria studies wherein M7C3 carbides (approximately 30% by volume) formed from the melt within gamma iron. An extended field of the hexagonal carbide, (Cr, Fe, Mn)7 C3, was found without undergoing transformation to the orthorhombic structure. Increasing stability for this carbide was found for higher ratios of Cr/Fe(+) Cr + Mn. Aluminum additions promoted a ferritic matrix while manganese favored the desired gamma austenitic matrix. In coexistence with the matrix phase, chromium enters preferentially the carbide phase while manganese distributes equally between the gamma matrix and the M7C3 carbide. The composition and lattice parameters of the carbide and matrix phases were determined to establish their respective stabilities.

  1. Luminescence spectroscopy of Cr3+ and Mn2+ in spodumene crystals

    NASA Astrophysics Data System (ADS)

    Walker, G.; El Jaer, A.; Sherlock, R.; Glynn, Thomas J.; Czaja, M.; Mazurak, Zbigniew

    1997-11-01

    Luminescence emission and excitation spectra of a number of natural spodumene crystals have been measured at temperatures down to 12K. Both Cr3+ and Mn2+ centers were identified: Mn2+ is shown to be mainly in Li-sites rather than Al-sites and gives rise to abroad emission centered at 600 nm. In most spodumenes Cr3+ R-line emission with phonon sideband is observed at temperatures below 100K. In green hiddenite crystals Cr3+ emission is dominant at room temperature where the R-lines are superimposed on a broad-band emission. Calculation of the crystal-field splitting of the Cr3+ energy levels has been carried out assuming a C2v pseudo-symmetry for the Al-sites. In the more Mn- rich crystals multiple R1 lines are seen at temperatures below about 40K which are possibly associated with adjacent point defects due to charge compensation effects.

  2. Bulk modulus and specific heat of B-site doped (La0.3Pr0.7)0.65Ca0.35Mn1-xBxO3 (B=Fe, Cr, Ru, Al, Ga)

    NASA Astrophysics Data System (ADS)

    Srivastava, Archana; Thakur, Rasna; Gaur, N. K.

    2014-04-01

    Specific heat (Cp) thermal expansion (α) and Bulk modulus (BT) of lightly doped Rare Earth manganites (La0.3Pr0.7)0.65Ca0.35Mn1-xBxO3 (B3+ = Fe3+,Cr3+,Ga3+,Al3+,Ru4+); (0.3Mn0.97Fe0.03O3 as a function of temperature (10K≤T≤ 200K) is found to be in agreement with the published data. The trend of variation of Debye temperature with B-site cationic radius is predicted probably for the first time for the B-site doped rare earth manganites.

  3. Development of Fe-Mn-Al-X-C alloys

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1982-01-01

    Development of a low cost Cr-free, iron-base alloy for aerospace applications involves both element substitution and enhancement of microstructural strengthening. When Mn is substituted for Ni and Al or Si is substituted for Cr, large changes occur in the mechanical and thermal stability of austenite in FeMnAlC alloys. The in situ strength of MC or M2C (M = Ti, V, Hf, Ta, or Mo) in FeMnAlC alloys was determined. The high temperature tensile strength depends more on the distribution of carbides than the carbide composition. Precipitation of a high volume percent-ordered phase was achieved in Fe2OMnlONi6Al6Ti (lC) alloys. As case, these alloys have a homogeneous austenitic structure. After solutioning at 1100 C for 5 hr followed by aging at 600 C for 16 hr, gamma prime or a perovskite carbide is precipitated. Overaging occurs at 900 C where eta is precipitated.

  4. Electronic structure and magnetic properties of RT4Al8 (R = Sc, Y, La, Lu; T = Fe, Mn, Cr) compounds. Hydrostatic pressure effects

    NASA Astrophysics Data System (ADS)

    Zhuravleva, I. P.; Grechnev, G. E.; Panfilov, A. S.; Lyogenkaya, A. A.; Kotlyar, O. V.; Fedorchenko, A. V.; Feher, A.

    2016-06-01

    We present results of theoretical and experimental studies of the electronic structure and magnetic properties of RFe4Al8, RMn4Al8, and RCr4Al8 compounds with nonmagnetic elements R = Sc, Y, La, and Lu. The electron spectrum and field induced magnetic moment, as well as their dependences on the unit cell volume, are calculated for the paramagnetic phase of the RT4Al8 systems. The calculations are supplemented by measurements of the magnetic susceptibility of representative RT4Al8 compounds as a function of temperature and hydrostatic pressure.

  5. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  6. New series of triple molybdates AgA3R(MoO4)5 (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) with framework structures and mobile silver ion sublattices

    NASA Astrophysics Data System (ADS)

    Kotova, Irina Yu.; Solodovnikov, Sergey F.; Solodovnikova, Zoya A.; Belov, Dmitry A.; Stefanovich, Sergey Yu.; Savina, Aleksandra A.; Khaikina, Elena G.

    2016-06-01

    Triple molybdates AgA3R(MoO4)5 (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg3In(MoO4)5 type were synthesized and single crystals of AgMg3R(MoO4)5 (R=Cr, Fe) were grown. In their structures, the MoO4 tetrahedra, pairs and trimers of edge-shared (Mg, R)O6 octahedra are connected by common vertices to form a 3D framework. Large framework cavities involve Ag+ cations disordered on three nearby positions with CN=3+1 or 4+1. Alternating (Mg, R)O6 octahedra and MoO4 tetrahedra in the framework form quadrangular windows penetrable for Ag+ at elevated temperatures. Above 653-673 K, the newly obtained molybdates demonstrate abrupt reduction of the activation energy to 0.4-0.6 eV. At 773 K, AgMg3Al(MoO4)5 shows electric conductivity 2.5·10-2 S/cm and Ea=0.39 eV compatible with characteristics of the best ionic conductors of the NASICON type.

  7. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-09-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  8. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-01-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  9. Uptake of Al, As, Cr, Cd, Cu, Fe, Mn, Ni, Pb, Sr, and Zn in native wheatgrasses, wildryes, and bluegrass on three metal-contaminated soils from Montana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the biggest challenges to successfully phytoremediate contaminated mineland soils is the identification of native plants that possess a broad adaptation to ecological sites and either exclude or uptake heavy metals of interest. This study evaluated forage concentrations of aluminum (Al), ars...

  10. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect

    Pang, Mingjun; Zhan, Yongzhong; Du, Yong

    2013-02-15

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  11. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys

    DOE PAGES

    Wang, Zhangwei; Baker, Ian; Cai, Zhonghou; Chen, Si; Poplawsky, Jonathan D.; Guo, Wei

    2016-09-01

    A systematic study of the effects of up to 1.1 at. % carbon on the mechanical properties and evolution of the dislocation substructure in a series of a high entropy alloys (HEA) based on Fe40.4Ni11.3Mn34.8Al7.5Cr6 is presented. Transmission electron microscopy (TEM), synchrotron X-ray diffraction (XRD) and atom probe tomography (APT) were used to show that all the alloys are single-phase f.c.c. random solid solutions. The lattice constant, determined from synchrotron XRD measurements, increases linearly with increasing carbon concentration, which leads to a linear relationship between the yield strength and the carbon concentration. The dislocation substructures, as determined by a TEM,more » show a transition from wavy slip to planar slip and, at higher strains, and from cell-forming structure (dislocations cells, cell blocks and dense dislocation walls) to non-cell forming structure (Taylor lattice, microbands and domain boundaries) with the addition of carbon, features related to the increase in lattice friction stress. The stacking fault energy (measured via weak-beam imaging of the separation of dislocation partials) decreases with increasing carbon content, which also contributes to the transition from wavy slip to planar slip. The formation of non-cell forming structure induced by carbon leads to a high degree of strain hardening and a substantial increase in the ultimate tensile strength. In conclusion, the consequent postponement of necking due to the high strain hardening, along with the plasticity accommodation arising from the formation of microbands and domain boundaries, result in an increase of ductility due to the carbon addition.« less

  12. 53Mn-53Cr dating of aqueously formed carbonates in the CM2 lithology of the Sutter's Mill carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Jilly, Christine E.; Huss, Gary R.; Krot, Alexander N.; Nagashima, Kazuhide; Yin, Qing-Zhu; Sugiura, Naoji

    2014-11-01

    Radiometric dating of secondary minerals can be used to constrain the timing of aqueous alteration on meteoritic parent bodies. Dolomite is a well-documented secondary mineral in CM chondrites, and is thought to have formed by precipitation from an aqueous fluid on the CM parent body within several million years of accretion. The petrographic context of crosscutting dolomite veins indicates that aqueous alteration occurred in situ, rather than in the nebular setting. Here, we present 53Mn-53Cr systematics for dolomite grains in Sutter's Mill section SM51-1. The Mn-Cr isotope data show well-resolved excesses of 53Cr correlated with 55Mn/52Cr ratio, which we interpret as evidence for the in situ decay of radioactive 53Mn. After correcting for the relative sensitivities of Mn and Cr using a synthetic Mn- and Cr-bearing calcite standard, the data yield an isochron with slope corresponding to an initial 53Mn/55Mn ratio of 3.42 ± 0.86 × 10-6. The reported error includes systematic uncertainty from the relative sensitivity factor. When calculated relative to the U-corrected Pb-Pb absolute age of the D'Orbigny angrite, Sutter's Mill dolomites give a formation age between 4564.8 and 4562.2 Ma (2.4-5.0 Myr after the birth of the solar system). This age is contemporaneous with previously reported ages for secondary carbonates in CM and CI chondrites. Consistent carbonate precipitation ages between the carbonaceous chondrite groups suggest that aqueous alteration was a common process during the early stages of parent body formation, probably occurring via heating from internal 26Al decay. The high-precision isochron for Sutter's Mill dolomite indicates that late-stage processing did not reach temperatures that were high enough to further disturb the Mn-Cr isochron.

  13. Cr(III) Oxidation Coupled With Microbially-Mediated Mn(II) Oxidation

    SciTech Connect

    Youxian Wu; Baolin Deng

    2006-04-05

    Cr(VI) can be reduced to less toxic and mobile Cr(III) species through abiotic and biological processes. Reductive immobilization of Cr(VI) has been widely explored as a cost effective technology for site remediation; Mn oxides are regarded as primary oxidants for Cr(III) oxidation in the environment; and Generation of Mn oxides from Mn(II) in natural environments is believed to be biologically catalyzed.

  14. Reaction diffusion in the NiCrAl and CoCrAl systems

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1978-01-01

    The paper assesses the effect of overlay coating and substrate composition on the kinetics of coating depletion by interdiffusion. This is accomplished by examining the constitution, kinetics and activation energies for a series of diffusion couples primarily of the NiCrAl/Ni-10Cr or CoCrAl/Ni-10Cr type annealed at temperatures in the range 1000-1205 C for times up to 500 hr. A general procedure is developed for analyzing diffusion in multicomponent multiphase systems. It is shown that by introducing the concept of beta-source strength, which can be determined from appropriate phase diagrams, the Wagner solution for consumption of a second phase in a semiinfinite couple is successfully applied to the analysis of MCrAl couples. Thus, correlation of beta-recession rate constants with couple composition, total and diffusional activation energies, and interdiffusion coefficients are determined.

  15. Synthesis and characterization of Mn intercalated Mg-Al hydrotalcite.

    PubMed

    Yang, Chengxue; Liao, Libing; Lv, Guocheng; Wu, Limei; Mei, Lefu; Li, Zhaohui

    2016-10-01

    Mn intercalated hydrotalcite was prepared using a reconstruction method. And Mn intercalation was confirmed by XRD, FTIR, and thermal analyses. The different valences of Mn were present as determined by XPS. Calcination slightly promoted the isomorphic replacement of Mn(2+) and Mn(3+) for Mg(2+) and Al(3+), especially the replacement of Mn(2+) for Mg(2+) and Al(3+), and to some extent, reduced Mn intercalation. Ultrasonic treatment significantly increased Mn intercalation in permanganate form (Mn(7+)), and promoted the replacement of Mn(2+) for Mg(2+) and Al(3+). XRF analysis showed that ultrasonic treatment decreased the unbalanced layer charge of Mn intercalated hydrotalcite, while prolonged calcination increased it. These results may provide guidance on the preparation and application of Mn intercalated hydrotalcite. Extended calcination time and ultrasonic vibration increased the interlayer spacing of hydrotalcite, as a result of reduction in layer charge. As the layer charge was not completely balanced after Mn intercalation, a certain amount of CO3(2-) was re-adsorbed into the interlayer space. Mn-hydrotalcites with different layer charges, different contents of Mn with varying valences are expected to have different performances in the process of adsorption, degradation, and catalysis. PMID:27380016

  16. Synthesis and characterization of Mn intercalated Mg-Al hydrotalcite.

    PubMed

    Yang, Chengxue; Liao, Libing; Lv, Guocheng; Wu, Limei; Mei, Lefu; Li, Zhaohui

    2016-10-01

    Mn intercalated hydrotalcite was prepared using a reconstruction method. And Mn intercalation was confirmed by XRD, FTIR, and thermal analyses. The different valences of Mn were present as determined by XPS. Calcination slightly promoted the isomorphic replacement of Mn(2+) and Mn(3+) for Mg(2+) and Al(3+), especially the replacement of Mn(2+) for Mg(2+) and Al(3+), and to some extent, reduced Mn intercalation. Ultrasonic treatment significantly increased Mn intercalation in permanganate form (Mn(7+)), and promoted the replacement of Mn(2+) for Mg(2+) and Al(3+). XRF analysis showed that ultrasonic treatment decreased the unbalanced layer charge of Mn intercalated hydrotalcite, while prolonged calcination increased it. These results may provide guidance on the preparation and application of Mn intercalated hydrotalcite. Extended calcination time and ultrasonic vibration increased the interlayer spacing of hydrotalcite, as a result of reduction in layer charge. As the layer charge was not completely balanced after Mn intercalation, a certain amount of CO3(2-) was re-adsorbed into the interlayer space. Mn-hydrotalcites with different layer charges, different contents of Mn with varying valences are expected to have different performances in the process of adsorption, degradation, and catalysis.

  17. Mn-Cr isotopic systematics of Chainpur chondrules and bulk ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Nyquist, L.; Lindstrom, D.; Wiesmann, H.; Bansal, B.; Shih, C.-Y.; Mittlefehldt, D.; Martinez, R.; Wentworth, S.

    1994-01-01

    We report on ongoing study of the Mn-Cr systematics of individual Chainpur (LL3.4) chondrules and compare the results to those for bulk ordinary chondrites. Twenty-eight chondrules were surveyed for abundances of Mn, Cr, Na, Fe, Sc, Hf, Ir, and Zn by INAA. Twelve were chosen for SEM/EDX and high-precision Cr-isotopic studies on the basis of LL-chondrite-normalized Mn(LL), Sc(LL), (Mn/Fe)(LL), and (Sc/Fe)(LL) as well as their Mn/Cr ratios. Classification into textural types follows from SEM/EDX examination of interior surfaces.

  18. Cyclic and isothermal oxidation behavior at 1100 and 1200 C of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.

    1973-01-01

    Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.

  19. Cr(OH)₃(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation

    SciTech Connect

    Namgung, Seonyi; Kwon, M.; Qafoku, Nikolla; Lee, Gie Hyeon

    2014-09-16

    This study examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)₃(s) (1.0 g/L) at pH 7 – 9 under oxic or anoxic conditions. In the absence of Cr(OH)₃(s), homogeneous Mn(II) oxidation by dissolved O₂ was not observed at pH ≤ 8.0 for 50 d. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 d and precipitated as hausmannite. When Cr(OH)₃(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Our results suggest that Cr(OH)₃(s) was readily oxidized by a newly formed Mn oxide as a result of Mn(II) oxidation catalyzed on Cr(OH)₃(s) surface. XANES analysis of the residual solids after the reaction between 1.0 g/L Cr(OH)₃(s) and 204 μM Mn(II) at pH 9.0 for 22 d revealed that the product of surface catalyzed Mn(II) oxidation resembled birnessite. The rate and extent of Cr(OH)₃(s) oxidation was likely controlled by those of surface catalyzed Mn(II) oxidation as the production of Cr(VI) increased with increasing pH and initial Mn(II) concentrations. This study evokes the potential environmental hazard of sparingly soluble Cr(OH)₃(s) that can be a source of Cr(VI) in the presence of dissolved Mn(II).

  20. Cr Isotopes in Allende Ca-Al-rich Inclusions

    NASA Technical Reports Server (NTRS)

    Bogdanovski, O.; Papanastassiou, D. A.; Wasserburg, G. J.

    2002-01-01

    We have determined Cr isotope compositions in minerals from Allende CAI in order to address the initial 53Mn (half-life 3.7 Ma) abundance in the solar system. Additional information is contained in the original extended abstract.

  1. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  2. Laves phase in Ti-42Al-10Mn alloy

    SciTech Connect

    Chen, Z.; Jones, I.P.; Small, C.J.

    1996-07-01

    Mn is one of the most effective alloying additions to {gamma}-TiAl titanium aluminide for improving room temperature ductility. The purpose of this investigation as a whole is to study phase relationships in the Mn addition alloys over a wide range of temperatures and to determine the solubilities of Mn in the {gamma} and {alpha}{sub 2} phases in order to explore the potential of Mn additions to {gamma}-TiAl. The aim of this specific paper, however, is to confirm the identify of the ternary Ti{sub 3}Al{sub 3}Mn{sub 2} phase in the Ti-Al-Mn system and to show how to remove it.

  3. Variation in the structural and magnetic properties of heterovalent Mn2+-Si4+ substituted MnCrFeO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kadam, R. H.; Desai, Kirti; Kadam, Supriya R.; Shirsath, Sagar E.

    2013-12-01

    We have synthesized heterovalent Mn2+-Si4+ substituted MnCrFeO nanoparticles with a nominal composition Mn1+xSixCrFe1-2xO4 (x = 0.0-0.3) via sol-gel auto-combustion method. X-ray diffractometer, transmission electron microscopy, magnetization measurements were used to study the effects of Mn2+-Si4+ heterovalent ions on the structural and magnetic properties of MnCrFeO. As a result, it was found that the Mn2+-Si4+ ions affect the crystalline structures and magnetic properties of MnCrFeO. X-ray diffraction pattern showed that the samples have the single phase cubic spinel structure of which the lattice constant slightly increased upon Mn2+-Si4+ substitution. The mean crystallite size of the samples was in the range of 21-27 nm as deduced from the XRD line broadening. Cation distribution was estimated using XRD data and it shows that Mn2+ and Si4+ ions prefer tetrahedral A-site. Magnetic measurement shows that saturation magnetization and magneton number decreased with Mn2+-Si4+ substitution with the formation of a collinear spin arrangement.

  4. Dipole defects in Al2O3:Mg,Cr.

    PubMed

    Blak, A R; Gobbi, V; Ayres, F

    2002-01-01

    In this work, dipole defects are investigated applying the thermally stimulated depolarisation currents (TSDC) technique. The TSDC spectra of Al2O3 doped with Mg and Cr show two bands centred at 230 K and 250 K, respectively. The maximum intensity of the bands increases linearly with the polarisation field, a typical behaviour of defects with dipole origin. An increase of the band at 250 K with gamma irradiation has been observed and a thermal decrease of the bands for heat treatments between 1000 K and 1400 K. Above this temperature the bands are partially recovered. Impurity neutron activation analysis shows that magnesium. chromium and iron content varies from 15 to 60 ppm. Optical absorption (AO) measurements show a broad band centred in 2.6 eV (21000 cm(-1)) associated with trapped holes localised on an O- ion adjacent to a cation site which is deficient in positive charge. It has been assumed that a substitutional Mg2+ ion occupies the cation site near a trapped hole on one of the six oxygen ions surrounding the magnesium impurity giving rise to the dipole responsible for the observed TSDC bands. Calculations carried out through defect simulation methods confirm that the probability of Al3+ being replaced by Mg2+ is higher than Mn2+, Co2+, Fe2+ and Cr2+. PMID:12382829

  5. Microstructure and mechanical behavior of Fe30Ni 20Mn35Al15 and modified Fe30Ni 20Mn35Al15 alloys

    NASA Astrophysics Data System (ADS)

    Meng, Fanling

    A novel alloy with nominal composition Fe30Ni 20Mn35Al15 has been found to show good room-temperature strength and significant ductility. The current project is to study the wear properties of as-cast Fe30Ni20Mn35Al 15 and discuss the possibility of further improving the mechanical properties of this alloy. The dry sliding wear of as-cast Fe30Ni20Mn 35Al15 was studied in in four different environments, i.e. air, dry oxygen, dry argon and a 4% hydrogen/nitrogen mixture. Two-body and three-body abrasive wear mechanism was found for tests in oxygen-containing environments, while plastic flow mechanisms dominated the wear behavior for tests in argon. Hydrogen embrittlement led to 1000% increase of wear loss by causing more rapid crack nucleation of the asperities. The effects of different additions of chromium (≤ 8 at. %) on both microstructure and fracture behavior of Fe30Ni20Mn 35Al15 were investigated. All alloys consisted of (Ni, Al)-rich B2 and (Fe, Mn)-rich f.c.c. phases with most of the Cr residing in the f.c.c. phase. The addition of 6 at. % Cr not only increased the room temperature ductility, but also completely suppressed the environmental embrittlement observed in the Cr-free alloy at low strain rates. The effects of varying the Al concentration on the microstructures and tensile properties of six two-phase FeNiMnAl alloys with a composition close to Fe30Ni20Mn35Al15 were studied. The increase in f.c.c. volume fraction and f.c.c. lamellar width led to an increase in ductility and a decrease in yield strength. The correlation between the yield stress and f.c.c. lamellar spacing lambda obeyed a Hall-Petch-type relationship, i.e. sigmay=252+0.00027lambda-1, where the units for sigmay and lambda are MPa and meter, respectively. FeNiMnAl alloy with B2 and f.c.c. phases aligned along was reported to show high strength at room temperature. The mechanical properties of Fe 28Ni18Mn33Al21, consisting of (Ni, Al)-enriched B2 and (Fe, Mn)-enriched f.c.c. phases with

  6. Creep and Toughness of Cryomilled NiAl Containing Cr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Aikin, Beverly; Salem, Jon

    2000-01-01

    NiAl-AlN + Cr composites were produced by blending cryomilled NiAl powder with approx. 10 vol % Cr flakes. In comparison to the as-consolidated matrices, hot isostatically pressed Cr-modified materials did not demonstrate any significant improvement in toughness. Hot extruded NiAl-AlN+10.5Cr, however, possessed a toughness twice that determine for the base NiAl-AlN alloy. Measurement of the 1200 to 1400 K plastic flow properties revealed that the strength of the composites was completely controlled by the properties of the NiAl-AlN matrices. This behavior could be successfully modeled by the Rule-of-Mixtures, where load is shed from the weak Cr to the strong matrix.

  7. τ-MnAl with high coercivity and saturation magnetization

    SciTech Connect

    Wei, J. Z.; Song, Z. G.; Yang, Y. B.; Liu, S. Q.; Du, H. L.; Han, J. Z.; Zhou, D.; Wang, C. S.; Yang, Y. C.; Franz, A.; Többens, D.; Yang, J. B.

    2014-12-15

    In this paper, high purity τ-Mn{sub 54}Al{sub 46} and Mn{sub 54−x}Al{sub 46}C{sub x}alloys were successfully prepared using conventional arc-melting, melt-spinning, and heat treatment process. The magnetic and the structural properties were examined using x-ray diffraction (XRD), powder neutron diffraction and magnetic measurements. A room temperature saturation magnetization of 650.5 kAm{sup -1}, coercivity of 0.5 T, and a maximum energy product of (BH){sub max} = 24.7 kJm{sup -3} were achieved for the pure Mn{sub 54}Al{sub 46} powders without carbon doping. The carbon substituted Mn{sub 54−x}Al{sub 46}C{sub x}, however, reveals a lower Curie temperature but similar saturation magnetization as compared to the carbon-free sample. The electronic structure of MnAl shows that the Mn atom possesses a magnetic moment of 2.454 μ{sub B} which results from strong hybridization between Mn-Al and Mn-Mn. We also investigated the volume and c/a ratio dependence of the magnetic moments of Mn and Al. The results indicate that an increase in the intra-atomic exchange splitting due to the cell volume expansion, leads to a large magnetic moment for the Mn atom. The Mn magnetic moment can reach a value of 2.9 μ{sub B} at a volume expansion rate of ΔV/V ≈ 20%.

  8. Cr(OH)3(s) oxidation induced by surface catalyzed Mn(II) oxidation.

    PubMed

    Namgung, Seonyi; Kwon, Man Jae; Qafoku, Nikolla P; Lee, Giehyeon

    2014-09-16

    We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)3(s) (1.0 g/L) at pH 7.0-9.0 under oxic or anoxic conditions. Homogeneous Mn(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 days and precipitated as hausmannite. When Cr(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr(VI) was attributed to Cr(OH)3(s) oxidation by a newly formed Mn oxide via Mn(II) oxidation catalyzed on Cr(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn(II) oxidation produced a mixed valence Mn(III/IV) solid phase. Our results suggest that toxic Cr(VI) can be naturally produced via Cr(OH)3(s) oxidation coupled with the oxidation of dissolved Mn(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr(OH)3(s), which has been considered the most common and a stable remediation product of Cr(VI) contamination.

  9. Preparation, structural and magnetic characterization of DyCrMnO 5

    NASA Astrophysics Data System (ADS)

    Martínez-Lope, M. J.; Retuerto, M.; García-Hernández, M.; Alonso, J. A.

    2009-03-01

    The title compound has been first synthesized by a citrate technique followed by thermal treatments under moderate oxygen pressure conditions, and characterized by X-ray and neutron powder diffraction (NPD) and magnetization measurements. The crystal structure of DyCrMnO 5 has been refined from NPD data in the space group Pbam; a=7.2617(6) Å, b=8.5161(6) Å, and c=5.7126(5) Å at 295 K. This oxide is isostructural with RMn 2O 5 oxides ( R=rare earths) and it contains infinite chains of (Cr, Mn) 4+O 6 octahedra-sharing edges, linked together by (Mn, Cr) 3+O 5 pyramids and DyO 8 units. The high degree of antisite disordering exhibited by DyCrMnO 5 is noteworthy. The octahedral positions are occupied by roughly 50% of Mn and Cr cations, and the pyramidal groups contain two thirds of Mn and one third of Cr cations. We assume that Mn and Cr cations at the octahedral positions exhibit a tetravalent oxidation state, whereas the metals at the pyramidal positions are trivalent, in order to preserve the electroneutrality of this oxide. The susceptibility vs temperature curve of DyCrMnO 5 does not suggest the establishment of a long-range magnetic structure even at low temperatures; the NPD technique does not provide any signal of magnetic ordering, since the reflections do not show any magnetic contribution.

  10. Mn-Cr dating of Fe- and Ca-rich olivine from 'quenched' and 'plutonic' angrite meteorites using Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKibbin, Seann J.; Ireland, Trevor R.; Amelin, Yuri; Holden, Peter

    2015-05-01

    Angrite meteorites are suitable for Mn-Cr relative dating (53Mn decays to 53Cr with a half life of 3.7 Myr) using Secondary Ion Mass Spectrometry (SIMS) because they contain olivine and kirschsteinite with very high 55Mn/52Cr ratios arising from very low Cr concentrations. Discrepant Mn-Cr and U-Pb time intervals between the extrusive or 'quenched' angrite D'Orbigny and some slowly cooled or 'plutonic' angrites suggests that some have been affected by secondary disturbances, but this seems to have occurred in quenched rather than in slow-cooled plutonic angrites, where such disturbance or delay of isotopic closure might be expected. Using SIMS, we investigate the Mn-Cr systematics of quenched angrites to higher precision than previously achieved by this method and extend our investigation to non-quenched (plutonic or sub-volcanic) angrites. High values of 3.54 (±0.18) × 10-6 and 3.40 (±0.19) × 10-6 (2-sigma) are found for the initial 53Mn/55Mn of the quenched angrites D'Orbigny and Sahara 99555, which are preserved by Cr-poor olivine and kirschsteinite. The previously reported initial 53Mn/55Mn value of D'Orbigny obtained from bulk-rock and mineral separates is slightly lower and was probably controlled by Cr-rich olivine. Results can be interpreted in terms of the diffusivity of Cr in this mineral. Very low Cr concentrations in Ca-rich olivine and kirschsteinite are probably charge balanced by Al; this substitutes for Si and likely diffuses at a very slow rate because Si is the slowest-diffusing cation in olivine. Diffusion in Cr-rich Mg-Fe olivine is probably controlled by cation vacancies because of deficiency in charge-balancing Al and is therefore more prone to disturbance. The higher initial 53Mn/55Mn found by SIMS for extrusive angrites is more likely to reflect closure of Cr in kirschsteinite at the time of crystallisation, simultaneous with closure of U-Pb and Hf-W isotope systematics for these meteorites obtained from pyroxenes. For the younger

  11. Magnetic coupling in ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers

    NASA Astrophysics Data System (ADS)

    Wang, M.; Wadley, P.; Campion, R. P.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Charlton, T. R.; Kinane, C. J.; Langridge, S.

    2015-08-01

    We report on a study of ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers using magnetometry and polarized neutron reflectivity (PNR). From depth-resolved characterization of the magnetic structure obtained by PNR, we concluded that the (Ga,Mn)As and (Al,Ga,Mn)As layers have in-plane and perpendicular-to-plane magnetic easy axes, respectively, with weak interlayer coupling. Therefore, the layer magnetizations align perpendicular to each other under low magnetic fields and parallel at high fields.

  12. Magnetic coupling in ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers

    SciTech Connect

    Wang, M.; Wadley, P.; Campion, R. P.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Charlton, T. R.; Kinane, C. J.; Langridge, S.

    2015-08-07

    We report on a study of ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers using magnetometry and polarized neutron reflectivity (PNR). From depth-resolved characterization of the magnetic structure obtained by PNR, we concluded that the (Ga,Mn)As and (Al,Ga,Mn)As layers have in-plane and perpendicular-to-plane magnetic easy axes, respectively, with weak interlayer coupling. Therefore, the layer magnetizations align perpendicular to each other under low magnetic fields and parallel at high fields.

  13. Temperature-Induced Magnetization Reversal in the Mn^{3+}-Doped SmCrO3

    NASA Astrophysics Data System (ADS)

    Wu, Yuying; Xu, Jian; Xia, Zhengcai

    2016-04-01

    The temperature dependence of dc magnetization is investigated for the rare earth chromites SmCrO3 and the doped compound SmCr_{0.9}Mn_{0.1}O3. Different from the magnetization behavior of SmCrO3, temperature-induced magnetization reversals are observed in the Mn^{3+}-doped compound. Moreover, low-temperature isothermal magnetization measurement indicates the magnetic ground state of SmCr_{0.9}Mn_{0.1}O3 to be antiferromagnetic with a spin canting. The field-cooling magnetic hysteresis loop reveals that an exchange bias (EB) phenomenon is present in the sample. The reversal of magnetization and the corresponding EB field is discussed on the basis of the competitive interaction between the antiferromagnetically coupled Cr-rich clusters and Cr-Mn ordered clusters.

  14. Cr-Al Diffusion in Chromite Spinel at High Pressure

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Yasuda, A.; Ozawa, K.

    2005-12-01

    Compositional zoning in chromite spinel gives us important information to constrain thermal and deformation history of ultramafic-mafic rocks. For the quantitative estimation, diffusivity of elements in spinel is a critical parameter. Although the Mg-Fe2+ interdiffusion coefficient in MgAl2O4 spinel has experimentally studied by Freer & O'Reilly (1980) and Liemann & Ganguly (2002), Cr-Al interdiffusion coefficient has not been determined yet. In this study, we have experimentally determined Cr-Al interdiffusion coefficient in chromite spinel at temperatures ranging 1400-1700 °C and pressures ranging 3-7 GPa, by using diffusion couple of natural single crystals of spinel and chromite. Experiments were carried out with a multi-anvil type (MA-8 type) high-pressure apparatus at the Earthquake Research Institute, University of Tokyo. After experiments, the samples were cut perpendicular to the contact plane and analyzed with EPMA and EBSD. The elemental mapping showed that Cr, Al, Fe3+, Fe2+, and Mg diffused perpendicular to the contact plane. The Cr-Al diffusion profiles are complementary with each other and asymmetric with steeper profile in the spinel side suggesting a compositional dependence of Cr-Al diffusion in spinel. The Cr-Al interdiffusion coefficient was estimated by the Boltzmann-Matano method. The coefficient decreases with Cr# (=Cr/(Cr+Al)) of spinel, which varies more than one order of magnitude as the Cr# changes from 0.1 to 0.85 at 3 GPa and 1600 °C. It is concluded that the self-diffusion coefficient of Al is more than one order of magnitude larger than that of Cr. The Cr-Al interdiffusion coefficient is expressed by D=D0exp(-Q/RT), where D0=2.8×10-2 m2/s and Q=498 kJ/mol at Cr#=0.2. This relation is applicable up to Cr#=0.5. Extrapolation of the self-diffusion coefficient of Cr to the lower temperature shows that Cr is the slowest diffusion species in chromite spinel including oxygen. This extremely slow Cr self-diffusion is consistent with the Cr-Al

  15. Mn-Cr systematics in primitive meteorites: Insights from mineral separation and partial dissolution

    NASA Astrophysics Data System (ADS)

    Göpel, Christa; Birck, Jean-Louis; Galy, Albert; Barrat, Jean-Alix; Zanda, Brigitte

    2015-05-01

    Cr isotopic compositions have been measured on carbonaceous chondrites (CC): Tafassasset, Paris, Niger I, NWA 5958, NWA 8157 and Jbilet Winselwan. In bulk samples, the 54Cr/52Cr ratios (expressed as ε54Cr) range from 0.93 to 1.58 ε units. These values are in agreement with values characteristic for distinct petrologic types. Despite this 54Cr heterogeneity, the variability in the 53Cr/52Cr ratios (expressed as ε53Cr) of 0.2 ε units and the Mn/Cr ratios is consistent with the previous finding of an isochron in the Mn-Cr evolution diagram. The Mn/Cr ratio in CC corresponds to variable abundances of high-T condensate formed and separated at the beginning of the solar system, thus the canonical 53Mn/55Mn ratio can be defined. Based on a consistent chronology for U-Pb and Mn-Cr between the earliest objects formed in the solar nebula and the D'Orbigny angrite we define a canonical 53Mn/55Mn ratio and ε53Cri of 6.8 × 10-6 and -0.177, respectively. The internal Mn/Cr systematics in Tafassasset and Paris were studied by two approaches: leaching technique and mineral separation. Despite variable ε54Cr values (up to >30 ε) linear co-variations were found between ε53Cr and Mn/Cr ratio. The mineral separates as well as the leachates of Tafassasset fall on a common isochron indicating that (1) cooling of the Tafassasset's parent body occurred at 4563.5 ± 0.25 Ma, and that (2) 54Cr is decoupled from the other isotopes even though temperatures >900 °C have been reached during metamorphism. In the case of Paris, the leachates form an alignment with a 53Mn/55Mn ratio higher than the canonical value. This alignment is not an isochron but rather a mixing line. Based on leachates from various CM and CI, we propose the occurrence of three distinct Cr reservoirs in meteoritic material: PURE54, HIGH53 and LOW53 characterized by a ε53Cr and ε54Cr of 0 and 25,000, -2.17 and 8, and 0.5 and -151, respectively. PURE54 has already been described and is carried by highly refractory

  16. Preparation of Al-Cr-Fe Coatings by Heat Treatment of Electrodeposited Cr/Al Composite Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Chen, Chang'an; Zhang, Guikai; Rao, Yongchu; Ling, Guoping

    Al-Cr-Fe coatings have been widely used in the surface engineering field of materials, due to their excellent corrosion resistance to water vapor and fused salt deposits. In this study, a new two-step approach was developed to prepare Al-Cr-Fe coatings on surfaces of SUS430 stainless steels. First, the Cr/Al composite coatings were prepared by electrodepositing Cr from aqueous solution then electrodepositing Al from AlCl3-1-ethyl-3-methyl-imidazolium chloride (AlCl3-EMIC) ionic liquid on SUS430 stainless steel substrate. In the second, heat treatment of the Cr/Al composite coatings was carried out to acquire Al-Cr-Fe coatings. Effects of the thickness of Cr/Al composite coatings, the time and temperature of heat treatment on composition and phase structure of alloy layers were studied by using scanning electron microscope (SEM), backscattered electron (BSE), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The structure transformation process and formation mechanism of Al-Cr-Fe coatings were discussed.

  17. Behavior of Fe-Mn-Al-C steels during cyclic tests

    NASA Astrophysics Data System (ADS)

    Kalashnikov, I. S.; Acselrad, O.; Pereira, L. C.; Kalichak, T.; Khadyyev, M. S.

    2000-06-01

    Alloys of the FeMnAlC system have been used for cryogenic purposes and for applications up to 673 K. At low temperatures, they have in general a better performance than austenitic Cr-Ni steels as far as fatigue is concerned, but are inferior to martensitic Cr steels. However, since the fatigue strength of FeMnAlC alloys in the temperature range of 523 to 823 K is higher than at room temperature, the present work has been conducted to describe the behavior of such alloys under the action of cyclic loading, including elasto-plastic deformation and cyclic temperatures. It has been concluded that components can be successfully subjected to cyclic loads in the elasto-plastic regime and to periodic changes in temperature under normal service conditions.

  18. Long afterglow properties of Zn2GeO4:Mn2+, Cr3+ phosphor

    NASA Astrophysics Data System (ADS)

    Cong, Yan; He, Yangyang; Dong, Bin; Xiao, Yu; Wang, Limei

    2015-04-01

    Zn2GeO4:Mn2+, Cr3+ phosphors were prepared by conventional solid state reaction and the photoluminescence properties were investigated. The Mn2+ activated Zn2GeO4 phosphors exhibited green emission at 533 nm due to the 4T1(4G) → 6A1(6S) transition of Mn2+ ions. With Cr3+ co-doping in Zn2GeO4 host, long afterglow characteristics were found from the same transition of Mn2+. The TL results revealed the presence of same traps in the phosphor, and the doping of Cr3+ ions deepened the VGe traps. The native defect VGe as a hole traps is responsible for the long afterglow emission in Zn2GeO4:Mn2+, Cr3+ phosphor. The possible mechanism of this phosphor has also been discussed.

  19. Corrosion of Fe-Cr-Mn alloys in thermally convective lithium

    SciTech Connect

    Tortorelli, P.F.; DeVan, J.H.

    1986-01-01

    A series of austenitic Fe-Cr-Mn steels was exposed to circulating lithium at temperatures up to 500/sup 0/C. Two groups of the alloys, which contained 12 to 30 wt % Mn and 2 to 20 wt % Cr, were sequentially exposed for periods greater than 3000 h in a type 316 stainless steel thermal convection loop. Mass transfer of manganese caused very large weight losses from the steels containing 30 wt % Mn. However, the actual magnitude of corrosion losses for alloys containing 12 to 20 wt % Mn was difficult to establish due to competing surface reactions involving chromium.

  20. Towards consistent chronology in the early Solar System: high resolution 53Mn-53Cr chronometry for chondrules.

    SciTech Connect

    Yin, Q; Jacobsen, B; Moynier, F; Hutcheon, I D

    2007-05-02

    New high-precision {sup 53}Mn-{sup 53}Cr data obtained for chondrules extracted from a primitive ordinary chondrite, Chainpur (LL3.4), define an initial {sup 53}Mn/{sup 55}Mn ratio of (5.1 {+-} 1.6) x 10{sup -6}. As a result of this downward revision from an earlier higher value of (9.4 {+-} 1.7) x 10{sup -6} for the same meteorite (Nyquist et al. 2001), together with an assessment of recent literature, we show that a consistent chronology with other chronometers such as the {sup 26}Al-{sup 26}Mg and {sup 207}Pb-{sup 206}Pb systems emerges in the early Solar System.

  1. Spin–glass transition in La{sub 0.75}Sr{sub 0.25}Mn{sub 0.5}Cr{sub 0.5−x}Al{sub x}O{sub 3−δ} perovskites

    SciTech Connect

    Azad, Abul K.; Sanchez-Benitez, Javier; Irvine, John T.S.

    2013-07-15

    Graphical abstract: In-phase and out-of-phase ac susceptibility measurements at the magnetic field 1000 Oe show the shifting of transition temperature with frequency (i.e. spin–glass transition) in La{sub 0.75}Sr{sub 0.25}Mn{sub 0.5}Cr{sub 0.3}Al{sub 0.2}O{sub 3−δ}. - Highlights: • Spin–glass transition at low temperature (around 50 K). • Al-doping decreases the antiferromagnetic transition temperature. • Ferromagnetic around room temperature. - Abstract: The structural and magnetic properties of the Al-doped La{sub 0.75}Sr{sub 0.25}Mn{sub 0.5}Cr{sub 0.5−x}Al{sub x}O{sub 3−δ} (x = 0.0, 0.1, 0.2, 0.3) were investigated by X-ray powder diffraction, neutron powder diffraction and magnetization measurements. Rietveld refinement of the diffraction data confirms that the compounds crystallize in rhombohedral symmetry (space group, R-3C). Unit cell volume decreases with increasing concentration of Al at the B-site. Upon cooling from room temperature, we have observed multiple magnetic phase transitions, i.e. paramagnetic (PM), ferromagnetic (FM), antiferromagnetic (AFM) and spin–glass (SG), in the samples. A low temperature magnetic hysteresis study demonstrates the presence of ferromagnetic domains for all compositions. The antiferromagnetic transition temperature decreases with the Al-doping AC susceptibility measurements at 97 Hz and 1 Oe show SG behaviors with a spin-freezing temperature close to 50 K for all samples. The in-phase ac susceptibility (χ{sup /}) decreases in magnitude and spin–glass transition (T{sub SG}) increase toward higher temperature with increasing frequency. The spin–glass behavior accompanied by the anomalous magnetic transitions is due to the competing interactions between FM and AFM. The results also shows that a part of the samples lose magnetic order to form a SG state accompanied by an AFM state at low temperature.

  2. Hot Corrosion Performance of AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa Coatings Deposited by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Tao, Chong; Wang, Lei; Cheng, Nailiang; Hu, Hengfa; Liu, Yang; Song, Xiu

    2016-04-01

    AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa coatings were deposited on 316L stainless steel substrate using atmospheric plasma spraying, respectively, in order to improve the oxidation and corrosion resistance. The hot corrosion performance of the coatings at 700 and 900 °C were studied, and the detailed microstructures and phase composition of the coatings were analyzed using x-ray diffraction, scanning electron microscope with energy dispersive spectrometer, and transmission electron microscope. The results show that both coatings are structurally featured by slatted layers, consisting of amorphous phase, Cr2O3, Ni3Al, and Al2O3. The hot corrosion resistance of AlO-CrO/NiCoCrAlYTa coating is better than that of AlO/NiCoCrAlYTa coating. This improvement is attributed to lower porosity and more compact Cr2O3 in AlO-CrO/NiCoCrAlYTa coating which performs better than Al2O3 in blocking further inward progress of corrosion and oxidization.

  3. Oxidation of Fe-Cr-Al and Fe-Cr-Al-Y Single Crystals

    NASA Astrophysics Data System (ADS)

    Grabke, H. J.; Siegers, M.; Tolpygo, V. K.

    1995-03-01

    Single crystal samples of the alloy Fe-20%Cr-5%Al with and without Y-doping were used to study the "reactive element" (RE) effect, which causes improved oxidation behaviour and formation of a protective Al2O3 layer on this alloy. The oxidation was followed by AES at 10-7 mbar O2 up to about 1000 °C. Most observations were peculiar for this low pO2 environment, but yttrium clearly favors the formation of Al-oxide and stabilizes it also under these conditions, probably by favoring its nucleation. The oxides formed are surface compounds of about monolayer thickness, not clearly related to bulk oxides. Furthermore, the morphologies of oxide scales were investigated by SEM, after oxidation at 1000°C for 100 h at 133 mbar O2. On Fe-Cr-Al the scale is strongly convoluted and tends to spalling, whereas the presence of Y leads to flat scales which are well adherent. This difference is explained by a change in growth mechanism. The tendency for separation of oxide and metal was highest for the samples with low energy metal surface, i.e. (100) and (110), the scale was better adherent on the (111) oriented surface and on the polycrystalline specimen, since in the latter cases the overall energy for scale/metal separation is higher. All observations, from the low and from the high pO2 experiments, are discussed in relation to the approximately ten mechanisms proposed in the literature for explanation of the RE effects.

  4. Ti-Cr-Al-O Thin Film Resistors

    SciTech Connect

    Jankowski, A F; Hayes, J P

    2002-03-21

    Thin films of Ti-Cr-Al-O are produced for use as an electrical resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O{sub 2}. Vertical resistivity values from 10{sup 4} to 10{sup 10} Ohm-cm are measured for Ti-Cr-Al-O films. The film resistivity can be design selected through control of the target composition and the deposition parameters. The Ti-Cr-Al-O thin film resistor is found to be thermally stable unlike other metal-oxide films.

  5. Sm-Nd and Mn-Cr Systematics in the Eucrite Caldera

    NASA Astrophysics Data System (ADS)

    Wadhwa, M.; Lugmair, G. W.

    1995-09-01

    ] and indicate that both Sm-Nd systems in these meteorites closed contemporaneously within the uncertainties afforded by the data (i.e. 20 to 30 My for ^147Sm-^143Nd and is greater than or equal to 15 My for ^146Sm-^142Nd). In contrast, the fine resolution of the ^53Mn-^53Cr system paints a different but, nonetheless, totally consistent picture. In spite of a wide range in Mn/Cr ratios from about 0 (Chromite) to about 7 (Px) the ^53Cr/^52Cr ratios in all samples measured (chromite, etched bulk, Px, and silicates) are the same. Although the typical errors are 10 to 12 ppm the range in the ^53Cr/^52Cr excesses is only 1.14 to 1.17 epsilon units (parts in 10^4 above the terrestrial ratio) with an average of 1.15 epsilon. Thus, the slope of the best fit line through these data points is 0 +/-1(2x10^-7). This means that ^53Mn was no longer extant when the Mn-Cr system closed in CAL. When compared to the ^53Mn/^55Mn ratio of 3.6x10^-6 found for CK [5] this indicates that formation of CAL occurred more than or equal to 15 My after that of CK. Similarly, if the angrite parent body [6] formed with the same initial 653Mn/^55Mn as the EPB then the angrites are more than or equal to 10 My older than CAL. Thus the true age of CAL has to be less than or equal to 4.548 Ga. This upper limit is totally consistent with the Sm-Nd results and probably very close to the true age since the lower limit on the obtained ^146Sm/^144Sm ratio will not allow an age much lower than 4.548 Ga. Note, however, that this "age" may well indicate the time of extensive re-crystallization[7], probably from a melt, when the Cr isotopes were totally equilibrated. References: [1] Lugmair G. W. and Marti K. (1977) EPSL, 35, 349. [2] Lugmair G. W. and Galer S. J. G. (1992) GCA, 56, 1673. [3] Lugmair G. W. et al. (1975) EPSL, 27, 79-84. [4] Wadhwa M. and Lugmair G. W. (1995) LPS XXVI, 1453-1454. [5] Lugmair G. W. et al. (1994) LPS XXV, 813-814. [6] Lugmair G. W. et al. (1992) LPS XXIII, 823-824. [7] Boctor N. Z

  6. Bulk modulus and specific heat of B-site doped (La{sub 0.3}Pr{sub 0.7}){sub 0.65}Ca{sub 0.35}Mn{sub 1−x}B{sub x}O{sub 3} (B=Fe, Cr, Ru, Al, Ga)

    SciTech Connect

    Srivastava, Archana; Thakur, Rasna; Gaur, N. K.

    2014-04-24

    Specific heat (C{sub p}) thermal expansion (α) and Bulk modulus (B{sub T}) of lightly doped Rare Earth manganites (La{sub 0.3}Pr{sub 0.7}){sub 0.65}Ca{sub 0.35}Mn{sub 1−x}B{sub x}O{sub 3} (B{sup 3+} = Fe{sup 3+},Cr{sup 3+},Ga{sup 3+},Al{sup 3+},Ru4+); (0.3Mn{sub 0.97}Fe{sub 0.03}O{sub 3} as a function of temperature (10K≤T≤ 200K) is found to be in agreement with the published data. The trend of variation of Debye temperature with B-site cationic radius is predicted probably for the first time for the B-site doped rare earth manganites.

  7. TI--CR--AL--O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  8. Transport and magnetic properties of the Co2MnSi/Al/Co2MnSi trilayer

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Zhang, H. B.; Jiang, X. F.; Zheng, Y.; Yang, G. W.

    2012-05-01

    Using density functional theory and non-equilibrium Green's function analysis, we studied the interface structure, interface stability, and magnetic and transport properties of the Co2MnSi/Al/Co2MnSi trilayer. It was found that only the CoCo/Al architecture is thermodynamically stable among four interfacial architectures, CoCo/Al, MnSi/Al, MnMn/Al, and SiSi/Al, and the other interface architectures are not accessible within the limits set under thermodynamic equilibrium with other phases. Calculations of the transmission spectrum, conductance, and resistance-area product showed that the Co2MnSi/Al/Co2MnSi trilayer is a promising candidate for the next-generation of recording sensors in ultrahigh-density hard disks.

  9. Preparation, structural and magnetic characterization of DyCrMnO{sub 5}

    SciTech Connect

    Martinez-Lope, M.J.; Retuerto, M. Garcia-Hernandez, M.; Alonso, J.A.

    2009-03-15

    The title compound has been first synthesized by a citrate technique followed by thermal treatments under moderate oxygen pressure conditions, and characterized by X-ray and neutron powder diffraction (NPD) and magnetization measurements. The crystal structure of DyCrMnO{sub 5} has been refined from NPD data in the space group Pbam; a=7.2617(6) A, b=8.5161(6) A, and c=5.7126(5) A at 295 K. This oxide is isostructural with RMn{sub 2}O{sub 5} oxides (R=rare earths) and it contains infinite chains of (Cr, Mn){sup 4+}O{sub 6} octahedra-sharing edges, linked together by (Mn, Cr){sup 3+}O{sub 5} pyramids and DyO{sub 8} units. The high degree of antisite disordering exhibited by DyCrMnO{sub 5} is noteworthy. The octahedral positions are occupied by roughly 50% of Mn and Cr cations, and the pyramidal groups contain two thirds of Mn and one third of Cr cations. We assume that Mn and Cr cations at the octahedral positions exhibit a tetravalent oxidation state, whereas the metals at the pyramidal positions are trivalent, in order to preserve the electroneutrality of this oxide. The susceptibility vs temperature curve of DyCrMnO{sub 5} does not suggest the establishment of a long-range magnetic structure even at low temperatures; the NPD technique does not provide any signal of magnetic ordering, since the reflections do not show any magnetic contribution. - Graphical abstract: DyCrMnO{sub 5} is isostructural with DyMn{sub 2}O{sub 5}, belonging to the Pbam space group. The crystal structure contains infinite chains of edge-sharing Mn{sup 4+}O{sub 6} octahedra, interconnected by dimer units of Cr{sup 3+}O{sub 5} square pyramids. The low-temperature neutron powder diffraction (NPD) patterns do not show any magnetic contribution, indicating that a full long-range magnetic ordering is not established down to low temperature, although the Dy{sup 3+} magnetic moments are susceptible to be polarized by an external magnetic field at the lowest temperature of 5 K.

  10. Ferromagnetic exchange interaction between Co and Mn in the Heusler alloy CuCoMnAl

    SciTech Connect

    Feng, L.; Ma, L.; Zhu, Z. Y.; Zhu, W.; Liu, E. K.; Chen, J. L.; Wu, G. H.; Meng, F. B.; Liu, H. Y.; Luo, H. Z.; Li, Y. X.

    2010-01-15

    The ferromagnetic exchange interaction between Co and Mn in Heusler alloys has been phenomenologically investigated by analyzing the composition dependence of the magnetic moment and the Curie temperature in a series of quaternary CuCoMnAl alloys. The curves of the composition dependence of the magnetic moment show an interesting valleylike profile and their minima are positioned at different Co contents for different Mn concentrations. The ferromagnetic Co-Mn exchange interaction is a short-range effect which is only effective at the nearest-neighbor distance. At this distance, the exchange interaction can be further enhanced by a Mn-rich composition, but it might be destroyed by the lattice distortion due to the martensitic transformation.

  11. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    NASA Astrophysics Data System (ADS)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  12. Microstructure and Magnetic Properties of Bulk Nanocrystalline MnAl

    SciTech Connect

    Chaturvedi, A; Yaqub, R; Baker, I

    2014-01-22

    MnAl is a promising rare-earth free permanent magnet for technological use. We have examined the effects of consolidation by back-pressure, assisted equal channel angular extrusion processing on mechanically-milled, gas-atomized Mn-46% at. Al powder. X-ray diffraction showed both that the extruded rod consisted mostly of metastable tau phase, with some of the equilibrium gamma(2) and beta phases, and that it largely retained the as-milled nanostructure. Magnetic measurements show a coercivity of <= 4.4 kOe and a magnetization at 10 kOe of <= 40 emu/g. In addition, extrusions exhibit greater than 95% of the theoretical density. This study opens a new window in the area of bulk MnAl magnets with improved magnetic properties for technological use.

  13. The Mn-53-Cr-53 System in CAIs: An Update

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Wasserburg, G. J.; Bogdanovski, O.

    2005-01-01

    High precision techniques have been developed for the measurement of Cr isotopes on the Triton mass spectrometer, at JPL. It is clear that multiple Faraday cup, simultaneous ion collection may reduce the uncertainty of isotope ratios relative to single Faraday cup ion collection, by the elimination of uncertainties from ion beam instabilities (since ion beam intensities for single cup collection are interpolated in time to calculate isotope ratios), and due to a greatly increased data collection duty cycle, for simultaneous ion collection. Efforts to measure Cr by simultaneous ion collection have not been successful in the past. Determinations on Cr-50-54Cr, by simultaneous ion collection on the Finnigan/ MAT 262 instrument at Caltech, resulted in large variations in extrinsic precision, for normal Cr, of up to 1% in Cr-53/Cr-52 (data corrected for mass fractionation, using Cr-50/Cr-52).

  14. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  15. CaMn2Al10: Itinerant Mn magnetism on the verge of magnetic order

    DOE PAGES

    Steinke, L.; Simonson, J. W.; Yin, W. -G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.

    2015-07-24

    We report the discovery of CaMn2Al10, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83μB/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010]/χ[001] ≈ 3.5. A strong power-lawmore » divergence χ(T) ~ T–1.2 below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature TC ~ 0. Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.« less

  16. LiCaAl/sub 6/:Cr/sup 3+/

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Smith, L.K.; Krupke, W.F. )

    1988-11-01

    The authors report the discovery of a new laser, LiCaAIF/sub 6/:Cr/sup 3/ (Cr/sup 3+/ :LiCAF). The intrinsic (extrapolated maximum) slope efficiency was found to be 67 percent. For comparison, they also measured the intrinsic slope efficiencies of BeAl/sub 2/O/sub 4/:Cr/sup 3+/ (alexandrite), Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, and ScBO/sub 3/:Cr/sup 3+/, and obtained values of 65,28, and 26 percent, respectively. The tuning range of LiCaAIF/sub 6/:Cr/sup 3+/ was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well.

  17. Early solar system timescales according to 53Mn- 53Cr systematics

    NASA Astrophysics Data System (ADS)

    Lugmair, G. W.; Shukolyukov, A.

    1998-08-01

    We present results of a study of the 53Mn- 53Cr systematics in various solar system objects: angrites, eucrites, chondrites, diogenites, pallasites, the Earth and the Moon, and SNC meteorites. The primary goal of this study was to explore the capabilities of the 53Mn- 53Cr isotope system as a chronometer and as a tracer for events in the early solar system, to obtain chronological information on different classes of meteorites, and to investigate the indigenous distribution of 53Mn in the late nebula. These studies have shown that all meteorite groups investigated so far have excess 53Cr relative to the terrestrial value. A lunar sample exhibits 53Cr/ 52Cr ratios which are the same as the terrestrial normal. The angrites, several eucrites, and the pallasites show clear evidence for the existence of life 53Mn during their formation while other meteorites were isotopically equilibrated after essentially all 53Mn had decayed. A well defined whole-rock 53Mn- 53Cr isochron for the HED (Howardite-Eucrite-Diogenite) parent body was obtained. The isochron indicates that this planetesimal was essentially totally molten and differentiated ˜7 Ma before the angrites crystallized. Using the absolute age of the angrites as a time marker this event has occurred 4565 Ma ago, within present uncertainties at the same time when high temperature meteorite inclusions (CAI) were formed in the nebula. The first basalts were deposited onto its surface within less than 3 Ma. The bulk Mn/Cr ratios of the HED parent body (presumably Vesta), the angrites, and the pallasites are consistent with a chondritic Mn/Cr ratio. The results from the SCN meteorites show that their 53Cr excesses are less than half of those found in the other meteorites. Thus, the characteristic 53Cr/ 52Cr ratio of Mars (assuming SNCs originate from this planet) are intermediate between that of the earth-moon system and those of the other meteorites. When these 53Cr excesses are plotted as a function of the heliocentric

  18. Aluminum and silicon diffusion in Fe-Cr-Al alloys

    SciTech Connect

    Heesemann, A.; Schmidtke, E.; Faupel, F.; Kolb-Telieps, A.; Kloewer, J.

    1999-02-05

    Foils of Fe-Cr-Al alloys containing about 20 wt% Cr, 5 wt% Al and additions of Si and reactive elements like Ce, La, Y, Hf, Zr or Ti are widely used as a substrate in metal-supported automotive catalytic converters. In the present paper the authors report on measurements of Al and Si diffusion in Fe-Cr-Al alloys. Due to a lack of suitable radiotracers concentration profiles were obtained by means of electron microprobe analysis. In connection with data evaluation they present numerical calculations assessing the accuracy of the Matano analysis and the thin-film solution of Fick`s 2nd law as function of the thickness of the initial diffusant layer. The results are of general interest, particularly for the evaluation of diffusion measurements involving industrial specimens with given geometry.

  19. AlMn Transition Edge Sensors for Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Li, Dale; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; Koopman, Brian J.; McMahon, Jeffrey J.; Nati, Federico; Niemack, Michael D.; Pappas, Christine G.; Salatino, Maria; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Van Lanen, Jeff; Ward, Jonathan T.; Wollack, Edward J.

    2016-07-01

    Advanced ACTPol (AdvACT) will use an array of multichroic polarization-sensitive AlMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.

  20. Influence of FeCrAl Content on Microstructure and Bonding Strength of Plasma-Sprayed FeCrAl/Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Luo, Fa; Zhou, Wancheng; Zhu, Dongmei

    2016-02-01

    Low-power plasma-sprayed FeCrAl/Al2O3 composite coatings with 1.5 mm thickness have been fabricated for radar absorption applications. The effects of FeCrAl content on the coating properties were studied. The FeCrAl presents in the form of a few thin lamellae and numerous particles, demonstrating relatively even distribution in all the coatings. Results show that the micro-hardness and porosity decrease with the increase in FeCrAl content. With FeCrAl content increasing from 28 to 47 wt.%, the bonding strength of the coatings with 1.5 mm thickness increases from 10.5 to 27 MPa, and the failure modes are composed of cohesive and adhesive failure, which are ascribed to the coating microstructure and the residual stress, respectively.

  1. Mn-Cr Systematics in Sphalerites and Niningerites From Qingzhen and Yamato69001: Implications Regarding Their Formation Histories

    NASA Astrophysics Data System (ADS)

    El Goresy, A.; Wadhwa, M.; Zinner, E. K.; Nagel, H.-J.; Janicke, J.; Crozaz, G.

    1992-07-01

    Recent Cr isotopic measurements of sphalerites and alabandites in three EL3 chondrites MAC88136, MAC88180, and MAC88184 and of sphalerites in the EH4 chondrite Indarch (El Goresy et al., 1992) revealed ^53Cr excesses (^53Cr*), resulting from the in situ decay of ^53Mn (tau(sub)1/2=3.7 Ma), in most grains analysed. However, the initial ^53Mn/^55Mn ratios calculated for these grains were quite variable, and it was concluded that redistribution of ^53Cr* by diffusional processes was the most likely cause for these variations. In a continuation of the previous work (El Goresy et al., 1992), we report new mineral-chemical and Cr-isotopic data for two EH3 chondrites, Qingzhen and Yamato 69001. The distribution of Fe, Mg, and Mn in niningerites and sphalerites occurring in individual sulfide assemblages was determined by electron microprobe analysis. Among the meteorites of the EH3 subgroup, Qingzhen and Yamato 69001 are unique in that niningerites in both meteorites display normal as well as reversed zoning, indicating complex thermal histories (Ehlers and El Goresy, 1988; Lin et al., 1989; Lin, 1991; Nagel, 1991). Niningerites have different MnS contents (9.2-32.6 mol% MnS in Qingzhen vs. 4.2- 6.3 mol% MnS in Yamato 69001), as do the sphalerites (4.0-9.2 mol% MnS in Qingzhen vs. 2.0-3.5 mol% in Yamato 69001). Sphalerites in both meteorites are normally zoned, with 46.0-49.8 mol% FeS in sphalerites from Qingzhen, and 42.3-49.7 mol% FeS in sphalerites from Yamato 69001. The spatial distributions of Fe and Mg in niningerites and of Fe and Mn in sphalerites indicate complex processes that may have occurred before accretion and/or during later metamorphic events in the parent body (El Goresy and Ehlers, 1989; Lin, 1991; Nagel, 1991). Ion microprobe measurements of 6 sphalerites and 3 niningerites in Qingzhen and of 3 sphalerites and 2 niningerites in Yamato 69001 showed that ^55Mn/^52Cr ratios in these sulfide phases are significantly lower than in sphalerites and

  2. Core Formation in the Earth and Moon: New Constraints From V, Cr, and Mn Partitioning Experiments

    NASA Astrophysics Data System (ADS)

    Chabot, N. L.; Agee, C. B.

    2002-05-01

    The mantles of the Earth and Moon are similarly depleted in V, Cr, and Mn relative to the concentrations of these elements in chondritic meteorites [1,2]. The similar depletions have been suggested to be due to a common genesis of the Earth and Moon, with the Moon inheriting its mantle, complete with V, Cr, and Mn depletions, from the Earth during the impact-induced formation of the Moon. We have conducted multi-anvil experiments that systematically examined the effects of pressure, temperature, and silicate and metallic compositions on liquid metal-liquid silicate partitioning of V, Cr, and Mn. Increasing temperature is found to significantly increase the metal-silicate partition coefficients for all three elements. Increasing the S or C content of the metallic liquid also causes the partition coefficients to increase. Silicate composition has an effect consistent with Cr and Mn being divalent and V being trivalent. Over our experimental range of 3-14 GPa, the partitioning behavior of V, Cr, and Mn did not vary with pressure. With the effects of oxygen fugacity, metallic and silicate compositions, temperature and pressure understood, the partition coefficient for each element was expressed as a function of these thermodynamic variables and applied to different core formation scenarios. Our new metal-silicate experimental partitioning data can explain the mantle depletions of V, Cr, and Mn by core formation in a high temperature magma ocean under oxygen fugacity conditions two log units below the iron-wuestite buffer, conditions similar to those proposed by [3] from their metal-magnesiowuestite study. In contrast, more oxidizing conditions proposed in recent core formation models [4] cannot account for the V, Cr, and Mn depletions. Additionally, because we observe little or no pressure effect on V, Cr, and Mn partitioning in our experiments, we conclude that the mantle depletions of these elements during core formation are not dependent on planet size. Accordingly

  3. Constraining the Material that Formed the Moon: The Origin of Lunar V, CR, and MN Depletions

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Agee, C. B.

    2002-01-01

    The mantles of the Earth and Moon are similarly depleted in V, Cr, and Mn relative to chondritic values. Core formation deep within the Earth was suggested by as the origin of the depletions. Following Earth's core formation, the Moon was proposed to have inherited its mantle from the depleted mantle of the Earth by a giant impact event. This theory implied the Moon was primarily composed of material from the Earth's mantle. Recent systematic metal-silicate experiments of V, Cr, and Mn evaluated the behavior of these elements during different core formation scenarios. The study found that the V, Cr, and Mn depletions in the Earth could indeed be explained by core formation. The conditions of core formation necessary to deplete V, Cr, and Mn in the Earth's mantle were consistent with the deep magma ocean proposed to account for the Earth's mantle abundances of Ni and Co. Using the parameterizations of for the metal-silicate partition coefficients (D) of V, Cr, and Mn, we investigate here the conditions needed to match the depletions in the silicate Moon and determine if such conditions could have been present on the giant impactor.

  4. Magnetization, anisotropy and transport in (In,Ga,Mn)As/(In,Al,Mn)As superlattices

    NASA Astrophysics Data System (ADS)

    Sheu, B. L.; Maksimov, O.; Samarth, N.; Schiffer, P.

    2004-03-01

    Superlattices built from the III-Mn-V ferromagnetic semiconductors are of interest for semiconductor spintronics because conventional bandgap-engineering methodology can be combined with spin-engineering concepts [T. Jungwirth et al., Phys. Rev. B 59, 9818 (1999)]. Here, we report magnetization and magneto-transport measurements of closely lattice-matched (In,Ga,Mn)As/(In,Al,Mn)As superlattices that are epitaxially grown on semi insulating (001) InP substrates. We study a set of samples wherein the superlattice period is fixed at 10 monolayers, while the thickness of the alloy constituents is systematically varied. Magnetization measurements are carried out over a temperature range of 5 K - 320 K using a superconducting quantum interference device (SQUID), with the external magnetic field directed along different crystalline axes. Magneto-resistance and Hall effect measurements will also be reported. This work is supported by grants from DARPA, ONR and NSF.

  5. Influence of Bulk Chemical Composition on Relative Sensitivity Factors for 55Mn/52Cr by SIMS: Implications for the 53Mn-53Cr Chronometer

    SciTech Connect

    Matzel, J; Jacobsen, B; Hutcheon, I D; Kita, N; Ryerson, F J

    2009-09-09

    The {sup 53}Mn-{sup 53}Cr systematics of meteorite samples provide an important high resolution chronometer for early solar system events. Accurate determination of the initial abundance of {sup 53}Mn ({tau}{sub 1/2} = 3.7 Ma) by secondary ion mass spectrometry (SIMS) is dependent on properly correcting for differing ion yields between Mn and Cr by use of a relative sensitivity factor (RSF). Ideal standards for SIMS analysis should be compositionally and structurally similar to the sample of interest. However, previously published Mn-Cr studies rely on few standards (e.g., San Carlos olivine, NIST 610 glass) despite significant variations in chemical composition. We investigate a potential correlation between RSF and bulk chemical composition by determining RSFs for {sup 55}Mn/{sup 52}Cr in 11 silicate glass and mineral standards (San Carlos olivine, Mainz glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, BM90/21-G, and T1-G, NIST 610 glass, and three LLNL pyroxene-composition glasses). All standards were measured on the Cameca ims-3f ion microprobe at LLNL, and a subset were also measured on the Cameca ims-1270 ion microprobe at the Geological Survey of Japan. The standards cover a range of bulk chemical compositions with SiO{sub 2} contents of 40-71 wt.%, FeO contents of 0.05-20 wt.% and Mn/Cr ratios between 0.4 and 58. We obtained RSF values ranging from 0.83 to 1.15. The data obtained on the ims-1270 ion microprobe are within {approx}10% of the RSF values obtained on the ims-3f ion microprobe, and the RSF determined for San Carlos olivine (0.86) is in good agreement with previously published data. The typical approach to calculating an RSF from multiple standard measurements involves making a linear fit to measured {sup 55}Mn/{sup 52}Cr versus true {sup 55}Mn/{sup 52}Cr. This approach may be satisfactory for materials of similar composition, but fails when compositions vary significantly. This is best illustrated by the {approx}30% change in RSF we see between

  6. Experimental Study on Dynamic Mechanical Properties of 30CrMnSiNi2A Steel.

    NASA Astrophysics Data System (ADS)

    Huang, Fenglei; Yao, Wei; Wu, Haijun; Zhang, Liansheng

    2009-06-01

    Under dynamic conditions, the strain-rate dependence of material response and high levels of hydrostatic pressure cause the material behavior to be significantly different from what is observed under quasi-static condition. The curves of stress and strain of 30CrMnSiNi2A steel in different strain rates are obtained with SHPB experiments. Metallographic analyses show that 30CrMnSiNi2A steel is sensitive to strain rate, and dynamic compression leads to shear failure with the angle 45^o as the small carbide which precipitates around grain boundary changes the properties of 30CrMnSiNi2A steel. From the SHPB experiments and quasi-static results, the incomplete Johnson-Cook model has been obtained: σ=[1587+382.5(ɛ^p)^0.245][1+0.017ɛ^*], which can offer parameters for theory application and numerical simulation.

  7. Mn-53-Cr-53 Systematics of R-Chondrite NWA 753

    NASA Technical Reports Server (NTRS)

    Jogo, K.; Shih, C-Y.; Reese, Y. D.; Nyquist, L. E.

    2006-01-01

    Chondrules and chondrites are interpreted as objects formed in the early solar system, and it is important to study them in order to elucidate its evolution. Here, we report the study of the Mn-Cr systematics of the R-Chondrite NWA753 and compare the results to other chondrite data. The goal was to determine Cr isotopic and age variations among chondrite groups with different O-isotope signatures. The Mn-53-Cr-53 method as applied to individual chondrules [1] or bulk chondrites [2] is based on the assumption that 53Mn was initially homogeneously distributed in that portion the solar nebula where the chondrules and/or chondrites formed. However, different groups of chondrites formed from regions of different O-isotope compositions. So, different types of chondrites also may have had different initial Mn-53 abundances and/or Cr isotopic compositions. Thus, it is important to determine the Cr isotopic systematics among chondrites from various chondrite groups. We are studying CO-chondrite ALH83108 and Tagish Lake in addition to R-Chondrite NWA753. These meteorites have very distinct O-isotope compositions (Figure 1).

  8. Dielectric function of the ferromagnetic semiconductor CdMnCrTe studied by using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Hwang, Younghun; Um, Youngho

    2014-11-01

    We describe the pseudo-dielectric function of Cd1- x- y Mn x Cr y Te ferromagnetic semiconductor alloys by using spectroscopic ellipsometry in the 1.0 ~ 6.0 eV spectral range at room temperature. The ellipsometry data include structures that can be attributed to the effects of Cr concentration on the E 0, E 1, E 1 + Δ1, and E 2 critical points. Critical-point (CP) parameters were obtained by fitting standard critical point (SCP) model line shapes to the numerically-calculated second- energy derivatives of ɛ( ω) = ɛ 1( ω) + iɛ 2( ω). The E 0, E 1, E 1 + Δ1, and E 2 energies decreased with Cr content y; this phenomenon is related to the hybridization of the valence and the conduction bands in CdTe with the 3 d states of Mn and Cr.

  9. Spark plasma sintering of Mn-Al-C hard magnets.

    PubMed

    Pasko, A; LoBue, M; Fazakas, E; Varga, L K; Mazaleyrat, F

    2014-02-12

    Structural and magnetic characterization of isotropic Mn-Al-C bulk samples obtained by spark plasma sintering (SPS) is reported. This technique, to the best of our knowledge, has not been used for preparation of Mn-Al-based permanent magnets previously. Transformation from the parent -phase to the ferromagnetic τ-phase occurred on heating in the process of sintering. The phase constitution of the melt-spun precursors and consolidated samples was determined by x-ray diffraction. Magnetic hysteresis loops were recorded using a vibrating sample magnetometer. The compositional dependence of the coercivity, magnetization and density of the sintered materials is analysed. To combine good magnetic properties with proper densification, further optimization of the production parameters is necessary.

  10. Mechanism and kinetics of interaction of Fe, Cr, Mo, and Mn atoms with molecular oxygen

    SciTech Connect

    Akhmadov, U.S.; Zaslonko, I.S.; Smirnov, V.N.

    1988-09-01

    By means of resonance atomic absorption in shock waves, rate constants have been measured for the interaction of atoms of a number of transition metals (Fe, Cr, Mo, and Mn) with molecular oxygen. A new method is proposed and used for determining the exponent ..gamma.. in the modified Lambert-Beer law D = element of(ZN)/sup ..gamma../. The bond strength in CrO and MoO molecules has been estimated.

  11. Reversing ferroelectric polarization in multiferroic DyMn2O5 by nonmagnetic Al substitution of Mn

    NASA Astrophysics Data System (ADS)

    Zhao, Z. Y.; Liu, M. F.; Li, X.; Wang, J. X.; Yan, Z. B.; Wang, K. F.; Liu, J.-M.

    2014-08-01

    The multiferroic RMn2O5 family, where R is rare-earth ion or Y, exhibits rich physics of multiferroicity which has not yet well understood. DyMn2O5 is a representative member of this family. The ferroelectric polarization of DyMn2O5 is claimed to be magnetically relevant and have more than one component. Therefore, the polarization reversal upon the sequent magnetic transitions is expected. We investigate the evolution of the ferroelectric polarization upon a partial substitution of Mn3+ by nonmagnetic Al3+ in order to tailor the Mn3+-Mn4+ interactions and then to modulate the polarization in DyMn2-x/2Alx/2O5. It is revealed that the polarization can be successfully reversed by Al-substitution via substantially suppressing the Mn3+-Mn4+ interactions, while the Dy3+-Mn4+ interactions can sustain against the substitution until a level as high as x = 0.2. In addition, the independent Dy spin ordering is shifted remarkably down to an extremely low temperature due to the Al3+ substitution. The present work unveils the possibility of tailoring the Mn3+-Mn4+ and Dy3+-Mn4+ interactions independently, and thus reversing the ferroelectric polarization.

  12. AlMn Transition Edge Sensors for Advanced ACTPol

    NASA Technical Reports Server (NTRS)

    Li, Dale; Austermann, Jason E.; Beall, James A.; Tucker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; Koopman, Brian J.; McMahon, Jeffrey J.; Nati, Federico; Niemack, Michael D.; Pappas, Christine G.; Salatino, Maria; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Van Lanen, Jeff; Ward, Jonathan T.; Wollack, Edward J.

    2016-01-01

    Advanced ACTPol (Adv ACT) will use an array of multichroic polarization sensitive AIMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.

  13. Towards a Superplastic Forming of Fe-Mn-Al Alloys

    SciTech Connect

    Guanabara, Paulo Jr.; Bueno, Levi de O.; Ferreira Batalha, Gilmar

    2011-01-17

    The aim is to study the characteristics of superplasticity, mostly on non qualified materials, such as austenitic steel of the Fe-Mn-Al alloy, which has some of the specific material parameters closely related to microstructural mechanisms. These parameters are used as indicators of material superplastic potentiality. The material was submitted to hot tensile testing, within a temperature range from 600 deg. C to 1000 deg. C and strain-rates varying from 10{sup -6} to 1 s{sup -1}. The strain rate sensitivity parameter (m) and observed maximum elongation until rupture ({epsilon}{sub r}) could be determined and also obtained from the hot tensile test. The experiments stated a possibility of superplastic behaviour in a Fe-Mn-Al alloy within a temperature range from 700 deg. C to 900 deg. C with grain size around 3 {mu}m (ASTM grain size 12) and average strain rate sensitivity of m {approx} 0.54, as well as a maximum elongation at rupture around 600%. The results are based on a more enhanced research from the authors; however, this paper has focused just on the hot tensile test, as further creep tests results are not available herein. There are rare examples of superplasticity study of an austenitic steel Fe-Mn-Al alloy, thus this work showed some possibility of exploring the potential use of such materials in this regime at temperatures {>=}700 deg. C.

  14. {sup 53}Mn-{sup 53}Cr CHRONOMETRY OF CB CHONDRITE: EVIDENCE FOR UNIFORM DISTRIBUTION OF {sup 53}Mn IN THE EARLY SOLAR SYSTEM

    SciTech Connect

    Yamashita, Katsuyuki; Yamakawa, Akane; Nakamura, Eizo; Maruyama, Seiji

    2010-11-01

    High-precision Cr isotope ratios for chondrules and metal grain separated from CB chondrite Gujba were determined. The {epsilon}{sup 54}Cr values ({epsilon}{sup i}Cr = [({sup i}Cr/{sup 52}Cr){sub sample}/({sup i}Cr/{sup 52}Cr){sub standard} - 1] x 10{sup 4}) for all samples were identical within the analytical uncertainty, with a mean value of +1.29 {+-} 0.02. Uniform {epsilon}{sup 54}Cr signatures of both chondrules and metal grains imply that the Cr isotope systematics of the meteorite was once completely equilibrated. The {epsilon}{sup 53}Cr values of the chondrules and metal grain, on the other hand, display a strong correlation with the {sup 55}Mn/{sup 52}Cr ratio. The {sup 53}Mn/{sup 55}Mn calculated from the slope of the isochron is (3.18 {+-} 0.52) x 10{sup -6}. This corresponds to absolute ages of 4563.7 {+-} 1.2 Ma and 4563.5 {+-} 1.1 Ma using angrites D'Orbigny and LEW 86010, respectively, as time anchors. These ages are consistent with the ages obtained using other short- and long-lived radio nuclides, supporting the uniform distribution of {sup 53}Mn in the early solar nebula.

  15. Hydrogen permeation characteristics of some Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Van Deventer, E. H.; Maroni, V. A.

    1983-01-01

    Hydrogen permeation data are reported for two Fe-Cr-Al alloys, Type-405 SS (Cr 14-A1 0.2) and a member of the Fecralloy family of alloys (Cr 16-A1 5). The hydrogen permeability of each alloy (in a partially oxidized condition) was measured over a period of several weeks at randomly selected temperatures (between 150 and 850°C) and upstream H 2 pressures (between 2 and 1.5 × 10 4 Pa). The permeabilities showed considerable scatter with both time and temperature and were 10 2 to 10 3 times lower than those of pure iron, even in strongly reducing environments. The exponent, n, for the relationship between upstream H 2 pressure, P, and permeability, φ, ( φ ~ Pn) was closer to 0.7 than to the expected 0.5, indicating a process limited by surface effects (e.g., surface oxide films) as opposed to bulk material effects. Comparison of these results with prior permeation measurements on other Fe-Cr-Al alloys, on Fe-Cr alloys, and on pure iron shows that the presence of a few weight percent aluminum offers the best prospects for achieving low tritium permeabilities with martensitic and ferritic steels used in fusion-reactor first wall and blanket applications.

  16. Catalytic ozone oxidation of benzene at low temperature over MnOx/Al-SBA-16 catalyst

    PubMed Central

    2012-01-01

    The low-temperature catalytic ozone oxidation of benzene was investigated. In this study, Al-SBA-16 (Si/Al = 20) that has a three-dimensional cubic Im3m structure and a high specific surface area was used for catalytic ozone oxidation for the first time. Two different Mn precursors, i.e., Mn acetate and Mn nitrate, were used to synthesize Mn-impregnated Al-SBA-16 catalysts. The characteristics of these two catalysts were investigated by instrumental analyses using the Brunauer-Emmett-Teller method, X-ray diffraction, X-ray photoelectron spectroscopy, and temperature-programmed reduction. A higher catalytic activity was exhibited when Mn acetate was used as the Mn precursor, which is attributed to high Mn dispersion and a high degree of reduction of Mn oxides formed by Mn acetate than those formed by Mn nitrate. PMID:22221406

  17. Corrosion Behavior of 35CrMn and Q235 Steel in Simulated Acid Rain Conditions

    NASA Astrophysics Data System (ADS)

    Zuo, Xiu-li; Xiang, Bin; Li, Xing; Wei, Zi-dong

    2012-04-01

    Effects of pH value, chloride ion concentration and alternation of wetting and drying time in acid rain on the corrosion of 35CrMn and Q235 steel were investigated through the measurement of polarization curves, electrochemical impedance spectroscopy, x-ray diffraction, and quantum mechanical calculations. The corrosion rate of 35CrMn and Q235 steel increased with decreasing pH values of the simulated acid rain, whereas the corrosion potential of 35CrMn and Q235 steel became more negative. The impedance became higher and the corrosion rate decreased with increasing test time. The dissolution rate of samples increased with chloride ion concentration. Results suggested that the corrosion rate of 35CrMn steel was obviously lower than that of Q235 steel for a more compact rust, α-FeOOH. Quantum chemical calculations further revealed that the increase in corrosion rate of the steel resulted from pitting corrosion caused by the corrosive chloride ion.

  18. Synthesis, characterization and electrochemical performance of Al-substituted Li₂MnO₃

    DOE PAGES

    Dhital, Chetan; Huq, Ashfia; Paranthaman, Mariappan Parans; Manivannan, Ayyakkannu; Torres-Castro, Loraine; Shojan, Jifi; Julien, Christian M.; Katiyar, Ram S.

    2015-08-08

    Li2MnO3 is known to be electrochemically inactive due to Mn in tetravalent oxidation state. Several compositions such as Li2MnO3 , Li1.5Al0.17MnO3, Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 were synthesized by a sol–gel Pechini method. All the samples were characterized with x-ray diffraction, Raman, x-ray photoelectron spectroscopy, scanning electron microscopy, Tap density and BET analyzer. X-ray diffraction patterns indicated the presence of monoclinic phase for pristine Li2MnO3and mixed monoclinic/spinel phases (Li2 - xMn1 - yAlx + yO3 + z) for Al-substituted Li2MnO3compounds. The Al substitution seems to occur both at Li and Mn sites, which could explain the presence of spinel phase. X-ray photoelectronmore » spectroscopy for Mn 2p orbital reveals a significant decrease in binding energy for Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 compounds. Cyclic voltammetry, charge/discharge cycles and electrochemical impedance spectroscopy were also performed. A discharge capacity of 24 mAh g-1 for Li2MnO3, 68 mAh g-1 for Li1.5Al0.17MnO3, 58 mAh g-1 for Li1.0Al0.33MnO3 and 74 mAh g-1 for Li0.5Al0.5MnO3 were obtained. As a result, aluminum substitutions increased the formation of spinel phase which is responsible for cycling.« less

  19. Simulation Study of Al-1Mn/Al-10Si Circular Clad Ingots Prepared by Direct Chill Casting

    NASA Astrophysics Data System (ADS)

    Wu, Li; Kang, Huijun; Chen, Zongning; Fu, Ying; Wang, Tongmin

    2016-02-01

    A modified direct chill casting process based on Novelis FusionTM Technology co-casting process was used recently to prepare Al-1Mn/Al-10Si circular clad ingots. In the current study, a comprehensive simulation model was developed to investigate the direct chill casting process for preparing the Al-1Mn/Al-10Si circular clad ingots, and a parametric study and experimental research of the direct chill casting process was conducted to explore potential success and failure casting conditions. The simulation results revealed the bonding mechanism of the Al-1Mn/Al-10Si interface in the direct chill casting process and identified the effect of certain parameters on casting performance. The results indicated that the effect of casting speed and Al-1Mn casting temperature on the variations of the minimum solid fraction of Al-1Mn at the interface is stronger than that of cooling water flow rate in inner mold, while Al-10Si casting temperature is the weakest of the four casting parameters. The corresponding experimental results verified that Al-1Mn/Al-10Si circular clad ingot with acceptable metallurgical bonding can be successfully prepared by direct chill casting process under the proper casting parameters. The thickness of diffusion zone is about 40 μm, and the fractured position in tensile test was located in the Al-1Mn alloy side which indicated the strength of the interfacial region is higher than that of Al-1Mn alloy.

  20. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  1. Mn-Cr relative sensitivity factor in ferromagnesian olivines defined for SIMS measurements with a Cameca ims-1280 ion microprobe: Implications for dating secondary fayalite

    NASA Astrophysics Data System (ADS)

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2016-02-01

    systematics of chondritic fayalite (Fa>90) should be determined using standards of similar composition that are measured under the same analytical conditions as the "unknown". The 53Mn-53Cr ages of secondary fayalites (Fa90-100) in the Elephant Moraine (EET) 90161 (L3.05), Vicencia (LL3.2), Asuka 881317 (CV3) and MacAlpine Hills (MAC) 88107 (C3) chondrites (2.4-1.3+1.8 , 4.0-1.1+1.4 , 4.2-0.7+0.8 and 5.1-0.4+0.5 Myrs after CV CAIs, respectively) are ∼3 Myr older when using an RSF measured on a matrix-matched (Fa99) standard, rather than on a San Carlos olivine. The inferred 53Mn-53Cr ages of fayalite formation are consistent with the ages reported for calcites in CM chondrites measured with similarly matrix-matched standards, suggesting an early onset of aqueous alteration on the ordinary and carbonaceous chondrite parent bodies heated by decay of 26Al.

  2. The structure of rapidly solidified Al- Fe- Cr alloys

    NASA Astrophysics Data System (ADS)

    Yearim, R.; Shechtman, D.

    1982-11-01

    Four aluminum alloys, designed for use at elevated temperatures, were studied. The alloys were supersaturated with iron and chromium, and one of them contained small amounts of Ti, V, and Zr. The starting materials were alloy powders made by the RSR (Rapid Solidification Rate) centrifugal atomization process. Extrusion bars were made from the four powders. The as-extruded microstructure and the microstructure of the alloys after annealing at 482 °C were investigated by optical and transmission electron microscopy and by X-ray diffraction. The microstructure consists of equiaxed grains of aluminum matrix and two types of precipitates, namely, Al3(Fe ,Cr) and a metastable phase, Al6(Fe,Cr). The precipitates were different in their shape, size, distribution, and location within the grains.

  3. Phase Separation kinetics in an Fe-Cr-Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Chao, J.

    2012-01-01

    The {alpha}-{alpha}{prime} phase separation kinetics in a commercial Fe-20 wt.% Cr-6 wt.% Al oxide dispersion-strengthened PM 2000{trademark} steel have been characterized with the complementary techniques atom probe tomography and thermoelectric power measurements during isothermal aging at 673, 708, and 748 K for times up to 3600 h. A progressive decrease in the Al content of the Cr-rich {alpha}{prime} phase was observed at 708 and 748 K with increasing time, but no partitioning was observed at 673 K. The variation in the volume fraction of the {alpha}{prime} phase well inside the coarsening regime, along with the Avrami exponent 1.2 and activation energy 264 kJ mol{sup -1}, obtained after fitting the experimental results to an Austin-Rickett type equation, indicates that phase separation in PM 2000{trademark} is a transient coarsening process with overlapping nucleation, growth, and coarsening stages.

  4. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  5. Magnetic properties of EuCr2Al20

    NASA Astrophysics Data System (ADS)

    Swatek, Przemysław; Kaczorowski, Dariusz

    2016-10-01

    Polycrystalline sample of EuCr2Al20 was studied by means of x-ray powder diffraction, magnetization, electrical resistivity and heat capacity measurements. The compound was found to order antiferromagnetically at TN = 4.8 K due to the magnetic moments carried on divalent of Eu ions. The experimental findings are supported by the results of ab-initio band structure calculations.

  6. Study of the structural and magnetic properties and gallium exchange phenomenon in a Mn-Ga alloy doped by Cr during the milling and annealing process

    NASA Astrophysics Data System (ADS)

    Fariba, Nazari; Mohsen, Hakimi; Hossein, Mokhtari; Mohsen, Khajeh Aminian

    2015-05-01

    The effect of milling and annealing process on Cr doped Mn3Ga nanocrystallite has been investigated. Phase determination analysis shows that Ga turning to get out of Mn-Ga structure and tend to make bonding to Cr and form Cr3Ga4 product during milling process. Annealing of the new phases lead to decomposition of Cr3Ga4 and formation of a new Mn-Ga phase in reverse direction, in the other words diffusion of Ga atoms occurs from Cr3Ga4 to Mn phase and α-Mn and Cr3Ga4 change to Mn3Ga2 and Cr phases. The variation of coersivity, magnetization and magnetic state of different samples was explained according to the crystallite size of the present phases and grain boundary effects. It was also confirmed that formation of Mn-Cr clusters plays an important role in increase of saturation magnetization.

  7. Redox Dynamics of Mixed Metal (Mn, Cr, and Fe) Ultrafine Particles

    PubMed Central

    Nico, Peter S.; Kumfer, Benjamin M.; Kennedy, Ian M.; Anastasio, Cort

    2008-01-01

    The impact of particle composition on metal oxidation state, and on changes in oxidation state with simulated atmospheric aging, are investigated experimentally in flame-generated nanoparticles containing Mn, Cr, and Fe. The results demonstrate that the initial fraction of Cr(VI) within the particles decreases with increasing total metal concentration in the flame. In contrast, the initial Mn oxidation state was only partly controlled by metal loading, suggesting the importance of other factors. Two reaction pathways, one reductive and one oxidative, were found to be operating simultaneously during simulated atmospheric aging. The oxidative pathway depended upon the presence of simulated sunlight and O3, whereas the reductive pathway occurred in the presence of simulated sunlight alone. The reductive pathway appears to be rapid but transient, allowing the oxidative pathway to dominate with longer aging times, i.e. greater than ∼8 hours. The presence of Mn within the particles enhanced the importance of the oxidative pathway, leading to more net Cr oxidation during aging implying that Mn can mediate oxidation by removal of electrons from other particulate metals. PMID:20046215

  8. Redox Dynamics of Mixed Metal (Mn, Cr, and Fe) Ultrafine Particles

    SciTech Connect

    Nico, Peter S.; Kumfer, Benjamin M.; Kennedy, Ian M.; Anastasio, Cort

    2008-08-01

    The impact of particle composition on metal oxidation state, and on changes in oxidation state with simulated atmospheric aging, are investigated experimentally in flame-generated nanoparticles containing Mn, Cr, and Fe. The results demonstrate that the initial fraction of Cr(VI) within the particles decreases with increasing total metal concentration in the flame. In contrast, the initial Mn oxidation state was only partly controlled by metal loading, suggesting the importance of other factors. Two reaction pathways, one reductive and one oxidative, were found to be operating simultaneously during simulated atmospheric aging. The oxidative pathway depended upon the presence of simulated sunlight and O{sub 3}, whereas the reductive pathway occurred in the presence of simulated sunlight alone. The reductive pathway appears to be rapid but transient, allowing the oxidative pathway to dominate with longer aging times, i.e. greater than {approx}8 hours. The presence of Mn within the particles enhanced the importance of the oxidative pathway, leading to more net Cr oxidation during aging implying that Mn can mediate oxidation by removal of electrons from other particulate metals.

  9. Two-Phase (TiAl+TiCrAl) Coating Alloys for Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialek, James L. (Inventor); Brindley, William J. (Inventor)

    1998-01-01

    A coating for protecting titanium aluminide alloys, including the TiAl gamma + Ti3Al (alpha(sub 2)) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C. is disclosed. This protective coating consists essentially of titanium, aluminum. and chromium in the following approximate atomic ratio: Ti(41.5-34.5)Al(49-53)Cr(9.5-12.5)

  10. Structure and properties of corrosion and wear resistant Cr-Mn-N steels

    NASA Astrophysics Data System (ADS)

    Lenel, U. R.; Knott, B. R.

    1987-06-01

    Steels containing about 12 pct Cr, 10 pct Mn, and 0.2 pct N have been shown to have an unstable austenitic microstructure and have good ductility, extreme work hardening, high fracture strength, excellent toughness, good wear resistance, and moderate corrosion resistance. A series of alloys containing 9.5 to 12.8 pct Cr, 5.0 to 10.4 pct Mn, 0.16 to 0.32 pct N, 0.05 pct C, and residual elements typical of stainless steels was investigated by microstructural examination and mechanical, abrasion, and corrosion testing. Microstructures ranged from martensite to unstable austenite. The unstable austenitic steels transformed to α martensite on deformation and displayed very high work hardening, exceeding that of Hadfield’s manganese steels. Fracture strengths similar to high carbon martensitic stainless steels were obtained while ductility and toughness values were high, similar to austenitic stainless steels. Resistance to abrasive wear exceeded that of commercial abrasion resistant steels and other stainless steels. Corrosion resistance was similar to that of other 12 pct Cr steels. Properties were not much affected by minor compositional variations or rolled-in nitrogen porosity. In 12 pct Cr-10 pct Mn alloys, ingot porosity was avoided when nitrogen levels were below 0.19 pet, and austenitic microstructures were obtained when nitrogen levels exceeded 0.14 pct.

  11. Reversing ferroelectric polarization in multiferroic DyMn{sub 2}O{sub 5} by nonmagnetic Al substitution of Mn

    SciTech Connect

    Zhao, Z. Y.; Liu, M. F.; Li, X.; Wang, J. X.; Yan, Z. B.; Wang, K. F.; Liu, J.-M.

    2014-08-07

    The multiferroic RMn{sub 2}O{sub 5} family, where R is rare-earth ion or Y, exhibits rich physics of multiferroicity which has not yet well understood. DyMn{sub 2}O{sub 5} is a representative member of this family. The ferroelectric polarization of DyMn{sub 2}O{sub 5} is claimed to be magnetically relevant and have more than one component. Therefore, the polarization reversal upon the sequent magnetic transitions is expected. We investigate the evolution of the ferroelectric polarization upon a partial substitution of Mn{sup 3+} by nonmagnetic Al{sup 3+} in order to tailor the Mn{sup 3+}-Mn{sup 4+} interactions and then to modulate the polarization in DyMn{sub 2−x/2}Al{sub x/2}O{sub 5}. It is revealed that the polarization can be successfully reversed by Al-substitution via substantially suppressing the Mn{sup 3+}-Mn{sup 4+} interactions, while the Dy{sup 3+}-Mn{sup 4+} interactions can sustain against the substitution until a level as high as x = 0.2. In addition, the independent Dy spin ordering is shifted remarkably down to an extremely low temperature due to the Al{sup 3+} substitution. The present work unveils the possibility of tailoring the Mn{sup 3+}-Mn{sup 4+} and Dy{sup 3+}-Mn{sup 4+} interactions independently, and thus reversing the ferroelectric polarization.

  12. Structure and wear behavior of AlCrSiN-based coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Du, Hao; Chen, Ming; Yang, Jun; Xiong, Ji; Zhao, Haibo

    2016-05-01

    AlCrN, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings have been deposited on high-polished WC-Co cemented carbide substrate and tools by mid-frequency magnetron sputtering in Ar/N2 mixtures. Al0.6Cr0.4, Al0.6Cr0.3Si0.1, and C/Mo/Nb targets were used during the deposition. The microstructure and mechanical properties of as-deposited coatings were investigated. Investigations of the wear behaviors of coated tools were also performed. The results showed that cubic structure was formed in the coatings. Broader CrAlN (1 1 1) and (2 0 0) peaks without SiNx peak were formed in the AlCrSiN/MexN coatings, which showed a nanocomposited structure. Meanwhile, according to SEM micrographs, AlCrN exhibited a columnar structure, while, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings showed nanocrystalline morphology. The nano-multilayered coatings performed higher hardness, H/E, and H3/E2 ratios compared with AlCrN coating. Through the Rockwell adhesion test, all the coatings exhibited adhesion strength quality HF1. After turning Inconel 718 under dry condition, the nano-multilyered coatings showed better wear resistance than AlCrN coating. Due to the molybdenum and niobium in the coating, AlCrSiN/MoN and AlCrSiN/NbN coatings showed the best wear resistance.

  13. Comparison of AlCrN and AlCrTiSiN coatings deposited on the surface of plasma nitrocarburized high carbon steels

    NASA Astrophysics Data System (ADS)

    Chen, Wanglin; Zheng, Jie; Lin, Yue; Kwon, Sikchol; Zhang, Shihong

    2015-03-01

    The AlCrN and AlCrTiSiN coatings were produced on the surface of plasma nitrocarburized T10 steels by multi-arc ion plating. The comparison of the microstructures and mechanical properties of the duplex coatings were investigated by means of X-ray diffraction, optical microscope, scanning electron microscope and transmission electron microscope, in association with mechanical property measurement. The results show that the AlCrN coatings with columnar grown are mainly composed of nanocrytalline fcc-(Cr,Al)N phases with {111} preferred orientation, whereas the superlattice and nanocomposite AlCrTiSiN coatings with planar growth mainly consist of nanocrystalline fcc-(Cr,Al)N phases with {100} perfected orientation, hcp-AlN and Si3N4 amorphous phases. The AlCrTiSiN duplex coating with the compound layer reveals higher hardness, adhesion strength, load capacity and lower friction coefficient when compared with the other duplex coatings, which is due to its superlattice and nanocomposite structure. Additionally, these improved properties are related to the appearance of the γ‧-phase which plays the nucleation sites for the coating nitrides and provides a strong supporting effect for the AlCrN and AlCrTiSiN coatings. The main wear mechanism of the duplex coatings without compound layer is spalling and chipping wear as well as tribooxidation wear, whereas the main wear mechanism of the duplex coatings with compound layer is tribooxidation wear.

  14. Synthesis of Nano Sized Cr2AlC Powders by Molten Salt Method.

    PubMed

    Xiao, Dan; Zhu, Jianfeng; Wang, Fen; Tang, Yi

    2015-09-01

    Cr2AlC powders were successfully synthesized by molten salt method using Cr, Al and C as starting materials. The effects of the process parameters and amount of Al addition on the purity of the Cr2AlC powders were also investigated in details. The formation mechanism of Cr2AlC powders was investigated by XRD and DSC. The results indicated that intermediates of Cr7C3 and Cr- Al intermetallics, such as CrAl17, Cr2Al, Cr2Al8, were formed by the reactions among the initial elements, then the intermediates gradually transformed to Cr2AlC. From the fixed composition of Cr:Al:C = 2:1.2:1, high purity Cr2AlC powders could be obtained with an inorganic salt KCl as a solvent at 1250 degrees C for 60 min under argon atmosphere which was lower than that (generally 1450 degrees C) of conventional solid state reaction.

  15. Experimental evidence of Cr magnetic moments at low temperature in Cr2A(A=Al, Ge)C.

    PubMed

    Jaouen, M; Bugnet, M; Jaouen, N; Ohresser, P; Mauchamp, V; Cabioc'h, T; Rogalev, A

    2014-04-30

    From x-ray magnetic circular dichroism experiments performed at low temperature on Cr2AlC and Cr2GeC thin films, it is evidenced that Cr atoms carry a net magnetic moment in these ternary phases. It is shown that the Cr magnetization of the Al-based compound nearly vanished at 100 K in agreement with what has been recently observed on bulk. X-ray linear dichroism measurements performed at various angles of incidence and temperatures clearly demonstrate the existence of a charge ordering along the c axis of the structure of Cr2AlC. All these experimental observations support, in part, theoretical calculations claiming that Cr dd correlations have to be considered to correctly describe the structure and properties of these Cr-based ternary phases. PMID:24721758

  16. Al/sub 2/O/sub 3/ adherence on CoCrAl alloys

    SciTech Connect

    Kingsley, L.M.

    1980-04-01

    Adherence of protective oxides on NiCrAl and CoCrAl superalloys has been promoted by a dispersion of a highly oxygen reactive element or its oxide being produced within the protection system. Two aspects of this subject are investigated here: the use of Al/sub 2/O/sub 3/ as both the dispersion and protective oxide; and the production of an HfO/sub 2/ dispersion while simultaneously aluminizing the alloy. It was found that an Al/sub 2/O/sub 3/ dispersion will act to promote the adherence of an external scale of Al/sub 2/O/sub 3/ to a degree comparable to previously tested dispersions and an HfO/sub 2/ dispersion comparable to that produced by a Rhines pack treatment is produced during aluminization.

  17. Mn-Cr isotopic systematics of individual Chainpur chondrules. [Abstract only

    NASA Technical Reports Server (NTRS)

    Nyquist, L.; Lindstrom, D.; Wiesmann, H.; Martinez, R.; Bansal, B.; Mittlefehldt, D.; Shih, C.-Y.; Wentworth, S.

    1994-01-01

    Twenty-eight chondrules separated from Chainpur (LL3.4) were surveyed for abundances of Mn, Cr, Na, Fe, Sc, Hf, Ir, and Zn by Instrumental Neutron Activation Analysis (INAA). Six, weighting 0.6-1.5 mg each, were chosen for Scanning Electron Microscopy (SEM)/Energy Dispersive X-ray (EDX) and high-precision Ce-isotopic studies. LL-chondrite-normalized (Mn/Fe)(sub LL) and (Sc/Fe)(sub LL) were found to be useful in categorizing them. Five chondrules (CH-16, -17, -18, -23, and -28) were in the range 0.5 less than (Mn/Fe)(sub LL) less than 1. 4 and 0.5 less than (Sc/Fe)(sub LL) less than 1.4. The sixth (CH-25) had (Mn/Fe)(sub LL) and (Sc/Fe)(sub LL) ratios of 0.40 and 8.1, respectively, and was enriched in the refractory lithophile elements Sc and Hf and the refractory siderophile element Ir by 2.7 and 4.4x LL abundances respectively. SEM/EDX of exterior surfaces of the chondrules showed they consisted of varying proportions of low- and high-Ca pyroxenes, olivine, glass, kamacite/taenite, and Fe-sulfides. Chromium-53/chromium-52 for the six chondrules and bulk Chainpur (WR) are presented. Chromium-54/chromium-52 is close to terrestrial and does not correlate with Mn/Cr. We provisionally ignore the possibility of initial Cr isotopic heterogeneities among the chondrules. Omitting both the CH-25 and WR data, a linear regression gives initial (Mn-53/Mn-55)(sub I) = 8 +/- 4 x 10(exp -6), corresponding to chondrule formation at Delta(t)(sub LEW) = -9 +/- 4 Ma prior to igneous crystallization of the LEW 86010 angrite. If initial (Mn-53/Mn-55)(sub 0) in the solar system were as high as approximately 4.4 x 10(exp -5) when Allende CAI formed, our data suggest Chainpur chondrules formed approximately 9 Ma later, in qualitative agreement with 'late' I-Xe formation ages for most Chainpur chondrules.

  18. Interstitial precipitation in Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Spear, W. S.; Polonis, D. H.

    1994-06-01

    Two separate stages of precipitation have been identified during the aging of ternary Fel8Cr3Al and Fel8Cr5Al alloys at temperatures in the vicinity of 475 °C. The first stage involves the formation of interstitial precipitates resulting from C and N impurities; the second and slower stage is the formation of the Cr-rich α' phase. Transmission electron microscopy (TEM) results show that carbonitride precipitation occurs preferentially at dislocations, stacking faults, and grain boundaries, and also uniformly through the matrix. Aging for times in excess of 400 hours at 475 °C promotes coarsening of the heterogeneous precipitates and dissolution of the uniformly distributed matrix particles. A resistometric analysis shows that the kinetics of the initial stages of precipitation can be described by a (time)2/3 relation. This kinetic behavior is explained in terms of stress-assisted diffusion in the highly stressed matrix resulting from coherency strains accompanying carbonitride precipitation. Experimental values of the activation energy for the first stage reaction correlate closely with those reported for the interstitial diffusion of C and N in alpha iron.

  19. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  20. Carbon Nanostructures Grown on Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Čaplovičová, Mária; Čaplovič, Ľubomír; Búc, Dalibor; Vinduška, Peter; Janík, Ján

    2010-11-01

    The morphology and nanostructure of carbon nanotubes (CNTs), synthesized directly on Fe-Cr-Al-based alloy substrate using an alcohol catalytic chemical vapour deposition method (ACCVD), were examined by transmission electron microscopy (TEM). The grown CNTs were entangled with chain-like, bamboo-like, and necklace-like morphologies. The CNT morphology was affected by the elemental composition of catalysts and local instability of deposition process. Straight and bended CNTs with bamboo-like nanostructure grew mainly on γ-Fe and Fe3C particles. The synthesis of necklace-like nanostructures was influenced by silicon oxide, and growth of chain-like nanostructures was supported by a catalysts consisting of Fe, Si, oxygen and trace of Cr. Most of nanotubes grew according to base growth mechanism.

  1. Normal and excess nitrogen uptake by iron-based Fe-Cr-Al alloys: the role of the Cr/Al atomic ratio

    NASA Astrophysics Data System (ADS)

    Jung, K. S.; Schacherl, R. E.; Bischoff, E.; Mittemeijer, E. J.

    2011-06-01

    Upon nitriding ferritic iron-based Fe-Cr-Al alloys, containing a total of 1.50 at. % (Cr + Al) alloying elements with varying Cr/Al atomic ratio (0.21-2.00), excess nitrogen uptake occurred, i.e. more nitrogen was incorporated in the specimens than compatible with only inner nitride formation and equilibrium nitrogen solubility of the unstrained ferrite matrix. The amount of excess nitrogen increased with decreasing Cr/Al atomic ratio. The microstructure of the nitrided zone was investigated by X-ray diffraction, electron probe microanalysis, transmission electron microscopy and electron energy loss spectroscopy. Metastable, fine platelet-type, mixed Cr1- x Al x N nitride precipitates developed in the nitrided zone for all of the investigated specimens. The degree of coherency of the nitride precipitates with the surrounding ferrite matrix is discussed in view of the anisotropy of the misfit. Analysis of nitrogen-absorption isotherms, recorded after subsequent pre- and de-nitriding treatments, allowed quantitative differentiation of different types of nitrogen taken up. The amounts of the different types of excess nitrogen as function of the Cr/Al atomic ratio are discussed in terms of the nitride/matrix misfit and the different chemical affinities of Cr and Al for N. The strikingly different nitriding behaviors of Fe-Cr-Al and Fe-Cr-Ti alloys could be explained on this basis.

  2. The molar volume of cubic garnets in the system SiO2-Al2O3-TiO2-Fe2O3-Cr2O3-FeO-MnO-MgO-CaO-Na2O

    NASA Astrophysics Data System (ADS)

    Hamecher, E. A.; Antoshechkina, P. M.; Ghiorso, M. S.; Asimow, P. D.

    2012-12-01

    Garnet is a critical phase that controls major and trace element partitioning at pressures above ~3 GPa during partial melting of the Earth's upper mantle. A molar volume model is calibrated for cubic garnets (space group Ia3d) in the oxide system listed in the title. This model and a recent calibration of spinel molar volume (Hamecher et al., in press, CMP) will be used in calibration of thermodynamic activity-composition models of garnet and pyroxene solid solutions. The activity and molar volume models will be incorporated into the next generation MELTS (Ghiorso & Sack, 1995, CMP) model, xMELTS. A new garnet volume model calibrated with recent in situ high-P, T diffraction data is crucial for accurately modeling key mineralogical transitions in the mantle, e.g., the spinel-garnet transition and the mantle transition zone. Above 5 GPa a majorite component is an essential part of any thermodynamic model of mantle garnets, which to be useful must accurately predict garnet stability with respect to spinel, pyroxene, perovskites, and melt. Our model system contains nine independent end members: Ca3Al2Si3O12, Mg3Al2Si3O12, Fe2+3Al2Si3O12, Mg3Cr2Si3O12, Mg3Fe3+2Si3O12, Mn3Al2Si3O12, Na2(MgSi2)Si3O12, Mg3(TiMg)Si3O12, and cubic majorite component Mg3(MgSi)Si3O12. An inclusive set of end-member components is formed by linear combinations of these explicit end members. Approximately 950 published X-ray diffraction experiments performed on garnets at ambient and in situ high-P, T conditions are used to calibrate end-member equations of state and an excess volume model for this system. Optimal values of the bulk modulus and its pressure derivative are obtained by analyzing published compression and/or ultrasonic data for the end members for which such studies exist; for other end members, density functional theory results are used. For any cubic garnet in this chemical system, the model molar volume is obtained by adding excess volume terms to a linear combination of the

  3. Anomalous power dependence in the zero-field resonance for the molecular nanomagnet Cr7Mn

    NASA Astrophysics Data System (ADS)

    Collett, C. A.; Timco, G. A.; Winpenny, R. E. P.; Friedman, J. R.

    We report electron-spin resonance studies of the paramagnetic ring [(CH3)2NH2][Cr7MnF8((CH3)3CCOO)16] (''Cr7Mn''), a spin S=1 molecular nanomagnet with a large zero-field ground-state tunnel splitting of ~4 GHz. We perform parallel-mode electron-spin-resonance (ESR) spectroscopy with loop-gap resonators (LGRs) with resonance frequencies of 4-6 GHz. A crystal of Cr7Mn is placed on the loop of the LGR with the sample's easy axis parallel to the field. We observe an ESR peak at zero dc field. With increasing radiation power, a pronounced dip develops in the center of the resonance peak, indicating a decoupling of the sample from the resonator with increased power. The onset of this decoupling depends on both the temperature and the applied power, with greater power required to observe the dip at higher temperatures. By pulsing the radiation, we can rule out that the dip is related to sample heating or saturation of the resonance. Power, temperature, and frequency dependence of the decoupling will be presented, and possible explanations will be discussed.

  4. Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Fu, Ao; Huang, Xiaoxia; Liu, Bin; Liu, Yong; Li, Zezhou; Zan, Xiang

    2016-07-01

    The equiatomic CoCrFeMnNi high entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was prepared by the spark plasma sintering technique. Dynamic compressive tests of the CoCrFeMnNi high entropy alloy were deformed at varying strain rates ranging from 1 × 103 to 3 × 103 s-1 using a split-Hopkinson pressure bar (SHPB) system. The dynamic yield strength of the CoCrFeMnNi high entropy alloy increases with increasing strain rate. The Zerilli-Armstrong (Z-A) plastic model was applied to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained. Serration behavior during plastic deformation was observed in the stress-strain curves. The mechanism for serration behavior of the alloy deformed at high strain rate is proposed.

  5. Compositional Zoning and Mn-Cr Systematics in Carbonates from the Y791198 CM2 Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.; Hutcheon, Ian D.; Browning, Lauren

    2001-01-01

    Cathodoluminescence and microprobe analyses show that carbonates in Y791198 exhibit complex zoning. Cr-Mn dating suggests formation of carbonates 10 Ma after CAI formation Additional information is contained in the original extended abstract..

  6. Effect of Mn on the Formation of Oxide Buildups Upon HVOF-Sprayed MCrAlY-Ceramic-Type Cermet Coatings

    NASA Astrophysics Data System (ADS)

    Huang, Tsai-Shang

    2011-03-01

    Thermal spray coatings have been widely used on hearth rolls in a continuous annealing line to improve steel sheet quality and to prolong the roll service life. One of the common defects formed on a working hearth roll is the oxide buildup. HVOF-sprayed CoCrAlY-CrB2-Y2O3 coating was used in this study to duplicate buildups by reacting with Fe and Mn oxides. The reaction was performed in a furnace at 900 °C with inert gases flowing through. After reacting for 8 days, large Mn-rich buildups were formed on the coating while the buildups without Mn were very small. Mn was shown to enhance the formation of buildups. Buildups from a hearth roll were also examined and compared with the laboratory ones.

  7. Zener Relaxation Peak in an Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng-Cun; Cheng, He-Fa; Gong, Chen-Li; Wei, Jian-Ning; Han, Fu-Sheng

    2002-11-01

    We have studied the temperature spectra of internal friction and relative dynamic modulus of the Fe-(25 wt%)Cr-(5 wt%)Al alloy with different grain sizes. It is found that a peak appears in the internal friction versus temperature plot at about 550°C. The peak is of a stable relaxation and is reversible, which occurs not only during heating but also during cooling. Its activation energy is 2.5 (+/- 0.15) eV in terms of the Arrhenius relation. In addition, the peak is not obvious in specimens with a smaller grain size. It is suggested that the peak originates from Zener relaxation.

  8. Synthesis, characterization and electrochemical performance of Al-substituted Li₂MnO₃

    SciTech Connect

    Dhital, Chetan; Huq, Ashfia; Paranthaman, Mariappan Parans; Manivannan, Ayyakkannu; Torres-Castro, Loraine; Shojan, Jifi; Julien, Christian M.; Katiyar, Ram S.

    2015-08-08

    Li2MnO3 is known to be electrochemically inactive due to Mn in tetravalent oxidation state. Several compositions such as Li2MnO3 , Li1.5Al0.17MnO3, Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 were synthesized by a sol–gel Pechini method. All the samples were characterized with x-ray diffraction, Raman, x-ray photoelectron spectroscopy, scanning electron microscopy, Tap density and BET analyzer. X-ray diffraction patterns indicated the presence of monoclinic phase for pristine Li2MnO3and mixed monoclinic/spinel phases (Li2 - xMn1 - yAlx + yO3 + z) for Al-substituted Li2MnO3compounds. The Al substitution seems to occur both at Li and Mn sites, which could explain the presence of spinel phase. X-ray photoelectron spectroscopy for Mn 2p orbital reveals a significant decrease in binding energy for Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 compounds. Cyclic voltammetry, charge/discharge cycles and electrochemical impedance spectroscopy were also performed. A discharge capacity of 24 mAh g-1 for Li2MnO3, 68 mAh g-1 for Li1.5Al0.17MnO3, 58 mAh g-1 for Li1.0Al0.33MnO3 and 74 mAh g-1 for Li0.5Al0.5MnO3 were obtained. As a result, aluminum substitutions increased the formation of spinel phase which is responsible for cycling.

  9. Cross sections for He and Ne isotopes in natural Mg, Al, and Si, He isotopes in CaF2, Ar isotopes in natural Ca, and radionuclides in natural Al, Si, Ti, Cr, and stainless steel induced by 12- to 45-MeV protons

    NASA Technical Reports Server (NTRS)

    Walton, J. R.; Heymann, D.; Yaniv, A.; Edgerley, D.; Rowe, M. W.

    1976-01-01

    Stacks of thin Mg, Al, Si, Ca, CaF2, Ti, and stainless steel foils were bombarded in twelve irradiations by a variable energy cyclotron. Cross sections are reported for He and Ne in natural Mg, Al, and Si, and for He in CaF2, and for Ar in natural Ca, as determined from mass spectrometer analysis of the inert gases. In addition, cross sections of Na-22 in natural Al and Si, of V-48 in natural Ti, and of Cr-51, Mn-52, and Co-57 in stainless steel are reported. From these were deduced Cr-51 and Mn-52 cross sections in natural Cr.

  10. Host Atom Diffusion in Ternary Fe-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Rohrberg, Diana; Spitzer, Karl-Heinz; Dörrer, Lars; Kulińska, Anna J.; Borchardt, Günter; Fraczkiewicz, Anna; Markus, Torsten; Jacobs, Michael H. G.; Schmid-Fetzer, Rainer

    2014-01-01

    In the Fe-rich corner of the Fe-Cr-Al ternary phase diagram, both interdiffusion experiments [1048 K to 1573 K (775 °C to 1300 °C)] and 58Fe tracer diffusion experiments [873 K to 1123 K (600 °C to 850 °C)] were performed along the Fe50Cr50-Fe50Al50 section. For the evaluation of the interdiffusion data, a theoretical model was used which directly yields the individual self-diffusion coefficients of the three constituents and the shift of the original interface of the diffusion couple through inverse modeling. The driving chemical potential gradients were derived using a phenomenological Gibbs energy function which was based on thoroughly assessed thermodynamic data. From the comparison of the individual self-diffusivities of Fe as obtained from interdiffusion profiles and independent 58Fe tracer diffusivities, the influence of the B2-A2 order-disorder transition becomes obvious, resulting in a slightly higher activation enthalpy for the bcc-B2 phase and a significantly lower activation entropy for this phase.

  11. Role of carbon in improving the shape memory effect of Fe-Mn-Si-Cr-Ni alloys by thermo-mechanical treatments

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Song, Fan; Wang, Shanling; Zhang, Chengyan; Wen, Yuhua

    2015-05-01

    To clarify the role of carbon in improving the shape memory effect of Fe-Mn-Si-based shape memory alloys by thermomechanical treatments, we investigated the effect of optimum thermomechanical treatments on shape memory effect and microstructures of Fe-14Mn-5Si-8Cr-4Ni and Fe-14Mn-5Si-8Cr-4Ni-0.12C alloys. The Cr23C6 particles in optimum thermomechanical-treated Fe-14Mn-5S-8Cr-4Ni-0.12C more effectively prevented collisions between stress-induced ɛ martensite bands than the residual α‧ martensite in optimum thermomechanical-treated Fe-14Mn-5Si-8Cr-4Ni. This result is attributed to the thinner width of stress-induced ɛ martensite bands in optimum thermomechanical-treated Fe-14Mn-5S-8Cr-4Ni-0.12C compared to optimum thermomechanical-treated Fe-14Mn-5Si-8Cr-4Ni. In addition, the Cr23C6 particles formed at more sites and provided more obstacles as compared with the residual α‧ martensite. Accordingly, the recovery strain of Fe-14Mn-5Si-8Cr-4Ni-0.12C was higher than that of Fe-14Mn-5Si-8Cr-4Ni. It is concluded that carbon addition is beneficial to further improving the shape memory effect of Fe-Mn-Si-based shape memory alloys by thermomechanical treatments.

  12. Surface structures of Al-Pd-Mn and Al-Cu-Fe icosahedral quasicrystals

    SciTech Connect

    Shen, Z.

    1999-02-12

    In this dissertation, the author reports on the surface structure of i-Al-Pd-Mn twofold, threefold, fivefold and i-Al-Cu-Fe fivefold surfaces. The LEED studies indicate the existence of two distinct stages in the regrowth of all four surfaces after Ar{sup +} sputtering. In the first stage, upon annealing at relatively low temperature: 500K--800K (depending on different surfaces), a cubic phase appears. The cubic LEED patterns transform irreversibly to unreconstructed quasicrystalline patterns upon annealing to higher temperatures, indicating that the cubic overlayers are metastable. Based upon the data for three chemically-identical, but symmetrically-inequivalent surfaces, a model is developed for the relation between the cubic overlayers and the quasicrystalline substrate. The model is based upon the related symmetries of cubic close-packed and icosahedral-packed materials. These results may be general among Al-rich, icosahedral materials. STM study of Al-Pd-Mn fivefold surface shows that terrace-step-kink structures start to form on the surface after annealing above 700K. Large, atomic ally-flat terraces were formed after annealing at 900K. Fine structures with fivefold icosahedral symmetry were found on those terraces. Data analysis and comparison of the STM images and structure model of icosahedral Al-Pd-Mn suggest that the fine structures in the STM images may be the pseudo Mackay (PMI) clusters which are the structure units of the structure model. Based upon his results, he can conclude that quasicrystalline structures are the stable structures of quasicrystal surfaces. In other words, quasicrystalline structures extend from the bulk to the surface. As a result of the effort reported in this dissertation, he believes that he has increased his understanding of the surface structure of icosahedral quasicrystals to a new level.

  13. Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys in the temperature range of 700-750 deg C

    NASA Technical Reports Server (NTRS)

    Chiang, K. T.; Meier, G. H.

    1980-01-01

    The effect of SO3 pressure in the gas phase on the Na2SO4 induced hot corrosion of Co-Cr, Ni-Cr, and Co-Cr-Al alloys was studied in the temperature range 700 to 750 C. The degradation of the Co-Cr and Ni-Cr alloys was found to be associated with the formation of liquid mixed sulfates (CoSO4-Na2SO4 or NiSO4-Na2SO4) which provided a selective dissolution of the Co or Ni and a subsequent sulfidation oxidation mode of attack which prevented the maintenance of a protective Cr2O3 film. A clear mechanism was not developed for the degradation of Co-Cr-Al alloys. A pitting corrosion morphology was induced by a number of different mechanisms.

  14. Local field effects in half-metals: A GW study of zincblende CrAs, MnAs, and MnC

    NASA Astrophysics Data System (ADS)

    Damewood, L.; Fong, C. Y.

    2011-03-01

    We used the GW approximation to examine the improvements of the semiconducting gap in three predicted half-metals with the zincblende structure, CrAs, MnAs and MnC, compared to density-functional theory with the generalized gradient approximation. Recognizing the differences in the local field effect between transition metals and insulators, respectively, we modeled one spin channel in a half-metal as metallic having a d character and the oppositely oriented spin channel as insulating. To demonstrate the necessity of treating these three compounds as having a d character, we also applied the GW approximation to CrAs using the nearly free electron model in the conducting channel. We found that CrAs shows the least improvement, while Mn-based half-metals exhibit comparable improvements. Physical explanations for these results are presented.

  15. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression.

    PubMed

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-08-13

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s(-1) (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g(-1) for the CuAlZn alloy and 5.0 J g(-1) for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402936

  16. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression.

    PubMed

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-08-13

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s(-1) (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g(-1) for the CuAlZn alloy and 5.0 J g(-1) for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  17. Searching for 0+ states in 50Cr: Implications for the superallowed β decay of 50Mn

    NASA Astrophysics Data System (ADS)

    Leach, K. G.; Garrett, P. E.; Ball, G. C.; Bender, P. C.; Bildstein, V.; Brown, B. A.; Burbadge, C.; Faestermann, T.; Hadinia, B.; Holt, J. D.; Laffoley, A. T.; Jamieson, D. S.; Jigmeddorj, B.; Radich, A. J.; Rand, E. T.; Stroberg, S. R.; Svensson, C. E.; Towner, I. S.; Wirth, H.-F.

    2016-07-01

    A 52Cr(p ,t )50Cr two-neutron pickup reaction was performed using the Q3D magnetic spectrograph at the Maier-Leibnitz-Laboratorium in Garching, Germany. Excited states in 50Cr were observed up to an excitation energy of 5.3 MeV. Despite significantly increased sensitivity and resolution over previous work, no evidence of the previously assigned first excited 0+ state was found. As a result, the 02+ state is reassigned at an excitation energy of Ex=3895.0 (5 ) keV in 50Cr. This reassignment directly impacts direct searches for a nonanalog Fermi β+ decay branch in 50Mn. These results also show better systematic agreement with the theoretical predictions for the 0+ state spectrum in 50Cr using the same formalism as the isospin-symmetry-breaking correction calculations for superallowed nuclei. The experimental data are also compared to ab-initio shell-model predictions using the IM-SRG formalism based on N N and 3 N forces from chiral-EFT in the p f -shell for the first time.

  18. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  19. Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States

    USGS Publications Warehouse

    Wilshire, H.G.; Shervais, J.W.

    1975-01-01

    Ultramafic xenoliths in basalts from the western United States are divided into Al-augite and Cr-diopside groups. The Al-augite group is characterized by Al, Ti-rich augites, comparatively Fe-rich olivine and orthopyroxene, and Al-rich spinel, the Cr-diopside group by Cr-rich clinopyroxene and spinel and by Mg-rich olivine and pyroxenes. Both groups have a wide range of subtypes, but the Al-augite group is dominated by augite-rich varieties, and the Cr-diopside group by olivine-rich lherzolites. ?? 1975.

  20. Cyclic Oxidation of FeCrAlY/Al2O3 Composites

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.

    1999-01-01

    Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.

  1. Nanoscale Cellular Structures at Phase Boundaries of Ni-Cr-Al-Ti and Ni-Cr-Mo-Al-Ti Superalloys

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Dunand, David C.

    2015-06-01

    The microstructural evolution of Ni-20 pct Cr wires was studied during pack cementation where Al and Ti, with and without prior cementation with Mo, are deposited to the surface of the Ni-Cr wires and subsequently homogenized in their volumes. Mo deposition promotes the formation of Kirkendall pores and subsequent co-deposition of Al and Ti creates a triple-layered diffusional coating on the wire surface. Subsequent homogenization drives the alloying element to distribute evenly in the wires which upon further heat treatment exhibit the γ + γ' superalloy structure. Unexpectedly, formation of cellular structures is observed at some of the boundaries between primary γ' grains and γ matrix grains. Based on additional features ( i.e., ordered but not perfectly periodic structure, confinement at γ + γ' phase boundaries as a cellular film with ~100 nm width, as well as lack of topologically close-packed phases), and considering that similar, but much larger, microstructures were reported in commercial superalloys, it is concluded that the present cellular structure solidified as a thin film, composed of eutectic γ + γ' and from which the γ' phase was subsequently etched, which was created by incipient melting of a region near the phase boundary with high solute segregation.

  2. Synthesis, dielectric behavior and impedance measurement studies of Cr-substituted Zn-Mn ferrites

    SciTech Connect

    Hankare, P.P.; Patil, R.P.; Garadkar, K.M.; Sasikala, R.; Chougule, B.K.

    2011-03-15

    Graphical abstract: Variation of dielectric constant with frequency. Research highlights: {yields} Sol-gel route synthesized spherical crystalline nanoparticles of ZnMn{sub 1-x}Cr{sub x}FeO{sub 4}. {yields} XRD, DTA, FTIR, SEM, dielectric and impedance study. {yields} The ferrites show concentration dependence of ac electrical conductivity. {yields} Impedance response is dominated by grain boundary behavior. -- Abstract: Nanocrystalline ZnMn{sub 1-x}Cr{sub x}FeO{sub 4} (1.0 {>=} x {>=} 0) ferrites were synthesized by sol-gel technique. X-ray diffraction (XRD) confirmed the formation of single phasic cubic spinel lattice for all the compositions studied. Lattice parameter shows a decreasing trend with an increase in Cr content in the compositions. Formation of spherical nanoparticles was revealed by scanning electron microscopy (SEM) analysis. Infrared spectroscopic studies revealed two main absorption bands in the range 400-800 cm{sup -1} arising due to tetrahedral (A) and octahedral (B) site vibrations. Dielectric constant, dielectric loss tangent, ac conductivity and complex impedance were measured as a function of frequency in the range 20 Hz to 1 MHz. Frequency dependence of dielectric constant shows dielectric dispersion due to the Maxwell-Wagner type of interfacial polarization. The role of chromium in modifying structural and dielectric properties of these ferrites has been explained.

  3. Letter Report Documenting Progress of Second Generation ATF FeCrAl Alloy Fabrication

    SciTech Connect

    Yamamoto, Y.; Yang, Y.; Field, K. G.; Terrani, K.; Pint, B. A.; Snead, L. L.

    2014-06-10

    Development of the 2nd generation ATF FeCrAl alloy has been initiated, and a candidate alloy was selected for trial tube fabrication through hot-extrusion and gun-drilling processes. Four alloys based on Fe-13Cr-4.5Al-0.15Y in weight percent were newly cast with minor alloying additions of Mo, Si, Nb, and C to promote solid-solution and second-phase precipitate strengthening. The alloy compositions were selected with guidance from computational thermodynamic tools. The lab-scale heats of ~ 600g were arc-melted and drop-cast, homogenized, hot-forged and -rolled, and then annealed producing plate shape samples. An alloy with Mo and Nb additions (C35MN) processed at 800°C exhibits very fine sub-grain structure with the sub-grain size of 1-3μm which exhibited more than 25% better yield and tensile strengths together with decent ductility compared to the other FeCrAl alloys at room temperature. It was found that the Nb addition was key to improving thermal stability of the fine sub-grain structure. Optimally, grains of less than 30 microns are desired, with grains up to and order of magnitude in desired produced through Nb addition. Scale-up effort of the C35MN alloy was made in collaboration with a commercial cast company who has a capability of vacuum induction melting. A 39lb columnar ingot with ~81mm diameter and ~305mm height (with hot-top) was commercially cast, homogenized, hot-extruded, and annealed providing 10mm-diameter bar-shape samples with the fine sub-grain structure. This commercial heat proved consistent with materials produced at ORNL at the lab-scale. Tubes and end caps were machined from the bar sample and provided to another work package for the ATF-1 irradiation campaign in the milestone M3FT-14OR0202251.

  4. CaMn2Al10: Itinerant Mn magnetism on the verge of magnetic order

    SciTech Connect

    Steinke, L.; Simonson, J. W.; Yin, W. -G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.

    2015-07-24

    We report the discovery of CaMn2Al10, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83μB/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010][001] ≈ 3.5. A strong power-law divergence χ(T) ~ T–1.2 below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature TC ~ 0. Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.

  5. Initial magnetic susceptibility of Sn films with Cr, Mn, Fe, Co and Ni

    NASA Astrophysics Data System (ADS)

    Henger, U.; Korn, D.

    1986-04-01

    Sn alloys with additions of 3d elements are artificially produced by vapour quenching on a liquid helium cooled substrate. The magnetic susceptibility of the as produced films is measured in situ by a sensitive ac magnetic induction method. The experimental result demonstrates that all mentioned 3d atoms have no localized magnetic moment in Sn except crystalline SnMn ( S = {4}/{2}), amorphous SnMn ( S = {3}/{2}) and crystalline SnCr ( S = 1). SnFe and SnCo become magnetic at the percolation limit of 25 at % of the 3d element, SnNi does not. The Sn systems with localized magnetic moment show spinglass behaviour.

  6. Cr, Mn, and Ca distributions for olivine in angritic systems: Constraints on the origins of Cr-rich and Ca-poor core olivine in angrite LEW87051

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Mckay, G.; Le, L.

    1994-01-01

    Angrite meteorites are a type of basaltic achondrites that are noted for their very old cyrstallization ages (4.55 b.y.) and unusual chemical and mineralogical properties. In spite of great interest, only four angrites have been found. LEW87051 is the smallest one which weighs 0.6 g. It is a porphyritic rock with coarse subhedral to euhedral olivines set in a fine-grained groundmass which clearly represents a crystallized melt. The largest uncertainty about the petrogenesis of LEW87051 is the relationship between the large olivine crystals and the groundmass. Prinz et al. suggests that olivines are xenocrysts, while McKay et al. proposed a fractional cyrstallization model based on experimental studies. However, the crystals have Cr-rich and Ca-poor cores which do not match experimental olivines. Although Jurewicz and McKay tried to explaine the zoning of the rim by diffusion, some features are not explained. There also exists a definite composition boundary of Fe(2+) and MnO between the core and the rim. To clarify the origin of these olivines, we have performed experiments using LEW87051 analogs to measure the effects of oxygen fugacity on distribution coefficients of various elements in an angritic system.

  7. Neutron diffraction analysis of Nd3Fe29 - xTx (T=Ti, Cr, Mn)

    NASA Astrophysics Data System (ADS)

    Yelon, W. B.; Hu, Z.

    1996-02-01

    Rietveld analysis of neutron-diffraction data from Nd3Fe29-xTx (T=Ti, Cr, and Mn) has been used to determine the location of the substitutional atoms and the magnetic moments. Reanalysis of the T=Ti data confirms that the space group A2/m is a better choice than P21/c, which had previously been used to describe the structure. The Ti atom locations and concentrations remain unaffected in the two space groups, but for the other substituents the refined concentrations are well behaved in A2/m, whereas in P21/c the refinements were unstable due to the symmetry relations between certain substituted sites. The site occupancies are analyzed in terms of steric and environment effects. A possible explanation for the high Curie temperature of the Cr compound is proposed.

  8. Perpendicular magnetic anisotropy in Mn2CoAl thin film

    NASA Astrophysics Data System (ADS)

    Sun, N. Y.; Zhang, Y. Q.; Fu, H. R.; Che, W. R.; You, C. Y.; Shan, R.

    2016-01-01

    Heusler compound Mn2CoAl (MCA) is attracting more attentions due to many novel properties, such as high resistance, semiconducting behavior and suggestion as a spin-gapless material with a low magnetic moment. In this work, Mn2CoAl epitaxial thin film was prepared on MgO(100) substrate by magnetron sputtering. The transport property of the film exhibits a semiconducting-like behavior. Moreover, our research reveals that perpendicular magnetic anisotropy (PMA) can be induced in very thin Mn2CoAl films resulting from Mn-O and Co-O bonding at Mn2CoAl/MgO interface, which coincides with a recent theoretical prediction. PMA and low saturation magnetic moment could lead to large spin-transfer torque with low current density in principle, and thus our work may bring some unanticipated Heusler compounds into spintronics topics such as the domain wall motion and the current-induced magnetization reversal.

  9. Zoned chromites with high Mn-contents in the Fe-Ni-Cr-laterite ore deposits from the Edessa area in Northern Greece

    NASA Astrophysics Data System (ADS)

    Michailidis, K. M.

    1990-07-01

    The mineralogy of the transported Fe-Ni-Cr-laterite ore bodies from the Edessa area in Northern Greece was studied. The special emphasis was on the textural features and chemistry of chromite. The chromite was residually inherited in laterites from weathered ultramafic rocks and it displays zonation. Three main zones were optically distinguished: an inner chromite zone, an intermediate ferritechromite zone and a magnetite rim. These three zones have distinct compositions. The major oxides MgO and Al2O3 decrease from the chromite core to the ferritechromite zone, while FeOt increases and Cr2O3 either increases or decreases. A characteristic chemical feature of the chromite is the very high Mn-content in the ferritechromite zone, up to 20%wt MnO. Chemical zonation has, however, been detected in optically unzoned chromite cores rimmed by magnetite. The zoning and the high Mn-content of the chromite is a result of serpentinization in the presence of Mn-rich fluids, following lateritic weathering and finally Alpine low-grade metamorphism.

  10. Third element effect in the surface zone of Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Airiskallio, E.; Nurmi, E.; Heinonen, M. H.; Väyrynen, I. J.; Kokko, K.; Ropo, M.; Punkkinen, M. P. J.; Pitkänen, H.; Alatalo, M.; Kollár, J.; Johansson, B.; Vitos, L.

    2010-01-01

    The third element effect to improve the high temperature corrosion resistance of the low-Al Fe-Cr-Al alloys is suggested to involve a mechanism that boosts the recovering of the Al concentration to the required level in the Al-depleted zone beneath the oxide layer. We propose that the key factor in this mechanism is the coexistent Cr depletion that helps to maintain a sufficient Al content in the depleted zone. Several previous experiments related to our study support that conditions for such a mechanism to be functional prevail in real oxidation processes of Fe-Cr-Al alloys.

  11. A novel and high brightness AlN:Mn2+ red phosphor for field emission displays.

    PubMed

    Wang, Xiao-Jun; Xie, Rong-Jun; Dierre, Benjamin; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Sekiguchi, Takashi; Li, Huili; Sun, Zhuo

    2014-04-28

    Mn(2+) doped-AlN red phosphors were prepared by the solid-state reaction method. X-ray diffraction, SEM-EDS, photoluminescence and cathodoluminescence were utilized to characterize the prepared phosphor. Under UV light or electron beam excitation, the AlN:Mn(2+) phosphors exhibit a strong red emission centered at 600 nm, which is ascribed to the characteristic (4)T1((4)G)-(6)A1((6)S) transition of Mn(2+). Energy level diagrams were constructed to discuss the photoluminescence and cathodoluminescence processes of the AlN:1% Mn(2+) phosphor. The oxygen-related defects in AlN have great influence on the photoluminescence and cathodoluminescence properties of the AlN:1% Mn(2+) phosphor. The dependence of brightness on accelerating voltage or electric current, the decay behavior of CL intensity under the electron bombardment, and the stability of CIE chromaticity coordinates were investigated in detail. The results indicate that the AlN:Mn(2+) phosphor exhibits a higher brightness, higher color purity, and lower saturation compared to the red Y2O3:Eu(3+) phosphor, which gives the AlN:Mn(2+) phosphor great potential as a red phosphor for full color FEDs. PMID:24526132

  12. Corrosion Behavior of Thermally Sprayed NiCrBSi Coating on 16MnR Low-Alloy Steel in KOH Solution

    NASA Astrophysics Data System (ADS)

    Zeng, Q.; Sun, J.; Emori, W.; Jiang, S. L.

    2016-05-01

    NiCrBSi coatings were selected as protective material and air plasma-sprayed on 16MnR low-alloy steel substrates. Corrosion behavior of 16MnR substrates and NiCrBSi coatings in KOH solution were evaluated by polarization resistance ( R p), potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion corrosion tests. Electrolytes were solutions with different KOH concentrations. NiCrBSi coating showed superior corrosion resistance in KOH solution compared with the 16MnR. Corrosion current density of 16MnR substrate was 1.7-13.0 times that of NiCrBSi coating in the given concentration of KOH solution. By contrast, R p of NiCrBSi coating was 1.2-8.0 times that of the substrate, indicating that the corrosion rate of NiCrBSi coating was much lower than that of 16MnR substrate. Capacitance and total impedance value of NiCrBSi coating were much higher than those of 16MnR substrate in the same condition. This result indicates that corrosion resistance of NiCrBSi coating was better than that of 16MnR substrate, in accordance with polarization results. NiCrBSi coatings provided good protection for 16MnR substrate in KOH solution. Corrosion products were mainly Ni/Fe/Cr oxides.

  13. Optical properties of heusler alloys Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa

    NASA Astrophysics Data System (ADS)

    Shreder, E. I.; Svyazhin, A. D.; Belozerova, K. A.

    2013-11-01

    The results of an investigation of optical properties and the calculations of the electronic structure of Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa Heusler alloys are presented. The main focus of our attention is the study of the spectral dependence of the real part (ɛ1) and imaginary part (ɛ2) of the dielectric constant in the range of wavelengths λ = 0.3-13 μm using the ellipsometric method. An anomalous behavior of the optical conductivity σ(ω) has been found in the infrared range in the Co2CrAl and Co2CrGa alloys, which differs substantially from that in the Co2FeSi and Co2FeAl alloys. The results obtained are discussed based on the calculations of the electronic structure.

  14. The roles of Zr and Mn in processing and superplasticity of Al-Mg alloys

    NASA Technical Reports Server (NTRS)

    Mcnelley, Terry R.; Hales, S. J.

    1990-01-01

    Processing studies have been conducted on two alloys, of nominal compositions Al-10Mg-0.1Zr or Al-10Mg-0.5Mn, in order to clarify the role of the dispersoid forming Zr or Mn additions. Mechanical property data reveal that the Mn-containing alloy has a lower maximum elongation but exhibits superplastic response over a broader range of temperature. Microstructural investigations and texture analyses were utilized to assess the effect of the presence of Al8Mg5 precipitates in combination with either Al3Zr or Al6Mn dispersoid particles during isothermal rolling at 300 C and subsequent tensile deformation at temperatures from 200-425 C.

  15. Synthesis, structures and magnetic properties of the dimorphic Mn2CrSbO6 oxide.

    PubMed

    Dos santos-García, Antonio J; Solana-Madruga, Elena; Ritter, Clemens; Ávila-Brande, David; Fabelo, Oscar; Sáez-Puche, Regino

    2015-06-21

    The perovskite polymorph of Mn(2)CrSbO(6) compound has been synthesized at 8 GPa and 1473 K. It crystallizes in the monoclinic P21/n space group with cell parameters a = 5.2180 (2) Å, b = 5.3710(2) Å, c = 7.5874(1) Å and β = 90.36(1)°. Magnetic susceptibility and magnetization measurements show the simultaneous antiferromagnetic ordering of Mn(2+) and Cr(3+) sublattices below TN = 55 K with a small canting. Low temperature powder neutron diffraction reveals a commensurate magnetic structure with spins confined to the ac-plane and a propagation vector κ = [1/2 0 1/2]. The thermal treatment of this compound induces an irreversible phase transition to the ilmenite polymorph, which has been isolated at 973 K and crystallizes in R3[combining macron] space group with cell parameters a = 5.2084 (4) Å and c = 14.4000 (11) Å. Magnetic susceptibility, magnetization and powder neutron diffraction data confirm the antiferromagnetic helical ordering of spins in an incommensurate magnetic structure with κ = [00 0.46] below 60 K, and the temperature dependence of the propagation vector up to κ = [00 0.54] at about 10 K. PMID:25623228

  16. Synthesis, structures and magnetic properties of the dimorphic Mn2CrSbO6 oxide.

    PubMed

    Dos santos-García, Antonio J; Solana-Madruga, Elena; Ritter, Clemens; Ávila-Brande, David; Fabelo, Oscar; Sáez-Puche, Regino

    2015-06-21

    The perovskite polymorph of Mn(2)CrSbO(6) compound has been synthesized at 8 GPa and 1473 K. It crystallizes in the monoclinic P21/n space group with cell parameters a = 5.2180 (2) Å, b = 5.3710(2) Å, c = 7.5874(1) Å and β = 90.36(1)°. Magnetic susceptibility and magnetization measurements show the simultaneous antiferromagnetic ordering of Mn(2+) and Cr(3+) sublattices below TN = 55 K with a small canting. Low temperature powder neutron diffraction reveals a commensurate magnetic structure with spins confined to the ac-plane and a propagation vector κ = [1/2 0 1/2]. The thermal treatment of this compound induces an irreversible phase transition to the ilmenite polymorph, which has been isolated at 973 K and crystallizes in R3[combining macron] space group with cell parameters a = 5.2084 (4) Å and c = 14.4000 (11) Å. Magnetic susceptibility, magnetization and powder neutron diffraction data confirm the antiferromagnetic helical ordering of spins in an incommensurate magnetic structure with κ = [00 0.46] below 60 K, and the temperature dependence of the propagation vector up to κ = [00 0.54] at about 10 K.

  17. Electronic structure in the Al-Mn alloy crystalline analog of quasicrystals

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takeo

    1989-07-01

    Electronic structure in crystalline α-(Al114Mn24) is calculated by the linear muffin-tin orbital-atomic-sphere approximation method with the local-density-functional theory. The density of states consists of a set of spiky peaks. The electronic structure is discussed for quasicrystalline Al-Mn alloy from the viewpoint of the stability and the role of the vacant center of the Mackay icosahedron. The stability is actually owing to the pseudogap of the Mn 3d band and the deep s,p-bonding bands of the Al glue atoms.

  18. Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xiao, Gui-yong; Chen, Lu-bin; Lu, Yu-peng

    2014-12-01

    Acoustic emission (AE) monitored tensile tests were performed on 35CrMnSiA steel subjected to different heat treatments. The results showed that quenching and partitioning (Q-P) heat treatments enhanced the combined mechanical properties of high strength and high ductility for commercial 35CrMnSiA steel, as compared with traditional heat treatments such as quenching and tempering (Q-T) and austempering (AT). AE signals with high amplitude and high energy were produced during the tensile deformation of 35CrMnSiA steel with retained austenite (RA) in the microstructure (obtained via Q-P and AT heat treatments) due to an austenite-to-martensite phase transformation. Moreover, additional AE signals would not appear again and the mechanical properties would degenerate to a lower level once RA degenerated by tempering for the Q-P treated steel.

  19. Elimination of interface states of Co2MnSi/MgO/Co2MnSi magnetic tunneling junction by inserting an Al atomic layer

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Yang, G. W.

    2011-01-01

    Aiming at improvement performance of Co2MnSi/MgO/Co2MnSi magnetic tunneling junction (MTJ), we have studied interface behaviors of Co2MnSi/MgO by inserting an Al atomic layer between Heusler alloy and barrier, i.e., CoCo/Al/O, MnSi/Al/O, MnMn/Al/O and SiSi/Al/O four interfaces. It was found that CoCo/Al/O is stable and half-metallic, meaning interface states can be eliminated in this system. Hybridization and repulsion of transition-metal d and p states of sp atoms at interface and electrons transfer between interfacial atoms were suggested to be responsible for interface states elimination. These findings open a way to eliminate the interface states in MTJ.

  20. Manganese valence and coordination structure in Mn,Mg-codoped {gamma}-AlON green phosphor

    SciTech Connect

    Takeda, Takashi; Xie, Rong-Jun; Hirosaki, Naoto; Matsushita, Yoshitaka; Honma, Tetuso

    2012-10-15

    The valence and coordination structure of manganese in a Mn,Mg-codoped {gamma}-AlON spinel-type oxynitride green phosphor were studied by synchrotron X-ray diffraction and absorption fine structure measurements. The absorption edge position of the XANES revealed the bivalency of Mn. Two cation sites are available in the spinel structure for cation doping: a tetrahedral site and an octahedral site. The pre-edge of the XANES and the distance to the nearest neighbor atoms obtained from the EXAFS measurement showed that Mn was situated at the tetrahedral site. Rietveld analysis showed that the vacancy occupied the octahedral site. The preferential occupation of the tetrahedral site by Mn and the roles of N and Mg are discussed in relation to the spinel crystal structure. - Graphical Abstract: Fourier transform of EXAFS of Mn K-edge for Mn,Mg-codoped green phosphor and Mn coordination structure. Highlights: Black-Right-Pointing-Pointer Mn, Mg-codoped {gamma}-AlON green phosphor for white LED. Black-Right-Pointing-Pointer The valence of Mn is divalent. Black-Right-Pointing-Pointer Mn occupies the tetrahedral site in the spinel structure.

  1. Disorder, frustration and lattice volume effects in YMnIn, Th 0.8R 0.2MnAl (R=Sc, Lu and Y), ThMn 1.3Al 0.7 and ThMnAl 1- xIn x alloys

    NASA Astrophysics Data System (ADS)

    Dhar, S. K.; Manfrinetti, P.; Palenzona, A.

    2002-12-01

    The antiferromagnetic exchange interaction between the Mn ions in the cubic Laves-phase alloys Th 0.8R 0.2MnAl, ThMnAl 1- xIn x ( x≤0.2), ThMn 1.3Al 0.7 and the hexagonal Laves-phase YMnIn is inherently geometrically frustrated due to the tetrahedral co-ordination of the Mn ions. Together with disorder on the Mn-sublattice due to the partial replacement of Mn by Al and/or In, it leads to spin-glass-type freezing of the Mn magnetic moments in these alloys when the average Mn-Mn bond length is 2.850 Å or less. For alloys with greater bond lengths ( x>0.2), the data corroborate the suggestion made earlier [J. Magn. Magn. Mater. 231 (2000) 404] that the exchange becomes ferromagnetic.

  2. Microstructural stability of Fe-Cr-Al alloys at 450-550 °C

    NASA Astrophysics Data System (ADS)

    Ejenstam, Jesper; Thuvander, Mattias; Olsson, Pär; Rave, Fernando; Szakalos, Peter

    2015-02-01

    Iron-Chromium-Aluminium (Fe-Cr-Al) alloys have been widely investigated as candidate materials for various nuclear applications. Albeit the excellent corrosion resistance, conventional Fe-Cr-Al alloys suffer from α-α‧ phase separation and embrittlement when subjected to temperatures up to 500 °C, due to their high Cr-content. Low-Cr Fe-Cr-Al alloys are anticipated to be embrittlement resistant and provide adequate oxidation properties, yet long-term aging experiments and simulations are lacking in literature. In this study, Fe-10Cr-(4-8)Al alloys and a Fe-21Cr-5Al were thermally aged in the temperature interval of 450-550 °C for times up to 10,000 h, and the microstructures were evaluated mainly using atom probe tomography. In addition, a Kinetic Monte Carlo (KMC) model of the Fe-Cr-Al system was developed. No phase separation was observed in the Fe-10Cr-(4-8)Al alloys, and the developed KMC model yielded results in good agreement with the experimental data.

  3. First-principles calculations of the stability and hydrogen storage behavior of C14 Laves phase compound TiCrMn

    NASA Astrophysics Data System (ADS)

    Nong, Zhi-Sheng; Zhu, Jing-Chuan; Yang, Xia-Wei; Cao, Yong; Lai, Zhong-Hong; Liu, Yong; Sun, Wen

    2014-06-01

    The structural, elastic properties, electronic structure and hydrogen storage behavior of TiCrMn with a hexagonal C14 structure were investigated by the first-principles calculations within the frame work of DFT. The calculated lattice constants were consistent with the experimental values, and obtained cohesive energy and formation enthalpy showed TiCrMn is of the structural stability. These results also indicated that Mn atoms would optionally substitute on the Cr sites of TiCr2 phase to form the ternary intermetallic TiCrMn. The five independent elastic constants as well as polycrystalline elastic parameters (bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio ν and anisotropy value A) were calculated, and then the ductility and elastic anisotropy of TiCrMn were discussed in details. Furthermore, the electronic DOS and charge density distribution of TiCrMn were also calculated, which revealed the underlying mechanism of structural stability and chemical bonding. Finally, the binding energy of hydrogen in hydride TiCrMn(H3) was investigated, confirming the better hydrogen storage behavior of C14 Laves phase TiCrMn.

  4. Thermodynamics of MnO-SiO2-Al2O3-MnS Liquid Oxysulfide: Experimental and Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Kim, Ye-Jin; Woo, Dae-Hee; Gaye, Henri; Lee, Hae-Geon; Kang, Youn-Bae

    2011-06-01

    The activities of MnO and MnS in a MnO-SiO2-Al2O3(or AlO1.5)-MnS liquid oxysulfide solution were investigated by employing the gas/liquid/Pt-Mn alloy chemical equilibration technique under a controlled atmosphere at 1773 K (1500 °C). Also, the sulfide capacity, defined as C S = (wt pct S)( pO2/ pS2)1/2, in MnO-SiO2-Al2O3 slag with a dilute MnS concentration was obtained from the measured experimental data. As X SiO2/( X MnO + X SiO2) in liquid oxysulfide increases, the activity coefficient of MnO decreases, while that of MnS first increases and then decreases. As X(AlO1.5) in liquid oxysulfide increases, the activity coefficient of MnS increases, while no remarkable change is observed for the activity coefficient of MnO. The behavior of the activity coefficient of MnS was qualitatively analyzed by considering MnO + A x S y (SiS2 or Al2S3) = MnS + A x O y (SiO2 or Al2O3) reciprocal exchange reactions in the oxysulfide solution. The behavior was shown to be consistent with phase diagram data, namely, the MnS saturation boundary. Quantitative analysis of the activity coefficient of the oxysulfide solution was also carried out by employing the modified quasichemical model in the quadruplet approximation.

  5. Microstructure/Oxidation/Microhardness Correlations in Gamma-Based and Tau-Based Al-Ti-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Brady, Michael P.; Smialek, J. L.; Humphrey, D. L.

    1994-01-01

    The relationships between alloy microstructure and air oxidation kinetics and alloy microstructure and microhardness in the Al-Ti-Cr system for exposures at 800 C and 1000 C were investigated. The relevant phases were identified as tau (Ll2), gamma (LIO), r-Al2Ti, TiCrAl (laves), and Cr2AI. Protective alumina formation was associated with tau, Al-rich TiCrAl, and gamma/TiCrAl mixtures. Brittleness was associated with the TiCrAl phase and tau decomposition to A12Ti + Cr2AI. It was concluded that two-phase gamma + TiCrAl alloys offer the greatest potential for oxidation resistance and room temperature ductility in the Al-Ti-Cr system.

  6. Exploring the Cr2+ doping effect on structural, vibrational and dielectric properties of Mn-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Choudhary, Pankaj; Tyagi, Tarun; Dar, M. A.; Varshney, Dinesh

    2016-05-01

    A series of Cr doped Mn-Zn ferrites with compositional formula Mn0.5Zn0.5-xCrxFe2O4 (x = 0, 0.3, 0.5) were prepared by solid-state reaction route. X-ray diffraction (XRD) analysis reveals that the samples prepared are polycrystalline cubic spinel in structure (Fd3m) with some secondary phase of α-Fe2O3. Slight variation in the lattice parameter of Cr doped Mn0.5Zn0.5Fe2O4 has been observed due to difference in ionic radii of cations. Small shift in Raman modes towards higher wave number has been observed. Further the line width decreases with the doping ions. A giant dielectric constant ~104 is observed for parent Mn0.5Zn0.5Fe2O4 which is found to decrease with increase in Cr2+ doping. Low dielectric loss is observed for Mn0.5Zn0.5Fe2O4 and improves with Cr2+ doping at Zn2+ site.

  7. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters.

  8. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters. PMID:25649390

  9. Interactions in Ternary Mixtures of MnO2, Al2O3, and Natural Organic Matter (NOM) and the Impact on MnO2 Oxidative Reactivity.

    PubMed

    Taujale, Saru; Baratta, Laura R; Huang, Jianzhi; Zhang, Huichun

    2016-03-01

    Our previous work reported that Al2O3 inhibited the oxidative reactivity of MnO2 through heteroaggregation between oxide particles and surface complexation of the dissolved Al ions with MnO2 (S. Taujale and H. Zhang, "Impact of interactions between metal oxides to oxidative reactivity of manganese dioxide" Environ. Sci. Technol. 2012, 46, 2764-2771). The aim of the current work was to investigate interactions in ternary mixtures of MnO2, Al2O3, and NOM and how the interactions affect MnO2 oxidative reactivity. For the effect of Al ions, we examined ternary mixtures of MnO2, Al ions, and NOM. Our results indicated that an increase in the amount of humic acids (HAs) increasingly inhibited Al adsorption by forming soluble Al-HA complexes. As a consequence, there was less inhibition on MnO2 reactivity than by the sum of two binary mixtures (MnO2+Al ions and MnO2+HA). Alginate or pyromellitic acid (PA)-two model NOM compounds-did not affect Al adsorption, but Al ions increased alginate/PA adsorption by MnO2. The latter effect led to more inhibition on MnO2 reactivity than the sum of the two binary mixtures. In ternary mixtures of MnO2, Al2O3, and NOM, NOM inhibited dissolution of Al2O3. Zeta potential measurements, sedimentation experiments, TEM images, and modified DLVO calculations all indicated that HAs of up to 4 mg-C/L increased heteroaggregation between Al2O3 and MnO2, whereas higher amounts of HAs completely inhibited heteroaggregation. The effect of alginate is similar to that of HAs, although not as significant, while PA had negligible effects on heteroaggregation. Different from the effects of Al ions and NOMs on MnO2 reactivity, the MnO2 reactivity in ternary mixtures of Al2O3, MnO2, and NOM was mostly enhanced. This suggests MnO2 reactivity was mainly affected through heteroaggregation in the ternary mixtures because of the limited availability of Al ions.

  10. Comparative studies on the thermal stability and corrosion resistance of CrN, CrSiN, and CrSiN/AlN coatings

    SciTech Connect

    Kim, Gwang Seok; Kim, Sung Min; Lee, Sang Yul; Lee, Bo Young

    2009-07-15

    In this work, three kinds of Cr-based nitride coatings such as monolithic CrN, CrSiN coatings, and multilayered CrSiN/AlN coating with bilayer period of 3.0 nm were deposited on both Si (100) wafer and AISI H13 steel substrates by unbalanced magnetron sputtering. Thermal stability of these coatings was evaluated by annealing the coatings at temperatures between 600 and 1000 degree sign C for 30 min in air. In addition, the corrosion behaviors of these coatings were investigated by potentiodynamic polarization tests in a deaerated 3.5 wt. % NaCl solution at 40 degree sign C. Results from annealing test show the monolithic CrN and CrSiN coatings were completely oxidized after annealed at 800 and 900 degree sign C, and their cross sectional images and atomic force microscopy showed a loose and very porous morphology due to the oxidation. Also, the hardness values of the monolithic CrN and CrSiN coatings were decreased significantly from 22 and 27 GPa to 8 and 14 GPa, respectively. However, the multilayered CrSiN/AlN coating still exhibited a dense microstructure without visible change after annealed at 1000 degree sign C, and moreover, the relatively high hardness of 25 GPa was maintained. The superior thermal stability of the CrSiN/AlN multilayer coating could be attributed to the formation of the dense and stable oxidation barrier consisted of the Al{sub 2}O{sub 3}, Cr{sub 2}O{sub 3}, and amorphous SiO{sub 2} phases near the surface region, which retard the diffusion of oxygen into the coating. In the potentiodynamic polarization test results, it was found that the significantly improved corrosion resistance of the multilayered CrSiN/AlN coating was observed in comparison with those from the monolithic CrN and CrSiN coatings, and its corrosion current density (i{sub corr}) and protective efficiency were measured to be approximately 4.21 {mu}A/cm{sup 2} and 95%, respectively.

  11. Exchange bias effects in Heusler alloy Ni2MnAl/Fe bilayers

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Tomoki; Kubota, Takahide; Sugiyama, Tomoko; Huminiuc, Teodor; Hirohata, Atsufumi; Takanashi, Koki

    2016-06-01

    Ni2MnAl Heusler alloy thin films were epitaxially grown on MgO(1 0 0) single crystal substrates by ultra-high-vacuum magnetron sputtering technique. X-ray diffraction and transmission electron microscopy observation revealed that the structures of all the Ni2MnAl thin films were B2-ordered regardless of the deposition temperature ranging from room temperature to 600 °C. The temperature dependence of electrical resistivity showed a kink about 280 K, which was consistent with a reported value of the Néel temperature for antiferromagnetic B2-Ni2MnAl. The magnetization curves of Ni2MnAl/Fe bilayer samples showed a shift caused by the interfacial exchange interaction at 10 K. The maximum value of the exchange bias field H ex was 55 Oe corresponding to the exchange coupling energy J k of 0.03 erg cm-2.

  12. Ar + induced interfacial mixing and phase formation in the Al/Cr system

    NASA Astrophysics Data System (ADS)

    Kim, H. K.; Kim, S. O.; Song, J. H.; Kim, K. W.; Woo, J. J.; Whang, C. N.; Smith, R. J.

    1991-07-01

    Evaporated Al/Cr bilayer thin films were irradiated by 80 keV Ar + at doses in the range from 1 × 10 15 to 2 × 10 16 Ar +/cm 2 at room temperature in order to investigate the Ar + induced interfacial mixing behavior and the phase formation and transition by Ar + bombardment. Ion bombardment induces intermixing across the Al/Cr interface and mixing variance increases with increasing ion dose. Cascade and thermal spike models are found to be not adequate for the ion beam mixing mechanism at room temperature in this system. The Al 13Cr 2 phase is formed as an initial phase by ion beam mixing and then transforms into the Al 11Cr 2 or Al 4Cr phases at subsequent ion bombardment. This result is discussed in terms of the enhanced atomic mobility and the thermodynamical driving force by introducing the concept of an effective heat of formation.

  13. Development of Rare-Earth Free Mn-Al Permanent Magnet Employing Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Singh, N.; Shyam, R.; Upadhyay, N. K.; Dhar, A.

    2015-02-01

    Most widely used high-performance permanent magnets are currently based on intermetallics of rare-earths in combination with Fe and Co. Rare-earth elements required for these magnets are getting expensive by the day. Consequently, there is a thrust worldwide to develop economical rare-earth free permanent magnets. It is acknowledged that the phase in Mn-Al alloys possesses magnetic properties without the presence of ferromagnetic elements such as Fe, Co, and Ni. In the present study, we report the synthesis of magnetic phase of Mn54Al46 alloy synthesized using mechanical alloying followed by solutionizing and annealing to obtain the desired magnetic phase. It is well known that Al dissolves partially in Mn matrix hence supersaturated solid solution of Mn54Al46 alloy powder was obtained by mechanical alloying using a planetary high-energy ball mill. For this purpose elemental Mn and Al powders were ball-milled in Argon atmosphere at 400 rpm using stainless steel bowl with ball to powder ratio of 15:1. These mechanically alloyed Mn54Al46 powders were then consolidated using spark plasma sintering at 550°C for 20 min. followed by solution treatment at 1050°C for 5 hrs and then water quenched to retain high temperature phase. Subsequently, the Mn54Al46 samples were annealed in the temperature range 450°C-650°C to obtain the magnetic phase. These samples were characterized by XRD and SEM and the magnetic properties were measured using a vibrating sample magnetometer (VSM). It was observed that the magnetization and coercivity of MnAl magnets exhibited strong dependence on annealing temperature and annealing time.

  14. Evaluation of Ti-48Al-2Cr-2Nb Under Fretting Conditions

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.; Raj, Sai V.

    2001-01-01

    The fretting behavior of Ti-48Al-2Cr-2Nb (y-TiAl) in contact with the nickel-base superalloy 718 was examined in air at temperatures from 296 to 823 K (23 to 550 C). The interfacial adhesive bonds between Ti-48Al-2Cr-2Nb and superalloy 718 were generally stronger than the cohesive bonds within Ti-48Al-2Cr-2Nb. The failed Ti-48Al-2Cr-2Nb debris subsequently transferred to the superalloy 718. In reference experiments conducted with Ti-6Al-4V against superalloy 718 under identical fretting conditions, the degree of transfer was greater for Ti-6A1-4V than for Ti-48Al-2Cr-2Nb. Wear of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting frequency. The increasing rate of oxidation at elevated temperatures led to a drop in wear at 473 K. However, fretting wear increased as the temperature was increased from 473 to 823 K. At 723 and 823 K, oxide film disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.

  15. The effect of substitution of Mn by Fe and Cr on the martensitic transition in the Ni50Mn34In16 alloy.

    PubMed

    Sharma, V K; Chattopadhyay, M K; Nath, S K; Sokhey, K J S; Kumar, R; Tiwari, P; Roy, S B

    2010-12-01

    The potential shape memory alloy Ni(50)Mn(34)In(16) is studied with partial substitution of Mn with Fe and Cr to investigate the effect of such substitution on the martensitic transition in the Ni-Mn-In alloy system. The results of ac susceptibility, magnetization and electrical resistivity measurements show that while the substitution with Cr increases the martensitic transition temperature, the substitution with Fe decreases it. Possible reasons for this shift in martensitic transition are discussed. Evidence of kinetic arrest of the austenite to martensite phase transition in the Fe substituted alloys is also presented. Unlike the kinetic arrest of the austenite to martensite phase transition in the parent Ni(50)Mn(34)In(16) alloy which takes place in the presence of high external magnetic field, the kinetic arrest of the austenite to martensite phase transition in the Fe doped alloy occurs even in zero magnetic field. The Cr substituted alloys, on the other hand, show no signature of kinetic arrest of this phase transition.

  16. Structural disorder and magnetism in the spin-gapless semiconductor CoFeCrAl

    NASA Astrophysics Data System (ADS)

    Choudhary, Renu; Kharel, Parashu; Valloppilly, Shah R.; Jin, Yunlong; O'Connell, Andrew; Huh, Yung; Gilbert, Simeon; Kashyap, Arti; Sellmyer, D. J.; Skomski, Ralph

    2016-05-01

    Disordered CoFeCrAl and CoFeCrSi0.5Al0.5 alloys have been investigated experimentally and by first-principle calculations. The melt-spun and annealed samples all exhibit Heusler-type superlattice peaks, but the peak intensities indicate a substantial degree of B2-type chemical disorder. Si substitution reduces the degree of this disorder. Our theoretical analysis also considers several types of antisite disorder (Fe-Co, Fe-Cr, Co-Cr) in Y-ordered CoFeCrAl and partial substitution of Si for Al. The substitution transforms the spin-gapless semiconductor CoFeCrAl into a half-metallic ferrimagnet and increases the half-metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of CoFeCrSi0.5Al0.5 is predicted to increase from 2.01 μB to 2.50 μB per formula unit, in good agreement with experiment.

  17. Effect of Ni content on microwave absorbing properties of MnAl powder

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-zhong; Lin, Pei-hao; Huang, Wei-chao; Pan, Shun-kang; Liu, Ye; Wang, Lei

    2016-09-01

    MnAlNi powder was prepared by the process of vacuum levitation melting and high-energy ball milling, The morphology and phase structure of the powder were analyzed by Scanning Electron Microscope(SEM), X-ray diffraction(XRD) and the effect of the Ni content on microwave absorbing properties of MnAl powder was investigated by an vector network analyzer. The addition of Ni, which improved the microwave absorbing properties of MnAl powder but not changed the composition of Al8Mn5 alloy. The minimum reflectivity of (Al8Mn5)0.95Ni0.05 powder with a coating thickness (d) of 1.8 mm was about -40.8 dB and has better bandwidth effect, the absorbing mechanism of AlMnNi powders on the electromagnetic was related to the electromagnetic loss within the absorbing coatings and the effect of coating thickness on the interference loss of electromagnetic wave.

  18. Magnetism of hexagonal Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials

    SciTech Connect

    Fuglsby, R.; Kharel, P.; Zhang, W.; Sellmyer, D. J.; Valloppilly, S.; Huh, Y.

    2015-05-07

    Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials in the hexagonal Ni{sub 2}In-type crystal structure have been prepared using arc-melting and melt spinning. All the rapidly quenched Mn{sub 1.5}X{sub 0.5}Sn alloys show moderate saturation magnetizations with the highest value of 458 emu/cm{sup 3} for Mn{sub 1.5}Fe{sub 0.5}Sn, but their Curie temperatures are less than 300 K. All samples except the Cr containing one show spin-glass-like behavior at low temperature. The magnetic anisotropy constants calculated from the high-field magnetization curves at 100 K are on the order of 1 Merg/cm{sup 3}. The vacuum annealing of the ribbons at 550 °C significantly improved their magnetic properties with the Curie temperature increasing from 206 K to 273 K for Mn{sub 1.5}Fe{sub 0.5}Sn.

  19. Microstructural characterization of Al-rich Ni-Cr-Al cast alloys

    SciTech Connect

    Gonzalez-Carrasco, J.L.; Adeva, P.; Cristina, M.C.; Aballe, M. )

    1994-09-01

    Several Ni-Cr-Al alloys, with up to 30 at.% Al, were prepared in an induction furnace and cast under inert atmosphere. All alloys were homogenized for 8 h at 1,473 K under an argon atmosphere, followed by treatments at temperatures between 1,023 and 1,273 K for times up to 180 h. These alloys contain phases that are to a great extent, structurally similar. This is frequently complicated further by their particle size and their degree of order. Their characterization is not always simple and usually must be based on more than one technique. In this work the microstructural evolution was studied by means of light microscopy, scanning electron microscopy and microanalysis, and X-ray diffraction techniques. For completeness, hardness and microhardness tests were performed to evaluate the precipitation phenomenon.

  20. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Deming; Chen, Guiqing; Wang, Yuesheng

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  1. Red-emitting AlN:Mn2+ phosphors prepared by combustion synthesis

    NASA Astrophysics Data System (ADS)

    Shi, Zhongqi; Zou, Yongyong; Jing, Ruifeng; Zhang, Kuo; Qiao, Guanjun; Wang, Hongjie

    2015-12-01

    Red-emitting Mn2+-doped AlN(AlN:Mn2+) phosphors were successfully prepared by a highly effective combustion synthesis method. The phase purity, morphology, element-composition and luminescence properties of the synthesized phosphors were investigated. X-ray diffraction (XRD) results show that the Mn2+-doped into the AlN host did not induce a second phase and distort the structure significantly. Scanning electron microscopy (SEM) images display that the phosphors have an irregular shape with a particle size in the range of 1-5 μm. X-ray photoelectron spectroscopy (XPS) spectrum indicates that Mn ions are divalent state. The synthesized AlN:Mn2+ phosphors exhibit a strong red emission centered at 600 nm, which is ascribe to the 4T1(4G)-6A1(6S) transition of Mn2+ under ultraviolet excitation. The emission intensity reaches its maximum when Mn2+-doped concentration is 3 mol%.

  2. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    DOE PAGES

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar; Terrani, Kurt A.; Field, Kevin G.

    2016-02-17

    Model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) have been neutron irradiated at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. This is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning of the Al from themore » α' precipitates was also observed.« less

  3. Effects of biaxial strain on stability and half-metallicity of Cr and Mn pnictides and chalcogenides in the zinc-blende structure

    NASA Astrophysics Data System (ADS)

    Miao, M. S.; Lambrecht, Walter R. L.

    2005-08-01

    The effects of biaxial strain, imposed by epitaxial growth conditions, on the half-metallicity properties of Cr and Mn pnictides and chalcogenides were investigated using local spin-density-functional calculations. The minority band gaps were found to decrease significantly under the biaxial strain, whereas the spin-flip gaps changed only slightly. The calculations show that under epitaxial conditions for any choice of substrate, CrSe, MnAs, MnSe, and MnTe cannot be half metallic; CrAs and CrTe are barely half metallic as their SF gap is close to zero; and only CrSb and MnSb remain distinct half metals with spin-flip gaps of 0.9 and 0.3eV , respectively.

  4. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  5. An investigation of Cr(VI) removal with metallic iron in the co-presence of sand and/or MnO2.

    PubMed

    Gheju, M; Balcu, I; Vancea, C

    2016-04-01

    This study focused on the influence of sand and/or MnO2 co-presence on the mechanism and kinetics of Cr(VI) removal with Fe(0). The process was investigated under acidic and well-mixed conditions, over the temperature range of 6-32 °C. It was shown that both mechanism and kinetics of the removal process were highly dependent on composition and dose of reactive mixture added to Cr(VI) solution. At 22 °C, indirect chemical reduction with Fe(II) was the main removal path in H2O-Fe(0)-Cr(VI) and H2O-Fe(0)-Sand-Cr(VI) system, while in H2O-Fe(0)-MnO2-Cr(VI) and H2O-Fe(0)-MnO2-Sand-Cr(VI) system removal of Cr(VI) occurred mainly via adsorption on MnO2. The pseudo zero-order kinetic model provided the best match for H2O-Fe(0)-Cr(VI) and H2O-Fe(0)-Sand-Cr(VI) system, while in H2O-Fe(0)-MnO2-Cr(VI) and H2O-Fe(0)-MnO2-Sand-Cr(VI) system the process fitted well to the pseudo second-order model. Temperature influenced the efficiency and kinetics of the process in all investigated systems, and the removal mechanism only in H2O-Fe(0)-MnO2-Cr(VI) and H2O-Fe(0)-MnO2-Sand-Cr(VI) system.

  6. An investigation of Cr(VI) removal with metallic iron in the co-presence of sand and/or MnO2.

    PubMed

    Gheju, M; Balcu, I; Vancea, C

    2016-04-01

    This study focused on the influence of sand and/or MnO2 co-presence on the mechanism and kinetics of Cr(VI) removal with Fe(0). The process was investigated under acidic and well-mixed conditions, over the temperature range of 6-32 °C. It was shown that both mechanism and kinetics of the removal process were highly dependent on composition and dose of reactive mixture added to Cr(VI) solution. At 22 °C, indirect chemical reduction with Fe(II) was the main removal path in H2O-Fe(0)-Cr(VI) and H2O-Fe(0)-Sand-Cr(VI) system, while in H2O-Fe(0)-MnO2-Cr(VI) and H2O-Fe(0)-MnO2-Sand-Cr(VI) system removal of Cr(VI) occurred mainly via adsorption on MnO2. The pseudo zero-order kinetic model provided the best match for H2O-Fe(0)-Cr(VI) and H2O-Fe(0)-Sand-Cr(VI) system, while in H2O-Fe(0)-MnO2-Cr(VI) and H2O-Fe(0)-MnO2-Sand-Cr(VI) system the process fitted well to the pseudo second-order model. Temperature influenced the efficiency and kinetics of the process in all investigated systems, and the removal mechanism only in H2O-Fe(0)-MnO2-Cr(VI) and H2O-Fe(0)-MnO2-Sand-Cr(VI) system. PMID:26826456

  7. Diffusional transport during the cyclic oxidation of gamma + beta, Ni-Cr-Al(Y, Zr) alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1988-01-01

    The cyclic oxidation behavior of several cast gamma + beta, Ni-Cr-Al(Y, Zr) alloys and one low-pressure plasma spraying gamma + beta, Ni-Co-Cr-Al(Y) alloy was studied. Cyclic oxidation was found to result in a decreasing Al concentration at the oxide-metal interface due to a high rate of Al consumption coupled with oxide scale cracking and spalling. Diffusion paths plotted on the ternary phase diagram showed higher Ni concentrations with increasing cyclic oxidation exposures. The alloy with the highest rate of Al consumption and the highest Al content underwent breakaway oxidation following 500 1-hr cycles at 1200 C.

  8. Weldability of a high entropy CrMnFeCoNi alloy

    DOE PAGES

    Wu, Zhenggang; David, Stan A.; Feng, Zhili; Bei, Hongbin

    2016-07-19

    We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ ofmore » the tested alloy.« less

  9. Texture evolution of cold rolled and reversion annealed metastable austenitic CrMnNi steels

    NASA Astrophysics Data System (ADS)

    Weidner, A.; Fischer, K.; Segel, C.; Schreiber, G.; Biermann, H.

    2015-04-01

    A thermo-mechanical process consisting of cold rolling and subsequent reversion annealing was applied to high-alloy metastable austenitic CrMnNi steels with different nickel contents. As a result of the reversion annealing ultrafine grained material with a grain size in the range between 500 nm up to 4 μm were obtained improving the strength behavior of the material. The evolution of the texture of both the cold rolled states and the reversion-annealed states was studied either by X-ray diffraction or by EBSD measurements. The nickel content has a significant influence on the austenite stability and consequently also on the amount of the martensitic phase transformation. However, the developed textures in both steel variants with different austenite stability revealed the same behavior. In both investigated steels the texture of the reverted austenite is a pronounced Bs-type texture as developed also for the deformed austenite

  10. Comparison in mechanical and tribological properties of CrTiAlMoN and CrTiAlN nano-multilayer coatings deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Guojun; Jiang, Bailing

    2016-02-01

    CrTiAlN and CrTiAlMoN nano-multilayer coatings were deposited by closed field unbalanced magnetron sputtering. TiMoN and CrTiMoN nano-multilayer coatings with same Mo2N layer thickness were also prepared for comparison. The structure of these coatings is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The mechanical and tribological properties were characterized and compared by nano-indentation and ball-on-disc test. It was found that these coatings were structured by fcc metal nitride phases (including CrN, TiN, AlN and Mo2N) and the preferred orientation changed from (1 1 1) to (2 0 0) with the increase of Mo content. The TEM results showed that the coatings exhibited typical columnar structure and nano-multilayer structure with modulation periods ranged from 3.2 nm to 7.6 nm. Among these coatings, CrTiAlMoN coatings presented the highest hardness, lowest coefficient of friction (COF) and wear rate. The hardness of these nano-multilayer coatings were determined by layer interfaces: TiN/Mo2N and AlN/Mo2N layer interface showed benefit on hardness enhancement while CrN/Mo2N layer interface led to a great hardness decrement. In comparison with the other as-deposited coatings, the low COF of CrTiAlMoN coatings was not only affected by Mo addition but also related to its oxidation behaviors.

  11. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-09-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  12. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-07-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  13. High-pressure geochemistry of Cr, V and MN and implications for the origin of the moon

    NASA Astrophysics Data System (ADS)

    Ringwood, A. E.; Kato, T.; Hibberson, W.; Ware, N.

    1990-09-01

    Experimental studies of the partitioning of Cr, V, and Mn between molten iron and silicates show that these elements are lithophile at the pressures, temperatures, and oxygen fugacities prevailing in the earth's upper mantle and in the moon. Here, it is shown that at much higher pressures, corresponding to those in the earth's lower mantle, the partitioning behavior of Cr, V, and Mn changes owing to increasing solubility of oxygen in molten iron. Cr and V, and perhaps Mn, are preferentially partitioned into molten iron under these conditions. The depletion of these elements in the earth's mantle is therefore attributed to their siderophile behavior during formation of the earth's core, at pressures that were sufficiently high to cause substantial amounts of oxygen to dissolve in molten metallic iron. Similar depletion patterns of Cr, V, and Mn in the earth's mantle and the moon strongly suggest that a large proportion of the moon was derived from the earth's mantle after the earth's core had segregated.

  14. V, Cr, and Mn in the earth, moon, EPB, and SPB and the origin of the moon - Experimental studies

    NASA Technical Reports Server (NTRS)

    Drake, Michael J.; Capobianco, Christopher J.; Newsom, Horton E.

    1989-01-01

    The abundances of V, Cr, and Mn inferred for the mantles of the earth and moon decrease in that order and are similar in both mantles (but distinct from those in the mantles of the Eucrite Parent Body and Shergottite Parent Body), suggesting a common origin for the mantles of the earth and the moon. This hypothesis was investigated on the basis of a comparison between the depletions of V, Cr, and Mn in the mantles of the earth and the moon, and the metal/silicate partition coefficients of these elements at 1260 C and 1 bar pressure among a S-bearing metallic liquid, a silicate melt, and a FeNi alloy. It was found that the earth and the moon depletions of V, Cr, and Mn are not correlated with metal/silicate partition coefficients; the V and Cr partitioned into S-rich metallic liquids under reducing conditions more strongly than Mn, consistent with the relative volatilities of these elements. This indicates that the depletion patterns of these elements in the mantles of the earth and moon cannot be attributed primarily to terrestrial core formation.

  15. The Effect of Core-Mantle Differentiation on V, Cr, and Mn: Experimental Metal/Silicate Partitioning Results

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Agee, C. B.

    2001-01-01

    The abundances of V, Cr, and Mn are similarly depleted in the Earth and Moon. We present metal/silicate partitioning results which examine if the depletions can be explained by a core formation event. Additional information is contained in the original extended abstract.

  16. Further Observations of Fe-60-Ni-60 and Mn-53-Cr-53 Isotopic Systems in Sulfides from Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Guan, Y.; Huss, G. R.; Leshin, L. A.

    2004-01-01

    Recent studies have shown that short-lived Fe-60 (t(sub 1/2) = 1.5 Ma) was present in some components of ordinary and enstatite chondrites when they formed. Here we report additional data on Fe-60 from sulfides in enstatite chondrites and on the potential relationship between the Fe-60-Ni-60 and Mn-53-Cr-53 systems.

  17. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.; Unocic, Kinga A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  18. NMR study of the ternary carbides M2 AlC (M=Ti,V,Cr)

    NASA Astrophysics Data System (ADS)

    Lue, C. S.; Lin, J. Y.; Xie, B. X.

    2006-01-01

    We have performed a systematic study of the layered ternary carbides Ti2AlC , V2AlC , and Cr2AlC using Al27 NMR spectroscopy. The quadrupole splittings, Knight shifts, as well as spin-lattice relaxation times on each material have been identified. The sign of the isotropic Knight shift varies from positive for Ti2AlC and V2AlC to negative for Cr2AlC , attributed to the enhancement of hybridization with increasing valence electron count in the transition metal. Universally long relaxation times are found for these alloys. Results provide a measure of Al-s Fermi-level density of states Ns(EF) for Ti2AlC and V2AlC . In addition, the evidence that Ns(EF) correlates with the transition metal d -electron count has been explored in the present NMR investigation.

  19. Toluene removal by sequential adsorption-plasma catalytic process: Effects of Ag and Mn impregnation sequence on Ag-Mn/γ-Al2O3.

    PubMed

    Qin, Caihong; Huang, Xuemin; Dang, Xiaoqing; Huang, Jiayu; Teng, Jingjing; Kang, Zhongli

    2016-11-01

    A series of Ag-Mn/γ-Al2O3 were prepared under different Ag/Mn impregnation sequence and tested in the sequential adsorption-plasma catalytic removal of toluene. When Mn was impregnated first, the resulting catalyst, Ag-Mn(F)/γ-Al2O3, had longer breakthrough time, gave less emission of toluene, had higher CO2 selectivity, and had better carbon balance and COx yield compared to catalysts prepared via other impregnation sequences. After 120 min of NTP treatment, the carbon balance of Ag-Mn(F)/γ-Al2O3 was 91%, with 87% as COx contributions. A Brunauer-Emmett-Teller (BET) analysis and X-ray photoelectron spectroscopy (XPS) results show that, the impregnation sequence impacts the BET surface area and the ratio and existing state of Ag on the surface of the catalysts. The longer breakthrough time when using Ag-Mn(F)/γ-Al2O3 as catalyst is attributed to the large amount of Ag(+) on the surface. Ag(+) is a new active site for toluene adsorption. When Ag was impregnated first (Ag(F)-Mn/γ-Al2O3) or Ag and Mn co-impregnated (Ag-Mn-C/γ-Al2O3), the predominant specie was Ag(+). Both Ag(0) and Ag(+) species were detected on Ag-Mn(F)/γ-Al2O3. Ag(0) cooperation with MnOx may promote the migration of surface active oxygen. This would facilitate the oxidation of adsorbed toluene with CC bond already weakened by Ag(+) and would result in higher CO2 selectivity and better carbon balance as seen in the Ag-Mn(F)/γ-Al2O3 system. PMID:27494312

  20. Toluene removal by sequential adsorption-plasma catalytic process: Effects of Ag and Mn impregnation sequence on Ag-Mn/γ-Al2O3.

    PubMed

    Qin, Caihong; Huang, Xuemin; Dang, Xiaoqing; Huang, Jiayu; Teng, Jingjing; Kang, Zhongli

    2016-11-01

    A series of Ag-Mn/γ-Al2O3 were prepared under different Ag/Mn impregnation sequence and tested in the sequential adsorption-plasma catalytic removal of toluene. When Mn was impregnated first, the resulting catalyst, Ag-Mn(F)/γ-Al2O3, had longer breakthrough time, gave less emission of toluene, had higher CO2 selectivity, and had better carbon balance and COx yield compared to catalysts prepared via other impregnation sequences. After 120 min of NTP treatment, the carbon balance of Ag-Mn(F)/γ-Al2O3 was 91%, with 87% as COx contributions. A Brunauer-Emmett-Teller (BET) analysis and X-ray photoelectron spectroscopy (XPS) results show that, the impregnation sequence impacts the BET surface area and the ratio and existing state of Ag on the surface of the catalysts. The longer breakthrough time when using Ag-Mn(F)/γ-Al2O3 as catalyst is attributed to the large amount of Ag(+) on the surface. Ag(+) is a new active site for toluene adsorption. When Ag was impregnated first (Ag(F)-Mn/γ-Al2O3) or Ag and Mn co-impregnated (Ag-Mn-C/γ-Al2O3), the predominant specie was Ag(+). Both Ag(0) and Ag(+) species were detected on Ag-Mn(F)/γ-Al2O3. Ag(0) cooperation with MnOx may promote the migration of surface active oxygen. This would facilitate the oxidation of adsorbed toluene with CC bond already weakened by Ag(+) and would result in higher CO2 selectivity and better carbon balance as seen in the Ag-Mn(F)/γ-Al2O3 system.

  1. Cr-Al coatings on low carbon steel prepared by a mechanical alloying technique

    NASA Astrophysics Data System (ADS)

    Hia, A. I. J.; Sudiro, T.; Aryanto, D.; Sebayang, K.

    2016-08-01

    Four different compositions of Cr and Al coatings as Cr10o, Cr87.5Al12.5, Cr5oAl5o, and Al100 have been prepared on the surface of low carbon steel by a mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Hereafter, the Cr-Al powder and substrate were mechanical alloyed in air for 1 hour. Heat treatment of coated sample were carried out at 800°C in a vacuum furnace. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The results show that Cr, Cr-Al or Al coatings were formed on the surface of low carbon steel. After heat treatment, new phases and interdiffusion zone were formed in the coating and at the coating/steel interface, depending on the coating composition.

  2. The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance

    NASA Astrophysics Data System (ADS)

    Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini

    2012-06-01

    Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.

  3. Effect of on-site Coulomb interaction (U) on the electronic and magnetic properties of Fe2MnSi, Fe2MnAl and Co2MnGe

    NASA Astrophysics Data System (ADS)

    Sharma, Sonu; Pandey, Sudhir K.

    2016-04-01

    The electronic band structures, density of states' plots and magnetic moments of Fe2MnSi, Fe2MnAl, and Co2MnGe are studied by using the first principles calculation. The FM solutions using LSDA without U show the presence of half-metallic ferromagnetic (HFM) ground state in Fe2MnSi, whereas the ground state of Fe2MnAl is found to be metallic. In both compounds the maximum contribution to the total magnetic moment is from the Mn atom, while the Fe atom contributes very less. The electronic structures and magnetic moments of Fe-based compounds are affected significantly by U under around-the-mean-field (AMF) double counting scheme, whereas its effect is very less on Co2MnGe. The magnetic moment of Fe atom in Fe2MnSi (Fe2MnAl) increased by ∼70% (∼75%) and in Mn atom it decreases by ∼50% (∼70%) when the value of U is increased from 1 to 5 eV. Hund's like exchange interactions are increasing in Fe atom while decreasing in Mn atom with increase in U. The Fe and Mn moments are ferromagnetically coupled in Fe2MnSi for all values of U, whereas in Fe2MnAl they are coupled antiferromagnetically below U=2 eV and ferromagnetically above it. Above U=2 eV the metallic ground state of Fe2MnAl changes to semiconducting ground state and the ferromagnetic coupling between Fe and Mn atoms appears to be responsible for this. This shows that the validity of AFM double counting scheme is not robust for the entire range of U in the Fe2MnAl compound.

  4. Solid state reduction of chromium (VI) pollution for Al2O3-Cr metal ceramics application

    NASA Astrophysics Data System (ADS)

    Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yangai; Tang, Hao; Min, Xin; Wu, Xiaowen

    2016-04-01

    Reduction of chromium (VI) from Na2CrO4 through aluminothermic reaction and fabrication of metal-ceramic materials from the reduction products have been investigated in this study. Na2CrO4 could be successfully reduced into micrometer-sized Cr particles in a flowing Ar atmosphere in presence of Al powder. The conversion ratio of Na2CrO4 to metallic Cr attained 96.16% efficiency. Al2O3-Cr metal-ceramic with different Cr content (5 wt%, 10 wt%, 15 wt%, 20 wt%) were further prepared from the reduction product Al2O3-Cr composite powder, and aluminum oxide nanopowder via pressure-less sintering. The phase composition, microstructure and mechanical properties of metal-ceramic composites were characterized to ensure the potential of the Al2O3-Cr composite powder to form ceramic materials. The highest relative density and bending strength can reach 93.4% and 205 MP, respectively. The results indicated that aluminothermic reduction of chromium (VI) for metal-ceramics application is a potential approach to remove chromium (VI) pollutant from the environment.

  5. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    SciTech Connect

    He, Y.R.; Zheng, M.H.; Rapp, R.A.

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  6. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy

    DOE PAGES

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with amore » composition of FeNiMnCr18 was successfully developed. This near-equiatomic FeNiMnCr18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.« less

  7. Sulfidation resistant coatings for coal gasification process equipment. Final technical report. [FeCrAl and CoCrAl alloys

    SciTech Connect

    Perkins, R.A.; Packer, C.M.

    1985-05-01

    This report presents the results of a program of research to develop and evaluate sulfidation resistant coatings for low alloy and stainless steel components of coal gasification process equipment. Furnace fused CoCrAl and FeCrAl coatings were developed for use on 304SS, and laboratory tests indicate good resistance to attack by simulated slagging gasifier atmospheres at 1000 to 1300/sup 0/F (538 to 704/sup 0/C). The CoCrAl coating exhibits the best performance and will protect 304SS at 1000 to 1600/sup 0/F (537 to 871/sup 0/C) for over 1500 hr. These coatings will protect 304SS at 1600/sup 0/F (871/sup 0/C) at the highest level of P/sub S/sub 2// for any level of P/sub O/sub 2// compared with other alloys and surface coatings. Weld parameters were studied for the deposition of FeCrAl clad layers on FeCrAl and Alloy 800 plate and on T-91 steel tube. Crack-free weld deposited layers could not be produced under any conditions for alloys with as little as 4% Al and the technical feasibility of cladding steels with weld deposited FeCrAl is considered to be poor. Similar results were obtained in tests by laser surface fusion of CoCrAl and FeCrAl coatings on 310SS and T-11 steel. The technical feasibility of aluminizing and chromizing low alloy steels by a slip pack diffusion process has been demonstrated. High quality aluminide coatings on T-11 steel resistant to CGA attack at 1000 to 1600/sup 0/F were produced. Performance was equal to or better than that of commercial pack aluminized steels. The process is considered to have the potential for a major improvement in quality and performance of large, complex components aluminized by the pack diffusion process. Development and scale up of the process is recommended. 30 refs., 63 figs., 38 tabs.

  8. Spectroscopic properties of {Cr}^{3+} in the spinel solid solution {ZnAl}_{2-x}{Cr}x{O}_4

    NASA Astrophysics Data System (ADS)

    Verger, Louisiane; Dargaud, Olivier; Rousse, Gwenaelle; Rozsályi, Emese; Juhin, Amélie; Cabaret, Delphine; Cotte, Marine; Glatzel, Pieter; Cormier, Laurent

    2016-01-01

    The evolution of the structural environment of {Cr}{^{3+}} along the solid solution {ZnAl}_{2-x}{Cr}x{O}_4 has been investigated using a multi-analytical approach. X-ray diffraction confirms that the system follows Vegard's law. Diffuse reflectance spectra show a decrease of the crystal field parameter with the Cr content, usually related to the increase of the Cr-O bond length in a point charge model. This interpretation is discussed and compared to the data obtained by first-principle calculations based on density functional theory. X-ray absorption near edge structure spectra at the Cr K-edge show a pronounced evolution in the pre-edge with the Cr content, characterised by the appearance of a third feature. Calculations enable to assign the origin of this feature to Cr neighbours. The colour change from pink to brownish pink and eventually green along the solid solution has also been quantified by calculating the L*, a*, b* and x, y coefficients in the system defined by the International Commission on Illumination.

  9. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  10. Oxidation behavior of arc evaporated Al-Cr-Si-N thin films

    SciTech Connect

    Tritremmel, Christian; Daniel, Rostislav; Mitterer, Christian; Mayrhofer, Paul H.; Lechthaler, Markus; Polcik, Peter

    2012-11-15

    The impact of Al and Si on the oxidation behavior of Al-Cr-(Si)-N thin films synthesized by arc evaporation of powder metallurgically prepared Al{sub x}Cr{sub 1-x} targets with x = Al/(Al + Cr) of 0.5, 0.6, and 0.7 and (Al{sub 0.5}Cr{sub 0.5}){sub 1-z}Si{sub z} targets with Si contents of z = 0.05, 0.1, and 0.2 in N{sub 2} atmosphere was studied in detail by means of differential scanning calorimetry, thermogravimetric analysis (TGA), x-ray diffraction, and Raman spectroscopy. Dynamical measurements in synthetic air (up to 1440 Degree-Sign C) revealed the highest onset temperature of pronounced oxidation for nitride coatings prepared from the Al{sub 0.4}Cr{sub 0.4}Si{sub 0.2} target. Isothermal TGA at 1100, 1200, 1250, and 1300 Degree-Sign C highlight the pronounced improvement of the oxidation resistance of Al{sub x}Cr{sub 1-x}N coatings by the addition of Si. The results show that Si promotes the formation of a dense coating morphology as well as a dense oxide scale when exposed to air.

  11. Reduction of Cr (VI) by organic acids in the presence of Al (III).

    PubMed

    Chen, Na; Lan, Yeqing; Wang, Bo; Mao, Jingdong

    2013-09-15

    The effects of Al (III) on the reduction of Cr (VI) by three α-hydroxy acids, tartaric, malic and citric acids, were investigated through batch experiments at pH from 2.5 to 4.0 and temperatures from 25 °C to 35 °C. These reactions could be described as pseudo-zero-order with respect to Cr (VI) when the concentrations of α-hydroxy acids were greatly in excess. The transformation rates of Cr (VI) to Cr (III) in the presence of Al (III) without light were in the decreasing order of tartaric acid>malic acid>citric acid. This order suggested that the two α-hydroxyl groups in tartaric acid could play an important role in the reduction of Cr (VI) by organic acids. The possible mechanism was that the formed complex between organic acids and Al (III) significantly enhanced the reductivity of α-hydroxy acids and further led to the more complicated Cr (VI)-tartaric acid-Al (III) cyclic ester which greatly accelerated the reduction rate. The Cr (VI) reduction reaction rate increased with the decrease of pH but with the increase of Al (III) concentration, tartaric acid concentration, and temperature. As the pH decreased, the increase of [H(+)] led to an increase in {Al(III)H₂Tar₂}(+), the most active species, and thus the enhanced reduction rate.

  12. Covalent bonds and their crucial effects on pseudogap formation in α-Al(Mn,Re)Si icosahedral quasicrystalline approximant

    NASA Astrophysics Data System (ADS)

    Kirihara, K.; Nagata, T.; Kimura, K.; Kato, K.; Takata, M.; Nishibori, E.; Sakata, M.

    2003-07-01

    X-ray charge densities of Al-based icosahedral quasicrystalline approximant crystals α-AlReSi, α-AlMnSi, and Al12Re were observed by a combination of the maximum entropy method with the Rietveld method. We successfully obtained the clear images of interatomic covalent bonds between Al and transition metals (Mn, Re) and those in the Al (or Si) icosahedron in Mackay icosahedral clusters of both α-AlReSi and α-AlMnSi approximant crystals. The bonding nature of the three kinds of glue atom sites connecting Mackay icosahedral clusters was also clarified. This covalent bonding nature should strongly relate with the enhancement of the electron density-of-states pseudogap near the Fermi level. In addition, the interatomic covalent bonds of α-AlReSi are stronger than those of α-AlMnSi. This fact leads to the low effective carrier density of α-AlReSi in comparison with that of α-AlMnSi. Unlike the covalent bonding nature of an icosahedron in α-AlReSi and α-AlMnSi crystals, the Al icosahedron with an Re center atom exhibits no Al-Al interatomic covalent bonds in the Al12Re crystal. The tendency for metallic-covalent bonding conversion in the Al icosahedron, which is related to the atom site occupancy of the icosahedral cluster center, is also strongly supported.

  13. Correlation of EMR and optical spectroscopy data for Cr3+ and Mn2+ ions doped into yttrium aluminum borate YAl3(BO3)4 crystal - Extracting low symmetry aspects

    NASA Astrophysics Data System (ADS)

    Rudowicz, Czesław; Gnutek, Paweł; Açıkgöz, Muhammed

    2015-08-01

    In this study, the crystal field analysis for Cr3+ and Mn2+ ions doped into yttrium aluminum borate YAl3(BO3)4, for short YAB, crystal has been carried out to complement earlier study of the zero-field splitting (ZFS) parameters (ZFSPs). This analysis utilizes data on the distortion models obtained from analysis of the ZFSPs obtained experimentally by EMR for Cr3+ and Mn2+ ions at the Y3+ and Al3+ sites in YAB. This approach enables to verify and enhance reliability of the ZFSP modeling based on superposition model (SPM) analysis and the distortion models predicted previously. Subsequently, modeling of the crystal field parameters (CFPs) based on SPM analysis is carried out for Cr3+ and Mn2+ ions located at possible cation sites in YAB. The SPM predicted CFP values serve as input for the Crystal Field Analysis (CFA) package to calculate the CF energy levels. The predicted physical ZFS of the ground spin state, i.e. the 4A2 state for Cr3+ ion and the 6S state Mn2+ ions, enable calculation of the theoretical ZFSP values, D and D & (a-F), respectively, using the microscopic spin Hamiltonian (MSH) module in the CFA package. In this way, data on the distortions around the Cr3+ centers in YAB (and to a certain extent also for Mn2+ centers) obtained using the ZFSP data from EMR measurements may be correlated with data on the CF energy levels measured by optical spectroscopy. This modeling approach uncovers certain incompatibilities in the existing data for Cr3+:YAB, which call for reanalysis of the previous assignments of the energy levels observed in optical spectra and more accurate experimental data.

  14. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-09-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1- x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1- x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1- x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1- x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  15. Interplay of structural instability and lattice dynamics in Ni2MnAl

    NASA Astrophysics Data System (ADS)

    Mehaddene, Tarik; Neuhaus, Jürgen; Petry, Winfried; Hradil, Klaudia; Bourges, Philippe; Hiess, Arno

    2008-09-01

    We report on the structural instability of Ni2MnAl from calorimetry measurements and inelastic neutron scattering. The acoustic and optical phonon dispersions along the high-symmetry [ξ00] , [ξξ0] , and [ξξξ] directions have been interpolated from the normal modes of vibration using the Born von Kármán model. The tendency of Ni2MnAl to undergo a martensitic transformation shows up in the anomalous phonon softening of the particular TA2[ξξ0] phonons in the ξ range 0.1 0.25 rlu of two different crystals. The phonon frequencies of this branch scale inversely with the valence electron concentration in good agreement with ab initio calculations. Contrary to the prediction of first-principles calculations in the Heusler L21-Ni2MnAl , no anomaly is seen in the optical phonons measured in B2-Ni2MnAl . The anomalous TA2[ξξ0] phonon softening is not enhanced below room temperature when Ni2MnAl orders in the antiferromagnetic state.

  16. Evaluation of Al3Mg2 precipitates and Mn-rich phase in aluminum-magnesium alloy based on scanning transmission electron microscopy imaging

    SciTech Connect

    Zhu, Yakun; Cullen, David A; Kar, Soumya; Free, Michael P; Allard Jr, Lawrence Frederick

    2012-01-01

    Scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) were used to observe intergranular and intragranular -phase (Al3Mg2) formation and growth in as-received sample and long-term (~ 1 year) thermally treated samples of 5083-H131 alloy. Rod-shaped and equiaxed particles rich in Mn, Fe, and Cr were present in the as-received and heat treated samples. The -phase precipitated along grain boundaries as well as around and between preexisting Mn-Fe-Cr rich particles. The measured thickness of -phase along grain boundaries was lower than Zener Hillert diffusion model predicted value and the potential reasons were theoretically analyzed. Dislocation networks, grain boundaries, and different preexisting particles were observed to contribute to Mg diffusion and -phase precipitation.

  17. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    PubMed

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4.

  18. Process for producing Ti-Cr-Al-O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2001-01-01

    Thin films of Ti-Cr-Al-O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti-Cr-Al-O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti-Cr-Al-O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti-Cr-Al-O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  19. Flat panel display using Ti-Cr-Al-O thin film

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2002-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  20. Effects of Mn content on the deformation behavior of Fe-Mn-Al-C TWIP steels — A computational study

    SciTech Connect

    Wang, Yuan; Sun, Xin; Wang, Y. D.; Zbib, Hussein M.

    2015-04-01

    This paper presents a double-slip/double-twin polycrystal plasticity model using finite element solution to investigate the kinetics of deformation twinning of low-to-medium manganese (Mn) twinning-induced plasticity (TWIP) steels. Empirical equations are employed to estimate the stacking fault energy (SFE) of TWIP steels and the critical resolved shear stress (CRSS) for dislocation slip and deformation twinning, respectively. The results suggest that the evolution of twinning in Fe-xMn-1.4Al-0.6C (x=11.5, 13.5, 15.5, 17.5 and 19.5) TWIP steels, and its relation to the Mn content, can explain the effect of Mn on mechanical properties.the stress-strain. By comparing the double-slip/double-twin model to a double-slip model, the predicted results essentially reveal that the interaction behavior between dislocation slip and deformation twinning can lead to an additional work hardening. Also, numerical simulations are carried out to study the influence of boundary conditions on deformation behavior and twin formation. The nucleation and growth of twinning are found to depend on internal properties (e.g., mismatch orientation of grains and stress redistribution) as well as on external constraints (e.g., the applied boundary conditions) of the material.

  1. Structure of μ-MnAl4, a crystalline phase with composition close to that of quasicrystalline phases

    NASA Astrophysics Data System (ADS)

    Shoemaker, Clara Brink

    1988-10-01

    The structure of μ-MnAl4 has been determined by single-crystal x-ray diffraction. The space group is P63/mmc, a=19.98(1)B, c=24.673(4) Å, with 563 atoms per cell (average), and the formula is MnAl4.12. Parts of the structure resemble that of φ-Mn3Al10. Neither complete Mackay icosahedra (MI), nor Bergman polyhedra are present, but different fragments of MI occur. Mn atoms have 0 to 2 Mn atoms in the first coordination shell and 4 to 12 Mn atoms in the second shell. The predominant coordinations are, for Mn, icosahedron; for Al, bicapped pentagonal prism, other CN(12) configurations, and CN(13).

  2. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  3. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    SciTech Connect

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  4. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGES

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  5. Synthesis and optical properties of ZnAl2O4:Cr3+, Tb3+ powders

    NASA Astrophysics Data System (ADS)

    Thi Loan, Trinh; Thi Thuy, Nguyen; Long, Nguyen Ngoc

    2013-10-01

    ZnAl2O4:Cr3+, Tb3+ powders with different dopant contents have been synthesized by sol-gel method using the following precursors: zinc nitrate (Zn(NO3)2), aluminum nitrate (Al(NO3)3), terbium nitrate (Tb(NO3)3), chrome nitrate (Cr(NO3)3), and citric acid. The effect of the Cr3+, Tb3+ concentration and heat-treating temperature on structural and optical properties of the synthesized samples has been studied. International Workshop on Advanced Materials and Nanotechnology 2012 (IWAMN 2012).

  6. Stability comparison of several icosahedral structure units of Al-Cr alloys

    NASA Astrophysics Data System (ADS)

    Liu, Da; Wang, Renhui; Ye, Yiying

    1991-02-01

    Total energies for three types of icosahedral structure units of Al-Cr alloys have been calculated based on the embedded-atom method. The results show that the most stable structure unit is the small icosahedron with a Cr atom at its center, and the hypothetical structures based on the Mackay icosahedron and Bergman rhombic triacontahedron possess higher energies compared with those of the face-centered-cubic-solid solutions and the mechanical mixtures of pure Al and Cr crystals. These results are found to be consistent with experiment.

  7. Assessing the elastic properties and ductility of Fe-Cr-Al alloys from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Nurmi, E.; Wang, G.; Kokko, K.; Vitos, L.

    2016-01-01

    Fe-Al is one of the best corrosion resistant alloys at high temperatures. The flip side of Al addition to Fe is the deterioration of the mechanical properties. This problem can be solved by adding a suitable amount of third alloying component. In the present work, we use ab initio calculations based on density functional theory to study the elastic properties of Fe?Cr?Al? alloys for Al and Cr contents up to 20 at.%. We assess the ductility as a function of chemistry by making use of the semi-empirical correlations between the elastic parameters and mechanical properties. In particular, we derive the bulk modulus to shear modulus ratio and the Cauchy pressure and monitor their trends in terms of chemical composition. The present findings are contrasted with the previously established oxidation resistance of Fe-Cr-Al alloys.

  8. Perpendicularly magnetized {tau}-MnAl (001) thin films epitaxied on GaAs

    SciTech Connect

    Nie, S. H.; Zhu, L. J.; Lu, J.; Pan, D.; Wang, H. L.; Yu, X. Z.; Xiao, J. X.; Zhao, J. H.

    2013-04-15

    Perpendicularly magnetized {tau}-MnAl films have been epitaxied on GaAs (001) by molecular-beam epitaxy. Crystalline quality and magnetic properties of the samples were strongly dependent on growth temperature. The highest coercivity of 10.7 kOe, saturation magnetization of 361.4 emu/cm{sup 3}, perpendicular magnetic anisotropy constant of 13.65 Merg/cm{sup 3}, and magnetic energy product of 4.44 MGOe were achieved. These tunable magnetic properties make MnAl films valuable as excellent and cost-effective alternative for not only high density perpendicular magnetic recording storage and spintronics devices but also permanent magnets.

  9. Dynamical x-ray diffraction from an icosahedral Al-Pd-Mn quasicrystal

    SciTech Connect

    Kycia, S.

    1996-04-23

    Primary extinction effects in diffraction from single grains of Al-Pd- Mn, and presumably many other FCI alloys, may be significant and should be corrected for prior to use of diffraction data in structural determinations. Probes based on dynamical diffraction effects, such as x-ray standing wave fluorescence, multiple beam interference, and x-ray transmission topographs, may now be used to study the bulk and surface structure of some quasicrystals. The observation of dynamical diffraction from icosahedral Al-Pd-Mn is a striking confirmation of the fact that quasicrystals can present a degree of structural perfection comparable to that found in the best periodic intermetallic crystals.

  10. Sm-Nd, Rb-Sr, and Mn-Cr Ages of Yamato 74013

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.- Y.; Reese, Y.D.

    2009-01-01

    Yamato 74013 is one of 29 paired diogenites having granoblastic textures. The Ar-39 - Ar-40 age of Y-74097 is approximately 1100 Ma. Rb-Sr and Sm-Nd analyses of Y-74013, -74037, -74097, and -74136 suggested that multiple young metamorphic events disturbed their isotopic systems. Masuda et al. reported that REE abundances were heterogeneous even within the same sample (Y-74010) for sample sizes less than approximately 2 g. Both they and Nyquist et al. reported data for some samples showing significant LREE enrichment. In addition to its granoblastic texture, Y-74013 is characterized by large, isolated clots of chromite up to 5 mm in diameter. Takeda et al. suggested that these diogenites originally represented a single or very small number of coarse orthopyroxene crystals that were recrystallized by shock processes. They further suggested that initial crystallization may have occurred very early within the deep crust of the HED parent body. Here we report the chronology of Y-74013 as recorded in chronometers based on long-lived Rb-87 and Sm-147, intermediate- lived Sm-146, and short-lived Mn-53.

  11. Development of spin-gapless semiconductivity and half metallicity in Ti2MnAl by substitutions for Al

    NASA Astrophysics Data System (ADS)

    Lukashev, Pavel; Gilbert, Simeon; Staten, Bradley; Hurley, Noah; Fuglsby, Ryan; Kharel, Parashu; Huh, Yung; Valloppilly, Shah; Zhang, Wenyong; Yang, K.; Sellmyer, David J.

    In recent years, ever increasing interest in spin-based electronics has resulted in the search for a new class of materials that can provide a high degree of spin polarized electron transport. An ideal candidate would act like insulator for one spin channel and a conductor or semiconductor for the opposite spin channel (e.g., half metal (HM), spin-gapless semiconductor (SGS)). Here, we present the combined computational, theoretical, and experimental study of Ti2MnAl, a Heusler compound with potential application in the field of spintronics. We show that in the ground state this material is metallic, however it becomes a SGS when 50% of Al is substituted with In (e.g., Ti2MnAl0.5In0.5) , and a HM when 50% of Al is substituted with Sn (e.g., Ti2MnAl0.5Sn0.5) . Detailed study of the structural, electronic, and magnetic properties of these materials is presented. Financial support: DOE/BES (DE-FG02-04ER46152); NSF NNCI: 1542182; NRI; Academic and Scholarly Excellence Funds, Office of Academic Affairs, SDSU; UNI Faculty Summer Fellowship; Program for Outstanding Innovative Talents in Hohai University.

  12. Characterization of the surface of Fe-19Mn-18Cr-C-N during heat treatment in a high vacuum - An XPS study

    SciTech Connect

    Zumsande, K.; Weddeling, A.; Hryha, E.; Huth, S.; Nyborg, L.; Weber, S.; Krasokha, N.; Theisen, W.

    2012-09-15

    Nitrogen-containing CrMn austenitic stainless steels offer evident benefits compared to CrNi-based grades. The production of high-quality parts by means of powder metallurgy could be an appropriate alternative to the standard molding process leading to improved properties. The powder metallurgical production of CrMn austenitic steel is challenging on account of the high oxygen affinity of Mn and Cr. Oxides hinder the densification processes and may lower the performance of the sintered part if they remain in the steel after sintering. Thus, in evaluating the sinterability of the steel Fe-19Mn-18Cr-C-N, characterization of the surface is of great interest. In this study, comprehensive investigations by means of X-ray photoelectron spectroscopy and scanning electron microscopy combined with energy dispersive X-ray spectroscopy were performed to characterize the surface during heat treatment in a high vacuum. The results show a shift of oxidation up to 600 Degree-Sign C, meaning transfer of oxygen from the iron oxide layer to Mn-based particulate oxides, followed by progressive reduction and transformation of the Mn oxides into stable Si-containing oxides at elevated temperatures. Mass loss caused by Mn evaporation was observed accompanied by Mn oxide decomposition starting at 700 Degree-Sign C. - Highlights: Black-Right-Pointing-Pointer Surface characterization by means of XPS, SEM, and EDX analyses. Black-Right-Pointing-Pointer Heat treatment of a high CrMn powder. Black-Right-Pointing-Pointer Transfer of oxygen from the iron oxide layer to manganese-based particulate oxides. Black-Right-Pointing-Pointer Progressive reduction of Mn oxides. Black-Right-Pointing-Pointer Transformation of the Mn oxides into stable Si-containing oxides.

  13. Magnetic properties of the intermetallic compounds MM prime X(M=Cr,Mn, M prime =Ru,Rh,Pd, and X=P,As)

    SciTech Connect

    Kanomata, T.; Kawashima, T.; Utsugi, H.; Goto, T. ); Hasegawa, H. ); Kaneko, T. )

    1991-04-15

    Magnetization, magnetic susceptibility, and crystal structure are investigated on the ternary chromium arsenides CrM{prime}As (M{prime}=Ru,Rh,Pd) and ternary manganese phosphides and arsenides MnM{prime}P(M{prime}=Rh,Pd) and MnM{prime}As(M{prime}=Ru,Pd). MnRhP, MnRuAs, and MnPdAs are ferromagnets with a Curie temperature of {ital T}{sub {ital c}}=401, 496, and 210 K, respectively. CrRhAs is an antiferromagnet with a Neel temperature of {ital T}{sub {ital N}}=165 K. MnPdP and CrPdAs show spin-glass-like freezing. A magnetic order-order transition is observed for CrRuAs. Susceptibility {chi} versus temperature curves are well expressed by a formula {chi} =C{prime}/({ital T} {minus} {theta}{sup {prime}}{sub {ital P}}){sup {gamma}} for all present compounds. The values of {gamma} are about 3/2 for manganese compounds and CrPdAs, and about 1/2 for CrRuAs and CrRhAs.

  14. Microstructure and Mechanical Properties After Shock Wave Loading of Cast CrMnNi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Eckner, Ralf; Krüger, L.; Ullrich, C.; Rafaja, D.; Schlothauer, T.; Heide, G.

    2016-10-01

    The mechanical response of shock wave-prestrained high-alloy Cr16-Mn7-Ni6 TRIP steel was investigated under compressive and tensile loading at room temperature. Previous shock wave loading was carried out using a flyer-plate assembly with different amounts of explosives in order to achieve shock pressures of 0.3, 0.6, 0.9, and 1.2 Mbar. A significant increase in hardness and strength was observed as compared with the initial as-cast condition. In contrast, a slight decrease in strain hardening rates was measured together with a decrease in fracture elongation in the tensile test. Microstructural analyses of the shock-loaded samples were performed by light optical and scanning electron microscopy. The microstructure revealed a high density of deformation bands consisting of separated stacking faults, ɛ-martensite, or twins. Significant amounts of deformation-induced α'-martensite were only present at the highest shock pressure of 1.2 Mbar. The thickness of the deformation bands and the number of martensite nuclei at their intersections increased with increasing shock pressure. In all shock-loaded specimens, pronounced phase transformation occurred during subsequent mechanical testing. Consequently, the amount of the deformation-induced α'-martensite in the shock-loaded specimens was higher than in the unshocked as-cast samples.

  15. Microstructure and Mechanical Properties After Shock Wave Loading of Cast CrMnNi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Eckner, Ralf; Krüger, L.; Ullrich, C.; Rafaja, D.; Schlothauer, T.; Heide, G.

    2016-08-01

    The mechanical response of shock wave-prestrained high-alloy Cr16-Mn7-Ni6 TRIP steel was investigated under compressive and tensile loading at room temperature. Previous shock wave loading was carried out using a flyer-plate assembly with different amounts of explosives in order to achieve shock pressures of 0.3, 0.6, 0.9, and 1.2 Mbar. A significant increase in hardness and strength was observed as compared with the initial as-cast condition. In contrast, a slight decrease in strain hardening rates was measured together with a decrease in fracture elongation in the tensile test. Microstructural analyses of the shock-loaded samples were performed by light optical and scanning electron microscopy. The microstructure revealed a high density of deformation bands consisting of separated stacking faults, ɛ-martensite, or twins. Significant amounts of deformation-induced α'-martensite were only present at the highest shock pressure of 1.2 Mbar. The thickness of the deformation bands and the number of martensite nuclei at their intersections increased with increasing shock pressure. In all shock-loaded specimens, pronounced phase transformation occurred during subsequent mechanical testing. Consequently, the amount of the deformation-induced α'-martensite in the shock-loaded specimens was higher than in the unshocked as-cast samples.

  16. Identification of Precipitates in Cr-Mn-N Based Steel After Thermal Exposures

    NASA Astrophysics Data System (ADS)

    Ondruška, Michal; Dománková, Mária; Jáňa, Miroslav; Marônek, Milan

    2014-06-01

    The paper deals with the identification of precipitates in the Cr-Mn-N steels after thermal exposure. The purpose of the study is to clarify the M2N precipitation by isothermal annealing at the temperatures of 750 and 900 °C with a holding time of 5, 10, 30 min, 1 hr. and 10 hrs. Microstructure of austenitic steel was characterised by the typical presence of annealing twins. Stepwise etching was observed at the holding time of 5 and 10 minutes, but at the holding time of 30 minutes, secondary particles were precipitated at the grain boundaries. Corrosion tests revealed that holding time significantly affected steel structure. M2N is the dominant precipitate, but the occurrence of σ-phase was occasionally observed especially at the interface of discontinuous precipitation and austenitic matrix. Slight increase of hardness at the grain boundaries was caused due to the precipitation of secondary phases during isothermal holding. The maximum hardness of 294 HV was measured on the sample isothermally annealed at 750 °C and holding for 10 hrs. The research provides theoretical basis for the heat affecting of steels, such as, for example, in welding.

  17. Factors Affecting the Hydrogen Embrittlement Resistance of Ni-Cr-Mn-Nb Welds

    SciTech Connect

    G.A. Young; C.K. Battige; N. Liwis; M.A. Penik; J. Kikel; A.J. Silvia; C.K. McDonald

    2001-03-18

    Nickel based alloys are often welded with argon/hydrogen shielding gas mixtures to minimize oxidation and improve weld quality. However, shielding gas mixtures with {ge} 1% hydrogen additions can result in hydrogen concentrations greater than 5 wt. ppm in the weld metal and reduce ductility via hydrogen embrittlement. For the conditions investigated, the degree of hydrogen embrittlement is highly variable between 5 and 14 wt. ppm. investigation of hydrogen embrittlement of EN82H GTAW welds via tensile testing, light microscopy, transmission electron microscopy, orientation imaging microscopy, and thermal desorption spectroscopy shows that this variability is due to the inhomogeneous microstructure of the welds, the presence of recrystallized grains, and complex residual plastic strains. Specifically, research indicates that high residual strains and hydrogen trapping lower the ductility of Ni-Cr-Mn-Nb weld metal when dissolved hydrogen concentrations are greater than 5 wt. ppm. The inhomogeneous microstructure contains columnar dendritic, cellular dendritic, and recrystallized grains. The decreased tensile ductility observed in embrittled samples is recovered by post weld heat treatments that decrease the bulk hydrogen concentration below 5 wt. ppm.

  18. Structural and magnetic properties of a prospective spin gapless semiconductor MnCrVAl

    NASA Astrophysics Data System (ADS)

    Huh, Y.; Gilbert, S.; Kharel, P.; Jin, Y.; Lukashev, P.; Valloppilly, S.; Sellmyer, D. J.

    Recently a new class of material, spin gapless semiconductors (SGS), has attracted much attention because of their potential for spintronic devices. We have synthesized a Heusler compound, MnCrVAl, which is theoretically predicted to exhibit SGS by arc melting, rapid quenching and thermal annealing. First principles calculations are employed to describe its structural, electronic and magnetic properties. X-ray diffraction indicates that the rapidly quenched samples crystallize in the disordered cubic structure. The crystal structure is stable against heat treatment up to 650oC. The samples show very small saturation magnetization, 0.3 emu/g, at room temperature under high magnetic field, 30 kOe. Above room temperature, the magnetization increases with increasing temperature undergoing a magnetic transition at 560oC, similar to an antiferromagnetic-to-paramagnetic transition. The prospect of this material for spintronic applications will be discussed. This research is supported by SDSU Academic/Scholarly Excellence Fund, and Research/Scholarship Support Fund. Research at UNL is supported by DOE (DE-FG02-04ER46152, synthesis, characterization), NSF (ECCS-1542182, facilities), and NRI.

  19. Magnetic susceptibility of SnCr, SnMn, SnFe, SnCo and SnNi

    NASA Astrophysics Data System (ADS)

    Henger, U.; Korn, D.

    1984-11-01

    The initial ac susceptibility χ of vapour condensed Sn films with 3d transition metals is measured in situ. SnMn is a spin glass at concentrations up to 36 at% Mn. Spin glass behaviour in SnCr is only observed after annealing to temperatures between 220 and 300 K. This can be related to crystallization in the amorphous and disordered SnCr. SnFe and SnCo exhibit either temperature independent χ or χ below experimental detection. Above the percolation limit χ is getting large and temperature dependent. That is valid for Sn with 30 at% Fe or Co. In Sn films with 50 at% Ni the susceptibility is below the experimental limit.

  20. Extraordinary colossal magnetoresistance in La 0.67Ca 0.33Mn 1- xCr xO 3 ( x⩽0.3)

    NASA Astrophysics Data System (ADS)

    Sun, Young; Tong, Wei; Xu, Xiaojun; Zhang, Yuheng

    2001-06-01

    The magnetic and magnetotransport properties of La 0.67Ca 0.33Mn 1- xCr xO 3 ( x⩽0.3) perovskites have been studied. It was found that Cr doping is impotent in driving Curie temperature Tc but brings about cluster glass behaviors. Moreover, the substitution with Cr on Mn sites introduces extraordinary electrical transport and colossal magnetoresistance (CMR) behavior, characterized by double peaks. As a result, the temperature range of CMR response is greatly broadened. These results suggest that Cr doping could be a potent way in tuning CMR.

  1. ESR of Mn2+ in AlCl3-graphite intercalated compounds

    NASA Astrophysics Data System (ADS)

    Ceotto, G.; Barberis, G. E.; Rettori, C.

    1989-05-01

    Electron-spin-resonance experiments of Mn2+ impurities in stage-2 AlCl3-graphite intercalated compounds show the usual conduction-carrier spin resonance and a completely resolved Mn2+ spectrum of axial symmetry with the axial axis perpendicular to the carbon layers. The temperature dependence of the Mn2+ second-order crystal-field parameter and spin-lattice relaxation time are reported. The hyperfine splittings were found to be temperature independent. The observed anomalies in the linewidth of the conduction-carrier spin resonance and the intensity of the Mn2+ resonance at T~=200 K are interpreted in terms of a quasi-two-dimensional order-disorder phase transition experienced by the intercalant molecules at this temperature.

  2. Hardness and microstructural variation of Al-Mg-Mn-Sc-Zr alloy.

    PubMed

    Ikeshita, Sumiha; Strodahs, Ansis; Saghi, Zineb; Yamada, Kazuhiro; Burdet, Pierre; Hata, Satoshi; Ikeda, Ken-Ichi; Midgley, Paul A; Kaneko, Kenji

    2016-03-01

    Variations of Vickers hardness were observed in Al-Mg-Mn alloy and Al-Mg-Mn-Sc-Zr alloy at different ageing times, ranging from a peak value of 81.2 HV at 54 ks down to 67.4 HV at 360 ks, below the initial hardness value, 71.8 HV at 0 ks for the case of Al-Mg-Mn-Sc-Zr alloy. Microstructures of samples at each ageing stage were examined carefully by transmission electron microscopes (TEMs) both in two-dimensions and three-dimensions. The presence of different types, densities, and sizes of particles were observed dispersed spherical Al3Sc1-xZrx and also block-shaped Al3Sc precipitates growing along <100>Al with facets {100} and {110} of the precipitates. TEM analysis both in two-dimensions and three-dimensions, performed on various samples, confirmed the direct correlation between the hardness and the density of Al3Sc.

  3. Hardness and microstructural variation of Al-Mg-Mn-Sc-Zr alloy.

    PubMed

    Ikeshita, Sumiha; Strodahs, Ansis; Saghi, Zineb; Yamada, Kazuhiro; Burdet, Pierre; Hata, Satoshi; Ikeda, Ken-Ichi; Midgley, Paul A; Kaneko, Kenji

    2016-03-01

    Variations of Vickers hardness were observed in Al-Mg-Mn alloy and Al-Mg-Mn-Sc-Zr alloy at different ageing times, ranging from a peak value of 81.2 HV at 54 ks down to 67.4 HV at 360 ks, below the initial hardness value, 71.8 HV at 0 ks for the case of Al-Mg-Mn-Sc-Zr alloy. Microstructures of samples at each ageing stage were examined carefully by transmission electron microscopes (TEMs) both in two-dimensions and three-dimensions. The presence of different types, densities, and sizes of particles were observed dispersed spherical Al3Sc1-xZrx and also block-shaped Al3Sc precipitates growing along <100>Al with facets {100} and {110} of the precipitates. TEM analysis both in two-dimensions and three-dimensions, performed on various samples, confirmed the direct correlation between the hardness and the density of Al3Sc. PMID:26748212

  4. Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels

    NASA Astrophysics Data System (ADS)

    Chao, K. L.; Liao, H. Y.; Shyue, J. J.; Lian, S. S.

    2014-04-01

    The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.

  5. Magnetic and Structural Studies on Two-Dimensional Antiferromagnets (MCl)LaNb2O7 (M = Mn, Co, Cr)

    NASA Astrophysics Data System (ADS)

    Kitada, Atsushi; Tsujimoto, Yoshihiro; Nishi, Masakazu; Matsuo, Akira; Kindo, Koichi; Ueda, Yutaka; Ajiro, Yoshitami; Kageyama, Hiroshi

    2016-03-01

    We report magnetic and structural studies on the two-dimensional antiferromagnets (MCl)LaNb2O7 (M = Mn, Cr, Co), prepared by topochemical reactions of a layered perovskite RbLaNb2O7. Electron diffraction of these oxyhalides revealed a superstructure with a √{2}a × √{2}a cell for M = Mn and Co, and a 2a × 2a cell for M = Cr, indicating that the MCl networks are distorted from an ideal square lattice. Neutron diffraction experiments showed that M = Mn and Co exhibit a (π 0 π ) antiferromagnetic order as observed for the S = 1/2 counterparts. (CoCl)LaNb2O7 with a strong spin anisotropy shows an antiferro to weak-ferromagnetic transition at low field, followed by novel two-step metamagnetic transitions likely associated with a 1/2 plateau for 27-54 T. Possible spin structures under magnetic field are discussed in terms of an Ising-type model. By contrast, (CrCl)LaNb2O7 exhibits a (π π π ) order, which is the first observation among related oxyhalides, and a spin-flop transition at 12 T due to a weak spin anisotropy. These results suggest that a slight difference in the MCl structure and spin anisotropy provides a crucial influence on the magnetic properties.

  6. Thermal stability and thermo-mechanical properties of magnetron sputtered Cr-Al-Y-N coatings

    SciTech Connect

    Rovere, Florian; Mayrhofer, Paul H.

    2008-01-15

    Cr{sub 1-x}Al{sub x}N coatings are promising candidates for advanced machining and high temperature applications due to their good mechanical and thermal properties. Recently the authors have shown that reactive magnetron sputtering using Cr-Al targets with Al/Cr ratios of 1.5 and Y contents of 0, 2, 4, and 8 at % results in the formation of stoichiometric (Cr{sub 1-x}Al{sub x}){sub 1-y}Y{sub y}N films with Al/Cr ratios of {approx}1.2 and YN mole fractions of 0%, 2%, 4%, and 8%, respectively. Here, the impact of Y on thermal stability, structural evolution, and thermo-mechanical properties is investigated in detail. Based on in situ stress measurements, thermal analyzing, x-ray diffraction, and transmission electron microscopy studies the authors conclude that Y effectively retards diffusional processes such as recovery, precipitation of hcp-AlN and fcc-YN, grain growth, and decomposition induced N{sub 2} release. Hence, the onset temperature of the latter shifts from {approx}1010 to 1125 deg. C and the hardness after annealing at T{sub a}=1100 deg. C increases from {approx}32 to 39 GPa with increasing YN mole fraction from 0% to 8%, respectively.

  7. Preliminary Study on Fatigue Strengths of Fretted Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2002-01-01

    The fatigue behavior (stress-life curve) of gamma titanium aluminide (Ti-48Al-2Cr-2Nb, atomic percent) was examined by conducting two tests: first, a fretting wear test with a fatigue specimen in contact with a typical nickel-based superalloy contact pad in air at temperatures of 296 and 823 K and second, a high-cycle fatigue test of the prefretted Ti-48Al-2Cr-2Nb fatigue specimen at 923 K. Reference high-cycle fatigue tests were also conducted with unfretted Ti-48Al-2Cr-2Nb specimens at 923 K. All Ti-48Al-2Cr-2Nb fatigue specimens were machined from cast slabs. The results indicate that the stress-life results for the fretted Ti-48Al-2Cr-2Nb specimens exhibited a behavior similar to those of the unfretted Ti-48Al-2Cr-2Nb specimens. The values of maximum stress and life for the fretted specimens were almost the same as those for the unfretted specimens. The resultant stress-life curve for the unfretted fatigue specimens was very flat. The flat appearance in the stress-life curve of the unfretted specimens is attributed to the presence of a high density of casting pores. The fatigue strengths of both the fretted and unfretted specimens can be significantly affected by the presence of this porosity, which can decrease the fatigue life of Ti-48Al-2Cr-2Nb. The presence of the porosity made discerning the effect of fretting damage on fatigue strength and life of the specimens difficult.

  8. The use of diffusion multiples to explore the Co-Cr-Fe-Mn-Ni high entropy system

    NASA Astrophysics Data System (ADS)

    Wilson, Paul Nathaniel

    High entropy alloys (HEAs) or Multi-principal element alloys (MEAs) are a relatively new class of alloys. These alloys are defined as having at least five major alloying elements in atomic percent from 5% to 35%. There are hundreds of thousands of equiatomic compositions possible and only a fraction have been explored. This project examines diffusion multiples as a method to accelerate alloy development in these systems. The system chosen for this experiment is the Co-Cr-Fe-Mn-Ni system. The methodology developed for creating these diffusion multiples involved a two-step process. In the first step two binary alloys (50at-% Fe-Mn and 50 at%- Ni-Co ) were diffusion bonded together. In the second step, under uniaxial compression, was used to bond Cr to diffusion couple prepared in Step I. Successful diffusion multiples were created by this method. An auxiliary method named differential melting liquid impingement (DMLI) was developed that created diffusion multiples using liquid processing methods that will be described. After creation of these multiples, the ternary and quinary interface regions were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and nanoindentation. The Cr/NiCo region experienced interdiffusion but no intermediate phase formation retaining the FCC / BCC interface at the hot-pressing temperature (1200 °C). However, upon cooling from 1200 °C, the BCC region adjacent to the interface decomposed into BCC + sigma. In contrast, the Cr/FeMn interface region developed a layered structure of FCC/sigma/BCC suggesting that sigma is stable at 1200 °C in contradiction to the published 1200 °C ternary phase diagram. Upon cooling, the sigma present at 1200 °C decomposed into FCC + sigma, except in samples that were contaminated with C; in those cases, FCC + M23C6 was observed as the decomposition product. The quinary regions were evaluated using the various HEA parameters, namely

  9. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  10. Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries

    NASA Astrophysics Data System (ADS)

    Yuasa, Motohiro; Huang, Xinsheng; Suzuki, Kazutaka; Mabuchi, Mamoru; Chino, Yasumasa

    2015-11-01

    The discharge behaviors of rolled Mg-6 mass%Al-0.3 mass%Mn-2 mass%Ca (AMX602) and Mg-6 mass%Al-0.3 mass%Mn (AM60) alloys used as anodes for Magnesium-air batteries were investigated. The AMX602 alloy exhibited superior discharge properties compared to the AM60 alloy, especially at low current density. The discharge products of the AMX602 alloy were dense and thin, and many cracks were observed at all current densities. In addition, the discharge products were detached at some sites. These sites often corresponded to the positions of Al2Ca particles. The comparison of the discharge and corrosion tests indicated that the dense and thin discharge products of AMX602 were easily cracked by dissolution of the Mg matrix around Al2Ca particles, and the cracks promoted the penetration of the electrolyte into the discharge products, retaining the discharge activity. In contrast, concerning the AM60 alloy, thick discharge products were formed on the surface during discharge, and cracking of the discharge products hardly occurred, degrading the discharge properties. Localized and deeply corroded pits that could result from the detachment of metal pieces from the anode during discharge were partly observed in the AM60 alloy. It is suggested that these detached metal pieces are another reason for the low discharge properties of the AM60 alloy.

  11. First-principles study of spin-transfer torque in Co2MnSi/Al/Co2MnSi spin-valve

    NASA Astrophysics Data System (ADS)

    Tang, Ling; Yang, Zejin

    2013-11-01

    The spin-transfer torque (STT) in Co2MnSi(CMS)/Al/Co2MnSi spin-valve system with and without interfacial disorder is studied by a first-principles noncollinear wave-function-matching method. It is shown that in the case of clean interface the angular dependence of STT for CoCo/Al (the asymmetry parameter Λ ≈4.5) is more skewed than that for MnSi/Al (Λ≈2.9), which suggests the clean CoCo/Al architecture is much more efficient for the application on radio frequency oscillation. We also find that even with interfacial disorder the spin-valve of half-metallic CMS still has a relatively large parameter Λ compared to that of conventional ferromagnet. In addition, for clean interface the in-plane torkance of MnSi/Al is about twice as large as that of CoCo/Al. However, as long as the degree of interfacial disorder is sufficiently large, the CoCo/Al and MnSi/Al will show approximately the same magnitude of in-plane torkance. Furthermore, our results demonstrate that CMS/Al/CMS system has very high efficiency of STT to switch the magnetic layer of spin-valve.

  12. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    DOE PAGES

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; Yamamoto, Yukinori; Snead, Lance Lewis

    2015-07-14

    The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition.more » Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.« less

  13. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    SciTech Connect

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; Yamamoto, Yukinori; Snead, Lance Lewis

    2015-07-14

    The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition. Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.

  14. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; Yamamoto, Yukinori; Snead, Lance L.

    2015-10-01

    The Fe-Cr-Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe-Cr-Al alloys has not been fully established. In this study, a series of Fe-Cr-Al alloys with 10-18 wt % Cr and 2.9-4.9 wt % Al were neutron irradiated at 382 °C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition. Dislocation loops with Burgers vector of a/2<111> and a<100> were detected and quantified. Results indicate precipitation of Cr-rich α‧ is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. A structure-property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α‧ precipitates at sufficiently high chromium contents after irradiation.

  15. Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al

    NASA Astrophysics Data System (ADS)

    Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin

    2016-03-01

    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ•g-1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research.

  16. Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al

    PubMed Central

    Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin

    2016-01-01

    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g−1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research. PMID:26935405

  17. Anomalous magnetic configuration of Mn{sub 2}NiAl ribbon and the role of hybridization in the martensitic transformation of Mn{sub 50}Ni{sub 50−x}Al{sub x} ribbons

    SciTech Connect

    Zhao, R. B.; Zhao, D. W.; Li, G. K.; Ma, L. E-mail: houdenglu@mail.hebtu.edu.cn; Zhen, C. M.; Hou, D. L. E-mail: houdenglu@mail.hebtu.edu.cn; Wang, W. H.; Liu, E. K.; Chen, J. L.; Wu, G. H.

    2014-12-08

    The magnetic configuration of Mn{sub 2}NiAl ribbon has been investigated. In contrast to Ni{sub 2}MnAl, the compound Mn{sub 2}NiAl with considerable disorder does exhibit ferromagnetism and, due to exchange interaction competition, both ferromagnetic and antiferromagnetic moment orientations can coexist between nearest neighbor Mn atoms. This is unexpected in Heusler alloys. Regarding the mechanism of the martensitic transformation in Mn{sub 50}Ni{sub 50−x}Al{sub x}, it is found that increasing the Al content results in an unusual change in the lattice constant, a decrease of the transformation entropy change, and enhancement of the calculated electron localization. These results indicate that the p-d covalent hybridization between Mn (or Ni) and Al atoms gradually increases at the expense of the d-d hybridization between Ni and Mn atoms. This leads to an increased stability of the austenite phase and a decrease of the martensitic transformation temperature. For 11 ≤ x ≤ 14, Mn{sub 50}Ni{sub 50−x}Al{sub x} ferromagnetic shape memory alloys are obtained.

  18. Synthesis of TiB2/Fe-Cr-Al nanocomposite powder.

    PubMed

    Sachan, Ritesh; Park, Jong-Woo

    2008-10-01

    In this study, a route for synthesizing TiB2/Fe-Cr-Al nanocomposite is proposed via high energy ball milling by using directly coarse powders of TiB2, Fe, Cr and Al. Various compositions of these powder mixtures are milled up to 48 hrs to investigate the effect of composition on the crystalline refinement. The crystalline size is analyzed by an X-ray diffractometer for powder samples containing 30 to 100 wt% TiB2 (the rest of the powder consists of Fe-20 wt%Cr-5 wt%Al composition). The crystalline size after 48 hrs of ball milling decreases with increasing TiB2, and then again increases after reaching a minimum value of 18 nm at 70% TiB2. By transmission electron microscopic analysis, it is confirmed that particles of TiB2 are significantly reduced and finely dispersed in the Fe-Cr-Al matrix. The particle size of TiB2 is found around 20-25 nm, reinforced in the matrix. Considering the results of this study, the proposed mechanical milling route can be recommended as a promising way for fabrication of TiB2/Fe-Cr-Al nanocomposite powder. PMID:19198473

  19. Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel by Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Pereloma, E. V.; Stohr, R. A.; Miller, M. K.; Ringer, S. P.

    2009-12-01

    We describe the full decomposition sequence in an Fe-Ni-Mn-Ti-Al maraging steel during isothermal annealing at 550 °C. Following significant pre-precipitation clustering reactions within the supersaturated martensitic solid solution, (Ni,Fe)3Ti and (Ni,Fe)3(Al,Mn) precipitates eventually form after isothermal aging for ~60 seconds. The morphology of the (Ni,Fe)3Ti particles changes gradually during aging from predominantly plate-like to rod-like, and, importantly, Mn and Al were observed to segregate to these precipitate/matrix interfaces. The (Ni,Fe)3(Al,Mn) precipitates occurred at two main locations: uniformly within the matrix and at the periphery of the (Ni,Fe)3Ti particles. We relate this latter mode of precipitation to the Mn-Al segregation.

  20. Spectroscopic analysis of the open 3d subshell transition metal aluminides: AlV, AlCr, and AlCo

    NASA Astrophysics Data System (ADS)

    Behm, Jane M.; Brugh, Dale J.; Morse, Michael D.

    1994-10-01

    Three open 3d subshell transition metal aluminides, AlV, AlCr, and AlCo, have been investigated by resonant two-photon ionization spectroscopy to elucidate the chemical bonding in these diatomic molecules. The open nature of the 3d subshell results in a vast number of excited electronic states in these species, allowing bond strengths to be measured by the observation of abrupt predissociation thresholds in a congested optical spectrum, giving D00(AlV)=1.489±0.010 eV, D00(AlCr)=2.272±0.009 eV, and D00(AlCo)=1.844±0.002 eV. At lower excitation energies the presence of discrete transitions has permitted determinations of the ground state symmetries and bond lengths of AlV and AlCo through rotationally resolved studies, giving r0` (AlV, Ω`=0)=2.620±0.004 Å and r0` (AlCo, Ω`=3)=2.3833±0.0005 Å. Ionization energies were also measured for all three species, yielding IE(AlV)=6.01±0.10 eV, IE(AlCr)=5.96±0.04 eV, and IE(AlCo)=6.99±0.17 eV. A discussion of these results is presented in the context of previous work on AlCu, AlNi, AlCa, and AlZn.

  1. Emission properties of an amorphous AlN:Cr3+ thin-film phosphor

    NASA Astrophysics Data System (ADS)

    Caldwell, M. L.; Martin, A. L.; Dimitrova, V. I.; Van Patten, P. G.; Kordesch, M. E.; Richardson, H. H.

    2001-02-01

    Chromium-doped aluminum nitride (AlN:Cr) films were grown on p-doped silicon (111) by rf magnetron sputtering in a nitrogen atmosphere at a pressure of 10-4 Torr. Film thickness was typically 200 nm. After growth, the films were "activated" at ˜1300 K for 30 min in a nitrogen atmosphere. Films activated in this manner exhibit intense cathodoluminescence and photoluminescence emission. Spectral evidence demonstrates conclusively that the luminescent centers are Cr3+ ions.

  2. Ti(3+)-, V(2+/3+)-, Cr(2+/3+)-, Mn(2+)-, and Fe(2+)-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5.

    PubMed

    Brozek, Carl K; Dincă, Mircea

    2013-08-28

    The metal nodes in metal-organic frameworks (MOFs) are known to act as Lewis acid catalysts, but few reports have explored their ability to mediate reactions that require electron transfer. The unique chemical environments at the nodes should facilitate unusual redox chemistry, but the difficulty in synthesizing MOFs with metal ions in reduced oxidation states has precluded such studies. Herein, we demonstrate that MZn3O(O2C-)6 clusters from Zn4O(1,4-benzenedicarboxylate)3 (MOF-5) serve as hosts for V(2+) and Ti(3+) ions and enable the synthesis of the first MOFs containing these reduced early metal ions, which can be accessed from MOF-5 by postsynthetic ion metathesis (PSIM). Additional MOF-5 analogues featuring Cr(2+), Cr(3+), Mn(2+), and Fe(2+) at the metal nodes can be obtained by similar postsynthetic methods and are reported here for the first time. The inserted metal ions are coordinated within an unusual all-oxygen trigonal ligand field and are accessible to both inner- and outer-sphere oxidants: Cr(2+)- converts into Cr(3+)-substituted MOF-5, while Fe(2+)-MOF-5 activates NO to produce an unusual Fe-nitrosyl complex.

  3. Elevated Temperature Deformation of Fe-39.8Al and Fe-15.6Mn-39.4Al

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    2004-01-01

    The elevated temperature compressive properties of binary Fe-39.8 at % Al and Fe-15.6Mn-39.4Al have been measured between 1000 and 1300 K at strain rates between 10(exp 7) and 10(exp 3)/ s. Although the Mn addition to iron aluminide did not change the basic deformation characteristics, the Mn-modified alloy was slightly weaker. In the regime where deformation of FeAl occurs by a high stress exponent mechanism (n = 6), strength increases as the grain size decreases at least for diameters between approx. 200 and approx. 10 microns. Due to the limitation in the grain size-flow stress-temperature-strain rate database, the influence of further reductions of the grain size on strength is uncertain. Based on the appearance of subgrains in deformed iron aluminide, the comparison of grain diameters to expected subgrain sizes, and the grain size exponent and stress exponent calculated from deformation experiments, it is believed that grain size strengthening is the result of an artificial limitation on subgrain size as proposed by Sherby, Klundt and Miller.

  4. Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe Cr Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Pimentel, G.; Chao, J.

    2012-01-01

    The effect of different starting microstructures on the kinetics of Fe-rich ({alpha}) and Cr-rich ({alpha}') phase separation during aging of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys has been analyzed with a combination of atom probe tomography and thermoelectric power measurements. The results revealed that the high recrystallization temperature necessary to produce a coarse grained microstructure in Fe-base ODS alloys affects the randomness of Cr-atom distributions and defect density, which consequently affect the phase separation kinetics at low annealing temperatures.

  5. Role of Y in the oxidation resistance of CrAlYN coatings

    NASA Astrophysics Data System (ADS)

    Domínguez-Meister, S.; El Mrabet, S.; Escobar-Galindo, R.; Mariscal, A.; Jiménez de Haro, M. C.; Justo, A.; Brizuela, M.; Rojas, T. C.; Sánchez-López, J. C.

    2015-10-01

    CrAlYN coatings with different aluminum (4-12 at.%) and yttrium (2-5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N2 mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr2N, and a more effective Fe and C blocking.

  6. Energy transfer between Eu-Mn and photoluminescence properties of Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ solid solution

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Wang, Yuhua; Liu, Bitao; Li, Feng

    2010-08-01

    In order to evaluate the energy transfer between Eu-Mn in Ba0.75Al11O17.25-BaMgAl10O17 solid solution, Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ phosphors were prepared by flux method. The crystal structure and the morphology of the solid solution were demonstrated by x-ray dirrfactometer and scanning electron microscopy. The photoluminescence mechanisms were explained by the energy transfer of Eu2+ to Mn2+ and the Dexter theory. A redshift of green emission peak and a decrease in decay time with the increase in Mn2+ concentration were observed. These phenomena are attributed to the formation of Mn2+ paired centers after analysis by a method of Pade approximations.

  7. Weyl points in the ferromagnetic Heusler compound Co2MnAl

    NASA Astrophysics Data System (ADS)

    Kübler, J.; Felser, C.

    2016-05-01

    The anomalous Hall conductivity (AHC) in some ferromagnetic and antiferromagnetic Heusler compounds was theoretically and experimentally found to be exceptionally large. For the case of ferromagnetic Co2MnAl we here argue that the large AHC is connected with the appearance of Weyl points near the Fermi energy. We find four Weyl points slightly above the Fermi edge. We describe our analysis for a magnetization being in the (110)-direction. For the possible (100)-direction we find at least four Weyl points, too. We predict that Co2MnGa also possesses Weyl points near or at the Fermi energy.

  8. Neutron-diffraction approach to the atomic decoration of the Al-Mn icosahedral quasicrystal

    NASA Astrophysics Data System (ADS)

    Janot, Chr.; Pannetier, J.; Dubois, J. M.; de Boissieu, M.

    1989-01-01

    Neutron-diffraction data were obtained from single-phase icosahedral powder of the system Al74Si5Mn21 and its modification by isomorphous substitution on the Mn sites. Amplitudes and phase differences of partial structure factors were determined. Within a strip-projection approach, phases were reconstructed. Atomic densities calculated in the physical three-dimensional space show that Mackay (1981) icosahedra, the structural units usually invoked for quasi-crystal models, do not emerge as the basic ingredients of the atomic arrangements.

  9. Electronic structure and magnetism for a supercell model of Al-Mn quasicrystals

    NASA Astrophysics Data System (ADS)

    Jaswal, S. S.; He, X.-G.

    1992-07-01

    Self-consistent spin-polarized electronic-structure calculations are carried out on a supercell of a 54-atom Mackay icosahedron used to simulate a Al78Mn22 quasicrystal. When the 12 Mn atoms are placed at the corners of the inner icosahedron, they do not develop any magnetic moment. When they are placed at the corners of the outer icosahedron, the magnetic moment per manganese atom is 1.39μB, which is in very good agreement with the experimental data for this composition.

  10. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approx. 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  11. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33 Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approximately 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  12. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The SAP technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of the alloy Ni-17Cr-5Al-0.2 Y. SAP-NiCrAl was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. A variety of annealing treatments were applied after working to determine the recrystallization response. NiCrAlY, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl of this study exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl as has been reported for other oxide dispersion strengthened alloys. In contrast, unoxidized NiCrAlY exhibited only primary recrystallization.

  13. Electric, magnetic, and thermo-electric properties of Cr doped La0.8Ca0.2Mn1-xCrxMnO3 manganites

    NASA Astrophysics Data System (ADS)

    Manjunatha, S. O.; Rao, Ashok; Babu, P. D.; Chand, Tara; Okram, G. S.

    2016-07-01

    A detailed study of the structural, magnetic, magneto-transport and thermoelectric properties of polycrystalline La0.8Ca0.2Mn1-xCrxMnO3 (0Cr-content, both TMI and TC are observed to decrease. The electrical resistivity data is analyzed using different theoretical models at various regions viz., metallic, insulating and percolation region. Analysis in the metallic region (TTMI) is well described using SPH model. However, the resistivity data in the whole temperature range is analyzed using a phenomenological model based on phase segregation of ferromagnetic metallic and paramagnetic insulating regions. Thermoelectric power, S measurements were performed to understand the conduction mechanism and to ascertain the types of charge carrier responsible for conduction. It is observed that pristine as well as Cr-doped compounds show positive value of S which demonstrates that the charge carriers are holes.

  14. Microstructure and mechanical properties of (Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N films on cemented carbide substrates

    NASA Astrophysics Data System (ADS)

    Zhao, Shi-lu; Zhang, Jun; Zhang, Zhen; Wang, Shuang-hong; Zhang, Zheng-gui

    2014-01-01

    (Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N bilayer films were deposited on cemented carbide (WC-8%Co) substrates by multi-arc ion plating (MAIP) using two Ti-Al-Zr alloy targets and one pure Cr target. To investigate the composition, morphology, and crystalline structure of the bilayer films, a number of complementary methods of elemental and structural analysis were used, namely, scanning electron microscopy (SEM), energy disperse X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Adhesive strength and mechanical properties of the films were evaluated by scratch testing and Vickers microindentation, respectively. It is shown that the resulting films have a TiN-type face-centered cubic (FCC) structure. The films exhibit fully dense, uniform, and columnar morphology. Furthermore, as the bias voltages vary from -50 to -200 V, the microhardness (max. Hv0.01 4100) and adhesive strength (max. > 200 N) of the bilayer films are superior to those of the (Ti,Al,Zr)N and (Ti,Al,Zr,Cr)N monolayer films.

  15. Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation

    SciTech Connect

    Jain, Vivek Kumar Jain, Vishal Lakshmi, N. Venugopalan, K.

    2014-04-24

    Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.

  16. Composition Optimization of Al-DOPING Lithium Manganese Oxide from Al2O3-Li2CO3-MnO2 Ternary System

    NASA Astrophysics Data System (ADS)

    He, Gang; Sun, Xinyan; Hong, Jianhe; He, Mingzhong

    2013-07-01

    In order to synthesize eutectic compound of Al doping lithium manganese oxide which can be used as cathode material in lithium battery, using γ-Al2O3, Li2CO3 and MnO2 as starting raw materials, the composition optimization research work has been done by the solid state synthesis method. A limited composition range was found in Al2O3-Li2CO3-MnO2 ternary system, in which the synthesized Al doping lithium manganese oxides have single spinel structure and good electrochemical performance. The results showed that the LiAl0.04Mn1.96O4 material presented better charge-discharge cycling behavior than pure LiMn2O4, and showed the best electrochemistry property among the compounds in the Al2O3-Li2O-Mn2O3 ternary system. LiAl0.04Mn1.96O4 still kept perfect cubic structure, but LiMn2O4 kept the coexistence of the cubic and tetragonal phases after 50 charge-discharge cycles.

  17. Sediment fractionation of Cu, Ni, Zn, Cr, Mn, and Fe in one experimental and three natural marshes

    SciTech Connect

    Lindau, C.W.; Hossner, L.R.

    1982-07-01

    Dredged sediments from the Gulf Intracoastal Waterway near Galveston, Tex., were used as a substrate material in the construction of an experimental intertidal salt marsh. Selected substrate properties were compared with those of established marshes. Clay mineralogical properties of the experimental marsh were compared with those of three nearby natural marshes. A sequential chemical extraction procedure was used to obtain data on the partitioning of micronutrients and heavy metals among selected marsh substrate fractions. Clay minerals found in the sediments of the experimental marsh were equivalent to those identified in the natural marshes. Total elemental substrate concentrations of Cu, Ni, Cr, Zn, Mn, and Fe averaged 7.9, 8.6, 25.5, 25.2, 123, and 12,200 ..mu..g/g, respectively, over the four marsh sites. Copper, nickel, zinc, and chromium displayed only minor variations in substrate partitioning between the experimental and natural marsh samples. Micronutrients and heavy metal concentrations in the exchangeable and water-soluble fraction were low compared with other fractions. Approximately 30% of the total substrate Cu, Ni, and Zn was associated with the organic matter fraction. Metals fixed within the lattice structures of clay and silicate minerals ranged from 20% Mn for experimental marsh samples to 90% Cr for one of the natural marshes. Major differences in Mn and Fe substrate partitioning were observed when the experimental marsh samples were compared with those of the natural marshes.

  18. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Habbak, Enas L.; Shabara, Reham M.; Aly, Samy H.; Yehia, Sherif

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 μB respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 μB and 4 μB respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch-Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  19. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Douglass, D. L.; Nasrallah, M.

    1974-01-01

    The investigation reported included a determination of the optimum composition of a Ni-Cr-Al ternary alloy with respect to oxidation resistance and minimum film-spalling tendencies. Yttrium and thorium in small amounts were added to the ternary alloy and an investigation of the oxidation mechanism and the oxide scale adherence was conducted. It was found that the oxidation mechanism of Ni-Cr-Al ternary alloys depends upon the composition of the alloy as well as the time, oxygen pressure, and temperature of oxidation.

  20. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    SciTech Connect

    Thompson, Zachary T.; Terrani, Kurt A.; Yamamoto, Yukinori

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  1. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    SciTech Connect

    Yamamoto, Yukinori

    2015-09-01

    Development and quality assessment of the 2nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  2. Investigations of the electronic and magnetic structures of Co{sub 2}YGa (Y=Cr, Mn) Heusler alloys and their (100) surfaces

    SciTech Connect

    Hamad, Bothina

    2014-03-21

    Density functional theory calculations are performed to investigate the structural, electronic, and magnetic properties of bulk structures of Co{sub 2}YGa (Y = Cr, Mn) Heusler alloys and the surfaces along the (100) orientation. The bulk structures of both alloys show a ferromagnetic behavior with total magnetic moments of 3.03μ{sub B} and 4.09μ{sub B} and high spin polarizations of 99% and 67% for Co{sub 2}CrGa and Co{sub 2}MnGa, respectively. The surfaces are found to exhibit corrugations due to different relaxations of the surface atoms. For the case of Co{sub 2}CrGa, two surfaces preserve the half metallicity, namely those with Cr-Ga and Ga– terminations with high spin polarizations above 90%, whereas it dropped to about 50% for the other surfaces. However, the spin polarizations of Co-Co and Mn-Ga terminated surfaces remain close to that of bulk Co{sub 2}MnGa alloy, whereas it is suppressed down to 17% for Co– termination. The highest local magnetic moments are found to be 3.26 μ{sub B} and 4.11 μ{sub B} for Cr and Mn surface atoms in Cr-Ga and Mn– terminated surfaces, respectively.

  3. Abrasive resistance of metastable V-Cr-Mn-Ni spheroidal carbide cast irons using the factorial design method

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Pastukhova, T. V.; Chabak, Yu. G.; Kusumoto, K.

    2016-06-01

    Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C-4wt%Mn-1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%-10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920°C. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%-10.0wt% for V and 2.5wt%-4.5wt% for Cr, which corresponds to the alloys containing 9vol%-15vol% spheroidal VC carbides, 8vol%-16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9-2.3 times that of the traditional 12wt% V-13wt% Mn spheroidal carbide cast iron.

  4. Electron Diffraction Study of α-AlMnSi Crystals Along Non-Crystallographic Zone Axes

    NASA Astrophysics Data System (ADS)

    Song, G. L.; Bursill, L. A.

    The structure of crystalline α-AlMnSi is examined by electron diffraction. Six distinct zone axes are examined, including both normal crystallographic and non-crystallographic zone axes, allowing the space group symmetry of α-AlMnSi to be studied. A method for indexing the non-crystallographic zone axis diffraction patterns, which involve reflections from several nearby crystallographic zone axes, is described and applied to electron diffraction patterns of the quasi-5-fold, 3-fold and 2-fold axes of the icosahedral building units of cubic α-AlMnSi. These are compared with electron diffraction patterns from the corresponding 5-fold, 3-fold and 2-fold axes of the quasicrystalline phase i-AlMnSi, from which we may make some conclusions concerning the occupancies of the icosahedral units in i-AlMnSi. Electron diffraction patterns characteristic of Pmbar {3} were obtained for thicker specimens. However, for thin specimens, as used for HRTEM imaging, the electron diffraction patterns were characteristic of Imbar {3} space group symmetry. This unusual behaviour arises because the structural basis for the Pmbar {3} to Imbar {3} phase transition is a weak effect, involving changes in occupancy of the icosahedral structural elements located at the corners (double-MacKay icosahedra) and body-centers (MacKay icosahedra) of the cubic unit cell. The effects of changing the occupancies of the outer shells of the MI and DMI structural units on the diffraction intensities of the weak reflections were examined. Thus, calculation of the dynamical diffraction amplitudes shows that in fact the weak reflections characteristic of Pmbar {3} only develop sufficient intensity if two conditions are satisfied: namely (1) the crystal thickness exceeds approx. 50 nm and (2) if a significant proportion of Imbar {3} occupancies are included in the structural model. By fitting the observed thickness variation of the diffraction intensities we propose a new set of occupancies for α-AlMn

  5. Dynamic mechanical analyze of superelastic CuMnAl shape memory alloy

    NASA Astrophysics Data System (ADS)

    (Dragoș Ursanu, A. I.; Stanciu, S.; Pricop, B.; Săndulache, F.; Cimpoeșu, N.

    2016-08-01

    A new shape memory alloy was obtain from high purity Cu, Mn and Al elements using a induce furnace. The intelligent material present negative transformation temperatures and an austenite like state at room temperature. The austenite state of CuMnAl shape memory alloy present superelasticity property. Five kilograms ingot was obtain of Cu10Mn10Al alloy. From the base material (melted state) were cut samples with 6 mm thickness using a mechanical saw. After an homogenization heat treatment the samples were hot rolled through four passes with a reduction coefficient of 20%. Experimental lamellas were obtained with 1.5 mm thickness and 90x10 mm length and width. After the hot rolled treatment the materials were heat treated at 800°C for 20 minutes and chilled in water. Four samples, one just laminated and three heat treated by aging, were analyzed with a Netzsch DMA equipment to establish the elastic modulus and the internal friction values of the materials. Metallic materials microstructure was analyzed using a scanning electron microscope Vega Tescan LMH II type. After the aging heat treatment a decrease of internal friction is observed on the entire analyze range which is assigned to formation of Al-based precipitates that block the internal movement of the alloy characteristic phases.

  6. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    SciTech Connect

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explain that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.

  7. Quaternary aluminum silicides grown in Al flux: RE5Mn4Al(23-x)Si(x) (RE = Ho, Er, Yb) and Er44Mn55(AlSi)237.

    PubMed

    Calta, Nicholas P; Kanatzidis, Mercouri G

    2013-09-01

    Four novel intermetallic silicides, RE5Mn4Al(23-x)Si(x) (x = 7.9(9), RE = Ho, Er, Yb) and Er44Mn55(AlSi)237, have been prepared by reaction in aluminum flux. Three RE5Mn4Al(23-x)Si(x) compounds crystallize in the tetragonal space group P4/mmm with the relatively rare Gd5Mg5Fe4Al(18-x)Si(x) structure type. Refinement of single-crystal X-ray diffraction data yielded unit cell parameters of a = 11.3834(9)-11.4171(10) Å and c = 4.0297(2)-4.0575(4) Å with volumes ranging from 522.41(5) to 528.90(8) Å(3). Structure refinements on single-crystal diffraction data show that Er44Mn55(AlSi)237 adopts a new cubic structure type in the space group Pm3n with a very large unit cell edge of a = 21.815(3) Å. This new structure is best understood when viewed as two sets of nested polyhedra centered on a main group atom and a manganese atom. These polyhedral clusters describe the majority of the atomic positions in the structure and form a perovskite-type network. We also report the electrical and magnetic properties of the title compounds. All compounds except the Ho analogue behave as normal paramagnetic metals without any observed magnetic transitions above 5 K and exhibit antiferromagnetic correlations deduced from the value of their Curie constants. Ho5Mn4Al(23-x)Si(x) exhibits a ferromagnetic transition at 20 K and an additional metamagnetic transition at 10 K, suggesting independent ordering temperatures for two distinct magnetic sublattices. PMID:23931551

  8. Microstructure and Phase Analysis in Mn-Al and Zr-Co Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Lucis, Michael J.

    In America's search for energy independence, the development of rare-earth free permanent magnets is one hurdle that still stands in the way. Permanent magnet motors provide a higher efficiency than induction motors in applications such as hybrid vehicles and wind turbines. This thesis investigates the ability of two materials, Mn-Al and Zr-Co, to fill this need for a permanent magnet material whose components are readily available within the U.S. and whose supply chain is more stable than that of the rare-earth materials. This thesis focuses on the creation and optimization of these two materials to later be used as the hard phase in nanocomposites with high energy products (greater than 10 MGOe). Mn-Al is capable of forming the pure L10 structure at a composition of Mn54Al43C3. When Mn is replaced by Fe or Cu using the formula Mn48Al43C3T6 the anisotropy constant is lowered from 1.3·107 ergs/cm3 to 1.0·107 ergs/cm3 and 0.8·10 7 ergs/cm3 respectively. Previous studies have reported a loss in magnetization in Mn-Al alloys during mechanical milling. The reason for this loss in magnetization was investigated and found to be due to the formation of the equilibrium beta-Mn phase of the composition Mn3Al2 and not due to oxidation or site disorder. It was also shown that fully dense Mn-Al permanent magnets can be created at hot pressing temperatures at or above 700°C and that the epsilon-phase to tau-phase transition and consolidation can be combined into a single processing step. The addition of small amounts of Cu to the alloy, 3% atomic, can increase the compaction density allowing high densities to be achieved at lower pressing temperatures. While the structure is still under debate, alloys at the composition Zr2Co11 in the Zr-Co system have been shown to have hard magnetic properties. This thesis shows that multiple structures exist at this Zr2Co11 composition and that altering the cooling rate during solidification of the alloy affects the ratio of the phase

  9. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    DOE PAGES

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; Hoelzer, David T.

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is amore » general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.« less

  10. Half-metallicity in highly L21-ordered CoFeCrAl thin films

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Valloppilly, S. R.; Li, X.-Z.; Kim, D. R.; Zhao, G. J.; Chen, T. Y.; Choudhary, R.; Kashyap, A.; Skomski, R.; Sellmyer, D. J.

    2016-10-01

    The structural, magnetic, and electron-transport properties of Heusler-ordered CoFeCrAl thin films are investigated experimentally and theoretically. The films, sputtered onto MgO and having thicknesses of about 100 nm, exhibit virtually perfect single-crystalline epitaxy and a high degree of L21 chemical order. X-ray diffraction and transmission-electron microscopy show that the structure of the films is essentially of the L21 Heusler type. The films are ferrimagnetic, with a Curie temperature of about 390 K, and a net moment of 2 μB per formula unit. The room temperature resistivity is 175 μΩ cm; the carrier concentration and mobility determined from the low temperature (5 K) measurement are 1.2 × 1018 cm-3 and 33 cm2/V s, respectively. In contrast to the well-investigated Heusler alloys such as Co2(Cr1-xFex)Al, the CoFeCrAl system exhibits two main types of weak residual A2 disorder, namely, Co-Cr disorder and Fe-Cr disorder, the latter conserving half-metallicity. Point-contact Andreev reflection yields a lower bound for the spin polarization, 68% at 1.85 K, but our structural and magnetization analyses suggest that the spin polarization at the Fermi level is probably higher than 90%. The high resistivity, spin polarization, and Curie temperature are encouraging in the context of spin electronics.

  11. Development of ODS FeCrAl for Compatibility in Fusion and Fission Energy Applications

    NASA Astrophysics Data System (ADS)

    Pint, B. A.; Dryepondt, S.; Unocic, K. A.; Hoelzer, D. T.

    2014-12-01

    Oxide dispersion strengthened (ODS) FeCrAl alloys with 12-15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.

  12. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    SciTech Connect

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; Hoelzer, David T.

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.

  13. Study of the effect of annealing on defects in Fe Mn Si Cr Ni C alloy by slow positron beam

    NASA Astrophysics Data System (ADS)

    Mostafa, Khaled. M.; De Baerdemaeker, J.; Van Caenegem, N.; Segers, D.; Houbaert, Y.

    2008-10-01

    FeMnSi shape memory alloys (SMAs) have received much attention as one-way SMAs due to their cost-effectiveness. Variable-energy (0-30 keV) positron beam studies have been carried out on a Fe-Mn-Si-Cr-Ni-C alloy with different degrees of deformation. Doppler broadening profiles of the positron annihilation as a function of incident positron energy were shown to be quite sensitive to defects introduced by deformation. The variation of the nature and the concentration of defects are studied as a function of isochronal annealing temperature. These results are correlated with the data measured with the positron annihilation lifetime spectroscopy (PALS). The positron annihilation results are compared to XRD and optical microscopy (OM).

  14. Characteristics of the Energetic Igniters Through Integrating Al/NiO Nanolaminates on Cr Film Bridge

    NASA Astrophysics Data System (ADS)

    Yan, YiChao; Shi, Wei; Jiang, HongChuan; Xiong, Jie; Zhang, WanLi; Li, Yanrong

    2015-12-01

    The energetic igniters through integrating Al/NiO nanolaminates on Cr film bridges have been investigated in this study. The microstructures demonstrate well-defined geometry and sharp interfaces. The depth profiles of the X-ray photoelectron spectroscopy of Al/NiO nanolaminates annealed at 550 °C with a bilayer thickness of 250 nm show that the interdiffusion between the Al layer and NiO layer has happened and the annealing temperature cannot provide enough energy to make the diffusion process much more complete. The electrical explosion characteristics employing a capacitor discharge firing set at the optimized charging voltage of 40 V show that the flame duration time is about 700 μs, and an excellent explosion performance is obtained for (Al/NiO)n/Cr igniters with a bilayer thickness of 1000 nm.

  15. Phase Transformations of an Fe-0.85 C-17.9 Mn-7.1 Al Austenitic Steel After Quenching and Annealing

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Chun

    2014-09-01

    Low-density Mn-Al steels could potentially be substitutes for commercial Ni-Cr stainless steels. However, the development of the Mn-Al stainless steels requires knowledge of the phase transformations that occur during the steel making processes. Phase transformations of an Fe-0.85 C-17.9 Mn-7.1 Al (wt.%) austenitic steel, which include spinodal decomposition, precipitation transformations, and cellular transformations, have been studied after quenching and annealing. The results show that spinodal decomposition occurs prior to the precipitation transformation in the steel after quenching and annealing at temperatures below 1023 K and that coherent fine particles of L12-type carbide precipitate homogeneously in the austenite. The cellular transformation occurs during the transformation of high-temperature austenite into lamellae of austenite, ferrite, and kappa carbide at temperatures below 1048 K. During annealing at temperatures below 923 K, the austenite decomposes into lamellar austenite, ferrite, κ-carbide, and M23C6 carbide grains for another cellular transformation. Last, when annealing at temperatures below 873 K, lamellae of ferrite and κ-carbide appear in the austenite.

  16. Precipitation sensitivity to alloy composition in Fe-Cr-Mn austenitic steels developed for reduced activation for fusion application

    SciTech Connect

    Maziasz, P.J.; Klueh, R.L.

    1988-01-01

    Special austenitic steels are being designed in which alloying elements like Mo, Nb, and Ni are replaced with Mn, W, V, Ti, and/or Ta to reduce the long-term radioactivity induced by fusion reactor irradiation. However, the new steels still need to have properties otherwise similar to commercial steels like type 316. Precipitation strongly affects strength and radiation-resistance in austenitic steels during irradiation at 400--600/degree/C, and precipitation is also usually quite sensitive to alloy composition. The initial stage of development was to define a base Fe-Cr-Mn-C composition that formed stable austenite after annealing and cold-working, and resisted recovery or excessive formation of coarse carbide and intermetallic phases during elevated temperature annealing. These studies produced a Fe-12Cr-20Mn-0.25C base alloy. The next stage was to add the minor alloying elements W, Ti, V, P, and B for more strength and radiation-resistance. One of the goals was to produce fine MC precipitation behavior similar to the Ti-modified Fe-Cr-Ni prime candidate alloy (PCA). Additions of Ti+V+P+B produced fine MC precipitation along network dislocations and recovery/recrystallization resistance in 20% cold worked material aged at 800/degree/C for 166h, whereas W, Ti, W+Ti, or Ti+P+B additions did not. Addition of W+Ti+V+P+B also produced fine MC, but caused some sigma phase formation and more recrystallization as well. 29 refs., 14 figs., 9 tabs.

  17. Influence of Temperature on Fatigue-Induced Martensitic Phase Transformation in a Metastable CrMnNi-Steel

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Glage, Alexander; Droste, Matthias

    2016-01-01

    Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.

  18. 30 W Cr:LiSrAlF 6 flashlamp-pumped pulsed laser.

    PubMed

    Samad, Ricardo Elgul; Baldochi, Sonia Licia; Calvo Nogueira, Gesse Eduardo; Vieira, Nilson Dias

    2007-01-01

    We report the performance of a flashlamp-pumped Cr:LiSrAlF(6) (Cr:LiSAF) laser developed and built by us. The pumping cavity incorporates filters that select the flashlamps' emission spectrum to match the absorption bands of the gain medium, allowing control of the amount of nonradiactive decay heat contribution of the optical cycle, minimizing thermal effects on the laser operation. The laser generated 2 J pulses at 15 Hz, resulting in 30 W of average power, the highest power extracted from a Cr:LiSAF rod laser to our knowledge. We were able to conclude that the laser efficiency is affected by resonator configuration changes due to thermal lens effects, and not to thermal quenching of the Cr:LiSAF luminescence. PMID:17167580

  19. Hafnium influence on the microstructure of FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Geanta, V.; Voiculescu, I.; Stanciu, E.-M.

    2016-06-01

    Due to their special properties at high temperatures, FeCrAl alloys micro-alloyed with Zr can be regarded as potential materials for use at nuclear power plants, generation 4R. These materials are resistant to oxidation at high temperatures, to corrosion, erosion and to the penetrating radiations in liquid metal environments. Also, these are able to form continuously, by the self-generation process of an oxide coating with high adhesive strength. The protective oxide layers must be textured and regenerable, with a good mechanical strength, so that crack and peeling can not appear. To improve the mechanical and chemical characteristics of the oxide layer, we introduced limited quantities of Zr, Ti, Y, Hf, Ce in the range of 1-3%wt in the FeCrAl alloy. These elements, with very high affinity to the oxygen, are capable to stabilize the alumina structure and to improve the oxide adherence to the metallic substrate. FeCrAl alloys microalloyed with Hf were prepared using VAR (Vacuum Arc Remelting) unit, under high argon purity atmosphere. Three different experimental alloys have been prepared using the same metallic matrix of Fe-14Cr-5Al, by adding of 0.5%wt Hf, 1.0%wt Hf and respectively 1.5%wt Hf. The microhardness values for the experimental alloys have been in the range 154 ... 157 HV0.2. EDAX analyses have been performed to determine chemical composition on the oxide layer and in the bulk of sample and SEM analyze has been done to determine the microstructural features. The results have shown the capacity of FeCrAl alloy to form oxide layers, with different texture and rich in elements such as Al and Hf.

  20. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  1. Progress in the material development of LiCaAlF sub 6 :Cr sup 3+ laser crystals

    SciTech Connect

    Michelle D. Shinn.; Chase, L.L.; Caird, J.A.; Payne, S.A.; Atherton, L.J.; Kway, W.L.

    1990-03-01

    High Cr{sup 3+} doping levels, up to 8 mole percent, and low losses have been obtained with the tunable solid-state laser material LiCaAlF{sub 6}:Cr{sup 3+} (Cr:LiCAF). Measurements and calculations show that high pumping and extraction efficiencies are possible with the improved material. 13 refs., 4 figs., 1 tab.

  2. Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels

    NASA Astrophysics Data System (ADS)

    Mahmudi, Abbas; Nedjad, Syamak Hossein; Behnam, Mir Masud Jabbari

    2011-10-01

    Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels were studied. To investigate the microstructure and mechanical properties, optical microscopy, scanning electron microscopy, X-ray diffraction, tensile test, and hardness test were used. The results show that the solution-annealing treatment in the cold-rolled steel redounds to the formation of submicrocrystalline Fe2(Mo, Ti) Laves phase particles, which are stable at high temperatures. These secondary Laves phase particles prevent from recrystallization at high temperatures and correspond to semi-brittle fracture in the subsequent aging treatment.

  3. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE PAGES

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; Gao, Michael C.; Tang, Zhi; Poplawsky, Jonathan D.; Liaw, Peter K.

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  4. Solute transport during the cyclic oxidation of Ni-Cr-Al alloys. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.

    1982-01-01

    Important requirements for protective coatings of Ni-Cr-Al alloys for gas turbine superalloys are resistance to oxidation accompanied by thermal cycling, resistance to thermal fatigue cracking. The resistance to oxidation accompanied by thermal cycling is discussed. The resistance to thermal fatigue cracking is also considered.

  5. Mechanical properties of aluminized CoCrAlY coatings in advanced gas turbine blades

    SciTech Connect

    Kameda, J.; Bloomer, T.E. |; Sugita, Y.; Ito, A.; Sakurai, S.

    1997-07-01

    The microstructure/composition and mechanical properties (22-950 C) in aluminized CoCrAlY coatings of advanced gas turbine blades have been examined using scanning Auger microprobe and a small punch (SP) testing method. Aluminized coatings were made of layered structure divided into four regimes: (1) Al enriched and Cr depleted region, (2) Al and Cr graded region, (3) fine grained microstructure with a mixture of Al and Cr enriched phases and (4) Ni/Co interdiffusion zone adjacent to the interface SP tests demonstrated strong dependence of the deformation and fracture behavior on the various coatings regimes. Coatings 1 and 2 showed higher microhardness and easier formation of brittle cracks in a wide temperature range, compared to coatings 3 and 4. The coating 3 had lower room temperature ductility and conversely higher elevated temperature ductility than the coating 4 due to a precipitous ductility increase above 730 C. The integrity of aluminized coatings while in-service is discussed in light of the variation in the low cycle fatigue life as well as the ductility in the layered structure.

  6. Ion irradiation testing and characterization of FeCrAl candidate alloys

    SciTech Connect

    Anderoglu, Osman; Aydogan, Eda; Maloy, Stuart Andrew; Wang, Yongqiang

    2014-10-29

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels. This effort involves development of fuel cladding materials that will be resistant to oxidizing environments for extended period of time such as loss of coolant accident. Ferritic FeCrAl alloys are among the promising candidates due to formation of a stable Al₂O₃ oxide scale. In addition to being oxidation resistant, these promising alloys need to be radiation tolerant under LWR conditions (maximum dose of 10-15 dpa at 250 – 350°C). Thus, in addition to a number of commercially available alloys, nuclear grade FeCrAl alloys developed at ORNL were tested using high energy proton irradiations and subsequent characterization of irradiation hardening and damage microstructure. This report summarizes ion irradiation testing and characterization of three nuclear grade FeCrAl cladding materials developed at ORNL and four commercially available Kanthal series FeCrAl alloys in FY14 toward satisfying FCRD campaign goals.

  7. Origin of Extended Tensile Ductility of a Fe-28Mn-10Al-1C Steel

    NASA Astrophysics Data System (ADS)

    Yoo, J. D.; Hwang, S. W.; Park, K.-T.

    2009-07-01

    Fully austenitic Fe-28Mn-10Al-1.0C steel with high stacking fault energy exhibited exceptionally high uniform elongations (85 to 100 pct) and total elongations (100 to 110 pct) at room temperature. The origin of such exceptional room-temperature ductility was rationalized in terms of strain accommodation mechanisms of reduction of glide plane spacing in Taylor lattice (TL) formation at low strains and TL rotation forming domain boundaries (DBs) and microbands (MBs) at high strains.

  8. Magnetic properties of Cu70.9Al18.1Mn11 alloy

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Majumdar, S.

    2013-02-01

    The ferromagnetic shape memory alloy of nominal composition Cu70.9Al18.1Mn11 has been investigated through dc and ac magnetization measurements. The studied alloy undergoes ferromagnetic to glassy transition below martensitic transition. Clear frequency shift in ac susceptibility measurement is observed, which actually indicates the spin glass freezing in the sample. The studied alloy also shows constricted hysteresis loop at 5 K.

  9. Microstructure and mechanical behavior of spray-deposited Al-Cu-Mg(-Ag-Mn) alloys

    NASA Astrophysics Data System (ADS)

    Del Castillo, L.; Lavernia, E. J.

    2000-09-01

    The effect of alloy composition on the microstructure and mechanical behavior of four spray-deposited Al-Cu-Mg(-Ag-Mn) alloys was investigated. Precipitation kinetics for the alloys was determined using differential scanning calorimetry (DSC) and artificial aging studies coupled with transmission electron microscopy (TEM) analysis. DSC/TEM analysis revealed that the spray-deposited alloys displayed similar precipitation behavior to that found in previously published studies on ingot alloys, with the Ag containing alloys exhibiting the presence of two peaks corresponding to precipitation of both Ω-Al2Cu and θ'-Al2Cu and the Ag-free alloy exhibiting only one peak for precipitation of θ'. The TEM analysis of each of the Ag-containing alloys revealed increasing amounts of Al20Mn3Cu2 with increasing Mn. In the peak and over-aged conditions, Ag-containing alloys revealed the presence of Ω, with some precipitation of θ' for alloys 248 and 251. Tensile tests on each of the alloys in the peak-aged and overaged (1000 hours at 160 °C) conditions were performed at both room and elevated temperatures. These tests revealed that the peak-aged alloys exhibited relatively high stability up to 160 °C, with greater reductions in strength being observed at 200 °C (especially for the high Mn, low Cu/Mg ratio (6.7) alloy 251). The greatest stability of tensile strength following extended exposure at 160 °C was exhibited by the high Cu/Mg ratio (14) alloy 248, which revealed reductions in yield strength of about 2.5 pct, with respect to the peak-aged condition, for the alloys tested at both room temperature and 160 °C.

  10. Influence of deposition parameters on hard Cr-Al-N coatings deposited by multi-arc ion plating

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhang, Shihong; Chen, Zhong; Li, Jinlong; Li, Mingxi

    2012-02-01

    The Cr-Al-N coatings were synthesized at various substrate bias voltages and nitrogen partial pressures by multi-arc ion plating (M-AIP). The relationships between deposition parameters and coating properties were investigated. Morphologies, phase structures, hardness and adhesion strength of the coatings were analyzed by SEM, XRD, XPS, nano-indenter and scratch tester. The results indicated that with the increase of substrate bias voltages, the surface macroparticles and deposition rate reduced mainly for the resputtering phenomenon. The (Cr, Al)N solid-solution phase kept unchanged, but the Cr2N and AlN phases disappeared gradually. Due to the change of phase structures and residual compressive stress, the hardness values decreased and the adhesion strength decreased initially and then increased. Similarly, with the increase of nitrogen partial pressures, the phase structures of CrAlN coatings varied from Cr + Cr2N + (Cr,Al)N to Cr2N + (Cr,Al)N. The surface macroparticles increased due to the decreasing resputtering efficiency, and the deposition rate increased initially and then decreased due to the resputtering phenomenon. With increasing nitrogen partial pressures, adhesion strength decreased initially and then increased. The microhardness increased mainly due to the increase of Cr2N contents and decrease of metal macroparticles.

  11. Study of the effects of implantation on the high Fe-Ni-Cr and Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Ribarsky, M. W.

    1985-01-01

    A theoretical study of the effects of implantation on the corrosion resistance of Fe-Ni-Cr and Ni-Cr-Al alloys was undertaken. The purpose was to elucidate the process by which corrosion scales form on alloy surfaces. The experiments dealt with Ni implanted with Al, exposed to S at high temperatures, and then analyzed using scanning electron microscopy, scanning Auger spectroscopy and X-ray fluorescence spectroscopy. Pair bonding and tight-binding models were developed to study the compositions of the alloys and as a result, a new surface ordering effect was found which may exist in certain real alloys. With these models, the behavior of alloy constituents in the presence of surface concentrations of O or S was also studied. Improvements of the models to take into account the important effects of long- and short-range ordering were considered. The diffusion kinetics of implant profiles at various temperatures were investigated, and it was found that significant non-equilibrium changes in the profiles can take place which may affect the implants' performance in the presence of surface contaminants.

  12. Ferromagnetic interfacial interaction and the proximity effect in a Co2FeAl/(Ga,Mn)As bilayer.

    PubMed

    Nie, S H; Chin, Y Y; Liu, W Q; Tung, J C; Lu, J; Lin, H J; Guo, G Y; Meng, K K; Chen, L; Zhu, L J; Pan, D; Chen, C T; Xu, Y B; Yan, W S; Zhao, J H

    2013-07-12

    The magnetic properties of a Co2FeAl/(Ga,Mn)As bilayer epitaxied on GaAs (001) are studied both experimentally and theoretically. Unlike the common antiferromagnetic interfacial interaction existing in most ferromagnet-magnetic semiconductor bilayers, a ferromagnetic interfacial interaction in the Co2FeAl/(Ga,Mn)As bilayer is observed from measurements of magnetic hysteresis and x-ray magnetic circular dichroism. The Mn ions in a 1.36 nm thick (Ga,Mn)As layer remain spin polarized up to 400 K due to the magnetic proximity effect. The minor loops of the Co2FeAl/(Ga,Mn)As bilayer shift with a small ferromagnetic interaction field of +24 Oe and -23 Oe at 15 K. The observed ferromagnetic interfacial coupling is supported by ab initio density functional calculations. These findings may provide a viable pathway for designing room-temperature semiconductor spintronic devices through magnetic proximity effect.

  13. Ferromagnetic interfacial interaction and the proximity effect in a Co2FeAl/(Ga,Mn)As bilayer.

    PubMed

    Nie, S H; Chin, Y Y; Liu, W Q; Tung, J C; Lu, J; Lin, H J; Guo, G Y; Meng, K K; Chen, L; Zhu, L J; Pan, D; Chen, C T; Xu, Y B; Yan, W S; Zhao, J H

    2013-07-12

    The magnetic properties of a Co2FeAl/(Ga,Mn)As bilayer epitaxied on GaAs (001) are studied both experimentally and theoretically. Unlike the common antiferromagnetic interfacial interaction existing in most ferromagnet-magnetic semiconductor bilayers, a ferromagnetic interfacial interaction in the Co2FeAl/(Ga,Mn)As bilayer is observed from measurements of magnetic hysteresis and x-ray magnetic circular dichroism. The Mn ions in a 1.36 nm thick (Ga,Mn)As layer remain spin polarized up to 400 K due to the magnetic proximity effect. The minor loops of the Co2FeAl/(Ga,Mn)As bilayer shift with a small ferromagnetic interaction field of +24 Oe and -23 Oe at 15 K. The observed ferromagnetic interfacial coupling is supported by ab initio density functional calculations. These findings may provide a viable pathway for designing room-temperature semiconductor spintronic devices through magnetic proximity effect. PMID:23889435

  14. Ferromagnetic Interfacial Interaction and the Proximity Effect in a Co2FeAl/(Ga,Mn)As Bilayer

    NASA Astrophysics Data System (ADS)

    Nie, S. H.; Chin, Y. Y.; Liu, W. Q.; Tung, J. C.; Lu, J.; Lin, H. J.; Guo, G. Y.; Meng, K. K.; Chen, L.; Zhu, L. J.; Pan, D.; Chen, C. T.; Xu, Y. B.; Yan, W. S.; Zhao, J. H.

    2013-07-01

    The magnetic properties of a Co2FeAl/(Ga,Mn)As bilayer epitaxied on GaAs (001) are studied both experimentally and theoretically. Unlike the common antiferromagnetic interfacial interaction existing in most ferromagnet-magnetic semiconductor bilayers, a ferromagnetic interfacial interaction in the Co2FeAl/(Ga,Mn)As bilayer is observed from measurements of magnetic hysteresis and x-ray magnetic circular dichroism. The Mn ions in a 1.36 nm thick (Ga,Mn)As layer remain spin polarized up to 400 K due to the magnetic proximity effect. The minor loops of the Co2FeAl/(Ga,Mn)As bilayer shift with a small ferromagnetic interaction field of +24Oe and -23Oe at 15 K. The observed ferromagnetic interfacial coupling is supported by ab initio density functional calculations. These findings may provide a viable pathway for designing room-temperature semiconductor spintronic devices through magnetic proximity effect.

  15. Directly obtained τ-phase MnAl, a high performance magnetic material for permanent magnets

    NASA Astrophysics Data System (ADS)

    Fang, Hailiang; Kontos, Sofia; Ångström, Jonas; Cedervall, Johan; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin

    2016-05-01

    The metastable tetragonal τ-phase has been directly obtained from casting Mn0.54Al0.46 and (Mn0.55Al0.45)100C2 using the drop synthesis method. The as-casted samples were ball milled to decrease the particle size and relaxed at 500 °C for 1 h. The phase composition, crystallographic parameters, magnetic properties and microstructure were systematically studied. The results reveal that the τ-phase could be directly obtained from drop synthesis. The highest Ms of 117 emu/g was achieved in the (Mn0.55Al0.45)100C2 where the τ-phase was stabilized by doping with carbon. Carbon doping increased the c/a ratio of the τ-phase as it occupies specific interstitial positions (½, ½, 0) in the structure. Furthermore, ball milling increases the coercivity (Hc) at the expense of a decrease in magnetic saturation (Ms). The increase in coercivity is explained by a decrease of grain size in conjunction with domain wall pinning due to defects introduced during the ball milling process.

  16. Ion beam-irradiation induced structure transformation in α-AlMnSi

    NASA Astrophysics Data System (ADS)

    Guo, Y. X.; Wang, L. M.; Chen, L. F.; Ewing, R. C.

    1997-05-01

    Structure changes of an α-AlMnSi phase, irradiated with 1.5 MeV Xe + ions at room temperature, have been studied by transmission electron microscopy (TEM). At an irradiation dose of 3.4 × 10 13 ions/cm 2, the primitive cubic α-AlMnSi phase transformed to a bcc phase. But the unit cell parameter ( a = 1.268 nm) remained the same. With an increase of irradiation dose, the bcc phase became amorphous at 3.4 × 10 14 ions/cm 2. The bcc phase structure consists of two MacKay icosahedral atomic clusters in each unit cell. A pseudo ten-fold rotational axis has also been obtained via electron diffraction in the specimens irradiated to 5.1 × 10 13 ions/cm 2. This quasicrystal-like structure was found for the first time during the radiation-induced crystalline-to-amorphous phase transformation. Annealing of the fully amorphized specimens was performed with in situ TEM. The α-AlMnSi phase started to form at 350°C and was fully crystallized at 500°C. The bcc phase and quasicrystal-like structures were not observed during the crystallization processes.

  17. IBA analysis and corrosion resistance of TiAlPtN/TiAlN/TiAl multilayer films deposited over a CoCrMo using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Canto, C. E.; Andrade, E.; de Lucio, O.; Cruz, J.; Solís, C.; Rocha, M. F.; Alemón, B.; Flores, M.; Huegel, J. C.

    2016-03-01

    The corrosion resistance and the elemental profile of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by Physical Vapor Deposition (PVD) reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt to enhance the corrosion resistance of a biomedical alloy of CoCrMo. Corrosion tests were performed using Simulated Body Fluid (SBF) using potentiodynamic polarization tests at typical body temperature. The elemental composition and thickness of the coatings were evaluated with the combination of two ion beam analysis (IBA) techniques: a Rutherford Backscattering Spectroscopy (RBS) with alpha beam and a Nuclear Reaction Analysis with a deuteron beam.

  18. Microstructures, mechanical properties, and electrical resistivity of rapidly quenched Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Naohara, T.; Inoue, A.; Minemura, T.; Masumoto, T.; Kumada, K.

    1982-03-01

    By the rapid quenching technique, ductile supersaturated ferrite solid solution with high hardness and strength as well as unusual electrical properties has been found in Fe-Cr-Al ternary system. This formation range is limited to less than about 35 at. pct Cr and 23 at. pct Al. The ferrite phase has fine grains of about 10 μm in diameter. Their hardness, yield strength, and tensile fracture strength increase with increase in the amounts of chromium and aluminum, and the highest values reach about 290 DPN, 720 MPa, and 740 MPa. These alloys are so ductile that no cracks are observed even after closely contacted bending test. The good strength and ductility remain almost unchanged on tempering for one hour until heated to about 923 K where a large amount of Cr2Al compound begins to precipitate preferentially along the grain boundaries of the ferrite phase. The room-temperature resistivity increases with increasing chromium and aluminum contents and reaches as high as 1.86 μ Ώ m for Fe50Cr30Al20 alloy. Also, the temperature coefficient of resistivity in the temperature range between room temperature and 773 K decreases with increasing chromium and aluminum contents and becomes zero in the vicinity of 20 to 30 at. pct Cr and 15 at. pct Al. Thus, the present alloys may be attractive as fine gauge high-resistance and/or standard-resistance wires and plates because of the unusual electrical properties combined with high strength and good ductility.

  19. Advanced ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N; Unocic, Kinga A; Hoelzer, David T; Pint, Bruce A

    2014-09-01

    ODS FeCrAl alloys are being developed with optimum composition and properties for accident tolerant fuel cladding. Two oxide dispersion strengthened (ODS) Fe-15Cr-5Al+Y2O3 alloys were fabricated by ball milling and extrusion of gas atomized metallic powder mixed with Y2O3 powder. To assess the impact of Mo on the alloy mechanical properties, one alloy contained 1%Mo. The hardness and tensile properties of the two alloys were close and higher than the values reported for fine grain PM2000 alloy. This is likely due to the combination of a very fine grain structure and the presence of nano oxide precipitates. The nano oxide dispersion was however not sufficient to prevent grain boundary sliding at 800 C and the creep properties of the alloys were similar or only slightly superior to fine grain PM2000 alloy. Both alloys formed a protective alumina scale at 1200 C in air and steam and the mass gain curves were similar to curves generated with 12Cr-5Al+Y2O3 (+Hf or Zr) ODS alloys fabricated for a different project. To estimate the maximum temperature limit of use for the two alloys in steam, ramp tests at a rate of 5 C/min were carried out in steam. Like other ODS alloys, the two alloys showed a significant increase of the mas gains at T~ 1380 C compared with ~1480 C for wrought alloys of similar composition. The beneficial effect of Yttrium for wrought FeCrAl does not seem effective for most ODS FeCrAl alloys. Characterization of the hardness of annealed specimens revealed that the microstructure of the two alloys was not stable above 1000 C. Concurrent radiation results suggested that Cr levels <15wt% are desirable and the creep and oxidation results from the 12Cr ODS alloys indicate that a lower Cr, high strength ODS alloy with a higher maximum use temperature could be achieved.

  20. High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey; Chambers, Matthew

    2011-01-01

    A new concept has been developed for a high-temperature luminescence-based optical thermometer that both shows the desired temperature sensitivity in the upper temperature range of present state-of-the-art luminescence thermometers (above 1,300 C), while maintaining substantial stronger luminescence signal intensity that will allow these optical thermometers to operate in the presence of the high thermal background radiation typical of industrial applications. This objective is attained by using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor with an orthorhombic perovskite structure, resulting in broadband luminescence that remains strong at high temperature due to the favorable electron energy level spacing of Cr:GdAlO3. The Cr:GdAlO3 temperature (and pressure) sensor can be incorporated into, or applied onto, a component s surface when a non-contact surface temperature measurement is desired, or alternatively, the temperature sensor can be attached to the end of a fiber-optic probe that can then be positioned at the location where the temperature measurement is desired. In the case of the fiber-optic probe, both the pulsed excitation and the luminescence emission travel through the fiber-optic light guide. In either case, a pulsed light source provides excitation of the luminescence, and the broadband luminescence emission is collected. Real-time temperature measurements are obtain ed using a least-squares fitting algorithm that determines the luminescence decay time, which has a known temperature dependence established by calibration. Due to the broad absorption and emission bands for Cr:GdAlO3, there is considerable flexibility in the choice of excitation wavelength and emission wavelength detection bands. The strategic choice of the GdAlO3 host is based on its high crystal field, phase stability, and distorted symmetry at the Cr3+ occupation sites. The use of the broadband emission for temperature sensing at high temperatures is a key feature of the invention and is

  1. Low-temperature structure of ξ'-Al-Pd-Mn optimized by ab initio methods

    NASA Astrophysics Data System (ADS)

    Frigan, Benjamin; Santana, Alejandro; Engel, Michael; Schopf, Daniel; Trebin, Hans-Rainer; Mihalkovič, Marek

    2011-11-01

    We have studied and resolved occupancy correlations in the existing average structure model of the complex metallic alloy ξ'-Al-Pd-Mn [Boudard , Philos. Mag. APMAADG0141-861010.1080/01418619608242169 74, 939 (1996)], which has approximately 320 atoms in the unit cell and many fractionally occupied sites. Model variants were constructed systematically in a tiling-decoration approach and subjected to simulated annealing by use of both density functional theory and molecular dynamics with empirical potentials. To obtain a measure for thermodynamic stability, we reproduce the Al-Pd-Mn phase diagram at T=0 K, and derive an enthalpy of formation for each structure. Our optimal structure resolves a cloud of fractionally occupied sites in pseudo-Mackay clusters. In particular, we demonstrate the presence of rotational degrees of freedom of an Al9 inner shell, which is caged within two icosahedrally symmetric outer shells Al30 and Pd12. Outside these clusters, the chemical ordering on a chain of three nearby sites surprisingly breaks the inversion symmetry of the surrounding structure, and couples to an Al/vacancy site nearby. Our refined tiling-decoration model applies to any structure within the ɛ-phases family, including the metastable decagonal quasicrystalline phase.

  2. Structural, magnetic, and superconducting properties of pulsed-laser-deposition-grown La<mn>1.85mn> Sr<mn>0.15mn> CuO<mn>4mn> / La<mn>2mn>/>3mn> Ca<mn>1mn>/>3mn> MnO>3mn> superlattices on (001)-oriented LaSrAlO>4mn> substrates

    SciTech Connect

    Das, S.; Sen, K.; Marozau, I.; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Khaydukov, Y.; Soltwedel, O.; Keller, T.; Döbeli, M.; Schneider, C. W.; Bernhard, C.

    2014-03-12

    Epitaxial La<mn>1.85mn> Sr<mn>0.15mn> CuO<mn>4mn> / La<mn>2mn>/>3mn> Ca<mn>1mn>/>3mn> MnO>3mn> (LSCO/LCMO) superlattices (SL) on (001)- oriented LaSrAlO4 substrates have been grown with pulsed laser deposition (PLD) technique. Their structural, magnetic and superconducting properties have been determined with in-situ reflection high energy electron diffraction (RHEED), x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy (STEM), electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO (a = 0.3779 nm) and LCMO (a = 0.387 nm) these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LSAO substrate, a sizeable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of Tconset ≈ 36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H ∥ ab and a sizeable paramagnetic shift for H ∥ c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a

  3. Characterization of Ni-20Cr-5Al model alloy in supercritical water

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Guzonas, D.

    2014-02-01

    MCrAlY is a class of coating materials that provide corrosion and oxidation resistance to many Ni and Fe based alloys by forming dense alumina layer on the surface. In order to assess its potential as corrosion resistant coatings on components in supercritical water cooled nuclear reactors (SWCR), a Ni-20Cr-5Al model alloy is tested in SCW (500 °C and 25 MPa) for over 6000 h. The long term corrosion behavior of the samples with various surface preparations is evaluated by measuring weight change and examining surface microstructure and oxide formation. The results show that surface preparation alone can lead to changes in weight gain as great as an order of magnitude. Smooth and near stress free surface allows for more oxidation to take place in SCW, hence more weight change. Simple grinding with abrasive paper yields the least and most stable weight change while grit blasting has some effect in reducing weight gain. Comparing to other alloys tested under similar condition, Ni-20Cr-5Al has the lowest weight change. Although not detected, the formation of Al2O3 or an Al modified Cr2O3 superficial layer is likely the reason for such low weight change.

  4. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Chen, X. F.; Johnson, D. R.; Noebe, R. D.; Oliver, B. F.

    1995-01-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  5. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    SciTech Connect

    Chen, X.F.; Johnson, D.R.; Noebe, R.D.; Oliver, B.F.

    1995-05-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  6. Cage Structure Formation of Singly Doped Aluminum Cluster Cations Al n TM + ( TM = Ti, V, Cr)

    NASA Astrophysics Data System (ADS)

    Lang, Sandra M.; Claes, Pieterjan; Neukermans, Sven; Janssens, Ewald

    2011-09-01

    Structural information on free transition metal doped aluminum clusters, Al n TM + ( TM = Ti, V, Cr), was obtained by studying their ability for argon physisorption. Systematic size ( n = 5 - 35) and temperature ( T = 145 - 300 K) dependent investigations reveal that bare Al n + clusters are inert toward argon, while Al n TM + clusters attach one argon atom up to a critical cluster size. This size is interpreted as the geometrical transition from surface-located dopant atoms to endohedrally doped aluminum clusters with the transition metal atom residing in an aluminum cage. The critical size, n crit , is found to be surprisingly large, namely n crit = 16 and n crit = 19 - 21 for TM = V, Cr, and TM = Ti, respectively. Experimental cluster-argon bond dissociation energies have been derived as function of cluster size from equilibrium mass spectra and are in the 0.1-0.3 eV range.

  7. Experimental study and thermodynamic modeling of the Al-Co-Cr-Ni system

    NASA Astrophysics Data System (ADS)

    Gheno, Thomas; Liu, Xuan L.; Lindwall, Greta; Liu, Zi-Kui; Gleeson, Brian

    2015-10-01

    A thermodynamic database for the Al-Co-Cr-Ni system is built via the Calphad method by extrapolating re-assessed ternary subsystems. A minimum number of quaternary parameters are included, which are optimized using experimental phase equilibrium data obtained by electron probe micro-analysis and x-ray diffraction analysis of NiCoCrAlY alloys spanning a wide compositional range, after annealing at 900 °C, 1100 °C and 1200 °C, and water quenching. These temperatures are relevant to oxidation and corrosion resistant MCrAlY coatings, where M corresponds to some combination of nickel and cobalt. Comparisons of calculated and measured phase compositions show excellent agreement for the β-γ equilibrium, and good agreement for three-phase β-γ-σ and β-γ-α equilibria. An extensive comparison with existing Ni-base databases (TCNI6, TTNI8, NIST) is presented in terms of phase compositions.

  8. Oxide scales formed on Fe-Cr-Al-based model alloys exposed to oxygen containing molten lead

    NASA Astrophysics Data System (ADS)

    Weisenburger, A.; Jianu, A.; Doyle, S.; Bruns, M.; Fetzer, R.; Heinzel, A.; DelGiacco, M.; An, W.; Müller, G.

    2013-06-01

    Based on the state of the art oxide maps concerning oxidation behavior of Fe-Cr-Al model alloys at 800 and 1000 °C in oxygen atmosphere, ten compositions, belonging to this alloy system, were designed in order to tap the borders of the alumina stability domain, during their exposure to oxygen (10-6 wt.%) containing lead, at 400, 500 and 600 °C. Eight alloys, Fe-6Cr-6Al, Fe-8Cr-6Al, Fe-10Cr-5Al, Fe-14Cr-4Al, Fe-16Cr-4Al, Fe-6Cr-8Al, Fe-10Cr-7Al and Fe-12Cr-5Al, were found to be protected against corrosion in oxygen containing lead, either by a duplex layer (Fe3O4 + (Fe1-x-yCrxAly)3O4) or by (Fe1-x-yCrxAly)3O4, depending on the temperature at which they were exposed. Two alloys namely Fe-12Cr-7Al and Fe-16Cr-6Al were found to form transient aluminas, κ-Al2O3 (at 400 and 500 °C) and θ-Al2O3 (at 600 °C), as protective oxide scale against corrosion in oxygen containing lead. An oxide map illustrating the stability domain of alumina, grown on Fe-Cr-Al alloys when exposed to molten, oxygen containing lead, was drawn. The map includes also additional points, extracted from literature and corresponding to alumina forming alloys, when exposed to HLMs, which fit very well with our findings. Chromium and aluminium contents of 12.5-17 wt.% and 6-7.5 wt.%, respectively, are high enough to obtain thin, stable and protective alumina scales on Fe-Cr-Al-based alloys exposed to oxygen containing lead at 400, 500 and 600 °C. For the temperature range and exposure times used during the current evaluation, the growth rate of the alumina scale was low. No area with detached scale was observed and no trace of α-Al2O3 was detected.

  9. Tensile properties and fracture behavior of Ti[sub 52]Al[sub 48] and Ti[sub 50]Al[sub 48]Cr[sub 2] prepared from elemental powders

    SciTech Connect

    Dogan, B.; Wang, G.X.; Dahms, M. )

    1993-10-01

    Titanium aluminide alloys, based on gamma TiAl, are currently of interest because of potential applications in high performance airframe and gas turbines. Their low densities, high melting temperatures, good elevated temperature strength and modulus retention, and environmental resistance favors them for these applications. However, their practical use are largely limited by their poor workability and ductility at temperatures lower than 700 C. Although the ductility has been improved in two phase TiAl alloys by adding alloying elements such as Cr, Mn, Nb and V, and by microstructural control in recent years, the ability to manufacture them still remains a problem. The reactive powder processing method offers a promising alternative to overcome this problem. This method involves cold-extrusion of an elemental powder mixture and reactive sintering. The as-extruded material can easily be machined or reformed into different shapes, since titanium aluminides are not present at this stage. The reactive sintering is conducted as the last step to form the desired titanium aluminides in the finished products. By this route, the poor workability of titanium aluminides can be avoided. In the present paper, a binary alloy Ti[sub 52]Al[sub 48](TiAl) and a ternary alloy Ti[sub 50]Al[sub 48]Cr[sub 2](TiAlCr), prepared in the same way from elemental powders, are investigated. The tensile tests were carried out at room temperature to 900 C in air. The influence of 2 at.% Cr addition on the tensile properties and fracture behavior of the alloys are reported. An emphasis is placed on the correlation between microstructure and deformation, and fracture behavior of the alloys.

  10. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    SciTech Connect

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.

  11. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials canmore » be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.« less

  12. Electronic, optical and thermal properties of TiCr2 and TiMn2 by ab initio simulations

    NASA Astrophysics Data System (ADS)

    Ali, M. S.; Roknuzzaman, M.; Parvin, R.; Islam, A. K. M. A.; Ostrikov, K.

    2015-10-01

    A theoretical study of TiX2 (X = Cr, Mn) with C14 Laves phase compounds has been performed by using the first-principles pseudopotential plane-wave method within the generalized gradient approximation (GGA). The electronic properties (Fermi surface and charge density) have been calculated and analyzed. The optical characteristics (dielectric functions, absorption spectrum, conductivity, energy-loss spectrum and reflectivity) are calculated and discussed. The calculated large positive static dielectric constant indicates good dielectric properties. The reflectivity of TiX2 (X = Cr, Mn) is high in the IR-Visible-UV region up to ˜13 eV showing promise as a good solar heating barrier material. The temperature and pressure dependence of bulk modulus, Debye temperature, specific heats and thermal expansion coefficient are obtained for T = 1200 K and P = 50 GPa through quasi-harmonic Debye model with phononic effects. Fermi surface, optical and thermodynamic properties are very important for practical applications of the materials in optical and other devices.

  13. Characterization of AlN:Mn thin film phosphors prepared by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Sato, Ayumu; Azumada, Kyoko; Atsumori, Toshiyuki; Hara, Kazuhiko

    2007-01-01

    The structural and luminescent properties of AlN:Mn films, which showed red-orange luminescence originated from the transition of 3d-electrons in a Mn ion, were investigated. The samples were grown on sapphire (0 0 0 1) wafers by an atmospheric-pressure metalorganic chemical vapor deposition at 1050 °C. The grown films were polycrystal oriented preferentially towards the <0 0 0 1> direction of wurtzite structure. It is suggested from the dependence of Mn concentration (CMn) on the lattice constant and the low-temperature photoluminescence spectrum that most of the Mn atoms occupy the lattice sites for CMn up to about 1×1020 cm-3. The samples exhibited bright cathodoluminescence reflecting the improved crystalline quality compared to that of the low-temperature-grown samples. The highest luminance, 245 cd/m 2, has been obtained from the layer with CMn of 3×1019 cm-3 under the excitation conditions of 5 kV and 0.1 mA/cm 2 as an accelerating voltage and a current density, respectively.

  14. Influence of Fe@MnAl2O4 and synthesis of novel compound Mn0.83Fe0.21Al1.96O4

    NASA Astrophysics Data System (ADS)

    Shafiekhani, A.; SaeidFirozeh, H.

    2013-07-01

    This communication demonstrates iron substitution in galaxite and the synthesis of a novel composite, Mn0.83Fe0.21Al1.96O4, by a simple thermal method. Hence, metal powders were heated at 1100 °C temperature for 72 h. When cooled down gradually to room temperature, the sample delaminated. Interestingly, on the sample surface, microwires were formed as timber shape with a rectangular cross-section (length>150 μm and diameter of 5-20 μm). Moreover, nanowires (77-97 nm) were observed and the surface of the sample was greenish. However, nanowires (38-53 nm) were observed on the substrate. The crystallinity and average size of the structure were formed increased by substitutions of iron ions. We discovered that the influence of temperature is very important in the wire formation process.

  15. Thermodynamic Stability of Transition-Metal-Substituted LiMn2-x Mx O4 (M=Cr, Fe, Co, and Ni) Spinels.

    PubMed

    Lai, Chenying; Chen, Jiewei; Knight, James C; Manthiram, Arumugam; Navrotsky, Alexandra

    2016-07-01

    The formation enthalpies from binary oxides of LiMn2 O4 , LiMn2-x Crx O4 (x=0.25, 0.5, 0.75 and 1), LiMn2-x Fex O4 (x=0.25 and 0.5), LiMn2-x Cox O4 (x=0.25, 0.5, and 0.75) and LiMn1.75 Ni0.25 O4 at 25 °C were measured by high temperature oxide melt solution calorimetry and were found to be strongly exothermic. Increasing the Cr, Co, and Ni content leads to more thermodynamically stable spinels, but increasing the Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO4 (M=Cr, Fe and Co), become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close-to-zero heat of mixing in LiMn2 O4 -LiMnMO4 solid solutions. These data confirm that transition-metal doping is beneficial for stabilizing these potential cathode materials for lithium-ion batteries.

  16. Thermodynamic Stability of Transition-Metal-Substituted LiMn2-x Mx O4 (M=Cr, Fe, Co, and Ni) Spinels.

    PubMed

    Lai, Chenying; Chen, Jiewei; Knight, James C; Manthiram, Arumugam; Navrotsky, Alexandra

    2016-07-01

    The formation enthalpies from binary oxides of LiMn2 O4 , LiMn2-x Crx O4 (x=0.25, 0.5, 0.75 and 1), LiMn2-x Fex O4 (x=0.25 and 0.5), LiMn2-x Cox O4 (x=0.25, 0.5, and 0.75) and LiMn1.75 Ni0.25 O4 at 25 °C were measured by high temperature oxide melt solution calorimetry and were found to be strongly exothermic. Increasing the Cr, Co, and Ni content leads to more thermodynamically stable spinels, but increasing the Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO4 (M=Cr, Fe and Co), become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close-to-zero heat of mixing in LiMn2 O4 -LiMnMO4 solid solutions. These data confirm that transition-metal doping is beneficial for stabilizing these potential cathode materials for lithium-ion batteries. PMID:27017448

  17. Effect of surface roughness on the development of protective Al 2O 3 on Fe-10Al (at.%) alloys containing 0-10 at.% Cr

    NASA Astrophysics Data System (ADS)

    Zhang, Z. G.; Hou, P. Y.; Gesmundo, F.; Niu, Y.

    2006-11-01

    The effect of alloy surface roughness, achieved by different degrees of surface polishing, on the development of protective alumina layer on Fe-10 at.% Al alloys containing 0, 5, and 10 at.% Cr was investigated during oxidation at 1000 °C in 0.1 MPa oxygen. For alloys that are not strong Al 2O 3 formers (Fe-10Al and Fe-5Cr-10Al), the rougher surfaces increased Fe incorporation into the overall surface layer. On the Fe-10Al, more iron oxides were formed in a uniform layer of mixed aluminum- and iron-oxides since the layer was thicker. On the Fe-5Cr-10Al, more iron-rich nodules developed on an otherwise thin Al 2O 3 surface layer. These nodules nucleated preferentially along surface scratch marks but not on alloy grain boundaries. For the strong Al 2O 3-forming Fe-10Cr-10Al alloy, protective alumina surface layers were observed regardless of the surface roughness. These results indicate that the formation of a protective Al 2O 3 layer on Fe-Cr-Al surfaces is not dictated by Al diffusion to the surface. More cold-worked surfaces caused an enhanced Fe diffusion, hence produced more Fe-rich oxides during the early stage of oxidation.

  18. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  19. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  20. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  1. Solidification microstructures and phase transformations in Al-Ti-Si-Mn deoxidized steel weld metals

    NASA Astrophysics Data System (ADS)

    Kluken, A. O.; Grong, Ø.; Rørvik, G.

    1990-07-01

    The present investigation is concerned with basic studies of solidification mechanisms in Al-Ti-Si-Mn deoxidized steel weld metals. Assessment of the weld metal solidification micro-structures was done on the basis of optical microscopy in combination with secondary ion mass spectrometry (SIMS), while both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for characterization of indigenous oxide inclusions. It is shown that nonmetallic inclusions play a critical role in the development of the weld metal columnar grain structure by acting as inert substrates for nucleation of delta ferrite ahead of the advancing interface. The nucleation potency of the oxides increases in the order SiO2-MnO, Al2O3-Ti2O3-SiO2-MnO, A12O3, reflecting a corresponding increase in the inclusion/liquid interfacial energy. Moreover, a shift in the peritectic reaction (which facilitates growth of the austenite grains across the phosphorus-rich boundaries of the primary delta ferrite phase) has been observed in the presence of A12O3 inclusions. Indications are that the resulting decrease in the local phosphorus concentrations at the austenite grain boundaries will strongly alter the kinetics of the subsequent solid-state transformation reactions by promoting growth of grain boundary ferrite sideplates at the expense of intragranularly nucleated acicular ferrite.

  2. Influence of Al Contents on the Microstructure, Mechanical, and Wear properties of Magnetron Sputtered CrAlN Coatings

    NASA Astrophysics Data System (ADS)

    Shah, Hetal N.; Jayaganthan, R.

    2012-09-01

    CrAlN (0 < x < 0.1) coatings were deposited on SA304 substrate by a reactive magnetron sputtering. The microstructure and composition of the as-deposited coatings were systematically characterized by field emission scanning electron microscopy/EDS and atomic force microscopy, and the phase formation by x-ray diffraction (XRD). The hardness of the coatings was investigated using nanoindentation, while wear properties were investigated using pin-on-disk tribometer. XRD study reveals that the deposited CrAlN coatings crystallized in the cubic B1 NaCl structure. The minimum and maximum hardness of the coatings are found to be 15.28 and 18.81 GPa, respectively. The COF and wear rate are found to be 0.48 and 2.25 × 10-5 mm3/N · m, which is lower than the CrN coatings deposited and characterized under the same environment (0.63 and 2.25 × 10-5 mm3/Nm).

  3. The band structure-matched and highly spin-polarized Co{sub 2}CrZ/Cu{sub 2}CrAl Heusler alloys interface

    SciTech Connect

    Ko, V.; Han, G.; Qiu, J.; Feng, Y. P.

    2009-11-16

    Here we present a lattice- and band-matched nonmagnetic L21 Heusler alloy spacer for Co{sub 2}CrZ Heusler alloys where Z=Si or Al. By first principle calculations, we find that the band structure matching is almost perfectly satisfied when they are interfaced with Cu{sub 2}CrAl. Despite the loss of half-metallicity due to interface states, our calculations show that the spin polarization at these band-matched (001) interfaces is higher than 80%. These lattice-matched Co{sub 2}CrZ/Cu{sub 2}CrAl interfaces with excellent band matching and enhanced spin scattering asymmetry are promising for all-metallic current-perpendicular-to-plane giant magnetoresistance device applications.

  4. Cr diffusion in MgAl2O4 synthetic spinels: preliminary results

    NASA Astrophysics Data System (ADS)

    Freda, C.; Celata, B.; Andreozzi, G.; Perinelli, C.; Misiti, V.

    2012-04-01

    Chromian spinel is an accessory phase common in crustal and mantle rocks, including peridotites, gabbros and basalts. Spinel, it has been identified as one of the most effective, sensible, and versatile petrogenetic indicator in mafic and ultramafic rock systems due to the strict interdependence between its physico-chemical properties (chemical composition, cation configuration etc.) and genetic conditions (temperature, pressure, and chemical characteristics of the system). In particular, studies on intra- and inter-crystalline Mg-Fe2+, Cr-Al exchange demonstrated the close relationship between spinel composition and both degree of partial melting and equilibrium temperature of spinel-peridotites. Moreover, studies focused on the chemical zoning of Mg-Fe2+ and/or Cr-Al components in spinel have been used, combined with a diffusion model, to provide quantitative information on peridotites and gabbros pressure-temperature paths and on deformation mechanisms. Although these potentials, most of the experimental studies have been performed on spinels hosting a limited content of divalent iron (sensu stricto, MgAl2O4), whereas the scarce studies on Cr-Al inter-diffusion coefficient have been performed at 3-7 GPa as pressure boundary condition. In order to contribute to the understanding of processes occurring in the lithospheric mantle, we have initiated an experimental research project aiming at determining the Cr-Al inter-diffusion in spinel at 2 GPa pressure and temperature ranging from 1100 to 1250 °C. The experiments were performed in a end-loaded piston cylinder by using a 19 mm assembly and graphite-Pt double capsules. As starting materials we used synthetic Mg-Al spinel (200-300 μm in size) and Cr2O3 powder. Microanalyses of experimental charge were performed on polished carbon-coated mounts by electronic microprobe. Line elemental analyses were made perpendicular to the contact surface between Cr2O3 powder and spinel, at interval of 2 μm. By processing these

  5. Overaluminizing of a CoNiCrAlY Coating by Inward and Outward Diffusion Treatments

    NASA Astrophysics Data System (ADS)

    Bababdani, Samira Mohseni; Nogorani, Farhad Shahriari

    2014-04-01

    Overaluminizing is a commercially accepted treatment to enhance high temperature oxidation resistance of MCrAlY overlay coatings. In the current investigation, a low pressure plasma-sprayed CoNiCrAlY coating was aluminized by two different growth modes: outward growth and inward growth. The resultant microstructures were characterized by means of scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction analysis. The results showed that the final microstructure of both types of overaluminized coatings was similar and included Al-rich NiAl and Ni-rich NiAl zones from the top to the bottom. The details of the microstructures are discussed and compared with the results of simple aluminizing of the nickel-based substrate.

  6. New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy

    NASA Astrophysics Data System (ADS)

    He, Zhanbing; Ma, Haikun; Li, Hua; Li, Xingzhong; Ma, Xiuliang

    2016-03-01

    A new kind of decagonal quasicrystal (DQC) with a periodicity of 1.23 nm was observed in the as-cast quaternary Al60Cr20Fe10Si10 alloy. The intensity distribution of some spots in the selected-area electron diffraction pattern along the tenfold zone axis was found to be different from other Al-based DQCs. High-angle annular dark-field scanning transmission electron microscopy was adopted to reveal the structural features at an atomic level. Both the tenfold symmetry and symmetry-broken decagonal (D) clusters of 1.91 nm in diameter were found, but with structural characteristics different from the corresponding D clusters in the other Al-based DQCs. The neighboring D clusters are connected by sharing one edge rather than covering, suggesting the tiling model is better than the covering model for structural description.

  7. Wear Behavior of High Velocity Arc Spraying FeNiCrAlBRE/Ni95Al Composite Coatings

    NASA Astrophysics Data System (ADS)

    Tian, H. L.; Wei, S. C.; Chen, Y. X.; Tong, H.; Liu, Y.; Xu, B. S.

    Wear-resistant FeNiCrAlBRE/Ni95Al composite coatings were deposited on carbon steel plate by high velocity arc spraying. Adhesive strength of the composite coating was improved by spraying Ni95Al cored wires as transition layer between working coating and substrate. Scanning electron microscopy and Vickers hardness testing were used to evaluate coatings structure and mechanical properties. For quantitative investigation of porosity, a computer image analyzer was used. The forming, the wear resistance and its mechanism of the coatings were studied. The results show that coating has relatively high average hardness about 550 HV0.1 and adhesive strength is 47 MPa. The worn surface characterized shallow grooves and few of debris on the coating manifested that the coating has better wear resistance under dry sliding conditions.

  8. New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy

    PubMed Central

    He, Zhanbing; Ma, Haikun; Li, Hua; Li, Xingzhong; Ma, Xiuliang

    2016-01-01

    A new kind of decagonal quasicrystal (DQC) with a periodicity of 1.23 nm was observed in the as-cast quaternary Al60Cr20Fe10Si10 alloy. The intensity distribution of some spots in the selected-area electron diffraction pattern along the tenfold zone axis was found to be different from other Al-based DQCs. High-angle annular dark-field scanning transmission electron microscopy was adopted to reveal the structural features at an atomic level. Both the tenfold symmetry and symmetry-broken decagonal (D) clusters of 1.91 nm in diameter were found, but with structural characteristics different from the corresponding D clusters in the other Al-based DQCs. The neighboring D clusters are connected by sharing one edge rather than covering, suggesting the tiling model is better than the covering model for structural description. PMID:26928759

  9. Properties of Cr:LiSrAlF[sub 6] crystals for laser operation

    SciTech Connect

    Chai, B.H.T. ); Payne, S.A.; Smith, L.K.; Beach, R.J.; Tassano, J.H.; DeLoach, L.D.; Kway, W.L.; Solarz, R.W.; Krupke, W.F. )

    1994-08-20

    We have performed several physical and optical measurements on the Cr:LiSAF (LiSrAlF[sub 6]) laser material that are relevant to its laser performance, including thermal and mechanical properties, water durabilities, and Auger upconversion constants. The expansion coefficient, Young's modulus, fracture toughness, thermal conductivity, and heat capacity are all used to determine an overall thermomechanical figure of merit for the crystal. An investigation of the water durability suggests that the cooling solution should be maintained at pH = 7 to ameliorate problems associated with water dissolution. The Auger constant was found to become much more significant at higher Cr doping, in which excited-state migration leads to a substantial increase in the upconversion rate. We propose a design for a 50-W Cr:LiSAF laser system that is based on a detailed knowledge of all the relevant material parameters.

  10. Optical and physical properties of the LiSrAlF[sub 6]:Cr laser crystal

    SciTech Connect

    Smith, L.K.; Payne, S.A.; Tassano, J.B.; DeLoach, L.D.; Kway, W.L.; Krupke, W.F.

    1993-05-18

    We have measured several of the physical and optical parameters of the LiSrAlF[sub 6]:Cr or Cr:LiSAF laser material that are important to its laser performance, including the thermomechanical properties, water durabilities and Auger upconversion constants. A thermomechanical figure-of-merit has been determined from measurements of the fracture toughness, expansion coefficient, thermal conductivity, Young's modulus, and heat capacity. Tests of water durability suggest that a neutral pH of 7 is optimum to minimize water dissolution. The Auger effect was found to be a significant factor at higher Cr concentration, where excited-state migration leads to an increase in the upconversion rate. 17 refs, 1 fig, 4 tabs.

  11. Optical and physical properties of the LiSrAlF{sub 6}:Cr laser crystal

    SciTech Connect

    Smith, L.K.; Payne, S.A.; Tassano, J.B.; DeLoach, L.D.; Kway, W.L.; Krupke, W.F.

    1993-05-18

    We have measured several of the physical and optical parameters of the LiSrAlF{sub 6}:Cr or Cr:LiSAF laser material that are important to its laser performance, including the thermomechanical properties, water durabilities and Auger upconversion constants. A thermomechanical figure-of-merit has been determined from measurements of the fracture toughness, expansion coefficient, thermal conductivity, Young`s modulus, and heat capacity. Tests of water durability suggest that a neutral pH of 7 is optimum to minimize water dissolution. The Auger effect was found to be a significant factor at higher Cr concentration, where excited-state migration leads to an increase in the upconversion rate. 17 refs, 1 fig, 4 tabs.

  12. Electrical transport and magnetic behaviors of La0.67Sr0.33Mn1-xBxO3 (B = Cr, Ru)

    NASA Astrophysics Data System (ADS)

    Acharya, Deepshikha; Bhargav, Abhinav; Tank, Tejas M.; Sanyal, Sankar P.

    2016-05-01

    Polycrystalline samples of La0.67Sr0.33Mn1-xCrxO3 (with x=0, 0.05 and 0.1) and La0.67Sr0.33Mn1-xRuxO3 (with x = 0.05 and 0.1) were synthesized using the conventional solid state reaction route and found single phase in nature. Electrical resistivity measurements as a function of temperature in range 5 K-400 K and as a function of magnetic field up to 5 Tesla were performed using d.c. four-probe method. Magnetization data were acquired as a function of temperature in a range 10 K-400 K with an applied magnetic field of 500 Oe. When Mn is partially substituted by Cr and Ru the system displays dramatic changes in the electrical transport behavior and shows double-peaked feature in resistivity curve. Both Cr and Ru substitutions effectively reduce insulator-metal transition (TP) and paramagnetic-ferromagnetic transition (TC) temperatures implying that there might exist FM interaction between Mn+3 and Cr+3 as well Mn+3 and Ru+4. The largest low-temperature magnetoresistance (MR%) is attributed to grain boundary effects and difference in size disorder for Cr and Ru substituted compounds.

  13. Phase diagram and magnetocaloric effects in Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15} and (Mn{sub 1−x}Cr{sub x})NiGe{sub 1.05} alloys

    SciTech Connect

    Quetz, Abdiel Muchharla, Baleeswaraiah; Dubenko, Igor; Talapatra, Saikat; Ali, Naushad; Samanta, Tapas; Stadler, Shane

    2014-05-07

    The magnetocaloric and thermomagnetic properties of Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15} and (Mn{sub 1−x}Cr{sub x}) NiGe{sub 1.05} systems for 0 ≤ x ≤ 0.105 and 0 ≤ x ≤ 0.1, respectively, have been studied by x-ray diffraction, differential scanning calorimetry, and magnetization measurements. Partial substitution of Cr for Mn in (Mn{sub 1−x}Cr{sub x})NiGe{sub 1.05} results in a first order magnetostructural transition from a hexagonal paramagnetic to an orthorhombic paramagnetic phase near T{sub M} ∼ 380 K (for x = 0.07). Partial substitution of Cr for In in Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15} shifts the magnetostructural transition to a higher temperature (T = T{sub M} ∼ 450 K) for x = 0.1. Large magnetic entropy changes of ΔS = −12 (J/(kgK)) and ΔS = −11 (J/(kgK)), both for a magnetic field change of 5 T, were observed in the vicinity of T{sub M} for (Mn{sub 1−x}Cr{sub x})NiGe{sub 1.05} and Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15}, respectively.

  14. Hybrid quasiparticles within the orthorhombic or hexagonal topology of RMO3 (R =Nd,Pr,Tm,Er; M =Mn,Cr) under strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Sopracase, R.; Holldack, K.; Del Campo, L.; Massa, N. E.; Martínez-Lope, M. J.; Alonso, J. A.

    2014-03-01

    We report on magnetoelectric quasiparticles that originate from electronic Coulomb and exchange correlations using a Bruker IFS125-HR interferometer at 0.5 cm-1 resolution in the THz beamline of the electron storage ring BESSYII in Berlin. Orthorhombic NdMnO3 and hexagonal TmMnO3 have quasiparticles at energies of zone center magnons. In both cases, increasing the applied field, the ~ 20 cm-1 line matching the lowest energy magnon, has its intensity reduced sharply while bands associated in TmMnO3 to magnon-acoustical phonon dispersion crossing and gap opening behave differently. The line at ~ 48 cm-1, the higher branch of the phonon gap, shows a Zeeman splitting-like behavior, while the lower branch at ~ 31 cm-1 has weak field dependences. The asymmetric envelope peaking at ~ 35 cm-1 in NdMnO3 weakens, softens, and evolves at 8 T into two unresolved bands suggesting field induced TA +magnon coupling materializing a condition for a multiferroic state. Metastable orthorhombic ErMnO3 has two bands at 5 K which resembles those of NdMnO3. A remarkable 35 cm-1 Zeeman splitting at 5 K in PrCrO3 is tentatively associated to Cr3+ electrons in a distorted polarizable p-d bond. ErCrO3 shows such a feature at 50 cm-1 as well additional zero field splitting at 8 and 9 cm-1 in the spin reorientation phase.

  15. Effects of Cr doping in La0.67Ca0.33MnO3: Magnetization, resistivity, and thermopower

    NASA Astrophysics Data System (ADS)

    Sun, Young; Xu, Xiaojun; Zhang, Yuheng

    2001-02-01

    The effects of Cr substitution on Mn sites in the colossal magnetoresistance (CMR) compound La0.67Ca0.33MnO3 have been studied by preparing the series La0.67Ca0.33Mn1- xCrxO3 (x<=0.3). A careful study in the magnetic and electrical transport properties has been carried out by the measurements of magnetization, resistivity, magnetoresistance, and thermopower. It was found that Cr is impotent in lowering TC when x<=0.2. An extraordinary magnetotransport behavior, characterized by double bumps, was observed around x=0.1. As a result, the temperature range of CMR is greatly broadened. The analysis of resistivity and thermopower data in the paramagnetic state enable us to identify the polaronic transport mechanism. Morever, it is found that the polaron activation energy as well as polaron binding energy are almost constant within a broad Cr content. We suggest these peculiar effects of Cr doping could be the consequence of the possible double exchange interaction between Mn3+ and Cr3+.

  16. An abinitio study of the half-metallic properties of Co2TGe (T=Sc, Ti, V, Cr, Mn, Fe): LSDA+U method

    NASA Astrophysics Data System (ADS)

    Rai, D. P.; Thapa, R. K.

    2013-06-01

    Using density functional theory (DFT) calculations, we investigated the electronic and magnetic properties of the Heusler compounds Co2TGe (T = Sc, Ti, V, Cr, Mn, Fe). Among the systems under investigation Co2CrGe and Co2MnGe have given 100% spin polarization at the Fermi energy ( E F ). Co2CrGe is the most stable half-metallic ferromagnets (HMFs) with an energy gap of 0.24 eV at the Fermi level ( E F ) in spin down channel. We have also found an increase in the total magnetic moments as T goes from Sc to Fe. The calculated magnetic moments for Co2CrGe and Co2MnGe are 3.999 µ B and 5.00 µ B respectively. Based on the local spin density approximation (LSDA) calculated results, we have predicted that the compounds Co2CrGe and Co2MnGe are HMFs. We have tried to study the HMFs in Co2ScGe, Co2TiGe, Co2VGe and Co2FeGe by using the local spin density approximation and Coulomb repulsion (U) (LSDA+U) when the simple generalized gradient approximation (GGA) or the LSDA fail.

  17. Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni spheroidal carbide cast irons

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Kozarevskaya, T. V.; Kusumoto, K.; Yamamoto, K.

    2014-11-01

    The objective of this investigation is to study the influence of vanadium (5.0wt%-10.0wt%) and chromium (0-9.0wt%) on the microstructure and hardness of Cr-V-Mn-Ni white cast irons with spheroidal vanadium carbides. The alloys' microstructural features are presented and discussed with regard to the distribution of phase elements. The structural constituents of the alloys are spheroidal VC, proeutectoid cementite, ledeburite eutectic, rosette-shaped carbide eutectic (based on M7C3), pearlite, martensite, and austenite. Their combinations and area fraction (AF) ratios are reported to be influenced by the alloys' chemical composition. Spheroidized VC particles are found to be sites for the nucleation of carbide eutectics. Cr and V are shown to substitute each other in the VC and M7C3 carbides, respectively. Chromium alloying leads to the formation of a eutectic (γ-Fe + M7C3), preventing the appearance of proeutectoid cementite in the structure. Vanadium and chromium are revealed to increase the total carbide fraction and the amount of austenite in the matrix. Cr is observed to play a key role in controlling the metallic matrix microstructure.

  18. Al-Si-Mn Alloy Coating on Aluminum Substrate Using Cold Metal Transfer (CMT) Welding Technique

    NASA Astrophysics Data System (ADS)

    Rajeev, G. P.; Kamaraj, M.; Bakshi, S. R.

    2014-06-01

    The cold metal transfer (CMT) process was explored as a weld overlay technique for synthesizing Al-Si-Mn alloy coating on a commercially pure Al plate. The effect of welding speed on the bead geometry, deposition rate, and the dilution were studied and the best parameter was used to synthesize the coatings. The CMT process can be used to produce thick coatings (>2.5 mm) without porosity and with low dilution levels. The Vickers hardness number of the Al substrate increased from 28 in the bulk to 57 in the coating. It is suggested that the CMT process can be an effective and energy-efficient technique for depositing thick coatings and is useful in weld repair of aluminum alloy components.

  19. Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-Al-C Steels

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wang, Yu-Nan; Ruan, Xiao-Ming; Wang, Rui-Zhi; Zhu, Kai; Fan, Zheng-Jie; Wang, Ying-Chun; Li, Cheng-Bin; Jiang, Xiao-Fang

    2015-04-01

    To assist developments of the continuous-casting technology of Fe-Mn-Al-C steels, the solidification structures and the thermal properties of Fe-Mn-Al-C steel ingots with different manganese contents have been investigated and the phase transformation characteristics have been revealed by FactSage (CRCT-ThermFact Inc., Montréal, Canada). The results show that the thermal conductivity of the 0Mn steel is the highest, whereas the thermal conductivity of the 8Mn steel is slightly higher than that of the 17Mn steel. Increasing the manganese content promotes a columnar solidification structure and coarse grains in steel. With the increase of manganese content, the mass fraction of austenite phase is increased. Finally, a single austenite phase is formed in the 17Mn steel. The mean thermal expansion coefficients of the steels are in the range from 1.3 × 10-5 to 2.3 × 10-5 K-1, and these values increase with the increase of manganese content. The ductility of the 17Mn steel and the 8Mn steel are higher than 40 pct in the temperature range from 873 K to 1473 K (600 °C to 1200 °C), and the cracking during the straightening operation should be avoided. However, the ductility of the 0Mn steel is lower than 40 pct at 973 K and 1123 K (700 °C and 850 °C), which indicates that the temperature of the straightening operation during the continuous-casting process should be above 1173 K (900 °C). Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region. At the 2.1 mass pct aluminum level, the precipitate temperature of AlN is high. Thus, the formed AlN is too coarse to deteriorate the hot ductility of steel.

  20. Effect of Cr on Microstructure and Properties of a Series of AlTiCr x FeCoNiCu High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Li, Anmin; Ma, Ding; Zheng, Qifeng

    2014-04-01

    A series of AlTiCr x FeCoNiCu ( x: molar ratio, x = 0.5, 1.0, 1.5, 2.0, 2.5) high-entropy alloys (HEAs) were prepared by vacuum arc furnace. These alloys consist of α-phase, β-phase, and γ-phase. These phases are solid solutions. The structure of α-phase and γ-phase is face-centered cubic structure and that of β-phase is body-centered cubic (BCC) structure. There are four typical cast organizations in these alloys such as petal organization (α-phase), chrysanthemum organization (α-phase + β-phase), dendrite (β-phase), and inter-dendrite (γ-phase). The solidification mode of these alloys is affected by Chromium. If γ-phase is not considered, AlTiCr0.5FeCoNiCu and AlTiCrFeCoNiCu belong to hypoeutectic alloys; AlTiCr1.5FeCoNiCu, AlTiCr2.0FeCoNiCu, and AlTiCr2.5FeCoNiCu belong to hypereutectic alloys. The cast organizations of these alloys consist of pro-eutectic phase and eutectic structure (α + β). Compact eutectic structure and a certain amount of fine β-phase with uniform distribution are useful to improve the microhardness of the HEAs. More γ-phase and the microstructure with similar volume ratio values of α-phase and β-phase improve the compressive strength and toughness of these alloys. The compressive fracture of the series of AlTiCr x FeCoNiCu HEAs shows brittle characteristics, suggesting that these HEAs are brittle materials.

  1. Relative phase and physical properties of CrN/AlN multilayer: A DFT study

    NASA Astrophysics Data System (ADS)

    Cudris, E. F.; Díaz F, J. H.; Espita R, M. J.

    2016-08-01

    Using first principles total-energy calculations within the framework of density functional theory, we studied the relative stability and the structural and electronic properties of multilayer CrN/AlN in the sodium chloride (NaCl), cesium chloride (CsCl), nickel arsenide (NiAs), zinc-blende, and wurtzite structures. The calculations were carried out using the method based on pseudopotentials, employed exactly as implemented in Quantum-ESPRESSO code. Based on total energy minimization, we found that the minimum global energy of CrN/AlN is obtained for the zincblende structure. Additionally, at high pressure our calculations show the possibility of a phase transition from the zincblende to NaCl structure. For the zincblende phase, the density of states analysis reveals that the multilayer exhibits a half-metallic behavior with a magnetic moment of 3.0^p/Cr-atom. These properties come essentially from the polarization of Cr-d and N-p states that cross the Fermi level. Due to these properties, the multilayer can potentially be used in the field of spintronics or spin injectors.

  2. 1300 K Compressive Properties of Directionally Solidified Ni-33Al-33Cr-1Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, Ivan E.

    2000-01-01

    The Ni-33Al-33Cr-1Mo eutectic has been directionally solidified by a modified Bridgeman technique at growth rates ranging from 7.6 to 508 mm/h to produce grain/cellular microstructures, containing alternating plates of NiAl and Cr alloyed with Mo. The grains had sharp boundaries for slower growth rates (< 12.7 mm/h), while faster growth rates (> 25.4 mm/h) lead to cells bounded by intercellular regions. Compressive testing at 1300 K indicated that alloys DS'ed at rates between 25.4 to 254 mm/h possessed the best strengths which exceed that for the as-cast alloy.

  3. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    SciTech Connect

    George, Nathan; Sweet, Ryan; Maldonado, G. Ivan; Wirth, Brian D.; Powers, Jeffrey J.; Worrall, Andrew

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  4. Creep behavior of commercial FeCrAl foils: beneficial and detrimental effect of oxidation

    SciTech Connect

    Dryepondt, Sebastien N; Pint, Bruce A; Lara-Curzio, Edgar

    2012-01-01

    Creep tests were performed at 875 and 1050 C on commercially available FeCrAl foils (~50 m, 2 mil thickness) over a wide range of stress and duration to characterize their creep behavior. The oxide scales formed on the creep specimens were analyzed and compared to those that formed on unstressed specimens to assess the effect of stress and strain on oxide growth mechanisms. Below a specific stress threshold, creep rate and lifetime become independent of the applied load and rupture occurs due to the onset of breakaway oxidation. A creep rate model based on the strengthening of the FeCrAl foils due to load-bearing by the thermally-grown alumina scale was observed to be in good agreement with the experimental results.

  5. The Temporal Evolution of the Nanostructure of a Model Ni-Al-Cr Superalloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Yoon, Kevin E.; Noebe, Ronald D.; Seidman, David N.

    2004-01-01

    The early to the later stages of precipitation of ordered gamma'-precipitates (L1(sub 2)) in Ni-5.2 Al-14.2 Cr (at.%) are studied at 873 K. Precipitates with radii as small as 0.45 nm are characterized fully by three-dimensional atom-probe (3DAP) microscopy. Contrary to what is often assumed by theory or in models, the average precipitate composition is shown to evolve with time, such that solute concentrations decrease toward an equilibrium value given by the solvus lines. Power-law time dependencies of the number density, mean radius, and supersaturations of Al and Cr are discussed in light of theoretical predictions for Ostwald ripening.

  6. Stability of Half-Metallic Ferromagnetism of Zinc-Blende Type CrAs and MnM (M=Si, Ge and Sn)

    NASA Astrophysics Data System (ADS)

    Sakuma, Akimasa

    2002-10-01

    By the first-principles calculations both for electronic structures and effective exchange constants, we investigate the stability of ferromagnetism of zinc-blende (ZB) type CrAs, and further examine a possibility of ferromagnetism of ZB type MnM (M=Si, Ge and Sn). ZB type CrAs, a half-metallic ferromagnet reported by Akinaga’s group [Jpn. J. Appl. Phys. 39 (2000) L1118], is found to have an effective exchange constant (J0=\\sumi\

  7. Thermoelectric properties of Fe and Al double substituted MnSi{sub γ} (γ~1.73)

    SciTech Connect

    Barczak, S.A.; Downie, R.A.; Popuri, S.R.; Decourt, R.; Pollet, M.; Bos, J.W.G.

    2015-07-15

    Two series of Fe and Al double substituted MnSi{sub γ} chimney ladders with a nominal valence electron count, VEC=14 per transition metal were prepared (γ=1.75). Simultaneous replacement of Mn with Fe and Si with Al yielded the Mn{sub 1−x}Fe{sub x}Si{sub 1.75−x}Al{sub x} series while the second Mn{sub 1−x}Fe{sub x}Si{sub 1.75–1.75x}Al{sub 2x} series follows the pseudo-binary between MnSi{sub 1.75} and FeAl{sub 2}. Scanning electron microscopy and elemental mapping revealed that ~60% of the nominal Al content ends up in the product with the remainder lost to sublimation, and that up to 7% Al can be substituted in the main group sublattice. Profile analysis of X-ray powder diffraction data revealed gradual changes in the cell metrics, consistent with the simultaneous substitution of Fe and Al in a fixed ratio. All samples are p-type with VEC≈13.95 from the structural data and ~1×10{sup 21} holes cm{sup −3} from variable temperature Seebeck measurements. The substituted samples have lower electrical resistivities (ρ{sub 300} {sub K}=2–5 mΩ cm) due to an improved microstructure. This leads to increased thermoelectric power factors (largest S{sup 2}/ρ=1.95 mW m{sup −1} K{sup −2}) compared to MnSi{sub γ}. The thermal conductivity for the Mn{sub 0.95}Fe{sub 0.05}Si{sub 1.66}Al{sub 0.1} sample is 2.7 W m{sup −1} K{sup −1} between 300 and 800 K, and is comparable to literature data for the parent material. - Graphical abstract: The crystal structure, microstructure and thermoelectric properties of Fe and Al double substituted MnSi{sub γ} (γ~1.73) have been investigated. - Highlights: • Up to 7% Al can be substituted in MnSi{sub γ} when co-doped with Fe. • Improved microstructure and reduced electrical resistivities for Al substituted samples. • Largest power factor 1.95 mW m{sup −1} K{sup −2} and best estimated ZT=0.5.

  8. Characterization and CO oxidation activity of Cu/Cr/Al{sub 2}O{sub 3} catalysts

    SciTech Connect

    Park, P.W.; Ledford, J.S.

    1998-03-01

    X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) have been used to characterize a series of Cu/Cr/Al{sub 2}O{sub 3} catalysts prepared by stepwise incipient wetness impregnation of first chromium followed by copper (designated CuCry). The copper loading was held constant at 8 wt% CuO, and chromium loadings were varied from 0 to 20 wt% Cr{sub 2}O{sub 3}. The information obtained from surface and bulk characterization has been correlated with the CO oxidation activity of the catalysts. XPS and XRD results of analogous Cry indicated that the Cr dispersion decreased and the concentration of Cr{sup 3+} species increased with increasing Cr content. The decrease in Cu dispersion of CuCry with increasing Cr content has been attributed to the formation of large crystalline CuO and CuCr{sub 2}O{sub 4}. Copper addition decreased the Cr dispersion by reacting selectively with a dispersed Cr{sup 3+} species to form CuCr{sub 2}O{sub 4} species. However, the Cu addition did not affect the Cr oxidation state distribution compared to that of Cry. For low Cr loading CuCry catalysts (Cr/Al {le} 0.027), the CO oxidation activity increased with increasing Cr content due to the formation of crystalline CuO on the Cr-modified alumina. This has been attributed to the inhibition of Cu ion diffusion into alumina lattice vacancies by highly dispersed chromium species. The CuCry catalyst of Cr/Al = 0.054 showed the highest CO oxidation activity due to the formation of CuCr{sub 2}O{sub 4} which was more active than the CuO phase. For Cr-rich catalysts (Cr/Al {ge} 0.080), the decrease in CO oxidation activity has been ascribed to the encapsulation of the active site with Cr{sub 2}O{sub 3} species.

  9. Thermodynamic stability, magnetism and half metallicity of Mn2CoAl/GaAs(0 0 1) interface

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Zhou, Ting; Chen, Xiaorui; Yuan, Hongkuan; Chen, Hong

    2015-07-01

    Interface properties of the heterojunction which is composed of the inverse Heusler alloy Mn2 CoAl and semiconductor GaAs are investigated by employing the first-principles density functional simulations. Two kinds of interface structures, namely the top-type and bridge-type structure by connecting termination of nine Mn2 CoAl layers to the top of the As-terminated GaAs layer and bridge site between interface As atoms are respectively built. Our calculations reveal that, as for the structure with the same interface atoms, different atoms sitting directly on top of the interface As atom will lead to different interface magnetism and electronic structures. The calculated phase diagram reveals that the top-type structure including natural MnCo or MnAl termination is stable only when the interface Mn or interface Al atom directly locates on top of the As atom. Besides, bridge-type and top-type structures containing a pure Mn interface are always thermodynamically accessible regardless of values of the chemical potential of Mn and Co. The atom-resolved spin magnetic moments of most interface magnetic atoms are enhanced due to the rehybridization caused by symmetry breaking at the interface. Further analyses on electronic structures indicate that, owing to the interface effect, the interface half metallicity of all structures are completely destroyed. However, the top-type structure with MnAl termination where the interface Al atom directly sits on top of the As atom preserves the highest interface spin polarization of 80%, indicating that it has more advantages in spintronics application than other atomic terminations.

  10. Effects of ruthenium on phase separation in a model Ni-Al-Cr-Ru superalloy

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Isheim, Dieter; Hsieh, Gillian; Noebe, Ronald D.; Seidman, David N.

    2013-04-01

    The temporal evolution of a Ni-10.0Al-8.5Cr-2.0Ru (at.%) alloy aged at 1073 K was investigated using transmission electron microscopy (TEM) and atom-probe tomography. The γ‧(L12)-precipitate morphology is spheroidal through 256 h of ageing as a result of adding Ru, which decreases the lattice parameter misfit between the γ‧(L12)- and γ(f.c.c.)-phases. The addition of Ru accelerates the compositional evolution of the γ‧(L12)- and γ(f.c.c.)-phases, which achieve their equilibrium compositions after 0.25 h. Initially, Ru accelerates the partitioning of Ni and Cr to the γ(f.c.c.)-phase, and the partitioning of Al to the γ‧(L12)-phase, but after 0.25 h, Ru, which partitions to the γ(f.c.c.)-phase, decreases the partitioning of Ni and increases the partitioning of Al and Cr. The temporal evolution of the average radius, ⟨R(t)⟩, number density, volume fraction of the γ‧(L12)-precipitates, and the supersaturations of Ni, Al, Cr, and Ru in the γ(f.c.c.)- and γ‧(L12)-phases are compared in detail with predictions of coarsening models and PrecipiCalc simulations. Based on a spline function fitting procedure of the concentration profiles between the γ‧(L12)- and γ(f.c.c.)-phases, it is demonstrated that the temporal evolution of the normalized interfacial width, δ/⟨R(t)⟩ vs. ⟨R(t)⟩, of each element, decreases with increasing ageing time: δ is the interfacial width.

  11. Effect of creep stress on microstructure of a Ni-Cr-W-Al-Ti superalloy

    SciTech Connect

    Doh, J.M.; Yoo, K.K.; Choi, J.; Hur, S.K.; Baik, H.K.

    1996-02-15

    Creep stress changes the morphology and distribution of the precipitates in the precipitation-hardened alloys. It leads to the formation of precipitate free zones (PFZs) near the grain boundaries. From the microstructural observation of the creep tested specimens of a Ni-Cr-W-Al-Ti superalloy, the relation between PFZs and the amount of plastic deformation in the creep-ruptured specimen is established and the validity of the existing model is discussed based upon the experimental results.

  12. The effect of zirconium on the cyclic oxidation of NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Khan, A. S.; Lowell, C. E.

    1981-01-01

    This paper examines results with cyclic oxidation tests of Ni(9-20) Cr(15-30) Al-(x)Zr alloys carried out at 1100 C and 1200 C in static air. The concentration of zirconium varies from 0 to 0.63 atomic percent. Significant aluminum penetration is found in metallographic and electron microscopic examination of oxidized surfaces. Small amounts of zirconium lead to minimal penetration, and with increased zirconium content pronounced oxide penetration is observed.

  13. Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.

    2016-09-01

    Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.

  14. Microstructural Developments and Tensile Properties of Lean Fe-Mn-Al-C Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Sohn, S. S.; Lee, S.; Lee, B.-J.; Kwak, J.-H.

    2014-09-01

    Concepts of Fe-Al-Mn-C-based lightweight steels are fairly simple, but primary metallurgical issues are complicated. In this study, recent studies on lean-composition lightweight steels were reviewed, summarized, and emphasized by their microstructural development and mechanical properties. The lightweight steels containing a low-density element of Al were designed by thermodynamic calculation and were manufactured by conventional industrial processes. Their microstructures consisted of various secondary phases as κ-carbide, martensite, and austenite in the ferrite matrix according to manufacturing and annealing procedures. The solidification microstructure containing segregations of C, Mn, and Al produced a banded structure during the hot rolling. The (ferrite + austenite) duplex microstructure was formed after the annealing, and the austenite was retained at room temperature. It was because the thermal stability of austenite nucleated from fine κ-carbide was quite high due to fine grain size of austenite. Because these lightweight steels have outstanding properties of strength and ductility as well as reduced density, they give a promise for automotive applications requiring excellent properties.

  15. Atomic and magnetic ordering in bcc Cu-Al-Mn: computational study

    NASA Astrophysics Data System (ADS)

    Alés, Alejandro; Lanzini, Fernando

    2014-12-01

    The β phase of the ternary alloy Cu-Al-Mn, with bcc structure, displays an interesting variety of long-range atomic ordering and magnetic transitions. In this work, we present a model that allows an accurate reproduction of the measured critical temperatures for alloys with compositions along the pseudobinary line Cu3Al ↔ Cu2AlMn. The method is based on the Monte Carlo technique, allowing simultaneous evolution of the atomic distribution and the magnetic state. The configurational part of the energy is represented with a three-state Hamiltonian; the six interchange energies that govern the chemical interactions between nearest and next-nearest neighbours atoms have been determined. The magnetic counterpart is modelled by means of an Ising model. The predicted Curie temperatures agree well with the experimental values when it is assumed that the crystal configuration remains fixed and with the maximum possible degree of atomic ordering. The effects of configurational disorder on the magnetic transition have been evaluated.

  16. Effects of the mixing ratio of the CaAl12O19:mn and Zn2SiO4:mn color-conversion layer on the color tunable emissions of white organic light-emitting devices.

    PubMed

    Jeong, H S; Kim, S H; Bang, H S; Choo, D C; Kim, T W; Hwang, D H; Kwon, M S; Chu, C

    2012-02-01

    The optical properties of white organic light-emitting devices (WOLEDs) fabricated utilizing a CaAl12O19:Mn and Zn2SiO4:Mn phosphor layer were investigated. X-ray diffraction patterns for CaAl12O19:Mn and Zn2SiO4:Mn phosphors showed that Mn ions in the CaAl12O19:Mn phosphors were completely substituted into Ca ions and that Mn ions in the Zn2SiO4:Mn phosphors were completely substituted into Zn ions. Field emission scanning electron microscopy images showed that the size of the CaAl12O19:Mn phosphor was approximately between 0.1 and 3 microm, and that the size of the Zn2SiO4:Mn phosphor was smaller than 7 microm. The color coordinates of the electroluminescence spectra for WOLEDs with phosphor thicknesses of 0.25 and 0.35 mm shifted to the white emission side because the generated blue light from the blue OLEDs combined with the red and green lights was converted by the CaAl12O19:Mn and the Zn2SiO4:Mn phosphor down-conversion layers. PMID:22630022

  17. Effects of the mixing ratio of the CaAl12O19:mn and Zn2SiO4:mn color-conversion layer on the color tunable emissions of white organic light-emitting devices.

    PubMed

    Jeong, H S; Kim, S H; Bang, H S; Choo, D C; Kim, T W; Hwang, D H; Kwon, M S; Chu, C

    2012-02-01

    The optical properties of white organic light-emitting devices (WOLEDs) fabricated utilizing a CaAl12O19:Mn and Zn2SiO4:Mn phosphor layer were investigated. X-ray diffraction patterns for CaAl12O19:Mn and Zn2SiO4:Mn phosphors showed that Mn ions in the CaAl12O19:Mn phosphors were completely substituted into Ca ions and that Mn ions in the Zn2SiO4:Mn phosphors were completely substituted into Zn ions. Field emission scanning electron microscopy images showed that the size of the CaAl12O19:Mn phosphor was approximately between 0.1 and 3 microm, and that the size of the Zn2SiO4:Mn phosphor was smaller than 7 microm. The color coordinates of the electroluminescence spectra for WOLEDs with phosphor thicknesses of 0.25 and 0.35 mm shifted to the white emission side because the generated blue light from the blue OLEDs combined with the red and green lights was converted by the CaAl12O19:Mn and the Zn2SiO4:Mn phosphor down-conversion layers.

  18. Trigonal-bipyramidal and square-pyramidal chromium-manganese chalcogenide clusters, [E2CrMn2(CO)n](2-) (E=S, Se, Te; n=9, 10): synthesis, electrochemistry, UV/Vis absorption, and computational studies.

    PubMed

    Shieh, Minghuey; Yu, Chun-Hsien; Chu, Yen-Yi; Guo, Yu-Wen; Huang, Chung-Yi; Hsing, Kai-Jieah; Chen, Pei-Chi; Lee, Chung-Feng

    2013-05-01

    The reactions of E powder (E=S, Se) with a mixture of Cr(CO)6 and Mn2(CO)10 in concentrated solutions of KOH/MeOH produced two new mixed Cr-Mn-carbonyl clusters, [E2CrMn2(CO)9](2-) (E=S, 1; Se, 2). Clusters 1 and 2 were isostructural with one another and each displayed a trigonal-bipyramidal structure, with the CrMn2 triangle axially capped by two μ3-E atoms. The analogous telluride cluster, [Te2CrMn2(CO)9](2-) (3), was obtained from the ring-closure of Te2Mn2 ring complex [Te2Mn2Cr2(CO)18](2-) (4). Upon bubbling with CO, clusters 2 and 3 were readily converted into square-pyramidal clusters, [E2CrMn2(CO)10](2-) (E=Se, 5; Te, 6), accompanied with the cleavage of one Cr-Mn bond. According to SQUID analysis, cluster 6 was paramagnetic, with S=1 at room temperature; however, the Se analogue (5) was spectroscopically proposed to be diamagnetic, as verified by TD-DFT calculations. Cluster 6 could be further carbonylated, with cleavage of the Mn-Mn bond to produce a new arachno-cluster, [Te2CrMn2(CO)11](2-) (7). The formation and structural isomers, as well as electrochemistry and UV/Vis absorption, of these clusters were also elucidated by DFT calculations. PMID:23610078

  19. Distribution of Al-, Fe- and Mn-pools and their correlation in soils from two acid deposition small catchments in Hunan, China.

    PubMed

    Xue, Nandong; Seip, Hans Martin; Guo, Jinheng; Liao, Bohan; Zeng, Qingru

    2006-12-01

    Distribution of Al-, Fe- and Mn-pools was investigated in five forest soil profiles (consisting of four horizons) in each of two Hunan catchments (BLT and LKS) where acid deposition has been considered critical. Al- and Fe-pools were higher in BLT than those in LKS, but Mn-pools much lower in BLT. Mn-pools vary from topsoils to bottom soils, but there are different trends for different Mn speciation. Al- and Fe-pools, except amorphous Fe(ox), were positively correlated to contents of soil organic matter (OM) showed by the loss on ignition in the two catchments. Accumulation of Al- and Fe-pools may occur in the area where soil organic matter was enriched (e.g. in top soil and rhizosphere soil). However, no direct correlation is observed between Mn and OM. Acidic atmospheric deposition may affect transforming among speciations of Al-, Fe- and Mn-pools and leaching of soil Al, Fe and Mn through formation of soluble organo-metal dissolved Al which was potentially toxic, increased. There were significant correlations between Al-pools complexes or change of oxidation-reduction conditions. Mn(ex) (exchangeable Mn) and Mn(ox) (amorphous and organic Mn) were highly linearly correlation with soil pH values at LKS but at BLT. Under acid deposition, the availability of the nutrient Fe increased with the amount of dissolved Al, which was potentially toxic, in the two catchments. There are no significant correlations between Al(ex) (exchangeable Al) and Mn(ex), Fe(ex) (exchangeable Fe) and Mn(ex) in this work, indicating potentially toxic Mn increase seldom accompanying with Al increase in the two catchments.

  20. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    SciTech Connect

    Robb, Kevin R

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.

  1. Effects of Solute Concentrations on Kinetic Pathways in Ni-Al-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Booth-Morrison, Christopher; Weninger, Jessica; Sudbrack, Chantal K.; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.

    2008-01-01

    The kinetic pathways resulting from the formation of coherent gamma'-precipitates from the gamma-matrix are studied for two Ni-Al-Cr alloys with similar gamma'-precipitate volume fractions at 873 K. The details of the phase decompositions of Ni-7.5Al-8.5Cr at.% and Ni-5.2Al-14.2Cr at.% for aging times from 1/6 to 1024 h are investigated by atom-probe tomography, and are found to differ significantly from a mean-field description of coarsening. The morphologies of the gamma'-precipitates of the alloys are similar, though the degrees of gamma'-precipitate coagulation and coalescence differ. Quantification within the framework of classical nucleation theory reveals that differences in the chemical driving forces for phase decomposition result in differences in the nucleation behavior of the two alloys. The temporal evolution of the gamma'-precipitate average radii and the gamma-matrix supersaturations follow the predictions of classical coarsening models. The compositional trajectories of the gamma-matrix phases of the alloys are found to follow approximately the equilibrium tie-lines, while the trajectories of the gamma'-precipitates do not, resulting in significant differences in the partitioning ratios of the solute elements.

  2. Structural and magnetic properties of Co 2CrAl Heusler alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hakimi, M.; Kameli, P.; Salamati, H.

    2010-11-01

    Mechanical alloying has been used to produce nanocrystalline samples of Co 2CrAl Heusler alloys. The samples were characterized by using different methods. The results indicate that, it is possible to produce L2 1-Co 2CrAl powders after 15 h of ball-milling. The grain size of 15 h ball milled L2 1-Co 2CrAl Heusler phase, calculated by analyzing the XRD peak broadening using Williamson and Hall approach was 14 nm. The estimated magnetic moment per formula unit is ˜2 μ B. The obtained magnetic moment is significantly smaller than the theoretical value of 2.96 μ B for L2 1 structure. It seems that an atomic disorder from the crystalline L2 1-type ordered state and two-phase separation depresses the ferromagnetic ordering in alloy. Also, the effect of annealing on the structural and magnetic properties of ball milled powders was investigated. Two structures were identified for annealed sample, namely L2 1 and B2. The obtained value for magnetic moment of annealed sample is smaller than the as-milled sample due to the presence of disordered B2 phase and improvement of phase separation.

  3. Fe-Cr-Al containing oxide semiconductors as potential solar water-splitting materials.

    PubMed

    Sliozberg, Kirill; Stein, Helge S; Khare, Chinmay; Parkinson, Bruce A; Ludwig, Alfred; Schuhmann, Wolfgang

    2015-03-01

    A high-throughput thin film materials library for Fe-Cr-Al-O was obtained by reactive magnetron cosputtering and analyzed with automated EDX and XRD to elucidate compositional and structural properties. An automated optical scanning droplet cell was then used to perform photoelectrochemical measurements of 289 compositions on the library, including electrochemical stability, potentiodynamic photocurrents and photocurrent spectroscopy. The photocurrent onset and open circuit potentials of two semiconductor compositions (n-type semiconducting: Fe51Cr47Al2Ox, p-type semiconducting Fe36.5Cr55.5Al8Ox) are favorable for water splitting. Cathodic photocurrents are observed at 1.0 V vs RHE for the p-type material exhibiting an open circuit potential of 0.85 V vs RHE. The n-type material shows an onset of photocurrents at 0.75 V and an open circuit potential of 0.6 V. The p-type material showed a bandgap of 1.55 eV, while the n-type material showed a bandgap of 1.97 eV. PMID:25650842

  4. Fe-Cr-Al containing oxide semiconductors as potential solar water-splitting materials.

    PubMed

    Sliozberg, Kirill; Stein, Helge S; Khare, Chinmay; Parkinson, Bruce A; Ludwig, Alfred; Schuhmann, Wolfgang

    2015-03-01

    A high-throughput thin film materials library for Fe-Cr-Al-O was obtained by reactive magnetron cosputtering and analyzed with automated EDX and XRD to elucidate compositional and structural properties. An automated optical scanning droplet cell was then used to perform photoelectrochemical measurements of 289 compositions on the library, including electrochemical stability, potentiodynamic photocurrents and photocurrent spectroscopy. The photocurrent onset and open circuit potentials of two semiconductor compositions (n-type semiconducting: Fe51Cr47Al2Ox, p-type semiconducting Fe36.5Cr55.5Al8Ox) are favorable for water splitting. Cathodic photocurrents are observed at 1.0 V vs RHE for the p-type material exhibiting an open circuit potential of 0.85 V vs RHE. The n-type material shows an onset of photocurrents at 0.75 V and an open circuit potential of 0.6 V. The p-type material showed a bandgap of 1.55 eV, while the n-type material showed a bandgap of 1.97 eV.

  5. Oxidation and Hot Corrosion Behavior of Plasma-Sprayed MCrAlY-Cr2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Huang, Chuanbing; Lan, Hao; Du, Lingzhong; Zhang, Weigang

    2016-08-01

    The oxidation and hot corrosion behavior of two atmospheric plasma-sprayed NiCoCrAlY-Cr2O3 and CoNiCrAlY-Cr2O3 coatings, which are primarily designed for wear applications at high temperature, were investigated in this study. The two coatings were exposed to air and molten salt (75%Na2SO4-25%NaCl) environment at 800 °C under cyclic conditions. Oxidation and hot corrosion kinetic curves were obtained by thermogravimetric technique. X-ray diffraction analysis and scanning electron microscopy with energy-dispersive x-ray spectrometry were employed to characterize the coatings' microstructure, surface oxides, and composition. The results showed that both coatings provided the necessary oxidation resistance with oxidation rates of about 1.03 × 10-2 and 1.36 × 10-2 mg/cm2 h, respectively. The excellent oxidation behavior of these two coatings is attributed to formation of protective (Ni,Co)Cr2O4 spinel on the surface, while as-deposited Cr2O3 in the coatings also acted as a barrier to diffusion of oxidative and corrosive substances. The greater presence of Co in the CoNiCrAlY-Cr2O3 coating restrained internal diffusion of sulfur and slowed down the coating's degradation. Thus, the CoNiCrAlY-Cr2O3 coating was found to be more protective than the NiCoCrAlY-Cr2O3 coating under hot corrosion condition.

  6. Magnetic and transport properties of Mn{sub 2}CoAl oriented films

    SciTech Connect

    Jamer, Michelle E.; Assaf, Badih A.; Devakul, Trithep; Heiman, Don

    2013-09-30

    The structure, magnetic, and transport properties of thin films of the Heusler ferrimagnet Mn{sub 2}CoAl have been investigated for properties related to spin gapless semiconductors. Oriented films were grown by molecular beam epitaxy on GaAs substrates and the structure was found to transform from tetragonal to cubic for increasing annealing temperature. The anomalous Hall resistivity is found to be proportional to the square of the longitudinal resistivity and magnetization expected for a topological Berry curvature origin. A delicate balance of the spin-polarized carrier type when coupled with voltage gate-tuning could significantly impact advanced electronic devices.

  7. TEM and Moessbauer Study of Nano Sized Fe{sub 2}MnAl Flakes

    SciTech Connect

    Vinesh, A.; Sudheesh, V. D.; Lakshmi, N.; Venugopalan, K.

    2011-07-15

    Magnetic and structural properties of L21 ordered Fe{sub 2}MnAl Heusler alloy have been studied by X-ray diffraction, Transmission electron microscopy (TEM), Moessbauer spectroscopy and DC magnetization. Structural texturing induced by ball milling is destroyed on heating while Moessbauer and DC magnetization studies show magnetic texturing persists after thermal treatment. TEM shows large distribution in particle size with an average size of 27 nm. Thermal annealing of ball milled sample results L2{sub 1} ordering and the needle shaped particle contributes spin texturing.

  8. Fine structure on flat surfaces of quasicrystalline Al-Pd-Mn

    NASA Astrophysics Data System (ADS)

    Shen, Z.; Stoldt, C. R.; Jenks, C. J.; Lograsso, T. A.; Thiel, P. A.

    1999-12-01

    We have analyzed the fine structure revealed by scanning tunneling microscopy for a flat (within 0.8 Å) fivefold surface of i-Al-Pd-Mn. Even though features in the image appear to be arranged randomly, self-similar features are separated by distinct distances. The distribution of such distances is compatible with the separations between pseudo-Mackay icosahedra tangent to the topmost layer, and with separations between other cluster-based units. We propose that the fine structure is due to electronic structure imposed by the clusters.

  9. Major differences between the binuclear manganese boronyl carbonyl Mn2(BO)2(CO)9 and its isoelectronic chromium carbonyl analogue Cr2(CO)11.

    PubMed

    Chang, Yu; Li, Qian-Shu; Xie, Yaoming; King, R Bruce

    2013-03-14

    The lowest energy structures of the manganese boronyl carbonyl Mn2(BO)2(CO)9 by more than 8 kcal/mol are found to have a single end-to-end bridging BO group bonding to one manganese atom through its boron atom and to the other manganese atom through its oxygen atom. The long Mn···Mn distances in these structures indicate the lack of direct manganese-manganese bonding as confirmed by essentially zero Wiberg bond indices. These Mn2(BO)2(CO)9 structures are favored thermochemically by more than 25 kcal/mol over dissociation into mononuclear fragments and thus appear to be viable synthetic objectives. This contrasts with the isoelectronic Cr2(CO)11 system, which is predicted to be disfavored relative to the mononuclear fragments Cr(CO)6 + Cr(CO)5. Analogous Mn2(BO)2(CO)9 structures with an end-to-end bridging CO group lie ∼17 kcal/mol in energy above the corresponding structures with end-to-end bridging BO groups. The lowest energy Mn2(BO)2(CO)9 structures without an end-to-end bridging BO group provide unprecedented examples of the coupling of two terminal BO groups to form a terminal dioxodiborene (B2O2) ligand with a B-B distance of ∼1.9 Å. Still higher energy Mn2(BO)2(CO)9 structures include singly bridged and doubly semibridged structures analogous to the previously optimized lowest energy Cr2(CO)11 structures. PMID:23402266

  10. Analysis of the microstructure of Cr-Ni surface layers deposited on Fe{sub 3}Al by TIG

    SciTech Connect

    Ma Haijun . E-mail: hjma123@mail.sdu.edu.cn; Li Yajiang; Wang Juan

    2006-12-15

    A series of Cr-Ni alloys were overlaid on a Fe{sub 3}Al surface by tungsten inert gas arc welding (TIG) technology. The microstructure of the Cr-Ni surface layers were analysed by means of optical metallography, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that when the appropriate TIG parameters were used and Cr25-Ni13 and Cr25-Ni20 alloys were used for the overlaid materials, the Cr-Ni surface layers were crack-free. The matrix of the surface layer was austenite (A), pro-eutectoid ferrite (PF), acicular ferrite (AF), carbide-free bainite (CFB) and lath martensite (LM), distributed on the austenitic grain boundaries as well as inside the grains. The phase constituents of the Cr25-Ni13 surface layer were {gamma}-Fe, Fe{sub 3}Al, FeAl, NiAl, an Fe-C compound and an Fe-C-Cr compound. The microhardness of the fusion zone was lower than that of the Fe{sub 3}Al base metal and Cr25-Ni13 surface layer.

  11. Synthesis and characterization of lithium aluminum-doped spinel (LiAl xMn 2- xO 4) for lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Sung; Kumada, Naoki; Yoshio, Masaki

    LiAl xMn 2- xO 4 has been synthesized using various aluminum starting materials, such as Al(NO 3) 3, Al(OH) 3, AlF 3 and Al 2O 3 at 600-800°C for 20 h in air or oxygen atmosphere. A melt-impregnation method was used to synthesize Al-doped spinel with good battery performance in this research. The Al-doped content and the intensity ratio of (3 1 1)/(4 0 0) peaks can be important parameters in synthesizing Al-doped spinel which satisfies the requirements of high discharge capacity and good cycleability at the same time. The decrease in Mn 3+ ion by Al substitution induces a high average oxidation state of Mn ion in the LiAl xMn 2- xO 4 material. The electrochemical behavior of all samples was studied in Li/LiPF 6-EC/DMC (1:2 by volume)/LiAl xMn 2- xO 4 cells. Especially, the initial and last discharge capacity of LiAl 0.09Mn 1.97O 4 using LiOH, Mn 3O 4 and Al(OH) 3 complex were 128.7 and 115.5 mAh/g after 100 cycles. The Al substitution in LiMn 2O 4 was an excellent method of enhancing the cycleability of stoichiometric spinel during electrochemical cycling.

  12. Formation of α-alumina scales in the Fe-Al(Cr) diffusion coating on China low activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Zhan, Qin; Zhao, Weiwei; Yang, Hongguang; Hatano, Yuji; Yuan, Xiaoming; Nozaki, Teo; Zhu, Xinxin

    2015-09-01

    To study the formation mechanism of stable α-Al2O3 scales, the oxidation behavior of Fe-Al(Cr) diffusion coating on China low activation martensitic steel has been investigated under the oxygen partial pressure ranging from 1 to 20,000 Pa at 1253 K. A single, continuous Al2O3 scale with the maximum thickness of about 2000 nm was formed on the Fe-Al(Cr) diffusion layer. The phase transformation of alumina scales on the surface of Fe-Al(Cr) layer was studied at different oxidation times ranging from 3 to 180 min. With the increase in oxygen partial pressure, the phase transformation time of α-Al2O3 is decreased. The metastable γ-Al2O3 and transition α-(Al0.948Cr0.052)2O3 phases were formed in the earlier oxidation process and finally transformed to the stable α-Al2O3 phase, which were detected by grazing incidence angle X-ray diffraction and confirmed by transmission electron microscopy. This implies that Cr shows the third element effect and serves as a template for the nucleation of the stable α-Al2O3.

  13. Magnetism, structures and stabilities of cluster assembled TM@Si nanotubes (TM = Cr, Mn and Fe): a density functional study.

    PubMed

    Dhaka, Kapil; Bandyopadhyay, Debashis

    2016-08-01

    The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order. PMID:27430742

  14. Magnetism, structures and stabilities of cluster assembled TM@Si nanotubes (TM = Cr, Mn and Fe): a density functional study.

    PubMed

    Dhaka, Kapil; Bandyopadhyay, Debashis

    2016-08-01

    The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order.

  15. Effects of Multi-metal (Cu, Zn, Cd, Cr, and Mn) Mixtures on the Reproduction of Freshwater Rotifer Brachionus calyciflorus.

    PubMed

    Xu, Xiao-Ping; Xi, Yi-Long; Huang, Lin; Xiang, Xian-Ling

    2015-12-01

    In the field, organisms are usually exposed to mixtures of various metals. However, the effects of multi-metal mixtures on growth and reproduction of rotifers remain unknown. In the present study, effects of multi-metal mixtures (Cu, Zn, Cd, Cr, and Mn) on reproduction of the freshwater rotifer Brachionus calyciflorus were assessed by determining various endpoints, including the ratio of ovigerous females to nonovigerous females, the ratio of mictic to amictic females, the mictic rate, the fertilization rate, the population growth rate, and the resting eggs production. The results demonstrated that reproduction of rotifers was significantly affected by all multi-metal mixtures assessed. Moreover, the ratio of mictic to amictic females was the most sensitive endpoint and might be suitable to evaluate effects of multi-metal mixtures to rotifers. PMID:26464391

  16. Reactivity of Ti-B, Cr-S, and Mn-S powder systems during explosively-driven collapse

    NASA Astrophysics Data System (ADS)

    Serge, M.; Chiu, P. H.; Higgins, A. J.; Nesterenko, V. F.

    2014-05-01

    Metal-metal and metal-sulfur reactive powder mixtures have been previously tested for initiation of reaction via planar, normal-shock loading. In addition to reacting under shock, such powder mixtures may undergo exothermic reaction from other types of mechanical loading. The thick-walled cylinder technique was performed on samples of Ti-B (1:2 molar ratio), Cr-S (1.15:1 molar ratio), and Mn-S (1:1 molar ratio). These experiments were aimed to determine the effect of large shear strains exerted on reactive metal powder mixtures and to establish the relative effectiveness of shear loading in comparison to shock loading for initiating reaction. Recovered samples were analyzed via SEM and XRD to determine the degree of reaction.

  17. Reactivity of Ti-B, Cr-S, and Mn-S powder systems during explosively-driven collapse

    NASA Astrophysics Data System (ADS)

    Serge, Matthew; Nabavi, Atefeh; Chiu, Po-Hsun; Higgins, Andrew; Nesterenko, Vitali

    2013-06-01

    Metal-metal and metal-sulfur reactive powder mixtures have been previously tested for initiation of reaction via planar, normal-shock loading. In addition to reacting under shock, such powder mixtures may undergo exothermic reaction under other types of mechanical loading. The thick-walled cylinder (TWC) technique was performed on samples of Ti-B (1:2 molar ratio), Cr-S (1.15:1 molar ratio), and Mn-S (1:1 molar ratio). These experiments were performed to determine the effect of large shear strains exerted on reactive metal powder mixtures and to establish the relative effectiveness of shear loading in comparison to shock loading in initiating reaction. Recovered samples were analyzed via SEM and XRD to determine the degree of reaction. Funding was provided in part by ONR MURI N00014-07-1-0740 (Program Officer Dr. Clifford Bedford).

  18. Experimental and Numerical Analysis on the Distortion of Parts Made of 20MnCr5 by Hot Metal Forming

    SciTech Connect

    Rentsch, Ruediger; Brinksmeier, Ekkard

    2011-05-04

    For high performance applications, shafts and gears made of 20MnCr5 (AISI 5120) are manufactured in large numbers every year. Inhomogeneities in the material properties, process perturbations and asymmetries in shape and operation setups provide a potential for the distortion of parts, often released by heat treatment. In this contribution experimental results on the distortion of shafts and the dishing of disk-like gear wheel blanks are presented. The numerical analysis of the hot-rolling process allowed to trace a peculiar segregation distribution at the cross-section of the bars back to the casting process, and to identify an asymmetric strain distribution which may be the main cause for shaft distortion. For the dishing of the disks a correlation to the resulting distribution of the material flow was found and, a process perturbation parameter identified which is assumed to be responsible for the observed material flow variation.

  19. Effects of Multi-metal (Cu, Zn, Cd, Cr, and Mn) Mixtures on the Reproduction of Freshwater Rotifer Brachionus calyciflorus.

    PubMed

    Xu, Xiao-Ping; Xi, Yi-Long; Huang, Lin; Xiang, Xian-Ling

    2015-12-01

    In the field, organisms are usually exposed to mixtures of various metals. However, the effects of multi-metal mixtures on growth and reproduction of rotifers remain unknown. In the present study, effects of multi-metal mixtures (Cu, Zn, Cd, Cr, and Mn) on reproduction of the freshwater rotifer Brachionus calyciflorus were assessed by determining various endpoints, including the ratio of ovigerous females to nonovigerous females, the ratio of mictic to amictic females, the mictic rate, the fertilization rate, the population growth rate, and the resting eggs production. The results demonstrated that reproduction of rotifers was significantly affected by all multi-metal mixtures assessed. Moreover, the ratio of mictic to amictic females was the most sensitive endpoint and might be suitable to evaluate effects of multi-metal mixtures to rotifers.

  20. Study of critical behavior in ferromagnetic LaCr0.3Mn0.7O3

    NASA Astrophysics Data System (ADS)

    Bora, Tribedi; Ravi, S.

    2016-11-01

    The critical exponent behavior of LaCr0.3Mn0.7O3 compound in the vicinity of ferromagnetic transition was studied by measuring isothermal dc magnetization and by analyzing them in terms of modified Arrott plot method. The critical exponents β, γ and δ corresponding to the spontaneous magnetization, initial magnetic susceptibility and isothermal magnetization with TC=186 K were determined to be 0.325±0.006, 1.247±0.066 and 4.823±0.004 respectively and are found to be comparable to the values predicted by 3D Ising model. The obtained result is discussed in terms of presence of strong magnetic anisotropy.

  1. The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles.

    PubMed

    Chen, Jie; Li, Yan; Shang, Jia-Xiang; Xu, Hui-Bin

    2009-01-28

    The electronic structures and formation energies of the Ni(9)Mn(4)Ga(3-x)Al(x) and Ni(9)Mn(4)Ga(3-x)In(x) alloys have been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The results show that both the austenite and martensite phases of Ni(9)Mn(4)Ga(3) alloy are stabilized by Al alloying, while they become unstable with In alloying. According to the partial density of states and structural energy analysis, different effects of Al and In alloying on the phase stability are mainly attributed to their chemical effects. The formation energy difference between the austenite and martensite phases decreases with Al or In alloying, correlating with the experimentally reported changes in martensitic transformation temperature. The shape factor plays an important role in the decrease of the formation energy difference.

  2. Corrosion behavior and mechanical properties of a new nitrogen strengthened Fe-Mn-Cr alloy

    SciTech Connect

    Brill, U.; Agarwal, D.C.

    1999-07-01

    Nitrogen alloyed, Ni-free, austenitic stainless steels with more than 1 wt.% nitrogen are a new group of alloys with promising properties. They exhibit a very interesting combination of high strength and toughness with a high corrosion resistance in various environments. This work shows the influence of chromium, molybdenum and nitrogen on the corrosion resistance of Fe25Mn-alloys. According to these results Fe25Mn-alloys with approximately 20 wt.% chromium about 3 wt.% molybdenum and approximately 1.3 wt.% nitrogen have an excellent corrosion resistance. The critical pitting temperature (CPT) of 61 C and the critical crevice temperature (CCT) of 37 C when tested according to ASTM G-48 A were significantly higher than the well established AISI 316 L stainless steel.

  3. Structural and magnetic transition in stainless steel Fe-21Cr-6Ni-9Mn up to 250 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Hou, Qi-Yue; Zhang, Yi; Jing, Qiu-Min; Wang, Zhi-Gang; Bi, Yan; Xu, Ji-An; Li, Xiao-Dong; Li, Yan-Chun; Liu, Jing

    2015-06-01

    Stainless steel Fe-21Cr-6Ni-9Mn (SS 21-6-9), with ˜21% Cr, ˜6% Ni, and ˜9% Mn in weight percentage, has wide applications in extensive fields. In the present study, SS 21-6-9 is compressed up to 250 GPa, and its crystal structures and compressive behaviors are investigated simultaneously using the synchrotron angle-dispersive x-ray diffraction technique. The SS 21-6-9 undergoes a structural phase transition from fcc to hcp structure at ˜12.8 GPa with neglectable volume collapse within the determination error under the quasi-hydrostatic environment. The hcp structure remains stable up to the highest pressure of 250 GPa in the present experiments. The antiferromagnetic-to-nonmagnetic state transition of hcp SS 21-6-9 with the changes of inconspicuous density and structure, is discovered at ˜50 GPa, and revealed by the significant change in c/a ratio. The hcp SS-21-6-9 is compressive anisotropic: it is more compressive in the c-axis direction than in the a-axis direction. Both the equations of states (EOSs) of fcc and hcp SS 21-6-9, which are in accordance with those of fcc and hcp pure irons respectively, are also presented. Furthermore, the c/a ratio of hcp SS 21-6-9 at infinite compression, R∞, is consistent with the values of pure iron and Fe-10Ni alloy. Project supported by the National Natural Science Foundation of China (Grant Nos. U1230201, 11274281, and 11304294), the Industrial Technology Development Program, China (Grant No. 9045140509), and the Funds from the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N03 and KJCX2-SW-N20).

  4. Multiferroic approach for Cr,Mn,Fe,Co,Ni,Cu substituted BaTiO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep Chand; Kotnala, R. K.

    2016-05-01

    Multiferroic magnetoelectric (ME) at room temperature is significant for new design nano-scale spintronic devices. We have given a comparative study to report multiferroicity in BaTM0.01Ti0.99O3 [TM = Cr,Mn,Fe,Co,Ni,Cu (1 mol% each) substituted BaTiO3 (BTO)] nanoparticles. The TM ions influenced both nano-size and lattice distortion of Ti-O6 octahedra to the BTO. X ray diffraction study indicates that the dopant TM could influence lattice constants, distortion, tetragonal splitting of diffraction peaks (002/200) as well as peak shifting of diffraction angle in the BTO lattice. This can induce lattice strain which responsible to oxygen defects formation to mediate ferromagnetism. Also, the lattice strain effect could responsible to reduce the depolarization field of ferroelectricity and provide piezoelectric and magnetostrictive strains to enhance ME coupling. The size of BTO nanoparticles is varied in 13-51 nm with TM doping. The room temperature magnetic measurement indicates antiferromagnetic exchange interactions in BTO lattice with TM ions. The zero-field cooling and field cooling magnetic measurement at 500 Oe indicates antiferromagnetic to ferromagnetic transition. It also confirms that the substitution of Cr, Fe and Co into BTO could induce strong antiferromagnetic behavior. However, the substitutions of Mn, Ni and Cu have weak antiferromagnetic character. The temperature dependent dielectric measurements indicates polarization enhancement that influenced with both nano-size as well TM ions and exhibits ferroelectric phase transition with relaxor-like characteristics. Dynamic ME coupling is investigated, and the longitudinal ME voltage coefficient, α ME is equivalent to linear ME coupling coefficient, α (={\\varepsilon }{{o}}{\\varepsilon }{{r}}{α }{{ME}}) is also calculated.

  5. Electrical properties of ferromagnetic Ni{sub 2}MnGa and Co{sub 2}CrGa Heusler alloys

    SciTech Connect

    Kourov, N. I. Marchenkov, V. V.; Pushin, V. G.; Belozerova, K. A.

    2013-07-15

    The electrical properties of ferromagnetic Ni{sub 2}MnGa and Co{sub 2}CrGa Heusler alloys are measured in the temperature range 4-900 K. The effect of the energy gap near the Fermi level in the electronic spectrum on the behavior of electrical resistivity and absolute differential thermopower is discussed.

  6. Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8 Mn.

    PubMed

    Baker, Michael L; Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J; Barker, Claire; Blundell, Stephen J; Carretta, Stefano; Collison, David; Güdel, Hans U; Guidi, Tatiana; McInnes, Eric J L; Möller, Johannes S; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L; Santini, Paolo; Tuna, Floriana; Tregenna-Piggott, Philip L W; Vitorica-Yrezabal, Iñigo J; Timco, Grigore A; Winpenny, Richard E P

    2016-01-26

    The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities. PMID:26748964

  7. Dielectric relaxation and magnetodielectric response in DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}

    SciTech Connect

    Yuan, B.; Yang, J. Zuo, X. Z.; Zhu, X. B.; Dai, J. M.; Song, W. H.; Kan, X. C.; Zu, L.; Sun, Y. P.

    2015-09-28

    We investigate the structural, magnetic, and magnetodielectric properties of DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}. The sample can be indexed with an orthorhombic phase with B site disordered space group Pbnm. The valence state of both Mn and Cr ions are suggested to be +3 based on the results of x-ray photoelectron spectroscopy. Two thermally excited dielectric relaxation at temperatures T{sub N2} < T< 300 K and large magnetodielectric effect (MDC = 20%–30%) due to the disordered arrangement of Mn{sup 3+}/Cr{sup 3+} ions associated with electron hopping between them are observed. The absence of any noticeable magnetoresistance effect (MR < 0.5%) demonstrates that the observed magnetodielectric effect is an intrinsic behavior. These results suggest that DyMn{sub 0.5}Cr{sub 0.5}O{sub 3} is a magnetodielectric compound, whose dielectric properties are dependence of the applied magnetic field, which exhibits such effects near room temperature and holds great promise for future device applications.

  8. Studies of a Large Odd‐Numbered Odd‐Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8Mn

    PubMed Central

    Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J.; Barker, Claire; Carretta, Stefano; Collison, David; Güdel, Hans U.; Guidi, Tatiana; McInnes, Eric J. L.; Möller, Johannes S.; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L.; Santini, Paolo; Tuna, Floriana; Tregenna‐Piggott, Philip L. W.; Vitorica‐Yrezabal, Iñigo J.; Timco, Grigore A.

    2016-01-01

    Abstract The spin dynamics of Cr8Mn, a nine‐membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8Mn is a rare example of a large odd‐membered AF ring, and has an odd‐number of 3d‐electrons present. Odd‐membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated‐spin ground states. The chemical synthesis and structures of two Cr8Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground‐spin‐state crossing from S=1/2 to S=3/2 in Cr8Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin‐pair correlations and scalar‐spin chirality, shows a non‐collinear spin structure that fluctuates between non‐planar states of opposite chiralities. PMID:26748964

  9. Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8 Mn.

    PubMed

    Baker, Michael L; Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J; Barker, Claire; Blundell, Stephen J; Carretta, Stefano; Collison, David; Güdel, Hans U; Guidi, Tatiana; McInnes, Eric J L; Möller, Johannes S; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L; Santini, Paolo; Tuna, Floriana; Tregenna-Piggott, Philip L W; Vitorica-Yrezabal, Iñigo J; Timco, Grigore A; Winpenny, Richard E P

    2016-01-26

    The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities.

  10. Weathering and precipitation after meteorite impact of Ni, Cr, Fe, Ca and Mn in K-T boundary clays from Stevns Klint

    NASA Astrophysics Data System (ADS)

    Miyano, Yumiko; Yoshiasa, Akira; Tobase, Tsubasa; Isobe, Hiroshi; Hongu, Hidetomo; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa

    2016-05-01

    Ni, Cr, Fe, Ca and Mn K-edge XANES and EXAFS spectra were measured on K-T boundary clays from Stevns Klint in Denmark. According to XANES spectra and EXAFS analyses, the local structures of Ni, Cr and Fe in K-T boundary clays is similar to Ni(OH)2, Cr2O3 and FeOOH, respectively. It is assumed that the Ni, Cr and Fe elements in impact related glasses is changing into stable hydrate and oxide by the weathering and diagenesis at the surface of the Earth. Ca in K-T boundary clays maintains the diopside-like structure. Local structure of Ca in K-T clays seems to keep information on the condition at meteorite impact. Mn has a local structure like MnCO3 with divalent state. It is assumed that the origin on low abundant of Mn in the Fe-group element in K-T clays was the consumption by life activity and the diffusion to other parts.

  11. Structure, stability, and electronic properties of the i -AlPdMn quasicrystalline surface

    NASA Astrophysics Data System (ADS)

    Krajčí, M.; Hafner, J.

    2005-02-01

    The structure, stability, and electronic properties of a fivefold surface of an icosahedral (i) Al-Pd-Mn alloy have been investigated using ab initio density-functional methods. Structural models for a series of rational approximants to the quasicrystalline structure of bulk i -AlPdMn have been constructed using the cut-and-projection technique with triacontahedral acceptance domains in the six-dimensional hyperspace according to the Katz-Gratias-Boudard model. This leads to a real-space structure describable in terms of interpenetrating Mackay and Bergman clusters. A fivefold surface has been prepared by cleaving the bulk structure along a plane perpendicular to a fivefold axis. The position of the cleavage plane has been chosen such as to produce a surface layer with a high atomic density. The atomic structure of these surfaces can be described by a P1 tiling by pentagons, thin rhombi, pentagonal stars, and a “boat”—in terms of a cut-and-projection model the decagonal acceptance domain of the P1 tiling corresponds to the maximal cross section of the triacontahedra defining the three-dimensional quasicrystal. The vertices of the P1 tiling are occupied by Pd atoms surrounded by pentagonal motifs of Al atoms. For the ab initio calculations we have prepared slab models of the surface based on the 3/2 and 2/1 approximants and containing up to 357 atoms in the computational cell. The analysis of the surface charge density shows flat minima at the vertices of the P1 tiling and strong charge depletion in some of the pentagonal tiles (“surface vacancies”). Both observations are in agreement with scanning tunneling microscopy studies of these surfaces. Structural relaxations have been performed only for the 2/1 models with up to 205 atoms/cell. The calculations demonstrate that the skeleton of the P1 tiling fixed by the transition-metal atoms represents a stable surface termination, but considerable rearrangement of the Al atoms and large relaxations of the

  12. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Peng, Jian; Nyberg, Eric A.; Pan, Fu-sheng

    2016-04-01

    The microstructures and corrosion resistance of magnesium-5 wt% aluminum-0.3 wt% manganese alloys (Mg-Al-Mn) with different Ca additions (0.2-4 wt%) were investigated. Results showed that with increasing Ca addition, the grain of the alloys became more refined, whereas the corrosion resistant ability of the alloys initially increased and then decreased. The alloy with 2 wt% Ca addition exhibited the best corrosion resistance, attributed to the effect of the oxide film and (Mg,Al)2Ca phases which were discontinuously distributed on the grain boundaries. These phases acted as micro-victims, they preferentially corroded to protect the α-Mg matrix. The oxide film formed on the alloy surface can hinder the solution further to protect the α-Mg matrix.

  13. Structural, magnetic and phonon properties of Cr(III)-doped perovskite metal formate framework [(CH3)2NH2][Mn(HCOO)3

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Gągor, Anna; Hermanowicz, Krzysztof; Sieradzki, Adam; Macalik, Lucyna; Pikul, Adam

    2016-05-01

    We have incorporated Cr(III) into [(CH3)2NH2][Mn(HCOO)3] (DMMn) multiferroic metal organic framework (MOF). The highest concentration of Cr(III) in the synthesized samples reached 15.9 mol%. The obtained samples were characterized by powder and single-crystal X-ray diffraction, DSC, magnetic susceptibility, dielectric, EPR, Raman and IR methods. These methods and the performed chemical analysis revealed that electrical charge neutrality after substitution of Cr(III) for Mn(II) is maintained by partial replacement of dimethylammonium (DMA+) cations by neutral HCOOH molecules. These changes in the chemical composition are responsible for weakening of the hydrogen bonds and decreased flexibility of the framework. This in turn leads to lowering of the ferroelectric phase transition temperature, observed around 185 K for undoped DMMn and around 155 K for the sample containing 3.1 mol% of Cr(III), and lack of macroscopic phase transition for the samples with Cr(III) content of 8.2 and 15.9 mol %. Another interesting effect observed for the studied samples is pronounced strengthening of the weak ferromagnetism of in Cr(III)-doped samples, associated with slight decrease of the ferromagnetic ordering temperature from 8.5 K for DMMn to 7.0 K for the sample with 15.9 mol % Cr(III) content.

  14. Nanostructural study of the charge ordering vs. x and T in the Cr doped Pr 0.5Ca 0.5Mn 1- xCr xO 3 manganites

    NASA Astrophysics Data System (ADS)

    Hervieu, Maryvonne; Martin, Christine; Barnabé, Antoine; Maignan, Antoine; Mahendiran, Ramanathan; Hardy, Vincent

    2001-05-01

    This paper presents the nanostructural characterisation of the Cr doping effect in Pr 0.5Ca 0.5Mn 1- xCr xO 3, x ranging from 0 to 0.1, by using electron microscopy techniques. This study carried out at room and low temperatures showed that the Pnma-type distortion of the perovskite cell is retained for 0⩽ x⩽0.1 and that the different species (Mn, Cr) can be considered as randomly distributed. Increasing the Cr content does not induce specific extended defects. At 92 K, due to charge ordering effect, an incommensurate modulated superstructure is observed, characterised by a q value decreasing with x. For x=0.05, considered as the "limit" composition of the charge ordered phase, three classes of crystallites have been observed. The impurity effect in the low temperature form is analysed and the charge ordering has been characterised, in the x=0.02 Field Cooled and Zero Field Cooled crystallites. These observations are discussed in relations with the magnetotransport and magnetic studies. They support that I-M transition in absence of external magnetic field in Pr 0.5Ca 0.5Mn 1- xCr xO 3 is brought by percolation of ferromagnetic clusters in the charge ordered antiferromagnetic background. The charge ordered antiferromagnetic background diminishes and the size of FM clusters increases with increasing x.

  15. Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl.

    PubMed

    Ouardi, Siham; Fecher, Gerhard H; Felser, Claudia; Kübler, Jürgen

    2013-03-01

    Recent studies have reported an interesting class of semiconductor materials that bridge the gap between semiconductors and half-metallic ferromagnets. These materials, called spin gapless semiconductors, exhibit a band gap in one of the spin channels and a zero band gap in the other and thus allow for tunable spin transport. Here, we report the first experimental verification of the spin gapless magnetic semiconductor Mn(2)CoAl, an inverse Heusler compound with a Curie temperature of 720 K and a magnetic moment of 2 μ(B). Below 300 K, the compound exhibits nearly temperature-independent conductivity, very low, temperature-independent carrier concentration, and a vanishing Seebeck coefficient. The anomalous Hall effect is comparatively low, which is explained by the symmetry properties of the Berry curvature. Mn(2) CoAl is not only suitable material for room temperature semiconductor spintronics, the robust spin polarization of the spin gapless semiconductors makes it very promising material for spintronics in general.

  16. Electron Paramagnetic Resonance and Photoluminescence Studies of LaMgAl11O19:Mn2+ Green Phosphors

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Chakradhar, R. P. S.; Rao, J. L.; Dhoble, S. J.; Kim, S. H.

    2014-09-01

    Manganese-doped LaMgAl11O19 powder has been prepared by an easy combustion method. Powder x-ray diffraction and scanning electron microscopy have been used to characterize the as-prepared phosphor. The electron paramagnetic resonance (EPR) spectrum of LaMgAl11O19:Mn2+ phosphor exhibits six-line hyperfine structure centered at g ≈ 1.973. The number of spins participating in resonance (N) and the paramagnetic susceptibility (χ) for the resonance signal at g ≈ 1.973 have been calculated as a function of temperature. The photoluminescence spectrum exhibits green emission at 516 nm, which is attributed to 4T1 → 6A1 transition of Mn2+ ions. From EPR and luminescence studies, it is observed that Mn2+ ions occupy Mg2+ sites and Mn2+ ions are located at tetrahedral sites in the prepared phosphors.

  17. Amorphous structure and properties in laser-clad Ni-Cr-Al coating on Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Liang, Gongying; Wong, T. T.; Su, J. Y.; Woo, C. H.

    1999-09-01

    A Ni-Cr-Al coating was clad by a 5 kW CO2 laser with different laser power on Al-Si alloy. Using transmission electron microscopy, a mixing microstructure containing Ni- based amorphous structures was observed in the laser clad zones. As the uniformity of chemical composition and temperature is poor in the laser cladding, the amorphous structure with some Ni3Al crystals coexisted in the cladding. According to the morphologies of Ni-based amorphous structures, the amorphous structure existed not only in the net-like boundaries surrounding the granular structure but also in the granular structure. The microhardness of the mixture amorphous structure is between HV 600 - 800, which is lower than that of crystal phases in the coating. A differential thermal analysis showed that Ni- based amorphous structure exhibits a higher initial crystallizing temperature (about 588 degree(s)C), which is slightly higher than that of the eutectic temperature of Al- Si alloy. The wear experimental results showed that some amorphous structure exist in the laser cladding can reduce the peeling of the granular phases from matrix, and improve the its wear resistance.

  18. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  19. The effects of annealing on the microstructure and mechanical properties of Fe28Ni18Mn33Al21

    DOE PAGES

    Meng, Fanling; Qiu, Jingwen; Baker, Ian; Bei, Hongbin

    2015-08-20

    In this paper, As-cast Fe28Ni18Mn33Al21, which consists of aligned, 50 nm, (Ni, Al)-rich B2, and (Fe, Mn)-rich f.c.c. phases, was annealed at a variety of temperatures up to 1423 K and the microstructure and mechanical properties were examined. It was shown that the as-cast microstructure arises from a eutectoid transformation at ~1300 K. Annealing at temperatures ≤1073 K produces β-Mn-structured precipitates and hardness values up to 816 HV, while annealing at temperatures >1073 K leads to dramatic coarsening of the two-phase B2/f.c.c. microstructure (up to 5.5 µm after 50 h at 1273 K), but does not lead to β-Mn precipitation.more » Interestingly, annealing at temperatures >1073 K delays the onset of β-Mn precipitation during subsequent anneals at lower temperatures. Coarsening the B2/f.c.c. lamellar structure by annealing at higher temperatures softens it and leads to increases in ductility from fracture before yield to ~8 % elongation. Finally, the presence of β-Mn precipitates makes the very fine, brittle B2/f.c.c. microstructures even more brittle, but significant ductility (8.4 % elongation) is possible even with β-Mn precipitates present if the B2/f.c.c. matrix is coarse and, hence, more ductile.« less

  20. Kinetic Parameters of Secondary Carbide Precipitation in High-Cr White Iron Alloyed by Mn-Ni-Mo-V Complex

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Chabak, Yu. G.; Brykov, M. N.

    2013-05-01

    This study presents kinetics of precipitation of secondary carbides in 14.55%Cr-Mn-Ni-Mo-V white cast iron during the destabilization heat treatment. The as-cast iron was heat treated at temperatures in the range of 800-1100 °C with soaking up to 6 h. Investigation was carried out by optical and electron microscopy, dilatometric analysis, Ms temperature measurement, and bulk hardness evaluation. TTT-curve of precipitation process of secondary carbides (M7C3, M23C6, M3C2) has been constructed in this study. It was determined that the precipitation occurs at the maximum rate at 950 °C where the process is started after 10 s and completed within 160 min further. The precipitation leads to significant increase of Ms temperature and bulk hardness; large soaking times at destabilization temperatures cause coarsening of secondary carbides and decrease in particles number, followed by decrease in hardness. The results obtained are discussed in terms of solubility of carbon in the austenite and diffusion activation of Cr atoms. The precipitation was found to consist of two stages with activation energies of 196.5 kJ/g-mole at the first stage and 47.1 kJ/g-mole at the second stage.

  1. Perpendicularly magnetized ferrimagnetic [Mn50Ga50/Co2FeAl] superlattice and the utilization in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Ma, Q. L.; Zhang, X. M.; Miyazaki, T.; Mizukami, S.

    2015-08-01

    The ferrimagnetic superlattice (SL) [MnGa/Co2FeAl]n exhibiting perpendicular magnetic anisotropy opened a new method for spintronics materials used in magnetic random access memory, because of the high anisotropy, small damping constant and tunable magnetization. In this work, we fabricated SLs with different MnGa composition and studied the MnGa composition dependence of the structure and magnetic properties of the SLs. Furthermore, we fabricated fully perpendicular magnetic tunnel junctions with SLs as both top and bottom electrodes. A clear tunnel magnetoresistance (TMR) effect with TMR ratio of 1.3% at room temperature was observed.

  2. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE PAGES

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  3. Thermo-mechanical processing (TMP) of Ti-48Al-2Nb-2Cr based alloys

    SciTech Connect

    Fuchs, G.E.

    1995-02-01

    The effects of heat treatment and deformation processing on the microstructures and properties of {gamma}-TiAl based alloys produced by ingot metallurgy (I/M) and powder metallurgy (P/M) techniques were examined. The alloy selected for this work is the second generation {gamma}-TiAl based alloy -- Ti-48Al-2Nb-2Cr (at %). Homogenization of I/M samples was performed at a variety of temperatures, followed by hot working by isothermal forging. P/M samples were prepared from gas atomized powders, consolidated by both HIP and extrusion and some of the HIPed material was then hot worked by isothermal forging. The effects of processing, heat treatment and hot working on the microstructures and properties will be discussed.

  4. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy

    SciTech Connect

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with a composition of FeNiMnCr18 was successfully developed. This near-equiatomic FeNiMnCr18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.

  5. Theoretical study of elastic properties and phase stability of M0.5Al0.5N1-xOx (M = Sc, Ti, V, Cr)

    NASA Astrophysics Data System (ADS)

    Jin Rotert, Soo; Music, Denis; to Baben, Moritz; Schneider, Jochen M.

    2013-02-01

    The influence of oxygen content and transition metal valence electron concentration on the phase stability and elastic properties of cubic M0.5Al0.5N1-xOx (M = Sc, Ti, V, Cr; x = 0 - 0.5) was studied using ab initio calculations. The negative value of enthalpy of mixing was observed for all phases indicating full miscibility of M0.5Al0.5N with the hypothetical M0.5Al0.5O. Bulk moduli are decreased as x in M0.5Al0.5N1-xOx is increased. This can be understood based on the electronic structure. As N is substituted by O, there are no noticeable changes in the chemical bonding nature. However, O is more electronegative than N, giving rise to an increase in the ionic character of the overall bonding. In spite of that, the M - O bond in M0.5Al0.5N1-xOx is longer than the corresponding M-N bond, which implies that this bond becomes weaker. Hence, we propose that the decrease of bulk moduli upon O incorporation into M0.5Al0.5N1-xOx is caused by weaker M-O bonds.

  6. Structure of multilayered Cr(Al)N/SiOx nanocomposite coatings fabricated by differential pumping co-sputtering

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Nose, Masateru; Onishi, Ichiro; Shiojiri, Makoto

    2013-11-01

    A Cr(Al)N/38 vol. % SiOx hard coating was prepared on a (001) Si substrate at 250 °C in a differential pumping co-sputtering system, which has two chambers for radio frequency (RF) sputtering and a substrate holder rotating on the chambers. The composite coating was grown by alternate sputter-depositions from CrAl and SiO2 targets with flows of N2+Ar and Ar at RF powers of 200 and 75 W, respectively, on transition layers grown on the substrate. Analytical electron microscopy reveled that the Cr(Al)N/SiOx coating had a multilayered structure of Cr(Al)N crystal layers ˜1.6 nm thick and two-dimensionally dispersed amorphous silicon oxide (a-SiOx) particles with sizes of ˜1 nm or less. The a-SiOx particles were enclosed with the Cr(Al)N layers. The coating had a low indentation hardness of ˜25 GPa at room temperature, due to a high oxide fraction of 38 vol. % and a low substrate rotational speed of 1 rpm. Faster rotation and lower oxide fraction would make a-SiOx particles smaller, resulting in the formation of Cr(Al)N crystal including the very fine a-SiOx particles with small number density. They would work as obstacles for the lattice deformation of the Cr(Al)N crystals. We have fabricated a superhard coating of Cr(Al)N/17 vol. % SiOx with a hardness of 46 GPa prepared at 12 rpm.

  7. Partition coefficients for Al, Ca, Ti, Cr, and Ni in olivine obtained by melting experiment on an LL6 chondrite

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Mikouchi, T.; Mckay, G. A.

    1994-01-01

    We report the partition coefficients for Ca, Al, Ti, Cr, and Ni in olivine obtained through a series of melting experiments on an LL6 chondrite under varying conditions of temperature and oxygen fugacity. It is necessary to examine the variation of partition coefficients up to extremely reducing conditions in order to study meteoritic olivines. For Ca, Al, and Cr, the partition coefficients tend to decrease as temperature increases, but do not change even under extremely reducing conditions.

  8. Structure of multilayered Cr(Al)N/SiO{sub x} nanocomposite coatings fabricated by differential pumping co-sputtering

    SciTech Connect

    Kawasaki, Masahiro; Nose, Masateru; Onishi, Ichiro; Shiojiri, Makoto

    2013-11-11

    A Cr(Al)N/38 vol. % SiO{sub x} hard coating was prepared on a (001) Si substrate at 250 °C in a differential pumping co-sputtering system, which has two chambers for radio frequency (RF) sputtering and a substrate holder rotating on the chambers. The composite coating was grown by alternate sputter-depositions from CrAl and SiO{sub 2} targets with flows of N{sub 2}+Ar and Ar at RF powers of 200 and 75 W, respectively, on transition layers grown on the substrate. Analytical electron microscopy reveled that the Cr(Al)N/SiO{sub x} coating had a multilayered structure of Cr(Al)N crystal layers ∼1.6 nm thick and two-dimensionally dispersed amorphous silicon oxide (a-SiO{sub x}) particles with sizes of ∼1 nm or less. The a-SiO{sub x} particles were enclosed with the Cr(Al)N layers. The coating had a low indentation hardness of ∼25 GPa at room temperature, due to a high oxide fraction of 38 vol. % and a low substrate rotational speed of 1 rpm. Faster rotation and lower oxide fraction would make a-SiO{sub x} particles smaller, resulting in the formation of Cr(Al)N crystal including the very fine a-SiO{sub x} particles with small number density. They would work as obstacles for the lattice deformation of the Cr(Al)N crystals. We have fabricated a superhard coating of Cr(Al)N/17 vol. % SiO{sub x} with a hardness of 46 GPa prepared at 12 rpm.

  9. Structure and composition of higher-rhenium-content superalloy based on La-alloyed Ni-Al-Cr

    SciTech Connect

    Kozlov, Eduard V.; Koneva, Nina A.; Nikonenko, Elena L.; Popova, Natalya A.; Fedorischeva, Marina V.

    2015-10-27

    The paper presents the transmission and scanning electronic microscope investigations of Ni-Al-Cr superalloy alloyed with additional Re and La elements. This superalloy is obtained by a directional solidification method. It is shown that such additional elements as Re and La result in formation of new phases in Ni-Al-Cr accompanied by considerable modifications of quasi-cuboid structure in its γ’-phase.

  10. Tuning the Mn valence state in new Ca(0.66)Mn(2-x)Al(x)O4 (x≤ 0.4) oxides: impact on magnetic and redox properties.

    PubMed

    Lesturgez, Stéphanie; Goglio, Graziella; Weill, François; N'Guyen, Olivier; Toulemonde, Olivier; Durand, Etienne; Hernandez, Julien; Demourgues, Alain

    2016-03-21

    New Ca(0.66)Mn(2-x)Al(x)O4 (x≤ 0.4) solid solutions crystallizing with the CaFe2O4-type structure (SG: Pnma) were synthesized for the first time by the glycine-nitrate process. The structures were determined on the basis of XRD Rietveld analysis and electron diffraction investigation. While the CaMn3O6 ('Ca(0.66)Mn2O4') oxide adopts a monoclinic unit cell, the Al substitution for Mn (x = 0.2, 0.4) leads to an orthorhombic cell with only two Mn atomic positions, with different valence states, and 33% of Ca sites empty. The Ca molar concentration decreases down to 0.6 in order to increase the Mn valence leading to a phase mixture, whereas a slight Ca content increase up to 0.7 leads to a decrease of Mn valence in the pure phase. The Al(3+) ions are located at a specific Mn site because their ionic radii are close to that of Mn(4+) and a more isotropic environment. The unit cell parameters and volume strongly decrease for a low Al content and tend to an asymptotic value of x = 0.33-0.4, around the limit of solubility. As the Al content increases, the Mn valence state in the same slightly distorted octahedral site increases up to 4+ whereas the other octahedral site is highly elongated and corresponds mainly to Jahn-Teller Mn(3+). At x = 0.33, these two Mn sites correspond to Mn(4+) and Mn(3+) respectively. Moreover, the aluminium content increase induces a weakening of the global antiferromagnetic long range interactions between the ferromagnetic chains. The Al substitution leads to the change of the Mn valence distribution as well as the unit cell symmetry of the CaMn3O6 phase. These 1D tunnel networks stabilizing the Mn(3+)/Mn(4+) valence states can be reduced under Ar/5%H2 between T = 300 °C and T = 600 °C (heating rate = 2 °C min(-1)) into pure Mn(2+) rocksalt solid solution despite the large difference in ionic radii. The re-oxidation leads to the same CaFe2O4-type structure and several redox cycles can be operated. The relationship between the two double

  11. Tuning the Mn valence state in new Ca(0.66)Mn(2-x)Al(x)O4 (x≤ 0.4) oxides: impact on magnetic and redox properties.

    PubMed

    Lesturgez, Stéphanie; Goglio, Graziella; Weill, François; N'Guyen, Olivier; Toulemonde, Olivier; Durand, Etienne; Hernandez, Julien; Demourgues, Alain

    2016-03-21

    New Ca(0.66)Mn(2-x)Al(x)O4 (x≤ 0.4) solid solutions crystallizing with the CaFe2O4-type structure (SG: Pnma) were synthesized for the first time by the glycine-nitrate process. The structures were determined on the basis of XRD Rietveld analysis and electron diffraction investigation. While the CaMn3O6 ('Ca(0.66)Mn2O4') oxide adopts a monoclinic unit cell, the Al substitution for Mn (x = 0.2, 0.4) leads to an orthorhombic cell with only two Mn atomic positions, with different valence states, and 33% of Ca sites empty. The Ca molar concentration decreases down to 0.6 in order to increase the Mn valence leading to a phase mixture, whereas a slight Ca content increase up to 0.7 leads to a decrease of Mn valence in the pure phase. The Al(3+) ions are located at a specific Mn site because their ionic radii are close to that of Mn(4+) and a more isotropic environment. The unit cell parameters and volume strongly decrease for a low Al content and tend to an asymptotic value of x = 0.33-0.4, around the limit of solubility. As the Al content increases, the Mn valence state in the same slightly distorted octahedral site increases up to 4+ whereas the other octahedral site is highly elongated and corresponds mainly to Jahn-Teller Mn(3+). At x = 0.33, these two Mn sites correspond to Mn(4+) and Mn(3+) respectively. Moreover, the aluminium content increase induces a weakening of the global antiferromagnetic long range interactions between the ferromagnetic chains. The Al substitution leads to the change of the Mn valence distribution as well as the unit cell symmetry of the CaMn3O6 phase. These 1D tunnel networks stabilizing the Mn(3+)/Mn(4+) valence states can be reduced under Ar/5%H2 between T = 300 °C and T = 600 °C (heating rate = 2 °C min(-1)) into pure Mn(2+) rocksalt solid solution despite the large difference in ionic radii. The re-oxidation leads to the same CaFe2O4-type structure and several redox cycles can be operated. The relationship between the two double

  12. High hardness and superlative oxidation resistance in a pseudo-icosahehdral Cr-Al binary

    NASA Astrophysics Data System (ADS)

    Simonson, J. W.; Rosa, R.; Antonacci, A. K.; He, H.; Bender, A. D.; Pabla, J.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Aronson, M. C.

    Improving the efficiency of fossil fuel plants is a practical option for decreasing carbon dioxide emissions from electrical power generation. Present limits on the operating temperatures of exposed steel components, however, restrict steam temperatures and therefore energy efficiency. Even as a new generation of creep-resistant, high strength steels retain long term structural stability to temperatures as high as ~ 973 K, the low Cr-content of these alloys hinders their oxidation resistance, necessitating the development of new corrosion resistant coatings. We report here the nearly ideal properties of potential coating material Cr55Al229, which exhibits high hardness at room temperature as well as low thermal conductivity and superlative oxidation resistance at 973 K, with an oxidation rate at least three times smaller than those of benchmark materials. These properties originate from a pseudo-icosahedral crystal structure, suggesting new criteria for future research.

  13. Al, Ti, and Cr: Complex Zoning in Synthetic and Natural Nakhlite Pyroxenes

    NASA Technical Reports Server (NTRS)

    McKay, G.; Le, L.; Mikouchi, T.

    2007-01-01

    Nakhlites are olivine-bearing clinopyroxene cumulates. The cumulus pyroxenes have cores that are relatively homogeneous in Fe, Mg, and Ca, but show complex zoning of minor elements, especially Al, Ti, and Cr. Zoning patterns contain information about crystallization history parent magma compositions. But it has proven difficult to decipher this information and translate the zoning patterns into petrogenetic processes. This abstract reports results of high-precision Electron Probe MicroAnalysis (EPMA) analysis of synthetic nakhlite pyroxenes run at fO2 from IW to QFM. It compares these with concurrent analyses of natural nakhlite MIL03346 (MIL), and with standardprecision analyses of Y000593 (Y593) collected earlier. Results suggest that (1) different processes are responsible for the zoning of MIL and other more slowly-cooled nakhlites such as Y593, and (2) changes in oxidation conditions during MIL crystallization are not responsible for the unusual Cr zoning pattern

  14. Cyclic Corrosion and Chlorination of an FeCrAl Alloy in the Presence of KCl

    DOE PAGES

    Israelsson, Niklas; Unocic, Kinga A.; Hellström, K.; Svensson, J-E; Johansson, L-G

    2015-05-30

    The KCl-induced corrosion of the FeCrAl alloy Kanthal® APMT in an O2 + N2 + H2O environment was studied at 600 °C. The samples were pre-oxidized prior to exposure in order to investigate the protective nature of alumina scales in the present environment. The microstructure and composition of the corroded surface was investigated in detail. Corrosion started at flaws in the pre-formed α-alumina scales, i.e. α-alumina was protective in itself. Consequently, KCl-induced corrosion started locally and, subsequently, spread laterally. An electrochemical mechanism is proposed here by which a transition metal chloride forms in the alloy and K2CrO4 forms at themore » scale/gas interface. Scale de-cohesion is attributed to the formation of a sub-scale transition metal chloride.« less

  15. Optical Characterization and 2,525 micron Lasing of Cr(2+):Cd(0.85)Mn(0.15)Te

    NASA Technical Reports Server (NTRS)

    Davis, V. R.; Wu, X.; Hoemmerich, U.; Trivedi, S. B.; Grasza, K.; Yu, Z.

    1997-01-01

    static acentric electric crystal field or the coupling of asymmetric phonons can force electric-dipole transitions by the admixture of wave functions with opposite parity. Tetrahedral sites lack inversion symmetry which provides the odd-parity field necessary to relax the parity selection rule. Therefore, high absorption and emission cross sections are observed. An enhanced radiative emission rate is also expected to reduce the detrimental effect of non-radiative decay. Motivated by the initial results on Cr doped ZnS and ZnSe, we have started a comprehensive effort to study Cr(2+) doped II-VI semiconductors for solid-state laser applications. In this paper we present the optical properties and the demonstration of mid-infrared lasing from Cr doped Cd(0.85)Mn(0.15)Te.

  16. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The sintered aluminum powder (SAP) technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of a nickel alloy containing, by weight, 17% Cr, 5% Al, and 0.2% Y. The SAP-NiCrAl alloy (without the ytterbium removed by oxdation) was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. Annealing treatments were applied after working to determine the recrystallization response. The NiCrAlY alloy, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl alloy exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl alloy as has been reported for other oxide dispersion strengthened alloys. In contrast, the unoxidized NiCrAlY alloy exhibited only primary recrystallization.

  17. Correlation of acoustic emission generated during uniform biaxial loading to microstructural sources in 7075-T651 aluminum and 21Cr-6Ni-9Mn stainless steel. Final report

    SciTech Connect

    Leon, E.; Mukherjee, A.K.

    1981-12-01

    This paper reports on the effect on acoustic emission (AE) of uniform biaxial loading of a thin-walled tube designed by Hamstad, Patterson and Mukherjee. The AE generated during biaxial loading of 7075-T651 aluminum and 21Cr-6Ni-9Mn stainless steel had several anomalous features relative to tensile generated AE. The biaxial AE data was of a much higher level and peaked at a lower strain than the uniaxial AE response. A particle cracking model was proposed in which inclusions with the largest projected surface area perpendicular to the principal axis of applied loading will crack before smaller inclusions, and the resulting energy released per AE will be proportional to the crack surface area. The inclusion contents were studied with respect to size, shape, density, hardness, and fracture/decohesion behavior. The inclusions in both 7075-T651 and 21-6-9 display the preferred cracking orientation predicted in the Hamstad, et al. model and are shown to be associated with the generated AE. However, other factors appear to contribute to the total AE responses. There is evidence that for 7075-T651 subjected to biaxial loading, a grain boundary-related mechanism becomes a significant source of AE in the latter stages of strain hardening. Also, for both materials, the complex applied load during biaxial loading appears to amplify the level of AE.

  18. The martensitic transformation and magnetic properties in Ni50- x Fe x Mn32Al18 ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Xuan, H. C.; Zhang, Y. Q.; Li, H.; Han, P. D.; Wang, D. H.; Du, Y. W.

    2015-05-01

    The martensitic transformation (MT) and magnetic properties have been investigated in a series of Ni50- x Fe x Mn32Al18 ferromagnetic shape memory alloys. The substitution of Fe for Ni reduces the MT temperature of Ni-Fe-Mn-Al alloys effectively, and the magnetization of the austenite was significantly enhanced in these high-doped alloys. The Fe introduction converts antiferromagnetic austenite to ferrimagnetic state, and therefore, the unique MT occurs between ferrimagnetic and antiferromagnetic state in these alloys. The MT temperatures decreased by about 15 K under the magnetic field of 30 kOe for x = 8 alloy. The positive value of magnetic entropy change was determined to 3.35 J/kg K around the MT in the field change of 30 kOe for x = 6 alloy. These results suggest that Ni50- x Fe x Mn32Al18 alloys would be the promising candidates for magnetic multifunctional materials.

  19. Calculations of structural, elastic, electronic, magnetic and phonon properties of FeNiMnAl by the first principles

    SciTech Connect

    Uğur, Şule; İyigör, Ahmet

    2014-10-06

    The electronic, elastic and dynamical properties of the quaternary alloy FeNiMnAl have been investigated using a pseudopotential plane wave method within the generalized gradient approximation (GGA). We determined the lattice parameters and the bulk modulus B. In addition, the elastic properties such as elastic constans (C{sub 11}, C{sub 12} and C{sub 44}), the shear modulus G, the young modulus E, the poisson's ratio σ and the B/G ratio are also given. The FeNiMnAl Heusler alloy exhibit a ferromagnetic half-metallic behavior with the total magnetic moment of 4.02 μ{sub B}. The phonon dispersion of FeNiMnAl has been performed using the density functional theory and the direct method with 2×2×2 supercell.

  20. On the Early Stage Isothermal Oxidation of APS CoNiCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Di Girolamo, G.; Alfano, M.; Pagnotta, L.; Taurino, A.; Zekonyte, J.; Wood, R. J. K.

    2012-09-01

    The aim of this study is to analyze the evolution of microstructural and room temperature mechanical properties of air plasma sprayed (APS) CoNiCrAlY coatings before and after early stage high-temperature oxidation. To this purpose, selected samples were isothermally heat treated at 1110 °C for different durations. Phase analysis and oxide scale characterization were performed using x-ray diffraction. Morphological and microstructural features of as-sprayed and oxidized CoNiCrAlY coatings were analyzed by scanning electron microscopy and energy dispersive x-ray spectroscopy. After heat treatment, a duplex oxide scale, composed of an inner α-Al2O3 layer and an outer spinel-type oxide layer, was observed on coating top-surface. The nanoindentation technique was employed to study the evolution of the mechanical properties. An increase in Young's modulus and hardness with increasing the aging time was observed, this effect was mainly addressed to the partial densification of coating microstructure.

  1. Antiferromagnetism in CaAl2Si2-type CaMn2As2 and SrMn2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Sangeetha, N. S.; Pandey, Abhishek; Benson, Zackery A.; Johnston, D. C.

    Magnetic susceptibility versus temperature χ (T) measurements of CaMn2As2 and SrMn2As2 crystals show clear antiferromagnetic (AFM) transitions at TN ~ 65 K and 120 K,1 respectively. The anisotropic behaviors in χ (T <=TN) suggest that both compounds are noncollinear antiferromagnets which may result either from an intrinsic noncollinear structure or from multiple collinear AFM domains that are not aligned collinearly.2 The χ (T) data at T >TN reveal that both compounds exhibit strong short-range AFM ordering, evidently associated with quasi-two-dimensional spin lattices. The electrical resistivities show insulating ground states with activation energies of ~ 63 meV in CaMn2As2 and 44 meV in SrMn2As2 . The experimental results thus reveal that both (Ca , Sr) Mn2As2 materials are AFM insulators at low temperatures and in analogy with the high Tc cuprates, may be potential parent compounds for CaAl2Si2-type superconductors. Work was supported by the USDOE under Contract No. DE-AC02-07CH11358.

  2. New SrAl 2B 2O 7:Eu 2+, Mn 2+ phosphors for white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Liya; Yi, Linghong; Feng, Xiaoming

    2011-12-01

    A series of Eu 2+ and Mn 2+ co-doped SrAl 2B 2O 7 phosphors were prepared by solid-state reaction method. X-ray powder diffraction (XRD) and photoluminescence excitation and emission were employed to characterize the phosphors. The results show that energy transfers between Eu 2+and Mn 2+ ions. As the content of Ca 2+ ions in Ca xSr 0.92- xAl 2B 2O 7:Eu 2+0.06, Mn 2+0.02 phosphors increased, the CIE coordinates decreased and close to the white color standard mandated by the National Television Standard Committee (NTSC). Meanwhile, a white LED (light-emitting diode) was fabricated by combining the Ca 0.5Sr 0.42Al 2B 2O 7:Eu 2+0.06, Mn 2+0.02 phosphors with a 370 nm InGaN chip. The color coordinate of the fabricated white LED was also close to the white color standard, indicating that the Ca 0.5Sr 0.42Al 2B 2O 7:Eu 2+0.06, Mn 2+0.02 phosphor is a promising single-host phosphor that can be used in white LEDs.

  3. New SrAl2B2O7:Eu2+, Mn2+ phosphors for white light-emitting diodes.

    PubMed

    Zhou, Liya; Yi, Linghong; Feng, Xiaoming

    2011-12-01

    A series of Eu(2+) and Mn(2+) co-doped SrAl(2)B(2)O(7) phosphors were prepared by solid-state reaction method. X-ray powder diffraction (XRD) and photoluminescence excitation and emission were employed to characterize the phosphors. The results show that energy transfers between Eu(2+)and Mn(2+) ions. As the content of Ca(2+) ions in Ca(x)Sr(0.92-x)Al(2)B(2)O(7):Eu(2+)(0.06), Mn(2+)(0.02) phosphors increased, the CIE coordinates decreased and close to the white color standard mandated by the National Television Standard Committee (NTSC). Meanwhile, a white LED (light-emitting diode) was fabricated by combining the Ca(0.5)Sr(0.42)Al(2)B(2)O(7):Eu(2+)(0.06), Mn(2+)(0.02) phosphors with a 370 nm InGaN chip. The color coordinate of the fabricated white LED was also close to the white color standard, indicating that the Ca(0.5)Sr(0.42)Al(2)B(2)O(7):Eu(2+)(0.06), Mn(2+)(0.02) phosphor is a promising single-host phosphor that can be used in white LEDs. PMID:21920803

  4. In situ measurements of labile Al and Mn in acid mine drainage using diffusive gradients in thin films.

    PubMed

    Søndergaard, Jens

    2007-08-15

    The technique of diffusive gradients in thin films (DGT) can be used for in situ measurements of labile metal species in water, but the application for this method on acid mine drainage (AMD) is complicated due to reduced sampler adsorption of metals at low pH. This study evaluates the use of DGT on labile Al and Mn in AMD (pH 3.1-4.2). DGT measurements were performed both in standard solutions in the laboratory and in situ in the field. Laboratory results show that DGT can be used in water with pH as low as 3.0 for Al and 4.0 for Mn without correcting for reduced adsorption. Below pH 4.0, the adsorption of Mn showed a linearly decrease with pH to approximately 55% at pH 3.0. Taking this correction into account revealed that 84-100% of the total dissolved Al and Mn measured in the field was DGT-labile. Measurements using DGT agreed well with predictions using the speciation program WHAM VI. This study shows that the use of DGT can be extended below the previously reported pH working range for Al, and for Mn using a simple linear correction with respect to pH, and demonstrates that the technique can be applied for monitoring time-integrated labile metal concentrations at AMD sites. PMID:17620010

  5. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    SciTech Connect

    Zheng, M.; He, Y.R.; Rapp, R.A.

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  6. Lavoisierite, Mn2+ 8[Al10(Mn3+Mg)][Si11P]O44(OH)12, a new mineral from Piedmont, Italy: the link between "ardennite" and sursassite

    NASA Astrophysics Data System (ADS)

    Orlandi, Paolo; Biagioni, Cristian; Pasero, Marco; Mellini, Marcello

    2013-03-01

    The new mineral species lavoisierite, ideally Mn2+ 8[Al10(Mn3+Mg)][Si11P]O44(OH)12, has been discovered in piemontite-bearing micaschists belonging to the Piedmontese Nappe from Punta Gensane, Viù Valley, Western Alps, Italy. It occurs as yellow-orange acicular to prismatic-tabular crystals up to a few millimeters in length, with white streak and vitreous luster, elongated along [010] and flattened on {001}. Lavoisierite is associated with quartz, "mica," sursassite, piemontite, spessartine, braunite, and "tourmaline." Calculated density is 3.576 g cm-3. In plane-polarized light, it is transparent, pleochroic, with pale yellow parallel to [010] and yellow-orange normal to this direction; extinction is parallel and elongation is positive. Birefringence is moderate; the calculated average refraction index n is 1.750. Lavoisierite is orthorhombic, space group Pnmm, with a 8.6891(10), b 5.7755(3), c 36.9504(20) Å, V 1854.3(2) Å3, Z = 2. Calculated main diffraction lines of the X-ray powder diffraction pattern are [ d in Å, ( I), ( hkl); relative intensities are visually estimated]: 4.62 (m) (112), 2.931 (vs) (11 10), 2.765 (s) (11 11), 2.598 (s) (310), 2.448 (ms) (028). Chemical analyses by electron microprobe give (in wt%) P2O5 2.08, V2O5 0.37, SiO2 34.81, TiO2 0.13, Al2O3 22.92, Cr2O3 0.32, Fe2O3 0.86, Mn2O3 6.92, MnO 19.09, MgO 5.73, CaO 1.94, Na2O 0.01, H2O 5.44, sum 100.62 wt%. H2O content was calculated from structure refinement. The empirical formula, based on 56 anions, is (Mn{5.340/2+}Mg1.810Ca0.686Na0.006)Σ=7.852(Al8.921Mn{1.739/3+}Mg1.010Fe{0.214/3+}Cr0.084Ti0.032)Σ=12.000(Si11.496P0.582V0.081)Σ=12.159O43.995(OH)12.005. The crystal structure of lavoisierite was solved by direct methods and refined on the basis of 1743 observed reflections to R 1 = 4.6 %. The structure is characterized by columns of edge-sharing octahedra running along [010] and linked to each other by means of [SiO4], [Si2O7], and [Si3O10] groups. Lavoisierite, named after the French

  7. Thermodynamic Calibration of Cr-Al Exchange Equilibria for Garnet and Spinel

    NASA Astrophysics Data System (ADS)

    Hamecher, E. A.; Antoshechkina, P. M.; Ghiorso, M. S.; Asimow, P. D.

    2009-12-01

    xMELTS is a new thermodynamic model of igneous phase equilibria (Ghiorso et al., 2007, Eos 88, V31C-0608) that extends MELTS (Ghiorso and Sack, 1995, CMP 119, 197-212) and pMELTS (Ghiorso et al., 2002, G3, 10.1029/2001GC000217) to a broader range of bulk compositions and to pressure and temperature conditions spanning from the shallow crust to the top of Earth’s lower mantle. To complete xMELTS, comprehensive garnet and pyroxene solid solution models that include Cr and other minor components must be developed. Garnet is an important phase involved in partial melting of the upper mantle because it controls partitioning of major and minor elements at pressures greater than 3 GPa. Chromium is a minor but significant component of mantle rocks as its presence increases the stability of spinel relative to plagioclase at low pressure and to garnet at high pressure. Thermodynamic models incorporating Cr into garnet solid solutions have been absent from the MELTS packages, motivating simulations for Cr-free bulk compositions and preventing accurate modeling of the spinel-garnet phase transition. The extension of the garnet model to include energetics of mixing on the Y-site is the first step in a planned calibration that will also include the majorite component needed for transition zone garnets. Initially, standard state properties and phase equilibria experiments for a Cr-bearing garnet endmember were compiled. Internally consistent thermodynamic properties of the endmember species were found by examination of reversal experiments on pure systems. We used the reversal experiments of Klemme (2004, Lithos 77, 639-646) to fix the enthalpy and entropy of knorringite (Mg3Cr2Si3O12), but were unable to fit the reversals using the standard state values given by Klemme and instead re-optimized these parameters. Although a Cr-bearing garnet model is included in the PERPLEX package (Connolly, 1990, AJS 290, 666-718; Connolly and Petrini, 2002, J.Met.Pet. 20, 697-708), the Y

  8. Atomic-scale microstructure underneath nanoindentation in Al-Cr-N ceramic films

    SciTech Connect

    Zhuang, Chunqiang Li, Zhipeng; Lin, Songsheng

    2015-12-15

    In this work, Al-Cr-N ceramic films deformed by nanoindentation were peeled off from silicon substrates and their atomic-scale microstructures underneath the indenter were investigated by high resolution transmission electron microscope (HR-TEM). Dislocations were formed underneath the indenter and they accumulated along nano-grain boundaries. The accumulative dislocations triggered the crack initiation along grain boundaries, and further resulted in the crack propagation. Dislocations were also observed in nano-grains on the lateral contact area. A model was proposed to describe the variation of microstructures under nanoindentation.

  9. High-temperature relaxation in a Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Z. C.; Han, F. S.

    2003-09-01

    Two relaxational internal friction peaks were found in a (wt%)Fe-25Cr-5Al alloy. The low-temperature peak is related to Zener relaxation and the high-temperature one to grain-boundary relaxation. Their activation energy values are 2.55 (+/-0.14) eV for the Zener peak and 4.07(+/-0.15) eV for the grain-boundary relaxation peak, respectively. Grain-boundary relaxation strength remarkably increases with decreasing grain size, while the Zener peak is independent of the grain size. (

  10. Investigation on the suitability of plasma sprayed Fe Cr Al coatings as tritium permeation barrier

    NASA Astrophysics Data System (ADS)

    Fazio, C.; Stein-Fechner, K.; Serra, E.; Glasbrenner, H.; Benamati, G.

    1999-08-01

    Results on the fabrication of a tritium permeation barrier by spraying Fe-Cr-Al powders are described. The sprayed coatings were deposited at temperatures below the Ac1 temperature of the ferritic-martensitic steel substrate and no post-deposition heat treatment was applied. The aim of the investigation was the determination of the efficiency of the coatings to act as tritium permeation barrier. Metallurgical investigations as well as hydrogen isotope permeation measurements were carried out onto the produced coatings. The depositions were performed on ferritic-martensitic steels by means of three types of spray techniques: high velocity oxy fuel, air plasma spray and vacuum plasma spray.

  11. Thermophysical properties of Ti-5Al-5V-5Mo-3Cr-1Zr titanium alloy

    NASA Astrophysics Data System (ADS)

    Bykov, V. A.; Kulikova, T. V.; Vedmid', L. B.; Fishman, A. Ya.; Shunyaev, K. Yu.; Tarenkova, N. Yu.

    2014-07-01

    The thermophysical properties of the Ti-5Al-5V-5Mo-3Cr-1Zr titanium alloy in a wide range of temperatures from room temperature to 1000°C have been studied by the methods of differential scanning calorimetry, the laser flash method, and dilatometry. The obtained data on heat capacity, thermal diffusivity, and thermal expansion have been used for calculating coefficient of thermal conductivity. The sequence and temperatures of structural transformations during heating of the alloy have been established. It has been shown that the studied alloy possesses a coefficient of thermal conductivity that is 3.5-4 times smaller than that of pure titanium.

  12. Microstructural Evolution and Functional Properties of Fe-Mn-Al-Ni Shape Memory Alloy Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Krooß, Philipp; Vollmer, Malte; Günther, Johannes; Schwarze, Dieter; Biermann, Horst

    2016-06-01

    In the current study, a Fe-Mn-Al-Ni shape memory alloy is processed by additive manufacturing for the first time. Microstructural evolution upon processing is strongly affected by thermal gradients and solidification velocity and, thus, by processing parameters and the actual specimen geometry. By single-step solutionizing heat treatment pronounced grain growth is initiated leading to microstructures showing good reversibility. The compressive stress-strain response revealed maximum reversible pseudo-elastic strain of about 7.5 pct. Critical steps toward further optimization of additively manufactured Fe-Mn-Al-Ni shape memory alloys are discussed.

  13. EPR and optical investigations of LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor

    SciTech Connect

    Singh, Vijay; Sivaramaiah, G.; Rao, J.L.; Kim, S.H.

    2014-12-15

    Graphical abstract: The EPR spectrum of as-prepared LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor at 110 K. - Highlights: • Using the combustion synthesis, LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared in a few minutes. • Optical investigation indicates that Cr{sup 3+} ions are present in octahedral symmetry. • The EPR signals indicate that exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs in weakly distorted sites. - Abstract: The LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared by a low-temperature combustion synthesis method. As-prepared combustion synthesized powder was characterized using powder X-ray diffraction (XRD), diffuse reflectance (DRS), electron paramagnetic resonance (EPR) and photoluminescence (PL) studies. The X-ray diffraction pattern reveals crystalline hexagonal phases. The UV–vis diffuse reflectance spectrum exhibits three broad bands characteristic of Cr{sup 3+} ions in octahedral symmetry. The EPR spectrum exhibits several resonance signals. The signals with the effective g values at g = 4.84, 3.64 and 2.26 have been attributed to the isolated Cr{sup 3+} ions. The signal with the effective g value at g = 1.94 has been attributed to exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs. The PL studies exhibit several bands characteristic of Cr{sup 3+} ions in octahedral symmetry.

  14. Selective-area growth and magnetic characterization of MnAs/AlGaAs nanoclusters on insulating Al2O3 layers crystallized on Si(111) substrates

    NASA Astrophysics Data System (ADS)

    Sakita, Shinya; Hara, Shinjiro; Elm, Matthias T.; Klar, Peter J.

    2016-01-01

    We report on selective-area metal-organic vapor phase epitaxy and magnetic characterization of coupled MnAs/AlGaAs nanoclusters formed on thin Al2O3 insulating layers crystallized on Si(111) substrates. Cross-sectional transmission electron microscopy reveals that poly-crystalline γ-Al2O3 grains are formed after an annealing treatment of the amorphous Al2O3 layers deposited by atomic layer deposition on Si(111) substrates. The ⟨111⟩ direction of the γ-Al2O3 grains tends to be oriented approximately parallel to the ⟨111⟩ direction of the Si substrate. We observe that hexagonal MnAs nanoclusters on AlGaAs buffer layers grown by selective-area metal-organic vapor phase epitaxy on partially SiO2-masked Al2O3 insulator crystallized on Si(111) substrates are oriented with the c-axis along the ⟨111⟩ direction of the substrates, but exhibit a random in-plane orientation. A likely reason is the random orientation of the poly-crystalline γ-Al2O3 grains in the Al2O3 layer plane. Magnetic force microscopy studies at room temperature reveal that arrangements of coupled MnAs nanoclusters exhibit a complex magnetic domain structure. Such arrangements of coupled MnAs nanoclusters may also show magnetic random telegraph noise, i.e., jumps between two discrete resistance levels, in a certain temperature range, which can be explained by thermally activated changes of the complex magnetic structure of the nanocluster arrangements.

  15. MBE growth and structural and magnetic properties of (In 1-yAl y) 1-xMn xAs-diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Lee, W. N.; Chen, Y. F.; Huang, J. H.; Guo, X. J.; Kuo, C. T.; Ku, H. C.

    2006-04-01

    A series of quaternary-diluted magnetic semiconductors, (In 1-yAl y) 1-xMn xAs, have been successfully grown on InP substrates by low-temperature molecular beam epitaxy. The (In 0.52Al 0.48) 1-xMn xAs with x⩽0.11 were grown on a nearly lattice-matched In 0.52Al 0.48As buffer, while the (In 1-yAl y) 1-xMn xAs with a higher Mn content of 0.11< x⩽0.18 were grown on a graded 3-layer In 1-yAl yAs buffer structure. The results of transmission electron microscopy and double-crystal X-ray diffraction reveal that all (In 1-yAl y) 1-xMn xAs epilayers are single crystal with zincblende structure, and the lattice constant increases with increasing the Mn content. The magnetic measurements show that the (In 1-yAl y) 1-xMn xAs semiconductors exhibit a paramagnetic-like state for x⩽0.05 while a ferromagnetic state for x>0.05, and the Curie temperature of ferromagnetic (In 1-yAl y) 1-xMn xAs increases with increasing Mn content.

  16. Spin-orbit torque in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO epitaxial magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Kim, Junyeon; Sukegawa, Hiroaki; Hayashi, Masamitsu; Mitani, Seiji

    2016-05-01

    We study the spin-orbit torque (SOT) effective fields in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO magnetic heterostructures using the adiabatic harmonic Hall measurement. High-quality perpendicular-magnetic-anisotropy CoFeAl layers were grown on Cr and Ru layers. The magnitudes of the SOT effective fields were found to significantly depend on the underlayer material (Cr or Ru) as well as their thicknesses. The damping-like longitudinal effective field (ΔHL) increases with increasing underlayer thickness for all heterostructures. In contrast, the field-like transverse effective field (ΔHT) increases with increasing Ru thickness while it is almost constant or slightly decreases with increasing Cr thickness. The sign of ΔHL observed in the Cr-underlayer devices is opposite from that in the Ru-underlayer devices while ΔHT shows the same sign with a small magnitude. The opposite directions of ΔHL indicate that the signs of spin Hall angle in Cr and Ru are opposite, which are in good agreement with theoretical predictions. These results show sizable contribution from SOT even for elements with small spin orbit coupling such as 3d Cr and 4d Ru.

  17. EPR and photoluminescence properties of green light emitting LaAl11O18:Mn2+ phosphors

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Chakradhar, R. P. S.; Rao, J. L.; Jho, Young-Dahl

    2012-06-01

    The LaAl11O18:Mn2+ powder phosphor has been prepared using a self-propagating synthesis. Formation and homogeneity of the LaAl11O18:Mn2+ phosphor has been verified by X-ray diffraction and energy dispersive X-ray analysis respectively. The EPR spectra of Mn2+ ions exhibit resonance signals with effective g values at g≈4.8 and g≈1.978. The signal at g≈1.978 exhibits six-line hyperfine structure and is due to Mn2+ ions in an environment close to tetrahedral symmetry, whereas the resonance at g≈4.8 is attributed to the rhombic surroundings of the Mn2+ ions. It is observed that the number of spins participating in resonance for g≈1.978 increases with decreasing temperature obeying the Boltzmann law. Upon 451 nm excitation, the photoluminescence spectrum exhibits a green emission peak at 514 nm due to 4T1 (G)→6A1 (S) transition of Mn2+ ions. The crystal field parameter Dq and Racah inter-electronic repulsion parameters B and C have been evaluated from the excitation spectrum.

  18. Recrystallization of plane strain compressed Al-1 wt.% Mn alloy single crystals of typical unstable orientations.

    PubMed

    Bijak, M; Paul, H; Driver, J H

    2010-03-01

    A systematic study of crystal lattice reorientation in early stages of recrystallization has been carried out to correlate the orientations of recrystallization nuclei with the deformation microtexture and with slip systems. Microstructure and texture of Al-1 wt.% Mn single crystals of unstable initial orientations of {112}111, {100}001 and {001}110 have been examined by high-resolution field-emission gun scanning electron microscope local orientation measurements. All single crystals were channel-die deformed at room temperature and then annealed for a short time. It was shown that often observed presence of the 112 directions as rotation axes in the formation of new nuclei orientation directly suggested a close link with the deformation process.

  19. X-ray Reflectivity Study of AlPdMn Quasicrystal Fivefold Surface Oxidation

    NASA Astrophysics Data System (ADS)

    Gu, Tianqu; Goldman, Alan I.; Pinhero, P. J.

    1997-03-01

    By means of X-ray reflectivity measurement, a fivefold surface of AlPdMn single quasicrystal is studied after being treated in different environments: normal air, humid air and water. An electron density profile of the surface is acquired after each treatment. The difference of the density profile obtained with different treatment indicates that water molecule plays an important role in the oxidation of quasicrystal surface. The surface exposed to normal air has a sharper electron density profile and less surface oxidation thickness than that exposed to humid air and immersed in water. The thickness of the oxidation layer is about 30Åand 58Åfor normal air treatment and humid air and water treatment, respectively.

  20. Permanent magnet properties of Mn-Al-C between -50 C and +150 C

    NASA Technical Reports Server (NTRS)

    Abdelnour, Z. A.; Mildrum, H. F.; Strnat, K. J.

    1981-01-01

    Anisotropic Mn-Al-C (Ni) magnets are potential substitutes for Alnico 5 and 8. The limited machinability of the alloy and the fact that it is cobalt-free made it particularly interesting. The low Curie point and the costly warm extrusion process needed for grain orientation are drawbacks. The objective of this study was a detailed magnetic characterization of the material for possible use in electric machinery. The principal subjects of the study were the largest extruded bars presently available, of 31 mm diameter. Easy and hard axis magnetization curves and second-quadrant recoil loop fields were measured at various temperatures ranging from -50 C to +150 C. Property variations over the cross section of a bar were also studied.

  1. A Study of Pack Aluminizing Process for NiCrAlY Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Huang, Xiao; Liu, Rong; Yang, Qi

    2014-01-01

    Aluminizing process is widely used to provide additional Al deposition onto superalloy surface for enhanced oxidation and corrosion resistance. In this research, an aluminizing process—pack cementation process, is used to deposit Al onto the surface of NiCrAlY coatings for increasing environmental protection. The experiment is designed using Box-Behnken approach, in which three parameters, the Al content, Ni content of the pack powder, and the temperature of the process, are selected as factors; and the thickness and Al/Ni ratio of the coatings are selected as responses. The effects of the factors on the responses are analyzed and modeled empirically. It is found that these empirical models correlate well with the results from additional sets of experiment. These models can be used to produce aluminized NiCrAlY coatings with specific thicknesses and Al/Ni ratios.

  2. Diamond growth on Fe-Cr-Al alloy by H2-plasma enhanced graphite etching

    NASA Astrophysics Data System (ADS)

    Li, Y. S.; Hirose, A.

    2007-04-01

    Without intermediate layer and surface pretreatment, adherent diamond films with high initial nucleation density have been deposited on Fe-15Cr-5Al (wt. %) alloy substrate. The deposition was performed using microwave hydrogen plasma enhanced graphite etching in a wide temperature range from 370to740°C. The high nucleation density and growth rate of diamond are primarily attributed to the unique precursors used (hydrogen plasma etched graphite) and the chemical nature of the substrate. The improvement in diamond adhesion to steel alloys is ascribed to the important role played by Al, mitigation of the catalytic function of iron by suppressing the preferential formation of loose graphite intermediate phase on steel surface.

  3. Synthesis of CORONA 5 (Ti-4.5Al-5Mo-1.5Cr)

    NASA Astrophysics Data System (ADS)

    Froes, F. H.; Highberger, W. T.

    1980-05-01

    The synthesis of CORONA 5 (Ti-4.5Al-5Mo-1.5Cr) is described from the viewpoints of alloy chemistry and microstructure. Lenticular alpha is shown to maximize fracture resistance parameters, while a globular alpha optimizes hightemperature flow characteristics. The processing and application of CORONA 5 as forging, plate, sheet and powder metallurgy products are presented. The weldability of the alloy is described and potential use of the alloy for engine applications discussed. The improved mechanical property behavior over the "workhorse" Ti-6Al-4V alloy combined with cost-effective production should result in use of CORONA 5 in many applications. Future developments for CORONA 5 are suggested both in terms of further mechanical property optimization and in light of the economics of producing the alloy.

  4. Surface Hardening and Nitride Precipitation in the Nitriding of Fe-M1-M2 Ternary Alloys Containing Al, V, or Cr

    NASA Astrophysics Data System (ADS)

    Miyamoto, Goro; Suetsugu, Shotaro; Shinbo, Kunio; Furuhara, Tadashi

    2015-11-01

    Nitride precipitation and resultant surface hardening in nitrided Fe-M1-M2 ternary alloys containing Cr, Al, or V were investigated using transmission electron microscopy and three-dimensional atom probe tomography. The (Al, Cr) and (Cr, V) mixed nitrides are formed by the co-precipitation of these elements during the nitriding of Fe-Al-Cr or Fe-Cr-V alloys. However, the precipitation of V nitrides precedes Al nitride precipitation during the nitriding of the Fe-Al-V alloy, which results in two-step hardening behavior. The addition of Cr or V to the Fe-Al alloy accelerates the precipitation kinetics of Al nitrides by promoting the nucleation of Al nitrides, which leads to substantial surface hardening.

  5. Multi-scale analysis of the occurrence of Pb, Cr and Mn in the NIST standards: Urban dust (SRM 1649a) and indoor dust (SRM 2584)

    NASA Astrophysics Data System (ADS)

    Jiang, Mingyu; Nakamatsu, Yuki; Jensen, Keld A.; Utsunomiya, Satoshi

    2014-01-01

    Adverse health effects of ambient particulate matters are closely related to the speciation of the constituting organic matters and toxic metals. To determine multi-parameters of the metal speciation in urban and indoor dusts, we have performed systematic bulk- to nano-scale (“multi-scale”) analysis on the speciation of Pb, Mn, and Cr in two National Institute of Standards and Technology (NIST) standard reference materials (SRMs): urban dust (SRM 1649a) and indoor dust (SRM 2584), utilizing X-ray absorption near-edge structure, powder X-ray diffraction analysis, electron microprobe analysis, scanning electron microscopy, and transmission electron microscopy. Major crystalline phases are quartz, gypsum, kaolinite, and muscovite in SRM 1649a, while quartz, gypsum, calcite, and possibly muscovite (or chabazite) in SRM 2584. A number of Pb sulfate nanoparticles (50-200 nm) occur in SRM 1649a, whereas micron-sized Pb carbonate is present containing various concentrations of Zn and Ti in the complex texture in SRM 2584. Relatively soluble Mn(II) sulfate is the bulk-averaged Mn speciation in SRM 1649a, although discrete Mn sulfate particles are not characterized by individual particle analysis, implying the diluted Mn distribution within other sulfate. In SRM 2584, Mn speciation includes a mixture of oxides and carbonates, and trace Mn in chromite. Chromite (FeCr2O4) is the major Cr speciation in SRM1694a, while unidentified Cr(III) phases with minor chromite and Pb chromate are present in SRM 2584, among which the Pb chromate is composed of Cr(VI). A significant number of the metal-bearing particles are distributed to the submicron-size fraction in the urban dust, SRM 1649a, suggesting that these metal nanoparticles can potentially penetrate into the deep respiratory system. This study demonstrates that multi-scale analysis combining nano and bulk analytical techniques is a powerful approach to investigate the multi-parameters of metal-bearing nanoparticles in

  6. Novel High-Speed High Pressure Torsion Technology for Obtaining Fe-Mn-Si-Cr Shape Memory Alloy Active Elements

    NASA Astrophysics Data System (ADS)

    Gurău, Gheorghe; Gurău, Carmela; Potecaşu, Octavian; Alexandru, Petrică; Bujoreanu, Leandru-Gheorghe

    2014-07-01

    This paper introduces an adapted high-speed high pressure torsion (HS-HPT) method of severe plastic deformation applied for obtaining shape memory alloy (SMA) active elements with revolution symmetry, able to develop axial displacement/force. Billets with circular crown forms were cut from Fe-28Mn-6Si-5Cr (mass%) SMA ingots and, by means of HS-HPT technology, were directly turned into modules, with truncated cone shell configurations. This process was performed, during time intervals of seconds, under the effect of high pressure (up to 1 GPa) cumulated with high rotation speed (hundreds of rotations per minute) applied on the active surfaces of sintered-carbide anvils, specially designed for this purpose. Due to pressure and friction, generated by rotation, the entire sample volume is heated and simultaneously deformed to final shape. During the process, microstructure fragmentation occurred enabling to obtain (ultra)fine grains and nanocrystalline areas, in spite of the heat developed by friction, which was removed by conduction at the contact surface between sample and anvils, before the occurrence of any recrystallization phenomena. When compressed between flat surfaces, the truncated cone modules developed a superelastic-like response, unique among Fe -Mn-Si base SMAs and, when heated in compressed state, they were able to develop either axial strokes or recovery forces by either free or constrained recovery shape memory effect (SME), respectively. By means of optical (OM) and scanning electron microscopy (SEM) marked structural changes caused by HT-HPT were revealed, along with fine and ultrafine crystalline grains. The presence of stress-induced ɛ-hexagonal close-packed ( hcp) martensite, together with nanocrystalline areas were confirmed by x-ray diffraction.

  7. Competition between ferromagnetic and antiferromagnetic interactions by Cr doping at Mn sites in antiperovskite Mn3-xCrxZnN (0≤x≤0.5) compounds

    NASA Astrophysics Data System (ADS)

    Malik, Muhammad Imran; Sun, Ying; Wang, Lei; Deng, Sihao; Shi, Kewen; Hu, Pengwei; Lu, Huiqing; Wang, Cong

    2016-05-01

    The Cr doping effect on the lattice and magnetic properties in Mn3-xCrxZnN was reported in the antiferromagnetic intermetallic host material Mn3ZnN. The lattice parameter decreases with the increase of the Cr concentration. Measurements of magnetization from 10 K to 350 K reveal that sharp antiferromagnetic (AFM)-to-paramagnetic (PM) transitions of the host material exist at 185 K (ZFC) and 177 K (FC). The peak is broadened clearly as the Cr doping was increased and when the Cr concentration exceeded 0.3, a significant ferromagnetic (FM) character was found to coexist with an AFM phase. At x=0.4 and 0.5, the M-H curves exhibit small magnetic hysteresis loop, indicating the dominant FM interactions in these samples. Also, a positive value of Weiss Temperature (ΘW) at x=0.5 in H/M-T plot suggests that the FM interaction is dominant when the Cr doping increases.

  8. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    PubMed

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  9. Studies on the Sliding Wear Performance of Plasma Spray Ni-20Cr and Ni3Al Coatings

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Singh, Harpreet; Singh, Balraj; Singh, Bhupinder

    2010-01-01

    Two metallic powders namely Ni-20Cr and Ni3Al were coated on AISI 309 SS steel by shrouded plasma spray process. The wear behavior of the bare, Ni-20Cr and Ni3Al-coated AISI 309 SS steel was investigated according to ASTM Standard G99-03 on a Pin-on-Disc Wear Test Rig. The wear tests were carried out at normal loads of 30 and 50 N with a sliding velocity of 1 m/s. Cumulative wear rate and coefficient of friction (μ) were calculated for all the cases. The worn-out surfaces were then examined by scanning electron microscopy analysis. Both the as-sprayed coatings exhibited typical splat morphology. The XRD analysis indicated the formation of Ni phase for the Ni-20Cr coating and Ni3Al phase for the Ni3Al coating. It has been concluded that the plasma-sprayed Ni-20Cr and Ni3Al coatings can be useful to reduce the wear rate of AISI 309 SS steel. The coatings were found to be adherent to the substrate steel during the wear tests. The plasma-sprayed Ni3Al coating has been recommended as a better choice to reduce the wear of AISI 309 SS steel, in comparison with the Ni-20Cr coating.

  10. Degradation of a TBC with HVOF-CoNiCrAlY Bond Coat

    NASA Astrophysics Data System (ADS)

    Chen, Weijie R.

    2014-06-01

    Thermal barrier coatings (TBCs) provide both thermal insulation and oxidation and corrosion protection to the substrate metal, and their durability is influenced by delamination near the interface between the ceramic topcoat and the metallic bond coat, where a layer of thermally grown oxide (TGO) forms during service exposure. In the present work, the degradation process of a TBC with an air-plasma-spray ZrO2-8 wt.%Y2O3 topcoat and a high-velocity oxy-fuel CoNiCrAlY bond coat was studied, in terms of TGO growth kinetics and aluminum depletion in the bond coat, as well as cracking behavior. The results show that the TGO growth kinetics can be described by a transient oxidation stage with δ3 = k 1 t followed by a steady-state oxidation stage with δ2 = c + k 2 t. Significant aluminum depletion was observed in the bond coat after extended thermal exposure; however, chemical failure of the bond coat did not occur even after the aluminum content near the TGO/CoNiCrAlY interface decreased to 4.5 at.%. A power-law relationship between the maximum crack length in the TBC and the TGO thickness was observed, which may serve as the basis for TBC life prediction.

  11. Deposition and Oxidation of Oxide-Dispersed CoNiCrAlY Bondcoats

    NASA Astrophysics Data System (ADS)

    Okada, Mitsutoshi; Vassen, Robert; Karger, Matthias; Sebold, Doris; Mack, Daniel; Jarligo, Maria Ophelia; Bozza, Francesco

    2014-01-01

    CoNiCrAlY powder and nano-size alumina powder were milled by a high-energy-attrition ball-mill, and an oxide-dispersed powder was produced with a mixed structure of metal and alumina in each particle. The oxide-dispersed bond coat powder was deposited by HVOF. Pores, however, were observed in the coating since the alumina was deposited without sufficient melting. Isothermal oxidation tests were carried out for the bond coat specimens at a temperature of 1373 K up to 1000 h in air. As a result, oxidation proceeded inside the coating, since oxygen penetrated through pores formed in the dispersed alumina. However, the authors find that another deposition using higher power levels led to a bond coat without pores. A commercially available oxide-dispersed CoNiCrAlY powder was also deposited by HVOF and VPS, and isothermal oxidation tests were performed. The analysis clarifies that the HVOF bond coat exhibited the thinnest thermally grown oxide than those of the VPS bond coat and conventional metallic bond coat. Furnace cycling tests were conducted using the specimens with an additional ceramic thermal-barrier coating. The specimen with the bond coat sprayed by VPS using commercial oxide-dispersed powder showed almost same number of cycles to delamination compared with the specimen with the conventional metal bond coat.

  12. On the heat capacities of M2AlC (M=Ti,V,Cr) ternary carbides

    NASA Astrophysics Data System (ADS)

    Drulis, Monika K.; Drulis, H.; Gupta, S.; Barsoum, M. W.; El-Raghy, T.

    2006-05-01

    In this paper, we report on the heat capacities cp of bulk polycrystalline samples of Ti2AlC, V2AlC, and Cr2AlC in the 3-260 K temperature range. Given the structural and chemical similarities of these compounds it is not surprising that the cp's and their temperature dependencies were quite similar. Nevertheless, at all temperatures the heat capacity of Cr2AlC was higher than the other two. The density of states at the Fermi level were 3.9, 7.5, and 14.6 (eV unit cell)-1 for Ti2AlC, V2AlC, and Cr2AlC, respectively. The results obtained are analyzed using the Debye and Einstein model approximations for cp. Good description of cp is obtained if one assumes that nine phonon modes vibrate according to the Debye model approximation whereas the remaining 3 of 12 modes expected for M2AlC formula unit fulfill an Einstein-like phonon vibration pattern. Debye temperatures θD describing acoustic phonon and Einstein temperature θE describing optical phonon contributions have been estimated for the studied compounds. The Debye temperatures are reasonably high and fall in the range of 600-700 K. A linear dependence was found between the number of d electrons along the row Ti, V, and Cr and the density of states at the Fermi level.

  13. Stepwise Depletion of Coating Elements as a Result of Hot Corrosion of NiCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Rana, Nidhi; Jayaganthan, R.; Prakash, Satya

    2013-11-01

    Present investigation deals with the hot corrosion behaviour of the NiCrAlY coatings deposited by HVOF technique on Superni76 under cyclic conditions at 900 °C in the presence of Na2SO4 + 60% V2O5 salt. The weight change behaviour of the coatings was followed with time up to 200 cycles and K p value was calculated for the hot corrosion process. Surface and cross-section of the corroded samples were examined by FESEM/EDS and XRD to follow the progress of corrosion up to 200 cycles. In earlier cycles, the corrosive species oxidised top surface of the coatings. With increasing number of cycles, oxidation of the coatings occurred up to 40-μm depth. A Cr-depleted band was seen below the oxide scale. Further increase in number of cycles led to migration and oxidation of Al to form Al2O3 sublayer at coating/scale interface, thereby leading to formation of Al-depleted zone in the coating below the Al2O3 sublayer. The corrosion resistance of the NiCrAlY coatings is attributed to the formation of the continuous and dense Al2O3 sublayer at the coating/scale interface, which acts as barrier to the migration of Cr to the surface. The appearance of Al3Y after 100 and 200 cycles also contributes to the increased corrosion resistance of coatings after 100 and 200 cycles.

  14. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation

    DOE PAGES

    Leonard, Keith J.; Bei, Hongbin; Zinkle, Steven J.; Kiran Kumar, N. A. P.; Li, C.

    2016-05-13

    In recent years, high entropy alloys (HEAs) have attracted significant attention due to their excellent mechanical properties and good corrosion resistance, making them potential candidates for high temperature fission and fusion structural applications. However there is very little known about their radiation resistance, particularly at elevated temperatures relevant for energy applications. In the present study, a single phase (face centered cubic) concentrated solid solution alloy of composition 27%Fe-28%Ni-27%Mn-18%Cr was irradiated with 3 or 5.8 MeV Ni ions at temperatures ranging from room temperature to 700 °C and midrange doses from 0.03 to 10 displacements per atom (dpa). Transmission electron microscopymore » (TEM), scanning transmission electron microscopy with energy dispersive x-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterize the radiation defects and microstructural changes. Irradiation at higher temperatures showed evidence of relatively sluggish solute diffusion with limited solute depletion or enrichment at grain boundaries. The main microstructural feature at all temperatures was high-density small dislocation loops. Voids were not observed at any irradiation condition. Nano-indentation tests on specimens irradiated at room temperature showed a rapid increase in hardness ~35% and ~80% higher than the unirradiated value at 0.03 and 0.3 dpa midrange doses, respectively. The irradiation-induced hardening was less pronounced for 500 °C irradiations (<20% increase after 3 dpa). Overall, the examined HEA material exhibits superior radiation resistance compared to conventional single phase Fe-Cr-Ni austenitic alloys such as stainless steels. Furthermore, the present study provides insight on the fundamental irradiation behavior of a single phase HEA material over a broad range of irradiation temperatures.« less

  15. Minisatellite DNA mutation rate in dandelions increases with leaf-tissue concentrations of Cr, Fe, Mn, and Ni.

    PubMed

    Rogstad, Steven H; Keane, Brian; Collier, Matthew H

    2003-09-01

    We have examined whether mutation rates at minisatellite DNA loci in dandelions (Taraxacum officinale Weber, sensu lato: Asteraceae) increase with increasing exposure to metal pollution. From 16 sites (Colorado to Pennsylvania, USA) covering a range of airborne particulate-matter exposures, soil metal concentrations, and leaf-tissue metal concentrations, we grew an average of 7.9 offspring from each of 10 parent plants, and we analyzed the parent-offspring transmission of 82,715 minisatellite DNA markers to 1,258 offspring for rates of mutation. The mean number of markers examined per individual (using six minisatellite probes) was 65.8. Detection of mutations is facilitated by agamospermous reproduction (clonal seed production) in dandelions. Across sites, the average single-event, parent-offspring marker transmission mutation rate was 0.0067, ranging from 0.002 to 0.015 (a 7.5-fold difference). No significant correlation was detected between site single-event mutation rates and either airborne particulate-matter or soil concentrations for any of the metals. However, across sites, mutation rates were significantly (p < 0.05) and positively correlated to increasing leaf-tissue concentrations of Cr, Fe, Mn, and Ni (Cd, Cu, Pb, and Zn exhibited no correlation). Multiple-regression analyses suggest that a model including three metals--in order of importance: Cr (p = 0.002), Fe (p = 0.02), and Ni (p = 0.005); overall, p = 0.001--may improve the ability to predict mutation rate relative to leaf metal concentrations in dandelions. Mutations at minisatellite DNA loci in sexually apomictic organisms may thus provide convenient biomarkers by which to assess the mutagen stressor risk in environments.

  16. Optical and dielectric properties of BiMn1-xAExO3 (AE=Cr, Fe, Co, and Zn; x=0, 0.1) nanoparticles synthesized by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Neha; Gaur, Anurag; Yadav, Kamlesh

    2015-08-01

    BiMnO3 is a multiferroic material which means that it shows both the ferroelectricity and ferromagnetism. Present study deals about the study of optical and dielectric properties of BiMnO3 and doped BiMnO3. The magnetic and non magnetic ions are introduced as dopants in place of Mn sublattice, BiMn1-xAExO3 (where x=0.1 and AE= Cr, Fe, Co, and Zn). We have synthesized nanoparticles of BiMnO3 and BiMn1-xAExO3 (where x=0.1 and AE= Cr, Fe, Co, and Zn) by sol-gel technique. Optical properties have been studied by using FTIR (Fourier Transform Infrared) spectroscopy. FTIR (Fourier Transform Infrared Spectroscopy) analysis showed that there is an increase in the band gap of BiMn1-xAExO3 (where x=0.1 and AE= Cr, Fe, Co, and Zn) than pure BiMnO3 for the samples synthesized by sol-gel technique. The increase in band gap on doping is due to the radius to charge ratio. Ferroelectric hysteresis loop confirms the presence of ferroelectricity in BiMnO3. From the ferroelectric hysteresis loop the parameters like coericivity, saturation polarization and remanant polarization has been calculated. Nanoparticles of BiMnO3 have applications in memory storage devices.

  17. Microstructure and Oxidation Resistance of NiCoCrAlYTa Coating by Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Liang, X.-H.; Zhou, K. S.; Liu, M.; Hong, R. J.; Deng, C. G.; Luo, S.; Chen, Z. K.

    The NiCoCrAlYTa coating was prepared on Ni-based single crystal super-alloys by low pressure plasma spraying (LPPS). The phases and microstructures for the coatings were characterized by X-ray diffraction and scanning electron microscopy, and the fracture toughness and micro-hardness for both coatings and substrate were also investigated. The relationship between coating properties and oxidation was analyzed. The result shows that elementary distribution of NiCoCrAlYTa coatings, which consists of γ-Ni, β-NiAl, γ'-Ni3Al, and CrCoTa phases, is much homogeneous. The composition changes with depth from the surface to substrate for the coatings. The micro-hardness of coatings is 350.8 HV0.3 and fracture toughness is 2.73 MPa m1/2. The oxidation resistance of coatings excelled than Ni-based single crystal super-alloys.

  18. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  19. Room and elevated temperature mechanical properties of PM TiAl alloy Ti-47Al-2Cr-2Nb

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Schneibel, J.H.; Sikka, V.K.; Wright, J.; Walker, L.R. |; Clemens, D.R.; Nieh, T.G.

    1995-07-01

    A TiAl alloy powder with the composition Ti-47Al-2Cr-2Nb (at. %) was prepared by rotary atomization, followed by hot-extrusion and subsequent heat treatments to produce refined lamellar structures and fine duplex structures. The mechanical properties of the TiM alloy were determined at temperatures to 1000C in air, and the microstructures were characterized by TEM, SEM, and electron microprobe analyses. The alloy with the refined lamellar structure showed excellent mechanical properties at both room and elevated temperatures. It exhibited a plastic strain of 1.4% and a yield strength of 971 MPa (140.9 ksi) at room temperature. The yield strength remained approximately constant up to 800C and decreased to 577 MPa (83.7 ksi) at 1000C. The transverse fracture toughness, estimated by three-point bend testing of chevron-notched specimens at room temperature, was 22.4 MPa {radical}m. The refined lamellar structure contained long and straight alternating {alpha}{sub 2} and {gamma} platelets with an extremely fine interlamellar spacing (0.1 {mu}m) and {alpha}{sub 2}-to-{alpha}{sub 2} spacing (0.22 {mu}m). The mechanical properties of the alloy have been correlated with the unique microstructures developed by hot extrusion.

  20. B2+L2{sub 1} ordering in Co{sub 2}MnAl Heusler alloy

    SciTech Connect

    Vinesh, A.; Sudheesh, V. D.; Lakshmi, N.; Venugopalan, K.

    2014-04-24

    Magnetic and structural properties of B2 ordered Co{sub 2}MnAl Heusler alloy have been studied by X-ray diffraction and DC magnetization techniques. X-ray diffractogram shows the structure is of B2 type with preferential site disorder between Mn and Al atoms and presence of a small L2{sub 1} phase. DC magnetization studies at low temperature establish that the antiferromagnetic nature arises mainly due to the antiparallel coupling of spin moments of 3d electrons of Co with Mn atoms. Curie temperature (T{sub c}) is 733 K which is close to T{sub c} of the L2{sub 1} phase.