Science.gov

Sample records for al cr mn

  1. Thermodynamic Modeling of the Al-Cr-Mn Ternary System

    NASA Astrophysics Data System (ADS)

    Cui, Senlin; Jung, In-Ho

    2017-03-01

    The phase diagram information available in the literature on the Al-Cr-Mn system was comprehensively evaluated and optimized for the first time to obtain a set of Gibbs energies of all the solid and liquid phases in the Al-Cr-Mn system. The Modified Quasi-chemical Model (MQM) was utilized to describe the Gibbs energy of the liquid phase of the Al-Cr-Mn system. The Compound Energy Formalism (CEF) was used to model the solid solution phases. A revision of the Al-Mn system was simultaneously conducted to consider the γ_H (Al8Mn5) phase. The liquid Cr-Mn phase was also remodeled using the Modified Quasi-chemical Model (MQM) to obtain a consistent description of the ternary Al-Cr-Mn liquid phase. Accurate description of the phase diagram of the entire Al-Cr-Mn system was obtained from the thermodynamic models with optimized parameters in the present study, and the model parameters can be used to predict the thermodynamic properties of the ternary system.

  2. Oxidation behavior of cubic phases formed by alloying Al3Ti with Cr and Mn

    NASA Technical Reports Server (NTRS)

    Parfitt, L. J.; Nic, J. P.; Mikkola, D. E.; Smialek, J. L.

    1991-01-01

    Gravimetric, SEM, and XRD data are presented which document the significant improvement obtainable in the oxidation resistance of Al3Ti-containing alloys through additions of Cr. The L1(2) Al(67)Cr(8)Ti25 alloy exhibited excellent cyclic oxidation resistance at 1473 K, with the primary oxide formed being the ideally protective alpha-Al2O3. The Al(67)Mn(8)Ti(25) alloy also tested for comparison exhibited poor cyclic oxidation resistance, with substantial occurrence of TiO2 in the protective scales. Catastrophic oxidation was also encountered in the quaternary alloy Al(67)Mn(8)Ti(22)V(3).

  3. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  4. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  5. Synthesis of Waste Form in the Gd-Fe-Al-Ni-Mn-Cr-O System

    SciTech Connect

    Chae, S.C.; Jang, Y.N.; Bae, I.K.; Ryu, K.W.

    2006-07-01

    Poly-phase waste form which was the mixture of Gd{sub 3}Fe{sub 2}Al{sub 3}O{sub 12} and (Ni{sub x}Mn{sub 1-x})(Fe{sub y}Cr{sub 1-y}){sub 2}O{sub 4} was synthesized. Also, we are intended to examine phase relation and physicochemical properties of coexisted phases in the compositions and to confirm accommodation relation of elements and phases. Two types of phase series were observed: Garnet-perovskite-spinel and Garnet-spinel. The compositions of garnets and spinels were nonstoichiometric, and especially, this poly-phase ceramics may be in a good waste form. The excessive Gd in garnets indicated the immobilization of higher content of actinides. The nonstoichiometric compositions of garnet and spinel were attributed to the formation of perovskite in that perovskite contained Gd, Fe and Al from garnet and Cr from spinel. (authors)

  6. Chemical zoning and diffusion of Ca, Al, Mn, and Cr in olivine of springwater pallasite

    NASA Technical Reports Server (NTRS)

    Zhou, Y.; Steele, Ian M.

    1993-01-01

    The pallasites, consisting mainly of Fe-Ni metal and olivine, are thought to represent the interior of a planetary body which slowly cooled from high temperature. Although the olivines are nearly homogeneous, ion microprobe studies revealed variations of Ca, Ti, Co, Cr, and Ni near grain edges. These variations were thought to represent diffusion in response to falling temperature of the parent body. Pallasite cooling rates have been estimated based on kamacite taenite textures but results differ by x100. In principle elemental profiles in olivine can allow estimates of cooling rate if diffusion coefficients are known; in addition, given a cooling rate, diffusion coefficients could be derived. Data are presented which show that apparent diffusion profiles can be measured for Al, Ca, Cr, and Mn which qualitatively agree with expected diffusion rates and have the potential of providing independent estimates of pallasite cooling rates.

  7. Plasma Nitriding Behavior of Fe-C-M (M = Al, Cr, Mn, Si) Ternary Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Tomio, Yusaku; Kitsuya, Shigeki; Oh-ishi, Keilchiro; Hono, Kazuhiro; Miyamoto, Goro; Furuhara, Tadashi

    2014-01-01

    Change in surface hardness and nitrides precipitated in Fe-0.6C binary and Fe-0.6 mass pct C-1 mass pct M (M = Al, Cr, Mn, Si) ternary martensitic alloys during plasma nitriding were investigated. Surface hardness was hardly increased in the Fe-0.6C binary alloy and slightly increased in Fe-0.6C-1Mn and Fe-0.6C-1Si alloys. On the other hand, it was largely increased in Fe-0.6C-1Al and Fe-0.6C-1Cr alloys. In all the Fe-0.6C-1M alloys except for the Si-added alloy, fine platelet alloy nitrides precipitated inside martensite laths. In the Fe-0.6C-1Si alloy, Si-enriched film was observed mainly at a grain boundary and an interface between cementite and matrix. Crystal structure of nitrides observed in the martensitic alloys was similar to those in Fe-M binary ferritic alloys reported previously. However, there was a difference in hardening behavior between ferrite and martensite due to a high density of dislocations acting as a nucleation site of the nitrides and partitioning of an alloying element between martensite and cementite changing the driving force of precipitation of the nitrides.

  8. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  9. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    NASA Astrophysics Data System (ADS)

    Enamullah; Venkateswara, Y.; Gupta, Sachin; Varma, Manoj Raama; Singh, Prashant; Suresh, K. G.; Alam, Aftab

    2015-12-01

    We present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB , 866 K and 0.9 μB , 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y -type structure while CMCA has L 21 disordered structure. The antisite disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.

  10. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    SciTech Connect

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; Varma, Manoj Raama; Singh, Prashant; Suresh, K. G.; Alam, Aftab

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB, 866 K and 0.9 μB, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L21 disordered structure. The antisite disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.

  11. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    DOE PAGES

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; ...

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB, 866 K and 0.9 μB, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L21 disordered structure. The antisite disorder adds amore » somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.« less

  12. Carbides in iron-rich Fe-Mn-Cr-Mo-Al-Si-C systems

    NASA Technical Reports Server (NTRS)

    Lemkey, F. D.; Gupta, H.; Nowotny, H.; Wayne, S. F.

    1984-01-01

    The optimization of high carbon iron-base superalloy properties with duplex microstructure gamma + M7C3 carbide requires analysis in the context of a seven-component system. Data are first provided here for the Fe-Mn-Cr-Mo-C quinary system, at 30 at. pct carbon. A characterization of competing carbides, according to a pseudoternary phase diagram at 35 wt pct iron, is made from isothermal sections. It is noted that while M7C3 and M3C carbides' occurrences are respectively favored at the Cr and Mn corners, the M2C carbide and molybdenum cementite are predominant with increasing amounts of Mo. Lattice parameters are reported for the various carbides.

  13. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.

  14. Interdiffusion between the L1(2) trialuminides Al66Ti25Mn9 and Al67Ti25Cr8

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    Concentration-distance profiles obtained from Al66Ti25Mn9/Al67Ti25Cr8 diffusion couples are used to determine the interdiffusion coeffients in the temperature range 1373-1073 K. The couples are treated as pseudobinaries, and the diffusion coefficients are determined using the Matano approach. The results are then used to compute the activation energies for diffusion, and a comparison is made with some existing data for the activation energy for creep of Al22Ti8Fe3.

  15. Ab-initio study of structural, elastic, thermal, electronic and magnetic properties of quaternary Heusler alloys CoMnCrZ (Z = Al, As, Si, Ge)

    NASA Astrophysics Data System (ADS)

    Mohamedi, Mohamed Walid; Chahed, Abbes; Amar, Amina; Rozale, Habib; Lakdja, Abdelaziz; Benhelal, Omar; Sayede, Adlane

    2016-12-01

    First-principles approach is used to study the structural, electronic and magnetic properties of CoMnCrZ (Z = Al, Si, Ge and As) quaternary Heusler compounds, using full-potential linearized augmented plane wave (FP-LAPW) scheme within the generalized gradient approximation (GGA). The computed equilibrium lattice parameters agree well with the available theoretical data. The obtained negative formation energy shows that CoMnCrZ (Z = Al, Si, Ge, As) compounds have strong structural stability. The elastic constants Cij are calculated using the total energy variation with strain technique. The polycrystalline elastic moduli (namely: the shear modulus, Young's modulus, Poisson's ratio, sound velocities, Debye temperature and melting temperature were derived from the obtained single-crystal elastic constants. The ductility mechanism for the studied compounds is discussed via the elastic constants Cij. Our calculations with the GGA approximation predict that CoMnCrGe, CoMnCrAl, CoMnCrSi and CoMnCrAs are half-metallic ferrimagnets (HMFs) with a half-metallic gap EHM of 0.03 eV, 0.19 eV, 0.34 eV and 0.50 eV for, respectively. We also find that the half-metallicity is maintained on a wide range of lattice constants.

  16. First-principles study on the band structure, magnetic and elastic properties of half-metallic Cr2MnAl

    NASA Astrophysics Data System (ADS)

    Qi, Santao; Zhang, Chuan-Hui; Chen, Bao; Shen, Jiang

    2015-08-01

    In this study, we have investigated the structural, electronic, magnetic and elastic properties of the full-Heusler Cr2MnAl alloy in the framework of density functional theory with generalized gradient approximation (GGA). The calculated results showed that Cr2MnAl was stable in ferrimagnetic configuration and crystallized in the Hg2CuTi-type structure. From the band structure and density of states calculation results, we concluded that Cr2MnAl belongs to a kind of half-metallic compound with an indirect band gap of 0.37 eV. Immediately thereafter, we have analyzed the origin of half-metallic band gap. The total magnetic moment of Cr2MnAl at the stable state is - 2μB per formula unit, obeying the Slater-Pauling rule Mt = Zt - 24. In addition, various mechanical properties have been obtained and discussed based on the three principle elastic tensor elements C11,C12 and C44 for the first time in the present work. We expect that our calculated results may trigger the application of Cr2MnAl in future spintronics field.

  17. Galvanomagnetic properties of Fe{sub 2}YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    SciTech Connect

    Kourov, N. I. Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-15

    The Hall effect and the magnetoresistance of Fe{sub 2}YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit (H > 10 kOe), the value and the sign of the normal (R{sub 0}) and anomalous (R{sub s}) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R{sub s} in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio (R{sub s} ∝ ρ{sub 0}{sup 3.1}), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  18. Galvanomagnetic properties of Fe2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-01

    The Hall effect and the magnetoresistance of Fe2YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3 d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit ( H > 10 kOe), the value and the sign of the normal ( R 0) and anomalous ( R s ) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R s in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio ( R s ∝ ρ 0 3.1 ), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  19. Compression, bend, and tension studies on forged Al67Ti25Cr8 and Al66Ti25Mn(g) L1(2) compounds

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Whittenberger, J. D.

    1991-01-01

    Cast, homogenized, and isothermally forged aluminum-rich L1(2) compounds Al67Ti25Cr8 and Al66Ti25Mn(g) were tested in compression as a function of temperature and as a function of strain rate at elevated temperatures (1000 K and 1100 K). Three-point bend specimens were tested as a function of temperature in the range 300 K to 873 K. Strain gages glued on the tensile side of the ambient and 473 K specimens enabled direct strain measurements. A number of 'buttonhead' tensile specimens were electro-discharge machined, fine polished, and tested between ambient and 1073 K for yield strength and ductility as a function of temperature. Scanning electron microscope (SEM) examination of fracture surfaces from both the bend and tensile specimens revealed a gradual transition from transgranular cleavage to intergranular failure with increasing temperature.

  20. AlM2B2 (M  =  Cr, Mn, Fe, Co, Ni): a group of nanolaminated materials

    NASA Astrophysics Data System (ADS)

    Kádas, K.; Iuşan, D.; Hellsvik, J.; Cedervall, J.; Berastegui, P.; Sahlberg, M.; Jansson, U.; Eriksson, O.

    2017-04-01

    Combining theory with experiments, we study the phase stability, elastic properties, electronic structure and hardness of layered ternary borides AlCr2B2, AlMn2B2, AlFe2B2, AlCo2B2, and AlNi2B2. We find that the first three borides of this series are stable phases, while AlCo2B2 and AlNi2B2 are metastable. We show that the elasticity increases in the boride series, and predict that AlCr2B2, AlMn2B2, and AlFe2B2 are more brittle, while AlCo2B2 and AlNi2B2 are more ductile. We propose that the elasticity of AlFe2B2 can be improved by alloying it with cobalt or nickel, or a combination of them. We present evidence that these ternary borides represent nanolaminated systems. Based on SEM measurements, we demonstrate that they exhibit the delamination phenomena, which leads to a reduced hardness compared to transition metal mono- and diborides. We discuss the background of delamination by analyzing chemical bonding and theoretical work of separation in these borides.

  1. Survey of trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) in retail samples of flavoured and bottled waters.

    PubMed

    Barroso, M F; Ramos, S; Oliva-Teles, M T; Delerue-Matos, C; Sales, M G F; Oliveira, M B P P

    2009-01-01

    Concentrations of eleven trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) were measured in 39 (natural and flavoured) water samples. Determinations were performed using graphite furnace electrothermetry for almost all elements (Al, As, Cd, Cr, Co, Mn, Ni, Pb, and Si). For Se determination hydride generation was used, and cold vapour generation for Hg. These techniques were coupled to atomic absorption spectrophotometry. The trace element content of still or sparkling natural waters changed from brand to brand. Significant differences between natural still and natural sparkling waters (p < 0.001) were only apparent for Mn. The Mann-Whitney U-test was used to search for significant differences between flavoured and natural waters. The concentration of each element was compared with the presence of flavours, preservatives, acidifying agents, fruit juice and/or sweeteners, according to the labelled composition. It was shown that flavoured waters generally increase the trace element content. The addition of preservatives and acidifying regulators had a significant influence on Mn, Co, As and Si contents (p < 0.05). Fruit juice can also be correlated to the increase of Co and As. Sweeteners did not provide any significant difference in Mn, Co, Se and Si content.

  2. Low-temperature heat capacity upon the transition from paramagnetic to ferromagnetic Heusler alloys Fe2 MeAl ( Me = Ti, V, Cr, Mn, Fe, Co, Ni)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Korolev, A. V.; Lukoyanov, A. V.

    2016-07-01

    The heat capacity of band magnets Fe2 MeAl ( Me = Ti, V, Cr, Mn, Fe, Co, Ni) ordered in crystal structure L21 has been measured in the range 2 K ≤ T ≤ 50 K. The dependences of the Debye temperature ΘD, the Sommerfeld coefficient γ, and the temperature-independent contribution to heat capacity C 0 on the number of valence electrons z in the alloys have been determined.

  3. High-field magnetization of heusler alloys Fe2 XY ( X = Ti, V, Cr, Mn, Fe, Co, Ni; Y = Al, Si)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Korolev, A. V.; Belozerova, K. A.; Weber, H. W.

    2015-10-01

    The magnetization curves of ferromagnetic Heusler alloys Fe2 XY (where X = Ti, V, Cr, Mn, Fe, Co, Ni are transition 3 d elements and Y = Al, Si are the s and p elements of the third period of the Periodic Table) have been measured at T = 4.2 K in the field range H ≤ 70 kOe. It has been shown that the high-field ( H ≥ 20 kOe) magnetization is described within the Stoner model.

  4. Electronic structure and magnetic properties in T2AlB2 (T =Fe, Mn, Cr, Co, and Ni) and their alloys

    NASA Astrophysics Data System (ADS)

    Ke, Liqin; Harmon, Bruce N.; Kramer, Matthew J.

    2017-03-01

    The electronic structure and intrinsic magnetic properties of Fe2AlB2 -related compounds and their alloys have been investigated using density functional theory. For Fe2AlB2 , the crystallographic a axis is the easiest axis, which agrees with experiments. The magnetic ground state of Mn2AlB2 is found to be ferromagnetic in the basal a b plane, but antiferromagnetic along the c axis. All 3 d dopings considered decrease the magnetization and Curie temperature in Fe2AlB2 . Electron doping with Co or Ni has a stronger effect on the decreasing of Curie temperature in Fe2AlB2 than hole doping with Mn or Cr. However, a larger amount of Mn doping on Fe2AlB2 promotes the ferromagnetic to antiferromagnetic transition. A very anisotropic magnetoelastic effect is found in Fe2AlB2 : the magnetization has a much stronger dependence on the lattice parameter c than on a or b , which is explained by electronic-structure features near the Fermi level. Dopings of other elements on B and Al sites are also discussed.

  5. Electronic structure and magnetic properties in T2AlB2 (T = Fe, Mn, Cr, Co, and Ni) and their alloys

    DOE PAGES

    Ke, Liqin; Harmon, Bruce N.; Kramer, Matthew J.

    2017-03-20

    In this study, the electronic structure and intrinsic magnetic properties of Fe2AlB2-related compounds and their alloys have been investigated using density functional theory. For Fe2AlB2, the crystallographic a axis is the easiest axis, which agrees with experiments. The magnetic ground state of Mn2AlB2 is found to be ferromagnetic in the basal ab plane, but antiferromagnetic along the c axis. All 3d dopings considered decrease the magnetization and Curie temperature in Fe2AlB2. Electron doping with Co or Ni has a stronger effect on the decreasing of Curie temperature in Fe2AlB2 than hole doping with Mn or Cr. However, a larger amountmore » of Mn doping on Fe2AlB2 promotes the ferromagnetic to antiferromagnetic transition. A very anisotropic magnetoelastic effect is found in Fe2AlB2: the magnetization has a much stronger dependence on the lattice parameter c than on a or b, which is explained by electronic-structure features near the Fermi level. Dopings of other elements on B and Al sites are also discussed.« less

  6. Lunar highland rocks - Element partitioning among minerals. II - Electron microprobe analyses of Al, P, Ca, Ti, Cr, Mn and Fe in olivine

    NASA Technical Reports Server (NTRS)

    Smith, J. V.; Hansen, E. C.; Steele, I. M.

    1980-01-01

    Lunar olivines from anorthosites, granulitic impactites, and rocks in the Mg-rich plutonic trend were subjected to electron probe measurements for Al, P, Ca, Ti, Cr and Mn, which show that the FeO/MnO ratio for lunar olivines lies between 80 and 110 with little difference among the rock types. The low values of Ca in lunar olivines indicate slow cooling to subsolidus temperatures, with blocking temperatures of about 750 C for 67667 and 1000 C for 60255,73-alpha determined by the Finnerty and Boyd (1978) experiments. An important paradox is noted in the low Ti content of Fe-rich olivines from anorthosites, although both Ti and Fe tend to become enriched in liquid during fractional distillation. Except for Ca and Mn, olivine from anorthosites has lower minor element values than other rock types. Formation from a chemically distinct system is therefore implied.

  7. Microstructures and Mechanical Performance of Plasma-Nitrided Al0.3CrFe1.5MnNi0.5 High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Tang, Wei-Yeh; Chuang, Ming-Hao; Lin, Su-Jien; Yeh, Jien-Wei

    2012-07-01

    This study investigates the effect of plasma nitriding at 798 K (525 °C) on microstructures and the mechanical performance of Al0.3CrFe1.5MnNi0.5 high-entropy alloys (HEAs) obtained using different cast and wrought processing. All the alloys can be well nitride, with a thickness of around 80 μm, and attain a peak hardness level around Hv 1300 near the surface. The main nitride phases are CrN, AlN, and (Mn, Fe)4N. Those of the substrates are bcc, fcc, Al-, and Ni-rich B2 precipitates, and ρ phase. Their relative amounts depend on the prior processing and also change under the heat treatment during nitriding. The formation of ρ phase during nitriding could in-situ harden the substrate to attain the suitable level required for wear applications. This gives the advantage in simplifying the processing for making a wear-resistance component or a mold since austenitizing, quench hardening, and tempering required for steels such as SACM and SKD steels are no longer required and final finishing can be accomplished before nitriding. Nitrided Al0.3CrFe1.5MnNi0.5 samples have much better wear resistance than un-nitrided ones by 49 to 80 times and also exhibit superior adhesive wear resistance to conventional nitrided alloys: nitriding steel SACM-645 (AISI 7140), 316 stainless steel, and hot-mold steel SKD-61 (AISI H13) by 22 to 55 times depending on prior processing. The superiority is due to the fact that the present nitrided alloys possess a much thicker highly hardened layer than the conventional alloys.

  8. Specific features of the electrical resistivity of half-metallic ferromagnets Fe2MeAl (Me = Ti, V, Cr, Mn, Fe, Ni)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2014-03-01

    The transport properties of half-metallic ferromagnetic Heusler alloys Fe2MeAl (where Me = Ti, V, Cr, Mn, Fe, and Ni are 3 d transition elements) have been measured in the temperature range of 4-900 K. The specific features in the behavior of the electrical resistivity have been considered in terms of the two-current conduction model, which takes into account the presence of an energy gap in the electron spectrum of the alloys near the Fermi level.

  9. Specific features of the electrical resistivity of half-metallic ferromagnets Co2 MeAl ( Me = Ti, V, Cr, Mn, Fe)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Perevozchikova, Yu. A.; Weber, H. W.; Marchenkov, V. V.

    2016-07-01

    The transport properties of half-metallic ferromagnetic Heusler alloys Co2 MeAl ( Me = Ti, V, Cr, Mn, Fe are transition 3 d metals) have been measured in the temperature range of 4-900 K. The specific features of the behavior of the resistivity have been considered in the framework of the two-current model of conductivity that takes into account the existence of the energy gap in the electronic spectra of the alloys near the Fermi level of one of electron subbands that differs in the spin direction.

  10. Calculations of the influence of alloying elements (Al, Cr, Mn, Ni, Si) on the Solubility of carbonitrides in low-carbon low-alloy steels

    NASA Astrophysics Data System (ADS)

    Gorbachev, I. I.; Popov, V. V.; Pasynkov, A. Yu.

    2016-12-01

    Based on the CALPHAD method, a thermodynamic description of the Fe- M-V-NB-Ti-C-N system (where M is Al, Cr, Mn, Ni, or Si) has been constructed and, using this description, the solubilities of carbonitrides in austenite for low-alloy low-carbon steels with V, Nb, and Ti have been calculated using 10G2FB steel as an example. The influence of the alloy composition and temperature on the composition and amount of carbonitride phases and on the concentration of these elements in the solid solution has been analyzed.

  11. ⁵³Mn-⁵³Cr and ²⁶Al-²⁶Mg ages of a feldspathic lithology in polymict ureilites

    SciTech Connect

    Goodrich, Cyrena Anne; Hutcheon, Ian D.; Kita, Noriko T.; Huss, Gary R.; Cohen, Barbara Anne; Keil, Klaus

    2010-07-01

    We report 53Mn–53Cr and 26Al–26Mg isotopic data, obtained by in-situ SIMS analysis, for feldspathic clasts in polymict ureilites DaG 319 and DaG 165. The analyzed clasts belong to the “albitic lithology,” the most abundant population of indigenous feldspathic materials in polymict ureilites, and are highly fractionated igneous assemblages of albitic plagioclase, Fe-rich pyroxenes, phosphates, ilmenite, silica, and Fe(Mn, K, P, Ti)-enriched glass. Glass in DaG 165 clast 19 has extremely high and variable 55Mn/52Cr ratios (500–58,000) and shows correlated 53Cr excesses up to ~ 1500‰, clearly indicating the presence of live 53Mn at the time of formation. The slope of the well-correlated isochron defined by glass and pyroxenes from this clast corresponds to (53Mn/55Mn) = (2.84 ± 0.10) × 10-6 (2σ). Data for less 55Mn/52Cr-enriched glasses from DaG 319 clast B1, as well as phosphates from several other clasts, are consistent with this isochron. The 53Mn/55Mn ratio obtained from the isochron implies that these clasts are 0.70 ± 0.18 Ma younger than the D'Orbigny angrite, corresponding to the absolute age of 4563.72 ± 0.22 Ma. Plagioclase in DaG 319 clast B1 has a fairly constant 27Al/24Mg ratio of ~ 900 and shows resolvable 26Mg excesses of ~ 2‰. The slope of the isochron defined by pyroxene and plagioclase in this clast is (3.0 ± 1.1) × 10-7 (2σ), corresponding to a time difference of 5.4 (-0.3/+0.5) Ma after CAI (assuming the canonical initial 26Al/27Al ratio of 5 × 10-5) and an age 0.5 (-0.3/+0.5) Ma younger than D'Orbigny. Its absolute age (relative to D'Orbigny) is 4563.9 (+ 0.4/-0.5) Ma, in agreement with the 53Mn–53Cr age from clast 19. These data provide the first high

  12. [Determination of Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se and Tl in whole blood by atomic absorption spectrometry without preliminary sample digestion].

    PubMed

    Ivanenko, N B; Ivanenko, A A; Solov'ev, N D; Navolotskiĭ, D V; Pavlova, O V; Ganeev, A A

    2014-01-01

    Methods of whole blood trace element determination by Graphite furnace atomic absorption spectrometry (in the variant of Zeeman's modulation polarization spectrometry) have been proposed. They do not require preliminary sample digestion. Furnace programs, modifiers and blood dilution factors were optimized. Seronorm™ human whole blood reference materials were used for validation. Dynamic ranges (for undiluted blood samples) were: Al 8 ¸ 210 мg/L; Be 0.3 ¸ 50 мg/L; Cd 0.2 ¸ 75 мg/L; Сo 5 ¸ 350 мg/L; Cr 10 ¸ 100 мg/L; Mn 6 ¸ 250 мg/L; Ni 10 ¸ 350 мg/L; Pb 3 ¸ 240 мg/L; Se 10 ¸ 500 мg/L; Tl 2 ¸ 600 мg/L. Precision (RSD) for the middle of dynamic range ranged from 5% for Mn to 11 for Se.

  13. Investigation of magnetic properties and electronic structure of layered-structure borides AlT{sub 2}B{sub 2} (T=Fe, Mn, Cr) and AlFe{sub 2–x}Mn{sub x}B{sub 2}

    SciTech Connect

    Chai, Ping; Stoian, Sebastian A.; Tan, Xiaoyan; Dube, Paul A.; Shatruk, Michael

    2015-04-15

    The ternary phases AlT{sub 2}B{sub 2} (T=Fe, Mn, Cr) and quaternary phases AlFe{sub 2–x}Mn{sub x}B{sub 2} have been synthesized by arc-melting and characterized by powder X-ray diffraction, magnetic measurements, Mössbauer spectroscopy, and electronic band structure calculations. All the compounds adopt the AlFe{sub 2}B{sub 2}-type structure, in which infinite zigzag chains of B atoms are connected by Fe atoms into [Fe{sub 2}B{sub 2}] slabs that alternate with layers of Al atoms along the b axis. The magnetic measurements reveal that AlFe{sub 2}B{sub 2} is a ferromagnet with T{sub C}=282 K while AlMn{sub 2}B{sub 2} and AlCr{sub 2}B{sub 2} do not show magnetic ordering in the studied temperature range of 1.8–400 K. A systematic investigation of solid solutions AlFe{sub 2−x}Mn{sub x}B{sub 2} showed a non-linear change in the structural and magnetic behavior. The ferromagnetic ordering temperature is gradually decreased as the Mn content (x) increases. The Mössbauer spectra reveal the presence of non-magnetic (NM) and ferromagnetic (FM) spectral components in all Mn-containing samples, with the amount of NM fraction increasing as the Mn content increases. While for the AlFe{sub 2−x}Mn{sub x}B{sub 2} samples with x=0.0 and 0.4 the hyperfine splitting of the FM spectral component collapses at temperatures close to the Curie temperatures determined from the magnetic measurements, for the x=1.2 and 1.6 samples the FM fraction exhibits a sizable unquenched hyperfine splitting at room temperature, a finding that is inconsistent with the observed magnetic properties. Along with the increase in the amount of the NM fraction, this observation suggests formation of Fe-rich and Mn-rich regions in the structure of the solid solutions. Quantum-chemical calculations and crystal orbital Hamilton population analysis provide a clear explanation of the distinction in properties for this series of compounds and also reveal the importance of electronic factors in modifying the

  14. The Deformation Behavior and Microstructure Evolution of a Mn- and Cr-Containing Al-Mg-Si-Cu Alloy During Hot Compression and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Nagaumi, Hiromi; Han, Yi; Zhang, Gongwang; Zhai, Tongguang

    2017-01-01

    Hot compression tests on a newly developed Mn- and Cr-containing Al-Mg-Si-Cu alloy were carried out at temperatures ranging from 623 K (350 °C) to 823 K (550 °C) and strain rates between 0.001 and 1 s-1 after casting and subsequent homogenization heat treatment. The true stress-true strain curves of the alloy exhibited a peak stress at a small plastic strain followed by dynamic flow softening. Using the constitutive equation containing the strain rate, peak stress, and temperature, the activation energy for hot deformation in the alloy was determined to be 249.67 kJ/mol, much higher than that (143.4 kJ/mol) for self-diffusion in pure Al. Scanning transmission electron microscopy experiments revealed that Mn- and Cr-containing α-dispersoids formed during homogenization showed a strong pinning effect on dislocations and grain boundaries, which was responsible for the increase in activation energy for hot deformation in the alloy. A threshold stress was consequently introduced and determined in the constitutive equation to count for the dispersoid hardening effect on hot deformation in the alloy. Electron back-scatter diffraction measurements revealed that the softening occurred in the alloy was mainly due to dynamic recovery taking place at relatively large Z values, and that it was dominated by continuous dynamic recrystallization at relatively low Z. In subsequent annealing after hot deformation at large Z, abnormal grain growth could occur, as a result of the critical strain-annealing effect. After upsetting at higher temperatures, the alloy showed superior tensile properties due to a high non-recrystallized area fraction.

  15. The Deformation Behavior and Microstructure Evolution of a Mn- and Cr-Containing Al-Mg-Si-Cu Alloy During Hot Compression and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Nagaumi, Hiromi; Han, Yi; Zhang, Gongwang; Zhai, Tongguang

    2017-03-01

    Hot compression tests on a newly developed Mn- and Cr-containing Al-Mg-Si-Cu alloy were carried out at temperatures ranging from 623 K (350 °C) to 823 K (550 °C) and strain rates between 0.001 and 1 s-1 after casting and subsequent homogenization heat treatment. The true stress-true strain curves of the alloy exhibited a peak stress at a small plastic strain followed by dynamic flow softening. Using the constitutive equation containing the strain rate, peak stress, and temperature, the activation energy for hot deformation in the alloy was determined to be 249.67 kJ/mol, much higher than that (143.4 kJ/mol) for self-diffusion in pure Al. Scanning transmission electron microscopy experiments revealed that Mn- and Cr-containing α-dispersoids formed during homogenization showed a strong pinning effect on dislocations and grain boundaries, which was responsible for the increase in activation energy for hot deformation in the alloy. A threshold stress was consequently introduced and determined in the constitutive equation to count for the dispersoid hardening effect on hot deformation in the alloy. Electron back-scatter diffraction measurements revealed that the softening occurred in the alloy was mainly due to dynamic recovery taking place at relatively large Z values, and that it was dominated by continuous dynamic recrystallization at relatively low Z. In subsequent annealing after hot deformation at large Z, abnormal grain growth could occur, as a result of the critical strain-annealing effect. After upsetting at higher temperatures, the alloy showed superior tensile properties due to a high non-recrystallized area fraction.

  16. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    NASA Astrophysics Data System (ADS)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  17. Diffusion kinetics of Cr in spinel: Experimental studies and implications for 53Mn-53Cr cosmochronology

    NASA Astrophysics Data System (ADS)

    Posner, Esther S.; Ganguly, Jibamitra; Hervig, Richard

    2016-02-01

    The 53Mn-53Cr decay system, in which 53Mn decays to 53Cr (t1/2 = 3.7 Ma) has been widely used to construct 53Cr/52Cr vs. 55Mn/52Cr isochrons and thus determine relative ages of early solar system objects or events, assuming that the initial Cr isotopic ratio, (53Cr/52Cr)o, equals (53Mn/52Cr)o. With the primary objective of interpretation of these ages within a diffusion kinetic framework, we have determined the tracer diffusion coefficient of Cr in natural spinels, which are very close to the MgAl2O4 end-member composition, as a function of temperature and oxygen fugacity (f(O2)). It is found that the diffusion coefficient of Cr, D(Cr), in two stocks of spinels (referred to as cut-gems and gem-gravels) with very similar major element chemistry is consistently different, but the data in each stock yield well defined Arrhenius relations that show a difference of log D of 0.6-1.0, depending on temperature, with the D(Cr) in gem-gravel being higher than that in the cut-gem stock. The D(Cr) was found to have a positive dependence on f(O2) in the range of f(O2) of around ±2 log units relative to that of the wüstite-magnetite buffer. The difference in the D(Cr) between the two stocks and the observed D(Cr) vs. f(O2) relation has been explained in terms of a change of point defect concentration resulting from heterovalent substitution of trace elements and equilibration with the imposed f(O2) conditions, respectively. Assuming a homogeneous semi-infinite matrix, the closure temperature (Tc) of Cr diffusion in spinel has been calculated as a function of grain size, cooling rate, peak temperature (To) and f(O2). Also the dependence of D(Cr) and Tc(Cr) on the Cr# (i.e. Cr/(Cr + Al) ratio) has been accounted for using available D(Cr) vs. Cr# data in Suzuki et al. (2008). We argue, on the basis of crystal chemical considerations and available diffusion kinetic data for minerals, that the Tc for Mn should be much lower than that for Cr in spinel, olivine and orthopyroxene, and

  18. Microwave-assisted synthesis: A fast and efficient route to produce LaMO{sub 3} (M = Al, Cr, Mn, Fe, Co) perovskite materials

    SciTech Connect

    Prado-Gonjal, J.; Arevalo-Lopez, A.M.; Moran, E.

    2011-02-15

    Research highlights: {yields} Lanthanum perovskites can be prepared by microwave irradiation in a domestic set-up. {yields} Microwave-assisted synthesis yields well crystallized and pure materials, sometimes nanosized. {yields} Rietveld analysis has been performed to refine the structures. {yields} Magnetic and electric measurements are similar to those previously reported. {yields} Microwave-assisted synthesis is a fast and efficient method for the synthesis of lanthanum perovskites. -- Abstract: A series of lanthanum perovskites, LaMO{sub 3} (M = Al, Cr, Mn, Fe, Co), having important technological applications, have been successfully prepared by a very fast, inexpensive, reproducible, environment-friendly method: the microwave irradiation of the corresponding mixtures of nitrates. Worth to note, the microwave source is a domestic microwave oven. In some cases the reaction takes place in a single step, while sometimes further annealings are necessary. For doped materials the method has to be combined with others such as sol-gel. Usually, nanopowders are produced which yield high density pellets after sintering. Rietveld analysis, oxygen stoichiometry, microstructure and magnetic measurements are presented.

  19. High-Temperature Ferromagnetism in Cr- and Mn-Implanted Al(sub x)Ga(sub 1-x)N

    DTIC Science & Technology

    2007-09-23

    films of AlxGa1-xN that display ferromagnetism. Although recent advances in ion-implantation doping of group-III nitrides with Cr and Mn are making...annealed from 675 to 775 oC at AFIT in an Oxy -Gon furnace using the rapid thermal annealing method in an N2 environment for 5 min to anneal out the...layer). After implantation, the samples were annealed in an Oxy -Gon annealing furnace at temperatures between 650 and 775 oC for 5 min. Before

  20. Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain-boundary relaxation of Al-4.9Mg alloy

    NASA Astrophysics Data System (ADS)

    Mikhailovskaya, A. V.; Golovin, I. S.; Zaitseva, A. A.; Portnoi, V. K.; Dröttboom, P.; Cifre, J.

    2013-03-01

    Methods of microstructural analysis, measurements of hardness, and temperature and time dependences of internal friction (TDIF and TDIF(iso), respectively) have been used to study recrystallization in cold-rolled alloys and grain-boundary relaxation in annealed alloys. A complex analysis of the effect of additions of transition metals (Mn, Cr) on the magnitude of the activation energy of the background of the internal friction in deformed and annealed states and on the activation parameters of grain-boundary relaxation has been performed. Methods of amplitude dependences of internal friction (ADIF) have been used to determine the critical amplitude that corresponds to the beginning of microplastic deformation in the alloys at different temperatures.

  1. Eutectic equilibria in the quaternary system Fe-Cr-Mn-C

    NASA Technical Reports Server (NTRS)

    Nowotny, H.; Wayne, S.; Schuster, J. C.

    1982-01-01

    The constitution of the quaternary system, Fe-Cr-Mn-C and to a lesser extent of the quinary system, Fe-Cr-Mn-Al-C were examined for in situ composite alloy candidates. Multivariant eutectic compositions were determined from phase equilibria studies wherein M7C3 carbides (approximately 30% by volume) formed from the melt within gamma iron. An extended field of the hexagonal carbide, (Cr, Fe, Mn)7 C3, was found without undergoing transformation to the orthorhombic structure. Increasing stability for this carbide was found for higher ratios of Cr/Fe(+) Cr + Mn. Aluminum additions promoted a ferritic matrix while manganese favored the desired gamma austenitic matrix. In coexistence with the matrix phase, chromium enters preferentially the carbide phase while manganese distributes equally between the gamma matrix and the M7C3 carbide. The composition and lattice parameters of the carbide and matrix phases were determined to establish their respective stabilities.

  2. Enhancement of ferromagnetism by Cr doping in Ni-Mn-Cr-Sb Heusler alloys

    NASA Astrophysics Data System (ADS)

    Khan, Mahmud; Dubenko, Igor; Stadler, Shane; Jung, J.; Stoyko, S. S.; Mar, Arthur; Quetz, Abdiel; Samanta, Tapas; Ali, Naushad; Chow, K. H.

    2013-03-01

    A series of Mn rich Ni50Mn37-xCrxSb13 Heusler alloys have been investigated by dc magnetization and electrical resistivity measurements. Due to the weakening of the Ni-Mn hybridization, the martensitic transition shifts to lower temperatures with increasing Cr concentration, while the saturation magnetization at 5 K increases. The magnetoresistance and exchange bias properties are dramatically suppressed with increasing Cr concentration. The observed behaviors suggest that substitution of Cr for Mn in Ni50Mn37-xCrxSb13 Heusler alloys not only destabilizes the martensitic phase but also enhances ferromagnetism in the system. The possible mechanisms responsible for the observed behavior are discussed.

  3. 53Mn-53Cr chronology of Ca-Fe silicates in CV3 chondrites

    NASA Astrophysics Data System (ADS)

    MacPherson, Glenn J.; Nagashima, Kazuhide; Krot, Alexander N.; Doyle, Patricia M.; Ivanova, Marina A.

    2017-03-01

    High precision secondary ion mass-spectrometry (SIMS) analyses of kirschsteinite (CaFeSiO4) in the reduced CV3 chondrites Vigarano and Efremovka yield well resolved 53Cr excesses that correlate with 55Mn/52Cr, demonstrating in situ decay of the extinct short-lived radionuclide 53Mn. To ensure proper correction for relative sensitivities between 55Mn+ and 52Cr+ ions, we synthesized kirschsteinite doped with Mn and Cr to measure the relative sensitivity factor. The inferred initial ratio (53Mn/55Mn)0 in chondritic kirschsteinite is (3.71 ± 0.50) × 10-6. When anchored to 53Mn-53Cr relative and U-corrected 207Pb-206Pb absolute ages of the D'Orbigny angrite, this ratio corresponds to kirschsteinite formation 3.2-0.7+08 Ma after CV Ca-, Al-rich inclusions. The kirschsteinite data are consistent within error with the data for aqueously-formed fayalite from the Asuka 881317 CV3 chondrite as reported by Doyle et al. (2015), supporting the idea that Ca-Fe silicates in CV3 chondrites are cogenetic with fayalite (and magnetite) and formed during metasomatic alteration on the CV3 parent body. Concentrically-zoned crystals of kirschsteinite and hedenbergite indicate that they initially formed as near end-member compositions that became more Mg-rich with time, possibly as a result of an increase in temperature.

  4. 53Mn-53Cr radiometric dating of secondary carbonates in CR chondrites: Timescales for parent body aqueous alteration

    NASA Astrophysics Data System (ADS)

    Jilly-Rehak, Christine E.; Huss, Gary R.; Nagashima, Kazuhide

    2017-03-01

    We present 53Mn-53Cr ages of secondary carbonates in Renazzo-like (CR) chondrites, determined by secondary ion mass spectrometry. The timing of aqueous alteration in CR chondrites has been unconstrained in the literature. We measured 53Mn-53Cr isotope systematics in carbonates from three different CR-chondrite lithologies. Calcite in the interchondrule matrix of Renazzo, calcite in the matrix of GRO 95577, and dolomite in a dark inclusion of Renazzo all show excesses in 53Cr, interpreted as the daughter product from the decay of 53Mn. The Renazzo calcite yields an initial ratio of (53Mn/55Mn)0 = (3.6 ± 2.7) × 10-6, and the Renazzo dark inclusion dolomite ranges from (53Mn/55Mn)0 = (3.1 ± 1.4) × 10-6 (corrected to the RSF of a calcite standard) to (3.7 ± 1.7) × 10-6 (corrected to an inferred dolomite RSF). When anchored to the D'Orbigny angrite, the Renazzo carbonates yield ages between 4563.6 and 4562.6 Ma, or ∼4.3-5.3 Myr after the formation of CV CAIs. Calcite measured in the heavily altered specimen GRO 95577 yields a shallower slope of (53Mn/55Mn)0 = (7.9 ± 2.8) × 10-7, corresponding to a much younger age of 4555.4 Ma, or ∼12.6 Myr after CAI formation. The two Renazzo ages are contemporaneous with Mn-Cr ages of carbonates in Tagish Lake, CI, and CM chondrites, but the GRO 95577 age is uniquely young. These findings suggest that early aqueous alteration on chondritic parent bodies was a common occurrence, likely driven by internal heating from 26Al decay after accretion. The young carbonate ages of GRO 95577 suggest that either the CR parent body was sufficiently large to sustain heating from 26Al for ∼8 Myr, or that late-stage impact events supplied heat to the region where GRO 95577 originated.

  5. Creep-rupture behavior of a developmental cast-iron-base alloy for use up to 800/sup 0/C. [NASAUT 4G-Al: Fe-15Mn-15Cr-2Mo-1. 5C-1Nb-1Si

    SciTech Connect

    Titran, R.H.; Scheuermann, C.M.

    1987-08-01

    As part of the DOE/NASA Stirling Engine Systems Project, an iron-base cast alloy was developed, designated NASAUT 4G-Al. Its nominal composition, in percent by weight, is Fe-15Mn-15Cr-2Mo-1.5C-1Nb-1Si. This report presents the results of a study of this alloy, 4G-Al, performed to determine its creep-rupture properties. The alloy was studied in the directionally solidified (DS) form with a 650/sup 0/C/100 h anneal recommended by UTRC to optimize properties and in the investment-cast (IC) form with either a 760/sup 0/C/20 h anneal recommended by UTRC to optimize properties, or a solution anneal of 790/sup 0/C/20 h followed by a simulated brazing cycle of 1065/sup 0/C/15 min + a heat treatment of 760/sup 0/C/16 h + 650/sup 0/C/16 h. Alloy 4G-Al exhibited typical 3-stage creep response under all conditions tested. The most creep resistant condition was the DS material. This condition compares very favorably to the prototype (HS-31) and prime candidate (XF-818) alloys for the automotive Stirling engine cylinder/regenerator housing. 14 refs., 7 figs., 6 tabs.

  6. Magnetic properties of Cr and Mn powders (abstract)

    NASA Astrophysics Data System (ADS)

    Zhukov, A. P.; Ivanov, S. A.; Nudelman, M. A.; Ponomarev, B. K.; Kaloshkin, S. D.; Shatov, A. A.

    1993-05-01

    Mn and Cr powders were produced from electrolytic Mn and Cr by ball milling in a stainless steel container with carbon steel balls. The milling time, t, varied from 5 min to 8 h. Structures were investigated by x-ray and electron microscopy. Chemical compositions of samples were checked by flame atomic absorption spectrometry. The magnetization was measured by induction method in a pulsed magnetic field up to 10 T. The main part of Mn and Cr powder volume was occupied by α-Mn and b.c.c. Cr, respectively. Diffraction peaks became vaster and more asymmetric with increasing t due to the onset of defects of the structure. The presence of MnO was observed in the Mn sample after 8 h of milling. The size of Mn and Cr particles over same critical t (for chromium t=100 min) was no more than 1 mm. A noticeable Fe content, which increases at higher t, was observed. The Mössbauer spectra of Cr and Mn samples showed the lines of α-Fe and γ-Fe. High values of saturation magnetization, σ, up to 5.4 emu/g, and susceptibility and existence of the hysteresis in low fields at temperatures up to 360 K, indicate ferromagnetic ordering of the samples. Within the range of 78-360 K σ only slightly depends on temperature, but noticeably grows with increasing t at fixed temperature in Cr powders, remaining practically constant in Mn powders. No correlation could be observed between Fe content and σ : the latter remained the same in Mn with Fe concentration increasing, but in Cr, as Fe concentration increased sevenfold, it grew by four times. Spontaneous magnetization per mass unit of Fe, σ, was sufficiently lower than that of pure α-Fe (220 emu/g). The obtained values of σ correspond neither to Fe solid solution nor to pure Cr or Mn. Elucidation of the obtained results can be done both by the presence of α-Fe particles and by variation of exchange interactions caused by sample defects. A noticeable difference of σ values from those properties of bulk α-Fe can be explained by

  7. Tough cryogenic alloys from the Fe-Mn and Fe-Mn-Cr systems

    NASA Technical Reports Server (NTRS)

    Schanfein, M. J.; Zackay, V. F.; Morris, J. W., Jr.

    1974-01-01

    By adjusting composition, metastable gamma (austenite) and epsilon (hexagonal) martensite may be retained in Fe-Mn and Fe-Mn-Cr alloys and used to impact toughness through the TRIP mechanism. The resulting alloys have excellent toughness at cryogenic temperatures. The best alloys obtained to date are: Fe-20Mn, with sigma (sub y) = 79ksi and K sub IC = 275ksi square root of (in) at 77 K, and Fc-16Mn-8Cr, with sigma sub y = 85ksi and K sub IC = 72ksi square root of (in) at 77 K.

  8. Development of Fe-Mn-Al-X-C alloys

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1982-01-01

    Development of a low cost Cr-free, iron-base alloy for aerospace applications involves both element substitution and enhancement of microstructural strengthening. When Mn is substituted for Ni and Al or Si is substituted for Cr, large changes occur in the mechanical and thermal stability of austenite in FeMnAlC alloys. The in situ strength of MC or M2C (M = Ti, V, Hf, Ta, or Mo) in FeMnAlC alloys was determined. The high temperature tensile strength depends more on the distribution of carbides than the carbide composition. Precipitation of a high volume percent-ordered phase was achieved in Fe2OMnlONi6Al6Ti (lC) alloys. As case, these alloys have a homogeneous austenitic structure. After solutioning at 1100 C for 5 hr followed by aging at 600 C for 16 hr, gamma prime or a perovskite carbide is precipitated. Overaging occurs at 900 C where eta is precipitated.

  9. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  10. New series of triple molybdates AgA3R(MoO4)5 (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) with framework structures and mobile silver ion sublattices

    NASA Astrophysics Data System (ADS)

    Kotova, Irina Yu.; Solodovnikov, Sergey F.; Solodovnikova, Zoya A.; Belov, Dmitry A.; Stefanovich, Sergey Yu.; Savina, Aleksandra A.; Khaikina, Elena G.

    2016-06-01

    Triple molybdates AgA3R(MoO4)5 (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg3In(MoO4)5 type were synthesized and single crystals of AgMg3R(MoO4)5 (R=Cr, Fe) were grown. In their structures, the MoO4 tetrahedra, pairs and trimers of edge-shared (Mg, R)O6 octahedra are connected by common vertices to form a 3D framework. Large framework cavities involve Ag+ cations disordered on three nearby positions with CN=3+1 or 4+1. Alternating (Mg, R)O6 octahedra and MoO4 tetrahedra in the framework form quadrangular windows penetrable for Ag+ at elevated temperatures. Above 653-673 K, the newly obtained molybdates demonstrate abrupt reduction of the activation energy to 0.4-0.6 eV. At 773 K, AgMg3Al(MoO4)5 shows electric conductivity 2.5·10-2 S/cm and Ea=0.39 eV compatible with characteristics of the best ionic conductors of the NASICON type.

  11. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-01-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  12. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-09-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  13. Uptake of Al, As, Cr, Cd, Cu, Fe, Mn, Ni, Pb, Sr, and Zn in native wheatgrasses, wildryes, and bluegrass on three metal-contaminated soils from Montana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the biggest challenges to successfully phytoremediate contaminated mineland soils is the identification of native plants that possess a broad adaptation to ecological sites and either exclude or uptake heavy metals of interest. This study evaluated forage concentrations of aluminum (Al), ars...

  14. Photoemission of Mn6Cr single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Heinzmann, U.; Merschjohann, F.; Helmstedt, A.; Gryzia, A.; Winter, A.; Steppeler, S.; Müller, N.; Brechling, A.; Sacher, M.; Richthofen, C.-G. Freiherr v.; Glaser, T.; Voss, S.; Fonin, M.; Rüdiger, U.

    2009-11-01

    We present the status of new experimental studies of X-ray absorption spectroscopy, magnetic circular dichroism in photoemission and spin-resolved photoelectron spectroscopy of Mn6Cr single-molecule magnet systems by use of circularly-polarized synchrotron radiation of the electron storage rings in Maxlab Lund, Sweden und BESSY, Berlin, Germany.

  15. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys

    DOE PAGES

    Wang, Zhangwei; Baker, Ian; Cai, Zhonghou; ...

    2016-09-01

    A systematic study of the effects of up to 1.1 at. % carbon on the mechanical properties and evolution of the dislocation substructure in a series of a high entropy alloys (HEA) based on Fe40.4Ni11.3Mn34.8Al7.5Cr6 is presented. Transmission electron microscopy (TEM), synchrotron X-ray diffraction (XRD) and atom probe tomography (APT) were used to show that all the alloys are single-phase f.c.c. random solid solutions. The lattice constant, determined from synchrotron XRD measurements, increases linearly with increasing carbon concentration, which leads to a linear relationship between the yield strength and the carbon concentration. The dislocation substructures, as determined by a TEM,more » show a transition from wavy slip to planar slip and, at higher strains, and from cell-forming structure (dislocations cells, cell blocks and dense dislocation walls) to non-cell forming structure (Taylor lattice, microbands and domain boundaries) with the addition of carbon, features related to the increase in lattice friction stress. The stacking fault energy (measured via weak-beam imaging of the separation of dislocation partials) decreases with increasing carbon content, which also contributes to the transition from wavy slip to planar slip. The formation of non-cell forming structure induced by carbon leads to a high degree of strain hardening and a substantial increase in the ultimate tensile strength. In conclusion, the consequent postponement of necking due to the high strain hardening, along with the plasticity accommodation arising from the formation of microbands and domain boundaries, result in an increase of ductility due to the carbon addition.« less

  16. Structure, magnetism, and electron-transport properties of Mn2CrGa-based nanomaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyong; Kharel, Parashu; Skomski, Ralph; Valloppilly, Shah; Li, Xingzhong; Sellmyer, David J.

    2016-05-01

    Mn2CrGa in the disordered cubic structure has been synthesized using rapid quenching and subsequent annealing. The cubic phase transforms to a stable tetragonal phase when a fraction of Cr or Ga is replaced by Pt or Al, respectively. All samples are ferrimagnetic with high Curie temperatures (Tc); Mn2CrGa exhibits the highest Tc of about 813 K. The tetragonal samples have appreciable values of magnetocrystalline anisotropy energy, which leads to an increase in coercivity (Hc) that approaches about 10 kOe in the Pt-doped sample. The Hc linearly increases with a decrease of temperature, concomitant with the anisotropy change with temperature. All samples are metallic and show negative magnetoresistance with room-temperature resistivities on the order of 1 mΩcm. The magnetic properties including high Tc and low magnetic moment suggest that these tetragonal materials have potential for spin-transfer-torque-based devices.

  17. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect

    Pang, Mingjun; Zhan, Yongzhong; Du, Yong

    2013-02-15

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  18. 53Mn-53Cr dating of aqueously formed carbonates in the CM2 lithology of the Sutter's Mill carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Jilly, Christine E.; Huss, Gary R.; Krot, Alexander N.; Nagashima, Kazuhide; Yin, Qing-Zhu; Sugiura, Naoji

    2014-11-01

    Radiometric dating of secondary minerals can be used to constrain the timing of aqueous alteration on meteoritic parent bodies. Dolomite is a well-documented secondary mineral in CM chondrites, and is thought to have formed by precipitation from an aqueous fluid on the CM parent body within several million years of accretion. The petrographic context of crosscutting dolomite veins indicates that aqueous alteration occurred in situ, rather than in the nebular setting. Here, we present 53Mn-53Cr systematics for dolomite grains in Sutter's Mill section SM51-1. The Mn-Cr isotope data show well-resolved excesses of 53Cr correlated with 55Mn/52Cr ratio, which we interpret as evidence for the in situ decay of radioactive 53Mn. After correcting for the relative sensitivities of Mn and Cr using a synthetic Mn- and Cr-bearing calcite standard, the data yield an isochron with slope corresponding to an initial 53Mn/55Mn ratio of 3.42 ± 0.86 × 10-6. The reported error includes systematic uncertainty from the relative sensitivity factor. When calculated relative to the U-corrected Pb-Pb absolute age of the D'Orbigny angrite, Sutter's Mill dolomites give a formation age between 4564.8 and 4562.2 Ma (2.4-5.0 Myr after the birth of the solar system). This age is contemporaneous with previously reported ages for secondary carbonates in CM and CI chondrites. Consistent carbonate precipitation ages between the carbonaceous chondrite groups suggest that aqueous alteration was a common process during the early stages of parent body formation, probably occurring via heating from internal 26Al decay. The high-precision isochron for Sutter's Mill dolomite indicates that late-stage processing did not reach temperatures that were high enough to further disturb the Mn-Cr isochron.

  19. High temperature oxidation resistant coatings for the directionally solidified Ni-Nb-Cr-Al eutectic superalloy

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Ulion, N. E.; Felten, E. J.

    1977-01-01

    Protective coatings required for the Ni-Nb-Cr-Al directionally solidified eutectic superalloy were developed and evaluated on the basis of oxidation resistance, diffusional stability, thermal fatigue, and creep resistance. NiCrAlY+Pt and NiCrAlY physical vapor-deposition coating systems exhibited the best combination of properties. Burner-rig testing indicated that the useful life of a 127-micron-thick NiCrAlY+Pt coating exceeds 1000 h at 1366 K. Eutectic-alloy creep lives at 1311 K and a stress of 151.7 MN/sq m were greater for NiCrAlY+Pt-coated specimens than for uncoated specimens by a factor of two.

  20. The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys

    DOE PAGES

    Wang, Zhangwei; Baker, Ian; Guo, Wei; ...

    2017-03-01

    We investigated the effects of cold rolling followed by annealing on the mechanical properties and dislocation substructure evolution of undoped and 1.1 at. % carbon-doped Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys (HEAs). X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom probe tomography (APT) were employed to characterize the microstructures. The as-cast HEAs were coarse-grained and single phase f.c.c., whereas the thermo-mechanical treatment caused recrystallization (to fine grain sizes) and precipitation (a B2 phase for the undoped HEA; and a B2 phase, and M23C6 and M7C3 carbides for the C-doped HEA). Carbon, which was found to have segregated tomore » the grain boundaries using APT, retarded recrystallization. The reduction in grain size resulted in a sharp increase in strength, while the precipitation, which produced only a small increase in strength, probably accounted for the small decrease in ductility for both undoped and C-doped HEAs. For both undoped and C-doped HEAs, the smaller grain-sized material initially exhibited higher strain hardening than the coarse-grained material but showed a much lower strain hardening at large tensile strains. Wavy slip in the undoped HEAs and planar slip in C-doped HEAs were found at the early stages of deformation irrespective of grain size. At higher strains, dislocation cell structures formed in the 19 μm grain-sized undoped HEA, while microbands formed in the 23 μm grain-sized C-doped HEA. Conversely, localized dislocation clusters were found in both HEAs at the finest grain sizes (5 μm). The inhibition of grain subdivision by the grain boundaries and precipitates lead to the transformation from regular dislocation configurations consisting of dislocation-cells and microbands to irregular dislocation configurations consisting of localized dislocation clusters, which further account for the decrease in ductility. Our investigation of the formation mechanism

  1. Fabrication of L10-MnAl perpendicularly magnetized thin films for perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Hosoda, Masaki; Oogane, Mikihiko; Kubota, Miho; Kubota, Takahide; Saruyama, Haruaki; Iihama, Satoshi; Naganuma, Hiroshi; Ando, Yasuo

    2012-04-01

    Structural and magnetic properties of MnAl thin films with different composition, growth temperature, and post-annealing temperature were investigated. The optimum condition for fabrication of L10-MnAl perpendicularly magnetized thin film deposited on Cr-buffered MgO single crystal substrate was revealed. The results of x ray diffraction indicated that the MnAl films annealed at proper temperature had a (001)-orientation and L10-ordered structure. The L10-ordered films were perpendicularly magnetized and had a large perpendicular anisotropy. In addition, low surface roughness was achieved. For the optimized fabrication condition, the saturation magnetization Ms of 600 emu/cm3 and perpendicular magnetic anisotropy Ku of 1.0 × 107 erg/cm3 was obtained using the Mn48Al52 target at deposition temperature of 200 °C and post-annealing temperature of 450 °C.

  2. Cr(OH)₃(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation

    SciTech Connect

    Namgung, Seonyi; Kwon, M.; Qafoku, Nikolla; Lee, Gie Hyeon

    2014-09-16

    This study examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)₃(s) (1.0 g/L) at pH 7 – 9 under oxic or anoxic conditions. In the absence of Cr(OH)₃(s), homogeneous Mn(II) oxidation by dissolved O₂ was not observed at pH ≤ 8.0 for 50 d. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 d and precipitated as hausmannite. When Cr(OH)₃(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Our results suggest that Cr(OH)₃(s) was readily oxidized by a newly formed Mn oxide as a result of Mn(II) oxidation catalyzed on Cr(OH)₃(s) surface. XANES analysis of the residual solids after the reaction between 1.0 g/L Cr(OH)₃(s) and 204 μM Mn(II) at pH 9.0 for 22 d revealed that the product of surface catalyzed Mn(II) oxidation resembled birnessite. The rate and extent of Cr(OH)₃(s) oxidation was likely controlled by those of surface catalyzed Mn(II) oxidation as the production of Cr(VI) increased with increasing pH and initial Mn(II) concentrations. This study evokes the potential environmental hazard of sparingly soluble Cr(OH)₃(s) that can be a source of Cr(VI) in the presence of dissolved Mn(II).

  3. Visible Light-Induced Electron Transfer from Di-mu-oxo Bridged Dinuclear Mn Complexes to Cr Centers in Silica Nanopores

    SciTech Connect

    Frei, Heinz; Weare, Walter W.; Pushkar, Yulia; Yachandra, Vittal K.; Frei, Heinz

    2008-06-03

    The compound (bpy)2MnIII(mu-O)2MnIV(bpy)2, a structural model relevant for the photosynthetic water oxidation complex, was coupled to single CrVI charge-transfer chromophores in the channels of the nanoporous oxide AlMCM-41. Mn K-edge EXAFS spectroscopy confirmed that the di-mu-oxo dinuclear Mn core of the complex is unaffected when loaded into the nanoscale pores. Observation of the 16-line EPR signal characteristic of MnIII(mu-O)2MnIV demonstrates that the majority of the loaded complexes retained their nascent oxidation state in the presence or absence of CrVI centers. The FT-Raman spectrum upon visible light excitation of the CrVI-OII --> CrV-OI ligand-to-metal charge-transfer reveals electron transfer from MnIII(mu-O)2MnIV (Mn-O stretch at 700 cm-1) to CrVI, resulting in the formation of CrV and MnIV(mu-O)2MnIV (Mn-O stretch at 645 cm-1). All initial and final states are directly observed by FT-Raman or EPR spectroscopy, and the assignments corroborated by X-ray absorption spectroscopy measurements. The endoergic charge separation products (DELTA Eo = -0.6 V) remain after several minutes, which points to spatial separation of CrV and MnIV(mu-O)2MnIV as a consequence of hole (OI) hopping as a major contributing mechanism. This is the first observation of visible light-induced oxidation of a potential water oxidation complex by a metal charge-transfer pump in a nanoporous environment. These findings will allow for the assembly and photochemical characterization of well defined transition metal molecular units, with the ultimate goal of performing endothermic, multi-electron transformations that are coupled to visible light electron pumps in nanostructured scaffolds.

  4. Covalent bonds in AlMnSi icosahedral quasicrystalline approximant

    PubMed

    Kirihara; Nakata; Takata; Kubota; Nishibori; Kimura; Sakata

    2000-10-16

    Electron density distributions were obtained using the maximum entropy method with synchrotron radiation powder data. In the metallic Al12Re, metallic bonding was observed for the icosahedral Al12 cluster with central Re atom. In the nonmetallic alpha-AlMnSi 1/1 approximant, covalent bonds were found in the electron density distribution of the Mackay icosahedral cluster without central atom. Rather than the Hume-Rothery mechanism, the covalency of Al (Si) icosahedron and that between Al (Si) and Mn atoms is considered to be the origin of the pseudogap and nonmetallic behavior of alpha-AlMnSi.

  5. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  6. τ-MnAl with high coercivity and saturation magnetization

    SciTech Connect

    Wei, J. Z.; Song, Z. G.; Yang, Y. B.; Liu, S. Q.; Du, H. L.; Han, J. Z.; Zhou, D.; Wang, C. S.; Yang, Y. C.; Franz, A.; Többens, D.; Yang, J. B.

    2014-12-15

    In this paper, high purity τ-Mn{sub 54}Al{sub 46} and Mn{sub 54−x}Al{sub 46}C{sub x}alloys were successfully prepared using conventional arc-melting, melt-spinning, and heat treatment process. The magnetic and the structural properties were examined using x-ray diffraction (XRD), powder neutron diffraction and magnetic measurements. A room temperature saturation magnetization of 650.5 kAm{sup -1}, coercivity of 0.5 T, and a maximum energy product of (BH){sub max} = 24.7 kJm{sup -3} were achieved for the pure Mn{sub 54}Al{sub 46} powders without carbon doping. The carbon substituted Mn{sub 54−x}Al{sub 46}C{sub x}, however, reveals a lower Curie temperature but similar saturation magnetization as compared to the carbon-free sample. The electronic structure of MnAl shows that the Mn atom possesses a magnetic moment of 2.454 μ{sub B} which results from strong hybridization between Mn-Al and Mn-Mn. We also investigated the volume and c/a ratio dependence of the magnetic moments of Mn and Al. The results indicate that an increase in the intra-atomic exchange splitting due to the cell volume expansion, leads to a large magnetic moment for the Mn atom. The Mn magnetic moment can reach a value of 2.9 μ{sub B} at a volume expansion rate of ΔV/V ≈ 20%.

  7. Creep and Toughness of Cryomilled NiAl Containing Cr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Aikin, Beverly; Salem, Jon

    2000-01-01

    NiAl-AlN + Cr composites were produced by blending cryomilled NiAl powder with approx. 10 vol % Cr flakes. In comparison to the as-consolidated matrices, hot isostatically pressed Cr-modified materials did not demonstrate any significant improvement in toughness. Hot extruded NiAl-AlN+10.5Cr, however, possessed a toughness twice that determine for the base NiAl-AlN alloy. Measurement of the 1200 to 1400 K plastic flow properties revealed that the strength of the composites was completely controlled by the properties of the NiAl-AlN matrices. This behavior could be successfully modeled by the Rule-of-Mixtures, where load is shed from the weak Cr to the strong matrix.

  8. Fluctuations of chemical composition of austenite and their consequence on shape memory effect in Fe-Mn-(Si, Cr, Ni, C, N) alloys

    SciTech Connect

    Bliznuk, V.V.; Gavriljuk, V.G. . E-mail: gavr@imp.kiev.ua; Kopitsa, G.P.; Grigoriev, S.V.; Runov, V.V.

    2004-09-20

    Polycrystalline samples of shape memory iron-based alloys containing 17, and 30 mass% Mn and alloyed with Si, Cr, Ni, C, N were studied by means of small angle scattering of polarized neutrons (SAPNS). A direct correlation between chemical homogeneity of the Fe-Mn, Fe-Mn-Si, Fe-Mn-Si-Cr, Fe-Mn-Si-Cr-Ni solid solutions and the values of reversible strain caused by the {gamma} {yields} {epsilon} {yields} {gamma} martensitic transformation was found. The addition of silicon to the Fe-Mn alloys significantly improves chemical homogeneity of the fcc solid solution on the scale of larger than several nm, which correlates with the essential increase of reversible strain. A similar to silicon but weaker effect was observed in the case of nitrogen addition to the Fe-Mn-Si-Cr, Fe-Mn-Si-Cr-Ni alloys. Based on the obtained experimental data and in consistency with the previously expressed idea by Sade et al., the positive effect of silicon and nitrogen on chemical homogeneity and SME in Fe-Mn alloys is attributed to the short-range atomic ordering induced by these elements.

  9. Mn-Cr intersite independent magnetic behavior and electronic structures of LaMn3Cr4O12: Study from first-principles

    NASA Astrophysics Data System (ADS)

    Lv, Shuhui; Li, Hongping; Liu, Xiaojuan; Meng, Jian

    2011-07-01

    The magnetic and electronic structures of LaMn3Cr4O12 are investigated using the full-potential linearized augmented plane wave method within both the generalized gradient approximation (GGA) and GGA + U (electronic correlation) methods. The calculated results indicate that LaMn3Cr4O12 is an antiferromagnetic insulator. The magnetic ordering is demonstrated to be G-type within both Mn-site and Cr-site spins. However, there is no obvious magnetic coupling between Mn-site and Cr-site sublattices, which is verified by the separate distribution of their corresponding partial density of states. Moreover, the magnetic coupling constants of JCr-Cr and JMn-Mn are predicted to be - 5.0 (- 2.8) and - 0.83 (- 0.63) meV within GGA (GGA + U), respectively, consistent with the experimentally observed two independent Néel temperatures (TN1 and TN2). The calculated densities of states reveal the experimentally reported charge formula of LaMn3+3Cr3+4O12.

  10. Mn-Cr dating of Fe- and Ca-rich olivine from 'quenched' and 'plutonic' angrite meteorites using Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKibbin, Seann J.; Ireland, Trevor R.; Amelin, Yuri; Holden, Peter

    2015-05-01

    Angrite meteorites are suitable for Mn-Cr relative dating (53Mn decays to 53Cr with a half life of 3.7 Myr) using Secondary Ion Mass Spectrometry (SIMS) because they contain olivine and kirschsteinite with very high 55Mn/52Cr ratios arising from very low Cr concentrations. Discrepant Mn-Cr and U-Pb time intervals between the extrusive or 'quenched' angrite D'Orbigny and some slowly cooled or 'plutonic' angrites suggests that some have been affected by secondary disturbances, but this seems to have occurred in quenched rather than in slow-cooled plutonic angrites, where such disturbance or delay of isotopic closure might be expected. Using SIMS, we investigate the Mn-Cr systematics of quenched angrites to higher precision than previously achieved by this method and extend our investigation to non-quenched (plutonic or sub-volcanic) angrites. High values of 3.54 (±0.18) × 10-6 and 3.40 (±0.19) × 10-6 (2-sigma) are found for the initial 53Mn/55Mn of the quenched angrites D'Orbigny and Sahara 99555, which are preserved by Cr-poor olivine and kirschsteinite. The previously reported initial 53Mn/55Mn value of D'Orbigny obtained from bulk-rock and mineral separates is slightly lower and was probably controlled by Cr-rich olivine. Results can be interpreted in terms of the diffusivity of Cr in this mineral. Very low Cr concentrations in Ca-rich olivine and kirschsteinite are probably charge balanced by Al; this substitutes for Si and likely diffuses at a very slow rate because Si is the slowest-diffusing cation in olivine. Diffusion in Cr-rich Mg-Fe olivine is probably controlled by cation vacancies because of deficiency in charge-balancing Al and is therefore more prone to disturbance. The higher initial 53Mn/55Mn found by SIMS for extrusive angrites is more likely to reflect closure of Cr in kirschsteinite at the time of crystallisation, simultaneous with closure of U-Pb and Hf-W isotope systematics for these meteorites obtained from pyroxenes. For the younger

  11. Magnetic coupling in ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers

    SciTech Connect

    Wang, M.; Wadley, P.; Campion, R. P.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Charlton, T. R.; Kinane, C. J.; Langridge, S.

    2015-08-07

    We report on a study of ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers using magnetometry and polarized neutron reflectivity (PNR). From depth-resolved characterization of the magnetic structure obtained by PNR, we concluded that the (Ga,Mn)As and (Al,Ga,Mn)As layers have in-plane and perpendicular-to-plane magnetic easy axes, respectively, with weak interlayer coupling. Therefore, the layer magnetizations align perpendicular to each other under low magnetic fields and parallel at high fields.

  12. Magnetic properties of Al/57Fe/Cr multilayers

    NASA Astrophysics Data System (ADS)

    Jani, Snehal; Lakshmi, N.; Jain, Vishal; Reddy, V. R.; Gupta, Ajay; Venugopalan, K.

    2013-06-01

    Conversion Electron Mössbauer Spectroscopy (CEMS) and DC magnetization are used to compare magnetic properties of as-deposited multilayer (MLS) and Fe2CrAl thin film made from Al/57Fe/Cr MLS deposited by ion beam sputtering and then annealed in UHV. Interdiffusion of elements on annealing sample-1 at 500°C leads to formation of a single, disordered film of Fe2CrAl as evidenced by hyperfine field values obtained by CEMS in the film which compares well with that in bulk Fe2CrAl. CEMS also shows contributions from Fe, Fe/Cr and Fe/Al interfaces in the MLS. Saturation magnetization of as-deposited sample-1 is much less than pure Fe due to reduced Fe thickness because of interface formation and also reduction in Fe-Fe interaction due to intervening Al and Cr layers.

  13. Mn-Cr systematics in primitive meteorites: Insights from mineral separation and partial dissolution

    NASA Astrophysics Data System (ADS)

    Göpel, Christa; Birck, Jean-Louis; Galy, Albert; Barrat, Jean-Alix; Zanda, Brigitte

    2015-05-01

    Cr isotopic compositions have been measured on carbonaceous chondrites (CC): Tafassasset, Paris, Niger I, NWA 5958, NWA 8157 and Jbilet Winselwan. In bulk samples, the 54Cr/52Cr ratios (expressed as ε54Cr) range from 0.93 to 1.58 ε units. These values are in agreement with values characteristic for distinct petrologic types. Despite this 54Cr heterogeneity, the variability in the 53Cr/52Cr ratios (expressed as ε53Cr) of 0.2 ε units and the Mn/Cr ratios is consistent with the previous finding of an isochron in the Mn-Cr evolution diagram. The Mn/Cr ratio in CC corresponds to variable abundances of high-T condensate formed and separated at the beginning of the solar system, thus the canonical 53Mn/55Mn ratio can be defined. Based on a consistent chronology for U-Pb and Mn-Cr between the earliest objects formed in the solar nebula and the D'Orbigny angrite we define a canonical 53Mn/55Mn ratio and ε53Cri of 6.8 × 10-6 and -0.177, respectively. The internal Mn/Cr systematics in Tafassasset and Paris were studied by two approaches: leaching technique and mineral separation. Despite variable ε54Cr values (up to >30 ε) linear co-variations were found between ε53Cr and Mn/Cr ratio. The mineral separates as well as the leachates of Tafassasset fall on a common isochron indicating that (1) cooling of the Tafassasset's parent body occurred at 4563.5 ± 0.25 Ma, and that (2) 54Cr is decoupled from the other isotopes even though temperatures >900 °C have been reached during metamorphism. In the case of Paris, the leachates form an alignment with a 53Mn/55Mn ratio higher than the canonical value. This alignment is not an isochron but rather a mixing line. Based on leachates from various CM and CI, we propose the occurrence of three distinct Cr reservoirs in meteoritic material: PURE54, HIGH53 and LOW53 characterized by a ε53Cr and ε54Cr of 0 and 25,000, -2.17 and 8, and 0.5 and -151, respectively. PURE54 has already been described and is carried by highly refractory

  14. Properties of Cr2AlC MAX phase thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Buck, Zachary; Donato, Tyler; Rotella, Christopher; Lunk, Carl; Lofland, S. E.; Hettinger, J. D.

    2012-02-01

    Mn+ 1AXn (MAX) phases, where n is 1, 2, and 3, M is an early transition metal, A is an A-group element, and X is either C or N, are ternary carbides with unique properties such as low density, easy machinability, and good oxidation resistance. The MAX phase Cr2AlC is of particular interest for industrial applications to its excellent high-temperature oxidation resistance and relatively low synthesis temperature. We prepared Cr2AlC thin films on c-axis oriented single crystal Al2O3, glassy carbon and Si thermal oxide substrates using reactive magnetron sputtering as precursor materials for carbide-derived carbon (CDC) films for ``on-chip'' supercapacitors. Film deposition was optimized using elemental composition data obtained by WDXRF. Optimized films were characterized using XRD and scanning electron microscopy. It was found that textured Cr2AlC films only form when the composition was Al-rich allowing the formation of a Cr5Al8 interfacial layer. As film composition was optimized, the interfacial layer did not form but the XRD peaks associated with the Cr2AlC also decreased in magnitude. Extremely high-textured films were grown when a thin buffer layer of CrAl2 was deposited on the substrate before depositing the Cr2AlC films. This result suggests that Cr2AlC films may not be ideal for CDC applications since the films may ``lift-off'' during conversion due to the existence of the naturally occurring buffer-layer.

  15. Environmentally assisted cracking of two-phase Fe-Mn-Al alloys in NaCl solution

    NASA Astrophysics Data System (ADS)

    Shih, S.-T.; Tsu, I.-F.; Perng, T.-P.

    1993-02-01

    Three two-phase Fe-Mn-Al alloys with nominal compositions, Fe-24Mn-9Al, Fe-27Mn-9Al-3Cr,. and Fe-27Mn-9Al-6Cr, were prepared in the solution-treated and cold-rolled conditions. The fractions of ferrite in the solution-treated condition were controlled at 46 to 60 pct, mainly by adjusting the carbon content and the relative amounts of Mn and Al. The ferrite fractions were reduced to 30 to 37 pct after 75 pct deformation by cold-rolling. Specimens were tensile tested at open circuit in aerated 3.5 pct NaCl solution at slow strain rates ranging from 4 × 10-7 to 4 × 10-5 s-1 at room temperature. All of the alloys were quite susceptible to environmentally assisted cracking (EAC). The deformed specimens showed less susceptibility, presumably because the plasticity was already too limited. The EAC appeared to occur at or after the onset of plastic deformation. In this alloy system, the ferritic phase was less resistant to EAC than the austenitic phase, in contrast to the Fe-Cr-Ni stainless steels. The crack propagated preferentially through the ferrite grains or along the ferrite/austenite grain boundaries. The addition of up to 6 pct Cr did not improve the EAC resistance.

  16. Chemically sensitive amorphization process in the nanolaminated Cr2AC (A = Al or Ge) system from TEM in situ irradiation

    NASA Astrophysics Data System (ADS)

    Bugnet, Matthieu; Mauchamp, Vincent; Oliviero, Erwan; Jaouen, Michel; Cabioc'h, Thierry

    2013-10-01

    The effect of 320 keV Xe2+ ion-irradiation in Cr2AlC and Cr2GeC is investigated in situ in the transmission electron microscope. Both compounds amorphize at moderate fluences (1013-1014 Xe cm-2) but exhibit different amorphization mechanisms, bearing witness of the major influence of the chemical composition of the nanolaminated Mn+1AXn phases. It is proposed that amorphization takes place via a direct impact amorphization process in Cr2GeC whereas it is governed by a defect accumulation process in Cr2AlC.

  17. Kinetic parameters and structural variations in Cu-Al-Mn and Cu-Al-Mn-Mg shape memory alloys

    NASA Astrophysics Data System (ADS)

    Canbay, Canan Aksu

    2017-02-01

    In this work polycrystalline Cu-Al-Mn and Cu-Al-Mn-Mg SMAs were fabricated by arc melting. The thermal analysis was made to determine the characteristic transformation temperatures of the samples and kinetic parameters. Also the effect of Mg on transformation temperatures and kinetic parameters detected. The structural analysis was made to designate the diffraction planes of martensite phase at room temperature and this was supported by optical measurement observations.

  18. Observation of ferromagnetism above 900 K in Cr-GaN and Cr-AlN

    NASA Astrophysics Data System (ADS)

    Liu, H. X.; Wu, Stephen Y.; Singh, R. K.; Gu, Lin; Smith, David J.; Newman, N.; Dilley, N. R.; Montes, L.; Simmonds, M. B.

    2004-11-01

    We report ferromagnetism at over 900K in Cr-GaN and Cr-AlN thin films. The magnetic properties vary as a function of Cr concentration with 60%, and 20%, of the Cr being magnetically active at 3% doping in GaN, and 7% in AlN, respectively. In the GaN sample with the highest magnetically active Cr (60%), channeling Rutherford backscattering indicates that over 70% of Cr impurities are located on substitutional sites. These results give indisputable evidence that substitutional Cr defects are involved in the magnetic behavior. While Cr-AlN is highly resistive, Cr-GaN exhibits properties characteristic of hopping conduction including T-1/2 resistivity dependence and small Hall mobility (0.06cm2/Vs). A large negative magnetoresistance is attributed to the influence of the magnetic field on the quantum interference between the many paths linking two hopping sites. The results strongly suggest that ferromagnetism in Cr-GaN and Cr-AlN can be attributed to the double exchange mechanism as a result of hopping between near-midgap substitutional Cr impurity bands.

  19. Oxidation of CoCrFeMnNi High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Holcomb, Gordon R.; Tylczak, Joseph; Carney, Casey

    2015-06-01

    Eight model high entropy alloys (HEAs) in the CoCrFeMnNi family (including one alloy each in the CoCrFeNi and CoFeMnNi subfamilies) were made, prepared, and exposed to laboratory air for 1100 h at 650°C and 750°C. Two commercial alloys, nickel-base superalloy 230 (N06230) and austenitic stainless steel 304H (S30409), were simultaneously exposed for comparison. Mass change oxidation kinetics were measured and cross-sections of exposed samples were observed. Seven of these HEAs contained much more Mn (12-24 wt.%) than is found in commercial heat-resistant stainless steels and superalloys. The oxidation resistance of CoCrFeNi was excellent and comparable to 304H at 650°C and only slightly worse at 750°C. The thin oxide scale on CoCrFeNi was primarily Cr oxide (presumably Cr2O3) with some Mn oxide at the outer part of the scale. The CoCrFeMnNi HEAs all experienced more rapid oxidation than CoCrFeNi and, especially at 750°C, experienced oxide scale spallation. The addition of Y in the alloy to lower S improved the oxidation resistance of these HEAs. Alloy CoFeMnNi, without Cr, experienced much higher oxidation rates and scale spallation than the Cr-containing alloys. A linear regression analysis of the log of the parabolic rate constant, log(kp), as functions of wt.% Cr and Mn found a good correlation for the compositional dependence of the oxidation rate constant, especially at 650°C. Mn was found to be more detrimental increasing log(k p) than Cr was helpful reducing log(k p). If CoCrFeMnNi HEAs are to be used in high temperature oxidizing environments, then examining lower levels of Mn, while maintaining Cr levels, should be pursued.

  20. Towards consistent chronology in the early Solar System: high resolution 53Mn-53Cr chronometry for chondrules.

    SciTech Connect

    Yin, Q; Jacobsen, B; Moynier, F; Hutcheon, I D

    2007-05-02

    New high-precision {sup 53}Mn-{sup 53}Cr data obtained for chondrules extracted from a primitive ordinary chondrite, Chainpur (LL3.4), define an initial {sup 53}Mn/{sup 55}Mn ratio of (5.1 {+-} 1.6) x 10{sup -6}. As a result of this downward revision from an earlier higher value of (9.4 {+-} 1.7) x 10{sup -6} for the same meteorite (Nyquist et al. 2001), together with an assessment of recent literature, we show that a consistent chronology with other chronometers such as the {sup 26}Al-{sup 26}Mg and {sup 207}Pb-{sup 206}Pb systems emerges in the early Solar System.

  1. Cr Isotope Variation in the Components of Unequilibrated Chondrite QUE 97008 (L3.05) and Implications for 53Mn-53Cr Dating of Unequilibrated Chondrites

    NASA Astrophysics Data System (ADS)

    Kadlag, Y.; Becker, H.

    2016-08-01

    In this study, we report Cr isotope variation in physically separated components of unequilibrated chondrite QUE 97008. Decoupling of 54Cr and 53Cr and Mn/Cr indicate the presence of at least two types of 54CR depleted and enriched carriers.

  2. Geochemical studies of Fe, Mn, Co, As, Cr, Sb, Zn, Sc and V in surface sediments from Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Wu, Run; Li, Pei-Quan; Miao, Lu-Tian; Zhang, Shu-Xin; Tian, Wei-Zhi

    1994-12-01

    The contents of nearly forty-elements in surface sediments in Jiaozhou Bay were determined using a Neutron Activation Analysis Technique (Grancini, et al., 1976; Li Peiquan et al., 1985, 1986; Li Xiuxia et al., 1986). This paper's detailed discussion on only nine elements (Fe, Mn, Co, Cr, Sc, As, Sb, Zn and V) includes their distributions, concentrations, correlationships, material sources, background, etc. Based on Zavaristski's classification method, Fe, Mn, Co, Cr and V belong to the second group; As and Sb to the eighth groups: Sc and Zn to the third and sixth groups. It was found that their notably good correlationship is mainly due to the similarity of their ionic structures and that their variation is controlled by the Fe content (except Mn). The source of sediments is mainly terristrial material, and the composition of sediment is similar to that of shale and shale+clay. The contents for a large number of elements are within the scope of the background level, but there still is pollution of Zn and Cr, at least in a few stations.

  3. Exchange bias effect in NiMnSb/CrN heterostructures deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sharma Akkera, Harish; Barman, Rahul; Kaur, Navjot; Choudhary, Nitin; Kaur, Davinder

    2013-05-01

    Exchange bias has been studied in various Ni50Mn36.8Sb13.2/CrN heterostructures with different CrN thicknesses (15 nm-80 nm), grown on Si (100) substrate using magnetron sputtering. The shift in hysteresis loop up to 51 Oe from the origin was observed at 10 K for Ni-Mn-Sb film without CrN layer. On the other hand, a significant shifting of hysteresis loop was observed with antiferromagnetic (AFM) CrN layer in Ni50Mn36.8Sb13.2/CrN heterostructure. The exchange coupled 140 nm Ni50Mn36.8Sb13.2/35 nm CrN heterostructure exhibited a relatively large exchange coupling field of 148 Oe at 10 K compared to other films, which may be related to uncompensated and pinned AFM spins at FM-AFM interface and different AFM domain structures for different thicknesses of CrN layer. Further nanoindentation measurements revealed the higher values of hardness and elastic modulus of about 12.7 ± 0.38 GPa and 179.83 ± 1.24 GPa in Ni50Mn36.8Sb13.2/CrN heterostructures making them promising candidate for various multifunctional MEMS devices.

  4. Large enhancement of ferromagnetism by Cr doping in Mn3O4 nanowires

    NASA Astrophysics Data System (ADS)

    Li, GaoMin; Tang, XiaoBing; Lou, ShiYun; Zhou, ShaoMin

    2014-04-01

    The Mn3O4 nanostructures having low temperature Curie point (45 K) disqualify them for most practical applications. In this work, single-crystalline Cr-doped Mn3O4 nanowires with ferromagnetic Curie point at room temperature (305 K) have been investigated. Our experimental results show an increase in effective magnetic moment per gram as Cr3+ replaces Mn3+ and oxygen vacancies, which result in a transition from paramagnetic (Mn3O4) to ferromagnetic. The doped Cr3+ and oxygen vacancies reveal the remarkable ferromagnetic in Mn3-xCrxO4 nanowires may be ascribed to bound magnetic polarons model. Our experimental results suggest these obtained nanowires are promising nanoscale building blocks in spintronic devices.

  5. Ferromagnetism-dependent polytypism: CrAs versus MnAs

    NASA Astrophysics Data System (ADS)

    Benaissa, H.; Zaoui, A.; Ferhat, M.

    2016-12-01

    Density spin-polarized functional theory using pseudopotential plane wave method is used here to explore the structural and magnetic properties of 3C, 4H, 6H and 2H polytypes of transition metal arsenides: CrAs and MnAs. The results reveal that CrAs manifest weak dependence of the lattice parameter a and the c/a ratio versus hexagonality, but for MnAs, the lattice parameters display strong dependence on crystal polytype. Most importantly, our results show that the different crystal 3C, 4H, 6H and 2H polytypes exhibit significant distinct magnetism in CrAs and MnAs. While the total spin moments induced in CrAs is strongly independent of the crystal structure adopted, the ferromagnetism in MnAs is found sensitive to polytypism.

  6. The effect of Mn content on magnetism and half-metallicity of off-stoichiometric Co2MnAl

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Zhou, Ting; Chen, Xiaorui; Yuan, Hongkuan; Chen, Hong

    2015-08-01

    Using the first-principles calculations within density functional theory (DFT), we investigate the influence of Mn content on magnetism and half-metallicity of off-stoichiometric Co2MnAl. From our calculation, the Mn-poor structure most likely results from antisite disorders where Mn atoms are partially substituted by Co (CoMn antisite) or Al (AlMn antisite) due to their lower formation energy than the structure missing Mn atom. Besides, the half-metallicity is immune to AlMn antisite, while the impurity Co atom in CoMn antisite is responsible for the dramatic decrease in spin polarization. Besides, in the Mn-rich structure where excess impurity Mn occupy the Co sites, impurity Mn atom exhibits antiparallel coupling with other magnetic atoms, resulting in ferrimagnetism. With increasing of Mn content, the spin polarization of Mn-rich structure increases from 75% to 100%. When Mn content rises up to α = 1.875, the corresponding compound Co1.125 Mn1.875 Al owns the perfect spin polarization and stable half-metallicity due to the reason that its Fermi level is situated nearly in the middle of the spin down gap. Hence, a large tunneling magnetoresistance (TMR) of magnetic tunnel junctions (MTJs) could be obtained by using Mn-rich Co2MnAl electrode. Furthermore, when Mn content reaches up to α = 2, the compound converts to inverse Heusler compound Mn2CoAl with an unique band structure that the conduction and valence band edges of the spin up electrons touch at the Fermi level, it is therefore classified to be spin gapless semiconductors.

  7. Electronic structure, magnetism and stability of Co2CrX (X =Al, Ga, In) ab initio study

    NASA Astrophysics Data System (ADS)

    Dahmane, F.; Mesri, D.; Tadjer, A.; Khenata, R.; Benalia, S.; Djoudi, L.; Doumi, B.; Boumia, L.; Aourag, H.

    2016-01-01

    The structural, electronic as well as the magnetic properties of the Co2CrX (X =Al, Ga and In) full-Heusler alloy have been studied using first-principles calculations performed in the framework of density functional theory (DFT) within the generalized gradient approximation (GGA). It was taken into account both possible L21 structures (i.e. Hg2CuTi- and Cu2MnAl-type). Basically, for all compounds, the Cu2MnAl-type structure is energetically more stable than Hg2CuTi-type structure at the equilibrium volume. The electronic structure calculations for Co2CrAl reveal that half-metallic (HM) character in Cu2MnAl-type structure, Co2CrGa show nearly HM behavior and Co2CrIn has a metallic character. The predicted total magnetic moment is 3μB for Co2CrX (X =Al, Ga) which is in good convergence with the Slater-Pauling (SP) rule.

  8. Carbonate phobic (Zn,Mn)-Al hydrotalcite-like compounds

    NASA Astrophysics Data System (ADS)

    Sampieri, Alvaro; Fetter, Geolar; Pfeiffer, Heriberto; Bosch, Pedro

    2007-05-01

    The synthesis method of three series of nitrated (Zn,Mn)-Al hydrotalcites in the presence of microwave irradiation is presented. MnO 4- anions were partially incorporated between the layers of those compounds and a staged intercalation occurred. In the presence of CO 2, nitrated and permanganate intercalated hydrotalcites were tested in CO 32- retention. Carbonate phobic character was observed and it may be correlated to the poor basicity of hydrotalcites, thus, to the electronegativity of M 2+ cations.

  9. Hot Corrosion Performance of AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa Coatings Deposited by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Tao, Chong; Wang, Lei; Cheng, Nailiang; Hu, Hengfa; Liu, Yang; Song, Xiu

    2016-04-01

    AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa coatings were deposited on 316L stainless steel substrate using atmospheric plasma spraying, respectively, in order to improve the oxidation and corrosion resistance. The hot corrosion performance of the coatings at 700 and 900 °C were studied, and the detailed microstructures and phase composition of the coatings were analyzed using x-ray diffraction, scanning electron microscope with energy dispersive spectrometer, and transmission electron microscope. The results show that both coatings are structurally featured by slatted layers, consisting of amorphous phase, Cr2O3, Ni3Al, and Al2O3. The hot corrosion resistance of AlO-CrO/NiCoCrAlYTa coating is better than that of AlO/NiCoCrAlYTa coating. This improvement is attributed to lower porosity and more compact Cr2O3 in AlO-CrO/NiCoCrAlYTa coating which performs better than Al2O3 in blocking further inward progress of corrosion and oxidization.

  10. Bulk modulus and specific heat of B-site doped (La{sub 0.3}Pr{sub 0.7}){sub 0.65}Ca{sub 0.35}Mn{sub 1−x}B{sub x}O{sub 3} (B=Fe, Cr, Ru, Al, Ga)

    SciTech Connect

    Srivastava, Archana; Thakur, Rasna; Gaur, N. K.

    2014-04-24

    Specific heat (C{sub p}) thermal expansion (α) and Bulk modulus (B{sub T}) of lightly doped Rare Earth manganites (La{sub 0.3}Pr{sub 0.7}){sub 0.65}Ca{sub 0.35}Mn{sub 1−x}B{sub x}O{sub 3} (B{sup 3+} = Fe{sup 3+},Cr{sup 3+},Ga{sup 3+},Al{sup 3+},Ru4+); (0.3Mn{sub 0.97}Fe{sub 0.03}O{sub 3} as a function of temperature (10K≤T≤ 200K) is found to be in agreement with the published data. The trend of variation of Debye temperature with B-site cationic radius is predicted probably for the first time for the B-site doped rare earth manganites.

  11. Preparation, structural and magnetic characterization of DyCrMnO{sub 5}

    SciTech Connect

    Martinez-Lope, M.J.; Retuerto, M. Garcia-Hernandez, M.; Alonso, J.A.

    2009-03-15

    The title compound has been first synthesized by a citrate technique followed by thermal treatments under moderate oxygen pressure conditions, and characterized by X-ray and neutron powder diffraction (NPD) and magnetization measurements. The crystal structure of DyCrMnO{sub 5} has been refined from NPD data in the space group Pbam; a=7.2617(6) A, b=8.5161(6) A, and c=5.7126(5) A at 295 K. This oxide is isostructural with RMn{sub 2}O{sub 5} oxides (R=rare earths) and it contains infinite chains of (Cr, Mn){sup 4+}O{sub 6} octahedra-sharing edges, linked together by (Mn, Cr){sup 3+}O{sub 5} pyramids and DyO{sub 8} units. The high degree of antisite disordering exhibited by DyCrMnO{sub 5} is noteworthy. The octahedral positions are occupied by roughly 50% of Mn and Cr cations, and the pyramidal groups contain two thirds of Mn and one third of Cr cations. We assume that Mn and Cr cations at the octahedral positions exhibit a tetravalent oxidation state, whereas the metals at the pyramidal positions are trivalent, in order to preserve the electroneutrality of this oxide. The susceptibility vs temperature curve of DyCrMnO{sub 5} does not suggest the establishment of a long-range magnetic structure even at low temperatures; the NPD technique does not provide any signal of magnetic ordering, since the reflections do not show any magnetic contribution. - Graphical abstract: DyCrMnO{sub 5} is isostructural with DyMn{sub 2}O{sub 5}, belonging to the Pbam space group. The crystal structure contains infinite chains of edge-sharing Mn{sup 4+}O{sub 6} octahedra, interconnected by dimer units of Cr{sup 3+}O{sub 5} square pyramids. The low-temperature neutron powder diffraction (NPD) patterns do not show any magnetic contribution, indicating that a full long-range magnetic ordering is not established down to low temperature, although the Dy{sup 3+} magnetic moments are susceptible to be polarized by an external magnetic field at the lowest temperature of 5 K.

  12. Magnetic Properties of Cr-based Ternary Compound CrAlGe

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Soshi; Mitsui, Yoshifuru; Umetsu, Rie Y.; Koyama, Keiichi

    Structural and magnetic properties of Cr-based compound CrAlGe were investigated. The crystal structure was found to be an orthorhombic TiSi2-type with lattice parameters a = 0.4770 nm, b = 0.8254 nm and c = 0.8725 nm at room temperature. Magnetization curve of CrAlGe showed the ferromagnetic behavior. The saturation magnetic moment, spontaneous magnetic moment and Curie temperature of CrAlGe were determined to be 0.45 μB/f.u., 0.41 μB/f.u. and TC = 80 K, respectively. For the temperature T below 30 K, the decrease in the square of the spontaneous magnetization M0(T)2 was proportional to T2. However, for 30 CrAlGe is a weak itinerant electron ferromagnet.

  13. A transition in the magneto-transport in the L10 MnAl thin films

    NASA Astrophysics Data System (ADS)

    Luo, Linqiang; Lu, Jiwei; Dao, Nam; Cui, Yishen; Wolf, Stuart A.

    2015-03-01

    In this talk we will report on L10 MnAl thin films with perpendicular magnetic anisotropy prepared on single crystal MgO substrates by co-sputtering Mn and Al targets. A Cr seeding layer enabled the epitaxial growth of the MnAl films. The magneto-resistance (MR) of these films was measured using a Hall bar structure. When the external magnetic field was applied perpendicular to the thin film surface, a change of the sign of MR was observed as will be discussed below. Above 175K, a negative magnetoresistance was observed with two maxima occuring at the coercivity fields of the MnAl thin films. Below 175K, the MR became positive, and the MR ratio increased with decreasing temperature. The possible mechanisms for the transition in the MR will be discussed in detail in this talk. They include the effects of inhomogeneity, chemical ordering and the underlying domain structure. The authors gratefully acknowledge financial support provided by INSPIRE program.

  14. Microstructure and Magnetic Properties of Bulk Nanocrystalline MnAl

    SciTech Connect

    Chaturvedi, A; Yaqub, R; Baker, I

    2014-01-22

    MnAl is a promising rare-earth free permanent magnet for technological use. We have examined the effects of consolidation by back-pressure, assisted equal channel angular extrusion processing on mechanically-milled, gas-atomized Mn-46% at. Al powder. X-ray diffraction showed both that the extruded rod consisted mostly of metastable tau phase, with some of the equilibrium gamma(2) and beta phases, and that it largely retained the as-milled nanostructure. Magnetic measurements show a coercivity of <= 4.4 kOe and a magnetization at 10 kOe of <= 40 emu/g. In addition, extrusions exhibit greater than 95% of the theoretical density. This study opens a new window in the area of bulk MnAl magnets with improved magnetic properties for technological use.

  15. Visible Light-Induced Electron Transfer From Di-Mu-Oxo-Bridged Dinuclear Mn Complexes to Cr Centers in Silica Nanopores

    SciTech Connect

    Weare, W.W.; Pushkar, Y.; Yachandra, V.K.; Frei, H.

    2009-05-26

    The compound (bpy){sub 2}Mn{sup III}({mu}-O){sub 2}Mn{sup IV}(bpy){sub 2}, a structural model relevant for the photosynthetic water oxidation complex, was coupled to single Cr{sup VI} charge-transfer chromophores in the channels of the nanoporous oxide AlMCM-41. Mn K-edge EXAFS spectroscopy confirmed that the di-{mu}-oxo dinuclear Mn core of the complex is unaffected when loaded into the nanoscale pores. Observation of the 16-line EPR signal characteristic of Mn{sup III}({mu}-O){sub 2}Mn{sup IV} demonstrates that the majority of the loaded complexes retained their nascent oxidation state in the presence or absence of Cr{sup VI} centers. The FT-Raman spectrum upon visible light excitation of the Cr{sup VI}-O{sup II} {yields} Cr{sup V}-O{sup I} ligand-to-metal charge transfer reveals electron transfer from Mn{sup III}({mu}-O){sub 2}Mn{sup IV} (Mn-O stretch at 700 cm{sup -1}) to Cr{sup VI}, resulting in the formation of Cr{sup V} and Mn{sup IV}({mu}-O){sub 2}Mn{sup IV} (Mn-O stretch at 645 cm{sup -1}). All initial and final states are directly observed by FT-Raman or EPR spectroscopy, and the assignments are corroborated by X-ray absorption spectroscopy measurements. The endoergic charge separation products ({Delta}E{sub o} = -0.6 V) remain after several minutes, which points to spatial separation of Cr{sup V} and Mn{sup IV}({mu}-O){sub 2}Mn{sup IV} as a consequence of hole (O{sup I}) hopping as a major contributing mechanism. This is the first observation of visible light-induced oxidation of a potential water oxidation complex by a metal charge-transfer pump in a nanoporous environment. These findings will allow for the assembly and photochemical characterization of well-defined transition metal molecular units, with the ultimate goal of performing endothermic, multielectron transformations that are coupled to visible light electron pumps in nanostructured scaffolds.

  16. Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels: Thermodynamic and Kinetic Aspects

    NASA Astrophysics Data System (ADS)

    Hryha, Eduard; Nyborg, Lars

    2014-04-01

    The main obstacle for utilization of Cr and Mn as alloying elements in powder metallurgy is their high oxygen affinity leading to oxidation risk during powder manufacturing, handling, and especially during further consolidation. Despite the high purity of the commercially available Cr- and Mn-prealloyed iron powder grades, the risk of stable oxide formation during the sintering process remains. Thermodynamic and kinetic simulation of the oxide formation/transformation on the former powder surface during heating and sintering stages using thermodynamic modeling tools (Thermo-Calc and HSC Chemistry) was performed. Simulation is based on the results from the analysis of amount, morphology, and composition of the oxide phases inside the inter-particle necks in the specimens from interrupted sintering trials utilizing advanced analysis tools (HRSEM + EDX and XPS). The effect of the processing parameters, such as sintering atmosphere composition, temperature profile as well as graphite addition on the possible scenarios of oxide reduction/formation/transformation for Fe-Cr-Mn-C powder systems, was evaluated. Results indicate that oxide transformation occurs in accordance with the thermodynamic stability of oxides as follows: Fe2O3 → FeO → Fe2MnO4 → Cr2FeO4 → Cr2O3 → MnCr2O4 → MnO/MnSiO x → SiO2. Spinel MnCr2O4 was identified as the most stable oxide phase at applied sintering conditions up to 1393 K (1120 °C). Controlled conditions during the heating stage minimize the formation of stable oxide products and produce oxide-free sintered parts.

  17. The Mn-53-Cr-53 System in CAIs: An Update

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Wasserburg, G. J.; Bogdanovski, O.

    2005-01-01

    High precision techniques have been developed for the measurement of Cr isotopes on the Triton mass spectrometer, at JPL. It is clear that multiple Faraday cup, simultaneous ion collection may reduce the uncertainty of isotope ratios relative to single Faraday cup ion collection, by the elimination of uncertainties from ion beam instabilities (since ion beam intensities for single cup collection are interpolated in time to calculate isotope ratios), and due to a greatly increased data collection duty cycle, for simultaneous ion collection. Efforts to measure Cr by simultaneous ion collection have not been successful in the past. Determinations on Cr-50-54Cr, by simultaneous ion collection on the Finnigan/ MAT 262 instrument at Caltech, resulted in large variations in extrinsic precision, for normal Cr, of up to 1% in Cr-53/Cr-52 (data corrected for mass fractionation, using Cr-50/Cr-52).

  18. CaMn2Al10: Itinerant Mn magnetism on the verge of magnetic order

    DOE PAGES

    Steinke, L.; Simonson, J. W.; Yin, W. -G.; ...

    2015-07-24

    We report the discovery of CaMn2Al10, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83μB/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010]/χ[001] ≈ 3.5. A strong power-lawmore » divergence χ(T) ~ T–1.2 below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature TC ~ 0. Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.« less

  19. CaMn2Al10 : Itinerant Mn magnetism on the verge of magnetic order

    NASA Astrophysics Data System (ADS)

    Steinke, L.; Simonson, J. W.; Yin, W.-G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.

    2015-07-01

    We report the discovery of CaMn2Al10 , a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83 μB/Mn , significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈9 % of R ln 2 . These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010 ]/χ[001 ]≈3.5 . A strong power-law divergence χ (T ) ˜T-1.2 below 20 K implies incipient ferromagnetic order with a low Curie temperature TC<2 K . Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.

  20. First-principles investigation of the stability of MN and CrMN precipitates under coherency strains in α-Fe (M = V, Nb, Ta)

    NASA Astrophysics Data System (ADS)

    Fors, Dan H. R.; Wahnström, Göran

    2011-06-01

    We perform a systematic ab initio study of the interface energetics of thin coherent rocksalt (nacl) structured MN and tetragonal CrMN films in bcc Fe (M = V, Nb, Ta), motivated by the vital role of MN and CrMN precipitates for the long-term creep resistance in 9%-12%Cr steels. The similarities and differences in the work of separations and the elastic costs for the coherency strains are identified, and the possibility for formation of coherent films are discussed. Our findings provide valuable information of the interface energetics, which in continuation can be combined with thermodynamical modeling to obtain a better understanding of the initial nucleation stage of the MN and CrMN precipitates, and their influence on the long-term microstructural evolution in 9%-12%Cr steels.

  1. TI--CR--AL--O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  2. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    NASA Astrophysics Data System (ADS)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  3. A structural and calorimetric study of the transformations in sputtered Al-Mn and Al-Mn-Si films

    SciTech Connect

    Chen, L.C.; Spaepen, F. ); Robertson, J.L.; Moss, S.C. ); Hiraga, K. )

    1990-09-01

    Scanning and isothermal calorimetry, together with x-ray diffraction and high resolution transmission electron microscopy (TEM), have been used to characterize Al-Mn and Al-Mn-Si films sputtered onto substrates at 60 {degree}C, 45 {degree}C, and {minus}100 {degree}C. In the case of Al{sub 0.83}Mn{sub 0.17}, the monotonically decreasing isothermal calorimetric signal, characteristic of a grain growth process, has proved decisive in identifying the as-sputtered amorphous'' state as microquasicrystalline, with an average grain size of {similar to}20 A in agreement with an estimate of correlation range from the x-ray pattern. The TEM at 400 keV reveals well-defined atomic or lattice images in annealed films but only barely resolved grains (ordered clusters) in the as-sputtered films. The relation between the metallic glass and the microquasicrystalline state in these alloys is discussed.

  4. Magnetic phase transitions in PrMn 2- xCr xGe 2

    NASA Astrophysics Data System (ADS)

    Dincer, I.; Elerman, Y.; Elmali, A.; Ehrenberg, H.; Fuess, H.; Duman, E.; Acet, M.

    2002-07-01

    The structural and magnetic properties of PrMn 2- xCr xGe 2 (0⩽ x⩽1.0) were studied by X-ray diffraction and magnetization measurements. The powder samples crystallize in the ThCr 2Si 2-type structure, and the lattice constants at room temperature show almost no variation as Cr substitutes Mn. The observed phase transitions are summarized in a proposed magnetic x- T phase diagram and compared with previous Moessbauer spectroscopy and neutron diffraction results for x=0.

  5. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  6. LiCaAl/sub 6/:Cr/sup 3+/

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Smith, L.K.; Krupke, W.F. )

    1988-11-01

    The authors report the discovery of a new laser, LiCaAIF/sub 6/:Cr/sup 3/ (Cr/sup 3+/ :LiCAF). The intrinsic (extrapolated maximum) slope efficiency was found to be 67 percent. For comparison, they also measured the intrinsic slope efficiencies of BeAl/sub 2/O/sub 4/:Cr/sup 3+/ (alexandrite), Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, and ScBO/sub 3/:Cr/sup 3+/, and obtained values of 65,28, and 26 percent, respectively. The tuning range of LiCaAIF/sub 6/:Cr/sup 3+/ was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well.

  7. AlMn Transition Edge Sensors for Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Li, Dale; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; Koopman, Brian J.; McMahon, Jeffrey J.; Nati, Federico; Niemack, Michael D.; Pappas, Christine G.; Salatino, Maria; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Van Lanen, Jeff; Ward, Jonathan T.; Wollack, Edward J.

    2016-07-01

    Advanced ACTPol (AdvACT) will use an array of multichroic polarization-sensitive AlMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.

  8. Experimental Study on Dynamic Mechanical Properties of 30CrMnSiNi2A Steel.

    NASA Astrophysics Data System (ADS)

    Huang, Fenglei; Yao, Wei; Wu, Haijun; Zhang, Liansheng

    2009-06-01

    Under dynamic conditions, the strain-rate dependence of material response and high levels of hydrostatic pressure cause the material behavior to be significantly different from what is observed under quasi-static condition. The curves of stress and strain of 30CrMnSiNi2A steel in different strain rates are obtained with SHPB experiments. Metallographic analyses show that 30CrMnSiNi2A steel is sensitive to strain rate, and dynamic compression leads to shear failure with the angle 45^o as the small carbide which precipitates around grain boundary changes the properties of 30CrMnSiNi2A steel. From the SHPB experiments and quasi-static results, the incomplete Johnson-Cook model has been obtained: σ=[1587+382.5(ɛ^p)^0.245][1+0.017ɛ^*], which can offer parameters for theory application and numerical simulation.

  9. Multiferroicity in B-site ordered double perovskite Y2MnCrO6

    NASA Astrophysics Data System (ADS)

    Fang, Yong; Yan, Shi-Ming; Qiao, Wen; Wang, Wei; Wang, Dun-Hui; Du, You-Wei

    2014-11-01

    Double perovskite manganite Y2MnCrO6 ceramic is synthesized and its multiferroic properties are investigated. Novel multiferroic properties are displayed with respect to other multiferroics, such as high ferroelectric phase transition temperature, and the coexistence of ferrimagnetism and ferroelectricity. Moreover, the ferroelectric polarization of Y2MnCrO6 below the magnetic phase temperature can be effectively tuned by an external magnetic field, showing a remarkable magnetoelectric effect. These results open an effective avenue to explore magnetic multiferroics with spontaneous magnetization and ferroelectricity, as well as a high ferroelectric transition temperature.

  10. Microdomain Structure of Cr-Doped Manganites: Nd 1/2Ca 1/2(Mn,Cr)O 3

    NASA Astrophysics Data System (ADS)

    Machida, Akihiko; Moritomo, Yutaka; Nishibori, Eiji; Takata, Masaki; Sakata, Makoto; Ohoyama, Kenji; Mori, Shigeo; Yamamoto, Naoki; Nakamura, Arao

    2000-11-01

    Crystal and magnetic structures of Cr-doped manganites, Nd1/2Ca1/2Mn1-yCryO3 (y=0.00 and 0.03), have been investigated by synchrotron radiation (SR) x-ray powder diffraction as well as neutron powder diffraction measurements.A detailed analysis of the high-resolution x-ray profile has revealed that the Cr-doped compound exhibits broad extra reflections, suggesting the formation of microdomains below the charge-ordering temperature T CO.The origin of the microdomain structure is discussed in terms of the charge separation.

  11. Scrutinizing Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu 1ions for atomic clocks with uncertainties below the 10-19 level

    NASA Astrophysics Data System (ADS)

    Yu, Yan-mei; Sahoo, B. K.

    2016-12-01

    We investigate the transition between the fine structure levels of the ground state, 3 p 2P1 /2→3 p 2P3 /2 , of the highly charged Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu ions for frequency standards. To comprehend them as prospective atomic clocks, we determine their transition wavelengths, quality factors, and various plausible systematics during the measurements. Since most of these ions have nuclear spin I =3 /2 , uncertainties due to dominant quadrupole shifts can be evaded in the F =0 hyperfine level of the 3 p 2P3 /2 state. Other dominant systematics such as quadratic Stark and black-body radiation shifts have been evaluated precisely demonstrating the feasibility of achieving high accuracy, below 10-19 fractional uncertainty, atomic clocks using the above transitions. Moreover, relativistic sensitivity coefficients are determined to find out the aptness of these proposed clocks to investigate possible temporal variation of the fine structure constant. To carry out these analysis, a relativistic coupled-cluster method considering Dirac-Coulomb-Breit Hamiltonian along with lower-order quantum electrodynamics interactions is employed and many spectroscopic properties are evaluated. These properties are also of immense interest for astrophysical studies.

  12. Spark plasma sintering of Mn-Al-C hard magnets.

    PubMed

    Pasko, A; LoBue, M; Fazakas, E; Varga, L K; Mazaleyrat, F

    2014-02-12

    Structural and magnetic characterization of isotropic Mn-Al-C bulk samples obtained by spark plasma sintering (SPS) is reported. This technique, to the best of our knowledge, has not been used for preparation of Mn-Al-based permanent magnets previously. Transformation from the parent -phase to the ferromagnetic τ-phase occurred on heating in the process of sintering. The phase constitution of the melt-spun precursors and consolidated samples was determined by x-ray diffraction. Magnetic hysteresis loops were recorded using a vibrating sample magnetometer. The compositional dependence of the coercivity, magnetization and density of the sintered materials is analysed. To combine good magnetic properties with proper densification, further optimization of the production parameters is necessary.

  13. Towards a Superplastic Forming of Fe-Mn-Al Alloys

    SciTech Connect

    Guanabara, Paulo Jr.; Bueno, Levi de O.; Ferreira Batalha, Gilmar

    2011-01-17

    The aim is to study the characteristics of superplasticity, mostly on non qualified materials, such as austenitic steel of the Fe-Mn-Al alloy, which has some of the specific material parameters closely related to microstructural mechanisms. These parameters are used as indicators of material superplastic potentiality. The material was submitted to hot tensile testing, within a temperature range from 600 deg. C to 1000 deg. C and strain-rates varying from 10{sup -6} to 1 s{sup -1}. The strain rate sensitivity parameter (m) and observed maximum elongation until rupture ({epsilon}{sub r}) could be determined and also obtained from the hot tensile test. The experiments stated a possibility of superplastic behaviour in a Fe-Mn-Al alloy within a temperature range from 700 deg. C to 900 deg. C with grain size around 3 {mu}m (ASTM grain size 12) and average strain rate sensitivity of m {approx} 0.54, as well as a maximum elongation at rupture around 600%. The results are based on a more enhanced research from the authors; however, this paper has focused just on the hot tensile test, as further creep tests results are not available herein. There are rare examples of superplasticity study of an austenitic steel Fe-Mn-Al alloy, thus this work showed some possibility of exploring the potential use of such materials in this regime at temperatures {>=}700 deg. C.

  14. AlMn Transition Edge Sensors for Advanced ACTPol

    NASA Technical Reports Server (NTRS)

    Li, Dale; Austermann, Jason E.; Beall, James A.; Tucker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; Koopman, Brian J.; McMahon, Jeffrey J.; Nati, Federico; Niemack, Michael D.; Pappas, Christine G.; Salatino, Maria; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Van Lanen, Jeff; Ward, Jonathan T.; Wollack, Edward J.

    2016-01-01

    Advanced ACTPol (Adv ACT) will use an array of multichroic polarization sensitive AIMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.

  15. {sup 53}Mn-{sup 53}Cr CHRONOMETRY OF CB CHONDRITE: EVIDENCE FOR UNIFORM DISTRIBUTION OF {sup 53}Mn IN THE EARLY SOLAR SYSTEM

    SciTech Connect

    Yamashita, Katsuyuki; Yamakawa, Akane; Nakamura, Eizo; Maruyama, Seiji

    2010-11-01

    High-precision Cr isotope ratios for chondrules and metal grain separated from CB chondrite Gujba were determined. The {epsilon}{sup 54}Cr values ({epsilon}{sup i}Cr = [({sup i}Cr/{sup 52}Cr){sub sample}/({sup i}Cr/{sup 52}Cr){sub standard} - 1] x 10{sup 4}) for all samples were identical within the analytical uncertainty, with a mean value of +1.29 {+-} 0.02. Uniform {epsilon}{sup 54}Cr signatures of both chondrules and metal grains imply that the Cr isotope systematics of the meteorite was once completely equilibrated. The {epsilon}{sup 53}Cr values of the chondrules and metal grain, on the other hand, display a strong correlation with the {sup 55}Mn/{sup 52}Cr ratio. The {sup 53}Mn/{sup 55}Mn calculated from the slope of the isochron is (3.18 {+-} 0.52) x 10{sup -6}. This corresponds to absolute ages of 4563.7 {+-} 1.2 Ma and 4563.5 {+-} 1.1 Ma using angrites D'Orbigny and LEW 86010, respectively, as time anchors. These ages are consistent with the ages obtained using other short- and long-lived radio nuclides, supporting the uniform distribution of {sup 53}Mn in the early solar nebula.

  16. Atomic decoration of a random-cluster model for icosahedral-phase AlMnSi

    SciTech Connect

    Robertson, J.L.; Moss, S.C. )

    1991-01-21

    Preliminary results on the atomic decoration of a random-cluster model for icosahedral-phase alloys are presented. The calculated neutron and x-ray intensities compare quite favorably with experimental intensity data on {ital i}-AlMnSi. The origin of the peak at {ital Q}=1.62 A{sup {minus}1}, associated with the prepeak found in amorphous'' AlMnSi, as well as the ubiquitous diffuse'' scattering, seen experimentally under the groups of strong peaks in all icosahedral-phase alloys, are revealed selectively in the calculated partial intensities for Al-Al, Al-Mn, and Mn-Mn correlations.

  17. Synthesis, characterization and electrochemical performance of Al-substituted Li₂MnO₃

    DOE PAGES

    Dhital, Chetan; Huq, Ashfia; Paranthaman, Mariappan Parans; ...

    2015-08-08

    Li2MnO3 is known to be electrochemically inactive due to Mn in tetravalent oxidation state. Several compositions such as Li2MnO3 , Li1.5Al0.17MnO3, Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 were synthesized by a sol–gel Pechini method. All the samples were characterized with x-ray diffraction, Raman, x-ray photoelectron spectroscopy, scanning electron microscopy, Tap density and BET analyzer. X-ray diffraction patterns indicated the presence of monoclinic phase for pristine Li2MnO3and mixed monoclinic/spinel phases (Li2 - xMn1 - yAlx + yO3 + z) for Al-substituted Li2MnO3compounds. The Al substitution seems to occur both at Li and Mn sites, which could explain the presence of spinel phase. X-ray photoelectronmore » spectroscopy for Mn 2p orbital reveals a significant decrease in binding energy for Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 compounds. Cyclic voltammetry, charge/discharge cycles and electrochemical impedance spectroscopy were also performed. A discharge capacity of 24 mAh g-1 for Li2MnO3, 68 mAh g-1 for Li1.5Al0.17MnO3, 58 mAh g-1 for Li1.0Al0.33MnO3 and 74 mAh g-1 for Li0.5Al0.5MnO3 were obtained. As a result, aluminum substitutions increased the formation of spinel phase which is responsible for cycling.« less

  18. Electrical properties of perovskite-type La(Cr 1- xMn x)O 3+ δ

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideki; Matsu-ura, Shin-ichiro; Nagao, Mahiko; Kido, Hiroyasu

    1999-10-01

    Perovskite-type La(Cr 1- xMn x)O 3+ δ (0.0⩽ x⩽1.0) was synthesized using a sol-gel process. The crystal structure of La(Cr 1- xMn x)O 3+ δ changes from orthorhombic to rhombohedral at x=0.6. The Mn 4+ ion content increases monotonically in the range 0.2⩽ x⩽1.0. The magnetic measurement of La(Cr 1- xMn x)O 3+ δ indicates that a Mn 3+ ion is a high-spin state with (d ε) 3(d γ) 1. The variation of the average (Cr, Mn)-O distance is explained by ionic radii of the Cr 3+, the Mn 3+, the Mn 4+ ions. Since the log σT-1/ T curve is linear and the Seebeck coefficient ( α) is independent of temperature, it is considered that La(Cr 1- xMn x)O 3+ δ is a p-type semiconductor and exhibits the hopping conductivity.

  19. Naturally Occurring Cr and Ni in the Sacramento Valley: II. Mn Oxides and the Mobility of Cr(VI) and Ni

    NASA Astrophysics Data System (ADS)

    Mills, C. T.; Morrison, J. M.; Goldhaber, M. B.; Foster, A. L.; Wolf, R. E.; Wanty, R. B.

    2007-12-01

    Soil manganese oxides can strongly affect the mobility and redox state of several toxic trace metals. We are studying the biogeochemical origin of Mn oxides and their association with Cr and Ni in soils of the Sacramento Valley, California. Both Cr and Ni are likely derived from ultramafic rocks that underlie Coast Range drainages to the west of the study area. The impact of weathering and erosion of these rocks is evident in the high levels of total Cr (80 to 1420 μg g-1) and nickel (65 to 224 μg g-1) that occur broadly in western Sacramento Valley soils. Although much of the Cr is bound in refractory spinels as Cr(III), some mobilization of Cr is apparent in the coincidence of enriched soils with high contents of Cr(VI) in ground water. Data from the National Water Information System (NWIS) shows 7 of 12 sampled wells within a 600 km2 area in the Sacramento Valley having Cr(VI) concentrations between 60 and 100% of the CA maximum contaminant level for drinking water (50 μg l-1). A 3-meter depth soil profile collected within the lower Putah Creek watershed was examined to investigate processes contributing to the oxidation and mobilization of natural Cr(III). Hydroxylamine hydrochloride-reducible Mn was determined for 8 depth intervals as a measure of manganese oxide occurrence. Concentrations of reducible Mn varied between 360 and 690 μg g-1 with depth and peaked at 2.7 m below the surface. Concentrations of anion exchangeable Cr(VI) were as high as 6 ng g-1 and were positively correlated (r2=0.59; p=0.07) with reducible Mn. Scanning electron microscopy of soil minerals from the 2.9 to 3.0 m interval showed Cr-bearing spinel grains enclosed within Mn oxide micro concretions suggesting a potential mechanism for the oxidation of natural Cr(III) to mobile Cr(VI). Consistent with the known tendency of Ni to sorb on Mn oxides, substantial Ni (13 to 45 μg g-1) was released in the reducible Mn fraction and it strongly correlates (r2=0.76; p=0.005) with reducible Mn

  20. Room temperature magnetocaloric effect in Ni-Mn-In-Cr ferromagnetic shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Akkera, Harish Sharma; Singh, Inderdeep; Kaur, Davinder

    2017-02-01

    The influence of Cr substitution for In on the martensitic phase transformation and magnetocaloric effect (MCE) has been investigated in Ni-Mn-Cr-In ferromagnetic shape memory alloy (FSMA) thin films fabricated by magnetron sputtering. Temperature dependent magnetization (M-T) measurements demonstrated that the martensitic transformation temperatures (TM) monotonously increase with the increase of Cr content due to change in valence electron concentration (e/a) and cell volume. From the study of isothermal magnetization curves (M-H), magnetocaloric effect around the martensitic transformation has been investigated in these FSMA thin films. The magnetic entropy change ∆SM of 7.0 mJ/cm3-K was observed in Ni51.1Mn34.9In9.5Cr4.5 film at 302 K in an applied field of 2 T. Further, the refrigerant capacity (RC) was also calculated for all the films in an applied field of 2 T. These findings indicate that the Cr doped Ni-Mn-In FSMA thin films are potential candidates for room temperature micro-length-scale magnetic refrigeration applications.

  1. Mn-Cr relative sensitivity factor in ferromagnesian olivines defined for SIMS measurements with a Cameca ims-1280 ion microprobe: Implications for dating secondary fayalite

    NASA Astrophysics Data System (ADS)

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2016-02-01

    systematics of chondritic fayalite (Fa>90) should be determined using standards of similar composition that are measured under the same analytical conditions as the ;unknown;. The 53Mn-53Cr ages of secondary fayalites (Fa90-100) in the Elephant Moraine (EET) 90161 (L3.05), Vicencia (LL3.2), Asuka 881317 (CV3) and MacAlpine Hills (MAC) 88107 (C3) chondrites (2.4-1.3+1.8 , 4.0-1.1+1.4 , 4.2-0.7+0.8 and 5.1-0.4+0.5 Myrs after CV CAIs, respectively) are ∼3 Myr older when using an RSF measured on a matrix-matched (Fa99) standard, rather than on a San Carlos olivine. The inferred 53Mn-53Cr ages of fayalite formation are consistent with the ages reported for calcites in CM chondrites measured with similarly matrix-matched standards, suggesting an early onset of aqueous alteration on the ordinary and carbonaceous chondrite parent bodies heated by decay of 26Al.

  2. Simulation Study of Al-1Mn/Al-10Si Circular Clad Ingots Prepared by Direct Chill Casting

    NASA Astrophysics Data System (ADS)

    Wu, Li; Kang, Huijun; Chen, Zongning; Fu, Ying; Wang, Tongmin

    2016-02-01

    A modified direct chill casting process based on Novelis FusionTM Technology co-casting process was used recently to prepare Al-1Mn/Al-10Si circular clad ingots. In the current study, a comprehensive simulation model was developed to investigate the direct chill casting process for preparing the Al-1Mn/Al-10Si circular clad ingots, and a parametric study and experimental research of the direct chill casting process was conducted to explore potential success and failure casting conditions. The simulation results revealed the bonding mechanism of the Al-1Mn/Al-10Si interface in the direct chill casting process and identified the effect of certain parameters on casting performance. The results indicated that the effect of casting speed and Al-1Mn casting temperature on the variations of the minimum solid fraction of Al-1Mn at the interface is stronger than that of cooling water flow rate in inner mold, while Al-10Si casting temperature is the weakest of the four casting parameters. The corresponding experimental results verified that Al-1Mn/Al-10Si circular clad ingot with acceptable metallurgical bonding can be successfully prepared by direct chill casting process under the proper casting parameters. The thickness of diffusion zone is about 40 μm, and the fractured position in tensile test was located in the Al-1Mn alloy side which indicated the strength of the interfacial region is higher than that of Al-1Mn alloy.

  3. Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating

    NASA Astrophysics Data System (ADS)

    Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong

    2017-03-01

    The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating < the stainless steel with Al-Si coating < the stainless steel without any coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.

  4. Growth and characterization of (In,Ga,Mn)As and (In,Al,Mn)As epilayers and heterostructures

    NASA Astrophysics Data System (ADS)

    Maksimov, O.; Sheu, B. L.; Schiffer, P.; Samarth, N.

    2004-03-01

    Lattice-matched III-Mn-V semiconductors on InP (001) substrates provide an attractive route toward the design of more magnetically concentrated ferromagnetic semiconductor alloys [1]. Here, we report the low temperature molecular beam epitaxy of (In_0.5Ga_0.5)_1-xMn_xAs and (In_0.5Al_0.5)_1-xMn_xAs epilayers, heterostructures and superlattices. Electron and x-ray diffraction studies show that the samples have structural quality similar to that of the more extensively studied (In,Mn)As and (Ga,Mn)As ferromagnetic semiconductors. Electron probe microanalysis measurements indicate that up to ˜ 11 % of Mn can be incorporated in the alloys. Magnetization measurements with a superconducting quantum interference device show that (In_0.5Ga_0.5)_0.89Mn_0.11As and (In_0.5Al_0.5)_0.89Mn_0.11As epilayers have a Curie temperature (T_C) ranging up to 95 K and 25 K, respectively. The consistently lower values of TC in (In_0.5Al_0.5)_1-xMn_xAs compared to (In_0.5Ga_0.5)_1-xMn_xAs are attributed to a reduced hole density caused by an enhanced acceptor activation energy. Work supported by grants from DARPA, ONR and NSF. 1. S. Ohya, H. Kobayashi, M. Tanaka, Appl. Phys. Lett. 83, 2175 (2003).

  5. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  6. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids have been observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. It was postulated that the voids resulted from an excess number of oxygen vacancies near the oxide-metal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidations of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al,Cr)2O3 and Ni(Al,Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationships between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  7. XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4

    NASA Astrophysics Data System (ADS)

    Grosvenor, A. P.; Bellhouse, E. M.; Korinek, A.; Bugnet, M.; McDermid, J. R.

    2016-08-01

    X-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are strong candidate techniques for characterizing steel surfaces and substrate-coating interfaces when investigating the selective oxidation and reactive wetting of advanced high strength steels (AHSS) during the continuous galvanizing process. However, unambiguous identification of ternary oxides such as Mn2SiO4, MnSiO3, and MnAl2O4 by XPS or EELS, which can play a significant role in substrate reactive wetting, is difficult due to the lack of fully characterized standards in the literature. To resolve this issue, samples of Mn2SiO4, MnSiO3 and MnAl2O4 were synthesized and characterized by XPS and EELS. The unique features of the XPS and EELS spectra for the Mn2SiO4, MnSiO3 and MnAl2O4 standards were successfully derived, thereby allowing investigators to fully differentiate and identify these oxides at the surface and subsurface of Mn, Si and Al alloyed AHSS using these techniques.

  8. Redox Dynamics of Mixed Metal (Mn, Cr, and Fe) Ultrafine Particles

    SciTech Connect

    Nico, Peter S.; Kumfer, Benjamin M.; Kennedy, Ian M.; Anastasio, Cort

    2008-08-01

    The impact of particle composition on metal oxidation state, and on changes in oxidation state with simulated atmospheric aging, are investigated experimentally in flame-generated nanoparticles containing Mn, Cr, and Fe. The results demonstrate that the initial fraction of Cr(VI) within the particles decreases with increasing total metal concentration in the flame. In contrast, the initial Mn oxidation state was only partly controlled by metal loading, suggesting the importance of other factors. Two reaction pathways, one reductive and one oxidative, were found to be operating simultaneously during simulated atmospheric aging. The oxidative pathway depended upon the presence of simulated sunlight and O{sub 3}, whereas the reductive pathway occurred in the presence of simulated sunlight alone. The reductive pathway appears to be rapid but transient, allowing the oxidative pathway to dominate with longer aging times, i.e. greater than {approx}8 hours. The presence of Mn within the particles enhanced the importance of the oxidative pathway, leading to more net Cr oxidation during aging implying that Mn can mediate oxidation by removal of electrons from other particulate metals.

  9. Redox Dynamics of Mixed Metal (Mn, Cr, and Fe) Ultrafine Particles

    PubMed Central

    Nico, Peter S.; Kumfer, Benjamin M.; Kennedy, Ian M.; Anastasio, Cort

    2008-01-01

    The impact of particle composition on metal oxidation state, and on changes in oxidation state with simulated atmospheric aging, are investigated experimentally in flame-generated nanoparticles containing Mn, Cr, and Fe. The results demonstrate that the initial fraction of Cr(VI) within the particles decreases with increasing total metal concentration in the flame. In contrast, the initial Mn oxidation state was only partly controlled by metal loading, suggesting the importance of other factors. Two reaction pathways, one reductive and one oxidative, were found to be operating simultaneously during simulated atmospheric aging. The oxidative pathway depended upon the presence of simulated sunlight and O3, whereas the reductive pathway occurred in the presence of simulated sunlight alone. The reductive pathway appears to be rapid but transient, allowing the oxidative pathway to dominate with longer aging times, i.e. greater than ∼8 hours. The presence of Mn within the particles enhanced the importance of the oxidative pathway, leading to more net Cr oxidation during aging implying that Mn can mediate oxidation by removal of electrons from other particulate metals. PMID:20046215

  10. Spin dependent transport properties of Mn-Ga/MgO/Mn-Ga magnetic tunnel junctions with metal(Mg, Co, Cr) insertion layer

    SciTech Connect

    Liang, S. H.; Tao, L. L.; Liu, D. P. Han, X. F.; Lu, Y.

    2014-04-07

    We report a first principles theoretical investigation of spin polarized quantum transport in Mn{sub 2}Ga/MgO/Mn{sub 2}Ga and Mn{sub 3}Ga/MgO/Mn{sub 3}Ga magnetic tunneling junctions (MTJs) with the consideration of metal(Mg, Co, Cr) insertion layer effect. By changing the concentration of Mn, our calculation shows a considerable disparity in transport properties: A tunneling magnetoresistance (TMR) ratio of 852% was obtained for Mn{sub 2}Ga-based MTJs, however, only a 5% TMR ratio for Mn{sub 3}Ga-based MTJs. In addition, the influence of insertion layer has been considered in our calculation. We found the Co insertion layer can increase the TMR of Mn{sub 2}Ga-based MTJ to 904%; however, the Cr insertion layer can decrease the TMR by 668%; A negative TMR ratio can be obtained with Mg insertion layer. Our work gives a comprehensive understanding of the influence of different insertion layer in Mn-Ga based MTJs. It is proved that, due to the transmission can be modulated by the interfacial electronic structure of insertion, the magnetoresistance ratio of Mn{sub 2}Ga/MgO/Mn{sub 2}Ga MTJ can be improved by inserting Co layer.

  11. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys

    SciTech Connect

    Wang, Zhangwei; Baker, Ian; Cai, Zhonghou; Chen, Si; Poplawsky, Jonathan D.; Guo, Wei

    2016-09-01

    A systematic study of the effects of up to 1.1 at. % carbon on the mechanical properties and evolution of the dislocation substructure in a series of a high entropy alloys (HEA) based on Fe40.4Ni11.3Mn34.8Al7.5Cr6 is presented. Transmission electron microscopy (TEM), synchrotron X-ray diffraction (XRD) and atom probe tomography (APT) were used to show that all the alloys are single-phase f.c.c. random solid solutions. The lattice constant, determined from synchrotron XRD measurements, increases linearly with increasing carbon concentration, which leads to a linear relationship between the yield strength and the carbon concentration. The dislocation substructures, as determined by a TEM, show a transition from wavy slip to planar slip and, at higher strains, and from cell-forming structure (dislocations cells, cell blocks and dense dislocation walls) to non-cell forming structure (Taylor lattice, microbands and domain boundaries) with the addition of carbon, features related to the increase in lattice friction stress. The stacking fault energy (measured via weak-beam imaging of the separation of dislocation partials) decreases with increasing carbon content, which also contributes to the transition from wavy slip to planar slip. The formation of non-cell forming structure induced by carbon leads to a high degree of strain hardening and a substantial increase in the ultimate tensile strength. In conclusion, the consequent postponement of necking due to the high strain hardening, along with the plasticity accommodation arising from the formation of microbands and domain boundaries, result in an increase of ductility due to the carbon addition.

  12. Lattice dynamics of Ni-Mn-Al Heusler alloys

    SciTech Connect

    Moya, Xavier; Manosa, Lluis; Planes, A.; Krenke, T.; Acet, Mehmet; Wassermann, E. F.; Morin, M.; Garlea, Vasile O; Lograsso, Tom; Zarestky, Jerel L.

    2008-01-01

    We have studied the lattice dynamics of a Ni54Mn23Al23 (at.%) Heusler single-crystalline alloy by means of neutron scattering and ultrasonic techniques. Results show the existence of a number of precursor phenomena. We have found an anomaly (dip) in the low TA2 phonon branch at the wave number 0.33 (in reciprocal lattice units) that becomes more pronounced (phonon softening) with decreasing temperature. We have also observed softening of the associated shear elastic constant (C ) with decreasing temperature. Ultrasonic measurements under applied magnetic field, both isothermally and varying the temperature show that the values of elastic constants depend on magnetic order thus evidencing magnetoelastic coupling.

  13. Morphological evolution and strengthening behavior of α-Al(Fe,Mn)Si in Al-6Si-2Fe-xMn alloys

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Hu, Kaiqi; Wang, Longshuai; Zhang, Bangran; Liu, Xiangfa

    β-Al5FeSi is preferred to form in Al-Si-Fe alloys, normally exhibiting needlelike, which is harmful for the mechanical properties. In this paper, with the addition of 1%, 1.5% and 3% Mn into an Al-6Si-2Fe alloy, β-Al5FeSi phase was found to transform to skeleton, flower-like and coarse dendritic α-Al(Fe,Mn)Si, respectively. The novel flower-like α-Al(Fe,Mn)Si crystals contain developed branches with the average diameter of ∼200 nm, performing strengthening effect on the tensile property. Detailed morphologies of α-Al(Fe,Mn)Si phase and the formation mechanism were discussed.

  14. Reversing ferroelectric polarization in multiferroic DyMn{sub 2}O{sub 5} by nonmagnetic Al substitution of Mn

    SciTech Connect

    Zhao, Z. Y.; Liu, M. F.; Li, X.; Wang, J. X.; Yan, Z. B.; Wang, K. F.; Liu, J.-M.

    2014-08-07

    The multiferroic RMn{sub 2}O{sub 5} family, where R is rare-earth ion or Y, exhibits rich physics of multiferroicity which has not yet well understood. DyMn{sub 2}O{sub 5} is a representative member of this family. The ferroelectric polarization of DyMn{sub 2}O{sub 5} is claimed to be magnetically relevant and have more than one component. Therefore, the polarization reversal upon the sequent magnetic transitions is expected. We investigate the evolution of the ferroelectric polarization upon a partial substitution of Mn{sup 3+} by nonmagnetic Al{sup 3+} in order to tailor the Mn{sup 3+}-Mn{sup 4+} interactions and then to modulate the polarization in DyMn{sub 2−x/2}Al{sub x/2}O{sub 5}. It is revealed that the polarization can be successfully reversed by Al-substitution via substantially suppressing the Mn{sup 3+}-Mn{sup 4+} interactions, while the Dy{sup 3+}-Mn{sup 4+} interactions can sustain against the substitution until a level as high as x = 0.2. In addition, the independent Dy spin ordering is shifted remarkably down to an extremely low temperature due to the Al{sup 3+} substitution. The present work unveils the possibility of tailoring the Mn{sup 3+}-Mn{sup 4+} and Dy{sup 3+}-Mn{sup 4+} interactions independently, and thus reversing the ferroelectric polarization.

  15. Phase Separation kinetics in an Fe-Cr-Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Chao, J.

    2012-01-01

    The {alpha}-{alpha}{prime} phase separation kinetics in a commercial Fe-20 wt.% Cr-6 wt.% Al oxide dispersion-strengthened PM 2000{trademark} steel have been characterized with the complementary techniques atom probe tomography and thermoelectric power measurements during isothermal aging at 673, 708, and 748 K for times up to 3600 h. A progressive decrease in the Al content of the Cr-rich {alpha}{prime} phase was observed at 708 and 748 K with increasing time, but no partitioning was observed at 673 K. The variation in the volume fraction of the {alpha}{prime} phase well inside the coarsening regime, along with the Avrami exponent 1.2 and activation energy 264 kJ mol{sup -1}, obtained after fitting the experimental results to an Austin-Rickett type equation, indicates that phase separation in PM 2000{trademark} is a transient coarsening process with overlapping nucleation, growth, and coarsening stages.

  16. Hot corrosion of CoCrAlY alloys

    SciTech Connect

    Hwang, S.Y.

    1989-01-01

    The kinetics and mechanisms of the hot corrosion of CoCrAlY alloys over wide ranges of temperature (600-1000{degree}C) and Pso{sub 3} (10{sup {minus}6}-10{sup {minus}3} atm) were studied. Isothermal and cyclic experiments were performed to study the kinetics, and microstructures were examined by scanning electron microscopy. After interpreting these results, the hot corrosion mechanisms of the CoCrAlY alloys were proposed to explain the observed behavior. The reaction mechanism governing hot corrosion is thought to be as follows. At low temperature (600-800{degree}C), SO{sub 3} and CoO react and form a molten Na{sub 2}SO{sub 4}-CoSO{sub 4} salt mixture. Aluminum diffuses through the alloy, is oxidized, and the alumina which is formed becomes subject to basic fluxing. While alumina is subject to the Rapp-Goto mechanism, chromia may not be subject to this mechanism. Since Co is left behind in the alloy, the basic fluxing of alumina seems to be the cause for formation of nonprotective scales. Sulfides can form during low temperature hot corrosion and considerable sulfide formation is observed at 900-850{degree}C, but the sulfidation process is less likely to be the major cause of LTHC. Also, the sulfite formation mechanism is evaluated, and the activity of aluminum sulfite is found to be too low for this compound to exist. At high temperature (900-1000{degree}C), the CoCrAlY alloy was in the initiation stage due to the formation of protective alumina during isothermal tests. The mode of degradation of the CoCrAlY alloy at 1000{degree}C in pure oxygen during the cyclic tests was basic fluxing of alumina and chromia accompanied by spalling and cracking of oxides.

  17. Magnetic properties of EuCr2Al20

    NASA Astrophysics Data System (ADS)

    Swatek, Przemysław; Kaczorowski, Dariusz

    2016-10-01

    Polycrystalline sample of EuCr2Al20 was studied by means of x-ray powder diffraction, magnetization, electrical resistivity and heat capacity measurements. The compound was found to order antiferromagnetically at TN = 4.8 K due to the magnetic moments carried on divalent of Eu ions. The experimental findings are supported by the results of ab-initio band structure calculations.

  18. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  19. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams

    SciTech Connect

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; Liu, Stephen

    2016-11-02

    In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Creq/Nieq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Creq/Nieq (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Creq/Nieq. Primary ferrite solidification was observed above 1.75 Creq/Nieq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).

  20. Two-Phase (TiAl+TiCrAl) Coating Alloys for Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialek, James L. (Inventor); Brindley, William J. (Inventor)

    1998-01-01

    A coating for protecting titanium aluminide alloys, including the TiAl gamma + Ti3Al (alpha(sub 2)) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C. is disclosed. This protective coating consists essentially of titanium, aluminum. and chromium in the following approximate atomic ratio: Ti(41.5-34.5)Al(49-53)Cr(9.5-12.5)

  1. Galvanomagnetic properties of Heusler alloy Co2 YAl ( Y = Ti, V, Cr, Mn, Fe, and Ni)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Perevozchikova, Yu. A.; Weber, H. W.

    2017-01-01

    The Hall effect and the magnetoresistance of ferromagnetic Heusler alloys Co2 YAl, where Y = Ti, V, Cr, Mn, Fe, and Ni have been studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. Normal R 0 and anomalous R S Hall coefficients are shown to be maximal in magnitudes in the middle of the 3 d period of the periodic table of elements. Coefficient R 0 changes the negative sign to positive sign in going from weak ( Y = Ti, V) to strong ( Y = Cr, Mn, Fe, and Ni) ferromagnetic alloys. Constant R S is positive and proportional to ρ2.9 in all the alloys. The magnetoresistance of the alloys is not higher than several percent and its magnitude is changed fairly significantly in the dependence on the number of valence electrons z; the magnetoresistance signs vary arbitrarily.

  2. Structure and wear behavior of AlCrSiN-based coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Du, Hao; Chen, Ming; Yang, Jun; Xiong, Ji; Zhao, Haibo

    2016-05-01

    AlCrN, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings have been deposited on high-polished WC-Co cemented carbide substrate and tools by mid-frequency magnetron sputtering in Ar/N2 mixtures. Al0.6Cr0.4, Al0.6Cr0.3Si0.1, and C/Mo/Nb targets were used during the deposition. The microstructure and mechanical properties of as-deposited coatings were investigated. Investigations of the wear behaviors of coated tools were also performed. The results showed that cubic structure was formed in the coatings. Broader CrAlN (1 1 1) and (2 0 0) peaks without SiNx peak were formed in the AlCrSiN/MexN coatings, which showed a nanocomposited structure. Meanwhile, according to SEM micrographs, AlCrN exhibited a columnar structure, while, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings showed nanocrystalline morphology. The nano-multilayered coatings performed higher hardness, H/E, and H3/E2 ratios compared with AlCrN coating. Through the Rockwell adhesion test, all the coatings exhibited adhesion strength quality HF1. After turning Inconel 718 under dry condition, the nano-multilyered coatings showed better wear resistance than AlCrN coating. Due to the molybdenum and niobium in the coating, AlCrSiN/MoN and AlCrSiN/NbN coatings showed the best wear resistance.

  3. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    NASA Astrophysics Data System (ADS)

    Ye, Qingfeng; Feng, Kai; Li, Zhuguo; Lu, Fenggui; Li, Ruifeng; Huang, Jian; Wu, Yixiong

    2017-02-01

    Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower icorr than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted Rt value reaches its maximum at 24 h during a 48 h' immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H2SO4 reveals that corrosion starts from Cr-depleted interdendrites.

  4. Numerical analysis of rheological and tribological behavior influence on 16MnCr5 forging fibering

    NASA Astrophysics Data System (ADS)

    Gavrus, A.; Pintilie, D.; Nedelcu, R.

    2016-10-01

    The present research work is focus on the influence of the rheological constitutive equation and friction law formulation on 16MnCr5 forging fibering. Numerical analysis using FE Forge® and Abaqus code show the importance of the rheological softening terms on the metals fibers morphology and position coordinate. Calibration of friction law and sensitivity of softening parameters corresponding to a Hansel-Spittel rheological equation have been studied.

  5. Al/sub 2/O/sub 3/ adherence on CoCrAl alloys

    SciTech Connect

    Kingsley, L.M.

    1980-04-01

    Adherence of protective oxides on NiCrAl and CoCrAl superalloys has been promoted by a dispersion of a highly oxygen reactive element or its oxide being produced within the protection system. Two aspects of this subject are investigated here: the use of Al/sub 2/O/sub 3/ as both the dispersion and protective oxide; and the production of an HfO/sub 2/ dispersion while simultaneously aluminizing the alloy. It was found that an Al/sub 2/O/sub 3/ dispersion will act to promote the adherence of an external scale of Al/sub 2/O/sub 3/ to a degree comparable to previously tested dispersions and an HfO/sub 2/ dispersion comparable to that produced by a Rhines pack treatment is produced during aluminization.

  6. Compressive deformation behavior of CrMnFeCoNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Jang, Min Ji; Joo, Soo-Hyun; Tsai, Che-Wei; Yeh, Jien-Wei; Kim, Hyoung Seop

    2016-11-01

    The compressive deformation behavior of a single phase CrMnFeCoNi high-entropy alloy (HEA) is investigated using experimental and theoretical approaches. The equiaxed microstructures are observed using optical microscope, electron backscattered diffraction, and synchrotron X-ray diffraction (XRD) techniques. Compressive results reveal that the CrMnFeCoNi HEA has a high strain-hardening exponent in spite of its large grain size due to increased dislocation density and severe lattice distortion. The compressive texture of the HEA resembles those of typical FCC metals. The phenomenological dislocation-based constitutive model well describes the compressive deformation behavior. The predicted dislocation density is in good quantitative agreement with the experimental value measured using whole-profile fitting of synchrotron XRD peaks. It can be confirmed from the experimental and theoretical findings that the deformation mechanism of the CrMnFeCoNi HEA is the conventional dislocation glide and mechanical twinning is negligible contrary to general belief.

  7. Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Fu, Ao; Huang, Xiaoxia; Liu, Bin; Liu, Yong; Li, Zezhou; Zan, Xiang

    2016-07-01

    The equiatomic CoCrFeMnNi high entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was prepared by the spark plasma sintering technique. Dynamic compressive tests of the CoCrFeMnNi high entropy alloy were deformed at varying strain rates ranging from 1 × 103 to 3 × 103 s-1 using a split-Hopkinson pressure bar (SHPB) system. The dynamic yield strength of the CoCrFeMnNi high entropy alloy increases with increasing strain rate. The Zerilli-Armstrong (Z-A) plastic model was applied to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained. Serration behavior during plastic deformation was observed in the stress-strain curves. The mechanism for serration behavior of the alloy deformed at high strain rate is proposed.

  8. Compositional Zoning and Mn-Cr Systematics in Carbonates from the Y791198 CM2 Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.; Hutcheon, Ian D.; Browning, Lauren

    2001-01-01

    Cathodoluminescence and microprobe analyses show that carbonates in Y791198 exhibit complex zoning. Cr-Mn dating suggests formation of carbonates 10 Ma after CAI formation Additional information is contained in the original extended abstract..

  9. Solid-state synthesis and thermoelectric properties of Cr-doped MnSi1.73

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Kil; You, Sin-Wook; Kim, Il-Ho

    2014-11-01

    Cr-doped HMSs (higher manganese silicides), MnSi1.73 : Cr x ( x = 0, 0.005, 0.01, 0.02, 0.03), were prepared by using a solid-state reaction and hot pressing. X-ray diffraction analysis and Rietveld refinement confirmed the synthesis of MnSi1.73. The Cr atoms were confirmed to be soluble in the HMS structure because the lattice constant increased with increasing Cr content ( x), and the solid solubility limit of Cr was estimated as x = 0.01. All specimens showed p-type conduction and exhibited degenerate semiconductor characteristics at all temperatures examined (323-823 K). The Seebeck coefficient was decreased and the electrical conductivity was increased by Cr doping. The dimensionless thermoelectric figure of merit ZT was obtained as 0.36 at 823 K for MnSi1.73 : Cr0.005 and MnSi1.73 : Cr0.01 because the power factor was increased and the thermal conductivity was decreased by Cr doping.

  10. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  11. Anomalous Dilatometric Response in Fe-Mn-Al-Si Steel

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.

    2012-04-01

    The present study deals with the transformation of an aggregate consisting of ferrite and pearlite into austenite in a Fe-0.36C-1.98Mn-1.97Al-0.30Si (wt%) steel. The transformation phenomenon has been studied using dilatometry which confirms that austenite starts to nucleate due to dissolution of ferrite and pearlite and subsequently it commences to grow when the appropriate elevated temperature is reached. The austenite formation has been accompanied with the formation of a hump in the dilatation curve which is different with respect to the results reported earlier. The non-conventional behaviour associated with the austenite formation has been explained using the X-ray diffraction data, microstructural investigation and also with MT-DATA theoretical calculations.

  12. Recrystallization behavior of a supersaturated Al Mn alloy

    SciTech Connect

    Radhakrishnan, Balasubramaniam; Liu, W C

    2010-01-01

    The effect of concurrent precipitation on recrystallization behavior during the isothermal annealing of a supersaturated and deformed Al-Mn alloy was investigated. It is found that concurrent precipitation strongly affects the recrystallization behavior of this alloy. At low temperatures, concurrent precipitation retards recrystallization and results in large flat grains. The size of recrystallized grains decreases significantly with increasing temperature. The kinetics of recrystallization was determined by measurements of hardness. The JMAK exponent decreases from 3.0 to 0.8 as the annealing temperature increases from 371 C to 427 C. The activation energy for recrystallization of the alloy is about 456 kJ/mol. Concurrent precipitation enhances the activation energy for recrystallization of aluminum alloys.

  13. One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III).

    PubMed

    Chen, Zengping; Li, Yaru; Guo, Meng; Xu, Fengyun; Wang, Peng; Du, Yu; Na, Ping

    2016-06-05

    Mn-doped TiO2 grown on reduced graphene oxide(rGO) was synthesized by one-pot hydrothermal method and the photocatalytic removal of Cr by the material was investigated under sunlight. The materials were characterized by a combination of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, Brunauer-Emmett-Teller method, UV-vis diffuse reflectance spectra, photoluminescence spectra, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. Cr(total) removal efficiency of the material is 97.32% in 30min and 99.02% in 60min under sunlight irradiation, as the initial concentration of Cr(VI) is 20mg/L. The high photocatalytic activity under visible light is considered mainly due to the Mn-doping, and rGO plays an important role in the synergetic effect of adsorption and photocatalysis to sustain the high efficient removal of Cr(VI) and Cr(III). Cr(VI) adsorbed on the surface of rGO is reduced to Cr(III) by photo electrons which are transported through rGO, and the reaction product Cr(III) continues to be adsorbed. The process contributes to the release of abundant photocatalytic sites of Mn-TiO2 and improves photocatalytic efficiency. The excellent adsorption and photocatalytic effect with the explanation of the synergetic mechanism are very useful not only for fundamental research but also for the potential practical applications.

  14. Synthesis, characterization and electrochemical performance of Al-substituted Li₂MnO₃

    SciTech Connect

    Dhital, Chetan; Huq, Ashfia; Paranthaman, Mariappan Parans; Manivannan, Ayyakkannu; Torres-Castro, Loraine; Shojan, Jifi; Julien, Christian M.; Katiyar, Ram S.

    2015-08-08

    Li2MnO3 is known to be electrochemically inactive due to Mn in tetravalent oxidation state. Several compositions such as Li2MnO3 , Li1.5Al0.17MnO3, Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 were synthesized by a sol–gel Pechini method. All the samples were characterized with x-ray diffraction, Raman, x-ray photoelectron spectroscopy, scanning electron microscopy, Tap density and BET analyzer. X-ray diffraction patterns indicated the presence of monoclinic phase for pristine Li2MnO3and mixed monoclinic/spinel phases (Li2 - xMn1 - yAlx + yO3 + z) for Al-substituted Li2MnO3compounds. The Al substitution seems to occur both at Li and Mn sites, which could explain the presence of spinel phase. X-ray photoelectron spectroscopy for Mn 2p orbital reveals a significant decrease in binding energy for Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 compounds. Cyclic voltammetry, charge/discharge cycles and electrochemical impedance spectroscopy were also performed. A discharge capacity of 24 mAh g-1 for Li2MnO3, 68 mAh g-1 for Li1.5Al0.17MnO3, 58 mAh g-1 for Li1.0Al0.33MnO3 and 74 mAh g-1 for Li0.5Al0.5MnO3 were obtained. As a result, aluminum substitutions increased the formation of spinel phase which is responsible for cycling.

  15. Study of phase stability of MnCr using the augmented space recursion based orbital peeling technique

    NASA Astrophysics Data System (ADS)

    Banerjee, Rudra; Mookerjee, Abhijit

    2009-07-01

    In an earlier communication we have developed a recursion based approach to the study of phase stability and transition of binary alloys [K. Tarafder, M. Rahaman, D. Paudyal, B. Sanyal, O. Eriksson, A. Mookerjee, Physica B 403 (2000) 4111]. We had combined the recursion method introduced by Haydock et al. [J. Phys. C Solid State Phys. 5 (1972) 2485] and the our augmented space approach [A. Mookerjee, J. Phys. C Solid State Phys. 6 (1973) 1340] with the orbital peeling technique proposed by Burke [Surf. Sci. 58 (1976) 349] to determine the small energy differences involved in the discussion of phase stability. We extend that methodology for the study of MnCr alloys.

  16. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    NASA Astrophysics Data System (ADS)

    Kim, Sun Kyu; Pham, Vuong-Hung; Kim, Chong-Hyun

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  17. Magnetization reversal and giant coercivity in Co(Cr0.7Mn0.3)2O4

    NASA Astrophysics Data System (ADS)

    Padam, R.; Kumar, R.; Grover, A. K.; Pal, D.

    2014-04-01

    We demonstrate the evaluation of temperature and magnetic field dependent magnetization of single phase sample of cubic spinel Co(Cr0.7Mn0.3(2O4. It has been noticed that 30% Mn substitution for Cr in CoCr2O4 leads to the huge reversal of temperature dependent magnetization below compensation temperature, Tcomp ˜ 82.9 K. In addition to this, sample is found to exhibit giant coercivity, reaching about 1.54 T at 3K, similar to hard magnetic materials. These intriguing phenomena are ascribed to the presence of magneto-crystalline anisotropy in the sample.

  18. Cross sections for He and Ne isotopes in natural Mg, Al, and Si, He isotopes in CaF2, Ar isotopes in natural Ca, and radionuclides in natural Al, Si, Ti, Cr, and stainless steel induced by 12- to 45-MeV protons

    NASA Technical Reports Server (NTRS)

    Walton, J. R.; Heymann, D.; Yaniv, A.; Edgerley, D.; Rowe, M. W.

    1976-01-01

    Stacks of thin Mg, Al, Si, Ca, CaF2, Ti, and stainless steel foils were bombarded in twelve irradiations by a variable energy cyclotron. Cross sections are reported for He and Ne in natural Mg, Al, and Si, and for He in CaF2, and for Ar in natural Ca, as determined from mass spectrometer analysis of the inert gases. In addition, cross sections of Na-22 in natural Al and Si, of V-48 in natural Ti, and of Cr-51, Mn-52, and Co-57 in stainless steel are reported. From these were deduced Cr-51 and Mn-52 cross sections in natural Cr.

  19. Searching for 0+ states in 50Cr: Implications for the superallowed β decay of 50Mn

    NASA Astrophysics Data System (ADS)

    Leach, K. G.; Garrett, P. E.; Ball, G. C.; Bender, P. C.; Bildstein, V.; Brown, B. A.; Burbadge, C.; Faestermann, T.; Hadinia, B.; Holt, J. D.; Laffoley, A. T.; Jamieson, D. S.; Jigmeddorj, B.; Radich, A. J.; Rand, E. T.; Stroberg, S. R.; Svensson, C. E.; Towner, I. S.; Wirth, H.-F.

    2016-07-01

    A 52Cr(p ,t )50Cr two-neutron pickup reaction was performed using the Q3D magnetic spectrograph at the Maier-Leibnitz-Laboratorium in Garching, Germany. Excited states in 50Cr were observed up to an excitation energy of 5.3 MeV. Despite significantly increased sensitivity and resolution over previous work, no evidence of the previously assigned first excited 0+ state was found. As a result, the 02+ state is reassigned at an excitation energy of Ex=3895.0 (5 ) keV in 50Cr. This reassignment directly impacts direct searches for a nonanalog Fermi β+ decay branch in 50Mn. These results also show better systematic agreement with the theoretical predictions for the 0+ state spectrum in 50Cr using the same formalism as the isospin-symmetry-breaking correction calculations for superallowed nuclei. The experimental data are also compared to ab-initio shell-model predictions using the IM-SRG formalism based on N N and 3 N forces from chiral-EFT in the p f -shell for the first time.

  20. Fabrication of L10-Ordered MnAl Films for Observation of Tunnel Magnetoresistance Effect

    NASA Astrophysics Data System (ADS)

    Saruyama, Haruaki; Oogane, Mikihiko; Kurimoto, Yuta; Naganuma, Hiroshi; Ando, Yasuo

    2013-06-01

    We succeeded in fabricating L10-ordered MnAl films with a high perpendicular magnetic anisotropy energy of 107 erg/cm3 and a small average film roughness of 0.4 nm by using a molten Mn-Al sputtering alloyed target and optimizing the substrate temperature. In addition, we investigated the tunnel magnetoresistance (TMR) effect in magnetic tunnel junctions (MTJs) with the prepared L10-ordered MnAl electrode. The TMR effect was observed at RT in an MTJ with a very thin Co50Fe50 layer inserted into the MnAl electrode and MgO tunneling barrier interface. This is the first observation of the TMR effect in MTJs with an L10-ordered MnAl electrode.

  1. Synthesis, dielectric behavior and impedance measurement studies of Cr-substituted Zn-Mn ferrites

    SciTech Connect

    Hankare, P.P.; Patil, R.P.; Garadkar, K.M.; Sasikala, R.; Chougule, B.K.

    2011-03-15

    Graphical abstract: Variation of dielectric constant with frequency. Research highlights: {yields} Sol-gel route synthesized spherical crystalline nanoparticles of ZnMn{sub 1-x}Cr{sub x}FeO{sub 4}. {yields} XRD, DTA, FTIR, SEM, dielectric and impedance study. {yields} The ferrites show concentration dependence of ac electrical conductivity. {yields} Impedance response is dominated by grain boundary behavior. -- Abstract: Nanocrystalline ZnMn{sub 1-x}Cr{sub x}FeO{sub 4} (1.0 {>=} x {>=} 0) ferrites were synthesized by sol-gel technique. X-ray diffraction (XRD) confirmed the formation of single phasic cubic spinel lattice for all the compositions studied. Lattice parameter shows a decreasing trend with an increase in Cr content in the compositions. Formation of spherical nanoparticles was revealed by scanning electron microscopy (SEM) analysis. Infrared spectroscopic studies revealed two main absorption bands in the range 400-800 cm{sup -1} arising due to tetrahedral (A) and octahedral (B) site vibrations. Dielectric constant, dielectric loss tangent, ac conductivity and complex impedance were measured as a function of frequency in the range 20 Hz to 1 MHz. Frequency dependence of dielectric constant shows dielectric dispersion due to the Maxwell-Wagner type of interfacial polarization. The role of chromium in modifying structural and dielectric properties of these ferrites has been explained.

  2. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression.

    PubMed

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-08-13

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s(-1) (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g(-1) for the CuAlZn alloy and 5.0 J g(-1) for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  3. Development and High Temperature Property Evaluation of Ni-Co-Cr-Al Composite Electroforms

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Siju; Balaraju, J. N.; Ravisankar, B.

    2015-05-01

    Ni-Co-Cr-Al composite electroforms were developed with cobalt content of 10 and 40 wt.%. Cr and Al nano-particles were suspended in sulphamate electrolyte and co-deposited in the Ni-Co matrices. The surface morphology was investigated using field emission scanning electron microscope and the composition analyzed by energy-dispersive x-ray analysis. The oxidation resistance of the electroforms was studied from 600 to 1000 °C. The weight gain of Ni-10 wt.%Co-Cr-Al was less (better oxidation resistance) compared to Ni-Cr-Al and Ni-40 wt.%Co-Cr-Al. The x-ray diffraction studies revealed that the oxidation product formed on the surface of Ni-Cr-Al and Ni-10 wt.%Co-Cr-Al consisted of NiO and Al2O3, while Ni-40 wt.%Co-Cr-Al comprised oxides such as NiCo2O4, CrO3, CoO, NiO, and Al2O3. The hot corrosion behavior was investigated in 75%Na2SO4 + 25%NaCl environment at 800 °C. It was found that the hot corrosion resistance of the composite coating improved with increase in cobalt content. The probable composition suitable for high-temperature applications was found to be Ni-10 wt.%Co-Cr-Al.

  4. Luminescent properties of Mn-doped Y3Al5O12 single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T.; Kuklinski, B.; Grinberg, M.; Wiśniewski, K.; Bilski, P.

    2014-08-01

    The absorption, cathodoluminescence and photoluminescence (PL) spectra as well as PL decay kinetics of Mn doped Y3Al5O12 (YAG:Mn) single crystalline films (SCF) with manganese concentration in the 0.002-0.2 at.% range, grown by the LPE method from PbO to B2O3 based flux onto YAG substrates, were analyzed in this work. The special goal was spectroscopic determination of valence states of manganese ions which are realized in these SCF depending on Mn content. In SCF with Mn content (0.002-0.02 at.%), the incorporation of Mn4+ and Mn2+ ions was found. The absorption and emission spectra of YAG:Mn SCF at higher (0.02-0.2 at.%) content confirmed that the main valence state of manganese ions is Mn3+ state.

  5. CaMn2Al10: Itinerant Mn magnetism on the verge of magnetic order

    SciTech Connect

    Steinke, L.; Simonson, J. W.; Yin, W. -G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.

    2015-07-24

    We report the discovery of CaMn2Al10, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83μB/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010][001] ≈ 3.5. A strong power-law divergence χ(T) ~ T–1.2 below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature TC ~ 0. Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.

  6. Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys in the temperature range of 700-750 deg C

    NASA Technical Reports Server (NTRS)

    Chiang, K. T.; Meier, G. H.

    1980-01-01

    The effect of SO3 pressure in the gas phase on the Na2SO4 induced hot corrosion of Co-Cr, Ni-Cr, and Co-Cr-Al alloys was studied in the temperature range 700 to 750 C. The degradation of the Co-Cr and Ni-Cr alloys was found to be associated with the formation of liquid mixed sulfates (CoSO4-Na2SO4 or NiSO4-Na2SO4) which provided a selective dissolution of the Co or Ni and a subsequent sulfidation oxidation mode of attack which prevented the maintenance of a protective Cr2O3 film. A clear mechanism was not developed for the degradation of Co-Cr-Al alloys. A pitting corrosion morphology was induced by a number of different mechanisms.

  7. Cyclic Oxidation of FeCrAlY/Al2O3 Composites

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.

    1999-01-01

    Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.

  8. A sulfur segregation study of PWA 1480, NiCrAl, and NiAl alloys

    NASA Technical Reports Server (NTRS)

    Jayne, D. T.; Smialek, J. L.

    1993-01-01

    Some nickel based superalloys show reduced oxidation resistance from the lack of an adherent oxide layer during high temperature cyclic oxidation. The segregation of sulfur to the oxide-metal interface is believed to effect oxide adhesion, since low sulfur alloys exhibit enhanced adhesion. X ray Photoelectron Spectroscopy (XPS) was combined with an in situ sample heater to measure sulfur segregation in NiCrAl, PWA 1480, and NiAl alloys. The polished samples with a 1.5 to 2.5 nm (native) oxide were heated from 650 to 1100 C with hold times up to 6 hr. The sulfur concentration was plotted as a function of temperature versus time at temperature. One NiCrAl sulfur study was performed on the same casting used by Browning to establish a base line between previous Auger Electron Spectroscopy (AES) results and the XPS results of this study. Sulfur surface segregation was similar for PWA 1480 and NiCrAl and reached a maximum of 30 at% at 800 to 850 C. Above 900 C the sulfur surface concentration decreased to about 3 at% at 1100 C. These results are contrasted to the minimal segregation observed for low sulfur hydrogen annealed materials which exhibit improved scale adhesion.

  9. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  10. A Study of Free Recovery in a Fe - Mn - Si - Cr Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Spiridon, I.-P.; Lohan, N.-M.; Suru, M.-G.; Mihalache, E.; Bujoreanu, L.-G.; Pricop, B.

    2016-01-01

    Video recording of the free recovery of "hot shape" (typical for the austenitic domain) in shape-memory alloy Fe - 28% Mn - 6% Si - 5% Cr during heating of specimens with a "cold shape" typical for the martensitic domain is performed. Prior to each measurement the specimens are deformed by caliber bending at room temperature in martensitic condition. The thermomechanical training consists in 10 cycles of bending - heating - cooling. Displacements of the free ends of the specimens are plotted as a function of the temperature and the plots are used to determine the critical temperatures of the reverse martensitic transformation.

  11. Weldability of a high entropy CrMnFeCoNi alloy

    SciTech Connect

    Wu, Zhenggang; David, Stan A.; Feng, Zhili; Bei, Hongbin

    2016-07-19

    We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ of the tested alloy.

  12. Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States

    USGS Publications Warehouse

    Wilshire, H.G.; Shervais, J.W.

    1975-01-01

    Ultramafic xenoliths in basalts from the western United States are divided into Al-augite and Cr-diopside groups. The Al-augite group is characterized by Al, Ti-rich augites, comparatively Fe-rich olivine and orthopyroxene, and Al-rich spinel, the Cr-diopside group by Cr-rich clinopyroxene and spinel and by Mg-rich olivine and pyroxenes. Both groups have a wide range of subtypes, but the Al-augite group is dominated by augite-rich varieties, and the Cr-diopside group by olivine-rich lherzolites. ?? 1975.

  13. Influence of sp-d hybridization on the electronic structure of Al-Mn alloys

    SciTech Connect

    Shukla, A. K.; Biswas, C.; Dhaka, R. S.; Das, S. C.; Barman, S. R.; Krueger, P.

    2008-05-15

    The influence of sp-d hybridization on the electronic structure of different Al-Mn alloys has been studied by photoelectron spectroscopy. Experimental evidence of a pseudogap in a crystalline binary Hume-Rothery alloy is provided. The pseudogap varies systematically with Mn concentration. The sp-d hybridization alone, even in the absence of Hume-Rothery mechanism, can produce the pseudogap. Existence of the pseudogap, suppression of the Mn 2p satellite, and decrease in the Doniach-Sunjic asymmetry parameter are the consequences of the sp-d hybridization. An in situ method of preparing these alloys by annealing a Mn adlayer on Al(111) is presented.

  14. Influence of sp-d hybridization on the electronic structure of Al-Mn alloys

    NASA Astrophysics Data System (ADS)

    Shukla, A. K.; Biswas, C.; Dhaka, R. S.; Das, S. C.; Krüger, P.; Barman, S. R.

    2008-05-01

    The influence of sp-d hybridization on the electronic structure of different Al-Mn alloys has been studied by photoelectron spectroscopy. Experimental evidence of a pseudogap in a crystalline binary Hume-Rothery alloy is provided. The pseudogap varies systematically with Mn concentration. The sp-d hybridization alone, even in the absence of Hume-Rothery mechanism, can produce the pseudogap. Existence of the pseudogap, suppression of the Mn2p satellite, and decrease in the Doniach-Šunjić asymmetry parameter are the consequences of the sp-d hybridization. An in situ method of preparing these alloys by annealing a Mn adlayer on Al(111) is presented.

  15. Letter Report Documenting Progress of Second Generation ATF FeCrAl Alloy Fabrication

    SciTech Connect

    Yamamoto, Y.; Yang, Y.; Field, K. G.; Terrani, K.; Pint, B. A.; Snead, L. L.

    2014-06-10

    Development of the 2nd generation ATF FeCrAl alloy has been initiated, and a candidate alloy was selected for trial tube fabrication through hot-extrusion and gun-drilling processes. Four alloys based on Fe-13Cr-4.5Al-0.15Y in weight percent were newly cast with minor alloying additions of Mo, Si, Nb, and C to promote solid-solution and second-phase precipitate strengthening. The alloy compositions were selected with guidance from computational thermodynamic tools. The lab-scale heats of ~ 600g were arc-melted and drop-cast, homogenized, hot-forged and -rolled, and then annealed producing plate shape samples. An alloy with Mo and Nb additions (C35MN) processed at 800°C exhibits very fine sub-grain structure with the sub-grain size of 1-3μm which exhibited more than 25% better yield and tensile strengths together with decent ductility compared to the other FeCrAl alloys at room temperature. It was found that the Nb addition was key to improving thermal stability of the fine sub-grain structure. Optimally, grains of less than 30 microns are desired, with grains up to and order of magnitude in desired produced through Nb addition. Scale-up effort of the C35MN alloy was made in collaboration with a commercial cast company who has a capability of vacuum induction melting. A 39lb columnar ingot with ~81mm diameter and ~305mm height (with hot-top) was commercially cast, homogenized, hot-extruded, and annealed providing 10mm-diameter bar-shape samples with the fine sub-grain structure. This commercial heat proved consistent with materials produced at ORNL at the lab-scale. Tubes and end caps were machined from the bar sample and provided to another work package for the ATF-1 irradiation campaign in the milestone M3FT-14OR0202251.

  16. Cr, Mn, and Ca distributions for olivine in angritic systems: Constraints on the origins of Cr-rich and Ca-poor core olivine in angrite LEW87051

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Mckay, G.; Le, L.

    1994-01-01

    Angrite meteorites are a type of basaltic achondrites that are noted for their very old cyrstallization ages (4.55 b.y.) and unusual chemical and mineralogical properties. In spite of great interest, only four angrites have been found. LEW87051 is the smallest one which weighs 0.6 g. It is a porphyritic rock with coarse subhedral to euhedral olivines set in a fine-grained groundmass which clearly represents a crystallized melt. The largest uncertainty about the petrogenesis of LEW87051 is the relationship between the large olivine crystals and the groundmass. Prinz et al. suggests that olivines are xenocrysts, while McKay et al. proposed a fractional cyrstallization model based on experimental studies. However, the crystals have Cr-rich and Ca-poor cores which do not match experimental olivines. Although Jurewicz and McKay tried to explaine the zoning of the rim by diffusion, some features are not explained. There also exists a definite composition boundary of Fe(2+) and MnO between the core and the rim. To clarify the origin of these olivines, we have performed experiments using LEW87051 analogs to measure the effects of oxygen fugacity on distribution coefficients of various elements in an angritic system.

  17. The accumulation of metal (Co, Cr, Cu, Mn and Zn) in freshwater Ulva (Chlorophyta) and its habitat.

    PubMed

    Rybak, Andrzej; Messyasz, Beata; Łęska, Bogusława

    2013-04-01

    The possibility of using freshwater Ulva (Chlorophyta) as a bioaccumulator of metals (Co, Cr, Cu, Mn and Zn) in lake and river water was examined weekly in the summer of 2010 in three types of samples: the water, the sediment and the thalli of Ulva. Samples of freshwater Ulva were collected from two aqueous ecosystems lie 250 km away from the basin of the Baltic Sea and 53 km from each other. A flow lake located in the centre of the big city was the first water reservoir (ten sites) and second, the suburban river (six sites). The mean metal concentrations in the Ulva tissue from the river and the lake decreased in the following order: Mn > Zn > Cr > Cu > Co and Mn > Cr > Zn > Cu > Co, respectively. Moreover, a negative and statistically significant correlation between Mn concentrations in the Ulva thalli and the river water was observed. Additionally, numerous correlations were noted between the different concentrations of metals within the Ulva thalli, in the water and in the sediment. The great concentrations of Mn and Zn and the smallest of Co were found in thalli of Ulva, irrespective of the type of the ecosystem from which samples of algal thalli originated. Freshwater Ulva populations examined in this study were clearly characterized a dozen or so times by the higher Mn and Cr accumulation than taxa from that genera coming from sea ecosystems. The calculated bioconcentration factor confirm the high potential for freshwater Ulva to be a bioaccumulator of trace metals in freshwater ecosystems.

  18. [Study on the chemical form and extraction rate of Cr, Cu, Fe, Mn, Ni and Zn in tea].

    PubMed

    Gao, G; Tao, R

    2000-07-01

    The content of Cr, Cu, Fe, Mn, Ni and Zn in the tea commonly available in China market were measured by inductivity coupled plasma-optical emission spectrometry (ICP-OES). The extraction rates of the six elements in tea leachate were measured. The solubilitied were 39.8% for Cr, 42.5% for Cu, 8.6% for Fe, 45.5% for Mn, 87.1% for Ni and 71.0% for Zn. The process of making tea leachate affects the elements extraction rates. The content of the microelements in tea leave extracts decreases gradually with the processing. About 80% of Cr, Cu, Mn, Ni and Zn and 60% of Fe were in the first infusion of tea. Moreover, the chemical forms of six elements were determined. The ratios of organic to inorganic forms were 0.33 for Cr, 0.022 for Cu, 0.18 for Fe, 0.002 for Mn, 0.01 for Ni and 0.18 for Zn. It is concluded that the six elements from the tea infusion extracted from 5 g tea are too little to meet the recommend dietary allowance (RDA). Therefore, tea is not a rich food source of Cr, Cu, Fe, Mn, Ni and Zn.

  19. Fabrication and Properties of Cr2O3 and La0.7Sr0.3MnO3 Thin Film Heterostructures Integrated on Si(001)

    NASA Astrophysics Data System (ADS)

    Punugupati, Sandhyarani

    ), epitaxial thin films were prepared on r-Al2O3 substrate and their magnetic properties were studied. The XRD (2theta and phi) and TEM confirm that the films were grown epitaxially. The epitaxial relations were given as: [011¯2]Cr2O3 || [011¯2]Al2O 3 and [1¯1¯20]Cr2O3 || [1¯1¯20]Al 2O3. The as-deposited films showed ferromagnetic behavior up to 400K but it almost vanished with oxygen annealing. The Raman spectroscopy data together with strain measurements using XRD indicated that ferromagnetism in r-Cr2O3 thin films was due to the strain caused by defects such as oxygen vacancies. Bi-epitaxial La0.7Sr0.3MnO3(110) thin films were integrated on Si(100) with c-YSZ/SrTiO3(STO) buffer layers by pulsed laser deposition. The La0.7Sr0.3MnO 3 and STO thin films had a single [110] out-of-plane orientation but with two in-plane domain variants as confirmed from XRD and TEM study. The growth of STO on c-YSZ was explained by the domain matching epitaxy paradigm. The epitaxial relationship between STO and c-YSZ were written as [110](001)c-YSZ || [1¯11¯](110)STO (or) [110](001)c-YSZ || [1¯12¯](110)STO. The La0.7Sr0.3MnO3 thin films were ferromagnetic with Curie temperature 324K. They also exhibited hysteresis in magnetoresistance under both in-plane and out-of-plane magnetic fields. The highest magnetoresistance in this study was -32% at 50K and 50 kOe for in-plane configuration. Lastly, the epitaxial La0.7Sr0.3MnO3-delta -d(LSMO)/Cr2O3 bilayer structure was integrated with Si(001) using c-YSZ by pulsed laser deposition. The XRD (2theta and phi) and TEM characterizations confirm that the films were grown epitaxially. The epitaxial relations were written as [0001]Cr2O3 || [111]LSMO and [112¯0]Cr2O3 || [101¯]LSMO. Interestingly, when the LSMO thickness was increased from 66 to 528 nm (Cr2O 3=55nm), the magnetization increased by 2-fold and the magnetic nature changed from ferromagnetic to super paramagnetic. In addition, LSMO/Cr 2O3 showed in-plane exchange bias. We believe that

  20. Diffusive Interaction Between Ni-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Tkacz-Śmiech, Katarzyna; Danielewski, Marek; Bożek, Bogusław; Berent, Katarzyna; Zientara, Dariusz; Zajusz, Marek

    2017-03-01

    In high-temperature coatings, welded parts, and a range of other applications, components in the contact zone interdiffuse at elevated temperatures and may react to change the phase composition. The diffusion zone can be complex and can consist of sequential layers of intermediate phases, solid solutions, and in the case of multicomponent systems also of multiphase layers. In this work, the interdiffusion in Ni-Cr-Al alloys is studied experimentally and modeled numerically. The diffusion multiples were prepared by hot isostatic pressing and post-annealing at 1473 K (1200 °C). The concentration profiles were measured with wide-line EDS technique which allowed obtaining high-accuracy diffusion paths. The experimental profiles and diffusion paths were compared with numerical results simulated with application of very recent model of interdiffusion in muticomponent-multiphase systems. The calculated and experimental data show good agreement.

  1. Corrosion Behavior of Thermally Sprayed NiCrBSi Coating on 16MnR Low-Alloy Steel in KOH Solution

    NASA Astrophysics Data System (ADS)

    Zeng, Q.; Sun, J.; Emori, W.; Jiang, S. L.

    2016-05-01

    NiCrBSi coatings were selected as protective material and air plasma-sprayed on 16MnR low-alloy steel substrates. Corrosion behavior of 16MnR substrates and NiCrBSi coatings in KOH solution were evaluated by polarization resistance ( R p), potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion corrosion tests. Electrolytes were solutions with different KOH concentrations. NiCrBSi coating showed superior corrosion resistance in KOH solution compared with the 16MnR. Corrosion current density of 16MnR substrate was 1.7-13.0 times that of NiCrBSi coating in the given concentration of KOH solution. By contrast, R p of NiCrBSi coating was 1.2-8.0 times that of the substrate, indicating that the corrosion rate of NiCrBSi coating was much lower than that of 16MnR substrate. Capacitance and total impedance value of NiCrBSi coating were much higher than those of 16MnR substrate in the same condition. This result indicates that corrosion resistance of NiCrBSi coating was better than that of 16MnR substrate, in accordance with polarization results. NiCrBSi coatings provided good protection for 16MnR substrate in KOH solution. Corrosion products were mainly Ni/Fe/Cr oxides.

  2. Adherent Al2O3 scales produced on undoped NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1986-01-01

    Repeated oxidation and polishing of high purity Ni-15Cr-13Al has dramatically changed its cyclic oxidation behavior from nonadherent to adherent. No apparent change in scale phase, morphology or interface structure occurred during this transition, dismissing any mechanism based on pegging, vacancy sink, or growth stress. The principle change that did occur was a reduction in the sulfur content from 10 ppmw to 3 ppmw after 25 cycles at 1120 C. These observations are used to support the model of Al2O3 scale adherence put forth by Smeggil et al. which claims that Al2O3 scale spallation occurs due to sulfur segregation and bond deterioration at the oxide-metal interface.

  3. Rapid Solidification Behavior of Fe-Cr-Mn-Mo-Si-C Alloys

    NASA Astrophysics Data System (ADS)

    Ranganathan, Sathees; Makaya, Advenit; Fredriksson, Hasse; Savage, Steven

    2007-12-01

    The rapid solidification behavior of alloys in the Fe-Cr-Mn-Mo-Si-C system was investigated for different compositions and cooling rates. The C content was varied and alloying additions of Mo and B were studied with respect to their effect on the microstructure. The alloys were cast as either melt-spun ribbons or as 1-mm-thick plates after levitation or as rods 2 to 4 mm in diameter by injection into copper molds. A homogeneous single-phase structure was obtained for the alloy of composition 72.8Fe-8Cr-6Mn-5Si-5Mo-3.2C (wt pct), for a sample diameter of 2.85 mm, at a cooling rate of ≈1100 K/s. The single-phase structure was identified as a metastable solid solution, exhibiting the characteristics of the ɛ phase. Upon reheating, decomposition of the single-phase structure into fine bainite plates and secondary carbides was observed between 600 °C and 700 °C. The annealed structure obtained showed high hardness values (>850 HV).

  4. Enhanced Photovoltage Response of Hematite-X-Ferrite Interfaces (X = Cr, Mn, Co, or Ni)

    NASA Astrophysics Data System (ADS)

    Bian, Liang; Li, Hai-long; Li, Yu-jin; Nie, Jia-nan; Dong, Fa-qin; Dong, Hai-liang; Song, Mian-xin; Wang, Li-sheng; Zhou, Tian-liang; Zhang, Xiao-yan; Li, Xin-xi; Xie, Lei

    2017-02-01

    High-fluorescent p-X-ferrites (XFe2O4; XFO; X = Fe, Cr, Mn, Co, or Ni) embedded in n-hematite (Fe2O3) surfaces were successfully fabricated via a facile bio-approach using Shewanella oneidensis MR-1. The results revealed that the X ions with high/low work functions modify the unpaired spin Fe2+-O2- orbitals in the XFe2O4 lattices to become localized paired spin orbitals at the bottom of conduction band, separating the photovoltage response signals (73.36 455.16/-72.63 -32.43 meV). These (Fe2O3)-O-O-(XFe2O4) interfacial coupling behaviors at two fluorescence emission peaks (785/795 nm) are explained via calculating electron-hole effective masses (Fe2O3-FeFe2O4 17.23 × 10-31 kg; Fe2O3-CoFe2O4 3.93 × 10-31 kg; Fe2O3-NiFe2O4 11.59 × 10-31 kg; Fe2O3-CrFe2O4 -4.2 × 10-31 kg; Fe2O3-MnFe2O4 -11.73 × 10-31 kg). Such a system could open up a new idea in the design of photovoltage response biosensors.

  5. Synthesis, structures and magnetic properties of the dimorphic Mn2CrSbO6 oxide.

    PubMed

    Dos santos-García, Antonio J; Solana-Madruga, Elena; Ritter, Clemens; Ávila-Brande, David; Fabelo, Oscar; Sáez-Puche, Regino

    2015-06-21

    The perovskite polymorph of Mn(2)CrSbO(6) compound has been synthesized at 8 GPa and 1473 K. It crystallizes in the monoclinic P21/n space group with cell parameters a = 5.2180 (2) Å, b = 5.3710(2) Å, c = 7.5874(1) Å and β = 90.36(1)°. Magnetic susceptibility and magnetization measurements show the simultaneous antiferromagnetic ordering of Mn(2+) and Cr(3+) sublattices below TN = 55 K with a small canting. Low temperature powder neutron diffraction reveals a commensurate magnetic structure with spins confined to the ac-plane and a propagation vector κ = [1/2 0 1/2]. The thermal treatment of this compound induces an irreversible phase transition to the ilmenite polymorph, which has been isolated at 973 K and crystallizes in R3[combining macron] space group with cell parameters a = 5.2084 (4) Å and c = 14.4000 (11) Å. Magnetic susceptibility, magnetization and powder neutron diffraction data confirm the antiferromagnetic helical ordering of spins in an incommensurate magnetic structure with κ = [00 0.46] below 60 K, and the temperature dependence of the propagation vector up to κ = [00 0.54] at about 10 K.

  6. Synthesis and characterization of La(Cr,Fe,Mn)O3 nanoparticles obtained by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Fabian, F. A.; Pedra, P. P.; Filho, J. L. S.; Duque, J. G. S.; Meneses, C. T.

    2015-04-01

    Magnetic and structural properties have been investigated in La(Cr,Fe,Mn)O3 nanoparticles obtained by co-precipitation method. The X-ray diffraction measurements allied to Rietveld method confirm the formation of LaCrO3, LaFeO3 and LaMnO3 nanoparticles with crystal structure orthorhombic (Pbnm), orthorhombic (Pnma) and rhombohedral (R-3c), respectively. We also verified an decreasing in the average crystallite size from 73 to 26 nm, depending of the transition metal. The magnetic measurements reveal an antiferromagnetic behavior for the LaCrO3 sample with TN~289 K, and a weak ferromagnetic ordering for the LaMnO3 sample with Tc~200 K.

  7. Synthesis and characterization of (smif)2M(n) (n = 0, M = V, Cr, Mn, Fe, Co, Ni, Ru; n = +1, M = Cr, Mn, Co, Rh, Ir; smif =1,3-di-(2-pyridyl)-2-azaallyl).

    PubMed

    Frazier, Brenda A; Bartholomew, Erika R; Wolczanski, Peter T; DeBeer, Serena; Santiago-Berrios, Mitk'El; Abruña, Hector D; Lobkovsky, Emil B; Bart, Suzanne C; Mossin, Susanne; Meyer, Karsten; Cundari, Thomas R

    2011-12-19

    A series of Werner complexes featuring the tridentate ligand smif, that is, 1,3-di-(2-pyridyl)-2-azaallyl, have been prepared. Syntheses of (smif)(2)M (1-M; M = Cr, Fe) were accomplished via treatment of M(NSiMe(3))(2)(THF)(n) (M = Cr, n = 2; Fe, n = 1) with 2 equiv of (smif)H (1,3-di-(2-pyridyl)-2-azapropene); ortho-methylated ((o)Mesmif)(2)Fe (2-Fe) and ((o)Me(2)smif)(2)Fe (3-Fe) were similarly prepared. Metatheses of MX(2) variants with 2 equiv of Li(smif) or Na(smif) generated 1-M (M = Cr, Mn, Fe, Co, Ni, Zn, Ru). Metathesis of VCl(3)(THF)(3) with 2 Li(smif) with a reducing equiv of Na/Hg present afforded 1-V, while 2 Na(smif) and IrCl(3)(THF)(3) in the presence of NaBPh(4) gave [(smif)(2)Ir]BPh(4) (1(+)-Ir). Electrochemical experiments led to the oxidation of 1-M (M = Cr, Mn, Co) by AgOTf to produce [(smif)(2)M]OTf (1(+)-M), and treatment of Rh(2)(O(2)CCF(3))(4) with 4 equiv Na(smif) and 2 AgOTf gave 1(+)-Rh. Characterizations by NMR, EPR, and UV-vis spectroscopies, SQUID magnetometry, X-ray crystallography, and DFT calculations are presented. Intraligand (IL) transitions derived from promotion of electrons from the unique CNC(nb) (nonbonding) orbitals of the smif backbone to ligand π*-type orbitals are intense (ε ≈ 10,000-60,000 M(-1)cm(-1)), dominate the UV-visible spectra, and give crystals a metallic-looking appearance. High energy K-edge spectroscopy was used to show that the smif in 1-Cr is redox noninnocent, and its electron configuration is best described as (smif(-))(smif(2-))Cr(III); an unusual S = 1 EPR spectrum (X-band) was obtained for 1-Cr.

  8. Exploring the Cr2+ doping effect on structural, vibrational and dielectric properties of Mn-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Choudhary, Pankaj; Tyagi, Tarun; Dar, M. A.; Varshney, Dinesh

    2016-05-01

    A series of Cr doped Mn-Zn ferrites with compositional formula Mn0.5Zn0.5-xCrxFe2O4 (x = 0, 0.3, 0.5) were prepared by solid-state reaction route. X-ray diffraction (XRD) analysis reveals that the samples prepared are polycrystalline cubic spinel in structure (Fd3m) with some secondary phase of α-Fe2O3. Slight variation in the lattice parameter of Cr doped Mn0.5Zn0.5Fe2O4 has been observed due to difference in ionic radii of cations. Small shift in Raman modes towards higher wave number has been observed. Further the line width decreases with the doping ions. A giant dielectric constant ~104 is observed for parent Mn0.5Zn0.5Fe2O4 which is found to decrease with increase in Cr2+ doping. Low dielectric loss is observed for Mn0.5Zn0.5Fe2O4 and improves with Cr2+ doping at Zn2+ site.

  9. Amorphization of Al[sub 6]Mn phase in an Al-14 a/o Mn alloy during low energy helium ion bombardment

    SciTech Connect

    Nair, K.G.M.; Krishan, K. . Materials Science Division); Vijayalakshmi, M. . Metallurgy Division)

    1993-10-01

    Amorphization of ordered intermetallic compounds has been observed during ion, electron and neutron irradiations. Investigations have been carried out in a number of systems. It has been generally observed that intermetallic compounds with a narrow range of homogeneity (line compounds) amorphize on irradiation. The present paper reports the observation of irradiation-induced amorphization in the Al[sub 6]Mn phase in an Al-14 a/o Mn alloy. The dose and energy dependence of the amorphization process are discussed. The present studies suggest that the defects produced during irradiation rather than the implanted atoms (helium) play a major role in the crystalline to amorphous transition.

  10. First-principles and Monte Carlo studies of the Ni2(Mn,Cr)Ga Heusler alloys electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Zagrebin, M. A.; Sokolovskiy, V. V.; Smolyakova, E. E.; Buchelnikov, V. D.

    2017-02-01

    Structural, magnetic and electronic properties of a series of Ni2Mn1‑x Cr x Ga Heusler alloys have been studied by means of ab initio calculations and Monte Carlo simulations. The optimized lattice parameters of all investigated compositions are close to 5.81 Å and weakly depend on Cr excess. The martensitic transformation in Ni-Mn-Cr-Ga alloys occurs in all compositional range. Tetragonal distortions weakly depend on Cr concentration. Besides, an increase in energy difference between austenite and martensite with increasing Cr content was observed. For electronic and magnetic properties, it was observed that Ni2Mn1‑x Cr x Ga demonstrate the metallic behavior. Using the SPR-KKR calculations of magnetic exchange constants, we have shown that the largest contribution to the total exchange energy is associated between nearest neighbor Ni-Mn pair. These inter-sublattice interactions in austenitic phase are higher then intra-sublattice interactions (Ni-Ni and Mn(Cr)-Mn(Cr)). Estimated Curie temperatures for Ni2Mn1‑x Cr x Ga are found to decrease with increasing Cr content. All obtained results are in good agreement with experimental data.

  11. Chemical ordering in Cr3Al and relation to semiconducting behavior

    NASA Astrophysics Data System (ADS)

    Boekelheide, Z.; Stewart, D. A.; Hellman, F.

    2012-08-01

    Cr3Al shows semiconductor-like behavior which has been attributed to a combination of antiferromagnetism and chemical ordering of the Cr and Al atoms on the bcc sublattice. This article presents a detailed theoretical and experimental study of the chemical ordering in Cr3Al. Using density functional theory within the Korringa-Kohn-Rostoker (KKR) formalism, we consider five possible structures with the Cr3Al stoichiometry: a bcc solid solution, two-phase C11b Cr2Al+Cr, off-stoichiometric C11b Cr3Al, D03 Cr3Al, and X-phase Cr3Al. The calculations show that the chemically ordered, rhombohedrally distorted X-phase structure has the lowest energy of those considered and should, therefore, be the ground state found in nature, while the D03 structure has the highest energy and should not occur. While KKR calculations of the X phase indicate a pseudogap in the density of states, additional calculations using a full potential linear muffin-tin orbital approach and a plane-wave technique show a narrow band gap. Experimentally, thin films of Cr1-xAlx were grown and the concentration, growth temperature, and substrate were varied systematically. The peak resistivity (2400 μΩ-cm) is found for films with x=0.25, grown epitaxially on a 300 ∘C MgO substrate. At this x, a transition between nonmetallic and metallic behavior occurs at a growth temperature of about 400 ∘C, which is accompanied by a change in chemical ordering from X phase to C11b Cr3Al. These results clarify the range of possible structures for Cr3Al and the relationship between chemical ordering and electronic transport behavior.

  12. Temperature dependences of the structural and the mechanical properties of a CdMnCrTe quaternary alloy

    NASA Astrophysics Data System (ADS)

    Hwang, Younghun; Um, Youngho

    2012-11-01

    We investigated the structural and the mechanical properties of single crystals of the diluted magnetic semiconductor (DMS) Cd1- x- y Mn x Cr y Te ( x = 0.37, 0 ≤ y ≤ 0.03) grown by using the vertical Bridgman method. High-temperature X-ray diffraction (XRD) and microhardness measurements were carried out during heating processes at temperatures from room temperature to 750 K. The lattice constants increased with increasing temperature whereas the lattice constants decreased with increasing Cr composition y. The hardness of the Cd1- x- y Mn x Cr y Te crystal increased exponentially with decreasing temperature for T ≤ 600 K, and it remained constant for T ≥ 700 K. The Vickers hardness, H V , decreased with increasing temperature and increased with increasing Cr composition y. The activation energy for the dislocation motion was determined from the relation between temperature and hardness.

  13. Interactions in Ternary Mixtures of MnO2, Al2O3, and Natural Organic Matter (NOM) and the Impact on MnO2 Oxidative Reactivity.

    PubMed

    Taujale, Saru; Baratta, Laura R; Huang, Jianzhi; Zhang, Huichun

    2016-03-01

    Our previous work reported that Al2O3 inhibited the oxidative reactivity of MnO2 through heteroaggregation between oxide particles and surface complexation of the dissolved Al ions with MnO2 (S. Taujale and H. Zhang, "Impact of interactions between metal oxides to oxidative reactivity of manganese dioxide" Environ. Sci. Technol. 2012, 46, 2764-2771). The aim of the current work was to investigate interactions in ternary mixtures of MnO2, Al2O3, and NOM and how the interactions affect MnO2 oxidative reactivity. For the effect of Al ions, we examined ternary mixtures of MnO2, Al ions, and NOM. Our results indicated that an increase in the amount of humic acids (HAs) increasingly inhibited Al adsorption by forming soluble Al-HA complexes. As a consequence, there was less inhibition on MnO2 reactivity than by the sum of two binary mixtures (MnO2+Al ions and MnO2+HA). Alginate or pyromellitic acid (PA)-two model NOM compounds-did not affect Al adsorption, but Al ions increased alginate/PA adsorption by MnO2. The latter effect led to more inhibition on MnO2 reactivity than the sum of the two binary mixtures. In ternary mixtures of MnO2, Al2O3, and NOM, NOM inhibited dissolution of Al2O3. Zeta potential measurements, sedimentation experiments, TEM images, and modified DLVO calculations all indicated that HAs of up to 4 mg-C/L increased heteroaggregation between Al2O3 and MnO2, whereas higher amounts of HAs completely inhibited heteroaggregation. The effect of alginate is similar to that of HAs, although not as significant, while PA had negligible effects on heteroaggregation. Different from the effects of Al ions and NOMs on MnO2 reactivity, the MnO2 reactivity in ternary mixtures of Al2O3, MnO2, and NOM was mostly enhanced. This suggests MnO2 reactivity was mainly affected through heteroaggregation in the ternary mixtures because of the limited availability of Al ions.

  14. The effect of substitution of Mn by Fe and Cr on the martensitic transition in the Ni50Mn34In16 alloy.

    PubMed

    Sharma, V K; Chattopadhyay, M K; Nath, S K; Sokhey, K J S; Kumar, R; Tiwari, P; Roy, S B

    2010-12-08

    The potential shape memory alloy Ni(50)Mn(34)In(16) is studied with partial substitution of Mn with Fe and Cr to investigate the effect of such substitution on the martensitic transition in the Ni-Mn-In alloy system. The results of ac susceptibility, magnetization and electrical resistivity measurements show that while the substitution with Cr increases the martensitic transition temperature, the substitution with Fe decreases it. Possible reasons for this shift in martensitic transition are discussed. Evidence of kinetic arrest of the austenite to martensite phase transition in the Fe substituted alloys is also presented. Unlike the kinetic arrest of the austenite to martensite phase transition in the parent Ni(50)Mn(34)In(16) alloy which takes place in the presence of high external magnetic field, the kinetic arrest of the austenite to martensite phase transition in the Fe doped alloy occurs even in zero magnetic field. The Cr substituted alloys, on the other hand, show no signature of kinetic arrest of this phase transition.

  15. Development of Rare-Earth Free Mn-Al Permanent Magnet Employing Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Singh, N.; Shyam, R.; Upadhyay, N. K.; Dhar, A.

    2015-02-01

    Most widely used high-performance permanent magnets are currently based on intermetallics of rare-earths in combination with Fe and Co. Rare-earth elements required for these magnets are getting expensive by the day. Consequently, there is a thrust worldwide to develop economical rare-earth free permanent magnets. It is acknowledged that the phase in Mn-Al alloys possesses magnetic properties without the presence of ferromagnetic elements such as Fe, Co, and Ni. In the present study, we report the synthesis of magnetic phase of Mn54Al46 alloy synthesized using mechanical alloying followed by solutionizing and annealing to obtain the desired magnetic phase. It is well known that Al dissolves partially in Mn matrix hence supersaturated solid solution of Mn54Al46 alloy powder was obtained by mechanical alloying using a planetary high-energy ball mill. For this purpose elemental Mn and Al powders were ball-milled in Argon atmosphere at 400 rpm using stainless steel bowl with ball to powder ratio of 15:1. These mechanically alloyed Mn54Al46 powders were then consolidated using spark plasma sintering at 550°C for 20 min. followed by solution treatment at 1050°C for 5 hrs and then water quenched to retain high temperature phase. Subsequently, the Mn54Al46 samples were annealed in the temperature range 450°C-650°C to obtain the magnetic phase. These samples were characterized by XRD and SEM and the magnetic properties were measured using a vibrating sample magnetometer (VSM). It was observed that the magnetization and coercivity of MnAl magnets exhibited strong dependence on annealing temperature and annealing time.

  16. Antiferromagnetic interaction between A'-site Mn spins in A-site-ordered perovskite YMn3Al4O12.

    PubMed

    Tohyama, Takenori; Saito, Takashi; Mizumaki, Masaichiro; Agui, Akane; Shimakawa, Yuichi

    2010-03-01

    The A-site-ordered perovskite YMn(3)Al(4)O(12) was prepared by high-pressure synthesis. Structural analysis with synchrotron powder X-ray diffraction data and the Mn L-edges X-ray absorption spectrum revealed that the compound has a chemical composition Y(3+)Mn(3+)(3)Al(3+)(4)O(2-)(12) with magnetic Mn(3+) at the A' site and non-magnetic Al(3+) at the B site. An antiferromagnetic interaction between the A'-site Mn(3+) spins is induced by the nearest neighboring Mn-Mn direct exchange interaction and causes an antiferromagnetic transition at 34.3 K.

  17. Electronic, magnetic and Fermi properties investigates on quaternary Heusler NiCoCrAl, NiCoCrGa and NiFeCrGa

    NASA Astrophysics Data System (ADS)

    Wei, Xiao-Ping; Zhang, Ya-Ling; Chu, Yan-Dong; Sun, Xiao-Wei; Sun, Ting; Guo, Peng; Deng, Jian-Bo

    2015-07-01

    Using the full-potential local-orbital minimum-basis method within the framework of density functional theory, we study the electronic, magnetic and Fermi properties of three quaternary Heusler compounds: NiCoCrAl, NiCoCrGa and NiFeCrGa. Results identify that these compounds are half-metallic ferromagnets with integer spin magnetic moment, and their spin moments follow the Slater-Pauling rule. Accordingly, the origin of gap and magnetic moment are also discussed. In addition, the Fermi surface is further plotted to explore the behavior of electronic states in the vicinity of Fermi level for these compounds. Finally, we argue the influence of tetragonal deformation on electronic and magnetic properties. Meanwhile, the possible L21 disorder is also discussed for NiCoCrAl and NiCoCrGa.

  18. Magnetism of hexagonal Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials

    SciTech Connect

    Fuglsby, R.; Kharel, P.; Zhang, W.; Sellmyer, D. J.; Valloppilly, S.; Huh, Y.

    2015-05-07

    Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials in the hexagonal Ni{sub 2}In-type crystal structure have been prepared using arc-melting and melt spinning. All the rapidly quenched Mn{sub 1.5}X{sub 0.5}Sn alloys show moderate saturation magnetizations with the highest value of 458 emu/cm{sup 3} for Mn{sub 1.5}Fe{sub 0.5}Sn, but their Curie temperatures are less than 300 K. All samples except the Cr containing one show spin-glass-like behavior at low temperature. The magnetic anisotropy constants calculated from the high-field magnetization curves at 100 K are on the order of 1 Merg/cm{sup 3}. The vacuum annealing of the ribbons at 550 °C significantly improved their magnetic properties with the Curie temperature increasing from 206 K to 273 K for Mn{sub 1.5}Fe{sub 0.5}Sn.

  19. Rational synthesis and magnetic properties of a family of low-dimensional heterometallic Cr-Mn complexes based on the versatile building block [Cr(2,2'-bipyridine)(CN)4]-.

    PubMed

    Zhang, Yuan-Zhu; Gao, Song; Wang, Zhe-Ming; Su, Gang; Sun, Hao-Ling; Pan, Feng

    2005-06-27

    Six heterometallic compounds based on the building block [Cr(bpy)(CN)4]- (bpy = 2,2'-bipyridine) with secondary and/or tertiary coligands as modulators, {Mn(H2O)2[Cr(bpy)(CN)4]2}n (1), {Mn(bpy)(H2O)[Cr(bpy)(CN)4]2 x H2O}n (2), [Mn(bpy)2][Cr(bpy)(CN)4]2 x 5H2O (3), {[Mn(dca)(bpy)(H2O)][Cr(bpy)(CN)4] x H2O}n (4) (dca = N(CN)2(-)), {Mn(N3)(CH3OH)[Cr(bpy)(CN)4] x 2H2O}n (5), and {Mn(bpy)(N3)(H2O)[Cr(bpy)(CN)4] x H2O}2 (6), have been prepared and characterized structurally and magnetically. X-ray crystallography reveals that the compounds 1, 2, 4, and 5 consist of one-dimensional (1D) chains with different structures: a 4,2-ribbon-like chain, a branched zigzag chain, a 2,2-CC zigzag chain, and a 3,3-ladder-like chain, respectively. It also reveals that compound 3 has a trinuclear [MnCr2] structure, and compound 6 has a tetranuclear [Mn2Cr2] square structure. Magnetic studies show antiferromagnetic interaction between Cr(III) and Mn(II) ions in all compounds. All of the chain compounds exhibit metamagnetic behaviors with different critical temperatures (Tc) and critical fields (Hc; at 1.8 K): 3.2 K and 3.0 kOe for 1; 2.3 K and 4.0 kOe for 2; 2.1 K and 1.0 kOe for 4; and 4.7 K and 5.0 kOe for 5, respectively. The noncentrosymmetric compound 2 is also a weak ferromagnet at low temperature because of spin canting. The magnetic analyses reveal Cr-Mn intermetallic magnetic exchange constants, J, of -4.7 to -9.4 cm(-1) (H = -JS(Cr) x S(Mn)). It is observed that the antiferromagnetic interaction through the Mn-N-C-Cr bridge increases as the Mn-N-C angle (theta) decreases to the range of 155-180 degrees, obeying an empirical relationship: J = -40 + 0.2theta. This result suggests that the best overlap between t(2g) (high-spin Mn(II)) and t(2g) (low-spin Cr(III)) occurs at an angle of approximately 155 degrees.

  20. Improved tunneling magnetoresistance in (Ga,Mn)As/AlOx/CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yu, G. Q.; Chen, L.; Rizwan, Syed; Zhao, J. H.; XU, K.; Han, X. F.

    2011-06-01

    We fabricated (Ga,Mn)As/AlOx/Co40Fe40B20 magnetic tunnel junctions with ferromagnetic semiconductor/insulator/ferromagnetic metal (S/I/F) structure. The treatments of pre-annealing and post-plasma cleaning on the (Ga,Mn)As film were introduced before the growth of the subsequent layers. A high tunneling magnetoresistance (TMR) ratio of 101% is achieved at 2 K, and the spin polarization of (Ga,Mn)As, P = 56.8%, is deduced from Jullière's formula. The improved TMR ratio is primarily due to the improved magnetism of (Ga,Mn)As layer by low-temperature annealing and cleaned interface between (Ga,Mn)As and AlOx attained by subsequent plasma cleaning process.

  1. Effect of Ni content on microwave absorbing properties of MnAl powder

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-zhong; Lin, Pei-hao; Huang, Wei-chao; Pan, Shun-kang; Liu, Ye; Wang, Lei

    2016-09-01

    MnAlNi powder was prepared by the process of vacuum levitation melting and high-energy ball milling, The morphology and phase structure of the powder were analyzed by Scanning Electron Microscope(SEM), X-ray diffraction(XRD) and the effect of the Ni content on microwave absorbing properties of MnAl powder was investigated by an vector network analyzer. The addition of Ni, which improved the microwave absorbing properties of MnAl powder but not changed the composition of Al8Mn5 alloy. The minimum reflectivity of (Al8Mn5)0.95Ni0.05 powder with a coating thickness (d) of 1.8 mm was about -40.8 dB and has better bandwidth effect, the absorbing mechanism of AlMnNi powders on the electromagnetic was related to the electromagnetic loss within the absorbing coatings and the effect of coating thickness on the interference loss of electromagnetic wave.

  2. Microstructure/Oxidation/Microhardness Correlations in Gamma-Based and Tau-Based Al-Ti-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Brady, Michael P.; Smialek, J. L.; Humphrey, D. L.

    1994-01-01

    The relationships between alloy microstructure and air oxidation kinetics and alloy microstructure and microhardness in the Al-Ti-Cr system for exposures at 800 C and 1000 C were investigated. The relevant phases were identified as tau (Ll2), gamma (LIO), r-Al2Ti, TiCrAl (laves), and Cr2AI. Protective alumina formation was associated with tau, Al-rich TiCrAl, and gamma/TiCrAl mixtures. Brittleness was associated with the TiCrAl phase and tau decomposition to A12Ti + Cr2AI. It was concluded that two-phase gamma + TiCrAl alloys offer the greatest potential for oxidation resistance and room temperature ductility in the Al-Ti-Cr system.

  3. High-temperature oxidation of CrN/AlN multilayer coatings

    NASA Astrophysics Data System (ADS)

    Bardi, U.; Chenakin, S. P.; Ghezzi, F.; Giolli, C.; Goruppa, A.; Lavacchi, A.; Miorin, E.; Pagura, C.; Tolstogouzov, A.

    2005-12-01

    Experiments are reported on sputter depth profiling of CrN/AlN multilayer abrasive coatings by secondary ion mass spectrometry (SIMS) coupled with sample current measurements (SCM). The coatings were deposited by a closed-field unbalanced magnetron sputtering. It is shown that after oxidation tests, performed in air at 900 °C for 2 h and at 1100 °C for 4 h, the layered structure begins to degrade but is not destroyed completely. Oxidation at 1100 °C for 20 h causes total destruction of the coatings that can be attributed to a fast diffusion of oxygen, nickel, manganese and other elements along defect paths (grain boundaries, dislocations, etc.) in the coating. There are practically no nitrides in the near-surface layer after such a treatment and all the metallic components are in the oxidized form as follows from the data obtained by X-ray photoelectron spectroscopy (XPS). According to XPS and mass-resolved ion scattering spectrometry (MARISS), the surface content of Al in the heat-treated coatings has decreased in comparison with the as-received sample and that of Cr increased. Both XPS and MARISS data exhibit real increase in superficial concentration of the substrate materials (Mn and Ni) that is controversial if using SIMS alone. SCM turned out to be an informative depth profiling method complementary to more expensive and complicated SIMS, being particularly useful for structures with different secondary electron emission properties of the layers. SCM with predetermined SIMS calibration allows a routine characterization of coatings and other multilayer structures, particularly, in situations where the expenses of analysis can be justified.

  4. Nanomechanical Behavior of CoCrFeMnNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Mridha, Sanghita; Das, Santanu; Aouadi, Samir; Mukherjee, Sundeep; Mishra, Rajiv S.

    2015-08-01

    The nanomechanical behavior of the Co20Cr20Fe20Mn20Ni20 high-entropy alloy was investigated in as-cast, rolled, annealed, and thin-film forms. Dislocation nucleation was studied by repeated indents at a low load for each of the different processing conditions. Distinct displacement bursts (pop in) were observed in the loading curve marked by incipient plasticity for all the samples. The as-cast and annealed samples showed pop ins for 100% of the indents, whereas the rolled and thin-film samples showed a much lower fraction of displacement bursts. This was explained by the high density of dislocations for the cold-worked and thin-film conditions. The strong depth dependence of hardness was explained by geometrically necessary dislocations. The nanomechanical behavior and twinned microstructure indicate low stacking-fault energy for this high-entropy alloy.

  5. Texture evolution of cold rolled and reversion annealed metastable austenitic CrMnNi steels

    NASA Astrophysics Data System (ADS)

    Weidner, A.; Fischer, K.; Segel, C.; Schreiber, G.; Biermann, H.

    2015-04-01

    A thermo-mechanical process consisting of cold rolling and subsequent reversion annealing was applied to high-alloy metastable austenitic CrMnNi steels with different nickel contents. As a result of the reversion annealing ultrafine grained material with a grain size in the range between 500 nm up to 4 μm were obtained improving the strength behavior of the material. The evolution of the texture of both the cold rolled states and the reversion-annealed states was studied either by X-ray diffraction or by EBSD measurements. The nickel content has a significant influence on the austenite stability and consequently also on the amount of the martensitic phase transformation. However, the developed textures in both steel variants with different austenite stability revealed the same behavior. In both investigated steels the texture of the reverted austenite is a pronounced Bs-type texture as developed also for the deformed austenite

  6. Weldability of a high entropy CrMnFeCoNi alloy

    DOE PAGES

    Wu, Zhenggang; David, Stan A.; Feng, Zhili; ...

    2016-07-19

    We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ ofmore » the tested alloy.« less

  7. Effect of Cr addition on the structural, magnetic and mechanical properties of magnetron sputtered Ni-Mn-In ferromagnetic shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Akkera, Harish Sharma; Kaur, Davinder

    2016-12-01

    The effect of Cr substitution for In on the structural, martensitic phase transformation and mechanical properties of Ni-Mn-In ferromagnetic shape memory alloy (FSMA) thin films was systematically investigated. X-ray diffraction results revealed that the Ni-Mn-In-Cr thin films possessed purely austenitic cubic L21 structure at lower content of Cr, whereas higher Cr content, the Ni-Mn-In-Cr thin films exhibited martensitic structure at room temperature. The temperature-dependent magnetization ( M- T) and resistance ( R- T) results confirmed that the monotonous increase in martensitic transformation temperatures ( T M) with the addition of Cr content. Further, the room temperature nanoindentation studies revealed the mechanical properties such as hardness ( H), elastic modulus ( E), plasticity index ( H/ E) and resistance to plastic deformation ( H 3/ E 2) of all the samples. The addition of Cr content significantly enhanced the hardness (28.2 ± 2.4 GPa) and resistance to plastic deformation H 3/ E 2 (0.261) of Ni50.4Mn34.96In13.56Cr1.08 film as compared with pure Ni-Mn-In film. As a result, the appropriate addition of Cr significantly improved the mechanical properties with a decrease in grain size, which could be further attributed to the grain boundary strengthening mechanism. These findings indicate that the Cr-doped Ni-Mn-In FSMA thin films are potential candidates for microelectromechanical systems applications.

  8. Enhanced Photovoltage Response of Hematite-X-Ferrite Interfaces (X = Cr, Mn, Co, or Ni).

    PubMed

    Bian, Liang; Li, Hai-Long; Li, Yu-Jin; Nie, Jia-Nan; Dong, Fa-Qin; Dong, Hai-Liang; Song, Mian-Xin; Wang, Li-Sheng; Zhou, Tian-Liang; Zhang, Xiao-Yan; Li, Xin-Xi; Xie, Lei

    2017-12-01

    High-fluorescent p-X-ferrites (XFe2O4; XFO; X = Fe, Cr, Mn, Co, or Ni) embedded in n-hematite (Fe2O3) surfaces were successfully fabricated via a facile bio-approach using Shewanella oneidensis MR-1. The results revealed that the X ions with high/low work functions modify the unpaired spin Fe(2+)-O(2-) orbitals in the XFe2O4 lattices to become localized paired spin orbitals at the bottom of conduction band, separating the photovoltage response signals (73.36~455.16/-72.63~-32.43 meV). These (Fe2O3)-O-O-(XFe2O4) interfacial coupling behaviors at two fluorescence emission peaks (785/795 nm) are explained via calculating electron-hole effective masses (Fe2O3-FeFe2O4 17.23 × 10(-31) kg; Fe2O3-CoFe2O4 3.93 × 10(-31) kg; Fe2O3-NiFe2O4 11.59 × 10(-31) kg; Fe2O3-CrFe2O4 -4.2 × 10(-31) kg; Fe2O3-MnFe2O4 -11.73 × 10(-31) kg). Such a system could open up a new idea in the design of photovoltage response biosensors.

  9. Structure and Magnetic Properties of Mechanical Alloyed Mn-15at.%Al

    NASA Astrophysics Data System (ADS)

    Hannora, Ahmed E.; Hanna, Faried F.; Marei, Lotfy K.

    2013-04-01

    Mechanical alloying (MA) method has been used to produce nanocrystallite Mn-15at.%Al alloy. X-ray diffraction (XRD) patterns for the as-milled elemental α-Mn and aluminum powder samples show a mixture of α + β-MnAl phases after 20 h of milling and changes to a dominant β-MnAl phase structure after 50 h. An average crystallite size of 40 nm was determined from Hall-Williamson method analysis after 5 h of milling. Moreover, the thermal analysis results using differential thermal analysis (DTA), suggested a possible phase transformation after 20 h of milling. Isothermal treatments are carried in the temperature range of 450°C to 1000°C. Room-temperature vibrating sample magnetometer (VSM) measurements of the hysteretic response revealed that the saturation magnetization Bs and coercivity Hc for 10 h ball milled sample are 2.1 emu/g and 92 Oe, respectively.

  10. The Effect of Core-Mantle Differentiation on V, Cr, and Mn: Experimental Metal/Silicate Partitioning Results

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Agee, C. B.

    2001-01-01

    The abundances of V, Cr, and Mn are similarly depleted in the Earth and Moon. We present metal/silicate partitioning results which examine if the depletions can be explained by a core formation event. Additional information is contained in the original extended abstract.

  11. High-field magnetization of band ferromagnets Co2 YAl ( Y = Ti, V, Cr, Mn, Fe, Ni)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Perevozchikova, Yu. A.; Korolev, A. V.; Weber, H. W.

    2016-12-01

    The temperature dependences of the magnetization of ferromagnetic Heusler alloys Co2 YAl, where Y = Ti, V, Cr, Mn, Fe, and Ni have been studied at H = 50 kOe in the range 2 K < T < 1100 K. It is shown that the high-field ( H ≥ 20 kOe) magnetization is described within the Stoner model.

  12. Evaluation of Ti-48Al-2Cr-2Nb Under Fretting Conditions

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.; Raj, Sai V.

    2001-01-01

    The fretting behavior of Ti-48Al-2Cr-2Nb (y-TiAl) in contact with the nickel-base superalloy 718 was examined in air at temperatures from 296 to 823 K (23 to 550 C). The interfacial adhesive bonds between Ti-48Al-2Cr-2Nb and superalloy 718 were generally stronger than the cohesive bonds within Ti-48Al-2Cr-2Nb. The failed Ti-48Al-2Cr-2Nb debris subsequently transferred to the superalloy 718. In reference experiments conducted with Ti-6Al-4V against superalloy 718 under identical fretting conditions, the degree of transfer was greater for Ti-6A1-4V than for Ti-48Al-2Cr-2Nb. Wear of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting frequency. The increasing rate of oxidation at elevated temperatures led to a drop in wear at 473 K. However, fretting wear increased as the temperature was increased from 473 to 823 K. At 723 and 823 K, oxide film disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.

  13. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams

    DOE PAGES

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; ...

    2016-11-02

    In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Creq/Nieq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Creq/Nieq (Espy equivalents) at 21more » mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Creq/Nieq. Primary ferrite solidification was observed above 1.75 Creq/Nieq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less

  14. Site preference and compensation behavior in Co(Cr, Mn){sub 2}O{sub 4} system

    SciTech Connect

    Zhang, H. G.; Wang, Z.; Yue, M.; Liu, E. K.; Wang, W. H.; Wu, G. H.

    2015-05-07

    Site preference of doped Mn ions in CoCr{sub 2−x}Mn{sub x}O{sub 4} (x = 0–2) series has been derived separately from structure and magnetic measurement. It shows that parts of the doped Mn ions occupy the A (Co) sites when x < 0.5. And then, it takes the two B (Cr) sites in turn before and after x = 1.3. This site preference behavior results in a role conversion of the magnetic contributors and, thus, leads to the composition dependent magnetic compensation. Temperature induced compensation and negative magnetization have also been found in several samples, which is attributed to the large energy barrier between the ferromagnetic and antiferromagnetic spin arrangement. A structure transition from cubic to tetragonal symmetry has been detected.

  15. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Deming; Chen, Guiqing; Wang, Yuesheng

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  16. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    SciTech Connect

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar; Terrani, Kurt A.; Field, Kevin G.

    2016-02-17

    We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning of the Al from the α' precipitates was also observed.

  17. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    DOE PAGES

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; ...

    2016-02-17

    We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning ofmore » the Al from the α' precipitates was also observed.« less

  18. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy

    DOE PAGES

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with amore » composition of FeNiMnCr18 was successfully developed. This near-equiatomic FeNiMnCr18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.« less

  19. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  20. Study of Fe-12Cr-20Mn-W-C austenitic steels irradiated in the SM-2 reactor

    NASA Astrophysics Data System (ADS)

    Shamardin, V. K.; Bulanova, T. M.; Neustroyev, V. S.; Ostrovsky, Z. E.; Kosenkov, V. M.; Ivanov, L. I.; Djomina, E. V.

    1992-09-01

    A comparison has been made between the mechanical properties and swelling of austenitic stainless steels EP-838 (Fe-Cr-Mn) and 316SS (Fe-Cr-Ni) irradiated in the mixed-neutron spectrum of the SM-2 reactor in the temperature range 400-800°C (every 100°C) to 16 dpa dose with 1000 and 3000 appm helium generation correspondingly, determined by nickel content. EP-838 exhibited less susceptibility to void swelling and radiation hardening. Fe-12Cr-20Mn-W-0.1C steel without nickel irradiated at 100°C to 21 dpa exhibited significant radiation hardening accompanied by α-phase formation in the steel structure.

  1. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-09-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  2. Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe{sub 2}O{sub 6}

    SciTech Connect

    Batuk, Dmitry; De Dobbelaere, Christopher; Tsirlin, Alexander A.; Abakumov, Artem M.; Hardy, An; Van Bael, Marlies K.; Greenblatt, Martha; Hadermann, Joke

    2013-09-01

    Graphical abstract: - Highlights: • The substitution of Cr for Mn in BiMnFe{sub 2}O{sub 6} is possible by the solution–gel method. • The BiCr{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 6} solid solution is obtained for the x values up to 0.3. • Increasing Cr content lowers the temperature of the antiferromagnetic ordering. - Abstract: We report the Cr{sup 3+} for Mn{sup 3+} substitution in the BiMnFe{sub 2}O{sub 6} structure. The BiCr{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 6} solid solution is obtained by the solution–gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe{sub 2}O{sub 6} structure (for x = 0.3, a = 5.02010(6)Å, b = 7.06594(7)Å, c = 12.6174(1)Å, S.G. Pbcm, R{sub I} = 0.036, R{sub P} = 0.011) with only a slight decrease in the cell parameters associated with the Cr{sup 3+} for Mn{sup 3+} substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCr{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 6} (x = 0.2; 0.3) and parent BiMnFe{sub 2}O{sub 6}. Only T{sub N} slightly decreases upon Cr doping that indicates a very subtle influence of Cr{sup 3+} cations on the magnetic properties at the available substitution rates.

  3. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy.

    PubMed

    Manzoni, A; Daoud, H; Völkl, R; Glatzel, U; Wanderka, N

    2013-09-01

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al-Ni rich matrix and Cr-Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr-Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr-Fe-rich precipitates.

  4. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.; Unocic, Kinga A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  5. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.

    PubMed

    Sun, Yuanyuan; Yue, Qinyan; Mao, Yanpeng; Gao, Baoyu; Gao, Yuan; Huang, Lihui

    2014-01-30

    FeCl3, AlCl3 and MnCl2 were used as the assisted activation agent in activated carbon preparation by H3PO4 activation using microwave heating method. The physico-chemical properties of activated carbons were investigated by scanning electron microscope (SEM), N2 adsorption/desorption, Boehm's titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). To investigate the adsorption performances of chromium onto these newly developed activated carbons, a batch of experiments were performed under different adsorption conditions: solution pH, initial Cr(VI) ion concentration, contact time and co-existing ions. The results suggested that carbon with MnCl2 as assisted activation agent displayed the highest BET surface area (1332m(2)/g) and the highest pore volume (1.060cm(3)/g). FeCl3, AlCl3 and MnCl2 had successfully improved Cr(VI) adsorption and activated carbon with FeCl3 as assisted activation agent exhibited the best uptake capacity. To study the transformation of Cr(VI) in adsorption process, total chromium in the aqueous solution was also recorded. The ratio of the amount of Cr(VI) to Cr(III) on each adsorbent was explained by XPS analysis results. Both the co-existing salts (Na2SO4 and NaNO3) demonstrated promoted effects on Cr(VI) removal by four carbons. The pseudo-second-order model and Freundlich equation displayed a good correlation with adsorption data.

  6. Kinetics of borided 31CrMoV9 and 34CrAlNi7 steels

    SciTech Connect

    Efe, Goezde Celebi; Ipek, Mediha; Ozbek, Ibrahim; Bindal, Cuma

    2008-01-15

    In this study, kinetics of borides formed on the surface of 31CrMoV9 and 34CrAlNi7 steels borided in solid medium consisting of Ekabor II at 850-900-950 deg. C for 2, 4, 6 and 8 h were investigated. Scanning electron microscopy and optical microscopy examinations showed that borides formed on the surface of borided steels have columnar morphology. The borides formed in the coating layer confirmed by X-ray diffraction analysis are FeB, Fe{sub 2}B, CrB, and Cr{sub 2}B. The hardnesses of boride layers are much higher than that of matrix. It was found that depending on process temperature and time the fracture toughness of boride layers ranged from 3.93 to 4.48 MPa m{sup 1/2} for 31CrMoV9 and from 3.87 to 4.40 MPa m{sup 1/2} for 34CrAlNi7 steel. Activation energy, growth rate and growth acceleration of boride layer calculated according to these kinetic studies revealed that lower activation energy results in the fast growth rate and high growth acceleration.

  7. Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Nagashima, Kazuhide; Krot, Alexander N.; Ogliore, Ryan C.; Yin, Qing-Zhu; Amelin, Yuri; Stirling, Claudine H.; Kaltenbach, Angela

    2017-03-01

    We report on the mineralogy, petrography, and in situ measured oxygen- and magnesium-isotope compositions of eight porphyritic chondrules (seven FeO-poor and one FeO-rich) from the Renazzo-like carbonaceous (CR) chondrites Graves Nunataks 95229, Grosvenor Mountains 03116, Pecora Escarpment 91082, and Queen Alexandra Range 99177, which experienced minor aqueous alteration and very mild thermal metamorphism. We find no evidence that these processes modified the oxygen- or Al-Mg isotope systematics of chondrules in these meteorites. Olivine, low-Ca pyroxene, and plagioclase within an individual chondrule have similar O-isotope compositions, suggesting crystallization from isotopically uniform melts. The only exceptions are relict grains in two of the chondrules; these grains are 16O-enriched relative to phenocrysts of the host chondrules. Only the FeO-rich chondrule shows a resolvable excesses of 26Mg, corresponding to an inferred initial 26Al/27Al ratio [(26Al/27Al)0] of (2.5 ± 1.6) × 10-6 (±2SE). Combining these results with the previously reported Al-Mg isotope systematics of CR chondrules (Nagashima et al., 2014, Geochem. J. 48, 561), 7 of 22 chondrules (32%) measured show resolvable excesses of 26Mg; the presence of excess 26Mg does not correlate with the FeO content of chondrule silicates. In contrast, virtually all chondrules in weakly metamorphosed (petrologic type 3.0-3.1) unequilibrated ordinary chondrites (UOCs), Ornans-like carbonaceous (CO) chondrites, and the ungrouped carbonaceous chondrite Acfer 094 show resolvable excesses of 26Mg. The inferred (26Al/27Al)0 in CR chondrules with resolvable excesses of 26Mg range from (1.0 ± 0.4) × 10-6 to (6.3 ± 0.9) × 10-6, which is typically lower than (26Al/27Al)0 in the majority of chondrules from UOCs, COs, and Acfer 094. Based on the inferred (26Al/27Al)0, three populations of CR chondrules are recognized; the population characterized by low (26Al/27Al)0 (<3 × 10-6) is dominant. There are no noticeable

  8. Transformation of α-Al(Fe,Mn)Si in Al-7Si-0.4Mg cast alloys after solution heat treatment

    NASA Astrophysics Data System (ADS)

    Han, Sang Won

    2013-01-01

    The α-Al(Fe,Mn)Si compound in an Al-7Si-0.35Mg-0.2Fe-xMn cast alloy has two shapes, a needle-like shape and a Chinese script shape. These two kinds of compounds are tinged with either white or gray tones irrespective of their shape. Unlike compounds with a white tone, during solution heat treatment, all α-Al (Fe,Mn)Si compounds with a gray tone experience severe dissolution. Concerning white-tinged α-Al (Fe,Mn)Si compounds, unlike the needle-like α-Al(Fe,Mn)Si, α-Al(Fe,Mn)Si that resembles Chinese script is rarely transformed.

  9. Cr-Al coatings on low carbon steel prepared by a mechanical alloying technique

    NASA Astrophysics Data System (ADS)

    Hia, A. I. J.; Sudiro, T.; Aryanto, D.; Sebayang, K.

    2016-08-01

    Four different compositions of Cr and Al coatings as Cr10o, Cr87.5Al12.5, Cr5oAl5o, and Al100 have been prepared on the surface of low carbon steel by a mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Hereafter, the Cr-Al powder and substrate were mechanical alloyed in air for 1 hour. Heat treatment of coated sample were carried out at 800°C in a vacuum furnace. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The results show that Cr, Cr-Al or Al coatings were formed on the surface of low carbon steel. After heat treatment, new phases and interdiffusion zone were formed in the coating and at the coating/steel interface, depending on the coating composition.

  10. The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance

    NASA Astrophysics Data System (ADS)

    Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini

    2012-06-01

    Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.

  11. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    SciTech Connect

    He, Y.R.; Zheng, M.H.; Rapp, R.A.

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  12. Solid state reduction of chromium (VI) pollution for Al2O3-Cr metal ceramics application

    NASA Astrophysics Data System (ADS)

    Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yangai; Tang, Hao; Min, Xin; Wu, Xiaowen

    2016-04-01

    Reduction of chromium (VI) from Na2CrO4 through aluminothermic reaction and fabrication of metal-ceramic materials from the reduction products have been investigated in this study. Na2CrO4 could be successfully reduced into micrometer-sized Cr particles in a flowing Ar atmosphere in presence of Al powder. The conversion ratio of Na2CrO4 to metallic Cr attained 96.16% efficiency. Al2O3-Cr metal-ceramic with different Cr content (5 wt%, 10 wt%, 15 wt%, 20 wt%) were further prepared from the reduction product Al2O3-Cr composite powder, and aluminum oxide nanopowder via pressure-less sintering. The phase composition, microstructure and mechanical properties of metal-ceramic composites were characterized to ensure the potential of the Al2O3-Cr composite powder to form ceramic materials. The highest relative density and bending strength can reach 93.4% and 205 MP, respectively. The results indicated that aluminothermic reduction of chromium (VI) for metal-ceramics application is a potential approach to remove chromium (VI) pollutant from the environment.

  13. Spectroscopic properties of {Cr}^{3+} in the spinel solid solution {ZnAl}_{2-x}{Cr}x{O}_4

    NASA Astrophysics Data System (ADS)

    Verger, Louisiane; Dargaud, Olivier; Rousse, Gwenaelle; Rozsályi, Emese; Juhin, Amélie; Cabaret, Delphine; Cotte, Marine; Glatzel, Pieter; Cormier, Laurent

    2016-01-01

    The evolution of the structural environment of {Cr}{^{3+}} along the solid solution {ZnAl}_{2-x}{Cr}x{O}_4 has been investigated using a multi-analytical approach. X-ray diffraction confirms that the system follows Vegard's law. Diffuse reflectance spectra show a decrease of the crystal field parameter with the Cr content, usually related to the increase of the Cr-O bond length in a point charge model. This interpretation is discussed and compared to the data obtained by first-principle calculations based on density functional theory. X-ray absorption near edge structure spectra at the Cr K-edge show a pronounced evolution in the pre-edge with the Cr content, characterised by the appearance of a third feature. Calculations enable to assign the origin of this feature to Cr neighbours. The colour change from pink to brownish pink and eventually green along the solid solution has also been quantified by calculating the L*, a*, b* and x, y coefficients in the system defined by the International Commission on Illumination.

  14. Correlation of EMR and optical spectroscopy data for Cr3+ and Mn2+ ions doped into yttrium aluminum borate YAl3(BO3)4 crystal - Extracting low symmetry aspects

    NASA Astrophysics Data System (ADS)

    Rudowicz, Czesław; Gnutek, Paweł; Açıkgöz, Muhammed

    2015-08-01

    In this study, the crystal field analysis for Cr3+ and Mn2+ ions doped into yttrium aluminum borate YAl3(BO3)4, for short YAB, crystal has been carried out to complement earlier study of the zero-field splitting (ZFS) parameters (ZFSPs). This analysis utilizes data on the distortion models obtained from analysis of the ZFSPs obtained experimentally by EMR for Cr3+ and Mn2+ ions at the Y3+ and Al3+ sites in YAB. This approach enables to verify and enhance reliability of the ZFSP modeling based on superposition model (SPM) analysis and the distortion models predicted previously. Subsequently, modeling of the crystal field parameters (CFPs) based on SPM analysis is carried out for Cr3+ and Mn2+ ions located at possible cation sites in YAB. The SPM predicted CFP values serve as input for the Crystal Field Analysis (CFA) package to calculate the CF energy levels. The predicted physical ZFS of the ground spin state, i.e. the 4A2 state for Cr3+ ion and the 6S state Mn2+ ions, enable calculation of the theoretical ZFSP values, D and D & (a-F), respectively, using the microscopic spin Hamiltonian (MSH) module in the CFA package. In this way, data on the distortions around the Cr3+ centers in YAB (and to a certain extent also for Mn2+ centers) obtained using the ZFSP data from EMR measurements may be correlated with data on the CF energy levels measured by optical spectroscopy. This modeling approach uncovers certain incompatibilities in the existing data for Cr3+:YAB, which call for reanalysis of the previous assignments of the energy levels observed in optical spectra and more accurate experimental data.

  15. Microstructure and Sliding Wear Performance of Cr7C3-(Ni,Cr)3(Al,Cr) Coating Deposited from Cr7C3 In Situ Formed Atomized Powder

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Bin; Shen, Jie; Gao, Feng; Yu, Yueguang; Li, Changhai

    2017-01-01

    This work is aimed at developing a new type of Cr7C3-(Ni,Cr)3(Al,Cr) coating for parts used in heavy-duty diesel engines. The feedstock, in which the stripe-shaped Cr7C3 was in situ formed, was firstly prepared by vacuum melting and gas atomization and then subjected by high-velocity oxy-fuel spraying to form the coatings. The carbon content, microstructure and phase constitution of the powders, as well as the sprayed coatings, were analyzed by chemical analysis, SEM and XRD. The hardness and sliding wear performance of the sprayed coatings were also tested and compared to a commercial Cr3C2-NiCr coating used on piston rings. The results showed that the content of carbon in feedstock was almost the same as designed, and that the volume content of in situ formed Cr7C3 was increased with carbon and chromium added. The major phases of the powders and sprayed coatings are Cr7C3 and Cr-alloyed Ni3Al. Only a small amount of carbon lost during the spraying process. As Cr7C3 content increased in the coatings, the microhardness at room temperature was firstly increased to about 1000Hv0.3. The microhardness of the coatings stayed almost constant, while the testing temperature was raised up to 700 °C for 0.5 h, which illustrates the potential application of the investigated coatings under high temperature conditions. The coatings containing 70 and 77 vol.% Cr7C3 showed the most promising wear resistance, lower friction coefficient and better tribological compatibility to gray cast iron counterpart than other tested Cr7C3-(Ni,Cr)3(Al,Cr) coatings and the reference Cr3C2-NiCr coating.

  16. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  17. Structural Disorder and Magnetism in the Spin-Gapless Semiconductor CoFeCrAl

    DTIC Science & Technology

    2016-08-24

    semiconductor CoFeCrAl into a half- metallic ferrimagnet and increases the half- metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of...magnets. However, Si addition improves the degree of Heusler ordering and changes the electronic structure from a SGS to a half- metal with increased...total moment per relaxed unit cell are 1.71 µB (I), –0.60 µB (II), and 1.05 µB (III). None of the disordered CoFeCrAl structures is energetically

  18. Evaluation of Al3Mg2 precipitates and Mn-rich phase in aluminum-magnesium alloy based on scanning transmission electron microscopy imaging

    SciTech Connect

    Zhu, Yakun; Cullen, David A; Kar, Soumya; Free, Michael P; Allard Jr, Lawrence Frederick

    2012-01-01

    Scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) were used to observe intergranular and intragranular -phase (Al3Mg2) formation and growth in as-received sample and long-term (~ 1 year) thermally treated samples of 5083-H131 alloy. Rod-shaped and equiaxed particles rich in Mn, Fe, and Cr were present in the as-received and heat treated samples. The -phase precipitated along grain boundaries as well as around and between preexisting Mn-Fe-Cr rich particles. The measured thickness of -phase along grain boundaries was lower than Zener Hillert diffusion model predicted value and the potential reasons were theoretically analyzed. Dislocation networks, grain boundaries, and different preexisting particles were observed to contribute to Mg diffusion and -phase precipitation.

  19. Reduction of Cr (VI) by organic acids in the presence of Al (III).

    PubMed

    Chen, Na; Lan, Yeqing; Wang, Bo; Mao, Jingdong

    2013-09-15

    The effects of Al (III) on the reduction of Cr (VI) by three α-hydroxy acids, tartaric, malic and citric acids, were investigated through batch experiments at pH from 2.5 to 4.0 and temperatures from 25 °C to 35 °C. These reactions could be described as pseudo-zero-order with respect to Cr (VI) when the concentrations of α-hydroxy acids were greatly in excess. The transformation rates of Cr (VI) to Cr (III) in the presence of Al (III) without light were in the decreasing order of tartaric acid>malic acid>citric acid. This order suggested that the two α-hydroxyl groups in tartaric acid could play an important role in the reduction of Cr (VI) by organic acids. The possible mechanism was that the formed complex between organic acids and Al (III) significantly enhanced the reductivity of α-hydroxy acids and further led to the more complicated Cr (VI)-tartaric acid-Al (III) cyclic ester which greatly accelerated the reduction rate. The Cr (VI) reduction reaction rate increased with the decrease of pH but with the increase of Al (III) concentration, tartaric acid concentration, and temperature. As the pH decreased, the increase of [H(+)] led to an increase in {Al(III)H₂Tar₂}(+), the most active species, and thus the enhanced reduction rate.

  20. Effects of Mn, Si, and purity on the design of 3.5NiCrMoV, 1CrMoV, and 2.25Cr-1Mo bainitic alloy steels

    NASA Astrophysics Data System (ADS)

    Bodnar, R. L.; Ohhashi, T.; Jaffee, R. I.

    1989-08-01

    Three high-temperature bainitic alloy steels were evaluated in the laboratory to determine the effects of Mn, Si, and impurities ( i.e., S, P, Sn, As, and Sb) on microstructure and mechanical properties. The alloy steels were 3.5NiCrMoV and CrMoV, which are used for turbine rotors, and 2.25Cr-1Mo, which is used in pressure vessel applications. The important effects of Mn, Si, and impurities, which should control the design of these high-temperature bainitic steels, are presented. Key results are used to illustrate the influence of these variables on cleanliness, overheating, austenitizing, hardenability, tempering, ductility, toughness, temper embrittlement, creep rupture, and low-cycle fatigue. Low levels of Mn, Si, and impurities not only result in improved temper embrittlement resistance in these steels but also lead to an improvement in creep rupture properties ( i.e., improved strength and ductility). These results have produced some general guidelines for the design of high-temperature bainitic steels. Examples illustrating the implementation of the results and the effectiveness of the design guidelines are provided. Largely based on the benefits shown by this work, a high-purity 3.5NiCrMoV steel, which is essentially free of Mn, Si, and impurities, has been developed and is already being used commercially.

  1. Luminescence Spectra of ZnAl 2 O 4 {:}Cr 3+ Spinel Nanopowders

    NASA Astrophysics Data System (ADS)

    Luc, H. H.; Nguyen, T. K.; Nguyen, V. M.; Suchocki, A.; Kamiñska, A.; Le, V. K.; Nguyen, V. H.; Luong, T. T.

    2002-12-01

    The synthetic ZnAl 2 O 4 spinels doped with Cr 3+ ions are prepared from ZnSO,dwi{4}>, Al 2 (SO 4 ) 3 , and Cr 2 (SO 4 ) 3 . The spinel single phase is detected from X-ray diffraction. Luminescence properties of Cr 3+ in ZnAl 2 O 4 were studied by low temperature luminescence and decay measurements. Four luminescence lines at 14570, 14520, 14460, and 14330 cm -1 were found to originate from structure distortion and the line at 14175 cm -1 - from chromium pairs. The broad emission band at about 13540 cm -1 is considered to arise from a new Cr 3+ center in ZnCr 2 O 4 .

  2. Influence of annealing conditions on microstructure and phase occurrence in high-alloy CrMnN steels

    SciTech Connect

    Bakajova, Jana; Domankova, Maria; Cicka, Roman; Eglsaeer, Sabine; Janovec, Jozef

    2010-10-15

    The influence of annealing at 750, 800, 850, 900 and 950 deg. C for 4 h on the microstructure and the phase occurrence in two high-alloy CrMnN austenitic stainless steels was investigated using light microscopy, transmission electron microscopy, and thermodynamic calculations. Austenite, {sigma}, and Cr{sub 2}N were identified in both steels experimentally. The experimental results were found to be in good agreement with the thermodynamic predictions. In one of the steels, M{sub 23}C{sub 6} as a non-equilibrium probably residual phase was found. Cr{sub 2}N appeared in the steels either in the form of discrete particles or as a part of cells consisting of alternate lamellae of Cr{sub 2}N and austenite.

  3. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-09-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1- x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1- x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1- x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1- x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  4. Electronic structure and magnetism of Ge(Sn)TMXTe1-X (TM = V, Cr, Mn): A first principles study

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Bose, S. K.; Kudrnovský, J.

    2016-12-01

    This work presents the results of first principles calculations of the electronic and magnetic properties of the compound SnTe and GeTe in zinc blende (ZB) and rock salt (RS) structures, doped with 3d transition metal V, Cr, and Mn. The present study, initiated from the viewpoint of potential application in spintronics, is motivated by our earlier work involving these two compounds, where the doping was limited to the Sn and Ge sublattices. In view of some discrepancies between our calculated results and the available experimental data, in this work we have examined the effect of the Te-sublattice doping. The case of Mn-doping, where the previous results of calculations seemed to differ most from the experimentally available data, is examined further by looking at the effect of Mn atoms partially occupying interstitial sites as well. From the standpoint of potential application in spintronics, we look for half-metallic (HM) states and tabulate their properties in both rock salt and zinc blende structures. ZB structure is found to be more conducive to HM state in general. Among the binary compounds we identify several HM candidates: VGe, VSn, MnGe, MnSn and MnTe at their equilibrium volumes and all in ZB structure. Estimates of the Curie temperature for the ferromagnetic compounds including the half-metals are presented. It is shown that despite the ferromagnetic (FM) nature of the Mn-Mn interaction for the Te-doped case, a simultaneous doping of both Ge(Sn)- and Te-sublattice with Mn atoms would leave the material predominantly antiferromagnetic (AFM).

  5. Synthesis and Magnetic Properties of τ-MnAlC Powders.

    PubMed

    Moon, Ki-Woong; Lee, Gyu-Tae; Jeon, Kwang-Won; Kim, Jongryoul

    2015-11-01

    In order to improve the hard magnetic properties of MnAl alloy, it is critical to fabricate fine τ phase MnAl powders. In addition, a rapid cooling process and an addition of stabilization elements are required to fabricate a homogeneous phase because a τ phase is a metastable structure. In this study, τ-Mn54Al(46-x)C(x) (x = 0, 1, 2) powders were prepared by melt-spinning and subsequent annealing and milling processes. As a result, a main phase was revealed as a high temperature e phase in melt spun MnAI ribbons. And a subsequent annealing in the temperature range of 450-650 degrees C resulted in the formation of a τ phase. A maximum saturation magnetization (M(s)) value of 96.56 emu/g was obtained when the melt-spun τ-Mn54Al44C2 ribbons were annealed at 500 degrees C for 10 min. However, a milling process increased the coercivity up to 3804 Oe but simultaneously reduced M(s) down to 60.34 emu/g.

  6. Perpendicular magnetic anisotropy in Mn{sub 2}CoAl thin film

    SciTech Connect

    Sun, N. Y.; Zhang, Y. Q.; Che, W. R.; Shan, R.; Fu, H. R.; You, C. Y.

    2016-01-15

    Heusler compound Mn{sub 2}CoAl (MCA) is attracting more attentions due to many novel properties, such as high resistance, semiconducting behavior and suggestion as a spin-gapless material with a low magnetic moment. In this work, Mn{sub 2}CoAl epitaxial thin film was prepared on MgO(100) substrate by magnetron sputtering. The transport property of the film exhibits a semiconducting-like behavior. Moreover, our research reveals that perpendicular magnetic anisotropy (PMA) can be induced in very thin Mn{sub 2}CoAl films resulting from Mn-O and Co-O bonding at Mn{sub 2}CoAl/MgO interface, which coincides with a recent theoretical prediction. PMA and low saturation magnetic moment could lead to large spin-transfer torque with low current density in principle, and thus our work may bring some unanticipated Heusler compounds into spintronics topics such as the domain wall motion and the current-induced magnetization reversal.

  7. Process for producing Ti-Cr-Al-O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2001-01-01

    Thin films of Ti-Cr-Al-O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti-Cr-Al-O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti-Cr-Al-O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti-Cr-Al-O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  8. Flat panel display using Ti-Cr-Al-O thin film

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2002-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  9. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    SciTech Connect

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; Gao, Michael C.; Tang, Zhi; Poplawsky, Jonathan D.; Liaw, Peter K.

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result, the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.

  10. Iron-rich low-cost superalloys. [Cr(15)-Mn(15)-Mo(2)-C(1. 5)-Si(1. 0)-Nb(1. 0)-Fe(bal. ) and Cr(20)-Mn(10)-C(3. 4)-Fe(bal. )

    SciTech Connect

    Wayne, S.F.

    1985-01-01

    An iron-rich low-cost superalloy has been developed in conjunction with United Technologies Research Center under the NASA program, Conservation of Strategic Aerospace Materials. The alloy, when processed by conventional chill casting, has physical and mechanical properties that compare favorably with existing nickel - and cobalt-based superalloys while containing significantly lower amounts of strategic elements. The composition of the alloy is Cr(15)-Mn(15)-Mo(2)-C(1.5)-Si(1.0)-Nb(1.0)-Fe(bal.), and it can be produced with chromite ore deposits located within the United States. Studies were also made on the properties of Cr(20)-Mn(10)-C(3.4)-Fe(bal.), a eutectic alloy processed by chill casting and directional solidification (D.S.) which produced an aligned microstructure consisting of M/sub 7/C/sub 3/ fibers in an ..gamma..-Fe matrix. This good alignment vanishes when molybdenum or aluminum is added in higher concentrations. Thermal expansion of the M/sub 7/C/sub 3/ (M = Fe, Cr, Mn) carbide lattice was measured up to 800/sup 0/C and found to be highly anisotropic, with the a-axis being the predominant mode of expansion. Repetitive impact-sliding wear experiments performed with the Fe-rich eutectic alloy showed that the directionally solidified microstructure greatly improved the alloy's wear resistance as compared to the chill-cast microstructure and conventional nickel-base superalloys.

  11. Mechanical characteristics and swelling of austenitic Fe-Cr-Mn steels irradiated in the SM-2 and BOR-60 reactors

    NASA Astrophysics Data System (ADS)

    Shamardin, V. K.; Bulanova, T. M.; Neustroev, V. S.; Ivanov, L. I.; Djomina, E. V.; Platov, Yu. M.

    1991-03-01

    Three types of austenitic Fe-Cr-Mn stainless steels were irradiated simultaneously with Fe-Cr-Ni austenitic steel at temperatures from 400 to 800°C in the mixed spectrum of the high flux SM-2 reactor to 10 dpa and 700 appm of He and in the BOR-60 reactor to 60 dpa without He generation. The paper presents the swelling and mechanical properties of steels irradiated in the BOR-60 and SM-2 as a function of the concentration of transmuted He and the value of atomic displacement.

  12. Dynamical x-ray diffraction from an icosahedral Al-Pd-Mn quasicrystal

    SciTech Connect

    Kycia, S.

    1996-04-23

    Primary extinction effects in diffraction from single grains of Al-Pd- Mn, and presumably many other FCI alloys, may be significant and should be corrected for prior to use of diffraction data in structural determinations. Probes based on dynamical diffraction effects, such as x-ray standing wave fluorescence, multiple beam interference, and x-ray transmission topographs, may now be used to study the bulk and surface structure of some quasicrystals. The observation of dynamical diffraction from icosahedral Al-Pd-Mn is a striking confirmation of the fact that quasicrystals can present a degree of structural perfection comparable to that found in the best periodic intermetallic crystals.

  13. Perpendicularly magnetized τ-MnAl (001) thin films epitaxied on GaAs

    NASA Astrophysics Data System (ADS)

    Nie, S. H.; Zhu, L. J.; Lu, J.; Pan, D.; Wang, H. L.; Yu, X. Z.; Xiao, J. X.; Zhao, J. H.

    2013-04-01

    Perpendicularly magnetized τ-MnAl films have been epitaxied on GaAs (001) by molecular-beam epitaxy. Crystalline quality and magnetic properties of the samples were strongly dependent on growth temperature. The highest coercivity of 10.7 kOe, saturation magnetization of 361.4 emu/cm3, perpendicular magnetic anisotropy constant of 13.65 Merg/cm3, and magnetic energy product of 4.44 MGOe were achieved. These tunable magnetic properties make MnAl films valuable as excellent and cost-effective alternative for not only high density perpendicular magnetic recording storage and spintronics devices but also permanent magnets.

  14. Sm-Nd, Rb-Sr, and Mn-Cr Ages of Yamato 74013

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.- Y.; Reese, Y.D.

    2009-01-01

    Yamato 74013 is one of 29 paired diogenites having granoblastic textures. The Ar-39 - Ar-40 age of Y-74097 is approximately 1100 Ma. Rb-Sr and Sm-Nd analyses of Y-74013, -74037, -74097, and -74136 suggested that multiple young metamorphic events disturbed their isotopic systems. Masuda et al. reported that REE abundances were heterogeneous even within the same sample (Y-74010) for sample sizes less than approximately 2 g. Both they and Nyquist et al. reported data for some samples showing significant LREE enrichment. In addition to its granoblastic texture, Y-74013 is characterized by large, isolated clots of chromite up to 5 mm in diameter. Takeda et al. suggested that these diogenites originally represented a single or very small number of coarse orthopyroxene crystals that were recrystallized by shock processes. They further suggested that initial crystallization may have occurred very early within the deep crust of the HED parent body. Here we report the chronology of Y-74013 as recorded in chronometers based on long-lived Rb-87 and Sm-147, intermediate- lived Sm-146, and short-lived Mn-53.

  15. Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen

    NASA Astrophysics Data System (ADS)

    Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.

    2017-02-01

    Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.

  16. NiAl-based Polyphase in situ Composites in the NiAl-Ta-X (X = Cr, Mo, or V) Systems

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Polyphase in situ composites were generated by directional solidification of ternary eutectics. This work was performed to discover if a balance of properties could be produced by combining the NiAl-Laves phase and the NiAl-refractory metal phase eutectics. The systems investigated were the Ni-Al-Ta-X (X = Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and the eutectic composition, temperature, and morphology were determined. The ternary eutectic systems examined were the NiAl-NiAlTa-(Mo, Ta), NiAl-(Cr, Al) NiTa-Cr, and the NiAl-NiAlTa-V systems. Each eutectic consists of NiAl, a C14 Laves phase, and a refractory metal phase. Directional solidification was performed by containerless processing techniques in a levitation zone refiner to minimize alloy contamination. Room temperature fracture toughness of these materials was determined by a four-point bend test. Preliminary creep behavior was determined by compression tests at elevated temperatures, 1100-l400 K. Of the ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr, Al)NiTa-Cr eutectic was intermediate between the values of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  17. High pressure spectroscopy study of SCF Tb3Al5O12:Mn

    NASA Astrophysics Data System (ADS)

    Wiśniewski, K.; Zorenko, Y. U.; Gorbenko, V.; Zorenko, T.; Kukliński, B.; Grinberg, M.

    2010-11-01

    Single crystal film of Tb3Al5O12:Mn, with concentration of Mn approximately equal to 0.07 at%, has been grown by liquid phase epitaxy on Y3Al5O12 substrate. We have measured the absorption, luminescence, luminescence excitation spectra and luminescence kinetics of the film. To analyze the energetic structure and to estimate the crystal field strength we have measured the photoluminescence spectra under high hydrostatic pressure applied in diamond anvil cell up to 110 kbar. The Mn emission was consisted with the band peaked at 16800 cm-1 that shifts toward the lower energy with increasing pressure with the rate -9 cm-1/kbar. To characterize the Mn charge state we performed calculations of Tanabe -Sugano diagrams for 3d5, 3d4 and 3d3 system. The negative pressure shift of the 16800 cm-1 band yields attribution of this band to the 4T1 →6A1 transition in dodecahedrally coordinated Mn2+ ion. We have estimated quantity of Dq/B equal to 1.8 ±0.2. The configurational coordinate diagram of the Mn2+(3d5) has been calculated to analyze the nonradiative deexcitation processes 4T1 → 2T2 →6A1.

  18. Factors Affecting the Hydrogen Embrittlement Resistance of Ni-Cr-Mn-Nb Welds

    SciTech Connect

    G.A. Young; C.K. Battige; N. Liwis; M.A. Penik; J. Kikel; A.J. Silvia; C.K. McDonald

    2001-03-18

    Nickel based alloys are often welded with argon/hydrogen shielding gas mixtures to minimize oxidation and improve weld quality. However, shielding gas mixtures with {ge} 1% hydrogen additions can result in hydrogen concentrations greater than 5 wt. ppm in the weld metal and reduce ductility via hydrogen embrittlement. For the conditions investigated, the degree of hydrogen embrittlement is highly variable between 5 and 14 wt. ppm. investigation of hydrogen embrittlement of EN82H GTAW welds via tensile testing, light microscopy, transmission electron microscopy, orientation imaging microscopy, and thermal desorption spectroscopy shows that this variability is due to the inhomogeneous microstructure of the welds, the presence of recrystallized grains, and complex residual plastic strains. Specifically, research indicates that high residual strains and hydrogen trapping lower the ductility of Ni-Cr-Mn-Nb weld metal when dissolved hydrogen concentrations are greater than 5 wt. ppm. The inhomogeneous microstructure contains columnar dendritic, cellular dendritic, and recrystallized grains. The decreased tensile ductility observed in embrittled samples is recovered by post weld heat treatments that decrease the bulk hydrogen concentration below 5 wt. ppm.

  19. Microstructure and Mechanical Properties After Shock Wave Loading of Cast CrMnNi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Eckner, Ralf; Krüger, L.; Ullrich, C.; Rafaja, D.; Schlothauer, T.; Heide, G.

    2016-10-01

    The mechanical response of shock wave-prestrained high-alloy Cr16-Mn7-Ni6 TRIP steel was investigated under compressive and tensile loading at room temperature. Previous shock wave loading was carried out using a flyer-plate assembly with different amounts of explosives in order to achieve shock pressures of 0.3, 0.6, 0.9, and 1.2 Mbar. A significant increase in hardness and strength was observed as compared with the initial as-cast condition. In contrast, a slight decrease in strain hardening rates was measured together with a decrease in fracture elongation in the tensile test. Microstructural analyses of the shock-loaded samples were performed by light optical and scanning electron microscopy. The microstructure revealed a high density of deformation bands consisting of separated stacking faults, ɛ-martensite, or twins. Significant amounts of deformation-induced α'-martensite were only present at the highest shock pressure of 1.2 Mbar. The thickness of the deformation bands and the number of martensite nuclei at their intersections increased with increasing shock pressure. In all shock-loaded specimens, pronounced phase transformation occurred during subsequent mechanical testing. Consequently, the amount of the deformation-induced α'-martensite in the shock-loaded specimens was higher than in the unshocked as-cast samples.

  20. On the quasi-1D magnetic behavior of Ba 2MnCoAl 2F 14, Ba 2MnCuAl 2F 14 and related compounds

    NASA Astrophysics Data System (ADS)

    le Lirzin, A.; Darriet, J.; Georges, R.; Soubeyroux, J. L.

    1992-02-01

    Two new fluorides Ba 2MnCoAl 2F 14 and Ba 2MnCoAl 2F 14, isostructural with the natural compound usovite Ba 2CaMgAl 2F 14, have been synthesized. The nuclear structures of both compounds, refined from neutron diffraction data, give evidence for strongly disordered bimetallic chains MnCu or MnCo along the b-axis: two new theoretical treatments are suggested in order to account for the magnetic behavior of each compound but, due to their intrinsic limitations, they are in fact applied here to solid solutions between the parent compound and BaMnAlF 7, namely Ba 2Mn 1+ yCu 1- yAl2F14 and Ba 2Mn1+ yCo1- yAl 2F 14, leading to a rather good agreement with the measured values of the susceptibilities.

  1. Development of spin-gapless semiconductivity and half metallicity in Ti2MnAl by substitutions for Al

    NASA Astrophysics Data System (ADS)

    Lukashev, Pavel; Gilbert, Simeon; Staten, Bradley; Hurley, Noah; Fuglsby, Ryan; Kharel, Parashu; Huh, Yung; Valloppilly, Shah; Zhang, Wenyong; Yang, K.; Sellmyer, David J.

    In recent years, ever increasing interest in spin-based electronics has resulted in the search for a new class of materials that can provide a high degree of spin polarized electron transport. An ideal candidate would act like insulator for one spin channel and a conductor or semiconductor for the opposite spin channel (e.g., half metal (HM), spin-gapless semiconductor (SGS)). Here, we present the combined computational, theoretical, and experimental study of Ti2MnAl, a Heusler compound with potential application in the field of spintronics. We show that in the ground state this material is metallic, however it becomes a SGS when 50% of Al is substituted with In (e.g., Ti2MnAl0.5In0.5) , and a HM when 50% of Al is substituted with Sn (e.g., Ti2MnAl0.5Sn0.5) . Detailed study of the structural, electronic, and magnetic properties of these materials is presented. Financial support: DOE/BES (DE-FG02-04ER46152); NSF NNCI: 1542182; NRI; Academic and Scholarly Excellence Funds, Office of Academic Affairs, SDSU; UNI Faculty Summer Fellowship; Program for Outstanding Innovative Talents in Hohai University.

  2. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGES

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; ...

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  3. Viability of thin wall tube forming of ATF FeCrAl

    SciTech Connect

    Maloy, Stuart Andrew; Aydogan, Eda; Anderoglu, Osman; Lavender, Curt; Yamamoto, Yukinori

    2016-09-16

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  4. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    SciTech Connect

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  5. Core and valence level photoemission and photoabsorption study of icosahedral Al Pd Mn quasicrystals

    NASA Astrophysics Data System (ADS)

    Horn, K.; Theis, W.; Paggel, J. J.; Barman, S. R.; Rotenberg, E.; Ebert, Ph; Urban, K.

    2006-01-01

    The electronic structure of quasicrystalline Al-Pd-Mn is investigated by means of valence and core level photoelectron spectroscopy. Variations of the photoionization cross section in the constituents' valence electronic levels as a function of photon energy are used to identify contributions from the different atomic species, in particular near the Pd 4d Cooper minimum. Resonant photoemission at the Mn 2p absorption edge shows the contribution of the Mn 3d states to the density of states in a region near the Fermi level. The asymmetry of Pd 3d and Mn 2p core level photoemission lines, and its difference for emission from metallic and quasicrystalline phases, are utilized to infer the contributions of the different constituents to the density of states at the Fermi level.

  6. Swelling of solute-modified Fe-Cr-Mn alloys in FFTF (Fast Flux Test Facility)-MOTA

    SciTech Connect

    Garner, F.A.

    1986-10-01

    Density change data continue to be accumulated on solute-modified and commercial Fe-Cr-Mn alloys irradiated at 520/sup 0/C and 50 dpa. The tendency toward saturation of density change observed in the simple ternary alloys in the annealed condition is accentuated by cold-working and solute addition. Irradiation at 420/sup 0/C appears to further accelerate the tendency toward saturation.

  7. A study of Fe2+xMn1-xAl alloys: Structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Paduani, C.; Migliavacca, A.; Pöttker, W. E.; Schaf, J.; Krause, J. C.; Ardisson, J. D.; Samudio Pérez, C. A.; Takeuchi, A. Y.; Yoshida, M. I.

    2007-08-01

    The Fe2+xMn1-xAl alloys were studied experimentally to assess the effect of variations of composition around stoichiometric on the structural and magnetic properties of this system. The results indicate that the ordered L21(X2YZ) structure of full Heusler alloys can be stabilized with small deviations of composition from the stoichiometric 2:1:1. The saturation magnetization is strongly composition dependent and decreases with the increase of the Mn concentration, in spite of the fact that the Mn atoms carry the largest moment in the ordered phase. The highest Curie temperature was observed for the Fe-richer alloy. Magnetic measurements suggest that atomic disorder and competition of the antiferromagnetic Fe-Mn and Mn-Mn interactions with the ferromagnetic Fe-Fe, Mn-Mn and Fe-Mn interactions lead to a frustrated couplings ending in a reentrant spin-glass behavior at low temperature.

  8. Modeling degradation and failure of Ni-Cr-Al overlay coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    Degradation of a Ni-16Cr-25Al-0.06Zr overlay coating on a Ni-22Cr substrate was examined after oxidation accompanied by thermal cycling. Concentration/distance profiles were measured in the coating and substrate after various one-hour cycles at 1150 C. A numerical model was developed to simulate coating degradation by simultaneous oxidation and coating/substrate interdiffusion. The validity of the model was confirmed by comparison of predicted and measured concentration/distance profiles. The ability of the model to identify critical system parameters was demonstrated for the case of the initial Al and Cr content of the coating and substrate.

  9. Synthesis and optical properties of ZnAl2O4:Cr3+, Tb3+ powders

    NASA Astrophysics Data System (ADS)

    Thi Loan, Trinh; Thi Thuy, Nguyen; Long, Nguyen Ngoc

    2013-10-01

    ZnAl2O4:Cr3+, Tb3+ powders with different dopant contents have been synthesized by sol-gel method using the following precursors: zinc nitrate (Zn(NO3)2), aluminum nitrate (Al(NO3)3), terbium nitrate (Tb(NO3)3), chrome nitrate (Cr(NO3)3), and citric acid. The effect of the Cr3+, Tb3+ concentration and heat-treating temperature on structural and optical properties of the synthesized samples has been studied. International Workshop on Advanced Materials and Nanotechnology 2012 (IWAMN 2012).

  10. Tracing Cr, Pb, Fe and Mn occurrence in the Bahía Blanca estuary through commercial fish species.

    PubMed

    La Colla, Noelia S; Botté, Sandra E; Oliva, Ana L; Marcovecchio, Jorge E

    2017-05-01

    Over the last decades the anthropogenic contamination impact has substantially increased in the Bahía Blanca estuarine area, and scarce information exists regarding metals in the biotic compartment of this estuary. Thus, fish tissues were used to evaluate metal accumulation within this aquatic environment. The study focused on the determination of Cr, Pb, Fe and Mn in the gills, liver and muscle tissues of six commercial fish species (Brevoortia aurea, Odontesthes argentinensis, Micropogonias furnieri, Cynoscion guatucupa, Mustelus schmitti and Paralichthys orbignyanus). From the results it can be summarized that C. guatucupa tends to accumulate higher metal levels in the liver tissues, mostly Cr and Fe, than the other studied species. O. argentinensis and P. orbignyanus, both permanent inhabitants of the BBE, achieved the highest metal values in the gill tissues, mostly in comparison to M. schmitti. The gill tissues were found to be the main organ of Mn and Ni accumulation for most species, whereas in general, minimum concentrations were found for all the analyzed metals in the muscle tissues. Nevertheless, and according to the guidelines, all fish species showed at least one sample with concentrations of Mn and/or Cr above the permissible levels for human consumption. Finally, it was highlighted the usefulness of selecting these fish species as bioindicators of metal pollution, since they are either permanent inhabitants of the estuary or, according to the sizes under analyses, spend much of their time in this coastal waters.

  11. Electrokinetic recovery of Cd, Cr, As, Ni, Zn and Mn from waste printed circuit boards: effect of assisting agents.

    PubMed

    Xiu, Fu-Rong; Zhang, Fu-Shen

    2009-10-15

    The printed circuit boards (PCBs) contains large number of heavy metal such as Cd, Cr, As, Ni, Zn and Mn. In this study, the use of electrokinetic (EK) treatment with different assisting agents has been investigated to recover the heavy metals from waste PCBs, and the effectiveness of different assisting agents (HNO(3), HCl, citric acid) was evaluated. The PCBs were first pre-treated by supercritical water oxidation (SCWO) process, then subjected to EK process. The heavy metal speciation, migration and recovery efficiency in the presence of different assisting agents during EK process were discussed. The mass loss of Cd, Cr, As and Zn during the SCWO process was negligible, but approximately 52% of Ni and 56% of Mn were lost in such a process. Experimental results showed that different assisting agents have significant effect on the behavior and recovery efficiency of different heavy metals. HCl was highly efficient for the recovery of Cd in waste PCBs due to the low pH and the stable complexation of Cl(-). Citric acid was highly efficient for the recovery of Cr, Zn and Mn. HNO(3) was low efficient for recovery of most heavy metals except for Ni.

  12. Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4.

    PubMed

    Tsurkan, Vladimir; Zherlitsyn, Sergei; Prodan, Lilian; Felea, Viorel; Cong, Pham Thanh; Skourski, Yurii; Wang, Zhe; Deisenhofer, Joachim; von Nidda, Hans-Albrecht Krug; Wosnitza, Joahim; Loidl, Alois

    2017-03-01

    Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCr2S4 up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases. The magnetization plateau characterizes fully polarized chromium moments, without any contributions from manganese spins. At 40 T, the middle of the plateau, a regime evolves, where sound waves propagate almost without dissipation. The external magnetic field exactly compensates the Cr-Mn exchange field and decouples Mn and Cr sublattices. In analogy to predictions of quantum lattice-gas models, the changes of the spin order of the manganese ions at the phase boundaries of the magnetization plateau are interpreted as transitions to supersolid phases.

  13. Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels

    NASA Astrophysics Data System (ADS)

    Chao, K. L.; Liao, H. Y.; Shyue, J. J.; Lian, S. S.

    2014-04-01

    The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.

  14. The use of diffusion multiples to explore the Co-Cr-Fe-Mn-Ni high entropy system

    NASA Astrophysics Data System (ADS)

    Wilson, Paul Nathaniel

    High entropy alloys (HEAs) or Multi-principal element alloys (MEAs) are a relatively new class of alloys. These alloys are defined as having at least five major alloying elements in atomic percent from 5% to 35%. There are hundreds of thousands of equiatomic compositions possible and only a fraction have been explored. This project examines diffusion multiples as a method to accelerate alloy development in these systems. The system chosen for this experiment is the Co-Cr-Fe-Mn-Ni system. The methodology developed for creating these diffusion multiples involved a two-step process. In the first step two binary alloys (50at-% Fe-Mn and 50 at%- Ni-Co ) were diffusion bonded together. In the second step, under uniaxial compression, was used to bond Cr to diffusion couple prepared in Step I. Successful diffusion multiples were created by this method. An auxiliary method named differential melting liquid impingement (DMLI) was developed that created diffusion multiples using liquid processing methods that will be described. After creation of these multiples, the ternary and quinary interface regions were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and nanoindentation. The Cr/NiCo region experienced interdiffusion but no intermediate phase formation retaining the FCC / BCC interface at the hot-pressing temperature (1200 °C). However, upon cooling from 1200 °C, the BCC region adjacent to the interface decomposed into BCC + sigma. In contrast, the Cr/FeMn interface region developed a layered structure of FCC/sigma/BCC suggesting that sigma is stable at 1200 °C in contradiction to the published 1200 °C ternary phase diagram. Upon cooling, the sigma present at 1200 °C decomposed into FCC + sigma, except in samples that were contaminated with C; in those cases, FCC + M23C6 was observed as the decomposition product. The quinary regions were evaluated using the various HEA parameters, namely

  15. Trigonal-bipyramidal and square-pyramidal chromium-manganese chalcogenide clusters, [E2CrMn2(CO)n](2-) (E=S, Se, Te; n=9, 10): synthesis, electrochemistry, UV/Vis absorption, and computational studies.

    PubMed

    Shieh, Minghuey; Yu, Chun-Hsien; Chu, Yen-Yi; Guo, Yu-Wen; Huang, Chung-Yi; Hsing, Kai-Jieah; Chen, Pei-Chi; Lee, Chung-Feng

    2013-05-01

    The reactions of E powder (E=S, Se) with a mixture of Cr(CO)6 and Mn2(CO)10 in concentrated solutions of KOH/MeOH produced two new mixed Cr-Mn-carbonyl clusters, [E2CrMn2(CO)9](2-) (E=S, 1; Se, 2). Clusters 1 and 2 were isostructural with one another and each displayed a trigonal-bipyramidal structure, with the CrMn2 triangle axially capped by two μ3-E atoms. The analogous telluride cluster, [Te2CrMn2(CO)9](2-) (3), was obtained from the ring-closure of Te2Mn2 ring complex [Te2Mn2Cr2(CO)18](2-) (4). Upon bubbling with CO, clusters 2 and 3 were readily converted into square-pyramidal clusters, [E2CrMn2(CO)10](2-) (E=Se, 5; Te, 6), accompanied with the cleavage of one Cr-Mn bond. According to SQUID analysis, cluster 6 was paramagnetic, with S=1 at room temperature; however, the Se analogue (5) was spectroscopically proposed to be diamagnetic, as verified by TD-DFT calculations. Cluster 6 could be further carbonylated, with cleavage of the Mn-Mn bond to produce a new arachno-cluster, [Te2CrMn2(CO)11](2-) (7). The formation and structural isomers, as well as electrochemistry and UV/Vis absorption, of these clusters were also elucidated by DFT calculations.

  16. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  17. Diffusional transport during the cyclic oxidation of. gamma. +. beta. , Ni-Cr-Al(Y, Zr) alloys

    SciTech Connect

    Nesbitt, J.A.; Heckel, R.W. )

    1988-02-01

    The cyclic oxidation behavior of several cast {gamma} + {beta}, Ni-Cr-Al(Y, Zr) alloys and one LPPS {gamma} + {beta}, Ni-Co-Cr-Al(Y) alloy was examined ({gamma}, fcc; {beta}, NiAl structure). Cyclic oxidation was performed by cycling between 1200{degree}C and approximately 70{degree}C. Oxide morphologies and microstructural changes during cyclic oxidation were noted. Recession of the high-Al {beta} phase was nonparabolic with time. Kirkendall porosity resulting from diffusional transport within the alloy was observed in the near-surface {gamma}-phase layer of one alloy. Concentration profiles for Ni, Cr, and Al were measured in the {gamma}-phase layer after various cyclic oxidation exposures. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide-metal interface due to a high demand for Al (a high rate of Al consumption) associated with oxide scale cracking and spalling. In addition, diffusion paths plotted on the ternary phase diagram shifted to higher Ni concentrations with increasing cyclic oxidation exposures. The alloy with the highest rate of Al consumption, and highest Al content, underwent breakway oxidation after 500 1-hr cycles at 1200{degree}C. Breakaway oxidation occurred when the Al concentration at the oxide-metal interface approached zero. The relationship between the Al transport in the alloy and breakaway oxidation is discussed.

  18. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    SciTech Connect

    Field, Kevin G.; Howard, Richard H.

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C to a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.

  19. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures.

    PubMed

    Vamsi Krishna, B; Xue, Weichang; Bose, Susmita; Bandyopadhyay, Amit

    2008-05-01

    Functionally graded, hard and wear-resistant Co-Cr-Mo alloy was coated on Ti-6Al-4V alloy with a metallurgically sound interface using Laser Engineering Net Shaping (LENS). The addition of the Co-Cr-Mo alloy onto the surface of Ti-6Al-4V alloy significantly increased the surface hardness without any intermetallic phases in the transition region. A 100% Co-Cr-Mo transition from Ti-6Al-4V was difficult to produce due to cracking. However, using optimized LENS processing parameters, crack-free coatings containing up to 86% Co-Cr-Mo were deposited on Ti-6Al-4V alloy with excellent reproducibility. Human osteoblast cells were cultured to test in vitro biocompatibility of the coatings. Based on in vitro biocompatibility, increasing the Co-Cr-Mo concentration in the coating reduced the live cell numbers after 14 days of culture on the coating compared with base Ti-6Al-4V alloy. However, coated samples always showed better bone cell proliferation than 100% Co-Cr-Mo alloy. Producing near net shape components with graded compositions using LENS could potentially be a viable route for manufacturing unitized structures for metal-on-metal prosthetic devices to minimize the wear-induced osteolysis and aseptic loosening that are significant problems in current implant design.

  20. Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al

    NASA Astrophysics Data System (ADS)

    Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin

    2016-03-01

    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ•g‑1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research.

  1. Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al

    PubMed Central

    Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin

    2016-01-01

    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g−1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research. PMID:26935405

  2. Dislocations in nanostructured two-phase Fe30Ni20Mn20Al30.

    PubMed

    Wu, X; Baker, I

    2013-03-01

    In a previous study, the dislocations in Fe(30)Ni(20)Mn(25)Al(25) (at. %), which consist of 50 nm wide alternating b.c.c. and B2 phases, were shown to have a/2<111> Burgers vectors after room temperature deformation. The dislocations were found to glide in pairs on both {110} and {112} slip planes and were relatively widely separated in the b.c.c. phase, where the dislocations were uncoupled, and closely spaced in the B2 phase, where the dislocations were connected by an anti-phase boundary. In this article, we analyze the dislocations in the two ~5 nm-wide B2 phases in a related two-phase alloy Fe(30)Ni(20)Mn(20)Al(30), with compositions Fe-23Ni-21Mn-24Al and Fe-39Ni-12Mn-34Al, compressed to ~3% strain at a strain rate 5 × 10(-4) s(-1) at 873 K (the lowest temperature at which substantial plastic flow was observed). It is shown that slip occursby the glide of a<100> dislocations. A review of the literature suggests that the differences in the observed slip vector between these B2 phases could be due to the differences in composition, differences in deformation temperature, or possibly both.

  3. Al-Mn coating electrodeposited from ionic liquid on NdFeB magnet with high hardness and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ding, Jingjing; Xu, Bajin; Ling, Guoping

    2014-06-01

    Al-Mn coatings were electrodeposited on sintered NdFeB permanent magnet in MnCl2-AlCl3-1-ethyl-3-methylim-idazolium chloride (MnCl2-AlCl3-EMIC) ionic liquid at room temperature. The coatings were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adhesion strength of the coating on NdFeB substrate was evaluated by thermal shock and scratch test. The hardness and corrosion behavior of Al-Mn coating were measured by a Knoop microhardness tester, immersion test and neutral salt spray test respectively. The results showed that the amorphous structure of the deposits was obtained at the current density of 6 mA/cm2, while higher current densities resulted in a mixed structure of amorphous and crystalline. The Al-Mn coating showed excellent adhesion strength on NdFeB substrate with the thermal shock test over 30 cycles and Lc > 80 N. The hardness of Al-Mn coating was up to 5.4 GPa. The amorphous Al-Mn coating showed an anodic sacrificial protection with a low corrosion rate for NdFeB. Meanwhile, the magnetic properties measured by an AMT-4 magnetic measurement device showed that Al-Mn coating did not deteriorate the magnetic property of NdFeB.

  4. Anomalous magnetic configuration of Mn{sub 2}NiAl ribbon and the role of hybridization in the martensitic transformation of Mn{sub 50}Ni{sub 50−x}Al{sub x} ribbons

    SciTech Connect

    Zhao, R. B.; Zhao, D. W.; Li, G. K.; Ma, L. E-mail: houdenglu@mail.hebtu.edu.cn; Zhen, C. M.; Hou, D. L. E-mail: houdenglu@mail.hebtu.edu.cn; Wang, W. H.; Liu, E. K.; Chen, J. L.; Wu, G. H.

    2014-12-08

    The magnetic configuration of Mn{sub 2}NiAl ribbon has been investigated. In contrast to Ni{sub 2}MnAl, the compound Mn{sub 2}NiAl with considerable disorder does exhibit ferromagnetism and, due to exchange interaction competition, both ferromagnetic and antiferromagnetic moment orientations can coexist between nearest neighbor Mn atoms. This is unexpected in Heusler alloys. Regarding the mechanism of the martensitic transformation in Mn{sub 50}Ni{sub 50−x}Al{sub x}, it is found that increasing the Al content results in an unusual change in the lattice constant, a decrease of the transformation entropy change, and enhancement of the calculated electron localization. These results indicate that the p-d covalent hybridization between Mn (or Ni) and Al atoms gradually increases at the expense of the d-d hybridization between Ni and Mn atoms. This leads to an increased stability of the austenite phase and a decrease of the martensitic transformation temperature. For 11 ≤ x ≤ 14, Mn{sub 50}Ni{sub 50−x}Al{sub x} ferromagnetic shape memory alloys are obtained.

  5. Transient Oxidation of a γ-Ni-28Cr-11Al Alloy

    SciTech Connect

    Hu, L; Hovis, D B; Heuer, A H

    2012-04-02

    γ-NiCrAl alloys with relatively low Al contents tend to form a layered oxide scale during the early stages of oxidation, rather than an exclusive α-Al2O3 scale, the so-called 'thermally grown oxide' (TGO). A layered oxide scale was established on a model γ-Ni-28Cr-11Al (at.%) alloy after isothermal oxidation for several minutes at 1100 °C. The layered scale consisted of an NiO layer at the oxide/gas interface, an inner Cr2O3 layer, and an α-Al2O3 layer at the oxide/alloy interface. The evolution of such an NiO/Cr2O3/Al2O3 layered structure on this alloy differs from that proposed in earlier work. During heating, a Cr2O3 outer layer and a discontinuous inner layer of Al2O3 initially formed, with metallic Ni particles dispersed between the two layers. A rapid transformation occurred in the scale shortly after the sample reached maximum temperature (1100°C), when two (possibly coupled) phenomena occurred: (i) the inner transition alumina transformed to α-Al2O3, and (ii) Ni particles oxidized to form the outer NiO layer. Subsequently, NiO reacted with Cr2O3 and Al2O3 to form spinel. Continued growth of the oxide scale and development of the TGO was dominated by growth of the inner α-Al2O3 layer.

  6. Thermal stability and thermo-mechanical properties of magnetron sputtered Cr-Al-Y-N coatings

    SciTech Connect

    Rovere, Florian; Mayrhofer, Paul H.

    2008-01-15

    Cr{sub 1-x}Al{sub x}N coatings are promising candidates for advanced machining and high temperature applications due to their good mechanical and thermal properties. Recently the authors have shown that reactive magnetron sputtering using Cr-Al targets with Al/Cr ratios of 1.5 and Y contents of 0, 2, 4, and 8 at % results in the formation of stoichiometric (Cr{sub 1-x}Al{sub x}){sub 1-y}Y{sub y}N films with Al/Cr ratios of {approx}1.2 and YN mole fractions of 0%, 2%, 4%, and 8%, respectively. Here, the impact of Y on thermal stability, structural evolution, and thermo-mechanical properties is investigated in detail. Based on in situ stress measurements, thermal analyzing, x-ray diffraction, and transmission electron microscopy studies the authors conclude that Y effectively retards diffusional processes such as recovery, precipitation of hcp-AlN and fcc-YN, grain growth, and decomposition induced N{sub 2} release. Hence, the onset temperature of the latter shifts from {approx}1010 to 1125 deg. C and the hardness after annealing at T{sub a}=1100 deg. C increases from {approx}32 to 39 GPa with increasing YN mole fraction from 0% to 8%, respectively.

  7. Preliminary Study on Fatigue Strengths of Fretted Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2002-01-01

    The fatigue behavior (stress-life curve) of gamma titanium aluminide (Ti-48Al-2Cr-2Nb, atomic percent) was examined by conducting two tests: first, a fretting wear test with a fatigue specimen in contact with a typical nickel-based superalloy contact pad in air at temperatures of 296 and 823 K and second, a high-cycle fatigue test of the prefretted Ti-48Al-2Cr-2Nb fatigue specimen at 923 K. Reference high-cycle fatigue tests were also conducted with unfretted Ti-48Al-2Cr-2Nb specimens at 923 K. All Ti-48Al-2Cr-2Nb fatigue specimens were machined from cast slabs. The results indicate that the stress-life results for the fretted Ti-48Al-2Cr-2Nb specimens exhibited a behavior similar to those of the unfretted Ti-48Al-2Cr-2Nb specimens. The values of maximum stress and life for the fretted specimens were almost the same as those for the unfretted specimens. The resultant stress-life curve for the unfretted fatigue specimens was very flat. The flat appearance in the stress-life curve of the unfretted specimens is attributed to the presence of a high density of casting pores. The fatigue strengths of both the fretted and unfretted specimens can be significantly affected by the presence of this porosity, which can decrease the fatigue life of Ti-48Al-2Cr-2Nb. The presence of the porosity made discerning the effect of fretting damage on fatigue strength and life of the specimens difficult.

  8. Preparation and characterization of MnZn/FeSiAl soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Li, Jing; Peng, Xiaoling; Yang, Yanting; Ge, Hongliang

    2017-03-01

    In this paper, MnZn ferrites were used as coating agents to prepare MnZn/FeSiAl soft magnetic composites (SMCs) in order to improve the magnetic property, because of the higher permeability of magnetic MnZn ferrites than that of traditional coatings which are always nonmagnetic. The effects of molding pressure, annealing temperature, and content of insulation on the soft magnetic properties of MnZn/FeSiAl SMCs were studied. With increasing molding pressure, the effective permeability of the SMCs increased firstly and then decreased, while the core loss decreased firstly and then increased, and both have the best performance at 1.6 GPa. The permeability increased with increasing temperature, reached the maximum value at 660 °C and then decreased, while the core loss decreased with increasing temperature to 700 °C and then increased. The permeability increased with increasing MnZn content from 0.1 to 3% and then decreased, while the D-C bias property continuously increased.

  9. Anomalous Hall effect in MnAl/W bilayers: Modification from strong spin Hall effect of W

    NASA Astrophysics Data System (ADS)

    Meng, K. K.; Miao, J.; Xu, X. G.; Wu, Y.; Zhao, J. H.; Jiang, Y.

    2017-04-01

    We report systematic measurements of anomalous Hall effect (AHE) in MnAl/W bilayers modified by strong spin Hall effect (SHE) of the heavy metals, in which a single L10-MnAl epitaxial layer reveals obvious orbital two-channel Kondo (2CK) effect. The results are compared with the AHE in MnAl/Cu with weak spin orbit coupling. As increasing the thickness of W, the strong SHE has gradually suppressed the orbital 2CK effect and modified the AHE of MnAl. A scaling involving multiple competing scattering mechanisms has been used to distinguish different contributions to the modified AHE. The direct observation of spin-orbit torque induced magnetization switching confirms that the result is a combination of the AHE of MnAl and SHE of W.

  10. Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel by Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Pereloma, E. V.; Stohr, R. A.; Miller, M. K.; Ringer, S. P.

    2009-12-01

    We describe the full decomposition sequence in an Fe-Ni-Mn-Ti-Al maraging steel during isothermal annealing at 550 °C. Following significant pre-precipitation clustering reactions within the supersaturated martensitic solid solution, (Ni,Fe)3Ti and (Ni,Fe)3(Al,Mn) precipitates eventually form after isothermal aging for ~60 seconds. The morphology of the (Ni,Fe)3Ti particles changes gradually during aging from predominantly plate-like to rod-like, and, importantly, Mn and Al were observed to segregate to these precipitate/matrix interfaces. The (Ni,Fe)3(Al,Mn) precipitates occurred at two main locations: uniformly within the matrix and at the periphery of the (Ni,Fe)3Ti particles. We relate this latter mode of precipitation to the Mn-Al segregation.

  11. Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel using Atom Probe Tomography

    SciTech Connect

    Pereloma, E. V.; Stohr, R A; Miller, Michael K; Ringer, S. P.

    2009-01-01

    We describe the full decomposition sequence in an Fe-Ni-Mn-Ti-Al maraging steel during isothermal annealing at 550 C. Following significant pre-precipitation clustering reactions within the supersaturated martensitic solid solution, (Ni,Fe){sub 3}Ti and (Ni,Fe){sub 3}(Al,Mn) precipitates eventually form after isothermal aging for {approx}60 seconds. The morphology of the (Ni,Fe){sub 3}Ti particles changes gradually during aging from predominantly plate-like to rod-like, and, importantly, Mn and Al were observed to segregate to these precipitate/matrix interfaces. The (Ni,Fe){sub 3}(Al,Mn) precipitates occurred at two main locations: uniformly within the matrix and at the periphery of the (Ni,Fe){sub 3}Ti particles. We relate this latter mode of precipitation to the Mn-Al segregation.

  12. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  13. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    DOE PAGES

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; ...

    2015-07-14

    The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition.more » Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.« less

  14. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    SciTech Connect

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; Yamamoto, Yukinori; Snead, Lance Lewis

    2015-07-14

    The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition. Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.

  15. Processing of Mn-Al nanostructured magnets by spark plasma sintering and subsequent rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Vinod, V. T. P.; Černík, Miroslav; Selvapriya, A.; Chakravarty, Dibyendu; Kamat, S. V.

    2015-01-01

    The potential of spark plasma sintering (SPS) in combination with rapid thermal annealing (RTA) for the processing of Mn-Al nanostructured magnets is explored in this study. Ferromagnetic α-Mn alloy powders were processed by high-energy ball milling using Mn (56 at%) and Al (44 at%) as constituent metal elements. The alloying action between Mn and Al due to intensive milling was studied by X-ray diffraction and field-emission scanning electron microscope; while the phase transformation kinetics was investigated using differential scanning calorimetry. The evolution of ferromagnetic properties in the as-milled powders was studied by superconducting quantum interference device (SQUID). Among the Mn-Al alloy powders collected at various milling intervals, the 25 h milled Mn-Al powders showed a good combination of coercivity, Hc (11.3 kA/m) and saturation magnetization, Ms (5.0 A/m2/kg); accordingly, these powders were chosen for SPS. The SPS experiments were conducted at different temperatures: 773, 873 and 973 K and its effect on the density, phase composition and magnetic properties of the Mn-Al bulk samples were investigated. Upon increasing the SPS temperature from 773 to 973 K, the bulk density was found to increase from 3.6 to 4.0 g/cm3. The occurrence of equilibrium β-phase with significant amount of γ2-phase was obvious at all the SPS temperatures; however, crystallization of some amount of τ-phase was evident at 973 K. Irrespective of the SPS temperatures, all the samples demonstrated soft magnetic behavior with Hc and Ms values similar to those obtained for the 25 h milled powders. The magnetic properties of the SPSed samples were significantly improved upon subjecting them to RTA at 1100 K. Through the RTA process, Hc values of 75, 174 and 194 kA/m and Ms values of 19, 21 and 28 A/m2/kg were achieved for the samples SPSed at 773, 873 and 973 K, respectively. The possible reasons for the observed improvement in the magnetic properties of the SPSed

  16. Ti(3+)-, V(2+/3+)-, Cr(2+/3+)-, Mn(2+)-, and Fe(2+)-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5.

    PubMed

    Brozek, Carl K; Dincă, Mircea

    2013-08-28

    The metal nodes in metal-organic frameworks (MOFs) are known to act as Lewis acid catalysts, but few reports have explored their ability to mediate reactions that require electron transfer. The unique chemical environments at the nodes should facilitate unusual redox chemistry, but the difficulty in synthesizing MOFs with metal ions in reduced oxidation states has precluded such studies. Herein, we demonstrate that MZn3O(O2C-)6 clusters from Zn4O(1,4-benzenedicarboxylate)3 (MOF-5) serve as hosts for V(2+) and Ti(3+) ions and enable the synthesis of the first MOFs containing these reduced early metal ions, which can be accessed from MOF-5 by postsynthetic ion metathesis (PSIM). Additional MOF-5 analogues featuring Cr(2+), Cr(3+), Mn(2+), and Fe(2+) at the metal nodes can be obtained by similar postsynthetic methods and are reported here for the first time. The inserted metal ions are coordinated within an unusual all-oxygen trigonal ligand field and are accessible to both inner- and outer-sphere oxidants: Cr(2+)- converts into Cr(3+)-substituted MOF-5, while Fe(2+)-MOF-5 activates NO to produce an unusual Fe-nitrosyl complex.

  17. Elevated Temperature Deformation of Fe-39.8Al and Fe-15.6Mn-39.4Al

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    2004-01-01

    The elevated temperature compressive properties of binary Fe-39.8 at % Al and Fe-15.6Mn-39.4Al have been measured between 1000 and 1300 K at strain rates between 10(exp 7) and 10(exp 3)/ s. Although the Mn addition to iron aluminide did not change the basic deformation characteristics, the Mn-modified alloy was slightly weaker. In the regime where deformation of FeAl occurs by a high stress exponent mechanism (n = 6), strength increases as the grain size decreases at least for diameters between approx. 200 and approx. 10 microns. Due to the limitation in the grain size-flow stress-temperature-strain rate database, the influence of further reductions of the grain size on strength is uncertain. Based on the appearance of subgrains in deformed iron aluminide, the comparison of grain diameters to expected subgrain sizes, and the grain size exponent and stress exponent calculated from deformation experiments, it is believed that grain size strengthening is the result of an artificial limitation on subgrain size as proposed by Sherby, Klundt and Miller.

  18. Energy transfer between Eu-Mn and photoluminescence properties of Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ solid solution

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Wang, Yuhua; Liu, Bitao; Li, Feng

    2010-08-01

    In order to evaluate the energy transfer between Eu-Mn in Ba0.75Al11O17.25-BaMgAl10O17 solid solution, Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ phosphors were prepared by flux method. The crystal structure and the morphology of the solid solution were demonstrated by x-ray dirrfactometer and scanning electron microscopy. The photoluminescence mechanisms were explained by the energy transfer of Eu2+ to Mn2+ and the Dexter theory. A redshift of green emission peak and a decrease in decay time with the increase in Mn2+ concentration were observed. These phenomena are attributed to the formation of Mn2+ paired centers after analysis by a method of Pade approximations.

  19. Magnetic and transport properties of the ferromagnetic semiconductor heterostructures (In,Mn)As/(Ga,Al)Sb

    NASA Astrophysics Data System (ADS)

    Oiwa, A.; Endo, A.; Katsumoto, S.; Iye, Y.; Ohno, H.; Munekata, H.

    1999-02-01

    We have investigated the magnetic and transport properties of (In,Mn)As thin films grown on a (Ga,Al)Sb layer. Strong perpendicular magnetic anisotropy is observed for the (In,Mn)As layer, the thickness of which is less than the critical value required for relaxation of lattice-mismatch-induced strain. The anomalous Hall coefficient is found to be approximately proportional to the square of resistivity in the low-field region. Large negative magnetoresistance is found to occur over a magnetic field range significantly wider than that for the ferromagnetic hysteresis loop.

  20. Electric, magnetic, and thermo-electric properties of Cr doped La0.8Ca0.2Mn1-xCrxMnO3 manganites

    NASA Astrophysics Data System (ADS)

    Manjunatha, S. O.; Rao, Ashok; Babu, P. D.; Chand, Tara; Okram, G. S.

    2016-07-01

    A detailed study of the structural, magnetic, magneto-transport and thermoelectric properties of polycrystalline La0.8Ca0.2Mn1-xCrxMnO3 (0Cr-content, both TMI and TC are observed to decrease. The electrical resistivity data is analyzed using different theoretical models at various regions viz., metallic, insulating and percolation region. Analysis in the metallic region (TTMI) is well described using SPH model. However, the resistivity data in the whole temperature range is analyzed using a phenomenological model based on phase segregation of ferromagnetic metallic and paramagnetic insulating regions. Thermoelectric power, S measurements were performed to understand the conduction mechanism and to ascertain the types of charge carrier responsible for conduction. It is observed that pristine as well as Cr-doped compounds show positive value of S which demonstrates that the charge carriers are holes.

  1. Optimized Gen-II FeCrAl cladding production in large quantity for campaign testing

    SciTech Connect

    Yamamoto, Yukinori; Sun, Zhiqian; Pint, Bruce A.; Terrani, Kurt A.

    2016-06-03

    There are two major objectives in this report; (1) to optimize microstructure control of ATF FeCrAl alloys during tube drawing processes, and (2) to provide an update on the progress of ATF FeCrAl tube production via commercial manufacturers. Experimental efforts have been made to optimize the process parameters balancing the tube fabricability, especially for tube drawing processes, and microstructure control of the final tube products. Lab-scale sheet materials of Gen II FeCrAl alloys (Mo-containing and Nb-containing FeCrAl alloys) were used in the study, combined with a stepwise warm-rolling process and intermediate annealing, aiming to simulate the tube drawing process in a commercial tube manufacturer. The intermediate annealing at 650ºC for 1h was suggested for the tube-drawing process of Mo-containing FeCrAl alloys because it successfully softened the material by recovering the work hardening introduced through the rolling step, without inducing grain coarsening due to recrystallization. The final tube product is expected to have stabilized deformed microstructure providing the improved tensile properties with sufficient ductility. Optimization efforts on Nb-containing FeCrAl alloys focused on the effect of alloying additions and annealing conditions on the stability of deformed microstructure. Relationships between the second-phase precipitates (Fe2Nb-Laves phase) and microstructure stability are discussed. FeCrAl tube production through commercial tube manufacturers is currently in progress. Three different manufacturers, Century Tubes, Inc. (CTI), Rhenium Alloys, Inc. (RAI), and Superior Tube Company, Inc. (STC), are providing capabilities for cold-drawing, warm-drawing, and HPTR cold-pilgering, respectively. The first two companies are currently working on large quantity tube production (expected 250 ft length) of Gen I model FeCrAl alloy (B136Y3, at CTI) and Gen II (C35M4, at RAI), with the process parameters obtained from the experimental

  2. Stability, sub-gap current, 1/f-noise, and elemental depth profiling of annealed Al:Mn-AlOX-Al normal metal-insulator-superconducting tunnel junctions

    NASA Astrophysics Data System (ADS)

    Julin, J. K.; Chaudhuri, S.; Laitinen, M.; Sajavaara, T.; Maasilta, I. J.

    2016-12-01

    In this paper we report a study of the effect of vacuum annealing at 400°C on the properties of normal metal-insulator-superconductor (NIS) tunnel junctions, with manganese doped aluminium (Al:Mn) as the normal metal, aluminum as the superconductor and amorphous aluminum oxide as the tunneling barrier (Al:Mn-AlOx-Al). The annealing treatment improves the stability of the junctions, increases their tunneling resistance and does not have a negative impact on the low-temperature current-voltage characteristics. The measured 1/f resistance noise of the junctions also changes after annealing, in the best case decreasing by over an order of magnitude. All these observations show that annealing is a viable route to improve NIS junction devices after the sample has been fabricated.

  3. Facile preparation of magnetic mesoporous MnFe2O4@SiO2-CTAB composites for Cr(VI) adsorption and reduction.

    PubMed

    Li, Na; Fu, Fenglian; Lu, Jianwei; Ding, Zecong; Tang, Bing; Pang, Jiabin

    2017-01-01

    Chromium-contaminated water is regarded as one of the biggest threats to human health. In this study, a novel magnetic mesoporous MnFe2O4@SiO2-CTAB composite was prepared by a facile one-step modification method and applied to remove Cr(VI). X-ray diffraction, scanning electron microscopy, transmission electron microscopy, specific surface area, and vibrating sample magnetometer were used to characterize MnFe2O4@SiO2-CTAB composites. The morphology analysis showed that the composites displayed a core-shell structure. The outer shell was mesoporous silica with CTAB and the core was MnFe2O4 nanoparticles, which ensured the easy separation by an external magnetic field. The performance of MnFe2O4@SiO2-CTAB composites in Cr(VI) removal was far better than that of bare MnFe2O4 nanoparticles. There were two reasons for the effective removal of Cr(VI) by MnFe2O4@SiO2-CTAB composites: (1) mesoporous silica shell with abundant CTA(+) significantly enhanced the Cr(VI) adsorption capacity of the composites; (2) a portion of Cr(VI) was reduced to less toxic Cr(III) by MnFe2O4, followed by Cr(III) immobilized on MnFe2O4@SiO2-CTAB composites, which had been demonstrated by X-ray photoelectron spectroscopy results. The adsorption of Cr(VI) onto MnFe2O4@SiO2-CTAB followed the Freundlich isotherm model and pseudo-second-order model. Tests on the regeneration and reuse of the composites were performed. The removal efficiency of Cr(VI) still retained 92.4% in the sixth cycle. MnFe2O4@SiO2-CTAB composites exhibited a great potential for the removal of Cr(VI) from water.

  4. Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation

    SciTech Connect

    Jain, Vivek Kumar Jain, Vishal Lakshmi, N. Venugopalan, K.

    2014-04-24

    Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.

  5. Influence of the thermodynamic parameters on the temper embrittlement of SA508 Gr.4N Ni-Cr-Mo low alloy steel with variation of Ni, Cr and Mn contents

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gyu; Lee, Ki-Hyoung; Min, Ki-Deuk; Kim, Min-Chul; Lee, Bong-Sang

    2012-07-01

    It is well known that SA508 Gr.4N low alloy steel offers improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel. In this study, the effects of Cr, Mn, and Ni on temper embrittlement in SA508 Gr.4N low alloy steel were evaluated from the viewpoint of thermodynamic parameters such as P diffusivity and C activity. The changes of the ductile-brittle transition temperatures before and after aging were correlated with varying alloying element content, and the diffusivity of P and the activity of C were calculated and correlated with the transition behaviors. The addition of Ni, Cr, and Mn reduce the resistance to temper embrittlement, showing increased Transition-Temperature Shift (TTS) and an increased fraction of intergranular fracture. Although the diffusivity of P is changed by the addition of alloying elements, it does not considerably affect the temper embrittlement. The Mn and Cr content in the matrix significantly reduce the C activity, with showing an inversely proportional relationship to TTS. The change of susceptibility to temper embrittlement caused by Cr and Mn addition could be explained by the variation of C activity. Unlike Cr and Mn, Ni has little effect on the temper embrittlement and C activity.

  6. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Habbak, Enas L.; Shabara, Reham M.; Aly, Samy H.; Yehia, Sherif

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 μB respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 μB and 4 μB respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch-Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  7. Sediment fractionation of Cu, Ni, Zn, Cr, Mn, and Fe in one experimental and three natural marshes

    SciTech Connect

    Lindau, C.W.; Hossner, L.R.

    1982-07-01

    Dredged sediments from the Gulf Intracoastal Waterway near Galveston, Tex., were used as a substrate material in the construction of an experimental intertidal salt marsh. Selected substrate properties were compared with those of established marshes. Clay mineralogical properties of the experimental marsh were compared with those of three nearby natural marshes. A sequential chemical extraction procedure was used to obtain data on the partitioning of micronutrients and heavy metals among selected marsh substrate fractions. Clay minerals found in the sediments of the experimental marsh were equivalent to those identified in the natural marshes. Total elemental substrate concentrations of Cu, Ni, Cr, Zn, Mn, and Fe averaged 7.9, 8.6, 25.5, 25.2, 123, and 12,200 ..mu..g/g, respectively, over the four marsh sites. Copper, nickel, zinc, and chromium displayed only minor variations in substrate partitioning between the experimental and natural marsh samples. Micronutrients and heavy metal concentrations in the exchangeable and water-soluble fraction were low compared with other fractions. Approximately 30% of the total substrate Cu, Ni, and Zn was associated with the organic matter fraction. Metals fixed within the lattice structures of clay and silicate minerals ranged from 20% Mn for experimental marsh samples to 90% Cr for one of the natural marshes. Major differences in Mn and Fe substrate partitioning were observed when the experimental marsh samples were compared with those of the natural marshes.

  8. Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4

    PubMed Central

    Tsurkan, Vladimir; Zherlitsyn, Sergei; Prodan, Lilian; Felea, Viorel; Cong, Pham Thanh; Skourski, Yurii; Wang, Zhe; Deisenhofer, Joachim; von Nidda, Hans-Albrecht Krug; Wosnitza, Joahim; Loidl, Alois

    2017-01-01

    Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCr2S4 up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases. The magnetization plateau characterizes fully polarized chromium moments, without any contributions from manganese spins. At 40 T, the middle of the plateau, a regime evolves, where sound waves propagate almost without dissipation. The external magnetic field exactly compensates the Cr–Mn exchange field and decouples Mn and Cr sublattices. In analogy to predictions of quantum lattice-gas models, the changes of the spin order of the manganese ions at the phase boundaries of the magnetization plateau are interpreted as transitions to supersolid phases. PMID:28345038

  9. Atomic displacement in the CrMnFeCoNi high-entropy alloy - A scaling factor to predict solid solution strengthening

    NASA Astrophysics Data System (ADS)

    Okamoto, Norihiko L.; Yuge, Koretaka; Tanaka, Katsushi; Inui, Haruyuki; George, Easo P.

    2016-12-01

    Although metals strengthened by alloying have been used for millennia, models to quantify solid solution strengthening (SSS) were first proposed scarcely seventy years ago. Early models could predict the strengths of only simple alloys such as dilute binaries and not those of compositionally complex alloys because of the difficulty of calculating dislocation-solute interaction energies. Recently, models and theories of SSS have been proposed to tackle complex high-entropy alloys (HEAs). Here we show that the strength at 0 K of a prototypical HEA, CrMnFeCoNi, can be scaled and predicted using the root-mean-square atomic displacement, which can be deduced from X-ray diffraction and first-principles calculations as the isotropic atomic displacement parameter, that is, the average displacements of the constituent atoms from regular lattice positions. We show that our approach can be applied successfully to rationalize SSS in FeCoNi, MnFeCoNi, MnCoNi, MnFeNi, CrCoNi, CrFeCoNi, and CrMnCoNi, which are all medium-entropy subsets of the CrMnFeCoNi HEA.

  10. Monazite-type SrCrO<mn>4mn> under compression

    SciTech Connect

    Gleissner, J.; Errandonea, Daniel; Segura, A.; Pellicer-Porres, J.; Hakeem, M. A.; Proctor, J. E.; Raju, S. V.; Kumar, R. S.; Rodríguez-Hernández, P.; Munoz, A.; Lopez-Moreno, S.; Bettinelli, M.

    2016-10-20

    We report a high-pressure study of monoclinic monazite-type SrCrO4 up to 26 GPa. Therein we combined x-ray diffraction, Raman, and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO4. We determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active modes. In all three phases most Raman modes harden under compression, however the presence of low-frequency modes which gradually soften is also detected. In monazite-type SrCrO4, the band gap blueshifts under compression, but the transition to the scheelite phase causes an abrupt decrease of the band gap in SrCrO4. Calculations showed good agreement with experiments and were used to better understand the experimental results. From x-ray-diffraction studies and calculations we determined the pressure dependence of the unit-cell parameters of the different phases and their ambient-temperature equations of state. The results are compared with the high-pressure behavior of other monazites, in particular PbCrO4. A comparison of the high-pressure behavior of the electronic properties of SrCrO4 (SrWO4) and PbCrO4 (PbWO4) will also be made. Lastly, the possible occurrence of a third structural phase transition is discussed.

  11. Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe Cr Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Pimentel, G.; Chao, J.

    2012-01-01

    The effect of different starting microstructures on the kinetics of Fe-rich ({alpha}) and Cr-rich ({alpha}') phase separation during aging of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys has been analyzed with a combination of atom probe tomography and thermoelectric power measurements. The results revealed that the high recrystallization temperature necessary to produce a coarse grained microstructure in Fe-base ODS alloys affects the randomness of Cr-atom distributions and defect density, which consequently affect the phase separation kinetics at low annealing temperatures.

  12. Composition Optimization of Al-DOPING Lithium Manganese Oxide from Al2O3-Li2CO3-MnO2 Ternary System

    NASA Astrophysics Data System (ADS)

    He, Gang; Sun, Xinyan; Hong, Jianhe; He, Mingzhong

    2013-07-01

    In order to synthesize eutectic compound of Al doping lithium manganese oxide which can be used as cathode material in lithium battery, using γ-Al2O3, Li2CO3 and MnO2 as starting raw materials, the composition optimization research work has been done by the solid state synthesis method. A limited composition range was found in Al2O3-Li2CO3-MnO2 ternary system, in which the synthesized Al doping lithium manganese oxides have single spinel structure and good electrochemical performance. The results showed that the LiAl0.04Mn1.96O4 material presented better charge-discharge cycling behavior than pure LiMn2O4, and showed the best electrochemistry property among the compounds in the Al2O3-Li2O-Mn2O3 ternary system. LiAl0.04Mn1.96O4 still kept perfect cubic structure, but LiMn2O4 kept the coexistence of the cubic and tetragonal phases after 50 charge-discharge cycles.

  13. Antisite-induced half-metallicity and fully-compensated ferrimagnetism in Co-Mn-V-Al alloy

    NASA Astrophysics Data System (ADS)

    Wang, L. Y.; Dai, X. F.; Wang, X. T.; Cui, Y. T.; Liu, E. K.; Wang, W. H.; Wu, G. H.; Liu, G. D.

    2015-10-01

    We predicted that Co-Mn-V-Al alloy is a fully-compensated half-metallic ferrimagnet in CoVMnAl-type atomic arrangement with 25% ˜ 50% Co-Mn antisites using band structure calculations. The CoVMnAl-type atomic arrangement with about 30% Co-Mn antisites was successfully synthesized. The measurements of magnetic properties and electronic transport properties confirmed the half-metallicity and fully-compensated ferrimagnetism. We argued that the half-metallicity and ferrimagnetism in Co-Mn-V-Al compounds originate from the antisite between the Co and Mn atoms, which implies a new way to search for half-metallic material in Heusler alloys.

  14. Role of Y in the oxidation resistance of CrAlYN coatings

    NASA Astrophysics Data System (ADS)

    Domínguez-Meister, S.; El Mrabet, S.; Escobar-Galindo, R.; Mariscal, A.; Jiménez de Haro, M. C.; Justo, A.; Brizuela, M.; Rojas, T. C.; Sánchez-López, J. C.

    2015-10-01

    CrAlYN coatings with different aluminum (4-12 at.%) and yttrium (2-5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N2 mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr2N, and a more effective Fe and C blocking.

  15. Investigations of the electronic and magnetic structures of Co{sub 2}YGa (Y=Cr, Mn) Heusler alloys and their (100) surfaces

    SciTech Connect

    Hamad, Bothina

    2014-03-21

    Density functional theory calculations are performed to investigate the structural, electronic, and magnetic properties of bulk structures of Co{sub 2}YGa (Y = Cr, Mn) Heusler alloys and the surfaces along the (100) orientation. The bulk structures of both alloys show a ferromagnetic behavior with total magnetic moments of 3.03μ{sub B} and 4.09μ{sub B} and high spin polarizations of 99% and 67% for Co{sub 2}CrGa and Co{sub 2}MnGa, respectively. The surfaces are found to exhibit corrugations due to different relaxations of the surface atoms. For the case of Co{sub 2}CrGa, two surfaces preserve the half metallicity, namely those with Cr-Ga and Ga– terminations with high spin polarizations above 90%, whereas it dropped to about 50% for the other surfaces. However, the spin polarizations of Co-Co and Mn-Ga terminated surfaces remain close to that of bulk Co{sub 2}MnGa alloy, whereas it is suppressed down to 17% for Co– termination. The highest local magnetic moments are found to be 3.26 μ{sub B} and 4.11 μ{sub B} for Cr and Mn surface atoms in Cr-Ga and Mn– terminated surfaces, respectively.

  16. Fabrication and Characterization of Ni-P-CoNiCrAlY Composite Coatings

    NASA Astrophysics Data System (ADS)

    Heydari, H.; Monirvaghefi, S. M.; Hadipour, Ali

    2017-02-01

    In this study, Ni-P-CoNiCrAlY composite coatings were deposited on 310 stainless steel. The surface morphology and cross-sectional observations were carried out using scanning electron microscopy and optical microscopy. The high-temperature corrosion of all coatings was evaluated by cyclic oxidation method. According to the results, the amounts of CoNiCrAlY particles co-deposited in all samples coated at pH = 4.7 were higher than that of those produced at pH = 6.7. Also, the surface roughness of all composite coatings coated at pH = 6.7 is lower than the coatings produced at pH = 4.7. The Ni-P-(3 g/l) CoNiCrAlY deposit produced at pH = 6.7 had the best corrosion resistance among other coatings.

  17. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approx. 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  18. Fabrication and Characterization of Ni-P-CoNiCrAlY Composite Coatings

    NASA Astrophysics Data System (ADS)

    Heydari, H.; Monirvaghefi, S. M.; Hadipour, Ali

    2017-03-01

    In this study, Ni-P-CoNiCrAlY composite coatings were deposited on 310 stainless steel. The surface morphology and cross-sectional observations were carried out using scanning electron microscopy and optical microscopy. The high-temperature corrosion of all coatings was evaluated by cyclic oxidation method. According to the results, the amounts of CoNiCrAlY particles co-deposited in all samples coated at pH = 4.7 were higher than that of those produced at pH = 6.7. Also, the surface roughness of all composite coatings coated at pH = 6.7 is lower than the coatings produced at pH = 4.7. The Ni-P-(3 g/l) CoNiCrAlY deposit produced at pH = 6.7 had the best corrosion resistance among other coatings.

  19. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33 Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approximately 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  20. BeAl6O10: Cr3+: a promising active medium for femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Petrov, V. V.; Pestryakov, Efim V.; Trunov, V. I.; Kirpichnikov, A. V.; Alimpiev, A. I.

    2003-10-01

    The new laser crystals BeAl6O10:Cr3+ were grown, spectral-luminescence and CW laser properties were investigated and compared with those of well-known laser medium-alexandrite (BeAl2O4:Cr3+). CW laser generation on vibronic transition 4T2-4A2 of Cr3+ ions in BeAl6O10 crystals was realized in the range of 800-880 nm under Ar+ laser pumping. The emission cross-section of laser transition was estimated about 6×10-20 cm2. We confirmed these crystals are perspective for generation of femtosecond pulses in the near IR region under LD pumping.

  1. Microstructural characterization of Ni-22Fe-22Cr-6Al metallic foam by transmission electron microscopy.

    PubMed

    Kim, Hyung Giun; Lee, Taeg Woo; Lee, Jae Young; Lee, Eui Sung; Oh, Kwon Oh; Lee, Chang Woo; Lim, Sung Hwan

    2012-01-01

    Ni-22Fe-22Cr-6Al metallic foam, prepared using a thermomechanical treatment and alloying elements, was studied via transmission electron microscopy (TEM) in order to clarify the relationship between the mechanical properties and the nanoscale microstructural characteristics. Due to the unique porous structure of the metallic foam, TEM specimens were prepared using an embedding-process-assisted-ion-milling technique and a focused-ion-beam method. The Cr-, Fe- and Al-clustered regions around the surface of the metallic foam were investigated using elemental maps. The Ni(3)Al (γ') precipitates, which can affect the mechanical properties of the Ni-Fe-Cr (γ) matrix, were characterized in the metallic foam.

  2. Dynamic mechanical analyze of superelastic CuMnAl shape memory alloy

    NASA Astrophysics Data System (ADS)

    (Dragoș Ursanu, A. I.; Stanciu, S.; Pricop, B.; Săndulache, F.; Cimpoeșu, N.

    2016-08-01

    A new shape memory alloy was obtain from high purity Cu, Mn and Al elements using a induce furnace. The intelligent material present negative transformation temperatures and an austenite like state at room temperature. The austenite state of CuMnAl shape memory alloy present superelasticity property. Five kilograms ingot was obtain of Cu10Mn10Al alloy. From the base material (melted state) were cut samples with 6 mm thickness using a mechanical saw. After an homogenization heat treatment the samples were hot rolled through four passes with a reduction coefficient of 20%. Experimental lamellas were obtained with 1.5 mm thickness and 90x10 mm length and width. After the hot rolled treatment the materials were heat treated at 800°C for 20 minutes and chilled in water. Four samples, one just laminated and three heat treated by aging, were analyzed with a Netzsch DMA equipment to establish the elastic modulus and the internal friction values of the materials. Metallic materials microstructure was analyzed using a scanning electron microscope Vega Tescan LMH II type. After the aging heat treatment a decrease of internal friction is observed on the entire analyze range which is assigned to formation of Al-based precipitates that block the internal movement of the alloy characteristic phases.

  3. Deformation and annealing study of NiCrAlY

    NASA Technical Reports Server (NTRS)

    Ebert, L. J.; Trela, D. M.

    1978-01-01

    The elevated temperature properties (tensile and creep) of NiCrALY, a nickel base alloy containing nominally 16% chromium, 4% aluminum, and 2 to 3% yttria (Y2O3) were evaluated and the optimal combination of thermomechanical treatments for maximum creep resistance was determined. Stored strain energy in as-extruded bars (14:1 extrusion ratio) permitted the development of a large grain size in the material when it was annealed at the maximum safe temperature 2450 F (1343 C). With a one-hour anneal at this temperature, the relatively fine grain size of the as-extruded material was changed to one in which the average grain diameter approached 1 mm, and the aspect ratio was about 10. The material was capable of being cold worked (by rolling) in amounts greater than 30% reduction in area. When the cold worked material was given a relaxation treatment, consisting of heating one hour at 1600 F(871 C), and then a high temperature anneal at 2450 F (1343 C) for one hour, both the high temperature strength and the high temperature creep resistance of the material was further enhanced.

  4. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The SAP technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of the alloy Ni-17Cr-5Al-0.2 Y. SAP-NiCrAl was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. A variety of annealing treatments were applied after working to determine the recrystallization response. NiCrAlY, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl of this study exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl as has been reported for other oxide dispersion strengthened alloys. In contrast, unoxidized NiCrAlY exhibited only primary recrystallization.

  5. Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method

    NASA Astrophysics Data System (ADS)

    Ateia, Ebtesam. E.; Mohamed, Amira. T.

    2017-03-01

    The spinel ferrite Mg0.7Cr0.3Fe2O4, and Mg0.7Al0.3Fe2O4 were prepared by the citrate technique. All samples were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Micrographs (HRTEM), Energy Dispersive X ray Spectroscopy (EDAX) and Atomic Force Microscope (AFM). XRD confirmed the formation of cubic spinel structure of the investigated samples. The average crystallite sizes were found to be between 24.7 and 27.5 nm for Al3+ and Mg2+ respectively. The substitution of Cr3+/Al3+ in place of Mg2+ ion initiates a crystalline anisotropy due to large size mismatch between Cr /Al and Mg2+, which creates strain inside the crystal volume. According to VSM results, by adding Al3+ or Cr3+ ions at the expense of Mg2+, the saturation magnetization increased. The narrow hysteresis loop of the samples indicates that the amount of dissipated energy is small, which is desirable for soft magnetic applications. Magnetic dynamics of the samples were studied by measuring magnetic susceptibility versus temperature at different magnetic fields. The band gap energy, which was calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function, decreases with increasing the particle size. Furthermore, the band gaps were quite narrow (1.5-1.7 eV), hence the investigated samples could act as visible light driven photo catalysts. To sum up the addition of trivalent Al3+, and Cr3+ ions enhanced the optical, magnetic and structure properties of the samples. Mg0.7 Cr0.3Fe2O4 sample will be a better candidate for the optical applications and will also be a guaranteeing hopeful for technological applications.

  6. Terahertz Spectroscopy of CrH (X 6Σ+) and AlH (X 1Σ+)

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Ziurys, L. M.

    2016-12-01

    New laboratory measurements of hydrides have been carried out using terahertz direct absorption spectroscopy. Spin components of the N=2≤ftarrow 1 transition of the free radical CrH (X 6Σ+) have been recorded in the range 730-734 GHz, as well as a new measurement of the J=2≤ftarrow 1 line of AlH (X 1Σ+) near 755 GHz. Both species were created in an AC discharge of H2, argon, and metal vapor. For CrH, the chromium source was Cr(CO)6, while AlH was produced from Al(CH3)3. The J=4.5≤ftarrow 3.5 and 3.5≤ftarrow 2.5 fine-structure components were recorded for CrH, each which consists of resolved proton hyperfine doublets. For AlH, the two main quadrupole components, F=4.5≤ftarrow 3.5 and 3.5≤ftarrow 2.5, of the J=2≤ftarrow 1 transition were observed as blended features. These data were analyzed with previous 1≤ftarrow 0 millimeter/submillimeter measurements with 6Σ and 1Σ Hamiltonians for chromium and aluminum hydrides, respectively, and rotational, fine-structure (CrH only), and hyperfine constants were derived. The new measurements have resulted in refined spectroscopic parameters for both species, as well as direct measurement of the respective 2≤ftarrow 1 rotational transitions. This work also resolves a 10 MHz discrepancy in the frequency of the AlH line. CrH and AlH have already been observed in the photospheres of stars via their electronic transitions. These data will facilitate their discovery at submillimeter/terahertz wavelengths in circumstellar envelopes and perhaps in diffuse clouds.

  7. Spin resolved photoelectron spectroscopy of [Mn6(III)Cr(III)]3+ single-molecule magnets and of manganese compounds as reference layers.

    PubMed

    Helmstedt, Andreas; Müller, Norbert; Gryzia, Aaron; Dohmeier, Niklas; Brechling, Armin; Sacher, Marc D; Heinzmann, Ulrich; Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten; Bouvron, Samuel; Fonin, Mikhail; Neumann, Manfred

    2011-07-06

    Properties of the manganese-based single-molecule magnet [Mn(6)(III)Cr(III)](3+) are studied. It contains six Mn(III) ions arranged in two bowl-shaped trinuclear triplesalen building blocks linked by a hexacyanochromate and exhibits a large spin ground state of S(t) = 21/2. The dominant structures in the electron emission spectra of [Mn(6)(III)Cr(III)](3+) resonantly excited at the L(3)-edge are the L(3)M(2, 3)M(2, 3), L(3)M(2, 3)V and L(3)VV Auger emission groups following the decay of the primary p(3/2) core hole state. Significant differences of the Auger spectra from intact and degraded [Mn(6)(III)Cr(III)](3+) show up. First measurements of the electron spin polarization in the L(3)M(2, 3)V and L(3)VV Auger emission peaks from the manganese constituents in [Mn(6)(III)Cr(III)](3+) resonantly excited at the L(3)-edge near 640 eV by circularly polarized synchrotron radiation are reported. In addition spin resolved Auger electron spectra of the reference substances MnO, Mn(2)O(3) and Mn(II)(acetate)(2)·4H(2)O are given. The applicability of spin resolved electron spectroscopy for characterizing magnetic states of constituent atoms compared to magnetic circular dichroism (MCD) is verified: the spin polarization obtained from Mn(II)(acetate)(2)·4H(2)O at room temperature in the paramagnetic state compares to the MCD asymmetry revealed for a star-shaped molecule with a Mn(4)(II)O(6) core at 5 K in an external magnetic field of 5 T.

  8. Quaternary aluminum silicides grown in Al flux: RE5Mn4Al(23-x)Si(x) (RE = Ho, Er, Yb) and Er44Mn55(AlSi)237.

    PubMed

    Calta, Nicholas P; Kanatzidis, Mercouri G

    2013-09-03

    Four novel intermetallic silicides, RE5Mn4Al(23-x)Si(x) (x = 7.9(9), RE = Ho, Er, Yb) and Er44Mn55(AlSi)237, have been prepared by reaction in aluminum flux. Three RE5Mn4Al(23-x)Si(x) compounds crystallize in the tetragonal space group P4/mmm with the relatively rare Gd5Mg5Fe4Al(18-x)Si(x) structure type. Refinement of single-crystal X-ray diffraction data yielded unit cell parameters of a = 11.3834(9)-11.4171(10) Å and c = 4.0297(2)-4.0575(4) Å with volumes ranging from 522.41(5) to 528.90(8) Å(3). Structure refinements on single-crystal diffraction data show that Er44Mn55(AlSi)237 adopts a new cubic structure type in the space group Pm3n with a very large unit cell edge of a = 21.815(3) Å. This new structure is best understood when viewed as two sets of nested polyhedra centered on a main group atom and a manganese atom. These polyhedral clusters describe the majority of the atomic positions in the structure and form a perovskite-type network. We also report the electrical and magnetic properties of the title compounds. All compounds except the Ho analogue behave as normal paramagnetic metals without any observed magnetic transitions above 5 K and exhibit antiferromagnetic correlations deduced from the value of their Curie constants. Ho5Mn4Al(23-x)Si(x) exhibits a ferromagnetic transition at 20 K and an additional metamagnetic transition at 10 K, suggesting independent ordering temperatures for two distinct magnetic sublattices.

  9. The nature of Mn4+ luminescence in the orthorhombic perovskite, GdAlO3

    NASA Astrophysics Data System (ADS)

    Srivastava, A. M.; Brik, M. G.

    2017-01-01

    In this paper we report on the spectroscopic properties of Mn4+ (3d3) ion in the orthorhombic perovskite, GdAlO3 and calculate the energy levels using the exchange charge model of crystal-field theory. The calculated Mn4+ energy levels are in good agreement with the experimental data. The results of our calculations yield the crystal-field splitting and Racah parameters of Dq = 2083 cm-1, B = 780 cm-1 and C = 2864 cm-1, with C/B = 3.67. The emission spectrum is composed of the zero phonon line (2Eg → 4A2g transition) with dominating intensity and its vibrational sidebands. We have also calculated Mulliken atomic charges and bond populations for three isostructural perovskites (GdAlO3, LaGaO3 and CaZrO3) to seek correlation between the energy position of the Mn4+2E level and the covalence of Mn4+sbnd O2- chemical bonding.

  10. Microstructure and Phase Analysis in Mn-Al and Zr-Co Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Lucis, Michael J.

    In America's search for energy independence, the development of rare-earth free permanent magnets is one hurdle that still stands in the way. Permanent magnet motors provide a higher efficiency than induction motors in applications such as hybrid vehicles and wind turbines. This thesis investigates the ability of two materials, Mn-Al and Zr-Co, to fill this need for a permanent magnet material whose components are readily available within the U.S. and whose supply chain is more stable than that of the rare-earth materials. This thesis focuses on the creation and optimization of these two materials to later be used as the hard phase in nanocomposites with high energy products (greater than 10 MGOe). Mn-Al is capable of forming the pure L10 structure at a composition of Mn54Al43C3. When Mn is replaced by Fe or Cu using the formula Mn48Al43C3T6 the anisotropy constant is lowered from 1.3·107 ergs/cm3 to 1.0·107 ergs/cm3 and 0.8·10 7 ergs/cm3 respectively. Previous studies have reported a loss in magnetization in Mn-Al alloys during mechanical milling. The reason for this loss in magnetization was investigated and found to be due to the formation of the equilibrium beta-Mn phase of the composition Mn3Al2 and not due to oxidation or site disorder. It was also shown that fully dense Mn-Al permanent magnets can be created at hot pressing temperatures at or above 700°C and that the epsilon-phase to tau-phase transition and consolidation can be combined into a single processing step. The addition of small amounts of Cu to the alloy, 3% atomic, can increase the compaction density allowing high densities to be achieved at lower pressing temperatures. While the structure is still under debate, alloys at the composition Zr2Co11 in the Zr-Co system have been shown to have hard magnetic properties. This thesis shows that multiple structures exist at this Zr2Co11 composition and that altering the cooling rate during solidification of the alloy affects the ratio of the phase

  11. Equation of State of an AlCoCrCuFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Li, Gong; Xiao, Daihong; Yu, Pengfei; Zhang, Lijun; Liaw, Peter K.; Li, Yanchun; Liu, Riping

    2015-08-01

    The pressure-volume (P-V) relationship of the AlCoCrCuFeNi high-entropy alloy (HEA) at room temperature has been studied using in situ high-pressure energy-dispersive x-ray diffraction with synchrotron radiation at high pressures. The equation of state of the AlCoCrCuFeNi HEA is determined by the calculation of the radial distribution function. The experimental results indicate that the HEA keeps a stable face-centered-cubic + body-centered-cubic structure in the experimental pressure range from 0 GPa to 24 GPa.

  12. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    SciTech Connect

    Thompson, Zachary T.; Terrani, Kurt A.; Yamamoto, Yukinori

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  13. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    SciTech Connect

    Yamamoto, Yukinori

    2015-09-01

    Development and quality assessment of the 2nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  14. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Douglass, D. L.; Nasrallah, M.

    1974-01-01

    The investigation reported included a determination of the optimum composition of a Ni-Cr-Al ternary alloy with respect to oxidation resistance and minimum film-spalling tendencies. Yttrium and thorium in small amounts were added to the ternary alloy and an investigation of the oxidation mechanism and the oxide scale adherence was conducted. It was found that the oxidation mechanism of Ni-Cr-Al ternary alloys depends upon the composition of the alloy as well as the time, oxygen pressure, and temperature of oxidation.

  15. Magnetoresistance of the high-pressure ferromagnetic phases (GaSb)2M (M=Cr,Mn)

    NASA Astrophysics Data System (ADS)

    Pronin, A. A.; Kondrin, M. V.; Gizatullin, V. R.; Sazanova, O. A.; Lyapin, A. G.; Popova, S. V.; Ivanov, V. Y.

    2014-08-01

    For the first time magnetoresistance of the ferromagnetic high-pressure phases (GaSb)2M (M=Cr,Mn) has been measured in a wide range of temperature and magnetic field. It was found that the magnetic field dependencies of resistivity of both systems contain several contributions, including relatively smaller s-d exchange (Yosida-type) components in low fields and a quadratic positive term (PMR) in the low temperature region. The magnitude of the predominated negative term (NMR), which can be attributed to the quantum corrections effects, demonstrates a peak in the vicinity of Curie temperature.

  16. Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels

    NASA Astrophysics Data System (ADS)

    Mahmudi, Abbas; Nedjad, Syamak Hossein; Behnam, Mir Masud Jabbari

    2011-10-01

    Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels were studied. To investigate the microstructure and mechanical properties, optical microscopy, scanning electron microscopy, X-ray diffraction, tensile test, and hardness test were used. The results show that the solution-annealing treatment in the cold-rolled steel redounds to the formation of submicrocrystalline Fe2(Mo, Ti) Laves phase particles, which are stable at high temperatures. These secondary Laves phase particles prevent from recrystallization at high temperatures and correspond to semi-brittle fracture in the subsequent aging treatment.

  17. Identification of Inverse Bainite in Fe-0.84C-1Cr-1Mn Hypereutectoid Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Kannan, Rangasayee; Wang, Yiyu; Li, Leijun

    2017-03-01

    A unique dilatation trend is observed for isothermal bainite transformation in Fe-0.84 pct C-1 pct Cr-1 pct Mn steel. The dilatation is found to occur in two stages with volumetric contraction dominating the first stage, followed by volumetric expansion dominating the second stage. Through electron microscopic characterization, bainitic microstructure is identified as inverse bainite with cementite (Fe3C) nucleating first from supersaturated austenite followed by the transformation of ferrite and secondary carbides (Fe3C, Fe2C, and Fe5C2) from carbon-depleted austenite.

  18. Anomalous resistivity upturn in epitaxial L21-Co2MnAl films

    NASA Astrophysics Data System (ADS)

    Zhu, L. J.; Zhao, J. H.

    2017-02-01

    Despite of the great scientific and technology interest, highly ordered full-Heusler L21-Co2MnAl films have remained a big challenge in terms of the availability and the electrical transport. Here we report the controllable growth and the intriguing transport behavior of epitaxial L21-Co2MnAl films, which exhibit a low-temperature (T) resistivity upturn with a pronounced T1/2 dependence, a robust independence of magnetic fields, and a close relevance to structural disorder. The resistivity upturn turns out to be qualitatively contradictory to weak localization, particle-particle channel electron-electron interaction (EEI), and orbital two-channel Kondo effect, leaving a three-dimensional particle-hole channel EEI the most likely physical source. Our result highlights a considerable tunability of the structural and electronic disorder of magnetic films by varying growth temperature, affording unprecedented insights into the origin of the resistivity upturn.

  19. Anomalous resistivity upturn in epitaxial L21-Co2MnAl films.

    PubMed

    Zhu, L J; Zhao, J H

    2017-02-20

    Despite of the great scientific and technology interest, highly ordered full-Heusler L21-Co2MnAl films have remained a big challenge in terms of the availability and the electrical transport. Here we report the controllable growth and the intriguing transport behavior of epitaxial L21-Co2MnAl films, which exhibit a low-temperature (T) resistivity upturn with a pronounced T(1/2) dependence, a robust independence of magnetic fields, and a close relevance to structural disorder. The resistivity upturn turns out to be qualitatively contradictory to weak localization, particle-particle channel electron-electron interaction (EEI), and orbital two-channel Kondo effect, leaving a three-dimensional particle-hole channel EEI the most likely physical source. Our result highlights a considerable tunability of the structural and electronic disorder of magnetic films by varying growth temperature, affording unprecedented insights into the origin of the resistivity upturn.

  20. Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System

    NASA Astrophysics Data System (ADS)

    Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.

    2017-01-01

    The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.

  1. Fabrication of MnAl thin films with perpendicular anisotropy on Si substrates

    NASA Astrophysics Data System (ADS)

    Huang, Efrem Y.; Kryder, Mark H.

    2015-05-01

    For the first time, perpendicularly magnetized L10-ordered MnAl thin films were demonstrated using a MgO seed layer on Si substrates, which is critical to making spintronic devices. Fabrication conditions were selected by systematically varying sputtering parameters (film thickness, DC sputtering power, in situ substrate temperature, and post-annealing temperature) and investigating structural and magnetic properties. Strong perpendicular magnetic anisotropy with coercivity Hc of 8 kOe, Ku of over 6.5 × 106 erg/cm3, saturation magnetization Ms of 300 emu/cm3, and out-of-plane squareness Mr/Ms of 0.8 were achieved. These MnAl film properties were obtained via DC magnetron sputtering at 530 °C, followed by 350 °C annealing under a 4 kOe magnetic field oriented perpendicular to the film plane.

  2. Anomalous resistivity upturn in epitaxial L21-Co2MnAl films

    PubMed Central

    Zhu, L. J.; Zhao, J. H.

    2017-01-01

    Despite of the great scientific and technology interest, highly ordered full-Heusler L21-Co2MnAl films have remained a big challenge in terms of the availability and the electrical transport. Here we report the controllable growth and the intriguing transport behavior of epitaxial L21-Co2MnAl films, which exhibit a low-temperature (T) resistivity upturn with a pronounced T1/2 dependence, a robust independence of magnetic fields, and a close relevance to structural disorder. The resistivity upturn turns out to be qualitatively contradictory to weak localization, particle-particle channel electron-electron interaction (EEI), and orbital two-channel Kondo effect, leaving a three-dimensional particle-hole channel EEI the most likely physical source. Our result highlights a considerable tunability of the structural and electronic disorder of magnetic films by varying growth temperature, affording unprecedented insights into the origin of the resistivity upturn. PMID:28218300

  3. Raman spectroscopic study of MnAl2O4 galaxite at various pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Zhai, Shuangmeng; Yin, Yuan; Shieh, Sean R.; Chang, Yun-Yuan; Xie, Tianqi; Xue, Weihong

    2017-03-01

    The vibrational properties of synthetic galaxite, MnAl2O4, were investigated at various pressures (0-29.7 GPa) and temperatures (80-973 K), respectively. The Raman frequencies of all observed bands for galaxite continuously increase with increasing pressure and decrease with increasing temperature, respectively. The quantitative analysis shows that the lowest frequency T 2 g mode has the smallest isothermal mode Grüneisen parameter. Combined with previous studies, the thermal Grüneisen parameter of galaxite is determined to be 1.23(5). The quantitative analysis of temperature dependences of Raman bands yields that the lowest frequency T 2 g mode has the largest isobaric mode Grüneisen parameter. The intrinsic anharmonic mode parameters are also calculated and nonzero, indicating an existence of intrinsic anharmonicity for MnAl2O4 spinel.

  4. Fiber optic thermometer using Cr-doped GdAlO3 broadband emission decay

    NASA Astrophysics Data System (ADS)

    Eldridge, Jeffrey I.; Chambers, Matthew D.

    2015-09-01

    Luminescence decay temperature measurements are performed from 800 to 1200 °C using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor tip on a YAG single crystal fiber. As a thermographic phosphor, Cr:GdAlO3 combines the intense luminescence of transition metal dopants with the high temperature long decay times usually exhibited only by rare earth dopants. The proposed mechanism is emission by the Cr3+ dopant via the spin-allowed 4T2  →  4A2 transition supported by a reservoir state in 2E which populates {}4{{\\text{T}}2} (2E  →  {}4{{\\text{T}}2} ) through thermal equilibration. The relative energy levels and transition probabilities associated with the strong crystal field at the Al3+ site in the perovskite structure of GdAlO3 are favorable for suppressing thermal quenching of luminescence. Results from a single-fiber configuration sensor, based on a YAG fiber for its low background luminescence, are presented. Using a decay curve fitting procedure that accounts for background fluorescence, accuracies of better than  ±5 °C are demonstrated.

  5. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  6. Crystal growth and spectroscopic properties of Cr3+-doped CaGdAlO4

    NASA Astrophysics Data System (ADS)

    Zhang, Zhu; Huang, Yisheng; Zhang, Lizhen; Sun, Shijia; Yuan, Feifei; Lin, Zhoubin

    2017-04-01

    A Cr3+:CaGdAlO4 single crystal with dimensions of ∅21 × 33 mm3 was grown successfully by Czochralski method for the first time. Its spectral properties including polarized absorption spectra, polarized fluorescence spectra, excitation spectrum and fluorescence decay curves were investigated in detail. The absorption cross-sections at around 573 nm corresponding to the 4A2 → 4T2 transition of Cr3+ ions are 4.75 × 10-20 and 2.56 × 10-20 cm2 for σ- and π-polarizations, respectively. The excitation spectrum shows two broad and intense absorption bands at about 390 nm and 570 nm, which are associated with the 4A2 → 4T1 and 4A2 → 4T2 transitions of Cr3+ ions, respectively. The emission band with peak at around 744 nm is ascribed to the 2E → 4A2 transition of Cr3+ ions, with the emission cross-sections of 5.55 × 10-22 and 5.41 × 10-22 cm2 for σ- and π-polarizations, respectively. The fluorescence lifetime is 4.35 ms at room temperature. The Dq/B value is 2.72, which means that Cr3+ ions occupy the lattice sites with strong crystal field strength. The results show that Cr3+:CaGdAlO4 crystal can be regarded as a potential laser gain medium.

  7. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    SciTech Connect

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explain that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.

  8. Structural, magnetic, and superconducting properties of pulsed-laser-deposition-grown La<mn>1.85mn> Sr<mn>0.15mn> CuO<mn>4mn> / La<mn>2mn>/>3mn> Ca<mn>1mn>/>3mn> MnO>3mn> superlattices on (001)-oriented LaSrAlO>4mn> substrates

    SciTech Connect

    Das, S.; Sen, K.; Marozau, I.; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Khaydukov, Y.; Soltwedel, O.; Keller, T.; Döbeli, M.; Schneider, C. W.; Bernhard, C.

    2014-03-12

    Epitaxial La<mn>1.85mn> Sr<mn>0.15mn> CuO<mn>4mn> / La<mn>2mn>/>3mn> Ca<mn>1mn>/>3mn> MnO>3mn> (LSCO/LCMO) superlattices (SL) on (001)- oriented LaSrAlO4 substrates have been grown with pulsed laser deposition (PLD) technique. Their structural, magnetic and superconducting properties have been determined with in-situ reflection high energy electron diffraction (RHEED), x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy (STEM), electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO (a = 0.3779 nm) and LCMO (a = 0.387 nm) these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LSAO substrate, a sizeable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of Tconset ≈ 36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H ∥ ab and a sizeable paramagnetic shift for H ∥ c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a

  9. Half-metallicity in highly L21-ordered CoFeCrAl thin films

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Valloppilly, S. R.; Li, X.-Z.; Kim, D. R.; Zhao, G. J.; Chen, T. Y.; Choudhary, R.; Kashyap, A.; Skomski, R.; Sellmyer, D. J.

    2016-10-01

    The structural, magnetic, and electron-transport properties of Heusler-ordered CoFeCrAl thin films are investigated experimentally and theoretically. The films, sputtered onto MgO and having thicknesses of about 100 nm, exhibit virtually perfect single-crystalline epitaxy and a high degree of L21 chemical order. X-ray diffraction and transmission-electron microscopy show that the structure of the films is essentially of the L21 Heusler type. The films are ferrimagnetic, with a Curie temperature of about 390 K, and a net moment of 2 μB per formula unit. The room temperature resistivity is 175 μΩ cm; the carrier concentration and mobility determined from the low temperature (5 K) measurement are 1.2 × 1018 cm-3 and 33 cm2/V s, respectively. In contrast to the well-investigated Heusler alloys such as Co2(Cr1-xFex)Al, the CoFeCrAl system exhibits two main types of weak residual A2 disorder, namely, Co-Cr disorder and Fe-Cr disorder, the latter conserving half-metallicity. Point-contact Andreev reflection yields a lower bound for the spin polarization, 68% at 1.85 K, but our structural and magnetization analyses suggest that the spin polarization at the Fermi level is probably higher than 90%. The high resistivity, spin polarization, and Curie temperature are encouraging in the context of spin electronics.

  10. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    SciTech Connect

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; Hoelzer, David T.

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.

  11. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    DOE PAGES

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; ...

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is amore » general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.« less

  12. Hafnium influence on the microstructure of FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Geanta, V.; Voiculescu, I.; Stanciu, E.-M.

    2016-06-01

    Due to their special properties at high temperatures, FeCrAl alloys micro-alloyed with Zr can be regarded as potential materials for use at nuclear power plants, generation 4R. These materials are resistant to oxidation at high temperatures, to corrosion, erosion and to the penetrating radiations in liquid metal environments. Also, these are able to form continuously, by the self-generation process of an oxide coating with high adhesive strength. The protective oxide layers must be textured and regenerable, with a good mechanical strength, so that crack and peeling can not appear. To improve the mechanical and chemical characteristics of the oxide layer, we introduced limited quantities of Zr, Ti, Y, Hf, Ce in the range of 1-3%wt in the FeCrAl alloy. These elements, with very high affinity to the oxygen, are capable to stabilize the alumina structure and to improve the oxide adherence to the metallic substrate. FeCrAl alloys microalloyed with Hf were prepared using VAR (Vacuum Arc Remelting) unit, under high argon purity atmosphere. Three different experimental alloys have been prepared using the same metallic matrix of Fe-14Cr-5Al, by adding of 0.5%wt Hf, 1.0%wt Hf and respectively 1.5%wt Hf. The microhardness values for the experimental alloys have been in the range 154 ... 157 HV0.2. EDAX analyses have been performed to determine chemical composition on the oxide layer and in the bulk of sample and SEM analyze has been done to determine the microstructural features. The results have shown the capacity of FeCrAl alloy to form oxide layers, with different texture and rich in elements such as Al and Hf.

  13. Environmental influence on the single-molecule magnet behavior of [Mn(III)6Cr(III)]3+: molecular symmetry versus solid-state effects.

    PubMed

    Hoeke, Veronika; Heidemeier, Maik; Krickemeyer, Erich; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Postnikov, Andrei; Glaser, Thorsten

    2012-10-15

    The structural, spectroscopic, and magnetic properties of a series of [Mn(III)(6)Cr(III)](3+) (= [{(talen(t-Bu(2)))Mn(III)(3)}(2){Cr(III)(CN)(6)}](3+)) compounds have been investigated by single-crystal X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and electronic absorption spectroscopy, elemental analysis, electro spray ionization-mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS), cyclic voltammetry, AC and DC magnetic measurements, as well as theoretical analysis. The crystal structures obtained with [Cr(III)(CN)(6)](3-) as a counterion exhibit (quasi-)one-dimensional (1D) chains formed by hydrogen-bonded (1) or covalently linked (2) trications and trianions. The rod-shaped anion lactate enforces a rod packing of the [Mn(III)(6)Cr(III)](3+) complexes in the highly symmetric space group R3[overline] (3) with a collinear arrangement of the molecular S(6) axes. Incorporation of the spherical anion BPh(4)(-) leads to less-symmetric crystal structures (4-6) with noncollinear orientations of the [Mn(III)(6)Cr(III)](3+) complexes, as evidenced by the angle between the approximate molecular C(3) axes taking no specific values in the range of 2°-69°. AC magnetic measurements on freshly isolated crystals (1a and 3a-6a), air-dried crystals (3b-6b), and vacuum-dried powder samples (3c-6c) indicate single-molecule magnet (SMM) behavior for all samples with U(eff) values up to 28 K. The DC magnetic data are analyzed by a full-matrix diagonalization of the appropriate spin-Hamiltonian including isotropic exchange, zero-field splitting, and Zeeman interaction, taking into account the relative orientation of the D-tensors. Simulations for 3a-6a and 3c-6c indicate a weak antiferromagnetic exchange between the Mn(III) ions in the trinuclear subunits (J(Mn-Mn) = -0.70 to -0.85 cm(-1), Ĥ(ex) = -2∑(iCr-C≡N-Mn pathway

  14. Progress in the material development of LiCaAlF sub 6 :Cr sup 3+ laser crystals

    SciTech Connect

    Michelle D. Shinn.; Chase, L.L.; Caird, J.A.; Payne, S.A.; Atherton, L.J.; Kway, W.L.

    1990-03-01

    High Cr{sup 3+} doping levels, up to 8 mole percent, and low losses have been obtained with the tunable solid-state laser material LiCaAlF{sub 6}:Cr{sup 3+} (Cr:LiCAF). Measurements and calculations show that high pumping and extraction efficiencies are possible with the improved material. 13 refs., 4 figs., 1 tab.

  15. Study of the effects of implantation on the high Fe-Ni-Cr and Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Ribarsky, M. W.

    1985-01-01

    A theoretical study of the effects of implantation on the corrosion resistance of Fe-Ni-Cr and Ni-Cr-Al alloys was undertaken. The purpose was to elucidate the process by which corrosion scales form on alloy surfaces. The experiments dealt with Ni implanted with Al, exposed to S at high temperatures, and then analyzed using scanning electron microscopy, scanning Auger spectroscopy and X-ray fluorescence spectroscopy. Pair bonding and tight-binding models were developed to study the compositions of the alloys and as a result, a new surface ordering effect was found which may exist in certain real alloys. With these models, the behavior of alloy constituents in the presence of surface concentrations of O or S was also studied. Improvements of the models to take into account the important effects of long- and short-range ordering were considered. The diffusion kinetics of implant profiles at various temperatures were investigated, and it was found that significant non-equilibrium changes in the profiles can take place which may affect the implants' performance in the presence of surface contaminants.

  16. Solute transport during the cyclic oxidation of Ni-Cr-Al alloys. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.

    1982-01-01

    Important requirements for protective coatings of Ni-Cr-Al alloys for gas turbine superalloys are resistance to oxidation accompanied by thermal cycling, resistance to thermal fatigue cracking. The resistance to oxidation accompanied by thermal cycling is discussed. The resistance to thermal fatigue cracking is also considered.

  17. Database on Performance of Neutron Irradiated FeCrAl Alloys

    SciTech Connect

    Field, Kevin G.; Briggs, Samuel A.; Littrell, Ken; Parish, Chad M.; Yamamoto, Yukinori

    2016-08-01

    The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerance of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.

  18. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE PAGES

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; ...

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  19. Ion irradiation testing and characterization of FeCrAl candidate alloys

    SciTech Connect

    Anderoglu, Osman; Aydogan, Eda; Maloy, Stuart Andrew; Wang, Yongqiang

    2014-10-29

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels. This effort involves development of fuel cladding materials that will be resistant to oxidizing environments for extended period of time such as loss of coolant accident. Ferritic FeCrAl alloys are among the promising candidates due to formation of a stable Al₂O₃ oxide scale. In addition to being oxidation resistant, these promising alloys need to be radiation tolerant under LWR conditions (maximum dose of 10-15 dpa at 250 – 350°C). Thus, in addition to a number of commercially available alloys, nuclear grade FeCrAl alloys developed at ORNL were tested using high energy proton irradiations and subsequent characterization of irradiation hardening and damage microstructure. This report summarizes ion irradiation testing and characterization of three nuclear grade FeCrAl cladding materials developed at ORNL and four commercially available Kanthal series FeCrAl alloys in FY14 toward satisfying FCRD campaign goals.

  20. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    SciTech Connect

    Sweet, Ryan; George, Nathan M.; Terrani, Kurt A.; Wirth, Brian

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  1. Reversible Characteristics and Cycling Effects of the ɛ ↔ γ Martensitic Transformations in Fe-Mn-Cr Twip/Trip Steels

    NASA Astrophysics Data System (ADS)

    Mertinger, V.; Benke, M.; Nagy, E.; Pataki, T.

    2014-07-01

    The variation of thermal characteristics of the ɛ ↔ γ transformation during thermal cycling and the effect of Cr content was studied in two Fe-Mn-Cr steels through cyclic DSC examinations. It was found that the martensite start temperature decreased and the austenite start temperature increased in the first cycles, then both stabilized after several cycles. The latent heat of the transformations increased first and then also stabilized. The Cr content pushed the ɛ ↔ γ transformations to lower temperatures, decreased the thermal hysteresis and the latent heat. It is experimentally shown that 6.53 m/m% Cr content increases the stacking fault energy in this alloy.

  2. The oxidation behavior of Ni-Cr-Al-2ThO2 alloys at 1093 and 1204 C.

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wilcox, B. A.; Stringer, J.

    1972-01-01

    A pack diffusion process has been developed which permits the introduction of nearly 6 wt % Al into solid solution in the near surface region of TDNiCr (Ni-20 wt % Cr-2 vol % ThO2) and Ni-20Cr. Alumina scales, adherent under cyclic heating and cooling conditions, were produced on TDNiCr-5.86Al upon exposure to an environment of 1330 N/sq m (10 torr) or 101,000 N/sq m (760 torr) air at temperatures of 1093 and 1204 C. While the same oxidation kinetics were observed in isothermal tests for Ni-14.6Cr-5.86Al as were obtained for the TDNiCr-5.86Al, the dispersion-strengthened alloy exhibited superior oxide scale adhesion during cyclic testing. At 1204 C, continuous weight gains were observed under all test conditions for TDNiCr-5.86Al, in contrast to the weight loss with time which occurred several hours after exposure of TDNiCr to an oxidizing environment. TDNiCr with an initial aluminum surface concentration of 4.95 wt % has nearly comparable oxidation resistance to the TDNiCr-5.86Al alloy.

  3. Formation of (Cr, Al)UO4 from doped UO2 and its influence on partition of soluble fission products

    NASA Astrophysics Data System (ADS)

    Cooper, M. W. D.; Gregg, D. J.; Zhang, Y.; Thorogood, G. J.; Lumpkin, G. R.; Grimes, R. W.; Middleburgh, S. C.

    2013-11-01

    CrUO4 and (Cr, Al)UO4 have been fabricated by a sol-gel method, studied using diffraction techniques and modelled using empirical pair potentials. Cr2O3 was predicted to preferentially form CrUO4 over entering solution into hyper-stoichiometric UO2+x by atomic scale simulation. Further, it was predicted that the formation of CrUO4 can proceed by removing excess oxygen from the UO2 lattice. Attempts to synthesise AlUO4 failed, instead forming U3O8 and Al2O3. X-ray diffraction confirmed the structure of CrUO4 and identifies the existence of a (Cr, Al)UO4 phase for the first time (with a maximum Al to Cr mole ratio of 1:3). Simulation was subsequently used to predict the partition energies for the removal of fission products or fuel additives from hyper-stoichiometric UO2+x and their incorporation into the secondary phase. The partition energies are consistent only with smaller cations (e.g. Zr4+, Mo4+ and Fe3+) residing in CrUO4, while all divalent cations are predicted to remain in UO2+x. Additions of Al had little effect on partition behaviour. The reduction of UO2+x due to the formation of CrUO4 has important implications for the solution limits of other fission products as many species are less soluble in UO2 than UO2+x.

  4. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    SciTech Connect

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.

  5. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials canmore » be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.« less

  6. Synthesis, Crystal Structures, and Magnetic Properties of Two Novel Cyanido-Bridged Heterotrimetallic {Cu(II)Mn(II)Cr(III)} Complexes.

    PubMed

    Alexandru, Maria-Gabriela; Visinescu, Diana; Shova, Sergiu; Andruh, Marius; Lloret, Francesc; Julve, Miguel

    2017-02-20

    The self-assembly process between the heteroleptic [Cr(III)(phen)(CN)4](-) and [Cr(III)(ampy)(CN)4](-) metalloligands and the heterobimetallic {Cu(II)(valpn)Mn(II)}(2+) tecton afforded two heterotrimetallic complexes of formula [{Cu(II)(valpn)Mn(II)(μ-NC)2Cr(III)(phen)(CN)2}2{(μ-NC)Cr(III)(phen)(CN)3}2]·2CH3CN (1) and {[Cu(II)(valpn)Mn(II)(μ-NC)2Cr(III)(ampy)(CN)2]2·2CH3CN}n (2) [phen = 1,10-phenanthroline, ampy = 2-aminomethylpyridine, and H2valpn = 1,3-propanedyilbis(2-iminomethylene-6-methoxyphenol)]. The crystal structure of 1 consists of neutral Cu(II)2Mn(II)2Cr(III)4 octanuclear units, where two [Cr(phen)(CN)4](-) anions act as bis-monodentate ligands through cyanide groups toward two manganese(II) ions from two [Cu(II)(valpn)Mn(II)](2+) units to form a [{Cu(valpn)Mn}2Cr2(CN)4](6+) square motif. Two [Cr(phen)(CN)4](-) pendant anions in 1 are bound to the copper(II) ions with cis-trans geometry with respect to the bridging [Cr(phen)(CN)4](-) anion. Compound 2 is a sheet-like coordination polymer, where chains constituted by {Cr(III)(ampy)(CN)4} spacers act as bis-monodentate ligands toward the manganese(II) ions belonging to the {Cu(II)(valpn)Mn(II)} nodes, which are interlinked by another {Cr(III)(ampy)(CN)4} unit that acts as a bridge between the copper(II) and manganese(II) ions of adjacent chains. Magnetic susceptibility measurements in the temperature range of 1.9-300 K were performed for 1 and 2. An overall antiferromagnetic behavior is observed for 1, the ground spin state being described by a spin triplet from the square motif plus two magnetically isolated spin triplets from the two peripheral chromium(III) ions. Ferrimagnetic chains with interacting spins 1/2 (resulting spin of the trimetallic {Cu(II)(valpn)Mn(II)(μ-NC)Cr(III)} fragment) and 3/2 (spin from the bis-monodentate [Cr(III)(ampy)(CN)4](-) with weak interchain ferromagnetic interactions across the cyanide bridge between the chromium(III) and the copper(II) ion from adjacent chains [

  7. Advanced ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N; Unocic, Kinga A; Hoelzer, David T; Pint, Bruce A

    2014-09-01

    ODS FeCrAl alloys are being developed with optimum composition and properties for accident tolerant fuel cladding. Two oxide dispersion strengthened (ODS) Fe-15Cr-5Al+Y2O3 alloys were fabricated by ball milling and extrusion of gas atomized metallic powder mixed with Y2O3 powder. To assess the impact of Mo on the alloy mechanical properties, one alloy contained 1%Mo. The hardness and tensile properties of the two alloys were close and higher than the values reported for fine grain PM2000 alloy. This is likely due to the combination of a very fine grain structure and the presence of nano oxide precipitates. The nano oxide dispersion was however not sufficient to prevent grain boundary sliding at 800 C and the creep properties of the alloys were similar or only slightly superior to fine grain PM2000 alloy. Both alloys formed a protective alumina scale at 1200 C in air and steam and the mass gain curves were similar to curves generated with 12Cr-5Al+Y2O3 (+Hf or Zr) ODS alloys fabricated for a different project. To estimate the maximum temperature limit of use for the two alloys in steam, ramp tests at a rate of 5 C/min were carried out in steam. Like other ODS alloys, the two alloys showed a significant increase of the mas gains at T~ 1380 C compared with ~1480 C for wrought alloys of similar composition. The beneficial effect of Yttrium for wrought FeCrAl does not seem effective for most ODS FeCrAl alloys. Characterization of the hardness of annealed specimens revealed that the microstructure of the two alloys was not stable above 1000 C. Concurrent radiation results suggested that Cr levels <15wt% are desirable and the creep and oxidation results from the 12Cr ODS alloys indicate that a lower Cr, high strength ODS alloy with a higher maximum use temperature could be achieved.

  8. Partitioning of Cr, V, and Mn between mantles and cores of differentiated planetesimals - Implications for giant impact hypothesis of lunar origin

    SciTech Connect

    Ringwood, A.E.; Kato, T.; Hibberson, W.; Ware, N. )

    1991-01-01

    The partition coefficients of Cr, V, and Mn between metallic Fe and the mineral phases present in the mantle of a giant planetesimal have been determined in the 1500-2000 C range at 3-25 GPa, in order to ascertain whether the formation of an Fe core within a differentiated giant planetesimal could have caused depletions of Cr, V, and Mn in the Mars-sized planetesimal hypothesized as the basis for lunar formation after impact with the earth. The results obtained indicate that the formation of such an Fe core would have led to no such depletion; Cr, V, and Mn are depleted relative to Mg in the earth mantle to a degree comparable to the lunar depletion factor, suggesting that the protolunar material was primarily derived from the earth's mantle. 36 refs.

  9. High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey; Chambers, Matthew

    2011-01-01

    A new concept has been developed for a high-temperature luminescence-based optical thermometer that both shows the desired temperature sensitivity in the upper temperature range of present state-of-the-art luminescence thermometers (above 1,300 C), while maintaining substantial stronger luminescence signal intensity that will allow these optical thermometers to operate in the presence of the high thermal background radiation typical of industrial applications. This objective is attained by using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor with an orthorhombic perovskite structure, resulting in broadband luminescence that remains strong at high temperature due to the favorable electron energy level spacing of Cr:GdAlO3. The Cr:GdAlO3 temperature (and pressure) sensor can be incorporated into, or applied onto, a component s surface when a non-contact surface temperature measurement is desired, or alternatively, the temperature sensor can be attached to the end of a fiber-optic probe that can then be positioned at the location where the temperature measurement is desired. In the case of the fiber-optic probe, both the pulsed excitation and the luminescence emission travel through the fiber-optic light guide. In either case, a pulsed light source provides excitation of the luminescence, and the broadband luminescence emission is collected. Real-time temperature measurements are obtain ed using a least-squares fitting algorithm that determines the luminescence decay time, which has a known temperature dependence established by calibration. Due to the broad absorption and emission bands for Cr:GdAlO3, there is considerable flexibility in the choice of excitation wavelength and emission wavelength detection bands. The strategic choice of the GdAlO3 host is based on its high crystal field, phase stability, and distorted symmetry at the Cr3+ occupation sites. The use of the broadband emission for temperature sensing at high temperatures is a key feature of the invention and is

  10. Fretting corrosion of CoCrMo and Ti6Al4V interfaces.

    PubMed

    Swaminathan, Viswanathan; Gilbert, Jeremy L

    2012-08-01

    Mechanically assisted corrosion (fretting corrosion, tribocorrosion etc.,) of metallic biomaterials is a primary concern for numerous implant applications, particularly in the performance of highly-loaded medical devices. While the basic underlying concepts of fretting corrosion or tribocorrosion and fretting crevice corrosion are well known, there remains a need to develop an integrated systematic method for the analysis of fretting corrosion involving metal-on-metal contacts. Such a method can provide detailed and quantitative information on the processes present and explore variations in surfaces, alloys, voltages, loadings, motion and solution conditions. This study reports on development of a fretting corrosion test system and presents elements of an in-depth theoretical fretting corrosion model that incorporates both the mechanical and the electrochemical aspects of fretting corrosion. To demonstrate the capabilities of the new system and validate the proposed model, experiments were performed to understand the effect of applied normal load on fretting corrosion performance of Ti6Al4V/Ti6Al4V, CoCrMo/Ti6Al4V, and CoCrMo/CoCrMo material couples under potentiostatic conditions with a fixed starting surface roughness. The results of this study show that fretting corrosion is affected by material couples, normal load and the motion conditions at the interface. In particular, fretting currents and coefficient of friction (COF) vary with load and are higher for Ti6Al4V/Ti6Al4V couple reaching 3 mA/cm(2) and 0.63 at about 73 MPa nominal contact stress, respectively. Ti6Al4V coupled with CoCrMo displayed lower currents (0.6 mA/cm(2)) and COF (0.3), and the fretting corrosion behavior was comparable to CoCrMo/CoCrMo couple (1.2 mA/cm(2) and 0.3, respectively). Information on the mechanical energy dissipated at the interface, the sticking behavior, and the load dependence of the inter-asperity distance calculated using the model elucidated the influence of

  11. Annealing effect on the electrical properties and composition of a NiCrAl thin film resistor

    NASA Astrophysics Data System (ADS)

    Chuang, Nai-Chuan; Lin, Jyi-Tsong; Chen, Huey-Ru

    2015-12-01

    The composition of NiCrAl thin film resistors, under different annealing conditions in a N2 atmosphere, was investigated. The Auger electron spectrum (AES) has been used in studying the composition of NiCrAl thin films. The concentration ratio of Cr to Ni decreases when the annealing temperature increases. The electrical properties of a NiCrAl thin film resistor are affected by the concentrations of Cr and Ni, which lead to a higher temperature coefficient of resistance (TCR) and a lower sheet resistivity. The TCR of a NiCrAl thin film resistor is -5 ppm/°C at a 250 °C annealing temperature.

  12. Activity of MnO in MnO-CaO-SiO2-Al2O3-MgO Molten Slags

    NASA Astrophysics Data System (ADS)

    Yan, Baijun; Chen, Xuexin; Tao, Jun

    2016-12-01

    The activities of MnO in the MnO-CaO-SiO2-Al2O3 (10, 20, and 30 mass pct)-MgO (5 mass pct) melts at 1873 K (1600 °C) were measured by equilibrating the melts with liquid copper under an oxygen partial pressure controlled by CO/CO2 gas mixture with a volume ratio of 99/1. Over the investigated composition range, MnO shows a negative deviation from Raoultian behavior. On the basis of the experimental data, the activity coefficient of MnO in this multicomponent melts was evaluated using the following quadratic formalism based on regular solution model: RT ln {γ_{MnO(s)} = sumlimits_j {{α_{ij}}x_j^2} + sumlimits_j {sumlimits_k {( {{α_{ij}} + {α_{ik}} - {α_{jk}}}){x_j}{x_k} + I{^' } . The values of the conversion factor, I', for the melts containing 10, 20, and 30 mass pct Al2O3 were determined to be 6950, 2715, and 12092 J/mol, respectively. Iso-activity contours for MnO in the five component system were calculated using the quadratic formalism, and they showed a good agreement with the experimental data.

  13. Activity of MnO in MnO-CaO-SiO2-Al2O3-MgO Molten Slags

    NASA Astrophysics Data System (ADS)

    Yan, Baijun; Chen, Xuexin; Tao, Jun

    2017-04-01

    The activities of MnO in the MnO-CaO-SiO2-Al2O3 (10, 20, and 30 mass pct)-MgO (5 mass pct) melts at 1873 K (1600 °C) were measured by equilibrating the melts with liquid copper under an oxygen partial pressure controlled by CO/CO2 gas mixture with a volume ratio of 99/1. Over the investigated composition range, MnO shows a negative deviation from Raoultian behavior. On the basis of the experimental data, the activity coefficient of MnO in this multicomponent melts was evaluated using the following quadratic formalism based on regular solution model: RT ln {γ_{{{MnO}}({{s}})}} = \\sum\\limits_j {{α_{ij}}x_j^2} + \\sum\\limits_j {\\sum\\limits_k {( {{α_{ij}} + {α_{ik}} - {α_{jk}}}){x_j}{x_k} + I{^' } . The values of the conversion factor, I', for the melts containing 10, 20, and 30 mass pct Al2O3 were determined to be 6950, 2715, and 12092 J/mol, respectively. Iso-activity contours for MnO in the five component system were calculated using the quadratic formalism, and they showed a good agreement with the experimental data.

  14. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Chen, X. F.; Johnson, D. R.; Noebe, R. D.; Oliver, B. F.

    1995-01-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  15. Cage Structure Formation of Singly Doped Aluminum Cluster Cations Al n TM + ( TM = Ti, V, Cr)

    NASA Astrophysics Data System (ADS)

    Lang, Sandra M.; Claes, Pieterjan; Neukermans, Sven; Janssens, Ewald

    2011-09-01

    Structural information on free transition metal doped aluminum clusters, Al n TM + ( TM = Ti, V, Cr), was obtained by studying their ability for argon physisorption. Systematic size ( n = 5 - 35) and temperature ( T = 145 - 300 K) dependent investigations reveal that bare Al n + clusters are inert toward argon, while Al n TM + clusters attach one argon atom up to a critical cluster size. This size is interpreted as the geometrical transition from surface-located dopant atoms to endohedrally doped aluminum clusters with the transition metal atom residing in an aluminum cage. The critical size, n crit , is found to be surprisingly large, namely n crit = 16 and n crit = 19 - 21 for TM = V, Cr, and TM = Ti, respectively. Experimental cluster-argon bond dissociation energies have been derived as function of cluster size from equilibrium mass spectra and are in the 0.1-0.3 eV range.

  16. Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Nastar, Maylise; Garnier, Thomas; Domain, Christophe; Olsson, Pär

    2014-09-01

    Defect-driven diffusion of impurities is the major phenomenon leading to formation of embrittling nanoscopic precipitates in irradiated reactor pressure vessel (RPV) steels. Diffusion depends strongly on the kinetic correlations that may lead to flux coupling between solute atoms and point defects. In this work, flux coupling phenomena such as solute drag by vacancies and radiation-induced segregation at defect sinks are systematically investigated for six bcc iron-based dilute binary alloys, containing Cr, Cu, Mn, Ni, P, and Si impurities, respectively. First, solute-vacancy interactions and migration energies are obtained by means of ab initio calculations; subsequently, self-consistent mean field theory is employed in order to determine the exact Onsager matrix of the alloys. This innovative multiscale approach provides a more complete treatment of the solute-defect interaction than previous multifrequency models. Solute drag is found to be a widespread phenomenon that occurs systematically in ferritic alloys and is enhanced at low temperatures (as for instance RPV operational temperature), as long as an attractive solute-vacancy interaction is present, and that the kinetic modeling of bcc alloys requires the extension of the interaction shell to the second-nearest neighbors. Drag occurs in all alloys except Fe(Cr); the transition from dragging to nondragging regime takes place for the other alloys around (Cu, Mn, Ni) or above (P, Si) the Curie temperature. As far as only the vacancy-mediated solute migration is concerned, Cr depletion at sinks is foreseen by the model, as opposed to the other impurities which are expected to enrich up to no less than 1000 K. The results of this study confirm the current interpretation of the hardening processes in ferritic-martensitic steels under irradiation.

  17. Magnetization reversal behavior and magnetocaloric effect in SmCr0.85Mn0.15O3 chromites

    NASA Astrophysics Data System (ADS)

    Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Patra, Ajit K.; Kholkin, Andrei L.; Panwar, Neeraj

    2017-01-01

    We have synthesized SmCr0.85Mn0.15O3 (SCMO) chromites through the ceramic route. The compound crystallized into a distorted orthorhombic structure with the Pnma space group, which was confirmed from the Rietveld refinement of x-ray powder diffraction patterns. Neel temperature, noticed at 168 K from the temperature variation of magnetisation, smaller than that reported for SmCrO3, indicated the influence of Mn3+ substitution on decreasing the antiferromagnetic ordering. A phenomenon of magnetization reversal was observed in the SCMO compound. At low magnetic fields, i.e., 500 Oe, a single compensation temperature (defined as the temperature where magnetization became zero) around 106 K was observed in the field cooled magnetization curve. However, with the application of higher magnetic fields, i.e., under an applied field of 1000 Oe, a second compensation temperature was noticed around 8 K. With a further increase in the magnetic field, the magnetization remained positive in both field cooled and zero field cooled protocols. A normal magnetocaloric effect was observed through an indirect method of field dependence of magnetisation measured in the temperature range of 2-152 K. The magnetic entropy change (-ΔS) of ˜11.36 J kg-1 K-1 along with the relative cooling power (RCP) of ˜175.89 J kg-1 was obtained in the temperature range of 10-20 K for an applied field of 90 kOe, and their values at 50 kOe applied field were, respectively, almost twenty and forty times larger in magnitude in comparison to those for the SmCrO3 compound. The relatively large values of ΔS and RCP make the studied compound a potential candidate for magnetic refrigeration applications at low temperatures.

  18. A combined APT and SANS investigation of α' phase precipitation in neutron-irradiated model FeCrAl alloys

    DOE PAGES

    Briggs, Samuel A.; Edmondson, Philip D.; Littrell, Kenneth C.; ...

    2017-03-01

    Here, FeCrAl alloys are currently under consideration for accident-tolerant fuel cladding applications in light water reactors owing to their superior high-temperature oxidation and corrosion resistance compared to the Zr-based alloys currently employed. However, their performance could be limited by precipitation of a Cr-rich α' phase that tends to embrittle high-Cr ferritic Fe-based alloys. In this study, four FeCrAl model alloys with 10–18 at.% Cr and 5.8–9.3 at.% Al were neutron-irradiated to nominal damage doses up to 7.0 displacements per atom at a target temperature of 320 °C. Small angle neutron scattering techniques were coupled with atom probe tomography to assessmore » the composition and morphology of the resulting α' precipitates. It was demonstrated that Al additions partially destabilize the α' phase, generally resulting in precipitates with lower Cr contents when compared with binary Fe-Cr systems. The precipitate morphology evolution with dose exhibited a transient coarsening regime akin to previously observed behavior in aged Fe-Cr alloys. Similar behavior to predictions of the LSW/UOKV models suggests that α' precipitation in irradiated FeCrAl is a diffusion-limited process with coarsening mechanisms similar to those in thermally aged high-Cr ferritic alloys.« less

  19. Magnetic properties of Sm2(Fe0.95M0.05)17Nx (M=Cr and Mn) anisotropic coarse powders with high coercivity

    NASA Astrophysics Data System (ADS)

    Ito, Mikio; Majima, Kazuhiko; Shimuta, Toru; Katsuyama, Shigeru; Nagai, Hiroshi

    2002-09-01

    Sm2(Fe0.95Cr0.05)17Nx and Sm2(Fe0.95Mn0.05)17Nx coarse powders 10-70 mum in size were synthesized by crushing mother alloy ingots into 32-74 mum in particle size and subsequent nitrogenation at 748 K in a flowing mixed gas of 60 vol % H2+40 vol % NH3. The effects of Cr or Mn substitution for Fe on the nitrogenation rate, magnetic properties, and microstructure of the Sm2Fe17Nx hard magnetic material were investigated. Cr and Mn substitution was quite effective for accelerating nitrogenation. When the powders were nitrogenated beyond x=3, amorphous phase formation was observed as the x value increased. The magnetic properties of the nitrogenated powders were significantly improved by Cr and Mn substitution, and these powders also possessed a satisfactory magnetic anisotropy. The maximum coercivity in this study, 0.59 MA/m, was obtained for the Sm2(Fe0.95Mn0.05)17N5.0 powder in spite of its large particle size. The high coercivity of the coarse powders was caused by a cell-like microstructure composed of fine 2-17 crystalline grains 20-30 nm in size surrounded by an amorphous phase.

  20. Phase diagram and magnetocaloric effects in Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15} and (Mn{sub 1−x}Cr{sub x})NiGe{sub 1.05} alloys

    SciTech Connect

    Quetz, Abdiel Muchharla, Baleeswaraiah; Dubenko, Igor; Talapatra, Saikat; Ali, Naushad; Samanta, Tapas; Stadler, Shane

    2014-05-07

    The magnetocaloric and thermomagnetic properties of Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15} and (Mn{sub 1−x}Cr{sub x}) NiGe{sub 1.05} systems for 0 ≤ x ≤ 0.105 and 0 ≤ x ≤ 0.1, respectively, have been studied by x-ray diffraction, differential scanning calorimetry, and magnetization measurements. Partial substitution of Cr for Mn in (Mn{sub 1−x}Cr{sub x})NiGe{sub 1.05} results in a first order magnetostructural transition from a hexagonal paramagnetic to an orthorhombic paramagnetic phase near T{sub M} ∼ 380 K (for x = 0.07). Partial substitution of Cr for In in Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15} shifts the magnetostructural transition to a higher temperature (T = T{sub M} ∼ 450 K) for x = 0.1. Large magnetic entropy changes of ΔS = −12 (J/(kgK)) and ΔS = −11 (J/(kgK)), both for a magnetic field change of 5 T, were observed in the vicinity of T{sub M} for (Mn{sub 1−x}Cr{sub x})NiGe{sub 1.05} and Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15}, respectively.

  1. Phase transformations in rapidly quenched Al-Cr-Zr alloys during heat treatment

    NASA Astrophysics Data System (ADS)

    Zvereva, N. L.; Kazakova, E. F.; Dmitrieva, N. E.

    2017-02-01

    Results from studying the effect zirconium has on solid-phase processes in aluminum-chromium alloys are presented. Rapidly quenched alloys are prepared via melt spinning. The quenching rate is 106 K/s. By means of physicochemical analysis, it is shown that doping Al-Cr alloys with zirconium improves the thermal stability of supersaturated solid solutions and stabilizes their microcrystalline structure; this hinders the coagulation of intermetallic phases and thus improves the hardness of the alloys. It is found that supersaturated solid solutions of Cr and Zr in aluminum undergo stepwise decomposition; the temperature and time parameters of each step are shown in TTT diagrams.

  2. Determination of ratios of Auger electrons emission probabilities and K-L shell vacancy transfer probability of Cr, Mn, Fe, Co, Ni, Cu and Zn compounds

    NASA Astrophysics Data System (ADS)

    Küçükönder, Adnan; Kavşut, Onur

    2017-02-01

    Ratios of emission probabilities of Auger electrons [u = p(KLX)/p(KLL), ν = p(KXY)/p(KLL)] and the vacancy transfer probabilities from K to L shell, ηKL for Cr, Mn, Fe, Co,Ni, Cu and Zn compounds were obtained using the experimental Kx-ray emission ratios and K-shell fluorescence yields. We were used the experimental Kβ/Kα intensity ratios and K shell fluorescence yields WK. Ratios of emission probabilities of Auger electrons and the vacancy transfer probabilities are changed by chemical effect for different for Cr, Mn, Fe, Co,Ni, Cu and Zn compounds.

  3. Cr:YSO Saturable Absorber for the Three-Level Cr:BeAl2O4 Laser at 680.4 nm

    NASA Astrophysics Data System (ADS)

    Kuo, Yen-Kuang; Chen, Horng-Min

    2000-12-01

    In addition to being an efficient saturable absorber Q switch for the tunable Cr:BeAl2O4 laser for its entire tuning range from 700 to 818 nm, the Cr:YSO is shown to be an effective saturable absorber Q switch for the 3-level Cr:BeAl2O4 laser at 680.4 nm. The passive Q-switching performance of this 3-level laser is similar to that of the passively Q-switched ruby laser.

  4. Structural phase transition, Néel temperature enhancement, and persistent magneto-dielectric coupling in Cr-substituted Mn3O4

    NASA Astrophysics Data System (ADS)

    Dwivedi, G. D.; Kumar, Abhishek; Yang, K. S.; Chen, B. Y.; Liu, K. W.; Chatterjee, Sandip; Yang, H. D.; Chou, H.

    2016-05-01

    Structural phase transition and Néel temperature (TN) enhancement were observed in Cr-substituted Mn3O4 spinels. Structural, magnetic, and dielectric properties of (Mn1-xCrx)3O4 (where x = 0.00, 0.10, 0.20, 0.25, 0.30, 0.40, and 0.50) were investigated. Cr-substitution induces room temperature structural phase transition from tetragonally distorted I41/amd (x = 0.00) to cubic Fd 3 ¯ m (x = 0.50). TN is found to increase from 43 K (x = 0.00) to 58 K (x = 0.50) with Cr-substitution. The spin ordering-induced dielectric anomaly near TN ensures that magneto-dielectric coupling persists in the cubic x = 0.50 system. X-ray absorption spectra reveal that Cr exists in a trivalent oxidation state and prefers the octahedral (Oh)-site, replacing Mn3+. Due to a reduction in the Jahn-Teller active Mn3+ cation and an increase in the smaller Cr3+ cation, the system begins to release the geometrical frustration by lowering its degeneracy. Consequently, a phase transition, from distorted tetragonal structure to the more symmetric cubic phase, occurs.

  5. Tunable Cr:YSO Q-Switched Cr:BeAl2O4 Laser: Numerical Study on Laser Performance along Three Principal Axes of the Q Switch

    NASA Astrophysics Data System (ADS)

    Kuo, Yen-Kuang; Chang, Jih-Yuan; Lin, Chia-Ching; Chen, Horng-Min

    2000-07-01

    Numerical simulation of the Cr:YSO Q-switched Cr:BeAl2O4 tunable laser is studied along the three principal axes of the Cr:YSO saturable absorber. The n1 axis has the best Q-switching performance when compared to the n2 and n3 axes. Theoretical expressions of important parameters such as the laser population inversion at various stages, the peak photon number inside the laser resonator, and the output energy and the pulsewidth of the Q-switched laser pulses are derived and used to evaluate the characteristics of the Cr:YSO Q-switched Cr:BeAl2O4 laser system.

  6. Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites.

    PubMed

    Giergiczny, Zbigniew; Król, Anna

    2008-12-30

    The presented work determines the level of heavy metals (Pb+2, Cu+2, Zn+2, Cr+6, Cd+2, Mn+2) immobilization in the composites produced using Ordinary Portland Cement (OPC) as well as of binders containing large amount of mineral additives in its composition-siliceous fly ash (FA), fluidized bed combustion ash (FFA) and ground granulated blast furnace slag (GGBFS). Heavy metals were introduced to cementitious materials in the form of soluble salts as well as components of hazardous wastes (medical ash, metallurgical dust). It has been stated, that the level of heavy metals immobilization is combined with composites composition. Majority of analyzed heavy metals, added to binders' composition in the form of heavy metal salts achieves high level of immobilization, in mortar based on binder with 85% GGBFS and 15% OPC. The lowest immobilization level was reached for chromium Cr+6 added to hardening mortars as Na2Cr2O72H2O. The level ranges from 85.97% in mortars made on blended binder (20% OPC, 30% FFA and 50% GGBFS) to 93.33% in mortar produced on OPC. The increase of the so-called immobilization degree with time of hardened material maturing was found. This should be attributed to the pozzolanic or pozzolanic/hydraulic properties of components used; their effect on microstructure of hardened material is also important. Mineral additions enter the hydration reactions in the mixtures and favor the formation of specific microstructure promoting the immobilization of hazardous elements.

  7. Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni spheroidal carbide cast irons

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Kozarevskaya, T. V.; Kusumoto, K.; Yamamoto, K.

    2014-11-01

    The objective of this investigation is to study the influence of vanadium (5.0wt%-10.0wt%) and chromium (0-9.0wt%) on the microstructure and hardness of Cr-V-Mn-Ni white cast irons with spheroidal vanadium carbides. The alloys' microstructural features are presented and discussed with regard to the distribution of phase elements. The structural constituents of the alloys are spheroidal VC, proeutectoid cementite, ledeburite eutectic, rosette-shaped carbide eutectic (based on M7C3), pearlite, martensite, and austenite. Their combinations and area fraction (AF) ratios are reported to be influenced by the alloys' chemical composition. Spheroidized VC particles are found to be sites for the nucleation of carbide eutectics. Cr and V are shown to substitute each other in the VC and M7C3 carbides, respectively. Chromium alloying leads to the formation of a eutectic (γ-Fe + M7C3), preventing the appearance of proeutectoid cementite in the structure. Vanadium and chromium are revealed to increase the total carbide fraction and the amount of austenite in the matrix. Cr is observed to play a key role in controlling the metallic matrix microstructure.

  8. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  9. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  10. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  11. Long-term high-velocity oxidation and hot corrosion testing of several NiCrAl and FeCrAl base oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.; Whittenberger, J. D.

    1982-01-01

    Several oxide dispersion strengthened (ODS) alloys have been tested for cyclic, long-term, high gas-velocity resistance to oxidation at 1100 C and hot corrosion at 900 C. Both nominally Ni-16Cr-4Al and Fe-20Cr-4.5Al ODS alloys were subjected up to about 2500 cycles, where each cycle consisted of 1 hr in a hot, Mach 0.3 combusted gas stream followed by a 3-min quench in an ambient temperature, Mach 0.3 air blast. For comparison to existing technology, a coated superalloy was simultaneously tested. The ODS iron alloy exhibited clearly superior behavior, surviving 3800 oxidation and 2300 hot corrosion cycles essentially unscathed. While the ODS nickel alloys exhibited adequate oxidation resistance, the long-term hot corrosion resistance could be marginal, since the best life for such alloys under these conditions was only about 1100 cycles. However, the hot corrosion resistance of the ODS Ni-base alloys is excellent in comparison to that of traditional superalloys.

  12. Al-Si-Mn Alloy Coating on Aluminum Substrate Using Cold Metal Transfer (CMT) Welding Technique

    NASA Astrophysics Data System (ADS)

    Rajeev, G. P.; Kamaraj, M.; Bakshi, S. R.

    2014-06-01

    The cold metal transfer (CMT) process was explored as a weld overlay technique for synthesizing Al-Si-Mn alloy coating on a commercially pure Al plate. The effect of welding speed on the bead geometry, deposition rate, and the dilution were studied and the best parameter was used to synthesize the coatings. The CMT process can be used to produce thick coatings (>2.5 mm) without porosity and with low dilution levels. The Vickers hardness number of the Al substrate increased from 28 in the bulk to 57 in the coating. It is suggested that the CMT process can be an effective and energy-efficient technique for depositing thick coatings and is useful in weld repair of aluminum alloy components.

  13. O-18 tracer studies of Al2O3 scale formation on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Reddy, K. P. R.; Cooper, A. R.; Smialek, J. L.

    1982-01-01

    Diffusion processes in Al2O3 scales formed on NiCrAl + Zr alloys were studied by the proton activation technique employing the O-18 isotope as a tracer. The O-18 profiles identified a zone of oxide penetration beneath the external scale. Both this subscale formation and the outer Al2O3 scale thickness were shown by this technique to increase with Zr content in the alloy. Estimated kp's from scale thicknesses were in agreement with gravimetric measurements for various Zr levels. Alternate exposures in O-16 and O-18 revealed that oxygen inward transport was the primary growth mechanism. A qualitative analysis of these O-18 profiles indicated that the oxygen transport was primarily via short-circuit paths, such as grain boundaries.

  14. Kerr rotation and perpendicular magnetic anisotropy of CoCr films with Al ultrathin interlayers and single-layer CoCr films

    NASA Astrophysics Data System (ADS)

    Hirata, Toyoaki; Takahashi, Takakazu; Hoshi, Youichi; Naoe, Masahiko

    1991-11-01

    The Co81Cr19/Al multilayered films were prepared by using the plasma-free sputtering apparatus. The specimen films with the thicknesses of Co81Cr19 and Al layers lCo-Cr and lAl of 50-170 and 7-14 Å, respectively, were investigated for the Kerr rotation angle θK and the reflectance R of the multilayered films with total thickness of 1500 Å. Films with lCo-Cr and lAl of 138 and 7 Å, respectively, had a θK of 0.21° and R of 0.7 which is larger than Co81Cr19 single-layer films prepared by conventional sputtering where θK and R are 0.036° and 0.4-0.5, respectively. These results indicate that the films were entirely homogeneous, that is, the surface and interior of the films may be almost the same for composition, microstructure and magnetic properties. Consequently, the Co81Cr19 thin films with Al ultrathin interlayers may be useful for microcrystalline magneto-optical media with a high C/N ratio.

  15. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature.

    PubMed

    Hamon, Lomig; Serre, Christian; Devic, Thomas; Loiseau, Thierry; Millange, Franck; Férey, Gérard; De Weireld, Guy

    2009-07-01

    Hydrogen sulfide gravimetric isotherm adsorption measurements were carried out on MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks (MOFs). A two-step adsorption mechanism related to a breathing effect was observed for MIL-53 terephthalate-based MOFs. Methane adsorption measurements highlighted the regenerability of MIL-53(Al, Cr) and MIL-47(V) MOFs after H(2)S treatment, whereas MIL-100 and MIL-101 CH(4) adsorption capacities were significantly decreased.

  16. Thermoelectric properties of Fe and Al double substituted MnSi{sub γ} (γ~1.73)

    SciTech Connect

    Barczak, S.A.; Downie, R.A.; Popuri, S.R.; Decourt, R.; Pollet, M.; Bos, J.W.G.

    2015-07-15

    Two series of Fe and Al double substituted MnSi{sub γ} chimney ladders with a nominal valence electron count, VEC=14 per transition metal were prepared (γ=1.75). Simultaneous replacement of Mn with Fe and Si with Al yielded the Mn{sub 1−x}Fe{sub x}Si{sub 1.75−x}Al{sub x} series while the second Mn{sub 1−x}Fe{sub x}Si{sub 1.75–1.75x}Al{sub 2x} series follows the pseudo-binary between MnSi{sub 1.75} and FeAl{sub 2}. Scanning electron microscopy and elemental mapping revealed that ~60% of the nominal Al content ends up in the product with the remainder lost to sublimation, and that up to 7% Al can be substituted in the main group sublattice. Profile analysis of X-ray powder diffraction data revealed gradual changes in the cell metrics, consistent with the simultaneous substitution of Fe and Al in a fixed ratio. All samples are p-type with VEC≈13.95 from the structural data and ~1×10{sup 21} holes cm{sup −3} from variable temperature Seebeck measurements. The substituted samples have lower electrical resistivities (ρ{sub 300} {sub K}=2–5 mΩ cm) due to an improved microstructure. This leads to increased thermoelectric power factors (largest S{sup 2}/ρ=1.95 mW m{sup −1} K{sup −2}) compared to MnSi{sub γ}. The thermal conductivity for the Mn{sub 0.95}Fe{sub 0.05}Si{sub 1.66}Al{sub 0.1} sample is 2.7 W m{sup −1} K{sup −1} between 300 and 800 K, and is comparable to literature data for the parent material. - Graphical abstract: The crystal structure, microstructure and thermoelectric properties of Fe and Al double substituted MnSi{sub γ} (γ~1.73) have been investigated. - Highlights: • Up to 7% Al can be substituted in MnSi{sub γ} when co-doped with Fe. • Improved microstructure and reduced electrical resistivities for Al substituted samples. • Largest power factor 1.95 mW m{sup −1} K{sup −2} and best estimated ZT=0.5.

  17. Microstructural Developments and Tensile Properties of Lean Fe-Mn-Al-C Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Sohn, S. S.; Lee, S.; Lee, B.-J.; Kwak, J.-H.

    2014-09-01

    Concepts of Fe-Al-Mn-C-based lightweight steels are fairly simple, but primary metallurgical issues are complicated. In this study, recent studies on lean-composition lightweight steels were reviewed, summarized, and emphasized by their microstructural development and mechanical properties. The lightweight steels containing a low-density element of Al were designed by thermodynamic calculation and were manufactured by conventional industrial processes. Their microstructures consisted of various secondary phases as κ-carbide, martensite, and austenite in the ferrite matrix according to manufacturing and annealing procedures. The solidification microstructure containing segregations of C, Mn, and Al produced a banded structure during the hot rolling. The (ferrite + austenite) duplex microstructure was formed after the annealing, and the austenite was retained at room temperature. It was because the thermal stability of austenite nucleated from fine κ-carbide was quite high due to fine grain size of austenite. Because these lightweight steels have outstanding properties of strength and ductility as well as reduced density, they give a promise for automotive applications requiring excellent properties.

  18. Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.

    2016-09-01

    Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.

  19. Tunneling magnetoresistance in (Ga,Mn)As/Al-O/CoFeB hybrid structures

    NASA Astrophysics Data System (ADS)

    Du, G. X.; Babu, M. Ramesh; Han, X. F.; Deng, J. J.; Wang, W. Z.; Zhao, J. H.; Wang, W. D.; Tang, Jinke

    2009-04-01

    Tunneling magnetoresistance (TMR) in Ga0.92Mn0.08As/Al-O/Co40Fe40B20 trilayer hybrid structure as a function of temperature from 10 to 50 K with magnetic field |H|≤2000 Oe has been studied. TMR ratio of 1.6% at low fields at 10 K was achieved with the applied current of 1 μA. The behavior of junction resistance was well explained by the tunneling resistance across the barrier. Strong bias dependences of magnetoresistance and junction resistance were presented.

  20. A Study of Al-Mn Transition Edge Sensor Engineering for Stability

    SciTech Connect

    George, E. M.; et al.

    2013-11-10

    The stability of Al-Mn transition edge sensor (TES) bolometers is studied as we vary the engineered TES transition, heat capacity, and/or coupling between the heat capacity and TES. We present thermal structure measurements of each of the 39 designs tested. The data is accurately fit by a two-body bolometer model, which allows us to extract the basic TES parameters that affect device stability. We conclude that parameters affecting device stability can be engineered for optimal device operation, and present the model parameters extracted for the different TES designs.

  1. Fast magnetization precession for perpendicularly magnetized MnAlGe epitaxial films with atomic layered structures

    NASA Astrophysics Data System (ADS)

    Mizukami, S.; Sakuma, A.; Kubota, T.; Kondo, Y.; Sugihara, A.; Miyazaki, T.

    2013-09-01

    Epitaxial growth and magnetization precessional dynamics for tetragonal MnAlGe films are investigated. The films are grown on MgO (100) with c axis parallel to the film normal and well-ordered layered structures. The film exhibits rectangular hysteresis loop with perpendicular magnetic anisotropy constant of 4.7 Merg/cm3 and saturation magnetization of 250 emu/cm3. Magnetization precession with precession frequency of ˜100 GHz is observed by time-resolved magneto-optical Kerr effect. Further, the Gilbert damping constant is found to be less than ˜0.05, which is much larger than that obtained using the first principles calculations.

  2. The magnetic Curie temperature and exchange coupling between cations in tetragonal spinel oxide Mn2.5M0.5O4 (M = Co, Ni, Mn, Cr, and Mg) films

    NASA Astrophysics Data System (ADS)

    Kuo, K.; Cheng, C. W.; Chern, G.

    2012-04-01

    Mn3O4 is a Jahn-Taller tetragonal ferrite that has a relatively low Curie temperature (Tc) of ˜43 K due to weak coupling between the canting spins. In this study, we fabricated a series of 100-nm-thick Mn2.5M0.5O4 (M = Co, Ni, Mn, Cr, and Mg) films via oxygen-plasma-assisted molecular beam epitaxy and measured the structural and magnetic properties of these films. These films show single phase quality, and the c-axis lattice parameter of pure Mn3O4 is 0.944 nm, with a c/a ratio ˜1.16, consistent with the bulk values. The replacement of Mn by M (M = Co, Ni, Cr, and Mg) changes the lattice parameters, and the c/a ratio varies between 1.16 and 1.06 depending upon the cation distribution of the films. The magnetic Curie temperatures of these films also vary in the range of 25-66 K in that Ni and Co enhance the Tc whereas Mg reduces the Tc (Cr shows no effect on the Tc). These changes to the Tc are related to both the element electronic state and the cation distributions in these compounds. As a non-collinear spin configuration can induce electrical polarization, the present study provides a systematic way to enhance the magnetic transition temperature in tetragonal spinel ferrites.

  3. Relative phase and physical properties of CrN/AlN multilayer: A DFT study

    NASA Astrophysics Data System (ADS)

    Cudris, E. F.; Díaz F, J. H.; Espita R, M. J.

    2016-08-01

    Using first principles total-energy calculations within the framework of density functional theory, we studied the relative stability and the structural and electronic properties of multilayer CrN/AlN in the sodium chloride (NaCl), cesium chloride (CsCl), nickel arsenide (NiAs), zinc-blende, and wurtzite structures. The calculations were carried out using the method based on pseudopotentials, employed exactly as implemented in Quantum-ESPRESSO code. Based on total energy minimization, we found that the minimum global energy of CrN/AlN is obtained for the zincblende structure. Additionally, at high pressure our calculations show the possibility of a phase transition from the zincblende to NaCl structure. For the zincblende phase, the density of states analysis reveals that the multilayer exhibits a half-metallic behavior with a magnetic moment of 3.0^p/Cr-atom. These properties come essentially from the polarization of Cr-d and N-p states that cross the Fermi level. Due to these properties, the multilayer can potentially be used in the field of spintronics or spin injectors.

  4. Electronic structure of AlCrN films investigated using various photoelectron spectroscopies and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Tatemizo, N.; Imada, S.; Miura, Y.; Yamane, H.; Tanaka, K.

    2017-03-01

    The valence band (VB) structures of wurtzite AlCrN (Cr concentration: 0-17.1%), which show optical absorption in the ultraviolet-visible-infrared light region, were investigated via photoelectron yield spectroscopy (PYS), x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), and ab initio density of states (DOS) calculations. An obvious photoelectron emission threshold was observed ~5.3 eV from the vacuum level for AlCrN, whereas no emission was observed for AlN in the PYS spectra. Comparisons of XPS and UPS VB spectra and the calculated DOS imply that Cr 3d states are formed both at the top of the VB and in the AlN gap. These data suggest that Cr doping could be a viable option to produce new materials with relevant energy band structures for solar photoelectric conversion.

  5. Status Report on Irradiation Capsules Containing Welded FeCrAl Specimens for Radiation Tolerance Evaluation

    SciTech Connect

    Field, Kevin G.; Howard, Richard H.

    2016-02-26

    This status report provides the background and current status of a series of irradiation capsules, or “rabbits”, that were designed and built to test the contributions of microstructure, composition, damage dose, and irradiation temperature on the radiation tolerance of candidate FeCrAl alloys being developed to have enhanced weldability and radiation tolerance. These rabbits will also test the validity of using an ultra-miniature tensile specimen to assess the mechanical properties of irradiated FeCrAl base metal and weldments. All rabbits are to be irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) to damage doses up to ≥15 dpa at temperatures between 200-550°C.

  6. The Temporal Evolution of the Nanostructure of a Model Ni-Al-Cr Superalloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Yoon, Kevin E.; Noebe, Ronald D.; Seidman, David N.

    2004-01-01

    The early to the later stages of precipitation of ordered gamma'-precipitates (L1(sub 2)) in Ni-5.2 Al-14.2 Cr (at.%) are studied at 873 K. Precipitates with radii as small as 0.45 nm are characterized fully by three-dimensional atom-probe (3DAP) microscopy. Contrary to what is often assumed by theory or in models, the average precipitate composition is shown to evolve with time, such that solute concentrations decrease toward an equilibrium value given by the solvus lines. Power-law time dependencies of the number density, mean radius, and supersaturations of Al and Cr are discussed in light of theoretical predictions for Ostwald ripening.

  7. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    SciTech Connect

    George, Nathan; Sweet, Ryan; Maldonado, G. Ivan; Wirth, Brian D.; Powers, Jeffrey J.; Worrall, Andrew

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  8. 1300 K Compressive Properties of Directionally Solidified Ni-33Al-33Cr-1Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, Ivan E.

    2000-01-01

    The Ni-33Al-33Cr-1Mo eutectic has been directionally solidified by a modified Bridgeman technique at growth rates ranging from 7.6 to 508 mm/h to produce grain/cellular microstructures, containing alternating plates of NiAl and Cr alloyed with Mo. The grains had sharp boundaries for slower growth rates (< 12.7 mm/h), while faster growth rates (> 25.4 mm/h) lead to cells bounded by intercellular regions. Compressive testing at 1300 K indicated that alloys DS'ed at rates between 25.4 to 254 mm/h possessed the best strengths which exceed that for the as-cast alloy.

  9. Thermodynamic Descriptions of NI Alloys Containing AL, CR, and RU: A Computational Thermodynamic Approach Coupled with Experiments

    DTIC Science & Technology

    2006-09-03

    the present study is to adopt the Calphad approach to develop thermodynamic descriptions of Ni alloys containing elements such as Al, Cr , Ru, etc and...Fig. 2(b), the agreement between calculated 0.0 Al 0 cr three phases SLiquidus o two phases 0.2 0.2 bcc 02 02 O . O 0.2 040. 08 000 0.2 0406 O . 10 44 40...experimentation is achieved. 8 0.7, 0.7, U_. 0.01 0.01 - yphase Y phase Miyazaki 1994 Miyazaki 1994 •Ni, 0 AI, -V Cr , XRe & Ni, o AI, Cr , X Re IE-3 I

  10. Magnetism, structures and stabilities of cluster assembled TM@Si nanotubes (TM = Cr, Mn and Fe): a density functional study.

    PubMed

    Dhaka, Kapil; Bandyopadhyay, Debashis

    2016-08-02

    The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order.

  11. Structural features of the ferromagnetic order formation in the Mn1- x Cr x NiGe system

    NASA Astrophysics Data System (ADS)

    Val'kov, V. I.; Kamenev, V. I.; Mityuk, V. I.; Gribanov, I. F.; Golovchan, A. V.; Delikatnaya, T. Yu.

    2017-02-01

    Within the phenomenological model of the interacting parameters of magnetic and structural orders, magnetic and structural transitions in magnetocaloric alloys of the Mn1- x Cr x NiGe system are analyzed. Based on the calculated isobaric temperature dependences of the parameters of magnetic and structural orders, a magnetic susceptibility jump in the first-order structural transition region is predicted and confirmed experimentally; the change in the magnetic ordering type during the approach of magnetic and structural transitions is justified. The change in the phase transition type during the reverse change in the temperature and magnetic field, which is observed in a number of samples of the system under study, is explained. The efficiency of the use of the transitions induced by the magnetic field in magnetocaloric applications is analyzed.

  12. Experimental and Numerical Analysis on the Distortion of Parts Made of 20MnCr5 by Hot Metal Forming

    SciTech Connect

    Rentsch, Ruediger; Brinksmeier, Ekkard

    2011-05-04

    For high performance applications, shafts and gears made of 20MnCr5 (AISI 5120) are manufactured in large numbers every year. Inhomogeneities in the material properties, process perturbations and asymmetries in shape and operation setups provide a potential for the distortion of parts, often released by heat treatment. In this contribution experimental results on the distortion of shafts and the dishing of disk-like gear wheel blanks are presented. The numerical analysis of the hot-rolling process allowed to trace a peculiar segregation distribution at the cross-section of the bars back to the casting process, and to identify an asymmetric strain distribution which may be the main cause for shaft distortion. For the dishing of the disks a correlation to the resulting distribution of the material flow was found and, a process perturbation parameter identified which is assumed to be responsible for the observed material flow variation.

  13. The effect of zirconium on the cyclic oxidation of NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Khan, A. S.; Lowell, C. E.

    1981-01-01

    This paper examines results with cyclic oxidation tests of Ni(9-20) Cr(15-30) Al-(x)Zr alloys carried out at 1100 C and 1200 C in static air. The concentration of zirconium varies from 0 to 0.63 atomic percent. Significant aluminum penetration is found in metallographic and electron microscopic examination of oxidized surfaces. Small amounts of zirconium lead to minimal penetration, and with increased zirconium content pronounced oxide penetration is observed.

  14. Effect of hydrogen on internal friction and Young`s modulus of Fe-Cr-Mn austenitic stainless steel

    SciTech Connect

    Usui, Makoto; Asano, Shigeru

    1996-06-01

    The internal friction technique has so far been applied to studies on hydrogen behavior in iron and steel. The hydrogen cold-work peak is well known for pure iron and has also been observed in BCC iron alloys such as ferritic stainless steel and maraging steel. It provides important information about the hydrogen- dislocation interaction in the BCC iron lattice. Meanwhile, for FCC iron alloys such as austenitic stainless steel, another characteristic hydrogen internal friction peak has been found by authors` group and confirmed by several other investigators. In the present study, type 205 austenitic stainless steel (Fe-17Cr-15Mn) was chosen as a nickel-free FCC iron alloy, in which manganese is totally substituted for nickel in type 304 steel. This steel has an unstable FCC lattice as is the case of type 304 steel, in which hydrogen-induced phase transformation depends on the austenite stability. However, the present steel was confirmed to form the {var_epsilon}{sub H} phase after cathodic hydrogen charging in a similar manner to the stable FCC lattice of type 310 steel. In addition, the Fe-Cr-Mn alloy shows a marked anomaly in the temperature dependence of Young`s modulus: an abrupt drop near the Neel temperature T{sub N} and successive lowering below T{sub N}, as has been reported in the literature for some antiferromagnetic materials. The effect of hydrogen on Young`s modulus was studied by several investigators, but there was great inconsistency among their experimental results. The purpose of this paper is to confirm the hydrogen peak of internal friction in type 205 steel and to examine the effect of hydrogen on Young`s modulus of this steel.

  15. Structural and magnetic transition in stainless steel Fe-21Cr-6Ni-9Mn up to 250 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Hou, Qi-Yue; Zhang, Yi; Jing, Qiu-Min; Wang, Zhi-Gang; Bi, Yan; Xu, Ji-An; Li, Xiao-Dong; Li, Yan-Chun; Liu, Jing

    2015-06-01

    Stainless steel Fe-21Cr-6Ni-9Mn (SS 21-6-9), with ˜21% Cr, ˜6% Ni, and ˜9% Mn in weight percentage, has wide applications in extensive fields. In the present study, SS 21-6-9 is compressed up to 250 GPa, and its crystal structures and compressive behaviors are investigated simultaneously using the synchrotron angle-dispersive x-ray diffraction technique. The SS 21-6-9 undergoes a structural phase transition from fcc to hcp structure at ˜12.8 GPa with neglectable volume collapse within the determination error under the quasi-hydrostatic environment. The hcp structure remains stable up to the highest pressure of 250 GPa in the present experiments. The antiferromagnetic-to-nonmagnetic state transition of hcp SS 21-6-9 with the changes of inconspicuous density and structure, is discovered at ˜50 GPa, and revealed by the significant change in c/a ratio. The hcp SS-21-6-9 is compressive anisotropic: it is more compressive in the c-axis direction than in the a-axis direction. Both the equations of states (EOSs) of fcc and hcp SS 21-6-9, which are in accordance with those of fcc and hcp pure irons respectively, are also presented. Furthermore, the c/a ratio of hcp SS 21-6-9 at infinite compression, R∞, is consistent with the values of pure iron and Fe-10Ni alloy. Project supported by the National Natural Science Foundation of China (Grant Nos. U1230201, 11274281, and 11304294), the Industrial Technology Development Program, China (Grant No. 9045140509), and the Funds from the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N03 and KJCX2-SW-N20).

  16. Effect of Pre-straining on the Shape Recovery of Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Maji, Bikas C.; Krishnan, Madangopal; Verma, Amit; Basu, R.; Samajdar, I.; Ray, Ranjit K.

    2015-02-01

    The effect of pre-straining on the shape recovery behavior of Fe-14Mn-6Si-9Cr-5Ni (wt pct) shape memory alloy (SMA) has been studied. The shape recovery associated with the reverse ɛ martensitic transformation, i.e., ɛ → γ, was characterized by dilatometry using specimens which were pre-strained to different extent (0 to 14 pct). Dilatometric studies revealed that in Fe-Mn-Si-Cr-Ni SMA, the shape recovery takes place in two stages: (i) in the first stage, the unpinned fraction of stress-induced ɛ martensite reverts back to parent phase γ in the temperature regime of 353 K to 653 K (80 °C to 380 °C) and (ii) in the second stage the remaining "pinned" ɛ martensite is unpinned by the decomposition of deformation-induced α' martensite in the temperature range of 743 K to 893 K (470 °C to 620 °C). The amount of recovery in the first stage decreases with pre-strain, whereas it increases in the second stage. The ɛ → γ transformation finish temperature, A f, increases with increase in pre-strain amount, though the reverse transformation start temperature, A S, remains unaffected. Microstructural characterization revealed that the amount of deformation-induced α' martensite depends on the mode of straining and the crystallographic texture of the starting material. The reversion of α' martensite is seen to occur by the precipitation of Fe5Ni3Si2-type intermetallic π-phase within these plates.

  17. Synthesis of low-moment CrVTiAl: A potential room temperature spin filter

    NASA Astrophysics Data System (ADS)

    Stephen, G. M.; McDonald, I.; Lejeune, B.; Lewis, L. H.; Heiman, D.

    2016-12-01

    The efficient production of spin-polarized currents at room temperature is fundamental to the advancement of spintronics. Spin-filter materials—semiconductors with unequal band gaps for each spin channel—can generate spin-polarized current without the need for spin-polarized contacts. In addition, a spin-filter material with zero magnetic moment would have the advantage of not producing strong fringing fields that would interfere with neighboring electronic components and limit the volume density of devices. The quaternary Heusler compound CrVTiAl has been predicted to be a zero-moment spin-filter material with a Curie temperature in excess of 1000 K. In this work, CrVTiAl has been synthesized with a lattice constant of a = 6.15 Å. Magnetization measurements reveal an exceptionally low moment of μ = 2.3 × 10-3 μB/f.u. at a field of μ0H = 2 T that is independent of temperature between T = 10 K and 400 K, consistent with the predicted zero-moment ferrimagnetism. Transport measurements reveal a combination of metallic and semiconducting components to the resistivity. Combining a zero-moment spin-filter material with nonmagnetic electrodes would lead to an essentially nonmagnetic spin injector. These results suggest that CrVTiAl is a promising candidate for further research in the field of spintronics.

  18. Structural and magnetic properties of Co 2CrAl Heusler alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hakimi, M.; Kameli, P.; Salamati, H.

    2010-11-01

    Mechanical alloying has been used to produce nanocrystalline samples of Co 2CrAl Heusler alloys. The samples were characterized by using different methods. The results indicate that, it is possible to produce L2 1-Co 2CrAl powders after 15 h of ball-milling. The grain size of 15 h ball milled L2 1-Co 2CrAl Heusler phase, calculated by analyzing the XRD peak broadening using Williamson and Hall approach was 14 nm. The estimated magnetic moment per formula unit is ˜2 μ B. The obtained magnetic moment is significantly smaller than the theoretical value of 2.96 μ B for L2 1 structure. It seems that an atomic disorder from the crystalline L2 1-type ordered state and two-phase separation depresses the ferromagnetic ordering in alloy. Also, the effect of annealing on the structural and magnetic properties of ball milled powders was investigated. Two structures were identified for annealed sample, namely L2 1 and B2. The obtained value for magnetic moment of annealed sample is smaller than the as-milled sample due to the presence of disordered B2 phase and improvement of phase separation.

  19. Effects of Solute Concentrations on Kinetic Pathways in Ni-Al-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Booth-Morrison, Christopher; Weninger, Jessica; Sudbrack, Chantal K.; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.

    2008-01-01

    The kinetic pathways resulting from the formation of coherent gamma'-precipitates from the gamma-matrix are studied for two Ni-Al-Cr alloys with similar gamma'-precipitate volume fractions at 873 K. The details of the phase decompositions of Ni-7.5Al-8.5Cr at.% and Ni-5.2Al-14.2Cr at.% for aging times from 1/6 to 1024 h are investigated by atom-probe tomography, and are found to differ significantly from a mean-field description of coarsening. The morphologies of the gamma'-precipitates of the alloys are similar, though the degrees of gamma'-precipitate coagulation and coalescence differ. Quantification within the framework of classical nucleation theory reveals that differences in the chemical driving forces for phase decomposition result in differences in the nucleation behavior of the two alloys. The temporal evolution of the gamma'-precipitate average radii and the gamma-matrix supersaturations follow the predictions of classical coarsening models. The compositional trajectories of the gamma-matrix phases of the alloys are found to follow approximately the equilibrium tie-lines, while the trajectories of the gamma'-precipitates do not, resulting in significant differences in the partitioning ratios of the solute elements.

  20. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    SciTech Connect

    Robb, Kevin R

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.

  1. Studies of a Large Odd‐Numbered Odd‐Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8Mn

    PubMed Central

    Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J.; Barker, Claire; Carretta, Stefano; Collison, David; Güdel, Hans U.; Guidi, Tatiana; McInnes, Eric J. L.; Möller, Johannes S.; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L.; Santini, Paolo; Tuna, Floriana; Tregenna‐Piggott, Philip L. W.; Vitorica‐Yrezabal, Iñigo J.; Timco, Grigore A.

    2016-01-01

    Abstract The spin dynamics of Cr8Mn, a nine‐membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8Mn is a rare example of a large odd‐membered AF ring, and has an odd‐number of 3d‐electrons present. Odd‐membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated‐spin ground states. The chemical synthesis and structures of two Cr8Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground‐spin‐state crossing from S=1/2 to S=3/2 in Cr8Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin‐pair correlations and scalar‐spin chirality, shows a non‐collinear spin structure that fluctuates between non‐planar states of opposite chiralities. PMID:26748964

  2. Revisiting the 53Mn-53Cr Isotopic Systematics in Phosphates Minerals in IIIAB Iron Meteorites: Implications for the Fine Structure Constant Variation

    NASA Astrophysics Data System (ADS)

    Jacobsen, B.; Yin, Q.-Z.; Hutcheon, I. D.; Phinney, D. L.

    2007-03-01

    New Mn-Cr isotope data on phosphate minerals in the Grant IIIAB iron meteorite places new constraint on the uncertainty for the 187Re decay constant and leads to the "fine structure constant" variations at 3.3x10E-16/y over the last 4.567 Ga.

  3. Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8 Mn.

    PubMed

    Baker, Michael L; Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J; Barker, Claire; Blundell, Stephen J; Carretta, Stefano; Collison, David; Güdel, Hans U; Guidi, Tatiana; McInnes, Eric J L; Möller, Johannes S; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L; Santini, Paolo; Tuna, Floriana; Tregenna-Piggott, Philip L W; Vitorica-Yrezabal, Iñigo J; Timco, Grigore A; Winpenny, Richard E P

    2016-01-26

    The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities.

  4. Dielectric relaxation and magnetodielectric response in DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}

    SciTech Connect

    Yuan, B.; Yang, J. Zuo, X. Z.; Zhu, X. B.; Dai, J. M.; Song, W. H.; Kan, X. C.; Zu, L.; Sun, Y. P.

    2015-09-28

    We investigate the structural, magnetic, and magnetodielectric properties of DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}. The sample can be indexed with an orthorhombic phase with B site disordered space group Pbnm. The valence state of both Mn and Cr ions are suggested to be +3 based on the results of x-ray photoelectron spectroscopy. Two thermally excited dielectric relaxation at temperatures T{sub N2} < T< 300 K and large magnetodielectric effect (MDC = 20%–30%) due to the disordered arrangement of Mn{sup 3+}/Cr{sup 3+} ions associated with electron hopping between them are observed. The absence of any noticeable magnetoresistance effect (MR < 0.5%) demonstrates that the observed magnetodielectric effect is an intrinsic behavior. These results suggest that DyMn{sub 0.5}Cr{sub 0.5}O{sub 3} is a magnetodielectric compound, whose dielectric properties are dependence of the applied magnetic field, which exhibits such effects near room temperature and holds great promise for future device applications.

  5. The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles.

    PubMed

    Chen, Jie; Li, Yan; Shang, Jia-Xiang; Xu, Hui-Bin

    2009-01-28

    The electronic structures and formation energies of the Ni(9)Mn(4)Ga(3-x)Al(x) and Ni(9)Mn(4)Ga(3-x)In(x) alloys have been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The results show that both the austenite and martensite phases of Ni(9)Mn(4)Ga(3) alloy are stabilized by Al alloying, while they become unstable with In alloying. According to the partial density of states and structural energy analysis, different effects of Al and In alloying on the phase stability are mainly attributed to their chemical effects. The formation energy difference between the austenite and martensite phases decreases with Al or In alloying, correlating with the experimentally reported changes in martensitic transformation temperature. The shape factor plays an important role in the decrease of the formation energy difference.

  6. Oxidation and Hot Corrosion Behavior of Plasma-Sprayed MCrAlY-Cr2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Huang, Chuanbing; Lan, Hao; Du, Lingzhong; Zhang, Weigang

    2016-08-01

    The oxidation and hot corrosion behavior of two atmospheric plasma-sprayed NiCoCrAlY-Cr2O3 and CoNiCrAlY-Cr2O3 coatings, which are primarily designed for wear applications at high temperature, were investigated in this study. The two coatings were exposed to air and molten salt (75%Na2SO4-25%NaCl) environment at 800 °C under cyclic conditions. Oxidation and hot corrosion kinetic curves were obtained by thermogravimetric technique. X-ray diffraction analysis and scanning electron microscopy with energy-dispersive x-ray spectrometry were employed to characterize the coatings' microstructure, surface oxides, and composition. The results showed that both coatings provided the necessary oxidation resistance with oxidation rates of about 1.03 × 10-2 and 1.36 × 10-2 mg/cm2 h, respectively. The excellent oxidation behavior of these two coatings is attributed to formation of protective (Ni,Co)Cr2O4 spinel on the surface, while as-deposited Cr2O3 in the coatings also acted as a barrier to diffusion of oxidative and corrosive substances. The greater presence of Co in the CoNiCrAlY-Cr2O3 coating restrained internal diffusion of sulfur and slowed down the coating's degradation. Thus, the CoNiCrAlY-Cr2O3 coating was found to be more protective than the NiCoCrAlY-Cr2O3 coating under hot corrosion condition.

  7. Yttrium influence on the alumina growth mechanism on an FeCr23Al5 alloy

    NASA Astrophysics Data System (ADS)

    Huntz, A. M.; Abderrazik, G. Ben; Moulin, G.; Young, E. W. A.; De Wit, J. H. W.

    1987-07-01

    The mechanism by which yttrium modifies alumina growth was studied by comparing the behaviour of a high purity FeCr23Al5 alloy, either undoped or Y doped by implantation. By combining several techniques, in particular XPS, nuclear reaction analyses and electrochemical measurements, it is shown that the growth of Al2O3 scales on pure samples is mainly ensured by aluminum short-circuit diffusion. The presence of yttrium promotes the oxygen diffusion along grain boundaries, while retarding Al short-circuit diffusion and increasing Al lattice diffusion. From this growth mechanism with both cationic amd anionic diffusion along different paths, suggestions for the improvement of scale adherence due to yttrium are proposed. The simultaneous study of C- and Y-doped samples indicates that synergetic effects occur.

  8. Structural model of quasiperiodic Pb monolayer deposited on fivefold i-Al-Pd-Mn surface

    NASA Astrophysics Data System (ADS)

    Krajčí, M.; Hafner, J.; Ledieu, J.; Fournée, V.

    2010-04-01

    On the basis of analysis of experimental STM images and ab-initio calculations we propose a structural model of the quasiperiodic Pb monolayer grown on the fivefold i-Al-Pd-Mn surface at a coverage close to the saturation. The skeleton of the Pb monolayer can be seen as a network of the "star-fish" (SF) clusters. The atomic structure of the monolayer is based on a decorated P1 tiling. The model can reproduce also the experimentally observed quasiperiodic τ-scaled P1 ordering (τ is the golden mean). The bright spots seen in STM images appear at Pb atoms in the centers of those SF clusters where the substrate has Al atoms at these positions.

  9. Observation of the TWIP + TRIP Plasticity-Enhancement Mechanism in Al-Added 6 Wt Pct Medium Mn Steel

    NASA Astrophysics Data System (ADS)

    Lee, Seawoong; Lee, Kyooyoung; De Cooman, Bruno C.

    2015-06-01

    The intercritically annealed Fe-0.15 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl and Fe-0.30 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl medium Mn steels were found to have improved mechanical properties due to the TWIP and TRIP plasticity-enhancing mechanisms being activated in succession during tensile deformation. The increase of the C content from 0.15 to 0.30 pct resulted in ultra-high strength properties and a strength-ductility balance of approximately 65,000 MPa-pct, i.e., equivalent to the strength-ductility balance of high Mn TWIP steel with a fully austenitic microstructure.

  10. Structural, magnetic and phonon properties of Cr(III)-doped perovskite metal formate framework [(CH3)2NH2][Mn(HCOO)3

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Gągor, Anna; Hermanowicz, Krzysztof; Sieradzki, Adam; Macalik, Lucyna; Pikul, Adam

    2016-05-01

    We have incorporated Cr(III) into [(CH3)2NH2][Mn(HCOO)3] (DMMn) multiferroic metal organic framework (MOF). The highest concentration of Cr(III) in the synthesized samples reached 15.9 mol%. The obtained samples were characterized by powder and single-crystal X-ray diffraction, DSC, magnetic susceptibility, dielectric, EPR, Raman and IR methods. These methods and the performed chemical analysis revealed that electrical charge neutrality after substitution of Cr(III) for Mn(II) is maintained by partial replacement of dimethylammonium (DMA+) cations by neutral HCOOH molecules. These changes in the chemical composition are responsible for weakening of the hydrogen bonds and decreased flexibility of the framework. This in turn leads to lowering of the ferroelectric phase transition temperature, observed around 185 K for undoped DMMn and around 155 K for the sample containing 3.1 mol% of Cr(III), and lack of macroscopic phase transition for the samples with Cr(III) content of 8.2 and 15.9 mol %. Another interesting effect observed for the studied samples is pronounced strengthening of the weak ferromagnetism of in Cr(III)-doped samples, associated with slight decrease of the ferromagnetic ordering temperature from 8.5 K for DMMn to 7.0 K for the sample with 15.9 mol % Cr(III) content.

  11. Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl.

    PubMed

    Ouardi, Siham; Fecher, Gerhard H; Felser, Claudia; Kübler, Jürgen

    2013-03-08

    Recent studies have reported an interesting class of semiconductor materials that bridge the gap between semiconductors and half-metallic ferromagnets. These materials, called spin gapless semiconductors, exhibit a band gap in one of the spin channels and a zero band gap in the other and thus allow for tunable spin transport. Here, we report the first experimental verification of the spin gapless magnetic semiconductor Mn(2)CoAl, an inverse Heusler compound with a Curie temperature of 720 K and a magnetic moment of 2 μ(B). Below 300 K, the compound exhibits nearly temperature-independent conductivity, very low, temperature-independent carrier concentration, and a vanishing Seebeck coefficient. The anomalous Hall effect is comparatively low, which is explained by the symmetry properties of the Berry curvature. Mn(2) CoAl is not only suitable material for room temperature semiconductor spintronics, the robust spin polarization of the spin gapless semiconductors makes it very promising material for spintronics in general.

  12. Application of Cu-Al-Mn superelastic alloy bars as reinforcement elements in concrete beams

    NASA Astrophysics Data System (ADS)

    Shrestha, Kshitij C.; Araki, Yoshikazu; Nagae, Takuya; Yano, Hayato; Koetaka, Yuji; Omori, Toshihiro; Sutou, Yuji; Kainuma, Ryosuke; Ishida, Kiyohito

    2012-04-01

    Experimental works are done to assess the seismic behavior of concrete beams reinforced with superelastic alloy (SEA) bars. Applicability of newly developed Cu-Al-Mn SEA bars, characterized by large recovery strain, low material cost, and high machinability, have been proposed as partial replacements for conventional steel bars in order to reduce residual deformations in structures during and after intense earthquakes. Four-point reverse-cyclic bending tests were done on 1/3 scale concrete beams comprising three different types of specimens - conventional steel reinforced concrete (ST-RC), SEA reinforced concrete (SEA-RC), and SEA reinforced concrete with pre-tensioning (SEA-PC). The results showed that SEA reinforced concrete beams demonstrated significant enhancement in crack recovery capacity in comparison to steel reinforced beam. Average recovery of cracks for each of the specimens was 21% for ST-RC, 84% for SEA-RC, and 86% for SEA-PC. In addition, SEA-RC and SEA-PC beams demonstrated strong capability of recentering with comparable normalized strength and ductility relative to conventional ST-RC beam specimen. ST-RC beam, on the other hand, showed large residual cracks due to progressive reduction in its re-centering capability with each cycle. Both the SEA-RC and SEA-PC specimens demonstrated superiority of Cu-Al-Mn SEA bars to conventional steel reinforcing bars as reinforcement elements.

  13. Formation of quasicrystalline phase in Al70-x Ga x Pd17Mn13 alloys

    NASA Astrophysics Data System (ADS)

    Yadav, T. P.; Singh, Devinder; Shahi, Rohit R.; Shaz, M. A.; Tiwari, R. S.; Srivastava, O. N.

    2011-07-01

    In the present investigation, the formation and stability of icosahedral phase in Al70- x Ga x Pd17Mn13 alloys has been explored using X-ray diffraction, scanning, transmission electron microscopy and energy dispersive X-ray analysis. Cast alloys and melt-spun ribbons with x = 2.5, 5, 7.5, 10, 12.5, 15 and 20 have been investigated. In both cases, the alloys up to 5 at% Ga exhibit the formation of pure icosahedral phase. However, for x ≥5 at% Ga content, the cast alloy exhibits the formation of multiphase material, consisting of an icosahedral phase along with AlPd-type B2 and ξ‧ crystalline (orthorhombic structure with unit cell a = 23.5 Å, b = 16.6 Å and c = 12.4 Å) phases. In the case of the melt spun ribbon for x = 5 at% Ga, only an icosahedral phase has been found, but for 15 > x > 5 at% Ga, an icosahedral phase is the majority phase with AlPd-type B2 phase being the minority component. For x = 15 at% Ga, a Al3Pd2-type hexagonal phase together with a small amount of quasicrystalline phase is formed. However, for x = 20, only a hexagonal Al3Pd2 phase results.

  14. Analysis of the microstructure of Cr-Ni surface layers deposited on Fe{sub 3}Al by TIG

    SciTech Connect

    Ma Haijun . E-mail: hjma123@mail.sdu.edu.cn; Li Yajiang; Wang Juan

    2006-12-15

    A series of Cr-Ni alloys were overlaid on a Fe{sub 3}Al surface by tungsten inert gas arc welding (TIG) technology. The microstructure of the Cr-Ni surface layers were analysed by means of optical metallography, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that when the appropriate TIG parameters were used and Cr25-Ni13 and Cr25-Ni20 alloys were used for the overlaid materials, the Cr-Ni surface layers were crack-free. The matrix of the surface layer was austenite (A), pro-eutectoid ferrite (PF), acicular ferrite (AF), carbide-free bainite (CFB) and lath martensite (LM), distributed on the austenitic grain boundaries as well as inside the grains. The phase constituents of the Cr25-Ni13 surface layer were {gamma}-Fe, Fe{sub 3}Al, FeAl, NiAl, an Fe-C compound and an Fe-C-Cr compound. The microhardness of the fusion zone was lower than that of the Fe{sub 3}Al base metal and Cr25-Ni13 surface layer.

  15. The effects of annealing on the microstructure and mechanical properties of Fe28Ni18Mn33Al21

    DOE PAGES

    Meng, Fanling; Qiu, Jingwen; Baker, Ian; ...

    2015-08-20

    In this paper, As-cast Fe28Ni18Mn33Al21, which consists of aligned, 50 nm, (Ni, Al)-rich B2, and (Fe, Mn)-rich f.c.c. phases, was annealed at a variety of temperatures up to 1423 K and the microstructure and mechanical properties were examined. It was shown that the as-cast microstructure arises from a eutectoid transformation at ~1300 K. Annealing at temperatures ≤1073 K produces β-Mn-structured precipitates and hardness values up to 816 HV, while annealing at temperatures >1073 K leads to dramatic coarsening of the two-phase B2/f.c.c. microstructure (up to 5.5 µm after 50 h at 1273 K), but does not lead to β-Mn precipitation.more » Interestingly, annealing at temperatures >1073 K delays the onset of β-Mn precipitation during subsequent anneals at lower temperatures. Coarsening the B2/f.c.c. lamellar structure by annealing at higher temperatures softens it and leads to increases in ductility from fracture before yield to ~8 % elongation. Finally, the presence of β-Mn precipitates makes the very fine, brittle B2/f.c.c. microstructures even more brittle, but significant ductility (8.4 % elongation) is possible even with β-Mn precipitates present if the B2/f.c.c. matrix is coarse and, hence, more ductile.« less

  16. High-pressure preparation and characterization of new metastable oxides: the case of NdCu3Mn3MO12 (M = Fe, Cr)

    NASA Astrophysics Data System (ADS)

    Sánchez-Benítez, J.; Kayser, P.; Martínez-Lope, M. J.; de la Calle, C.; Retuerto, M.; Fernandez-Díaz, M. T.; Alonso, J. A.

    2011-10-01

    High-pressure synthesis is a powerful technique to stabilize metastable oxides, either containing transition metals in unusual oxidation states, or favouring the formation of dense perovskite-related phases. Happily, many solids synthesized at high pressure-high temperature conditions (where they are fhermodynamically stable) can be "quenched" to ambient conditions, where they are termodynamically metaestable, yet they remain indefinitely kinetically stable. In this paper we illustrate the example of a new family of oxides derived from the CaCu3Mn4O12 perovskite. We have studied the series of nominal composition NdCu3(Mn3M)O12 (M = Fe, Cr) where Mn is replaced by Fe(Cr) cations in the ferrimagnetic perovskite NdCu3Mn4O12. These materials have been synthesized in poly crystalline form under moderate pressure conditions of 2 GPa, in the presence of KClO4 as oxidizing agent. All the samples have been studied by neutron powder diffraction (NPD) below and above the ferromagnetic Curie temperatures. These oxides crystallize in the cubic space group Imbar 3 (No. 204). Mn4+/Mn3+ and Fe3+(Cr3+) occupy at random the octahedral B positions of the perovskite structure. The materials have also been characterized by magnetic and magnetotransport measurements. All the samples are ferrimagnetic and show a decrease of TC upon Fe(Cr) introduction since these ions disturb the ferromagnetic interactions within this magnetic sublattice. The introduction of Fe changes the resistivity response from metallic to a semiconductor behavior. However, the magnetoresistance is still considerable at 300 K upon Fe doping, and it is enhanced at 100 K probably due to the decrease in the number of charge carriers from the pure oxide to the Fe-doped compound.

  17. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE PAGES

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; ...

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  18. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part I - Impurity effects and solidifcation mode

    SciTech Connect

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; Liu, Stephen

    2016-11-02

    For laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steels, the relationship between solidification cracking susceptibility and chemical composition was examined, and primary solidification mode (PSM) diagrams were developed to predict solidification mode. Sigmajig testing was used with experimental heats of type 21-6-9 to determine the effect of P and S on solidification cracking w hen primary austenite solidification occurred. Phosphorus showed a larger influence on solidification cracking relative to S, and a relationship of (P+0.2S ) was found for total impurity content. PSM diagrams to predict solidification mode were developed by analyzing welds made at three travel speeds for a wide range of 21-6-9 alloys and some other similar alloys. The minimum Creq/Nieq required for primary ferrite solidification increased as travel speed increased, with more alloys showing primary austenite solidification at higher travel rates. Furthermore, as travel speed increased from 21 to 85 mm/s, the average solidification rate increased from 6 to 25 mm/s.

  19. Kinetic Parameters of Secondary Carbide Precipitation in High-Cr White Iron Alloyed by Mn-Ni-Mo-V Complex

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Chabak, Yu. G.; Brykov, M. N.

    2013-05-01

    This study presents kinetics of precipitation of secondary carbides in 14.55%Cr-Mn-Ni-Mo-V white cast iron during the destabilization heat treatment. The as-cast iron was heat treated at temperatures in the range of 800-1100 °C with soaking up to 6 h. Investigation was carried out by optical and electron microscopy, dilatometric analysis, Ms temperature measurement, and bulk hardness evaluation. TTT-curve of precipitation process of secondary carbides (M7C3, M23C6, M3C2) has been constructed in this study. It was determined that the precipitation occurs at the maximum rate at 950 °C where the process is started after 10 s and completed within 160 min further. The precipitation leads to significant increase of Ms temperature and bulk hardness; large soaking times at destabilization temperatures cause coarsening of secondary carbides and decrease in particles number, followed by decrease in hardness. The results obtained are discussed in terms of solubility of carbon in the austenite and diffusion activation of Cr atoms. The precipitation was found to consist of two stages with activation energies of 196.5 kJ/g-mole at the first stage and 47.1 kJ/g-mole at the second stage.

  20. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy

    SciTech Connect

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with a composition of FeNiMnCr18 was successfully developed. This near-equiatomic FeNiMnCr18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.

  1. Synthesis, characterization and low field magnetotransport of Nd0.6Sr0.4MnO3/CrO3 composite

    NASA Astrophysics Data System (ADS)

    Ahmed, A. M.; Mohamed, H. F.; Diab, A. K.; Mohamed, Sara A.

    2017-02-01

    (Nd0.6Sr0.4MnO3)1-x/(CrO3)x with x = 0.0-0.030 step 0.005 weight% composites have been prepared by the solid state reaction process. The X-ray and scanning electron microscopic manifest that all composites are a single orthorhombic phase and there are no CrO3 grains separated from NdSrMnO matrix. The electrical measurements have revealed an increase of resistivity and a decrease of metal semiconductor transition with increasing CrO3. The composite x = 0.025 has largest magnetoresistance nearly one hundred percent at room temperature.

  2. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  3. Revisiting the ground state of CoAl>2mn>O<mn>4mn> : Comparison to the conventional antiferromagnet MnAl>2mn>O<mn>4mn>

    SciTech Connect

    MacDougall, Gregory J.; Aczel, Adam A.; Su, Yixi; Schweika, Werner; Faulhaber, E.; Schneidewind, A.; Christianson, Andrew D.; Zarestky, Jerel L.; Zhou, H. D.; Mandrus, David; Nagler, Stephen E.

    2016-11-17

    The A-site spinel material CoAl2O4 is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which unique incommensurate or “spin-spiral-liquid” ground states are predicted. Our previous single-crystal neutron scattering study instead classified it as a “kinetically inhibited” antiferromagnet, where the long-ranged correlations of a collinear Néel ground state are blocked by the freezing of domain-wall motion below a first-order phase transition at T*=6.5 K. This study provides new data sets from a number of experiments, which support and expand this work in several important ways. We show that the phenomenology leading to the kinetically inhibited order is unaffected by sample measured and instrument resolution, while new low-temperature measurements reveal spin correlations are unchanging between T=2 K and 250 mK, consistent with a frozen state. Polarized diffuse neutron measurements show several interesting magnetic features, which can be entirely explained by the existence of short-ranged Néel order. Finally, and crucially, this paper presents some neutron scattering studies of single crystalline MnAl2O4, which acts as an unfrustrated analog to CoAl2O4 and shows all the hallmarks of a classical antiferromagnet with a continuous phase transition to Néel order at TN=39 K. Direct comparison between the two compounds indicates that CoAl2O4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. Finally, the higher level of cation inversion in the MnAl2O4 sample indicates that this behavior is primarily an effect of greater next-nearest-neighbor exchange.

  4. First-principles investigation of structural and magnetic disorder in CuNiMnAl and CuNiMnSn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Aron-Dine, S.; Pomrehn, G. S.; Pribram-Jones, A.; Laws, K. J.; Bassman, L.

    2017-01-01

    Two quaternary Heusler alloys, equiatomic CuNiMnAl and CuNiMnSn, are studied using density functional theory to understand their tendency for atomic disorder on the lattice and the magnetic effects of disorder. Disordered structures with antisite defects of atoms of the same and different sublattices are considered, with the level of atomic disorder ranging from 3% to 25%. Formation energies and magnetic moments are calculated relative to the ordered ground state and combined with a simple thermodynamical model to estimate temperature effects. We predict the relative levels of disordering in the two equiatomic alloys with good correlation to experimental x-ray diffraction results. The effect of swaps involving Mn is also discussed.

  5. Degradation of Aluminide Coatings in Fe-Al-Cr Alloy on the Isothermal Oxidation

    NASA Astrophysics Data System (ADS)

    Juwita, L.; Prajitno, D. H.; Soedarsono, J. W.; Manaf, A.

    2008-03-01

    Fe base superalloy has a good mechanical strength to be used as component operating at high temperature with oxidative environment. Although, the oxidation rate can not be tolerated as it will be oxidized and form oxide scale of un-protective FeO. Coating is a proper solution that this alloy can be used at high temperature. In this research, pack aluminizing on sample was conducted with temperatures of 900 °C, 1000 °C and 1100 °C for 10 hours in inert (argon) environment and then an oxidation test was carried out at temperature of 650 °C by an isothermal method for 10 hours in air environment. It was carried out an analysis for characteristics of coating and oxide scale formed in Fe-Al-Cr super alloy resulted from pack aluminizing. From this experiment, it was indicated by XRD analysis that the coating formed on substrate was a layer of FeAl2 compound, other than coating it was found a diffused zone, where in this area it occurred movement of Fe and Cr atoms from substrate toward coating, while Al atoms moved from coating to substrate. The increase of temperature of pack aluminizing process will affect settling rate of Al and coating growth.

  6. Optical Characterization and 2,525 micron Lasing of Cr(2+):Cd(0.85)Mn(0.15)Te

    NASA Technical Reports Server (NTRS)

    Davis, V. R.; Wu, X.; Hoemmerich, U.; Trivedi, S. B.; Grasza, K.; Yu, Z.

    1997-01-01

    static acentric electric crystal field or the coupling of asymmetric phonons can force electric-dipole transitions by the admixture of wave functions with opposite parity. Tetrahedral sites lack inversion symmetry which provides the odd-parity field necessary to relax the parity selection rule. Therefore, high absorption and emission cross sections are observed. An enhanced radiative emission rate is also expected to reduce the detrimental effect of non-radiative decay. Motivated by the initial results on Cr doped ZnS and ZnSe, we have started a comprehensive effort to study Cr(2+) doped II-VI semiconductors for solid-state laser applications. In this paper we present the optical properties and the demonstration of mid-infrared lasing from Cr doped Cd(0.85)Mn(0.15)Te.

  7. Interdiffusion in (fcc) Ni-Cr-X (X = Al, Si, Ge or Pd) Alloys at 700?aC

    SciTech Connect

    Garimella, N; Brady, Michael P; Sohn, Yong Ho

    2007-01-01

    Interdiffusion at 700 aC for Ni-22at.%Cr (fcc ^ phase) alloys with small additions of Al, Si, Ge, or Pd was examined using solid-to-solid diffusion couples. Rods of Ni-22at.%Cr, Ni-21at.%Cr-6.2at.%Al, Ni-22at.%Cr-4.0at.%Si, Ni-22at.%Cr-1.6at.%Ge and Ni-22at.%Cr-1.6at.%Pd alloys were cast using arc-melt and homogenized at 900 aC for 168 hours. The diffusion couples were assembled with alloy disks in Invar steel jig, encapsulated in Argon after several hydrogen flushes, and annealed at 700 XC for 720 hours. Experimental concentration profiles were determined from polished cross-sections by using electron probe microanalysis with pure standards of Ni, Cr, Al, Si, Ge and Pd. Interdiffusion fluxes of individual components were calculated directly from the experimental concentration profiles, and the moments of interdiffusion fluxes were examined to determine average ternary interdiffusion coefficients. Effects of ternary alloying additions on the interdiffusional behavior of Ni-Cr-X alloys at 700 XC are presented in the light of the diffusional interactions and the formation of protective Cr2O3 scale.

  8. Temporal variability of bioavailable Cd, Hg, Zn, Mn and Al in an upwelling regime.

    PubMed

    Lares, M Lucila; Flores, Muñoz Gilberto; Lara-Lara, Ruben

    2002-01-01

    Monthly variability of Cd, Hg, Zn, Mn and Al concentrations in mussels (Mytilus californianus) soft tissue and brown seaweed (Macrocystis pyrifera) was studied at a pristine rocky shore off San Quintin Bay, Baja California, México. The results were related to climatic and hydrographic conditions and to the physiological state of the mussels (condition index) by correlation analysis and principal component analysis (PCA). A "normalization" to account for the variability induced by the physiological state of the mussel was performed. The PCA was performed in two ways to relate the environmental variables and the condition index to: (1) the metal concentrations in mussels, and (2) the "normalized" mussel concentrations. The association of the variability of Cd with the upwelling season was revealed in both PCAs. The temporal variability of this metal in mussels was highly correlated to that in seaweed, suggesting that the dissolved phase determined the variability of Cd in mussels. However, for Hg, Zn, Mn and Al the results from both PCAs were different. The first PCA showed the relationship of these metals to pluvial precipitation and to the condition index. The PCA for the normalized mussel concentrations showed that, after eliminating the effect of the condition index, only Al was related to pluvial precipitation. Manganese, and to a less degree Zn, were related to these metals in seaweed. Because zinc is an essential element in mussels, some regulation of their internal concentrations is likely. Mercury was not detected in seaweed, but because of its reactive nature, it is not expected that the dissolved fraction could be a significant pathway; therefore, it can be concluded that its temporal variability was determined by the variability in the condition index only.

  9. Calculations of structural, elastic, electronic, magnetic and phonon properties of FeNiMnAl by the first principles

    SciTech Connect

    Uğur, Şule; İyigör, Ahmet

    2014-10-06

    The electronic, elastic and dynamical properties of the quaternary alloy FeNiMnAl have been investigated using a pseudopotential plane wave method within the generalized gradient approximation (GGA). We determined the lattice parameters and the bulk modulus B. In addition, the elastic properties such as elastic constans (C{sub 11}, C{sub 12} and C{sub 44}), the shear modulus G, the young modulus E, the poisson's ratio σ and the B/G ratio are also given. The FeNiMnAl Heusler alloy exhibit a ferromagnetic half-metallic behavior with the total magnetic moment of 4.02 μ{sub B}. The phonon dispersion of FeNiMnAl has been performed using the density functional theory and the direct method with 2×2×2 supercell.

  10. Giant magnetocaloric effect in GdAlO3 and a comparative study with GdMnO3

    NASA Astrophysics Data System (ADS)

    Mahana, Sudipta; Manju, U.; Topwal, D.

    2017-01-01

    The magnetic properties and magnetocaloric effect of polycrystalline GdAlO3 and GdMnO3 have been investigated to assess their potential usage as magnetic refrigerants at cryogenic temperatures. These compounds undergo antiferromagnetic transitions at low temperatures which are associated with the giant magnetic entropy change effect (-\\bigtriangleup {{S}M} )  ˜40.9 J Kg · K-1 under a field change of 0-9 T for GdAlO3 while the moderate effect of 18 J Kg · K-1 is observed for polycrystalline GdMnO3. Though the relative cooling power of both the stated materials is similar however, the absence of magnetic and thermal hysteresis makes GdAlO3 a more efficient magnetic refrigerant than GdMnO3.

  11. Correlation of acoustic emission generated during uniform biaxial loading to microstructural sources in 7075-T651 aluminum and 21Cr-6Ni-9Mn stainless steel. Final report

    SciTech Connect

    Leon, E.; Mukherjee, A.K.

    1981-12-01

    This paper reports on the effect on acoustic emission (AE) of uniform biaxial loading of a thin-walled tube designed by Hamstad, Patterson and Mukherjee. The AE generated during biaxial loading of 7075-T651 aluminum and 21Cr-6Ni-9Mn stainless steel had several anomalous features relative to tensile generated AE. The biaxial AE data was of a much higher level and peaked at a lower strain than the uniaxial AE response. A particle cracking model was proposed in which inclusions with the largest projected surface area perpendicular to the principal axis of applied loading will crack before smaller inclusions, and the resulting energy released per AE will be proportional to the crack surface area. The inclusion contents were studied with respect to size, shape, density, hardness, and fracture/decohesion behavior. The inclusions in both 7075-T651 and 21-6-9 display the preferred cracking orientation predicted in the Hamstad, et al. model and are shown to be associated with the generated AE. However, other factors appear to contribute to the total AE responses. There is evidence that for 7075-T651 subjected to biaxial loading, a grain boundary-related mechanism becomes a significant source of AE in the latter stages of strain hardening. Also, for both materials, the complex applied load during biaxial loading appears to amplify the level of AE.

  12. Effects of Cr, Zr, V, Mn, Fe, and Co to the hydride properties of Laves phase-related body-centered-cubic solid solution alloys

    NASA Astrophysics Data System (ADS)

    Young, K.; Ouchi, T.; Nei, J.; Meng, T.

    2015-05-01

    Chemical composition modifications of a Laves phase-related BCC solid solution base alloy, Ti15.6Zr2.1V44Cr11.2Mn6.9Fe2.7Co1.4Ni15.7Al0.3, were investigated in order to study the function of each constituent element on the structural, gaseous phase and electrochemical hydrogen storage properties of these alloys. In general, removal of Fe and decrease in V-content in exchange for higher Ni-content were found to improve both the electrochemical capacity and high-rate dischargeability, which are related to the decrease in C14-content and increase in TiNi-content. However, total elimination of the C14 phase by removal of Zr resulted in a reduced discharge capacity, a prolonged activation period, and a less catalytic surface for electrochemical reaction. Besides the BCC and C14 phases, the TiNi phase was also found in every alloy in this study, contributing positively to the bulk diffusion of hydrogen while hindering the surface electrochemical reaction.

  13. Thermo-mechanical processing (TMP) of Ti-48Al-2Nb-2Cr based alloys

    SciTech Connect

    Fuchs, G.E.

    1995-02-01

    The effects of heat treatment and deformation processing on the microstructures and properties of {gamma}-TiAl based alloys produced by ingot metallurgy (I/M) and powder metallurgy (P/M) techniques were examined. The alloy selected for this work is the second generation {gamma}-TiAl based alloy -- Ti-48Al-2Nb-2Cr (at %). Homogenization of I/M samples was performed at a variety of temperatures, followed by hot working by isothermal forging. P/M samples were prepared from gas atomized powders, consolidated by both HIP and extrusion and some of the HIPed material was then hot worked by isothermal forging. The effects of processing, heat treatment and hot working on the microstructures and properties will be discussed.

  14. Influence of MnC2O4 microadditives on combustion characteristics of CuO/Al nanoenergetics

    NASA Astrophysics Data System (ADS)

    Painuly, Madhusudan; Patel, Vinay Kumar; Bhattacharya, Shantanu

    2016-05-01

    In this work, we have investigated the catalytic effect of MnC2O4 microrods on combustion characteristics of CuO/nAl nanoenergetic composites. CuO nanorods were prepared by solid state synthesis method using the nonionic surfactant of poly(ethylene)glycol of molecular weight 400 (PEG400). The crystal information and microstructure of CuO/nAl nanoenergetics were studied by X-ray diffractometry and Transmission Electron microscopy. Microrods shaped manganese oxalate (MnC2O4) were fabricated by using mild thermal precipitation and aging process and confirmed by energy dispersive X-ray spectroscopy (EDS). The microstructures of MnC2O4 microrods and the nanoenergetic composites of CuO/nAl/MnC2O4 were characterized by Field emission scanning electron microscopy (FE-SEM) imaging. The addition of MnC2O4 microrods has demonstrated a significant enhancement in dynamic pressure-time characteristics of CuO/nAl nanoenergetics.

  15. New SrAl 2B 2O 7:Eu 2+, Mn 2+ phosphors for white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Liya; Yi, Linghong; Feng, Xiaoming

    2011-12-01

    A series of Eu 2+ and Mn 2+ co-doped SrAl 2B 2O 7 phosphors were prepared by solid-state reaction method. X-ray powder diffraction (XRD) and photoluminescence excitation and emission were employed to characterize the phosphors. The results show that energy transfers between Eu 2+and Mn 2+ ions. As the content of Ca 2+ ions in Ca xSr 0.92- xAl 2B 2O 7:Eu 2+0.06, Mn 2+0.02 phosphors increased, the CIE coordinates decreased and close to the white color standard mandated by the National Television Standard Committee (NTSC). Meanwhile, a white LED (light-emitting diode) was fabricated by combining the Ca 0.5Sr 0.42Al 2B 2O 7:Eu 2+0.06, Mn 2+0.02 phosphors with a 370 nm InGaN chip. The color coordinate of the fabricated white LED was also close to the white color standard, indicating that the Ca 0.5Sr 0.42Al 2B 2O 7:Eu 2+0.06, Mn 2+0.02 phosphor is a promising single-host phosphor that can be used in white LEDs.

  16. New SrAl2B2O7:Eu2+, Mn2+ phosphors for white light-emitting diodes.

    PubMed

    Zhou, Liya; Yi, Linghong; Feng, Xiaoming

    2011-12-01

    A series of Eu(2+) and Mn(2+) co-doped SrAl(2)B(2)O(7) phosphors were prepared by solid-state reaction method. X-ray powder diffraction (XRD) and photoluminescence excitation and emission were employed to characterize the phosphors. The results show that energy transfers between Eu(2+)and Mn(2+) ions. As the content of Ca(2+) ions in Ca(x)Sr(0.92-x)Al(2)B(2)O(7):Eu(2+)(0.06), Mn(2+)(0.02) phosphors increased, the CIE coordinates decreased and close to the white color standard mandated by the National Television Standard Committee (NTSC). Meanwhile, a white LED (light-emitting diode) was fabricated by combining the Ca(0.5)Sr(0.42)Al(2)B(2)O(7):Eu(2+)(0.06), Mn(2+)(0.02) phosphors with a 370 nm InGaN chip. The color coordinate of the fabricated white LED was also close to the white color standard, indicating that the Ca(0.5)Sr(0.42)Al(2)B(2)O(7):Eu(2+)(0.06), Mn(2+)(0.02) phosphor is a promising single-host phosphor that can be used in white LEDs.

  17. Large magnetization and high Curie temperature in highly disordered nanoscale Fe2CrAl thin films

    NASA Astrophysics Data System (ADS)

    Dulal, Rajendra P.; Dahal, Bishnu R.; Forbes, Andrew; Pegg, Ian L.; Philip, John

    2017-02-01

    We have successfully grown nanoscale Fe2CrAl thin films on polished Si/SiO2 substrates using an ultra-high vacuum deposition with a base pressure of 9×10-10 Torr. The thickness of thin films ranges from 30 to 100 nm. These films exhibit cubic crystal structure with lattice disorder and display ferromagnetic behavior. The Curie temperature is greater than 400 K, which is much higher than that reported for bulk Fe2CrAl. The magnetic moments of the films varies from 2.5 to 2.8 μB per formula unit, which is larger than the reported bulk values. Thus, the disordered nanoscale Fe2CrAl films exhibit strong Fe-Fe exchange interactions through Fe-Cr-Fe and Fe-Al-Fe layers, resulting in both a large magnetization and a high Curie temperature.

  18. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  19. Cyclic Corrosion and Chlorination of an FeCrAl Alloy in the Presence of KCl

    DOE PAGES

    Israelsson, Niklas; Unocic, Kinga A.; Hellström, K.; ...

    2015-05-30

    The KCl-induced corrosion of the FeCrAl alloy Kanthal® APMT in an O2 + N2 + H2O environment was studied at 600 °C. The samples were pre-oxidized prior to exposure in order to investigate the protective nature of alumina scales in the present environment. The microstructure and composition of the corroded surface was investigated in detail. Corrosion started at flaws in the pre-formed α-alumina scales, i.e. α-alumina was protective in itself. Consequently, KCl-induced corrosion started locally and, subsequently, spread laterally. An electrochemical mechanism is proposed here by which a transition metal chloride forms in the alloy and K2CrO4 forms at themore » scale/gas interface. Scale de-cohesion is attributed to the formation of a sub-scale transition metal chloride.« less

  20. High hardness and superlative oxidation resistance in a pseudo-icosahehdral Cr-Al binary

    NASA Astrophysics Data System (ADS)

    Simonson, J. W.; Rosa, R.; Antonacci, A. K.; He, H.; Bender, A. D.; Pabla, J.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Aronson, M. C.

    Improving the efficiency of fossil fuel plants is a practical option for decreasing carbon dioxide emissions from electrical power generation. Present limits on the operating temperatures of exposed steel components, however, restrict steam temperatures and therefore energy efficiency. Even as a new generation of creep-resistant, high strength steels retain long term structural stability to temperatures as high as ~ 973 K, the low Cr-content of these alloys hinders their oxidation resistance, necessitating the development of new corrosion resistant coatings. We report here the nearly ideal properties of potential coating material Cr55Al229, which exhibits high hardness at room temperature as well as low thermal conductivity and superlative oxidation resistance at 973 K, with an oxidation rate at least three times smaller than those of benchmark materials. These properties originate from a pseudo-icosahedral crystal structure, suggesting new criteria for future research.

  1. Epitaxial growth of the Heusler alloy Co2Cr1-xFexAl

    NASA Astrophysics Data System (ADS)

    Kelekar, R.; Clemens, B. M.

    2004-07-01

    We report a method for the growth of single-phase epitaxial thin films of compounds from the family of Heusler alloys Co2Cr1-xFexAl. Elemental targets were dc magnetron sputtered in 1.5 mtorr Ar gas onto MgO substrates held at 500 °C at a total growth rate of ≈0.8 Å/s. As the Fe content increases, the structural quality improves, the level of chemical ordering increases, and the slope of the resistivity versus temperature, dρ/dt, above 50 K changes from negative to positive. An extraordinary Hall resistivity exceeding 1×10-8 Ω m is observed in the Cr-containing alloys at low temperature and room temperature. Preliminary work on the incorporation of a single quaternary alloy into spin valves shows maximum giant magnetoresistances ranging from 4% at 15 K to 2% at room temperature.

  2. Al, Ti, and Cr: Complex Zoning in Synthetic and Natural Nakhlite Pyroxenes

    NASA Technical Reports Server (NTRS)

    McKay, G.; Le, L.; Mikouchi, T.

    2007-01-01

    Nakhlites are olivine-bearing clinopyroxene cumulates. The cumulus pyroxenes have cores that are relatively homogeneous in Fe, Mg, and Ca, but show complex zoning of minor elements, especially Al, Ti, and Cr. Zoning patterns contain information about crystallization history parent magma compositions. But it has proven difficult to decipher this information and translate the zoning patterns into petrogenetic processes. This abstract reports results of high-precision Electron Probe MicroAnalysis (EPMA) analysis of synthetic nakhlite pyroxenes run at fO2 from IW to QFM. It compares these with concurrent analyses of natural nakhlite MIL03346 (MIL), and with standardprecision analyses of Y000593 (Y593) collected earlier. Results suggest that (1) different processes are responsible for the zoning of MIL and other more slowly-cooled nakhlites such as Y593, and (2) changes in oxidation conditions during MIL crystallization are not responsible for the unusual Cr zoning pattern

  3. Lavoisierite, Mn2+ 8[Al10(Mn3+Mg)][Si11P]O44(OH)12, a new mineral from Piedmont, Italy: the link between "ardennite" and sursassite

    NASA Astrophysics Data System (ADS)

    Orlandi, Paolo; Biagioni, Cristian; Pasero, Marco; Mellini, Marcello

    2013-03-01

    The new mineral species lavoisierite, ideally Mn2+ 8[Al10(Mn3+Mg)][Si11P]O44(OH)12, has been discovered in piemontite-bearing micaschists belonging to the Piedmontese Nappe from Punta Gensane, Viù Valley, Western Alps, Italy. It occurs as yellow-orange acicular to prismatic-tabular crystals up to a few millimeters in length, with white streak and vitreous luster, elongated along [010] and flattened on {001}. Lavoisierite is associated with quartz, "mica," sursassite, piemontite, spessartine, braunite, and "tourmaline." Calculated density is 3.576 g cm-3. In plane-polarized light, it is transparent, pleochroic, with pale yellow parallel to [010] and yellow-orange normal to this direction; extinction is parallel and elongation is positive. Birefringence is moderate; the calculated average refraction index n is 1.750. Lavoisierite is orthorhombic, space group Pnmm, with a 8.6891(10), b 5.7755(3), c 36.9504(20) Å, V 1854.3(2) Å3, Z = 2. Calculated main diffraction lines of the X-ray powder diffraction pattern are [ d in Å, ( I), ( hkl); relative intensities are visually estimated]: 4.62 (m) (112), 2.931 (vs) (11 10), 2.765 (s) (11 11), 2.598 (s) (310), 2.448 (ms) (028). Chemical analyses by electron microprobe give (in wt%) P2O5 2.08, V2O5 0.37, SiO2 34.81, TiO2 0.13, Al2O3 22.92, Cr2O3 0.32, Fe2O3 0.86, Mn2O3 6.92, MnO 19.09, MgO 5.73, CaO 1.94, Na2O 0.01, H2O 5.44, sum 100.62 wt%. H2O content was calculated from structure refinement. The empirical formula, based on 56 anions, is (Mn{5.340/2+}Mg1.810Ca0.686Na0.006)Σ=7.852(Al8.921Mn{1.739/3+}Mg1.010Fe{0.214/3+}Cr0.084Ti0.032)Σ=12.000(Si11.496P0.582V0.081)Σ=12.159O43.995(OH)12.005. The crystal structure of lavoisierite was solved by direct methods and refined on the basis of 1743 observed reflections to R 1 = 4.6 %. The structure is characterized by columns of edge-sharing octahedra running along [010] and linked to each other by means of [SiO4], [Si2O7], and [Si3O10] groups. Lavoisierite, named after the French

  4. Potential and frequency effects on fretting corrosion of Ti6Al4V and CoCrMo surfaces.

    PubMed

    Swaminathan, Viswanathan; Gilbert, Jeremy L

    2013-09-01

    Fretting corrosion has been reported at the metal-metal interfaces of a wide range of medical devices, including total joint replacements, spinal devices, and overlapping cardiovascular stents. Currently, the fretting corrosion phenomenon associated with metal-on-metal contacts is not fully understood. This study investigated the effect of potential and fretting frequency on the fretting corrosion performance of Ti6Al4V/Ti6Al4V, Ti6Al4V/CoCrMo, and CoCrMo/CoCrMo alloy combinations at fixed normal load and displacement conditions using a custom built fretting corrosion test system. The results showed that the fretting current densities increased with increases in potential and were highest for Ti6Al4V/Ti6Al4V couple (1.5 mA/cm(2) at 0 V vs. Ag/AgCl). The coefficient of friction varied with potential and was about two times higher for Ti6Al4V/Ti6Al4V (0.71 V at 0 V vs. Ag/AgCl). In most of the potential range tested, the fretting corrosion behavior of CoCrMo/Ti6Al4V and CoCrMo/CoCrMo was similar and dominated by the CoCrMo surface. Increase in applied fretting frequency linearly increased the fretting current densities in the regions where the passive film is stable. Also, the model-based fretting current densities were in excellent agreement with the experimental results. Overall, Ti6Al4V/Ti6Al4V couple was more susceptible to fretting corrosion compared with other couples. However, the effects of these processes on the biological system were not assessed.

  5. Partition coefficients for Al, Ca, Ti, Cr, and Ni in olivine obtained by melting experiment on an LL6 chondrite

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Mikouchi, T.; Mckay, G. A.

    1994-01-01

    We report the partition coefficients for Ca, Al, Ti, Cr, and Ni in olivine obtained through a series of melting experiments on an LL6 chondrite under varying conditions of temperature and oxygen fugacity. It is necessary to examine the variation of partition coefficients up to extremely reducing conditions in order to study meteoritic olivines. For Ca, Al, and Cr, the partition coefficients tend to decrease as temperature increases, but do not change even under extremely reducing conditions.

  6. Structure and composition of higher-rhenium-content superalloy based on La-alloyed Ni-Al-Cr

    SciTech Connect

    Kozlov, Eduard V.; Koneva, Nina A.; Nikonenko, Elena L.; Popova, Natalya A.; Fedorischeva, Marina V.

    2015-10-27

    The paper presents the transmission and scanning electronic microscope investigations of Ni-Al-Cr superalloy alloyed with additional Re and La elements. This superalloy is obtained by a directional solidification method. It is shown that such additional elements as Re and La result in formation of new phases in Ni-Al-Cr accompanied by considerable modifications of quasi-cuboid structure in its γ’-phase.

  7. New constraints on the formation history of carbonates in the CI chondrite Ivuna from the Mn-53-Cr-53 chronometer: Preliminary results

    NASA Astrophysics Data System (ADS)

    Endress, M.; Zinner, E.; Weber, D.; Bischoff, A.

    1994-07-01

    Carbonates and sulfates are common in CI chondrites and are believed to have resulted from aqueous alteration processes on the CI parent body. The carbonates occur mostly either as single grains or as polycrystalline chunks and are dominated by dolomites with varying Fe, Mg, and Mn contents. Calcites and breunnerites are less abundant. Since dolomites have MnO contents of up to 15 wt% and generally low Cr2O3 contents, we carried our exploratory SIMS analyses on dolomites in order to determine, whether a Mn-53-Cr-53 chronometer could provide constraints on the formation times of carbonates in CIs. We focused on carbonate fragments in Ivuna, since they can be easily recognized in thin sections, but also measured one carbonate from Orgueil. Our data indicate that aqueous alteration must have occurred soon after formation of the Ivuna parent body, perhaps even before accretion and accumulation was completed. Our results are similar to, but more stringent than, those obtained from Sr isotope data on carbonates in Orgueil, which imply that Ca-Mg carbonate precipitation was completed within 50 m.y. after formation of the Orgueil parent body. Further Mn-Cr studies, now underway, are disigned to determine whether or not carbonate fragments and carbonate grains in distinct lithic units of Ivuna, and different carbonate phases like dolomites and breunnerites precipitated at the same time.

  8. Microstructural Evolution and Functional Properties of Fe-Mn-Al-Ni Shape Memory Alloy Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Krooß, Philipp; Vollmer, Malte; Günther, Johannes; Schwarze, Dieter; Biermann, Horst

    2016-06-01

    In the current study, a Fe-Mn-Al-Ni shape memory alloy is processed by additive manufacturing for the first time. Microstructural evolution upon processing is strongly affected by thermal gradients and solidification velocity and, thus, by processing parameters and the actual specimen geometry. By single-step solutionizing heat treatment pronounced grain growth is initiated leading to microstructures showing good reversibility. The compressive stress-strain response revealed maximum reversible pseudo-elastic strain of about 7.5 pct. Critical steps toward further optimization of additively manufactured Fe-Mn-Al-Ni shape memory alloys are discussed.

  9. Ferromagnetism and antiferromagnetism in Ni 2+ x+ yMn 1- xAl 1- y alloys

    NASA Astrophysics Data System (ADS)

    Paduani, C.; Migliavacca, A.; Sebben, M. L.; Ardisson, J. D.; Yoshida, M. I.; Soriano, S.; Kalisz, M.

    2007-01-01

    The magnetic behavior of Ni 2+ xMn 1- xAl alloys around the stoichiometric 2:1:1 composition was investigated with several experimental techniques. The results of low-temperature magnetization measurements indicate that a competition mechanism between ferromagnetism and antiferromagnetism is expected in off-stoichiometric alloys. Although the Curie temperature is strongly dependent on the composition, the saturation magnetization has an unsystematic variation for deviations from the stoichiometric Ni 2MnAl alloy. A reentrant-spin-glass behavior is observed below 50 K.

  10. Characterization of DC magnetron plasma in Ar/Kr/N2 mixture during deposition of (Cr,Al)N coating

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Bagcivan, N.; Theiß, S.; Brugnara, R.; Bibinov, N.; Awakowicz, P.

    2017-02-01

    Reactive sputter deposition of (Cr,Al)N coatings in DC magnetron plasmas containing Ar/Kr/N2 mixtures is characterized by applying a combination of voltage–current measurement, optical emission spectroscopy (OES) and numerical simulation. Theoretical and experimental methods supplement each other and their combination permits us to obtain the most reliable information about the processes by physical vapor deposition. Gas temperature (T g) and plasma parameters, namely electron density n e and electron temperature T e are determined by spatial resolved measurements of molecular nitrogen photoemission. Steady-state densities of Cr and Al atoms are measured using OES. The sputtering of Cr and Al atoms is simulated using the TRIDYN code, measured electric current and applied voltage. Transport of sputtered atoms through the plasma volume is simulated by adopting a Monte-Carlo code. In order to quantify the ‘poisoning’ of the target surface with nitrogen, simulated steady state densities of Al and Cr atoms at different states of poisoning and at different distances from the target are compared with the measured densities. In addition, simulated fluxes of Cr and Al atoms to the substrate are compared with the measured deposition rates of the (Cr,Al)N coating.

  11. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The sintered aluminum powder (SAP) technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of a nickel alloy containing, by weight, 17% Cr, 5% Al, and 0.2% Y. The SAP-NiCrAl alloy (without the ytterbium removed by oxdation) was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. Annealing treatments were applied after working to determine the recrystallization response. The NiCrAlY alloy, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl alloy exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl alloy as has been reported for other oxide dispersion strengthened alloys. In contrast, the unoxidized NiCrAlY alloy exhibited only primary recrystallization.

  12. Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties.

    PubMed

    Singh, S; Wanderka, N; Kiefer, K; Siemensmeyer, K; Banhart, J

    2011-05-01

    Splat-quenched, as-cast and aged (2h at 600 °C after casting) AlCoCrCuFeNi high entropy alloys were investigated by means of transmission electron microscopy and three-dimensional atom probe (3D-AP). 3D-AP revealed anti-correlated fluctuations of the Cr and Fe-Co compositions in Cr-Fe-Co-rich regions of the as-cast alloy. The ferromagnetic behavior of AlCoCrCuFeNi high entropy alloy was correlated with the decomposition of the Cr-Fe-Co-rich regions into ferromagnetic Fe-Co-rich and antiferromagnetic Cr-rich domains, the size of which was determined by statistical analysis of 3D-AP data. The splat-quenched alloy showed a softer magnetic behavior as compared to the as-cast and aged alloys. The aged alloy possessed a higher saturation magnetization and coercivity as compared to the as-cast alloy.

  13. Magnetization reversal processes in hot-extruded τ-MnAl-C

    NASA Astrophysics Data System (ADS)

    Thielsch, J.; Bittner, F.; Woodcock, T. G.

    2017-03-01

    The magnetic domain structure of hot-extruded bulk τ-Mn53Al45C2 was studied by Kerr microscopy under application of a magnetic field in-situ. The microstructure consists of recrystallized, fine-grained regions and large non-recrystallized grains which contain a high density of twins. Within these large polytwinned grains, a clear pinning interaction of magnetic domain walls at twin boundaries was observed but with a rather small pinning force. The smaller, recrystallized grains show a higher resistance to magnetization reversal. The critical single domain particle size of this material was estimated at 773 nm and the fine, recrystallized grains are in the range of this size. Demagnetizing the sample following saturation using a 3 T field pulse revealed that individual fine grains reverse independently from their neighbours.

  14. Thermoelectric and mechanical properties of gapless Zr2MnAl compound

    NASA Astrophysics Data System (ADS)

    Yousuf, Saleem; Gupta, Dinesh C.

    2017-01-01

    We present the study of elastic and magnetic properties of Zr2MnAl full-Heusler alloys within the first-principles density functional theory. The lattice constant, magnetic moment, bulk modulus and density of states are calculated using the full potential linearized augmented plane wave method in the generalized gradient approximation scheme. The thermoelectric properties are studied between the temperature range of 50-800 K. Seebeck coefficient (S) measurements indicate the material as n-type with large S value of -83.06 μV/K at 400 K. The material shows higher efficiency for thermoelectric use with figure of merit equal to 0.92 at 400 K relatively higher in comparison for the other full Heusler compounds in these temperature ranges. The behaviour of gapless character is mainly responsible for the anomalous transport properties of the material required for the thermoelectric applications.

  15. Permanent magnet properties of Mn-Al-C between -50 C and +150 C

    NASA Technical Reports Server (NTRS)

    Abdelnour, Z. A.; Mildrum, H. F.; Strnat, K. J.

    1981-01-01

    Anisotropic Mn-Al-C (Ni) magnets are potential substitutes for Alnico 5 and 8. The limited machinability of the alloy and the fact that it is cobalt-free made it particularly interesting. The low Curie point and the costly warm extrusion process needed for grain orientation are drawbacks. The objective of this study was a detailed magnetic characterization of the material for possible use in electric machinery. The principal subjects of the study were the largest extruded bars presently available, of 31 mm diameter. Easy and hard axis magnetization curves and second-quadrant recoil loop fields were measured at various temperatures ranging from -50 C to +150 C. Property variations over the cross section of a bar were also studied.

  16. Lattice Dynamics and Phonon Softening in NiMnAl Heusler Alloys

    SciTech Connect

    Moya, Xavier; Manosa, L.; Planes, A.; Krenke, T.; Acet, Mehmet; Garlea, Vasile O; Lograsso, Tom; Schlagel, D. L.; Zarestky, Jarel

    2006-01-01

    Inelastic and elastic neutron scattering have been used to study a single crystal of the Ni{sub 54}Mn{sub 23}Al{sub 23} Heusler alloy over a broad temperature range. The paper reports the experimental determination of the low-lying phonon dispersion curves for this alloy system. We find that the frequencies of the TA2 modes are relatively low. This branch exhibits an anomaly (dip) at a wave number {xi}{sub 0}=1/3{approx}0.33, which softens with decreasing temperature. Associated with this anomalous dip at {xi}{sub 0}, an elastic central peak scattering is also present. We have also observed satellites due to the magnetic ordering.

  17. Large exchange-bias in Ni55Mn19Al24Si2 polycrystalline ribbons

    NASA Astrophysics Data System (ADS)

    Singh, Rohit; Ingale, Babita; Varga, Lajos K.; Khovaylo, Vladimir V.; Chatterjee, Ratnamala

    2014-09-01

    The crystal structure, phase transition and exchange bias effect in induction melted polycrystalline ribbons of Ni55Mn19Al24Si2 have been studied using room temperature x-ray diffraction (XRD), differential scanning calorimetry (DSC) and magnetic measurements. The sample was found to show structural transformation temperatures such as austenite start (As)=306 K, austenite finish (Af)=316 K, martensite start (Ms)=305 K and martensite finish (Mf)=294 K all above room temperature. The room temperature structure evaluated as orthorhombic 14 M with lattice parameters a=4.14 Å, b=29.84 Å, and c=5.72 Å. Importantly at 2 K, the sample showed a large exchange bias field of about 2520 Oe, which is the maximum value ever reported among the Heusler alloy samples.

  18. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    SciTech Connect

    Zheng, M.; He, Y.R.; Rapp, R.A.

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  19. Theoretical study of the coordination of the Cr3+ ion in α-Al2O3

    NASA Astrophysics Data System (ADS)

    Franco, R.; Recio, J. M.; Pendas, A. Martín; Francisco, E.; Luaña, V.; Pueyo, L.

    1995-12-01

    The local arrangement of a substitutional Cr3+ ion for an Al3+ ion in corundum is studied by means of first-principles pairwise simulations and quantum-mechanical ab initio Perturbed Ion calculations. Our investigation is organized in two steps. First, we determine the cohesive properties of the host lattice by calculating the set of four crystalline parameters that makes minimum the total energy of corundum. Secondly, we solve cluster models of increasing complexity centered at the Cr3+ site and embedded in the previously computed crystal potential. This is a consistent strategy that contributes to determine the local geometry of Cr3+ in α-Al2O3.

  20. Icosahedral quasicrystal decoration models. II. Optimization under realistic Al-Mn potentials

    SciTech Connect

    Mihalkovic, M. |; Zhu, W.; Henley, C.L.; Phillips, R.

    1996-04-01

    We have constructed and relaxed over 200 different finite structure models for the quasicrystal {ital i}-AlMn based on decorations of the {open_quote}{open_quote}canonical-cell tiling.{close_quote}{close_quote} We adopted {ital ab} {ital initio}-based pair potentials with strong Friedel oscillations, which reproduce the phase diagram of real Al-Mn intermetallic crystal structures fairly well. Our various decoration rules encompass cases with face-centered icosahedral (FCI) symmetry and with simple icosahedral (SI) symmetry, and include additional variations in the occupancy and/or chemistry of certain site types. Each decoration was applied to 11 distinct periodic approximants of the tiling. We found that (i) the relaxed atomic positions of each site type can be closely approximated by fixed positions on each tile type, even though the environments (beyond the first neighbor) are inequivalent. (ii) Models with simple icosahedral (SI) space-group symmetry were better than those with face-centered icosahedral (FCI) space-group symmetry. (iii) {open_quote}{open_quote}Loose{close_quote}{close_quote} decorations, containing voids almost large enough for an atom, were better than the {open_quote}{open_quote}dense{close_quote}{close_quote} decorations which were suggested by packing considerations. (iv) Our results depended on using the realistic potentials; {ital short}-range potentials favor the {open_quote}{open_quote}dense{close_quote}{close_quote} structures, and many details depend on the second or further oscillations in the potentials. (v) For our best model, there is relatively little variation of the energy when tiles are rearranged, i.e., a {ital random}-{ital tiling} {ital model} is a good zero-order description of the system. {copyright} {ital 1996 The American Physical Society.}

  1. Surface topography and roughness of high-speed milled AlMn1Cu

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Yuan, Juntang; Yin, Zengbin; Hu, Xiaoqiu

    2016-10-01

    The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.

  2. Resistivity Changes Due to Precipitation Effects in Fibre Reinforced Mg-Al-Zn-Mn Alloy

    NASA Astrophysics Data System (ADS)

    Kiehn, J.; Kainer, K. U.; Vostrý, P.; Stulíková, I.

    1997-05-01

    The change of electrical properties of alumina short fibre reinforced Mg-Al-Zn-Mn alloy AZ91D during isochronal annealing up to 300 °C is discussed. The Saffil® fibres were incorporated into the magnesium alloy by direct squeeze casting. The fibre distribution is random planar parallel to the flat faces of the dc four-point resistivity specimens machined from the solution treated castings. A sharp drop of resistivity between 140 and 260 °C is explained by the formation of incoherent -phase particles. Some practical recommendations concerning the use of alumina short fibre reinforced AZ91 alloy are made on the basis of the results obtained. Es werden die Änderungen der elektrischen Eigenschaften der aluminiumoxid-kurzfaserverstärkten Mg-Al-Zn-Mn Legierung AZ91D während isochroner Wärmebehandlungen bis 300 °C diskutiert. Das direkte Preßgießverfahren diente zur Herstellung der Saffil®-Faser Magnesium Verbundwerkstoffe. Die Proben zur Widerstandsmessung nach der Vier-Punkt Methode wurden durch spanende Bearbeitung aus den lösungsgeglühten Preßgußstücken herausgearbeitet, so daß sie regellose Faserverteilung in den Ebenen parallel zu den flachen Probenseiten aufwiesen. Ein starker Abfall des elektrischen Widerstands im Temperaturbereich zwischen 140 und 260 °C wird durch die Bildung inkohärenter β-Phase erklärt. Auf Grundlage der Ergebnisse werden einige Empfehlungen zur Anwendung der kurzfaserverstärkten Legierung AZ91 gegeben.

  3. Atomic-scale microstructure underneath nanoindentation in Al-Cr-N ceramic films

    SciTech Connect

    Zhuang, Chunqiang Li, Zhipeng; Lin, Songsheng

    2015-12-15

    In this work, Al-Cr-N ceramic films deformed by nanoindentation were peeled off from silicon substrates and their atomic-scale microstructures underneath the indenter were investigated by high resolution transmission electron microscope (HR-TEM). Dislocations were formed underneath the indenter and they accumulated along nano-grain boundaries. The accumulative dislocations triggered the crack initiation along grain boundaries, and further resulted in the crack propagation. Dislocations were also observed in nano-grains on the lateral contact area. A model was proposed to describe the variation of microstructures under nanoindentation.

  4. Atomic-scale microstructure underneath nanoindentation in Al-Cr-N ceramic films

    NASA Astrophysics Data System (ADS)

    Zhuang, Chunqiang; Li, Zhipeng; Lin, Songsheng

    2015-12-01

    In this work, Al-Cr-N ceramic films deformed by nanoindentation were peeled off from silicon substrates and their atomic-scale microstructures underneath the indenter were investigated by high resolution transmission electron microscope (HR-TEM). Dislocations were formed underneath the indenter and they accumulated along nano-grain boundaries. The accumulative dislocations triggered the crack initiation along grain boundaries, and further resulted in the crack propagation. Dislocations were also observed in nano-grains on the lateral contact area. A model was proposed to describe the variation of microstructures under nanoindentation.

  5. Negative magnetization and the tunable exchange bias field in LaCr0.8Mn0.2O3

    NASA Astrophysics Data System (ADS)

    Bora, Tribedi; Ravi, S.

    2014-05-01

    Manganese substituted Lanthanum chromite LaCr0.8Mn0.2O3 exhibits negative magnetization with decrease in temperature under the field cooled (FC) condition for the applied field H≤2000 Oe. The maximum magnetic compensation temperature, (Tcomp) was 147 K. A reentrant positive magnetization was observed at T≤50 K due to low temperature transition. The negative magnetization is explained by considering the paramagnetic moment of Mn ions under the influence of negative internal field. Measurement of magnetic hysteresis loops under FC condition shows the presence of exchange bias field at T

  6. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    PubMed

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  7. Interdiffusion in ? (fcc) Ni-Cr-X (X=Al, Si, Ge or Pd) Alloys at 900?C

    SciTech Connect

    Garimella, N; Brady, Michael P; Sohn, Yong Ho

    2006-01-01

    Interdiffusion in Ni-Cr (fcc phase) alloys with small additions of Al, Si, Ge, or Pd was investigated using solid-to-solid diffusion couples. Ni-Cr-X alloys having compositions of Ni- 22at.%Cr, Ni-21at.%Cr-6.2at.%Al, Ni-22at.%Cr-4.0at.%Si, Ni-22at.%Cr-1.6at.%Ge and Ni- 22at.%Cr-1.6at.%Pd were manufactured by arc-casting. The diffusion couples were assembled in an Invar steel jig, encapsulated in Ar after several hydrogen purges, and annealed at 900 C in a three-zone tube furnace for 168 hours. Experimental concentration profiles were determined from polished cross-section of these couples by using electron probe microanalysis with pure element standards. Interdiffusion fluxes of individual components were calculated directly from the experimental concentration profiles, and the moments of interdiffusion fluxes were examined to determine average ternary interdiffusion coefficients. Effects of ternary alloying additions on the diffusional behavior of Ni-Cr-X alloys are presented in the light of the diffusional interactions and the formation of a protective Cr2O3 scale

  8. Investigation on electronic and magnetic properties of Mn2NiAl by ab initio calculations and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.; Hlil, E. K.; Hamedoun, M.; Benyoussef, A.; Hourmatallah, A.; Rezzouk, A.; Bouslykhane, K.; Benzakour, N.

    2017-04-01

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the Mn2NiAl. Magnetic moment considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for Monte Carlo simulations to compute other magnetic parameters. Also, the magnetic properties of Mn2NiAl are studied using the Monte Carlo simulations. The variation of magnetization and magnetic susceptibility with the reduced temperature of Mn2NiAl are investigated. The transition temperature of this system is deduced for different values exchange interaction and crystal field. The thermal total magnetization has been obtained, and the magnetic hysteresis cycle is established. The total magnetic moment is superior to those obtained by the other method and is mainly determined by the antiparallel aligned MnI, MnII and Ni spin moments. The superparamagnetic phase is found at the neighborhood of transition temperature.

  9. Weldability of Fe-Al-Cr Overlay Coatings for CorrosionProtection in Oxidizing/Sulfidizing Environments

    SciTech Connect

    Regina, JR

    2003-03-04

    The effect of chromium additions to the weldability of Fe-Al based overlay claddings are currently being investigated for the corrosion protection of boiler tubes in Low NOx furnaces. The primary objective of this research is to identify weldable (crack-free) Fe-Al-Cr weld overlay coating compositions that provide corrosion resistance over long exposure times. During the current project phase, preliminary corrosion testing was conducted on several ternary Fe-Al-Cr alloys in two types of gaseous corrosion environments. These long-term corrosion tests were used to develop a target weld composition matrix and serve as a base line for future corrosion tests. Preliminary Fe-Al based welds with various aluminum concentrations and one ternary Fe-Al-Cr weld overlay were successfully deposited using a Gas Tungsten Arc Welding (GTAW) process and cracking susceptibility was evaluated on these coatings.

  10. The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys.

    PubMed

    Goldberg, Jay R; Gilbert, Jeremy L

    2004-02-01

    The mechanical and electrochemical behavior of the surface oxides of CoCrMo and Ti6Al4V alloys during fracture and repassivation play an important role in the corrosion of the taper interfaces of modular hip implants. This behavior was investigated in one group of CoCrMo and Ti6Al4V alloy samples passivated with nitric acid and another group coated with a novel TiN/AlN coating. The effects of mechanical load and sample potential on peak currents and time constants resulting from fracture of the surface oxide or coating, and the effects of mechanical load on scratch depth were investigated to determine the mechanical and electrochemical properties of the oxides or coating. The polarization behavior of the samples after fracture of the oxide or coating was also investigated. CoCrMo had a stronger surface oxide and higher interfacial adhesion strength, making it more resistant to fracture than Ti6Al4V. If undisturbed, the oxide on the surface of Ti6Al4V significantly reduced dissolution currents at a wider range of potentials than CoCrMo, making Ti6Al4V more resistant to corrosion. The TiN/AlN coating had a higher hardness and modulus of elasticity than CoCrMo and Ti6Al4V. It was much less susceptible to fracture, had a higher interfacial adhesion strength, and was a better barrier to ionic diffusion than the surface oxides on CoCrMo and Ti6Al4V. The coating provided increased corrosion and fretting resistance to the substrate alloys.

  11. Structural changes in the FeAl2O4-FeCr2O4 solid solution series and their consequences on natural Cr-bearing spinels

    NASA Astrophysics Data System (ADS)

    Lenaz, Davide; Skogby, Henrik

    2013-07-01

    The influence of Al-Cr substitution on the spinel structure was studied in synthetic single crystals belonging to the FeCr2O4-FeAl2O4 series produced by flux growth at 1,000-1,300 °C in controlled atmosphere. Samples were characterized by single-crystal X-ray diffraction, electron microprobe analyses and Mössbauer spectroscopy. Crystals of sufficient size and quality for single-crystal X-ray diffraction were obtained in the ranges Chr0-0.45 and Chr70-100 but not for intermediate compositions, possibly due to a reduced stability in this range. The increase in chromite component leads to an increase in the cell edge from 8.1534 (6) to 8.3672 (1) Å and a decrease in the u parameter from 0.2645 (2) to 0.2628 (1). Chemical analyses show that Fe2+ is very close to 1 apfu (0.994-1.007), Al is in the range 0.0793-1.981 apfu, Cr between 0 and 1.925 apfu. In some cases, Fe3+ is present in amounts up to 0.031 apfu. Spinels with intermediate Cr content (Chr component between 40 and 60) are strongly zoned with Cr-rich cores and Cr-poor rims. Mössbauer analyses on powdered spinels of the runs from which single crystal has been used for X-ray structural data show values of Fe3+/Fetot consistently larger than that calculated by EMPA on single crystals, presumably due to chemical variation between single crystals from the same runs. The synthesis runs ended at a temperature of 1,000 °C, but it is possible that cation ordering continued in the Cr-poor samples towards lower temperatures, possibly down to 700 °C.

  12. The effect of magnetron pulsing on the structure and properties of tribological Cr-Al-N coatings.

    PubMed

    Lin, Jianliang; Moore, John J; Mishra, Brajendra; Sproul, Williams D; Rees, John A

    2010-02-01

    The paper will discuss the effect of pulsing single or two unbalanced magnetrons in a closed magnetic field configuration on the structure and properties of tribological Cr-Al-N coatings. Nanocrystalline Cr-Al-N coatings were reactively deposited from Cr and Al elemental targets using two unbalanced magnetrons, which were powered in both dc, pulsing only Al target and asynchronously pulsing both Cr and Al targets at 100 kHz and 50% duty cycle conditions. The ion energy distributions of these deposition and pulsing conditions were characterized using a Hiden Electrostatic QuadruPole Plasma Analyzer. It was found that pulsing two magnetrons asynchronously at 100 kHz and 50% duty cycle produced higher ion energies and significant increased ion fluxes than pulsing none or pulsing only one (Al) target. The structure and properties of Cr-Al-N coatings synthesized under different dc and pulsing conditions were investigated using X-ray diffraction, scanning electron microscopy, nanoindentation and ball-on-disk wear test, and were correlated with the effects of ion energies and ion flux regimes observed in the plasma diagnostics. The advantages of using pulsed magnetron sputtering producing different energetic ion regimes to enhance the ion bombardment on the growing films and therefore achieving the improved density, refinement of grain size and properties are illustrated.

  13. Al-26-production rates and Mn-53/Al-26 production rate ratios in nonantarctic chondrites and their application to bombardment histories

    NASA Astrophysics Data System (ADS)

    Herpers, U.; Englert, P.

    1983-11-01

    The long-lived spallogenic radionuclides Al-26 and Mn-53 were systematically studied in a large number of nonantarctic meteorites by nondestructive gamma-gamma-coincidence technique and neutron activation, respectively. From the Al-26-activities normalized to the main target element, silicon, an average production rate of 298 + or - 55 (dpm/kg Si/equ/) was derived. Baed on 15 chondrites with exposure ages equal to or greater than 12,000,000 a and depth profiles of Dhurmsala and Keyes, an average production rate ratio (Mn-53/Al-26)(prod) = 1.48 + or - 0.15 (dpm/kg Fe / dpm/kg Si/equ/) was calculated, which seems to be depth-independent for meteorites with preatmospheric radii R less than 35 cm. Mn-53/Al-26-radiation ages for 29 stones with short exposure ages were determined. A comparison of the results with the respective Mn-53 and Ne-21-exposure ages generally shows a good agreement. The cosmic ray bombardment age scale covered by this method is the range for T(rad) from 1,000,000 to 10,000,000 a.

  14. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation

    SciTech Connect

    Leonard, Keith J.; Bei, Hongbin; Zinkle, Steven J.; Kiran Kumar, N. A. P.; Li, C.

    2016-05-13

    In recent years, high entropy alloys (HEAs) have attracted significant attention due to their excellent mechanical properties and good corrosion resistance, making them potential candidates for high temperature fission and fusion structural applications. However there is very little known about their radiation resistance, particularly at elevated temperatures relevant for energy applications. In the present study, a single phase (face centered cubic) concentrated solid solution alloy of composition 27%Fe-28%Ni-27%Mn-18%Cr was irradiated with 3 or 5.8 MeV Ni ions at temperatures ranging from room temperature to 700 °C and midrange doses from 0.03 to 10 displacements per atom (dpa). Transmission electron microscopy (TEM), scanning transmission electron microscopy with energy dispersive x-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterize the radiation defects and microstructural changes. Irradiation at higher temperatures showed evidence of relatively sluggish solute diffusion with limited solute depletion or enrichment at grain boundaries. The main microstructural feature at all temperatures was high-density small dislocation loops. Voids were not observed at any irradiation condition. Nano-indentation tests on specimens irradiated at room temperature showed a rapid increase in hardness ~35% and ~80% higher than the unirradiated value at 0.03 and 0.3 dpa midrange doses, respectively. The irradiation-induced hardening was less pronounced for 500 °C irradiations (<20% increase after 3 dpa). Overall, the examined HEA material exhibits superior radiation resistance compared to conventional single phase Fe-Cr-Ni austenitic alloys such as stainless steels. Furthermore, the present study provides insight on the fundamental irradiation behavior of a single phase HEA material over a broad range of irradiation temperatures.

  15. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation

    DOE PAGES

    Leonard, Keith J.; Bei, Hongbin; Zinkle, Steven J.; ...

    2016-05-13

    In recent years, high entropy alloys (HEAs) have attracted significant attention due to their excellent mechanical properties and good corrosion resistance, making them potential candidates for high temperature fission and fusion structural applications. However there is very little known about their radiation resistance, particularly at elevated temperatures relevant for energy applications. In the present study, a single phase (face centered cubic) concentrated solid solution alloy of composition 27%Fe-28%Ni-27%Mn-18%Cr was irradiated with 3 or 5.8 MeV Ni ions at temperatures ranging from room temperature to 700 °C and midrange doses from 0.03 to 10 displacements per atom (dpa). Transmission electron microscopymore » (TEM), scanning transmission electron microscopy with energy dispersive x-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterize the radiation defects and microstructural changes. Irradiation at higher temperatures showed evidence of relatively sluggish solute diffusion with limited solute depletion or enrichment at grain boundaries. The main microstructural feature at all temperatures was high-density small dislocation loops. Voids were not observed at any irradiation condition. Nano-indentation tests on specimens irradiated at room temperature showed a rapid increase in hardness ~35% and ~80% higher than the unirradiated value at 0.03 and 0.3 dpa midrange doses, respectively. The irradiation-induced hardening was less pronounced for 500 °C irradiations (<20% increase after 3 dpa). Overall, the examined HEA material exhibits superior radiation resistance compared to conventional single phase Fe-Cr-Ni austenitic alloys such as stainless steels. Furthermore, the present study provides insight on the fundamental irradiation behavior of a single phase HEA material over a broad range of irradiation temperatures.« less

  16. B2+L2{sub 1} ordering in Co{sub 2}MnAl Heusler alloy

    SciTech Connect

    Vinesh, A.; Sudheesh, V. D.; Lakshmi, N.; Venugopalan, K.

    2014-04-24

    Magnetic and structural properties of B2 ordered Co{sub 2}MnAl Heusler alloy have been studied by X-ray diffraction and DC magnetization techniques. X-ray diffractogram shows the structure is of B2 type with preferential site disorder between Mn and Al atoms and presence of a small L2{sub 1} phase. DC magnetization studies at low temperature establish that the antiferromagnetic nature arises mainly due to the antiparallel coupling of spin moments of 3d electrons of Co with Mn atoms. Curie temperature (T{sub c}) is 733 K which is close to T{sub c} of the L2{sub 1} phase.

  17. Synthesis of CORONA 5 (Ti-4.5Al-5Mo-1.5Cr)

    NASA Astrophysics Data System (ADS)

    Froes, F. H.; Highberger, W. T.

    1980-05-01

    The synthesis of CORONA 5 (Ti-4.5Al-5Mo-1.5Cr) is described from the viewpoints of alloy chemistry and microstructure. Lenticular alpha is shown to maximize fracture resistance parameters, while a globular alpha optimizes hightemperature flow characteristics. The processing and application of CORONA 5 as forging, plate, sheet and powder metallurgy products are presented. The weldability of the alloy is described and potential use of the alloy for engine applications discussed. The improved mechanical property behavior over the "workhorse" Ti-6Al-4V alloy combined with cost-effective production should result in use of CORONA 5 in many applications. Future developments for CORONA 5 are suggested both in terms of further mechanical property optimization and in light of the economics of producing the alloy.

  18. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    NASA Astrophysics Data System (ADS)

    Lukaszkowicz, Krzysztof; Sondor, Jozef; Balin, Katarzyna; Kubacki, Jerzy

    2014-09-01

    Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction <3 1 1> is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  19. Study on catalytic incineration of methane using Cr2O3/gamma-Al2O3 as the catalyst.

    PubMed

    Wang, Ching-Huei; Lin, Shiow-Shyung

    2004-01-01

    A fixed bed reactor was employed to investigate the catalytic incineration of CH4 by various supported transition metal oxide catalysts, with a view of finding the optimal one. Results indicated that the active species, the support, the metal content, the weight hourly space velocity (WHSV), and the inlet CH4 concentration were all important factors affecting CH4 oxidation. Cr2O3/gamma-Al2O3 was found to be the most active catalyst among the seven gamma-Al2O3-supported metal oxide catalysts tested. With Cr2O3 as the active species, gamma-Al2O3 was the most suitable of six supports tested. Furthermore, the optimal Cr content of Cr2O3/ gamma-Al2O3 was 9 wt.%. X-ray diffraction (XRD) patterns showed that it was formation of CrO3 crystals that caused a decline in catalyst activity at Cr content above 9wt.%. Using the optimal Cr2O3/gamma-Al2O3 catalyst, CH4 was completely oxidized at about 390 degrees C. much lower than the temperature required by noble metal catalysts for the same outcome. The stability of Cr2O3/gamma-Al2O3 was good and was not affected by the reaction temperature, demonstrated by a nearly constant conversion rate of CH4 of 57% at 350 degrees C and 97% at 380 degrees C during a 20 h on-stream test. However, WHSV and inlet concentration of CH4 did affect CH4 conversion noticeably. For complete oxidation of CH4, the reaction temperature required increased with WHSV and inlet CH4 concentration.

  20. Effect of one-step recrystallization on the grain boundary evolution of CoCrFeMnNi high entropy alloy and its subsystems.

    PubMed

    Chen, Bo-Ru; Yeh, An-Chou; Yeh, Jien-Wei

    2016-02-29

    In this study, the grain boundary evolution of equiatomic CoCrFeMnNi, CoCrFeNi, and FeCoNi alloys after one-step recrystallization were investigated. The special boundary fraction and twin density of these alloys were evaluated by electron backscatter diffraction analysis. Among the three alloys tested, FeCoNi exhibited the highest special boundary fraction and twin density after one-step recrystallization. The special boundary increment after one-step recrystallization was mainly affected by grain boundary velocity, while twin density was mainly affected by average grain boundary energy and twin boundary energy.