Science.gov

Sample records for al cu mg

  1. Microstructure development in Al-Cu-Ag-Mg quaternary alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Froyen, L.

    2012-01-01

    The solidification behaviour of multi-component and multi-phase systems has been largely investigated in binary and ternary alloys. In the present study, a quaternary model system is proposed based on the well known Al-Cu-Ag and Al-Cu-Mg ternary eutectic alloys. The quaternary eutectic composition and temperature were determined by EDS (Energy Dispersive Spectrometry) and DSC (Differential Scanning Calorimetry) analysis, respectively. The microstructure was then characterised by SEM (Scanning Electron Microscope). In the DSC experiments, two types of quaternary eutectics were determined according to their phase composition. For each type of eutectic, various microstructures were observed, which result in different eutectic compositions. Only one of the determined eutectic compositions was further studied by the controlled growth technique in a vertical Bridgeman type furnace. In the initial part of the directionally solidified sample, competing growth between two-phase dendrites and three-phase eutectics was obtained, which was later transformed to competing growth between three-phase and four-phase eutectics. Moreover, silver enrichment was measured at the solidification front, which is possibly caused by Ag sedimentation due to gravity and Ag rejection from dendritic and three-phase eutectic growth, and its accumulation at the solidification front.

  2. Kinetic parameters and structural variations in Cu-Al-Mn and Cu-Al-Mn-Mg shape memory alloys

    NASA Astrophysics Data System (ADS)

    Canbay, Canan Aksu

    2017-02-01

    In this work polycrystalline Cu-Al-Mn and Cu-Al-Mn-Mg SMAs were fabricated by arc melting. The thermal analysis was made to determine the characteristic transformation temperatures of the samples and kinetic parameters. Also the effect of Mg on transformation temperatures and kinetic parameters detected. The structural analysis was made to designate the diffraction planes of martensite phase at room temperature and this was supported by optical measurement observations.

  3. Effect of delayed aging on mechanical properties of an Al-Cu-Mg alloy

    SciTech Connect

    Ravindranathan, S.P.; Kashyap, K.T.; Kumar, S.R.; Ramachandra, C.; Chatterji, B.

    2000-02-01

    The effect of delayed aging on mechanical properties is characteristically found in Al-Mg-Si alloys. Delayed aging refers to the time elapsed between solutionizing and artificial aging. Delayed aging leads to inferior properties. This effect was investigated in an Al-Cu-Mg alloy (AU2GN) of nominal composition Al-2Cu-1.5Mg-1Fe-1Ni as a function of delay. This alloy also showed a drop in mechanical properties with delay. The results are explained on the basis of Pashley's kinetic model to qualitatively explain the evolution of a coarse precipitate structure with delay. It is found that all the results of delayed aging in the Al-Cu-Mg alloys are similar to those found in Al-Mg-Si alloys.

  4. Effect of thermally stable Cu- and Mg-rich aluminides on the high temperature strength of an AlSi12CuMgNi alloy

    SciTech Connect

    Asghar, Z.

    2014-02-15

    The internal architecture of an AlSi12CuMgNi piston alloy, revealed by synchrotron tomography, consists of three dimensional interconnected hybrid networks of Cu-rich aluminides, Mg-rich aluminides and eutectic/primary Si embedded in an α-Al matrix. The strength at room temperature and at 300°C is studied as a function of solution treatment time at 490°C and compared with results previously reported for an AlSi12Ni alloy. The addition of 1 wt% Cu and 1 wt% Mg to AlSi12CuMgNi increases the room temperature strength by precipitation hardening while the strength at 300°C is similar for both alloys in as-cast condition. The strength of AlSi12CuMgNi decreases with solution treatment time and stabilizes at 4 h solution treatment. The effect of solution treatment time on the strength of the AlSi12CuMgNi alloy is less pronounced than for the AlSi12Ni alloy both at room temperature and at 300°C. - Highlights: • The 3D microstructure of AlSi12CuMgNi is revealed by synchrotron tomography. • An imaging analysis procedure to segment phases with similar contrasts is presented. • 1 wt% Cu and Mg results in the formation of 3D networks of rigid phases. • AlSi12CuMgNi is stronger than AlSi12Ni owing to the stability of the 3D networks.

  5. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-10-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  6. Evaluation of the microstructure of Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 4

    NASA Technical Reports Server (NTRS)

    Pickens, Joseph R.; Kumar, K. S.; Brown, S. A.; Gayle, Frank W.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy designed to have ultrahigh strength and to serve in aerospace applications. The alloy displays significantly higher strength than competitive alloys in both naturally aged and artificially aged tempers. The strengthening phases in such tempers have been identified to, in part, explain the mechanical properties attained. In general, the alloy is strengthened by delta prime Al3Li and Guinier-Preston (GP) zones in the naturally aged tempers. In artificially aged tempers in slightly underaged conditions, strengthening is provided by several phases including GP zones, theta prime Al2Cu, S prime Al2CuMg, T(sub 1) Al2CuLi, and possibly a new phase. In the peak strength artificially aged tempers, T(sub 1) is the predominant strengthening phase.

  7. Effect of Surplus Phase on the Microstructure and Mechanical Properties in Al-Cu-Mg-Ag Alloys with High Cu/Mg Ratio

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofeng; Zhao, Yuguang; Wang, Xudong; Zhang, Ming; Ning, Yuheng

    2015-11-01

    In order to examine the effect of surplus phase on the microstructure and mechanical properties, different compositions with high Cu/Mg ratio of the T6-temper extruded Al-Cu-Mg-Ag alloys were studied in this investigation. The results show that the Al-5.6Cu-0.56Mg-0.4Ag alloy obtains superior mechanical properties at room temperature, while the yield strength of Al-6.3Cu-0.48Mg-0.4Ag alloy is 378 MPa at 200 °C, which is 200 MPa higher than that of Al-5.6Cu-0.56Mg-0.4Ag alloy. Although the excessive Cu content causes the slight strength loss and elongation decrease in the Al-6.3Cu-0.48Mg-0.4Ag alloy at room temperature, the surplus phases and recrystallized microstructure will play an effective role in strengthening the alloy at elevated temperature.

  8. Further Precipitation Reactions Associated with Beta’ (Al3Zr) Particles in Al-Li-Cu-Mg-Zr Alloys

    DTIC Science & Technology

    1988-12-01

    Gregson 8’ precipitation in Al-Li-Mg-Cu-Zr alloys. H.M. Flower J. Mater. Sci. Lett., 3, 829 (1984) 5 P.L. Makin On the ageing of an aluminium-lithium...Technol., 2, 349 (1986) 8 H.M. Flower The effect of composition and heat treatment upon the et al microstructure/property relationships in Al-Li-Cu-Mg...1119 REFERENCES concluded) No. Author Title, etc 10 P.J. Gregon Microstructural control of toughness in aluminium- H.M. Flower lithium alloys. Acta

  9. Direct observation of atomic-scale origins of local dissolution in Al-Cu-Mg alloys

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Wang, J.; Wu, B.; Oguzie, E. E.; Luo, K.; Ma, X. L.

    2016-12-01

    Atomistic chemical inhomogeneities are anticipated to induce dissimilarities in surface potentials, which control corrosion initiation of alloys at the atomic scale. Precise understanding of corrosion is therefore hampered by lack of definite information describing how atomistic heterogeneities regulate the process. Here, using high-angle annular dark-field (HAADF) scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS) techniques, we systematically analyzed the Al20Cu2Mn3 second phase of 2024Al and successfully observed that atomic-scale segregation of Cu at defect sites induced preferential dissolution of the adjacent zones. We define an “atomic-scale galvanic cell”, composed of zones rich in Cu and its surrounding matrix. Our findings provide vital information linking atomic-scale microstructure and pitting mechanism, particularly for Al-Cu-Mg alloys. The resolution achieved also enables understanding of dealloying mechanisms and further streamlines our comprehension of the concept of general corrosion.

  10. Direct observation of atomic-scale origins of local dissolution in Al-Cu-Mg alloys

    PubMed Central

    Zhang, B.; Wang, J.; Wu, B.; Oguzie, E. E.; Luo, K.; Ma, X. L.

    2016-01-01

    Atomistic chemical inhomogeneities are anticipated to induce dissimilarities in surface potentials, which control corrosion initiation of alloys at the atomic scale. Precise understanding of corrosion is therefore hampered by lack of definite information describing how atomistic heterogeneities regulate the process. Here, using high-angle annular dark-field (HAADF) scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS) techniques, we systematically analyzed the Al20Cu2Mn3 second phase of 2024Al and successfully observed that atomic-scale segregation of Cu at defect sites induced preferential dissolution of the adjacent zones. We define an “atomic-scale galvanic cell”, composed of zones rich in Cu and its surrounding matrix. Our findings provide vital information linking atomic-scale microstructure and pitting mechanism, particularly for Al-Cu-Mg alloys. The resolution achieved also enables understanding of dealloying mechanisms and further streamlines our comprehension of the concept of general corrosion. PMID:28000750

  11. Characterization of Al-Cu-Mg-Ag Alloy RX226-T8 Plate

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Domack, Marcia S.

    2003-01-01

    Aluminum-copper-magnesium-silver (Al-Cu-Mg-Ag) alloys that were developed for thermal stability also offer attractive ambient temperature strength-toughness combinations, and therefore, can be considered for a broad range of airframe structural applications. The current study evaluated Al-Cu-Mg-Ag alloy RX226-T8 in plate gages and compared performance with sheet gage alloys of similar composition. Uniaxial tensile properties, plane strain initiation fracture toughness, and plane stress tearing resistance of RX226-T8 were examined at ambient temperature as a function of orientation and thickness location in the plate. Properties were measured near the surface and at the mid-plane of the plate. Tensile strengths were essentially isotropic, with variations in yield and ultimate tensile strengths of less than 2% as a function of orientation and through-thickness location. However, ductility varied by more than 15% with orientation. Fracture toughness was generally higher at the mid-plane and greater for the L-T orientation, although the differences were small near the surface of the plate. Metallurgical analysis indicated that the microstructure was primarily recrystallized with weak texture and was uniform through the plate with the exception of a fine-grained layer near the surface of the plate. Scanning electron microscope analysis revealed Al-Cu-Mg second phase particles which varied in composition and were primarily located on grain boundaries parallel to the rolling direction. Fractography of toughness specimens for both plate locations and orientations revealed that fracture occurred predominantly by transgranular microvoid coalescence. Introduction High-strength, low-density Al-Cu-Mg-Ag alloys were initially developed to replace conventional 2000 (Al-Cu-Mg) and 7000 (Al-Zn-Cu-Mg) series aluminum alloys for aircraft structural applications [1]. During the High Speed Civil Transport (HSCT) program, improvements in thermal stability were demonstrated for candidate

  12. Tensile strength of Al matrix with nanoscale Cu, Ti and Mg inclusions

    NASA Astrophysics Data System (ADS)

    Pogorelko, V. V.; Mayer, A. E.

    2016-11-01

    Molecular-dynamic investigations of Al+Cu, Al+Ti and Al+Mg nanocomposite strength under high-rate uniaxial tension were carried out in this work. We consider two different mechanisms of reduction of the tensile strength of a material with inclusions in comparison with a pure material of matrix. The first mechanism is connected with a stress concentration in matrix near a stiff and strong inclusion (Ti, Cu); in this case, the fracture occurs inside the matrix and does not touch the inclusion. The second mechanism acts in the case of a soft and weak inclusion (Mg); the fracture begins inside the inclusion and thereafter propagates into the matrix. The tensile strength of the systems is determined at varied strain rates (in the range from 0.1/ns to 30/ns at the temperature 300 K) and varied temperatures (in the range from 300 K to 900 K at the strain rate 1/ns).

  13. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy

    NASA Astrophysics Data System (ADS)

    Cai, Yuan-hua; Wang, Cong; Zhang, Ji-shan

    2013-07-01

    Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like β/δ-AlFeSi white intermetallics, and Chinese script-like α-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like β-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like δ-phase does not show any morphological and size changes. Phase transitions from β-AlFeSi to α-AlFeSi and from δ-AlFeSi to β-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.

  14. [NOx storage and decomposition behavior of Cu-Mg-Al catalyst].

    PubMed

    Kang, Shou-fang; Li, Jun-hua; Fu, Li-xin; Hao, Zheng-ping

    2007-05-01

    Cu-Mg-Al hydrotalcite mixed oxide was prepared by co-precipitation. The mixed oxide and its procurer were characterized by XRD. NO, storage performance and decomposition of the stored NO, over the catalyst were investigated by NO, storage experiment at constant temperature, temperature programmed desorption (TPD) and temperature programmed surface reaction (TPSR), respectively. The results indicate that Cu-Mg-Al hydrotalcite mixed oxide has a good performance of NO, storage. The formed nitrate can be decomposed to gaseous NOx rapidly in the investigated temperature range of 160-360 degrees C, and a small amount of gaseous NO, can be reduced by C3 H6 with increasing the concentration of C3 H6 in the inlet gas.

  15. Spin Polarization of Mg-23 in Mg-24 + Au, Cu and Al Collisions at 91 A MeV

    NASA Technical Reports Server (NTRS)

    Matsuta, K.; Fukuda, S.; Izumikawa, T.; Tanigaki, M.; Fukuda, M.; Nakazato, M.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Miyake, T.

    1994-01-01

    Spin polarization of beta-emitting fragment Mg-23(I(sup pi) = 3/2(sup +), T(sub 1/2 = l1.3 s) produced through the projectile fragmentation process in Mg-24 + Au, Cu and Al collisions has been observed at 91 AMeV. General trend in the observed momentum dependence of polarization is reproduced well qualitatively by a simple fragmentation model based on the participant-spectator picture, for heavy and light targets. However the polarization behavior differs from this model in tern of zero crossing momentum, which become prominent in the case of Cu target, where the polarization is not monotone function of the fragment momentum.

  16. Microstructure evolution and tensile mechanical properties of thixoformed high performance Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Chen, Qiang; Wang, Bo; Du, Zhi-ming

    2015-09-01

    Al-Zn-Mg-Cu alloys are the strongest aluminum alloys which have been widely used for aerospace applications. They are usually machined from the wrought state usually with a high waste percentage. To reduce waste, it is important to thixoform these alloys in near net shape. In this work, the thixoformability of a commercial high performance Al-Zn-Mg-Cu alloy 7075 was studied. A novel multistep reheating regime was developed in recrystallization and partial melting (RAP) route to obtain spheroidal semi-solid microstructures. The as-extruded 7075 alloy was fully recrystallized for a short holding time using the multistep reheating regime. Semi-solid microstructures with fine and spherical solid grains with a grain size of 40-50 μm embedded in liquid matrix were obtained. The advantage of the multistep reheating regimes over those conventional routes was also discussed. Some wheel-shaped components were thixoformed from the as-received 7075 alloy. The ultimate tensile strength, yield strength and elongation to fracture of the thixoformed component based on multistep reheating regime, are 510 MPa, 446 MPa and 17.5% respectively. These values are superior to those of the products manufactured with the conventional RAP route. As the results indicated, thixoforming could be conducted based on commercial extruded Al-Zn-Mg-Cu alloys, which has important practical significance.

  17. Auto-combustion synthesis and characterization of Mg doped CuAlO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Naqvi, A. H.

    2015-06-01

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO2nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO2 sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO2 has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  18. Auto-combustion synthesis and characterization of Mg doped CuAlO{sub 2} nanoparticles

    SciTech Connect

    Agrawal, Shraddha Parveen, Azra; Naqvi, A. H.

    2015-06-24

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO{sub 2}nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO{sub 2} sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO{sub 2} has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  19. Assessment of Post-eutectic Reactions in Multicomponent Al-Si Foundry Alloys Containing Cu, Mg, and Fe

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2015-07-01

    Post-eutectic reactions occurring in Al-Si hypoeutectic alloys containing different proportions of Cu, Mg, and Fe were thoroughly investigated in the current study. As-cast microstructures were initially studied by optical and electron microscopy to investigate the microconstituents of each alloy. Differential scanning calorimetry (DSC) was then used to examine the phase transformations occurring during the heating and cooling processes. Thermodynamic calculations were carried out to assess the phase formation under equilibrium and in nonequilibrium conditions. The Q-Al5Cu2Mg8Si6 phase was predicted to precipitate from the liquid phase, either at the same temperature or earlier than the θ-Al2Cu phase depending on the Cu content of the alloy. The AlCuFe-intermetallic, which was hardly observed in the as-cast microstructure, significantly increased after the solution heat treatment in the alloys containing high Cu and Fe contents following a solid-state transformation of the β-Al5FeSi phase. After the solution heat treatment, the AlCuFe-intermetallics were mostly identified with the stoichiometry of the Al7Cu2Fe phase. Thermodynamic calculations and microstructure analysis helped in determining the DSC peak corresponding to the melting temperature of the N-Al7Cu2Fe phase. The effect of Cu content on the formation temperature of π-Al8Mg3FeSi6 is also discussed.

  20. The Influence of Composition on the Clustering and Precipitation Behavior of Al-Mg-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Jia, Zhihong; Ding, Lipeng; Cao, Lingfei; Sanders, Robert; Li, Shichen; Liu, Qing

    2017-01-01

    The natural aging (NA) and artificial aging (AA) behavior of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions were systematically investigated by means of hardness test, atom probe tomography, transmission electron microscopy, and Monte Carlo simulation. The Si-rich low-Cu alloys displayed higher hardness compared to the Mg-rich equivalents because Si atoms play a dominant role in clustering of solute atoms during both natural and artificial aging. In the high-Cu alloys, Cu did not obviously change the cluster distribution during NA, but significantly refines the clusters and precipitates due to the strong interaction of Cu atoms with Mg atoms during AA. In contrast to the low-Cu alloys, the Mg-rich high-Cu alloys exhibit higher hardness in the early and over-aged stages of artificial aging, with similar or slightly higher hardness in the peak aging condition compared to their Si-rich counterparts. Three types of precipitates ( β″, Q', and L) are favored in the high-Cu alloys. The Mg-rich high-Cu alloy has more L phase, while the Si-rich variant is abundant in Q' phase. The negative effect of NA on subsequent AA behavior is less dependent on Mg/Si ratio in the high-Cu alloys due to a synergistic action of the residual Si and Cu atoms, but is closely related to Mg/Si ratio in low-Cu alloys.

  1. Factors Affecting the Hydrogen Environment Assisted Cracking Resistance of an AL-Zn-Mg-(Cu) Alloy

    SciTech Connect

    Young, G A; Scully, J R

    2002-04-09

    Precipitation hardenable Al-Zn-Mg alloys are susceptible to hydrogen environment assisted cracking (HEAC) when exposed to aqueous environments. In Al-Zn-Mg-Cu alloys, overaged tempers are used to increase HEAC resistance at the expense of strength but overaging has little benefit in low copper alloys. However, the mechanism or mechanisms by which overaging imparts HEAC resistance is poorly understood. The present research investigated hydrogen uptake, diffusion, and crack growth rate in 90% relative humidity (RH) air for both a commercial copper bearing Al-Zn-Mg-Cu alloy (AA 7050) and a low copper variant of this alloy in order to better understand the factors which affect HEAC resistance. Experimental methods used to evaluate hydrogen concentrations local to a surface and near a crack tip include nuclear reaction analysis (NRA), focused ion beam, secondary ion mass spectroscopy (FIB/SIMS) and thermal desorption spectroscopy (TDS). Results show that overaging the copper bearing alloys both inhibits hydrogen ingress from oxide covered surfaces and decreases the apparent hydrogen diffusion rates in the metal.

  2. Hydrogen embrittlement of aged and retrogressed-reaged Al-Li-Cu-Mg alloys

    SciTech Connect

    Thakur, C.; Balasubramaniam, R.

    1997-04-01

    The hydrogen embrittlement (HE) of Al-2.30 Li-1.24 Cu-0.80 Mg-0.12 Zr and Al-1.90 Li-1.80 Cu-1 Mg-0.09 Zr alloys in different artificial aging tempers and after retrogression and reaging (RRA) treatments has been investigated by tensile testing hydrogen precharged specimens. The influence of RRA and hydrogen charging on the dislocation structure was studied by TEM. The under-aged temper was the most susceptible while the peak-aged temper was the most resistant to HE. The RRA treatment improved the HE resistance of all the tempers. This has been attributed to the reduction in dislocation density upon retrogression and reaging. The alloy with the lower Li content exhibited improved HE resistance. Flat fractographic features near the surface of the hydrogen charged specimen have been correlated to the depth of hydrogen penetration. The formation of LiAlH{sub 4} and LiH in hydrogen charged Al-Li alloys has been confirmed by X-ray diffraction studies. The hydrogen-dislocation interaction and hydride cracking mechanisms of HE have been addressed.

  3. Microstructural evolution during aging of an Al-Cu-Li-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Pickens, Joseph R.

    1991-01-01

    Alloys in the Al-Cu-Li Ag-Mg subsystem were developed that exhibit desirable combinations of strength and ductility. These Weldalite (trademark) alloys, are unique for Al-Cu-Li alloys in that with or without a prior cold stretching operation, they obtain excellent strength-ductility combinations upon natural and artificial aging. This is significant because it enables complex, near-net shape products such as forgings and super plastically formed parts to be heat treated to ultra-high strengths. On the other hand, commercial extrusions, rolled plates and sheets of other Al-Cu-Li alloys are typically subjected to a cold stretching operation before artificial aging to the highest strength tempers to introduce dislocations that provide low-energy nucleation sites for strengthening precipitates such as the T(sub 1) phase. The variation in yield strength (YS) with Li content in the near-peak aged condition for these Weldalite (trademark) alloys and the associated microstructures were examined, and the results are discussed.

  4. Microstructure-property relationships in Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 2

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    The microstructure and mechanical properties of the ultrahigh strength Al-Cu-Li-Ag-Mg alloy, Weldalite (tm) 049, were studied. Specifically, the microstructural features along with tensile strength, weldability, Young's modulus and fracture toughness were studied for Weldalite (tm) 049 type alloys with Li contents ranging from 1.3 to 1.9 wt. pct. The tensile properties of Weldalite 049 and Weldalite 049 reinforced with TiB2 particles fabricated using the XD (tm) process were also evaluated at cryogenic, room, and elevated temperatures. In addition, an experimental alloy, similar in composition to Weldalite 049 but without the Ag+Mg, was fabricated. The microstructure of this alloy was compared with that of Weldalite 049 in the T6 condition to assess the effect of Ag+Mg on nucleation of strengthening phases in the absence of cold work.

  5. Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments

    NASA Astrophysics Data System (ADS)

    Holroyd, N. J. Henry; Scamans, G. M.

    2013-03-01

    Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack ("pop-in" vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies ( E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (<0.2 wt pct) are typically ranging from

  6. High resolution electron microscopy study of a high Cu variant of Weldalite (tm) 049 and a high strength Al-Cu-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Herring, R. A.; Gayle, Frank W.; Pickens, Joseph R.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy that is strengthened in artificially aged tempers primarily by very thin plate-like precipitates lying on the set of (111) matrix planes. This precipitate might be expected to be the T(sub 1) phase, Al2CuLi, which has been observed in Al-Cu-Li alloys. However, in several ways this precipitate is similar to the omega phase which also appears as the set of (111) planes plates and is found in Al-Cu-Ag-Mg alloys. The study was undertaken to identify the set of (111) planes precipitate or precipitates in Weldalite (trademark) 049 in the T8 (stretched and artificially aged) temper, and to determine whether T(sub 1), omega, or some other phase is primarily responsible for the high strength (i.e., 700 MPa tensile strength) in this Al-Cu-Li-Ag-Mg alloy.

  7. Microwave assisted sintering of Al-Cu-Mg-Si-Sn alloy.

    PubMed

    Padmavathi, Chandran; Upadhyaya, Anish; Agrawal, Dinesh

    2012-01-01

    Microwave sintering has been a well-established technique to consolidate metal powders due to its instantaneous volumetric and rapid heating as compared to conventional heating. Al-3.8Cu-1Mg-0.8Si-0.3Sn (2712) alloy powders were compacted (200 and 400 MPa) and microwave sintered at different temperatures (570 to 630 degrees C) under different atmospheres (vacuum, N2, Ar and H2). Increasing sintering temperature enhanced sintered density from 91% to 98%. Sintering under vacuum at 590 degrees C was more efficient with a densification parameter of 0.36 followed by N2, Ar and H2. Regardless of the sintering condition, phase analysis via XRD revealed the presence of only alpha-Al peak attributed to lesser time available for diffusion of alloying elements. In addition, microstructural inhomogeneity leading to more intergranular melt formation was observed for all sintered compacts. Contrasting to densification, sintering in N2 resulted in better corrosion resistance.

  8. Intrinsic fatigue crack growth rates for Al-Li-Cu-Mg alloys in vacuum

    NASA Technical Reports Server (NTRS)

    Slavik, D. C.; Blankenship, C. P., Jr.; Starke, E. A., Jr.; Gangloff, R. P.

    1993-01-01

    The influences of microstructure and deformation mode on inert environment intrinsic fatigue crack propagation were investigated for Al-Li-Cu-Mg alloys AA2090, AA8090, and X2095 compared to AA2024. The amount of coherent shearable delta-prime (Al3Li) precipitates and extent of localized planar slip deformation were reduced by composition (increased Cu/Li in X2095) and heat treatment (double aging of AA8090). Intrinsic growth rates, obtained at high constant K(max) to minimize crack closure and in vacuum to eliminate any environmental effect, were alloy dependent; da/dN varied up to tenfold based on applied Delta-K or Delta-K/E. When compared based on a crack tip cyclic strain or opening displacement parameter, growth rates were equivalent for all alloys except X2095-T8, which exhibited unique fatigue crack growth resistance. Tortuous fatigue crack profiles and large fracture surface facets were observed for each Al-Li alloy independent of the precipitates present, particularly delta-prime, and the localized slip deformation structure. Reduced fatigue crack propagation rates for X2095 in vacuum are not explained by either residual crack closure or slip reversibility arguments; the origin of apparent slip band facets in a homogeneous slip alloy is unclear.

  9. Precipitation hardening of an Al-4.2 wt% Mg-0.6 wt% Cu alloy

    SciTech Connect

    Ratchev, P.; Verlinden, B.; Houtte, P. van; Smet, P. de

    1998-06-12

    The precipitation hardening of an experimental Al-4.2 wt % Mg-0.6 wt % Cu alloy has been studied. After a first initial jump, the yield strength increases almost linearly with the logarithm of the ageing time and a peak of hardness is reached after 11 days at 180 C. Special attention is given to the precipitation hardening during the early stage of ageing. It has been shown that S{double_prime} phase can be formed heterogeneously on dislocation loops and helices and a new mechanism of precipitation hardening due to this S{double_prime} phase precipitation is proposed. The precipitation of S{double_prime} on dislocations is the predominant cause of strengthening during the initial stage of precipitation hardening (up to 30 min at 180 C). Guinier-Preston-Bagaryatsky (GPB) zones (or better, the recently introduced Cu/Mg clusters) also appear in the initial stage, but their contribution to the hardness, which up to now as considered to be predominant, is shown to be smaller than the one of the S{double_prime} precipitates. Since the density of the S{double_prime} nucleation sites is related to the amount of dislocations, this mechanism is important in the case of a bake hardening treatment when ageing is preceded by cold deformation. Uniform S{double_prime} precipitation has also been found at the later ageing stage, which suggests that the contribution of S{double_prime} to the precipitation hardening at that stage is not less important.

  10. Factors Affecting the Hydrogen Environment Assisted Cracking Resistance of an Al-Zn-Mg-(Cu) Alloy

    SciTech Connect

    G.A. Young; J.R. Scully

    2001-09-12

    It is well established that Al-Zn-Mg-(Cu) aluminum alloys are susceptible to hydrogen environment assisted cracking (HEAC) when exposed to aqueous environments. In Al-Zn-Mg-Cu alloys, overaged tempers are commonly used to increase HEAC resistance at the expense of strength. Overaging has little benefit in low copper alloys. However, the mechanism or mechanisms by which overaging imparts HEAC resistance is poorly understood. The present research investigated hydrogen uptake, diffusion, and crack growth rate in 90% relative humidity (RH) air for both a commercial copper bearing Al-Zn-Mg-Cu alloy (AA 7050) and a low copper variant of this alloy in order to better understand the factors which affect HEAC resistance. Experimental methods used to evaluate hydrogen concentrations local to a surface and near a crack tip include nuclear reaction analysis (NRA), focused ion beam, secondary ion mass spectroscopy (FIB/SIMS) and thermal desorption spectroscopy (TDS). When freshly bared coupons of AA 7050 are exposed to 90 C, 90% RH air, hydrogen ingress follows inverse-logarithmic-type kinetics and is equivalent for underaged (HEAC susceptible) and overaged (HEAC resistant) tempers. However, when the native oxide is allowed to form (24 hrs in 25 C, 40% RH lab air) prior to exposure to 90 C, 90% RH air, underaged alloy shows significantly greater hydrogen ingress than the overaged alloy. Humid air is a very aggressive environment producing local ({approx}1{micro}m) hydrogen concentrations in excess of 10,000 wt. ppm at 90 C. In the copper bearing alloy, overaging also effects the apparent diffusivity of hydrogen. As AA 7050 is aged from underaged {yields} peak aged {yields} overaged, the activation energy for hydrogen diffusion increases and the apparent diffusivity for hydrogen decreases, In the low copper alloy, overaging has little effect on hydrogen diffusion. Comparison of the apparent activation energies for hydrogen diffusion and for K independent (stage II) crack growth

  11. Precipitation of a new platelet phase during the quenching of an Al-Zn-Mg-Cu alloy

    PubMed Central

    Zhang, Yong; Weyland, Matthew; Milkereit, Benjamin; Reich, Michael; Rometsch, Paul A.

    2016-01-01

    A previously undescribed high aspect ratio strengthening platelet phase, herein named the Y-phase, has been identified in a commercial Al-Zn-Mg-Cu alloy. Differential scanning calorimetry indicates that this phase only precipitates at temperature and cooling rate of about 150–250 °C and 0.05–300 K/s, respectively. This precipitate is shown to be responsible for a noticeable improvement in mechanical properties. Aberration corrected scanning transmission electron microscopy demonstrates the minimal thickness (~1.4 nm) precipitate plates are isostructural to those of the T1 (Al2CuLi) phase observed in Al-Cu-Li alloys. Low voltage chemical analysis by energy dispersive X-ray spectroscopy and electron energy loss spectroscopy gives evidence of the spatial partitioning of the Al, Cu and Zn within the Y-phase, as well as demonstrating the incorporation of a small amount of Mg. PMID:26979123

  12. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    NASA Technical Reports Server (NTRS)

    Sarkar, Bhaskar; Lisagor, W. B.

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate.

  13. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    SciTech Connect

    Sarkar, B.; Lisagor, W.B. NASA, Langley Research Center, Hampton, VI )

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate. 12 refs.

  14. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  15. Structure and nanomechanical characteristics of Al-Cu-Mg-Si alloy with partly liquated grain boundaries upon heat treatment

    NASA Astrophysics Data System (ADS)

    Chikova, O. A.; Reznik, P. L.; Ovsyannikov, B. V.

    2016-12-01

    The microstructure, phase composition, and mechanical characteristics of the structural constituents of an Al-Cu-Mg-Si alloy in which the liquation of grain boundaries occurred during heat treatment have been studied. Bands of the (Al + Al15(Fe, Mn)3Si2) eutectics have been observed at the grain boundaries. An algorithm for calculating the additional pressure, which results from mechanical impact on the metal containing these bands has been described.

  16. Identification of thermal effects involved in DSC experiment on Al-Cu-Mg-Ag alloys with high Cu:Mg ratio

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Bo; Zhang, Yong-An; Zhu, Bao-Hong; Wang, Feng; Li, Zhi-Hui; Li, Xi-Wu; Xiong, Bai-Qing

    2011-12-01

    Precipitation reactions in the differential scanning calorimetry (DSC) of an Al-Cu-Mg-Ag alloy were identified by analyzing the results from hardness test, electrical conductivity test, and transmission electron microscope (TEM) examination. It is discovered that thermal effects can be identified through selected area electron diffraction and bright-field images. The reaction peaks around 171, 231, and 276°C can be attributed to a structural rearrangement of coherent zones, to the precipitation of Ω phases, and to the precipitation of Ω and θ' and possible combination with the transition of θ'→θ, respectively. In addition, the hardness and electrical conductivity of the alloy change proportionately with the progression of reactions during the heating process. This phenomenon can be attributed to the evolution of the microstructure.

  17. A facile electron microscopy method for measuring precipitate volume fractions in AlCuMg alloys

    SciTech Connect

    Zhao, X.Q.; Shi, M.J.; Chen, J.H. Wang, S.B.; Liu, C.H.; Wu, C.L.

    2012-07-15

    Precipitate volume fraction is an important parameter to estimate the strength of precipitation-hardened metals. In this study, a facile method was applied to measure the precipitate volume fractions in an age-hardened AlCuMg alloy. In this method, the precipitate volume fraction values can be obtained by multiplying the volume precipitate number densities with the averaged precipitate volumes, which can be easily measured in scanning electron microscopy and transmission electron microscopy, respectively. Compared with the conventional method, in which the specimen thickness has to be measured in transmission electron microscopy, the method proposed in this study is more facile to perform. - Highlights: Black-Right-Pointing-Pointer We have proposed a facile method to measure precipitate volume fractions for precipitation-hardened metals. Black-Right-Pointing-Pointer This technique works well for the square-shaped {theta} Prime -phase nano-precipitates in 2xxx aluminum alloys. Black-Right-Pointing-Pointer Interesting is that the proposed method is easy for materials scientists and engineers to perform.

  18. Softening Behavior of a New Al-Zn-Mg-Cu Alloy Due to TIG Welding

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Li, Xiaoyan; Nie, Zuoren; Huang, Hui; Sun, Jiantong

    2016-05-01

    A new Al-Zn-Mg-Cu alloy with T6 temper was welded by TIG welding, and the softening behavior of the joint was evaluated. Results show that the ultimate tensile strength of the joint is 436.2 ± 26.4 MPa which is about 64.5% of that of the base metal (BM). Fusion zone (FZ) is the weakest region even though its microhardness increases from 107.6 to 131.3 HV within 90 days after welding. Microhardness of the heat-affected zone (HAZ) adjacent to FZ increases from 125.2 to 162.3 HV within 90 days. However, a valley value of microhardness appears in the rest of the HAZ that increases from 112.1 to 128.1 HV within 90 days. The variation of grain size and precipitates is regarded as the main cause of softening in both FZ and HAZ. The grain size of FZ is about 33.9 μm, whereas 8.7 and 8.4 μm for HAZ and BM, respectively. A large number of η' phases distribute dispersively in BM, whereas precipitates in FZ identified as GPI zones are finer and fewer. Besides, precipitates in HAZ adjacent to FZ are also GPI zones. Precipitates in HAZ far away from FZ are coarser and fewer than those in BM and η phases begin to emerge.

  19. Aging kinetics of a silicon carbide reinforced Al-Zn-Mg-Cu alloy

    SciTech Connect

    Davies, C.H.J.; Raghunathan, N.; Sheppard, T.

    1994-01-01

    The aging kinetics of a composite of an Al-Zn-Mg-Cu powder (CW67) combined with a varied volume fraction of a particulate silicon carbide were investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). DSC revealed that the maximum rate of precipitation of the metastable {eta}{prime} phase was substantially lower for CW67/SiC/20p than for the unreinforced alloy or CW67/SiC/10p. TEM of isothermally aged material revealed differences between the unreinforced alloy and composites in respect of precipitate size and morphology. The authors conclude that SiC additions, by dint of additional dislocations generated during quenching, can affect the aging of CW67 either by accelerating the nucleation of precipitates or by accelerating precipitate growth. The aging rate of CW67/SiC/20p was increased by accelerating both the nucleation of precipitates and growth, whereas the aging in CW67/SiC10p was enhanced by accelerating precipitate growth only.

  20. Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting

    NASA Astrophysics Data System (ADS)

    Zhang, Hu; Zhu, Haihong; Nie, Xiaojia; Qi, Ting; Hu, Zhiheng; Zeng, Xiaoyan

    2016-04-01

    The proposed paper illustrates the fabrication and heat treatment of high strength Al-Cu-Mg alloy produced by selective laser melting (SLM) process. Al-Cu-Mg alloy is one of the heat treatable aluminum alloys regarded as difficult to fusion weld. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, 3D Al-Cu-Mg parts with relative high density of 99.8% are produced by SLM from gas atomized powders. Room temperature tensile tests reveal a remarkable mechanical behavior: the samples show yield and tensile strengths of about 276 MPa and 402 MPa, respectively, along with fracture strain of 6%. The effect of solution treatment on microstructure and related tensile properties is examined and the results demonstrate that the mechanical behavior of the SLMed Al-Cu-Mg samples can be greatly enhanced through proper heat treatment. After T4 solution treatment at 540°C, under the effect of precipitation strengthening, the tensile strength and the yield strength increase to 532 MPa and 338 MPa, respectively, and the elongation increases to 13%.

  1. Site occupation, phase stability, crystal and electronic structures of the doped S phase (Al2CuMg)

    NASA Astrophysics Data System (ADS)

    Gu, Jianglong; Gu, Huimin; Zhai, Yuchun; Ma, Peihua

    2016-07-01

    The S phase (Al2CuMg) is an important strengthening phase for the Al-Cu-Mg alloys, which are widely used in the aerospace and transportation industries. The commonly added alloying elements (Mn, Ti, Zr) and the impurity elements (Fe and Si) in the Al-Cu-Mg alloys are always found in the S phase. First-principles calculations based on the density functional theory (DFT) were used to investigate the influence of doping Mn, Ti, Zr, Fe and Si elements on the S phase. Key findings demonstrated that these elements prefer to occupy different atomic sites in the S phase. Ti and Zr improved the structural stability of the S phase. The bulk modulus of the Fe, Si, Ti and Zr doped S phases becomes larger than that of the pure S phase. Both the crystal and electronic structures of the S phase are affected by the dopants. The results of this study provide a better theoretical understanding of the S phase, providing guidance for improved composition design and performance optimization of Al-Cu-Mg alloys.

  2. Effect of a prior stretch on the aging response of an Al-Cu-Li-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Pickens, Joseph R.

    1991-01-01

    Recently, a family of Al-Cu-Li alloys containing minor amounts of Ag, Mg, and Zr and having desirable combinations of strength and toughness were developed. The Weldalite (trademark) alloys exhibit a unique characteristic in that with or without a prior stretch, they obtain significant strength-ductility combinations upon natural and artificial aging. The ultra-high strength (approximately 690 MPa yield strength) in the peak-aged tempers (T6 and T8) were primarily attributed to the extremely fine T(sub 1) (Al2CuLi) or T(sub 1)-type precipitates that occur in these alloys during artificial aging, whereas the significant natural aging response observed is attributed to strengthening from delta prime (Al3Li) and GP zones. In recent work, the aging behavior of an Al-Cu-Li-Ag-Mg alloy without a prior stretch was followed microstructurally from the T4 to the T6 condition. Commercial extrusions, rolled plates, and sheets of Al-Cu-Li alloys are typically subjected to a stretching operation before artificial aging to straighten the extrusions and, more importantly, introduce dislocations to simulate precipitation of strengthening phases such as T(sub 1) by providing relatively low-energy nucleation sites. The goals of this study are to examine the microstructure that evolves during aging of an alloy that was stretch after solution treatment and to compare the observations with those for the unstretched alloy.

  3. Effect of magnesium on the aging behavior of Al-Zn-Mg-Cu/Al2O3 metal matrix composites

    NASA Astrophysics Data System (ADS)

    Chou, Ming-Chun; Chao, Chuen-Guang

    1996-07-01

    The effect of magnesium content on the aging behavior of Al-Zn-Mg-Cu alloy reinforced with alumina (A12O3) was studied by using the differential scanning calorimetry (DSC) technique and hardness measurement. The magnesium contents were studied in the range from 1.23 to 2.97 wt pct. The addition of magnesium was found to increase the coherent Guinier-Preston (GP) zones in com-posites. The apparent formation enthalpy of GP zones of composites (0.1 V f) was 0.932 cal/g for 1.23 wt pct magnesium content and 1.375 cal/g for 2.97 wt pct magnesium content. The precipitation time to achieve the maximum hardness in the composites depends on the magnesium content. The time changed from 12 to 48 hours as the magnesium content increased from 1.23 to 2.97 wt pct. Both Vickers microhardness and Rockwell hardness increased with increasing magnesium content. The maximum hardness occurred in the composites that contained maximum amounts of GP zones and η' precipitates. However, the microhardness of the composites was always lower than that of monolithic alloys due to the alumina fibers which caused the suppression of GP zones and η' for-mation in the composites.

  4. Direct measurement of precipitate induced strain in an Al-Zn-Mg-Cu alloy with aberration corrected transmission electron microscopy.

    PubMed

    Ying, X R; Du, Y X; Song, M; Lu, N; Ye, H Q

    2016-11-01

    Precipitates and their associated strain fields significantly influence mechanical properties and, consequently, the industrial performance of aluminum alloys. In this work, we present a direct measurement of strains induced by η' and η precipitates in an Al-Zn-Mg-Cu alloy using aberration-corrected high-resolution transmission electron microscopy and quantitative strain analysis. The results demonstrate that the strain induced by precipitates in the Al-Zn-Mg-Cu alloy shows significant tensile strains perpendicular to the longitudinal direction of the precipitate discs on the side of the discs and along the longitudinal direction at both ends of the η' and η precipitates. This strain field can be described by an equivalent dislocation model, in which the lattice mismatch between the precipitate and the matrix is equivalent to a series of dislocation pairs along the precipitate/matrix interfaces.

  5. Strain localization parameters of AlCu4MgSi processed by high-energy electron beams

    SciTech Connect

    Lunev, A. G. Nadezhkin, M. V.; Konovalov, S. V.; Teresov, A. D.

    2015-10-27

    The influence of the electron beam surface treatment of AlCu4MgSi on the strain localization parameters and on the critical strain value of the Portevin–Le Chatelier effect has been considered. The strain localization parameters were measured using speckle imaging of the specimens subjected to the constant strain rate uniaxial tension at a room temperature. Impact of the surface treatment on the Portevin–Le Chatelier effect has been investigated.

  6. Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg(Cu) alloys

    SciTech Connect

    Liu, J.Z.; Chen, J.H.; Yuan, D.W.; Wu, C.L.; Zhu, J.; Cheng, Z.Y.

    2015-01-15

    Although they are among the most important precipitation-hardened materials for industry applications, the high-strength AlZnMg(Cu) alloys have thus far not yet been understood adequately about their underlying precipitation scenarios in relation with the properties. This is partly due to the fact that the structures of a number of different precipitates involved in electron microscopy in association with quantitative image simulations have to be employed; a systematic study of these hardening precipitates in different alloys is also necessary. In Part I of the present study, it is shown that there are five types of structurally different precipitates including the equilibrium η-phase precipitate. Using two state-of-the-art atomic-resolution imaging techniques in electron microscopy in association with quantitative image simulations, we have determined and clarified all the unknown precipitate structures. It is demonstrated that atomic-resolution imaging can directly suggest approximate structure models, whereas quantitative image analysis can refine the structure details that are much smaller than the resolution of the microscope. This combination is crucially important for solving the difficult structure problems of the strengthening precipitates in AlZnMg(Cu) alloys. - Highlights: Part I: • We determine and verify all the key precipitate structures in AlMgZn(Cu) alloys. • We employ aberration-corrected scanning transmission electron microscopy (STEM). • We use aberration-corrected high-resolution TEM (HRTEM) for the investigations. • We obtain atomic-resolution images of the precipitates and model their structures. • We refine all precipitate structures with quantitative image simulation analysis. Part II: • The hardening precipitates in AlZnMg alloys shall be classified into two groups. • Two precipitation scenarios coexist in the alloys. • The precipitation behavior of such an alloy depends on the alloy's composition. • Very detailed phase

  7. Precipitation Hardening and Statistical Modeling of the Aging Parameters and Alloy Compositions in Al-Cu-Mg-Ag Alloys

    NASA Astrophysics Data System (ADS)

    Al-Obaisi, A. M.; El-Danaf, E. A.; Ragab, A. E.; Soliman, M. S.

    2016-06-01

    The addition of Ag to Al-Cu-Mg systems has been proposed to replace the existing high-strength 2xxx and 7xxx Al alloys. The aged Al-Cu-Mg-Ag alloys exhibited promising properties, due to special type of precipitates named Ω, which cooperate with other precipitates to enhance the mechanical properties significantly. In the present investigation, the effect of changing percentages of alloying elements, aging time, and aging temperature on the hardness values was studied based on a factorial design. According to this design of experiments (DOE)—23 factorial design, eight alloys were cast and hot rolled, where (Cu, Mg, and Ag) were added to aluminum with two different levels for each alloying element. These alloys were aged at different temperatures (160, 190, and 220 °C) over a wide range of time intervals from 10 min. to 64 h. The resulting hardness data were used as an input for Minitab software to model and relate the process variables with hardness through a regression analysis. Modifying the alloying elements' weight percentages to the high level enhanced the hardness of the alloy with about 40% as compared to the alloy containing the low level of all alloying elements. Through analysis of variance (ANOVA), it was figured out that altering the fraction of Cu had the greatest effect on the hardness values with a contribution of about 49%. Also, second-level interaction terms had about 21% of impact on the hardness values. Aging time, quadratic terms, and third-level interaction terms had almost the same level of influence on hardness values (about 10% contribution). Furthermore, the results have shown that small addition of Mg and Ag was enough to improve the mechanical properties of the alloy significantly. The statistical model formulated interpreted about 80% of the variation in hardness values.

  8. Structure and properties during aging of an Al-Cu-Li-Ag-Mg alloy, Weldalite (tm) 049

    NASA Technical Reports Server (NTRS)

    Gayle, Frank W.; Heubaum, Frank H.; Pickens, Joseph R.

    1991-01-01

    An Al-Cu-Li-Ag-Mg alloy, Weldalite (trademark) 049, was recently introduced as an ultra-high strength alloy (7000 MPa yield strength in artificially aged tempers) with good weldability. In addition, the alloy exhibits an extraordinary natural aging response (440 MPa yield strength (YS) in the unstretch condition) and a high ductility reversion condition which may be useful as a cold-forming temper. In contrast to other Al-Li alloys, these properties can essentially be obtained with or without a stretch or other coldworking operation prior to aging. Preliminary studies have revealed that the T4 temper (no stretch, natural age) is strengthened by a combination of GP zones and delta prime (Al3Li). The T6 temper (no stretch, aged at 180 C to peak strength) was reported to be strengthened primarily by T(sub 1) phase (Al2CuLi) with a minor presence of a theta prime like (Al2Cu) phase. On the other hand, a similar but lower solute containing alloy was reported to contain omega, (stoichiometry unknown), theta prime, and S prime in the peak strength condition. The purpose of this study is to further elucidate the strengthening phases in Weldalite (trademark) 049 in the unstretched tempers, and to follow the development of the microstructure from the T4 temper through reversion (180 C for 5 to 45 minutes) to the T6 temper.

  9. Matrix effects in ion-induced emission as observed in Ne collisions with Cu-Mg and Cu-Al alloys

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Pepper, S. V.

    1983-01-01

    Ion induced Auger electron emission is used to study the surfaces of Al, Mg, Cu - 10 at. % Al, Cu - 19.6 at. % Al, and Cu - 7.4 at. % Mg. A neon (Ne) ion beam whose energy is varied from 0.5 to 3 keV is directed at the surface. Excitation of the lighter Ne occurs by the promotion mechanism of Barat and Lichten in asymmetric collisions with Al or Mg atoms. Two principal Auger peaks are observed in the Ne spectrum: one at 22 eV and one at 25 eV. Strong matrix effects are observed in the alloys as a function of energy in which the population of the second peak is greatly enhanced relative to the first over the pure materials. For the pure material over this energy range this ratio is 1.0. For the alloys it can rise to the electronic structure of alloys and to other surface tools such as secondary ion mass spectroscopy.

  10. Defect structures and structural relationships of the Z and T phases in an Al-Li-Cu-Mg alloy

    SciTech Connect

    Zhang, L.C. . Lab. of Atomic Imaging of Solids Univ. of Science and Technology, Beijing . State Key Lab. of Advanced Materials); He, A.Q.; Ye, H.Q. . State Key Lab. of Advanced materials)

    1994-01-01

    Al-Li alloys have stirred a lot of interest because of their high mechanical properties/density ratio for aerospace application. Recently, some intermetallic compounds in the vicinity of Al[sub 0.6] (Cu,Zn)[sub 0.1](Li[sub 9]Mg)[sub 0.3], namely the so-called R,Z,C and [tau] phases, have been detected and studied in detail, due to their intimate structural relationship to the T[sub 2] quasicrystal phase. These compounds (including of T phase) and T[sub 2] consist of similar structural units, such as blocks of icosahedra, dodecahedra and tricontahedral, that makes them often intergrow with each other Shiflet, Yang et al. interpreted six types of shear planes in the R phase, implying a structural link between R and T[sub 2] phases, due to transformation behavior from T[sub 2] to R phase. Zhou et al. observed a well defined crystallographic orientation relationship between the R and Z phases possessing the same basic building units in the Al-Li-Cu alloy. In spite of a large amount of work in Al-Li system, little study has gone to the structural defects of other phases and links among them. This paper present the defect structures of the hexagonal Z and the f.c.c. T phases, as well as two types of structural orientation relationships between them.

  11. Structure and properties during aging of an ultra-high strength Al-Cu-Li-Ag-Mg alloy

    NASA Technical Reports Server (NTRS)

    Gayle, Frank W.; Heubaum, Frank H.; Pickens, Joseph R.

    1990-01-01

    The structure and properties of the strengthening phases formed during aging in an Al-Cu-Li-Ag-Mg alloy (Weldalite 049) were elulcidated, by following the development of the microstructure by means of TEM. The results of observations showed that the Weldalite 049 alloy has a series of unusual and technologically useful combinations of mechanical properties in different aging conditions, such as natural aging without prior cold work to produce high strengths, a reversion temper of lower yield strength and unusually high ductility, a room temperature reaging of the reversion temper eventually leading to the original T4 hardness, and ultrahigh-strength T6 properties.

  12. Characterization of precipitation in Al-Mg-Cu alloys by X-ray diffraction peak broadening analysis

    SciTech Connect

    Novelo-Peralta, O.; Gonzalez, G. Lara-Rodriguez, G.A

    2008-06-15

    The present study examines the aging behavior of Al-Mg-Cu alloys based on the elastic effects on the matrix due to coherent precipitates; these effects were followed by X-ray diffraction peak broadening analysis. We conclude that the growing of matrix distortion zones around the precipitates is well described by the 2M factors established by Houska. In terms of mechanisms, in the first stages of ageing the rapid hardening seems to not be related with the interaction of dislocations with the stress field around the precipitates. The incremental microhardness observed in this alloy can be attributed to the formation of clusters or to solute-dislocation interactions.

  13. Improved Stress Corrosion Cracking Resistance and Strength of a Two-Step Aged Al-Zn-Mg-Cu Alloy Using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lin, Lianghua; Liu, Zhiyi; Ying, Puyou; Liu, Meng

    2015-12-01

    Multi-step heat treatment effectively enhances the stress corrosion cracking (SCC) resistance but usually degrades the mechanical properties of Al-Zn-Mg-Cu alloys. With the aim to enhance SCC resistance as well as strength of Al-Zn-Mg-Cu alloys, we have optimized the process parameters during two-step aging of Al-6.1Zn-2.8Mg-1.9Cu alloy by Taguchi's L9 orthogonal array. In this work, analysis of variance (ANOVA) was performed to find out the significant heat treatment parameters. The slow strain rate testing combined with scanning electron microscope and transmission electron microscope was employed to study the SCC behaviors of Al-Zn-Mg-Cu alloy. Results showed that the contour map produced by ANOVA offered a reliable reference for selection of optimum heat treatment parameters. By using this method, a desired combination of mechanical performances and SCC resistance was obtained.

  14. The influence of Cu, Mg and Ni on the solidification and microstructure of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Darlapudi, A.; McDonald, S. D.; StJohn, D. H.

    2016-03-01

    The influence of alloying elements (Cu, Mg, and Ni) on eutectic nucleation, eutectic grain morphology and the final microstructure of an Al-10Si commercial purity alloy in unmodified and Sr-modified conditions was investigated. It was found that the nucleation and eutectic grain growth morphologies of both the unmodified and Sr-modified Al-Si eutectic were significantly influenced by the addition of ternary alloying elements to a degree dependent on when the intermetallic phase formed during the solidification of the alloy with respect to the Al-Si eutectic. In cases where an intermetallic phase nucleated prior to the onset of the Al-Si eutectic reaction, the eutectic nucleation frequency was affected by changes to the available nuclei population. In cases where the intermetallic nucleated after the Al-Si eutectic, segregation of the ternary solutes in front of the Al-Si eutectic interface changed the nucleation and macroscopic growth dynamics. The changes in nucleation and growth dynamics of the Al-Si eutectic due to the presence of solute altered the morphology of the eutectic silicon considerably. This study has revealed a number of insights into the mechanisms of nucleation and growth of the Al-Si eutectic.

  15. Effects of Aging on the Evolution of Microstructure and Mechanical Properties of an Al - Li - Cu - Mg Alloy with Ag, Zr, Mn, and Zn Additives

    NASA Astrophysics Data System (ADS)

    Sun, Zhong-gang; Bao, Peng-li; Ma, Chao; Chen, Jie; Guo, Xuan; Li, Hua-guan; Ling, Juan

    2016-03-01

    The microstructure and the post-aging hardness of an Al - Li - Cu - Mg alloy is studied by the methods of transmission electron microscopy. Tensile tests are performed. The volume fraction and the size of the particles of the δ', S and T 1 phases are shown to be dependent on the aging temperature and time. The effect of the precipitates of the δ', S and T 1 phases on the hardening of the Al - Li - Cu - Mg alloy during aging is determined.

  16. Utilization of Mg2Al-layered double hydroxide as an effective sequestrator to trap Cu(II) ions from aqueous solution impacted by water quality parameters

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Linghu, Wensheng; Hu, Jun; Jiang, Gongyi; Sheng, Jiang

    2016-11-01

    Recently, Mg2Al-layered double hydroxide (Mg2Al-LDH) has been extensively studied as promising candidates to trap metal ions due to their high complexation and adsorption capacity. Herein, Mg2Al-LDH was utilized as an effectiveness sequestrator to trap Cu(II) ions from aqueous solution by an adsorption process using batch technique under ambient conditions. The results showed that Cu(II) adsorption on Mg2Al-LDH increases with pH increasing and maintains a high level at pH>7.0. The adsorption of Cu(II) was obviously affected by ionic strength at low pH, which was not dependent on ionic strength at high pH. The presence of HA or FA promotes the adsorption of Cu(II) on Mg2Al-LDH at low pH values, while reduces the adsorption of Cu(II) at high pH values. The adsorption isotherms of Cu(II) on Mg2Al-LDH at three different temperatures were simulated by the Langmuir, Freundlich, and Dubinin-Radushkevitch (D-R) models very well. The thermodynamic parameters were determined from the temperature-dependent adsorption, and the results showed that Cu(II) adsorption on Mg2Al-LDH was exothermic and the process was favored at high temperature. The results suggest that Mg2Al-LDH is suitable as a sorbent material for the recovery and attenuation of Cu(II)-polluted wastewater.

  17. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.

    1986-01-01

    A study was conducted: (1) to develop rapid solidification processed (RSP) dispersoid-containing Al-3Cu-2Li-1Mg-0.2Zr alloys as substitutes for titanium alloys and commercial 2XXX aluminum alloys for service to at least 150 C; and (2) to develop RSP Al-4Li-Cu-Mg-Zr alloys as substitutes for high-strength commercial 7XXX alloys in ambient-temperature applications. RSP Al-3Cu-2Li-1Mg-0.2Zr alloys have density-normalized yield stresses at 150 C up to 52% larger than that of 2124-T851 and up to 30% larger than that of Ti-6Al-4V. Strength at 150 C in these alloys is provided by thermally stable delta' (Al3Li), T1 (Al2LiCu), and S' (Al2CuMg) precipitates. Density-normalized yield stresses of RSP Al-3Cu-2Li-1Mg-0.2Zr alloys are up to 100% larger than that of 2124-T851 and equivalent to that of Al-8Fe-4Ce at 260 C. Strength in the RSP alloys at 260 C is provided by incoherent dispersoids and subboundary constituent particles such as T1 and S. The RSP alloys are attractive substitutes in less than or = 100-h exposures for 2xxx and Al-4Fe-Ce alloys up to 260 C and for titanium alloys up to 150 C. RSP Al-4Li-Cu-Mg-Zr alloys have ambient-temperature yield and ultimate tensile stresses similar to that of 7050-T7651, and are 14% less dense. RSP Al-4Li-0.5Cu-1.5Mg-0.2Zr has a 20% higher specific yield stress, 40% higher specific elastic modulus, and superior corrosion resistance compared to the properties of 7050-T7651. Strength in the Al-4Li-Cu-Mg-Zr alloy class is primarily provided by the substructure and delta' precipitates and is independent of Cu:Mg ratio. Improvements in fracture toughness and transverse-orientation properties in both alloy classes depend on improved melt practices to eliminate oxide inclusions which are incorporated into the consolidated forms.

  18. Interfacial reaction of intermetallic compounds of ultrasonic-assisted brazed joints between dissimilar alloys of Ti6Al4V and Al4Cu1Mg.

    PubMed

    Ma, Zhipeng; Zhao, Weiwei; Yan, Jiuchun; Li, Dacheng

    2011-09-01

    Ultrasonic-assisted brazing of Al4Cu1Mg and Ti6Al4V using Zn-based filler metal (without and with Si) has been investigated. Before brazing, the Ti6Al4V samples were pre-treated by hot-dip aluminizing and ultrasonic dipping in a molten filler metal bath in order to control the formation of intermetallic compounds between the Ti6Al4V samples and the filler metal. The results show that the TiAl(3) phase was formed in the interface between the Ti6Al4V substrate and the aluminized coating. For the Zn-based filler metal without Si, the Ti6Al4V interfacial area of the brazed joint did not change under the effect of the ultrasonic wave, and only consisted of the TiAl(3) phase. For the Zn-based filler metal with Si, the TiAl(3) phase disappeared and a Ti(7)Al(5)Si(12) phase was formed at the interfacial area of the brazed joints under the effect of the ultrasonic wave. Due to the TiAl(3) phase completely changing to a Ti(7)Al(5)Si(12) phase, the morphology of the intermetallic compounds changed from a block-like shape into a lamellar-like structure. The highest shear strength of 138MPa was obtained from the brazed joint free of the block-like TiAl(3) phase.

  19. Effects of La addition on the microstructure and tensile properties of Al-Si-Cu-Mg casting alloys

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Pan, Ye; Wu, Ji-li; Tao, Shi-wen; Chen, Yu

    2015-04-01

    The effects of La addition on the microstructure and tensile properties of B-refined and Sr-modified Al-11Si-1.5Cu-0.3Mg casting alloys were investigated. With a trace addition of La (0.05wt%-0.1wt%), the mutual poisoning effect between B and Sr can be neutralized by the formation of LaB6 rather than SrB6. By employing a La/B weight ratio of 2:1, uniform microstructures, which are characterized by well refined α-Al grains and adequately modified eutectic Si particles as well as the incorporation of precipitated strengthening intermetallics, are obtained and lead to appreciable tensile properties with an ultimate tensile strength of 270 MPa and elongation of 5.8%.

  20. The Expending Retrogression Time of Hot-Extruded Sc-CONTAINING Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Shim, Sung-Yong; Kim, Dae-Hwan; Sung, Young-Rock; Ahn, In-Shup; Lim, Su-Gun

    In this paper, the retrogression and reaging (RRA) behavior and corrosion properties of Sc-containing Al-Zn-Mg-Cu alloy were observed. The dependence of the mechanical properties and corrosion resistance on the heat treatment condition was measured by hardness, tensile, C-ring and conductivity testing. The retrogression time for recovery of the yield strength of the alloy subjected to T6 treatment was 20 min at 200°C of retrogression temperature, which was longer than that of Al7075 alloy. The results of electrical conductivity and C-ring tests showed that the stress corrosion cracking (SCC) resistance in Sc-containing alloy treated for 20 min at 200°C was improved. These study results demonstrated the ability of the Sc-containing alloy to extend the retrogression time and thereby improve the SCC resistance and mechanical properties.

  1. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Shenoy, R. N.

    1991-01-01

    The present study evaluates the effect of the systematic variation of copper, chromium, and zirconium contents on the microstructure and mechanical properties of a 7000-type aluminum alloy. Fracture toughness and tensile properties are evaluated for each alloy in both the peak aging, T8, and the overaging, T73, conditions. Results show that dimpled rupture essentially characterize the fracture process in these alloys. In the T8 condition, a significant loss of toughness is observed for alloys containing 2.5 pct Cu due to the increase in the quantity of Al-Cu-Mg-rich S-phase particles. An examination of T8 alloys at constant Cu levels shows that Zr-bearing alloys exhibit higher strength and toughness than the Cr-bearing alloys. In the T73 condition, Cr-bearing alloys are inherently tougher than Zr-bearing alloys. A void nucleation and growth mechanism accounts for the loss of toughness in these alloys with increasing copper content.

  2. The effect of zinc additions on the environmental stability of Alloy 8090 (Al-Li-Cu-Mg-Zr)

    NASA Technical Reports Server (NTRS)

    Kilmer, Raymond J.; Stoner, G. E.

    1991-01-01

    Stress corrosion cracking (SCC) remains a problem in both Al-Li and conventional Al heat treatable alloys. It has recently been found that relatively small additions (less than or approximately 1 wt-percent) of Zn can dramatically improve the SCC performance of alloy 8090 (Al-Li-Cu-Mg-Zr). Constant load time to failure experiments using cylindrical tensile samples loaded between 30 and 85 percent of TYS indicate improvements of orders of magnitude over the baseline 8090 for the Zn-containing alloys under certain aging conditions. However, the toughnesses of the alloys were noticeably degraded due to the formation of second phase particles which primarily reside on grain and subgrain boundaries. EDS revealed that these intermetallic particles were Cu and Zn rich. The particles were present in the T3 condition and were not found to be the result of quench rate, though their size and distribution were. At 5 hours at 160 C, the alloys displayed the greatest susceptibility to SCC but by 20 hours at 160 C the alloys demonstrated markedly improved TTF lifetimes. Aging past this time did not provide separable TTF results, however, the alloy toughnesses continued to worsen. Initial examination of the alloys microstructures at 5 and 20 hours indicated some changes most notably the S' and delta' distributions. A possible model by which this may occur will be explored. Polarization experiments indicated a change in the trend of E(sub BR) and passive current density at peak aging as compared to the baseline 8090. Initial pitting experiments indicated that the primary pitting mechanism in chloride environments is one occurring at constituent (Al-Fe-Cu) particles and that the Cu and Zn rich boundary precipitates posses a breakaway potential similar to that of the matrix acting neither anodic or cathodic in the first set of aerated 3.5 w/o NaCl experiments. Future work will focus on the identification of the second phase particles, evaluation of K(sub 1SCC) and plateau da/dt via

  3. Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part II: Fine precipitation scenarios in AlZnMg(Cu) alloys

    SciTech Connect

    Liu, J.Z.; Chen, J.H.; Liu, Z.R.; Wu, C.L.

    2015-01-15

    Although they are among the most important precipitation-hardened materials for industry applications, the high-strength AlZnMg(Cu) alloys have thus far not yet been understood adequately about their underlying precipitation scenarios in relation with the properties. This is partly due to the fact that the structures of a number of different precipitates involved in the alloys are unknown, and partly due to the complexity that the precipitation behaviors of the alloys may be closely related to the alloy's composition. In Part I of the present study, we have determined all the unknown precipitate structures in the alloys. Here in Part II, using atomic-resolution electron microscopy in association with the first principles energy calculations, we further studied and correlated the phase/structure transformation/evolution among these hardening precipitates in relation with the alloy's composition. It is shown that there are actually two coexisting classes of hardening precipitates in these alloys: the first class includes the η′-precipitates and their early-stage Guinier–Preston (GP-η′) zones; the second class includes the precursors of the equilibrium η-phase (referred to η{sub p}, or η-precursor) and their early-stage Guinier–Preston (GP-η{sub p}) zones. The two coexisting classes of precipitates correspond to two precipitation scenarios. - Highlights: • We determine and verify all the key precipitate structures in AlMgZn(Cu) alloys. • We employ aberration-corrected scanning transmission electron microscopy (STEM). • We use aberration-corrected high-resolution TEM (HRTEM) for the investigations. • We obtain atomic-resolution images of the precipitates and model their structures. • We refine all precipitate structures with quantitative image simulation analysis. • The hardening precipitates in AlZnMg alloys shall be classified into two groups. • Two precipitation scenarios coexist in the alloys. • The precipitation behavior of such an

  4. Regulation Mechanism of Novel Thermomechanical Treatment on Microstructure and Properties in Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Zhiguo; Ren, Jieke; Zhang, Jishuai; Chen, Jiqiang; Fang, Liang

    2016-02-01

    Scanning electron microscopy, transmission electron microscopy, tensile test, exfoliation corrosion test, and slow strain rate tensile test were applied to investigate the properties and microstructure of Al-Zn-Mg-Cu alloy processed by final thermomechanical treatment, retrogression reaging, and novel thermomechanical treatment (a combination of retrogression reaging with cold or warm rolling). The results indicate that in comparison with conventional heat treatment, the novel thermomechanical treatment reduces the stress corrosion susceptibility. A good combination of mechanical properties, stress corrosion resistance, and exfoliation corrosion resistance can be obtained by combining retrogression reaging with warm rolling. The mechanism of the novel thermomechanical treatment is the synergistic effect of composite microstructure such as grain morphology, dislocation substructures, as well as the morphology and distribution of primary phases and precipitations.

  5. Influence of ECAP on Densification Behaviour in the PM Aluminium Al-Mg-Si-Cu-Fe Alloy

    NASA Astrophysics Data System (ADS)

    Bidulská, Jana; Kvačkaj, Tibor; Kočiško, Róbert; Bidulský, Róbert; Grande, Marco Actis

    2010-09-01

    The main aim of this paper is to show how ECAP influences the densification behaviour of PM aluminium alloys. An aluminium based powder (Al-Mg-Si-Cu-Fe) was used as material to be investigated. After applying different compacting pressures, specimens were dewaxed in a ventilated furnace at 400 °C for 60 min. Sintering was carried out in a vacuum furnace at 610 °C for 30 min. The specimens were ECAPed for 1 pass. Optical characterization was carried out on the minimum of 10 different image fields. The results were measured for each pore individually in order to describe the dimensional and morphological porosity characteristics. ECAP influences the porosity distribution in terms of the severe shear deformation involved.

  6. Influence of megaplastic deformation on the structure and hardness of Al-Cu-Mg alloy after aging

    NASA Astrophysics Data System (ADS)

    Petrova, A. N.; Radziszewska, H.; Kaczmarek, L.; Klih, M.; Brodova, I. G.; Steglinski, M.

    2016-12-01

    Methods of electron microscopy and X-ray diffraction have been used to investigate structural and phase transformations in the aluminum alloy of grade A2024 (Al-4.5 Cu-1.37 Mg-0.61 Mn-0.07 Si-0.27 Fe-0.02 Zn-0.02 Ti (wt %)) after aging and deformation by shear under high quasi-static pressure. It has been shown that the combination of two-stage aging with megaplastic deformation leads to the refinement of the structure to a nanolevel and to strengthening of the alloy (to an increase in the microhardness to 3000 MPa). The values of true deformation at which the deformation-induced dissolution of the particles of the strengthening S phase occurs have been determined.

  7. Structural Changes in Alloys of the Al-Cu-Mg System Under Ion Bombardment and Shock-Wave Loading

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, V. V.; Gushchina, N. V.; Romanov, I. Yu.; Kaigorodova, L. I.; Grigor'ev, A. N.; Pavlenko, A. V.; Plokhoi, V. V.

    2017-02-01

    To confirm the hypothesis on the shock-wave nature of long-range effects upon corpuscular irradiation of condensed media presumably caused by emission and propagation of post-cascade shock waves, comparative experiments on ion beam modification and mechanical shock-wave loading of specimens of VD1 and D16 alloys of the Al-Cu-Mg system are performed. Direct analogy between the processes of microstructural change of cold-deformed VD1 and D16 alloys under mechanical shock loading and irradiation by beams of accelerated Ar+ ions (E = 20-40 keV) with low fluences (1015-1016 cm-2) is established. This demonstrates the important role of the dynamic long-range effects that have not yet been considered in classical radiation physics of solids.

  8. Effect of T6 heat treatment on the microstructural and mechanical properties of Al-Si-Cu-Mg alloys

    NASA Astrophysics Data System (ADS)

    Patel, Dhruv; Davda, Chintan; Solanki, P. S.; Keshvani, M. J.

    2016-05-01

    In this communication, it is aimed to optimize the conditions for T6 heat treatment of permanent die cast Al-Si-Cu-Mg alloys. Various solutionizing temperatures, aging treatments and soaking times were used to improve / modify the mechanical properties of presently studied alloys. Formation mechanism of the particles was understood by carrying out optical microscopy and energy dispersive X-ray (EDX) spectroscopy measurements. Spherical particles of alloys were studied for their microstructural properties using scanning electron microscopy (SEM). Microhardness test was performed to investigate their mechanical properties. Dependence of cluster formation and microhardness of the alloys on the adequate solutionizing temperature, aging treatment and soaking time has been discussed in detail.

  9. Effect of electromagnetic vibration on the microstructure of direct chill cast Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Zuo, Y.; Fu, X.; Zhu, Q.; Li, L.; Wang, P.; Cui, J.

    2016-03-01

    An electromagnetic vibration was achieved by the combined application of an alternating magnetic field and a stationary magnetic field during direct chill (DC) casting process. The ingots with 200 mm in diameter were prepared under the influence of electromagnetic vibration. The effect of electromagnetic vibration on the microstructure of an Al-Zn-Mg-Cu alloy was studied. The results showed that electromagnetic vibration has a significant effect on the solidification behaviour, under the influence of electromagnetic vibration during DC casting process, the microstructure is significantly refined and the uniformity of microstructure is evidently improved. This paper introduces the DC casting technology with the application of electromagnetic vibration, presents these results and gives corresponding discussions.

  10. Influences of Hydrogen Micropores and Intermetallic Particles on Fracture Behaviors of Al-Zn-Mg-Cu Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Su, Hang; Yoshimura, Takuro; Toda, Hiroyuki; Bhuiyan, Md. Shahnewaz; Uesugi, Kentaro; Takeuchi, Akihisa; Sakaguchi, Nobuhito; Watanabe, Yoshio

    2016-12-01

    The combined effects of hydrogen micropores and intermetallic particles on the voids initiation and growth behavior of Al-Zn-Mg-Cu aluminum alloys during deformation and fracture are investigated with the help of the high-resolution X-ray tomography. It is interesting to note that the high-hydrogen concentration induced by an EDM cutting process results in the initiation of quasi-cleavage fracture near surface. With the increase of strain, the quasi-cleavage fracture is gradually replaced by dimple fracture. Voids initiation related to the dimple fracture is caused by both intermetallic particles fracture and interfacial debonding between particles and matrix. The nucleation of hydrogen micropores on intermetallic particles accelerates the voids initiation. The existence of triaxial stress ahead of the tip of a quasi-cleavage crack enhances growth rate for both hydrogen micropores and voids.

  11. Acoustic Effects on Cyclic-Tension Fatigue of Al-4Cu-1Mg Alloy by Ultrasonic Shear Wave Methods

    NASA Astrophysics Data System (ADS)

    Yamagishi, H.; Fukuhara, M.; Chiba, A.

    2009-02-01

    Cyclic-tension fatigue of aluminum alloy Al-4Cu-1Mg has been determined by usage of vertically-polarized shear wave (SV) reflection and horizontally-polarized shear wave (SH) transmission methods. Internal friction measured by SV method begins to increase rapidly from normalized fatigue ratio of about 0.5, showing dominating interaction of movable dislocations with the waves, as viscoelastic effect. Propagation time and logarithmic damping ratio in the SH method decrease with an increase of the fatigue degree, due to a shift of residual stress as the acoustoelastic effect. The logarithmic damping ratio shows better correlation with the residual-stress shift than the propagation time because acoustic velocity is considered to be significantly affected by pile-up dislocation.

  12. Equal Channel Angular Pressing (ECAP) and Its Application to Grain Refinement of Al-Zn-Mg-Cu Alloy

    SciTech Connect

    Tekeli, Sueleyman; Gueral, Ahmet

    2011-12-10

    Microstructure of a metal can be considerably changed by severe plastic deformation techniques such as high pressure torsion, extrusion and equal-channel angular pressing (ECAP). Among these methods, ECAP is particularly attractive because it has a potential for introducing significant grain refinement and homogeneous microstructure into bulk materials. Typically, it reduces the grain size to the submicrometer level or even nanometer range and thus produces materials that are capable of exhibiting unusual mechanical properties. In the present study, a test unites for equal channel angular pressing was constructed and this system was used for Al-Zn-Mg-Cu alloy. After the optimization tests, it was seen that the most effective lubricant for the dies was MoS{sub 2}, the pressing pressure was around 25-35 ton and the pressing speed was 2 mm/s. By using these parameters, the Al-Zn-Mg-Cu alloy was successfully ECAPed up to 14 passes at 200 deg. C using route C. After ECAP tests, the specimens were characterized by transmission electron microscope (TEM), hardness and macrostructural investigations. It was seen that the plastic deformation in the ECAPed specimens occurred from edge to the centre like whirlpool. In addition, the deformation intensity increased with increasing pass number. The grain size of the specimens effectively also decreased with increasing pass number. That is, while the grain size of unECAPed specimen was 10 {mu}m, this value decreased to 300 nm after 14 passes. At the beginning, while there was a banding tendency in the grains toward deformation direction, homogeneous and equiaxed grains were formed with increasing pass number. This grain refinement was as a result of an interaction between shear strain and thermal recovery during ECAP processing. Hardness measurements showed that the hardness values increased up to 4 passes, decreased effectively at 6th pass, again increased at 8th pass and after this pass, the hardness again decreased due to

  13. Fabrication and Analysis of the Wear Properties of Hot-Pressed Al-Si/SiCp + Al-Si-Cu-Mg Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho

    2016-01-01

    The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen

  14. Magnetron deposited TiN coatings for protection of Al-Cu-Ag-Mg-Mn alloy

    NASA Astrophysics Data System (ADS)

    Stepanova, Tatiana V.; Kaziev, Andrey V.; Atamanov, Mikhail V.; Tumarkin, Alexander V.; Dolzhikova, Svetlana A.; Izmailova, Nelly Ph; Kharkov, Maxim M.; Berdnikova, Maria M.; Mozgrin, Dmitry V.; Pisarev, Alexander A.

    2016-09-01

    TiN coatings were deposited on a new Al super-alloy by magnetron sputtering in argon/nitrogen environment. The deposited layer structure, microhardness, adhesion, corrosion resistance, and fatigue life were investigated and tests demonstrated improved performance of the alloy.

  15. The characteristics of cavitation during superplastic deformation of a warm-rolled Al-Li-Cu-Mg-Zr alloy

    SciTech Connect

    Liu, Q. ); Huang, X.; Yang, J.; Yao, M. )

    1991-01-01

    The process of superplastic forming has become important in numerous commercial applications. However, there may be some deleterious defects on the properties of superplastically-formed components due to the presence of minor levels of cavitation introduced during the forming process. Thus, it is important to obtain information on nucleation, growth and interlinkage of cavities in a wide range of superplastic materials. Two different thermomechanical processing routes may be employed to develop fine grain sizes conducive to superlasticity in Al-Li alloys. In one of them, a fine grain size microstructure is obtained by static recrystallization prior to superplastic deformation, and in another, a fine grain size microstructure is obtained by deformation-induced recrystallization during the initial stage of superplastic deformation. The deformation-induced recrystallization of a cold (or warm)-rolled Al-Li alloy is strongly dependent on the strain rate microstructural change during the initial stage of superplastic deformation due to deformation-induced recrystallization. There have been some studies dealing with cavitation in superplastic Al-Li alloys. However, there is no research work reported on the effect of deformation-induced recrystallization on the characteristics of cavitation during superplastic deformation of a warm-rolled Al-Li alloy. This paper deals with the relationship between deformation-induced recrystallization and cavitation characteristics during superplastic deformation of a warm-rolled Al-Li-Cu-Mg-Zr alloy. The results show that there are three kinds of cavities. The first includes the fine cavities formed at the beginning stage of deformation, the second the large cavities formed around the intermetallic particles and the third the grain boundary cavities. All three kinds of cavities are closely related to deformation-induced recrystallization.

  16. An Electrochemical Framework to Explain Intergranular Stress Corrosion Cracking in an Al-5.4%Cu-0.5%Mg-0.5%Ag Alloy

    NASA Technical Reports Server (NTRS)

    Little, D. A.; Connolly, B. J.; Scully, J. R.

    2001-01-01

    A modified version of the Cu-depletion electrochemical framework was used to explain the metallurgical factor creating intergranular stress corrosion cracking susceptibility in an aged Al-Cu-Mg-Ag alloy, C416. This framework was also used to explain the increased resistance to intergranular stress corrosion cracking in the overaged temper. Susceptibility in the under aged and T8 condition is consistent with the grain boundary Cu-depletion mechanism. Improvements in resistance of the T8+ thermal exposure of 5000 h at 225 F (T8+) compared to the T8 condition can be explained by depletion of Cu from solid solution.

  17. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  18. The influence of Ag+Mg additions on the nucleation of strengthening precipitates in a non-cold-worked Al-Cu-Li alloy

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Aluminum-copper-lithium alloys generally require cold work to attain their highest strengths in artificially aged tempers. These alloys are usually strengthened by a combination of the metastable delta prime (Al3Li) and theta prime (Al2Cu) phases and the equilibrium T sub 1 (Al2CuLi) phase, and where the T sub 1 phase is a more potent strengthener than the delta prime. Various investigators have shown that the high strengths obtained after artificial aging associated with cold work result from the heterogeneous precipitation of T sub 1 on matrix dislocations. The objective here is to elucidate the mechanism by which the Ag+Mg additions stimulate the precipitation of T sub 1 type precipitates without cold work. To accomplish this, the microstructure of an Al-6.3Cu-1.3Li-0.14Zr model alloy was evaluated in a T6 type temper with and without the Ag+Mg addition.

  19. Cu/MgAl(2)O(4) as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation.

    PubMed

    Pupovac, Kristina; Palkovits, Regina

    2013-11-01

    Copper supported on mesoporous magnesium aluminate has been prepared as noble-metal-free solid catalyst for aldol condensation of 5-hydroxymethylfurfural with acetone, followed by hydrogenation of the aldol condensation products. The investigated mesoporous spinels possess high activity as solid-base catalysts. Magnesium aluminate exhibits superior activity compared to zinc and cobalt-based aluminates, reaching full conversion and up to 81 % yield of the 1:1 aldol product. The high activity can be correlated to a higher concentration of basic surface sites on magnesium aluminate. Applying continuous regeneration, the catalysts can be recycled without loss of activity. Focusing on the subsequent hydrogenation of aldol condensation products, Cu/MgAl2 O4 allows a selective hydrogenation and CO bond cleavage, delivering 3-hydroxybutyl-5-methylfuran as the main product with up to 84 % selectivity avoiding ring saturation. Analysis of the hydrogenation activity reveals that the reaction proceeds in the following order: CC>CO>CO cleavage>ring hydrogenation. Comparable activity and selectivity can be also achieved utilizing 2-propanol as solvent in the transfer hydrogenation, providing the possibility for partial recycling of acetone and optimization of the hydrogen management.

  20. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    NASA Technical Reports Server (NTRS)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  1. Assessment of retrogression and re-aging treatment on microstructural and mechanical properties of Al-Zn-Mg-Cu P/M alloy

    NASA Astrophysics Data System (ADS)

    Naeem, Haider T.; Mohammad, Kahtan S.; Hussin, Kamarudin; Tan, T. Qing; Idris, M. Sobri

    2015-05-01

    In order to understand the importance of the retrogression and re-aging as a heat treatment for improving microstructural and mechanical properties of the Al-Zn-Mg-Cu powder metallurgy alloys, Al-Zn-Mg-Cu-Fe-Cr alloys were fabricated from the elemental powders. Green compacts are compressed under compaction pressure about 370 MPa. The sintering process carried out for the samples of aluminum alloys at temperature was 650°C under argon atmosphere for two hours. The sintered compacts were subjected into homogenizing condition at 470°C for 1.5 hours and then aged at 120°C for 24 hours (T6 temper) after that it carried out the retrogressed at 180°C for 30 min., and then re-aged at 120°C for 24 hours (RRA). Observations microstructures were examined using optical, scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray diffraction. Density and porosity content was conducted for the samples of alloys. The result showing that the highest Vickers hardness exhibited for an Al-Zn-Mg-Cu alloy after underwent the retrogression and reaging treatment. Increasing in hardness was because of the precipitation hardening through precipitate the (Mg Zn) and (Mg2Zn11) phases during matrix of aluminum-alloy.

  2. Assessment of retrogression and re-aging treatment on microstructural and mechanical properties of Al-Zn-Mg-Cu P/M alloy

    SciTech Connect

    Naeem, Haider T.; Mohammad, Kahtan S.; Hussin, Kamarudin; Tan, T. Qing; Idris, M. Sobri

    2015-05-15

    In order to understand the importance of the retrogression and re-aging as a heat treatment for improving microstructural and mechanical properties of the Al-Zn-Mg-Cu powder metallurgy alloys, Al-Zn-Mg-Cu-Fe-Cr alloys were fabricated from the elemental powders. Green compacts are compressed under compaction pressure about 370 MPa. The sintering process carried out for the samples of aluminum alloys at temperature was 650°C under argon atmosphere for two hours. The sintered compacts were subjected into homogenizing condition at 470°C for 1.5 hours and then aged at 120°C for 24 hours (T6 temper) after that it carried out the retrogressed at 180°C for 30 min., and then re-aged at 120°C for 24 hours (RRA). Observations microstructures were examined using optical, scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray diffraction. Density and porosity content was conducted for the samples of alloys. The result showing that the highest Vickers hardness exhibited for an Al-Zn-Mg-Cu alloy after underwent the retrogression and reaging treatment. Increasing in hardness was because of the precipitation hardening through precipitate the (Mg Zn) and (Mg{sub 2}Zn{sub 11}) phases during matrix of aluminum-alloy.

  3. Thermodynamic properties and equations of state for Ag, Al, Au, Cu and MgO using a lattice vibrational method

    NASA Astrophysics Data System (ADS)

    Jacobs, M.; Schmid-Fetzer, R.

    2012-04-01

    , when coupled to a thermodynamic computation program, the calculation and prediction of phase equilibria and thermo-physical properties of phase equilibrium assemblages in pressure-temperature-composition space. In Jacobs and van den Berg (2011) the vibrational method, together with a thermodynamic data base, was successfully applied to mantle convection of materials in the Earth. These works demonstrate that the vibrational method has the advantages of (1) computational speed, (2) coupling or making comparisons with ab initio methods and (3) making reliable extrapolations to extreme conditions. We present results of thermodynamic analyses, using lattice vibrational methods, of Ag, Al, Au, Cu and MgO covering the pressure and temperature regime of the Earth's interior. We show results on consistency of the pressure scales for these materials using different equations of state, under the constraint that thermodynamic properties in the low-pressure regime are accurately represented.

  4. Effect of magnesium on the aging behavior of Al-Zn-Mg-Cu/Al{sub 2}O{sub 3} metal matrix composites

    SciTech Connect

    Chou, M.C.; Chao, C.G.

    1996-07-01

    The effect of magnesium content on the aging behavior of Al-Zn-Mg-Cu alloy reinforced with alumina (Al{sub 2}O{sub 3}) was studied by using the differential scanning calorimetry (DSC) technique and hardness measurement. The magnesium contents were studied in the range from 1.23 to 2.97 wt pct. The addition of magnesium was found to increase the coherent Guinier-Preston (GP) zones in composites. The apparent formation enthalpy of GP zones of composites (0.1 V{sub f}) was 0.932 cal/g for 1.23 wt pct magnesium content and 1.375 cal/g for 2.97 wt pct magnesium content. The precipitation time to achieve the maximum hardness in the composites depends on the magnesium content. The time changed from 12 to 48 hours as the magnesium content increased from 1.23 to 2.97 wt pct. Both Vickers microhardness and Rockwell hardness increased with increasing magnesium content. The maximum hardness occurred in the composites that contained maximum amounts of GP zones and {eta}{prime} precipitates. However, the microhardness of the composites was always lower than that of monolithic alloys due to the alumina fibers which caused the suppression of GP zones and {eta}{prime} formation in the composites.

  5. /Cu-Al System

    NASA Astrophysics Data System (ADS)

    Kish, Orel; Froumin, Natalya; Aizenshtein, Michael; Frage, Nachum

    2014-05-01

    Wettability and interfacial interaction of the Ta2O5/Cu-Al system were studied. Pure Cu does not wet the Ta2O5 substrate, and improved spreading is achieved when relatively a high fraction of the active element (~40 at.% Al) was added. The Al2O3 and AlTaO4 phases were observed at the Ta2O5/Cu-Al interface. A thermodynamic evaluation allowed us to suggest that the lack of wetting bellow 40 at.% Al is due to the presence of a native oxide, which covers the drop. The conditions of the native oxide decomposition and the formation of the volatile Al2O suboxide strongly depend on the vacuum level during sessile drop experiments and the composition of the Cu-Al alloy. In our case, Al contents greater than 40% provides thermodynamic conditions for the formation of Al2O (as a result of Al reaction with Al2O3) and the drop spreading. It was suggested that the final contact angle in the Ta2O5/Cu-Al system (50°) is determined by Ta adsorption on the newly formed alumina interlayer.

  6. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting

    SciTech Connect

    Meng, Yi Cui, Jianzhong; Zhao, Zhihao; He, Lizi

    2014-06-01

    The Al-1.6Mg-1.2Si-1.1Cu-0.15Cr (all in wt. %) alloys with and without Zr addition prepared by low frequency electromagnetic casting process were investigated by using the optical microscope, scanning electron microscope and transmission electron microscope equipped with energy dispersive analytical X-ray. The effects of Al{sub 3}Zr phases on the microstructures and mechanical properties during solidification, homogenization, hot extrusion and solid solution were studied. The results show that Al{sub 3}Zr phases reduce the grain size by ∼ 29% and promote the formation of an equiaxed grain structure during solidification. Numerous spherical Al{sub 3}Zr dispersoids with 35–60 nm in diameters precipitate during homogenization, and these fine dispersoids change little during subsequent hot extrusion and solid solution. Adding 0.15 wt. % Zr results in no recrystallization after hot extrusion and partial recrystallization after solid solution, while the recrystallized grain size is 400–550 μm in extrusion direction in the Zr-free alloy. In addition, adding 0.15 wt. % Zr can obviously promote Q′ phase precipitation, while the β″ phases are predominant in the alloy without Zr. Adding 0.15 wt. % Zr, the ultimate tensile strength of the T6 treated alloy increases by 45 MPa, while the elongation remains about 16.7%. - Highlights: • Minor Zr can refine as-cast grains of the LFEC Al-Mg-Si-Cu-Cr alloy. • L1{sub 2} Al{sub 3}Zr phases with 35–60 nm in diameter precipitate during homogenization. • L1{sub 2} and DO{sub 22} Al{sub 3}Zr phases result in partial recrystallization after solid solution. • Minor Zr can promote the precipitation of Q′ phases. • Mechanical properties of Al-Mg-Si-Cu-Cr-Zr alloy are higher than those of AA7005.

  7. Effect of Natural Aging and Cold Working on Microstructures and Mechanical Properties of Al-4.6Cu-0.5Mg-0.5Ag alloy

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Te; Lee, Sheng-Long; Bor, Hui-Yun; Lin, Jing-Chie

    2013-06-01

    This research investigates the effects of natural aging and cold working prior to artificial aging on microstructures and mechanical properties of Al-4.6Cu-0.5Mg-0.5Ag alloy. Mechanical properties relative to microstructure variations were elucidated by the observations of the optical microscope (OM), differential scanning calorimeter (DSC), electrical conductivity meter (pct IACS), and transmission electron microscopy (TEM). The results showed that natural aging treatment has little noticeable benefit on the quantity of precipitation strengthening phases and mechanical properties, but it increases the precipitation strengthening rate at the initial stage of artificial aging. Cold working brings more lattice defects which suppress Al-Cu (GP zone) and Mg-Ag clustering, and therefore the precipitation of Ω phase decreases. Furthermore, more dislocations are formed, leading to precipitate the more heterogeneous nucleation of θ' phase. The above-mentioned precipitation phenomena and strain hardening effect are more obvious with higher degrees of cold working.

  8. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  9. Effects of grain refinement on the microstructure, mechanical properties and reliability of AlSi7Cu3Mg gravity die cast cylinder heads

    NASA Astrophysics Data System (ADS)

    Timelli, Giulio; Camicia, Giordano; Ferraro, Stefano; Molina, Roberto

    2014-07-01

    The effects of grain refinement on the microstructure and mechanical properties of a secondary AlSi7-Cu3Mg gravity die cast cylinder head are reported. Metallographic and image analysis techniques have been used to quantitatively examine the macro- and microstructural changes occurring with the addition of grain-refining agent. The results indicate that the AlTi5B1 addition produces a fine and uniform grain structure throughout the casting; this effect is more pronounced in the slowly solidified regions. The initial contents of Ti and B, which are present as impurity elements in the supplied secondary alloy ingots, are not sufficient to produce effective grain refinement. Under the present casting conditions, the combined addition of AlTi5B1 and Sr does not produce any reciprocal interaction or effect on primary α-Al and eutectic solidification. Grain refinement improves the mechanical properties of the as-cast AlSi7Cu3Mg alloy and produces higher Weibull moduli, thus increasing the reliability of the casting. For automotive structural components, this could be considered an increase in safety.

  10. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.; Pao, P. S.

    1985-01-01

    The effects of alloy chemistry and particulate morphology on consolidation behavior and consolidated product properties in rapid solidification processed, powder-metallurgical Al-3Li-1.5Cu-1Mg-0.5Co-0.2Zr and Al-4.4Cu-1.5Mg-Fe-Ni-0.2Zr extrusions and forgings were studied. Microstructures and mechanical properties of both alloys are largely unaffected by particulate production method (vacuum atomization, ultrasonic atomization, or twin-roller quenching) and by particulate solidification rates between 1000 and 100,000 K/s. Consolidation processing by canning, cold compaction, degassing, and hot extrusion is sufficient to yield mechanical properties in the non-Li-containing alloy extrusions which are similar to those of 7075-Al, but ductilities and fracture toughnesses are inferior owing to poor interparticle bonding caused by lack of a vacuum-hot-pressing step during consolidation. Mechanical properties of extrusions are superior to those of forgings owing to the stronger textures produced by the more severe hot working during extrusion. The effects on mechanical properties of dispersoid size and volume fraction, substructural refinement, solid solution strengthening by Mg, and precipitate size and distribution are elucidated for both alloy types.

  11. Improvement in Joint Strength of Spray-Deposited Al-Zn-Mg-Cu Alloy in Underwater Friction Stir Welding by Altered Temperature of Cooling Water

    NASA Astrophysics Data System (ADS)

    Liang, Haimei; Yan, Keng; Wang, Qingzhao; Zhao, Yong; Liu, Chuan; Zhang, Hao

    2016-12-01

    We improved the joint properties of spray-deposited Al-Zn-Mg-Cu alloy during underwater friction stir welding at cooling media temperatures of 8.6, 24.8 and 58.6 °C, respectively. The joint welded at high temperature (58.6 °C) showed a high tensile strength (467.18 MPa) and improved elongation. Its thermal cycle indicates preheating and slow cooling, which created a mild and uniform temperature gradient on both sides of the joint. DSC, SEM and EDS, and XRD analyses indicate that high-temperature cooling medium facilitated re-dissolution of the strengthening phases in the matrix, to strengthen the joint. Al32(Mg,Zn)49 exhibited a semi-coherent structure with matrix detected in the joint welded in a high-temperature medium. The high-temperature cooling medium is most efficient for joint optimization.

  12. A differential scanning calorimetric study of phase stability in 2091(Al-Li-Cu-Mg-Zr) alloy submitted to welding operations

    SciTech Connect

    Macedo, M.C. de; Avillez, R.R.; Solorzano, I.G. . Dept. de Ciencia dos Materiais e Metalurgia)

    1994-12-15

    For over a decade considerable effort has been directed towards the development of Al-Li base alloys with the objective of replacing conventional high strength aluminum alloys. This effort has largely been motivated by the fact that lithium additions cause substantial improvement in the specific properties, thus making very attractive alloys for applications in aeronautic and aerospace industries. The use of commercial Al-Li base alloys requires, therefore, an appropriate knowledge of their welding properties. These properties depend on the microstructural evolution during a posterior heat treatment or welding cycle. Complete characterization requires transmission electron microscopy and a laborious sample preparation. The use of a differential scanning calorimeter (DSC) may provide a fast, albeit limited, evaluation of the fusion and heat affected zone of a weld joint. This article exemplifies such evaluation for a 2091 (Al-Li-Cu-Mg-Zr) alloys.

  13. Microstructure Characterization, Mechanical, and Tribological Properties of Slow-Cooled Sb-Treated Al-20Mg2Si-Cu In Situ Composites

    NASA Astrophysics Data System (ADS)

    Farahany, Saeed; Ghandvar, Hamidreza; Nordin, Nur Azmah; Ourdjini, Ali

    2017-03-01

    Role of Sb addition on structural characteristics, mechanical properties, and wear behavior of Al-20Mg2Si-Cu in situ composite under slow cooling condition was thoroughly investigated in this study using stereomicroscopy, optical and scanning electron microscopy, thermal analysis, tensile, impact, hardness tests, and wear tester. Results show that addition of 0.8 wt.% Sb was found to produce a change in the morphology of primary Mg2Si from dendrite to fine polygonal shape. At this Sb addition, the primary Mg2Si phase also exhibited a reduction in size from 179.4 to 128.6 μm, an increase in density of Mg2Si per area from 12.5 to 32.2 particle/mm2, and a decrease in the aspect ratio from 1.24 to 1.11. Increasing the amount of Sb added up to 1 wt.% also resulted in a decrease in both nucleation and growth temperatures of the eutectic Mg2Si by 2.6 and 1.7 °C respectively, which is most likely due to change of eutectic Mg2Si morphology from flake to fibrous structure. Thermal analysis technique showed that distribution of Mg2Si particles influences the heat conductivity during the solidification process of Al-Mg2Si composite. The results also showed that improvements in mechanical properties of composite were obtained with increasing Sb content due to modification of both primary and eutectic Mg2Si and due to intermetallic compound transformation from β-Al5FeSi to α-Al15(Fe,Mn)3Si2. Examination of fracture surfaces from tensile and impact samples showed that the base composite failed in a brittle manner with decohered or debonded Mg2Si particles, whereas the 0.8 wt.% Sb-treated composite showed more cracked Mg2Si and ductile fracture in the matrix. Wear properties improved significantly with addition of Sb due to modification and better dispersion of fine Mg2Si particles in matrix.

  14. A comparative study on phenomenon and deep belief network models for hot deformation behavior of an Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Liang, Ying-Jie; Chen, Ming-Song; Chen, Xiao-Min

    2017-01-01

    The high temperature deformation behavior of an Al-Zn-Mg-Cu alloy is studied by isothermal compression tests at the temperature range of 573-723 K and strain rate range of 0.001-0.1 s-1. Considering the coupled influences of deformation temperature, strain, and strain rate on hot deformation behavior, a deep belief network (DBN) model, as well as a phenomenological constitutive model, is developed for the studied alloy. In order to validate the developed models, the average absolute relative error and correlation coefficient are evaluated between the measured and predicted true stresses. The results show that the developed DBN model has the better predictability for the high temperature deformation behavior of the studied Al-Zn-Mg-Cu alloy. Moreover, the average absolute relative error and correlation coefficient of DBN model are 0.57% and 0.9997, respectively. In addition, the developed DBN model can be effectively applied in the intelligent manufacturing, such as intelligent isothermal die forging technology.

  15. Origin of the DOS pseudogap and Hume-Rothery stabilization mechanism in RT-type Al48Mg64Zn48 and Al84Li52Cu24 1/1-1/1-1/1 approximants

    NASA Astrophysics Data System (ADS)

    Inukai, M.; Zijlstra, E. S.; Sato, H.; Mizutani, U.

    2011-11-01

    Full-potential linearized plane wave (FLAPW) band calculations with subsequent FLAPW-Fourier analyses have been performed for two RT-type Al48Mg64Zn48 and Al84Li52Cu24 1/1-1/1-1/1 approximants containing 160 atoms per unit cell. The FLAPW-Fourier analysis revealed that the Fermi surface-Brillouin zone (FsBz) interactions involving more than two sets of lattice planes are responsible for the formation of a pseudogap across the Fermi level in both compounds. The most critical sets of lattice planes interfering with electrons at the Fermi level are deduced to be {543} + {710} + {550} with ? = 50 in the former and {631} with ? = 46 in the latter. The square of the Fermi diameter ? is determined to be 49.9 ± 0.1 and 47.1 ± 0.4 in units of ? , respectively, where a is the lattice constant. Hence, the matching condition ? holds well in both compounds. It is also shown that, while a shallow pseudogap in the Al48Mg64Zn48 approximant can be ascribed solely to the FsBz interactions, a much deeper one in the Al84Li52Cu24 approximant is explained as a superposition of the FsBz interactions and the formation of strongly directional bonding states between Cu-4p and Al-3p orbitals.

  16. Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique

    SciTech Connect

    Esmaeili, Shahrzad . E-mail: shahrzad@mecheng1.uwaterloo.ca; Lloyd, David J.

    2005-11-15

    Differential scanning calorimetry is used to quantify the evolution of the volume fraction of precipitates during age hardening in AlMgSiCu alloys. The calorimetry tests are run on alloy samples after aging for various times at 180 deg. C and the change in the collective heat effects from the major precipitation and dissolution processes in each run are used to determine the precipitation state of the samples. The method is implemented on alloys with various thermal histories prior to artificial aging, including commercial pre-aging histories. The estimated values for the relative volume fraction of precipitates are compared with the results from a newly developed analytical method using isothermal calorimetry and a related quantitative transmission electron microscopy work. Excellent agreement is obtained between the results from various methods.

  17. Low-temperature volume radiation annealing of cold-worked bands of Al-Li-Cu-Mg alloy by 20-40 keV Ar+ ion

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, V. V.; Gushchina, N. V.; Mozharovsky, S. M.; Kaigorodova, L. I.

    2017-01-01

    The processes of radiation-dynamic nature (in contrast to the thermally-activated processes) in the course of short-term irradiation of 1 mm thick bands of cold-worked aluminum alloy 1441 (of system Al-Li-Cu-Mg) with Ar+ 20-40 keV were studied. An effect of in-the-bulk (throughout the whole of metal bands thickness) low-temperature radiation annealing of the named alloy, multiply accelerated as compared with common thermal annealing processes was registered (with projected ranges of ions of considered energies definitely not exceeding 0.1 μm). The processes of recrystallization and intermetallic structure changes (occurring within a few seconds of Ar+ irradiation) have the common features as well as the differences in comparison with the results of two hour standard thermal annealing.

  18. Effect of equal-channel angular pressing and aging on the microstructure and mechanical properties of an Al-Cu-Mg-Si alloy

    NASA Astrophysics Data System (ADS)

    Gazizov, M. R.; Dubina, A. V.; Zhemchuzhnikova, D. A.; Kaibyshev, R. O.

    2015-07-01

    The effect of intermediate equal-channel angular pressing (ECAP) and final aging at 170°C on the mechanical properties and microstructure of aluminum alloy belonging to Al-Cu-Mg-Si system stress with a Cu/Mg ratio (AA2014) is considered. After quenching and aging (treatment T6), the yield stress (σ0.2) and ultimate tensile strength (σu) are ˜415 and ˜450 MPa, respectively; the elongation to fracture (δ) is 4.2%. The precipitation strengthening is reached due to the precipitation of θ″-, θ'-, β″-, and Q'/ C-phase particles. After intermediate ECAP and subsequent aging for 0.5 h, σ0.2 and σu increase to 470 and 535 MPa, respectively; δ increases to ˜9.5%. The plastic deformation leads to the formation of a microstructure that consists of deformation bands characterized by a high density of dislocations. During aging for 0.5 h, the partial decomposition of supersaturated solid solution and formation of segregations within grains and at dislocations and precipitation of the Guinier-Preston zones and β″ phase also occur; all of this ensure the maximum increase in the strength of the AA2014 alloy. As the aging time increases to 8 h, the slight decrease in both σ0.2 and σu to 465 and 515 MPa and δ to ˜6% takes place. It has been shown that the intermediate ECAP does not affect the sequence of the precipitation of main strengthening θ″ and θ' phases during aging. However, in this case, the volume fraction of strengthening particles decreases significantly and their dispersivity increases.

  19. Influence of the heat treatment condition of alloy AlCu4Mg1 on the microstructure and properties of anodic oxide layers

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Dietrich, D.; Sieber, M.; Lampke, T.

    2017-03-01

    Due to their outstanding specific mechanical properties, high-strength, age-hardenable aluminum alloys offer a high potential for lightweight security-related applications. However, the use of copper-alloyed aluminum is limited because of their susceptibility to selective corrosion and their low wear resistance. These restrictions can be overcome and new applications can be opened up by the generation of protective anodic aluminum oxide layers. In contrast to the anodic oxidation of unalloyed aluminum, oxide layers produced on copper-rich alloys exhibit a significantly more complex pore structure. It is the aim of the investigation to identify the influence of microstructural parameters such as size and distribution of the strengthening precipitations on the coating microstructure. The aluminum alloy EN AW-2024 (AlCu4Mg1) in different heat treatment conditions serves as substrate material. The influence of the strengthening precipitations’ size and distribution on the development of the pore structure is investigated by the use of high-resolution scanning electron microscopy. Integral coating properties are characterized by non-destructive and light-microscopic thickness measurements and instrumented indentation tests.

  20. Improved strength and ductility of high alloy containing Al-12Zn-3Mg-2.5Cu alloy by combining non-isothermal step rolling and cold rolling

    NASA Astrophysics Data System (ADS)

    Ravikumar, V. V.; Kumaran, S.

    2017-02-01

    Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400°C to 100°C in 100°C steps, with 15% reduction in thickness; it was then cold rolled isothermally at room temperature for 85% reduction. The cold-rolled alloys were characterized by electron microscopy, hardness test, and tensile test to elucidate their structural evolution and evaluate their mechanical behavior. In the results, the cast alloy consists of α-aluminum and various intermetallic compounds. These compounds are segregated along the grain boundaries, which makes the alloy difficult to roll at room temperature. The combined effect of non-isothermal step rolling and cold rolling results in the nano/microsized compounds distributed uniformly in the matrix. The hardness is substantially increased after rolling. This increase in hardness is attributed to the ultra-fine grain size, fine-scale intermetallic compounds, and structural defects (e.g., dislocations, stacking faults, and sub-grains). The ultimate tensile strength of the rolled alloy is approximately 628 MPa with 7% ductility.

  1. Tensile behavior of rapidly solidified Al-Li-Zr and Al-Li-Cu-Mg-Zr alloys at 293 and 77 K

    SciTech Connect

    Kim, S.S.; Shin, K.S.; Kim, N.J.

    1999-08-01

    It has been found that the tensile ductility of some Al-Li alloys increases significantly with decreasing temperature. Although this inverse temperature dependence has often been observed in some non-Li-containing Al alloys, such as Al 2219, the magnitude of improvement in tensile ductility is generally much higher in Li-containing Al alloys. Several hypothetical mechanisms have been proposed to explain the increase in tensile ductility at cryogenic temperatures for Al-Li alloys. At present, the studies on the cryogenic mechanical properties o Li-containing Al alloys are largely limited to ingot-melted alloys, and the data are not readily available for powder metallurgy (PM) processed Al-Li alloys. The refined microstructure of PM processed Al-Li alloys would minimize the extrinsic delamination effects on the tensile properties and, as a result, these may serve as better materials for studying the mechanism(s) for the improved cryogenic tensile properties in Al-Li alloys. The objective of the present study, therefore, was to examine the tensile properties of rapidly solidified (RS)/PM processed Al-Li alloys and to identify the mechanism of the increase in tensile ductility at cryogenic temperatures.

  2. The Deformation Behavior and Microstructure Evolution of a Mn- and Cr-Containing Al-Mg-Si-Cu Alloy During Hot Compression and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Nagaumi, Hiromi; Han, Yi; Zhang, Gongwang; Zhai, Tongguang

    2017-01-01

    Hot compression tests on a newly developed Mn- and Cr-containing Al-Mg-Si-Cu alloy were carried out at temperatures ranging from 623 K (350 °C) to 823 K (550 °C) and strain rates between 0.001 and 1 s-1 after casting and subsequent homogenization heat treatment. The true stress-true strain curves of the alloy exhibited a peak stress at a small plastic strain followed by dynamic flow softening. Using the constitutive equation containing the strain rate, peak stress, and temperature, the activation energy for hot deformation in the alloy was determined to be 249.67 kJ/mol, much higher than that (143.4 kJ/mol) for self-diffusion in pure Al. Scanning transmission electron microscopy experiments revealed that Mn- and Cr-containing α-dispersoids formed during homogenization showed a strong pinning effect on dislocations and grain boundaries, which was responsible for the increase in activation energy for hot deformation in the alloy. A threshold stress was consequently introduced and determined in the constitutive equation to count for the dispersoid hardening effect on hot deformation in the alloy. Electron back-scatter diffraction measurements revealed that the softening occurred in the alloy was mainly due to dynamic recovery taking place at relatively large Z values, and that it was dominated by continuous dynamic recrystallization at relatively low Z. In subsequent annealing after hot deformation at large Z, abnormal grain growth could occur, as a result of the critical strain-annealing effect. After upsetting at higher temperatures, the alloy showed superior tensile properties due to a high non-recrystallized area fraction.

  3. The Deformation Behavior and Microstructure Evolution of a Mn- and Cr-Containing Al-Mg-Si-Cu Alloy During Hot Compression and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Nagaumi, Hiromi; Han, Yi; Zhang, Gongwang; Zhai, Tongguang

    2017-03-01

    Hot compression tests on a newly developed Mn- and Cr-containing Al-Mg-Si-Cu alloy were carried out at temperatures ranging from 623 K (350 °C) to 823 K (550 °C) and strain rates between 0.001 and 1 s-1 after casting and subsequent homogenization heat treatment. The true stress-true strain curves of the alloy exhibited a peak stress at a small plastic strain followed by dynamic flow softening. Using the constitutive equation containing the strain rate, peak stress, and temperature, the activation energy for hot deformation in the alloy was determined to be 249.67 kJ/mol, much higher than that (143.4 kJ/mol) for self-diffusion in pure Al. Scanning transmission electron microscopy experiments revealed that Mn- and Cr-containing α-dispersoids formed during homogenization showed a strong pinning effect on dislocations and grain boundaries, which was responsible for the increase in activation energy for hot deformation in the alloy. A threshold stress was consequently introduced and determined in the constitutive equation to count for the dispersoid hardening effect on hot deformation in the alloy. Electron back-scatter diffraction measurements revealed that the softening occurred in the alloy was mainly due to dynamic recovery taking place at relatively large Z values, and that it was dominated by continuous dynamic recrystallization at relatively low Z. In subsequent annealing after hot deformation at large Z, abnormal grain growth could occur, as a result of the critical strain-annealing effect. After upsetting at higher temperatures, the alloy showed superior tensile properties due to a high non-recrystallized area fraction.

  4. Phase equilibrium in Mg-Cu-Y

    NASA Astrophysics Data System (ADS)

    Mezbahul-Islam, Mohammad; Medraj, Mamoun

    2013-10-01

    Magnesium-based bulk metallic glasses (BMG) have potential in applications ranging from biomedical to sports equipment and the Mg-Cu-Y system offers some of the most promising alloys. Phase relations and ternary solubility of the binary and ternary compounds of this system have been experimentally investigated. The Isothermal section of Mg-Cu-Y system at 673 K for the entire composition range has been constructed. Phase relations in the Cu-rich (>66 at.% Cu) region of the Mg-Cu-Y system has been determined for the first time. The homogeneity range of three ternary compounds has been determined. Solidifications behavior of several key alloys have been discussed based on the differential scanning calorimetry (DSC) experiments and thermodynamic calculations. Extensive analysis of the DSC curves has been carried out to relate them to the corresponding phase transformation reactions and temperatures. Some of the most promising metallic glass forming regions have been analyzed using thermodynamic calculations.

  5. Crystalline orientations of Tl2Ba2Ca2Cu3O(x) grains on MgO, SrTiO3, and LaAlO3 substrates

    NASA Technical Reports Server (NTRS)

    Liou, S. H.; Wu, C. Y.

    1992-01-01

    Crystalline orientations of Tl2Ba2Ca2Cu3O(x) grains in magnetron sputtered films on MgO (001), SrTiO3 (001), and LaAlO3 (001) substrates were investigated by scanning electron microscopy. In contrast to the nearly single crystalline films on the lattice matched substrates SrTiO3 and LaAlO3, films on the MgO (001) substrate, being polycrystalline in nature, exhibit several preferred in-plane grain orientations. These orientations agree well with a simplified theory of near-coincidence site lattices between Tl2Ba2Ca2Cu3O(x) and MgO.

  6. In-situ study of precipitates in Al-Zn-Mg-Cu alloys using anomalous small-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Chun-Ming, Yang; Feng-Gang, Bian; Bai-Qing, Xiong; Dong-Mei, Liu; Yi-Wen, Li; Wen-Qiang, Hua; Jie, Wang

    2016-06-01

    In the present work, the precipitate compositions and precipitate amounts of these elements (including the size distribution, volume fraction, and inter-precipitate distance) on the Cu-containing 7000 series aluminum alloys (7150 and 7085 Al alloys), are investigated by anomalous small-angle x-ray scattering (ASAXS) at various energies. The scattering intensity of 7150 alloy with T6 aging treatment decreases as the incident x-ray energy approaches the Zn absorption edge from the lower energy side, while scattering intensity does not show a noticeable energy dependence near the Cu absorption edge. Similar results are observed in the 7085 alloy in an aging process (120 °C) by employing in-situ ASAXS measurements, indicating that the precipitate compositions should include Zn element and should not be strongly related to Cu element at the early stage after 10 min. In the aging process, the precipitate particles with an initial average size of ˜ 8 Å increase with aging time at an energy of 9.60 keV, while the increase with a slower rate is observed at an energy of 9.65 keV as near the Zn absorption edge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11005143, 11405259, and 51274046) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (Grant No. [2014]1685).

  7. Studies on the thermoluminescence spectra and thermal stability of LiF:Mg,Cu, LiF:Mg,Cu,Na and LiF:Mg,Cu,Si

    NASA Astrophysics Data System (ADS)

    Yang, B.; Lu, Q.; Wang, S.; Townsend, P. D.

    2005-09-01

    Four thermoluminescence (TL) peaks at 60-90, 100-130, 130-180 and 180-220 °C (the main peak) were observed from LiF:Mg,Cu, LiF:Mg,Cu,Na and LiF:Mg,Cu,Si. The recorded emission bands were at 375 and 414 nm in LiF:Mg,Cu, at 379 and 424 nm in LiF:Mg,Cu,Na and 378 and 425 nm in LiF:Mg,Cu,Si. The loss of TL intensity and temperature shift of the main peak were observed in LiF:Mg,Cu, LiF:Mg,Cu,Na, LiF:Mg,Cu,Si, LiF:Mg,Cu,Na,Si and LiF:Mg as well as in LiF:Mg,Cu,P, when the sample was heated to above 270 °C. It is suggested that those are the common behaviors in the Mg doped LiF samples, if the concentration of magnesium is properly high. Those behaviors are supposed to be associated with the precipitated phase of Mg and the secondary phase - Mg/(other impurities) complex.

  8. Al-Cu-Zr (050)

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 1 http://dx.doi.org/10.1007/9getType="URL"/> 'Systems from Ag-Al-Ca to Au-Pd-Si' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter 'Al-Cu-Zr (050)' with the content:

  9. The role of partial melting on superplasticity of Si{sub 3}N{sub 4}p/Al-Cu-Mg composite

    SciTech Connect

    Jeong, H.G.; Hiraga, K.; Mabuchi, M.; Higashi, K.

    2000-02-14

    For metal matrix composites containing ceramic reinforcements, stress concentration during tensile deformation occurs at interfaces between the matrix and ceramic, so that, cavitation is excessively developed at interfaces, resulting in premature fracture. In a previous paper, it was suggested that the dominant deformation process of high-strain-rate superplasticity for metal matrix composites if grain boundary sliding (GBS), and that liquid phases in high-strain-rate superplasticity serve both to relax the stress concentration and to limit the appearance of internal cavitation and subsequent failure. In their experimental observation, it has been observed that a large elongation is obtained at the temperature, that is close to the onset temperature for partial melting in the superplastic composites, but the elongation significantly decreases at slightly higher temperatures, which are close to the end temperature for partial melting. This indicates that there is an optimum amount of the liquid phase for obtaining high-strain-rate superplasticity in these materials. Thus, it is important to examine the nature of ceramic-matrix interfaces of superplastic composites in order to understand the origin of superplastic flow related to liquid grain boundaries during high-strain-rate superplastic deformation. The aim of this work is to study the nature of the interfaces and surfaces of the deformed specimens in Si{sub 3}N{sub 4}p/A;-Cu-Mg composites to understand GBS related with liquid phases at interfaces during superplastic flow.

  10. The Effects of Test Temperature, Temper, and Alloyed Copper on the Hydrogen-Controlled Crack Growth Rate of an Al-Zn-Mg-(Cu) Alloy

    SciTech Connect

    G.A. Young, Jr.; J.R. Scully

    2000-09-17

    The hydrogen embrittlement controlled stage II crack growth rate of AA 7050 (6.09 wt.% Zn, 2.14 wt% Mg, 2.19 wt.% Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged, peak aged, and overaged conditions were tested in 90% relative humidity (RH) air at temperatures between 25 and 90 C. At all test temperatures, an increased degree of aging (from underaged to overaged) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed Arrhenius-type temperature dependence with activation energies between 58 and 99 kJ/mol. For both the normal copper and low copper alloys, the fracture path was predominantly intergranular at all test temperatures (25-90 C) in each temper investigated. Comparison of the stage II crack growth rates for normal (2.19 wt.%) and low (0.06 wt.%) copper alloys in the peak aged and overaged tempers showed the beneficial effect of copper additions on stage II crack growth rate in humid air. In the 2.19 wt.% copper alloy, the significant decrease ({approx} 10 times at 25 C) in stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. IN the 0.06 wt.% copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor, {nu}{sub 0}, resulting in a modest ({approx} 2.5 times at 25 C) decrease in crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II crack growth rate. Overaged, copper bearing alloys are not intrinsically immune to hydrogen environment assisted cracking but are more resistant due to an increased apparent activation energy for stage II crack growth.

  11. Al-to-Cu Friction Stir Lap Welding

    NASA Astrophysics Data System (ADS)

    Firouzdor, Vahid; Kou, Sindo

    2012-01-01

    Recently, friction stir welding (FSW) has been used frequently to join dissimilar metals, for instance, Al to Mg, Cu, and steel. The formation of brittle intermetallic compounds often severely limits the strength and ductility of the resultant welds. In the present study, Al-to-Cu lap FSW was studied by welding 6061 Al to commercially pure Cu. Conventional lap FSW was modified by butt welding a small piece of Al to the top of Cu, with a slight pin penetration into the bottom of Al. At travel speeds up to 127 mm/min (5 ipm), the modified welds were about twice the joint strength and five to nine times the ductility of the conventional lap welds. In the conventional lap welds, voids were present along the Al-Cu interface, and fracture occurred along the interface in tensile testing. No such voids were observed in the modified lap welds, and fracture occurred through Cu. Thus, as in the case of Al-to-Mg lap FSW recently studied by the authors, modified lap FSW significantly improved the weld quality in Al-to-Cu lap FSW. At the relatively high travel speed of 203 mm/min (8 ipm), however, modified lap FSW was no longer superior because of channel formation.

  12. The effects of test temperature, temper, and alloyed copper on the hydrogen-controlled crack growth rate of an Al-Zn-Mg-(Cu) alloy

    NASA Astrophysics Data System (ADS)

    Young, George A.; Scully, John R.

    2002-01-01

    The hydrogen-environment embrittlement (HEE)-controlled stage II crack growth rate of AA 7050 (6.09 wt pct Zn, 2.14 wt pct Mg, and 2.19 wt pct Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged (UA), peak-aged (PA), and overaged (OA) conditions were tested in 90 pct relative humidity (RH) air at temperatures between 25 °C and 90 °C. At all test temperatures, an increased degree of aging (from UA to OA) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed an Arrhenius-type temperature dependence, with activation energies between 58 and 99 kJ/mol. For both the normal-copper and low-copper alloys, the fracture path was predominately intergranular at all test temperatures (25 °C to 90 °C) in each temper investigated. Comparison of the stage II HEE crack growth rates for normal- (2.19 wt pct) and low- (0.06 wt pct) copper alloys in the peak PA aged and OA tempers showed a beneficial effect of copper additions on the stage II crack growth rate in humid air. In the 2.19 wt pct copper alloy, the significant decrease (˜10 times at 25 °C) in the stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. In the 0.06 wt pct copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor ( v 0), resulting in a modest (˜2.5 times at 25 °C) decrease in the crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II HEE crack growth rates. The OA, copper-bearing alloys are not intrinsically immune to hydrogen-environment-assisted cracking, but are more resistant due to an increased apparent activation energy for stage II crack growth.

  13. The effects of test temperature, temper, and alloyed copper on the hydrogen-controlled crack growth rate of an Al-Zn-Mg-(Cu) alloy

    NASA Astrophysics Data System (ADS)

    Young, George A.; Scully, John R.

    2002-04-01

    The hydrogen-environment embrittlement (HEE)-controlled stage II crack growth rate of AA 7050 (6.09 wt pct Zn, 2.14 wt pct Mg, and 2.19 wt pct Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged (UA), peak-aged (PA), and overaged (OA) conditions were tested in 90 pct relative humidity (RH) air at temperatures between 25 °C and 90 °C. At all test temperatures, an increased degree of aging (from UA to OA) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed an Arrhenius-type temperature dependence, with activation energies between 58 and 99 kJ/mol. For both the normal-copper and low-copper alloys, the fracture path was predominately intergranular at all test temperatures (25 °C to 90 °C) in each temper investigated. Comparison of the stage II HEE crack growth rates for normal- (2.19 wt pct) and low- (0.06 wt pct) copper alloys in the peak PA aged and OA tempers showed a beneficial effect of copper additions on the stage II crack growth rate in humid air. In the 2.19 wt pct copper alloy, the significant decrease (˜10 times at 25 °C) in the stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. In the 0.06 wt pct copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor ( v 0), resulting in a modest (˜2.5 times at 25 °C) decrease in the crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II HEE crack growth rates. The OA, copper-bearing alloys are not intrinsically immune to hydrogen-environment-assisted cracking, but are more resistant due to an increased apparent activation energy for stage II crack growth.

  14. Interfacial Phenomena in Al/Al, Al/Cu, and Cu/Cu Joints Soldered Using an Al-Zn Alloy with Ag or Cu Additions

    NASA Astrophysics Data System (ADS)

    Pstruś, Janusz; Gancarz, Tomasz

    2014-05-01

    The studies of soldered joints were carried out in systems: Al/solder/Al, Al/solder/Cu, Cu/solder/Cu, where the solder was (Al-Zn)EUT, (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Ag and (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Cu addition. Brazing was performed at 500 °C for 3 min. The EDS analysis indicated that the composition of the layers starting from the Cu pad was CuZn, Cu5Zn8, and CuZn4, respectively. Wetting tests were performed at 500 °C for 3, 8, 15, and 30 min, respectively. Thickness of the layers and their kinetics of growth were measured based on the SEM micrographs. The formation of interlayers was not observed from the side of Al pads. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed.

  15. Influence of RCS on Al-3Mg and Al-3Mg-0.25Sc alloys

    NASA Astrophysics Data System (ADS)

    Bhovi, Prabhakar M.; Venkateswarlu, K.

    2016-02-01

    An influence of repetitive corrugation and straightening (RCS) was studied on Al-3Mg and Al-3Mg-0.25Sc alloys up to eight passes. Each pass consist of a corrugation and followed by straightening. This has resulted in introducing large plastic strain in sample, and thus led to formation of sub-micron grain sizes with high angle grain boundaries. These sub grain formation was eventually resulted in improved mechanical properties. The average grain size of Al-3Mg-0.25Sc alloy after 8 passes yielded to ∼0.6pm. Microhardness, strength properties were evaluated and it suggests that RCS was responsible for high hardness values as compared to the as cast samples. The microhardness values after RCS were 105 HV and 130 HV for Al-3Mg and Al-3Mg-0.25Sc alloys, respectively. Similarly, ∼ 40% improvement in tensile strength from 240 MPa to 370 MPa was observed for Al- 3Mg-0.25Sc alloy after RCS process.Al-3Mg and Al-3Mg-0.25Scalloys exhibited maximum strength of 220 MPa and 370 MPa, respectively. It is concluded that RCS process has a strong influence on Al- 3Mg and Al-3Mg-0.25Sc alloys for obtaining improved mechanical properties and grain refinement. In addition to RCS process and presence of AESc precipitates in Al-3Mg-0.25Sc alloy had a significant role in grain refinement and improved mechanical properties as compared to Al-3Mg alloy.

  16. Ab initio molecular dynamics simulations of short-range order in Zr50Cu45Al5 and Cu50Zr45Al5 metallic glasses

    DOE PAGES

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; ...

    2016-02-01

    Comparative analysis between Zr-rich Zr50Cu45Al5 and Cu-rich Cu50Zr45Al5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr50Cu45Al5 and Cu50Zr45Al5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons < 0,0,12,0 > is dominant, and in the Cu-rich one the distorted icosahedral orders, especially < 0,2,8,2 > and < 0,2,8,1 >, are prominent. And the < 0,2,8,2 > polyhedra in Cu50Zr45Al5more » MG mainly originate from Al-centered clusters, while the < 0,0,12,0 > in Zr50Cu45Al5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. Lastly, the relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr50Cu45Al5.« less

  17. Development of reproducible and increased strength properties in thick extrusions of low-alloy Al-Zn-Mg-Cu based AA 7075

    SciTech Connect

    Mukhopadhyay, A.K.

    1997-11-01

    The present article deals with the studies undertaken to resolve an industrial problem, where the desired minimum tensile properties in the T651 temper, i.e., 0.2 pct PS = 530 MPa, UTS = 580 MPa, and elongation (in 50-mm gage length) = 7 pct, were difficult to obtain in a reproducible manner in low-alloy (i.e., alloy containing major alloying elements in amounts not greater than those specified by the nominal compositions in the specification) AA 7075 round bar extrusions having 80-mm diameter. The present results that the use of the two-step artificial aging treatment enables higher strength properties to be achieved in the alloy with reduced Zn and Mg contents has an additional advantage in that the susceptibility to SCC is known to reduce with decreasing Zn + Mg contents in this alloy series. This, together with the previously documented results that the strength properties of these materials subjected to the two-step artificial aging treatments (employed for increasing the SCC resistance) are not affected by the time delay between quenching and aging, should make the use of the two-step artificial aging treatment commercially more attractive compared to the single-step artificial aging treatment used for the T6/T651 temper.

  18. Interdiffusion in the Mg-Al system and Intrinsic Diffusion in (Al3Mg2) Phase

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Kulkarni, Nagraj S; Sohn, Yong Ho

    2011-01-01

    Increasing use and development of lightweight Mg-alloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As a strengthening component, Al is one of the most important and common alloying elements for Mg-alloys. In this study, solid-to-solid diffusion couple techniques were employed to examine the interdiffusion between pure Mg and Al. Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopies (SEM) were employed to observe the formation of the intermetallics -Al12Mg17 and -Al3Mg2, but not -phase. Concentration profiles were determined using X-ray energy dispersive spectroscopy (XEDS). The growth constants and activation energies were determined for each intermetallic phase.

  19. Photocatalytic property and structural stability of CuAl-based layered double hydroxides

    SciTech Connect

    Lv, Ming; Liu, Haiqiang

    2015-07-15

    Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV–Vis diffuse reflectance spectrum (UV–vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO{sub 2} reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210 mmol/g h, which was high efficient. In addition, the influence of the different M{sup 2+} on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials. - Graphical abstract: The host–guest calculation models and XRD patterns of CuMAl-LDHs: CuMgAl-LDHs (a), CuZnAl-LDHs (b) and CuNiAl-LDHs (c). - Highlights: • Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) has been synthesized. • CuMgNi shows narrower band gap and more excellent textural properties than other LDHs. • The band gap: CuMgAl based on result from UV–vis analysis. • CuMgAl shows the highest stability and lowest photocatalytic activity, while CuNiAl just opposite.

  20. Role of dopants in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P detectors

    SciTech Connect

    Mohammadi, Kh. Moussavi Zarandi, A.; Afarideh, H.; Shahmaleki, S.

    2013-06-15

    In this study, electronic structure of LiF crystal doped with Mg,Cu,P impurities was studied with WIEN2k code on the basis of FPLAPW+lo method. Results show that in Mg-doped LiF composition, an electronic trap was created with impurity concentration of 1.56% and 3.125%. In this condition, the electronic trap with increasing the percentage of the impurities up to 4.687% is annihilated. It was found, that by doping of Mg and Cu or P simultaneously, a hole-trap is created in valence band. It was realized that in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P, Cu impurity and Li atom, have a key role in creation of levels which lead to create electronic and hole traps. Mg impurity and F atom, only have a role in creation of electronic traps. In addition, P impurity has a main role in creation of the electronic and hole traps in LiF:Mg,Cu,P. The activation energy of electronic and hole trap in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P crystalline lattice were obtained as 0.3 and 5.5 eV, 0.92 and 3.4 eV and 0.75 and 3.1 eV, respectively. - Graphical abstract: Figure (a) and (b) shows changes in electronic structure and band gap energy of LiF crystal due to presence of Mg and Cu, Mg and P ions respectively. - Highlights: • Electronic structure of LiF, LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P materials were studied with WIEN2K code. • In LiF:Mg,Cu and LiF:Mg,Cu,P, Li atom and Cu impurity have a key role in creation of levels. • F atom and Mg impurity only have a role in creation of electronic traps. • In LiF:Mg,Cu,P, P impurity has a main role in creation of electronic and hole traps.

  1. Comparison between the low temperature thermoluminescence spectra in annealed LiF:Mg,Cu, LiF:Mg,Cu,P and LiF:Mg,Cu,Si

    NASA Astrophysics Data System (ADS)

    Yang, B.; Wang, L.; Townsend, P. D.; Gao, H.

    2008-06-01

    Two strong thermal peaks in the wavelength range 220-420 nm have been detected at 128 and 140 K in LiF:Mg,Cu, at 123 and 135 K in LiF:Mg,Cu,P and at 125 and 133 K in LiF:Mg,Cu,Si, respectively. The origin of these main TL peaks is discussed in terms of defect perturbed H-F and VK-e type recombination, respectively. The relative intensity between the two peaks in each sample and the emission spectra are dependent on the dopants. Annealing at 240-390 °C can modify the low temperature TL features, especially in those samples doped with three impurities. The low temperature data give some clues to select most favourable dopants for future LiF-type dosimeters.

  2. Phase Equilibria of ``Cu2O''-``FeO''-CaO-MgO-Al2O3 Slags at PO2 of 10-8.5 atm in Equilibrium with Metallic Copper for a Copper Slag Cleaning Production

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Pizarro, Claudio; Font, Jonkion; Moyano, Alex; Hayes, Peter C.; Jak, Evgueni

    2010-12-01

    Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.

  3. Influence of hot isostatic pressing on the structure and properties of an innovative low-alloy high-strength aluminum cast alloy based on the Al-Zn-Mg-Cu-Ni-Fe system

    NASA Astrophysics Data System (ADS)

    Akopyan, T. K.; Padalko, A. G.; Belov, N. A.

    2015-11-01

    Hot isostatic pressing (HIP) is applied for treatment of castings of innovative low-ally high-strength aluminum alloy, nikalin ATs6N0.5Zh based on the Al-Zn-Mg-Cu-Ni-Fe system. The influence of HIP on the structure and properties of castings is studied by means of three regimes of barometric treatment with different temperatures of isometric holding: t 1 = 505 ± 2°C, p 1 = 100 MPa, τ1 = 3 h (HIP1); t 2 = 525 ± 2°C, p 2 = 100 MPa, τ2 = 3 h (HIP2); and t 3 = 545 ± 2°C, p 3 = 100 MPa, τ3 = 3 h (HIP3). It is established that high-temperature HIP leads to actually complete elimination of porosity and additional improvement of the morphology of second phases. Improved structure after HIP provides improvement properties, especially of plasticity. In particular, after heat treatment according of regime HIP2 + T4 (T4 is natural aging), the alloy plasticity is improved by about two times in comparison with the initial state (from ~6 to 12%). While applying regime HIP3 + T6 (T6 is artificial aging for reaching the maximum strength), the plasticity has improved by more than three times in comparison with the initial state, as after treatment according to regimes HIP1 + T6 and HIP2 + T6 (from ~1.2 to ~5.0%), which are characterized by a lower HIP temperature.

  4. Improving properties of Mg with Al–Cu additions

    SciTech Connect

    Rashad, Muhammad; Pan, Fusheng; Asif, Muhammad; Hussain, Shahid; Saleem, Muhammad

    2014-09-15

    The present work reports improvement in tensile properties of the Mg matrix reinforced with micron-sized copper–aluminum particulate hybrids. The Al–Cu particulate hybrids were incorporated into the Mg matrix through powder metallurgy method. The synthesized alloys exhibited homogeneously dispersed Mg{sub 2}Cu particles in the matrix, therefore leading to a 110% increase in yield strength (221 MPa) and a 72% enhancement in ultimate tensile strength (284 MPa) by addition of 1.0 wt.%Al–0.6 wt.%Cu particle hybrids. Optical microscopy, scanning election microscopy, transmission electron microscopy and X-ray diffraction were used to investigate the microstructure and intermetallic phases of the synthesized alloys. - Highlights: • Mg matrix is reinforced with Al–Cu particulate hybrids. • Powder metallurgic method is used to fabricate the alloys. • Tensile strength and ductility were increased simultaneously.

  5. New quaternary semiconductor Cu2MgSnS4 and Cu2MgSnSe4 for photovoltaics

    NASA Astrophysics Data System (ADS)

    Tse, Kinfai; Zhong, Guohua; Zhang, Yiou; Li, Xiaoguang; Yang, Chunlei; Zhu, Junyi; Zeng, Zhi; Zhang, Zhenyu; Xiao, Xudong

    Element substitution of Zn by Mg and Ca is attempted to overcome the problem of potential fluctuation in Cu2ZnSnS4 and Cu2ZnSnSe4 (CZTSSe) due to prevalence of CuZn + ZnCu defect complex. Through density function theory calculation with hybrid functional, we have shown that Cu2MgSnS4 and Cu2MgSnSe4 (CMTSSe) are stable with respect to secondary phases considered under suitable chemical potential. Stannite CMTSSe is thermodynamically more favorable over the kesterite structure. The alternating Cu and Mg/Sn cation layer of stannite structure may suppress the formation of MgCu antisite due to large stress induced. The electronic and optical properties of CMTSSe are similar to that of CZTSSe with comparable absorption coefficient at the band-edge suggests CMTSSe to be a promising photovoltaic material. The work was supported by the National Major Science Research Program of China under Grant No. 2012CB933700, the Natural Science Foundation of China (Grant Nos. 61274093, 61574157, 11274335, 11504398, 51302303, and 51474132), and the Shenzhen Basic Resear.

  6. Diffusion Brazing of Al6061/15 Vol. Pct Al2O3p Using a Cu-Sn Interlayer

    NASA Astrophysics Data System (ADS)

    Cooke, Kavian O.; Khan, Tahir I.; Oliver, Gossett D.

    2013-06-01

    Diffusion brazing of Al-6061 alloy containing 15 vol. pct Al2O3 particles was attempted using Cu-Sn interlayer. Joint formation was attributed to the solid-state interdiffusion of Cu and Sn followed by eutectic formation and subsequent isothermal solidification. Examination of the joint region using scanning electron microprobe analyzer (EPMA), wavelength dispersive spectroscopy (WDS) and X-ray diffraction (XRD) showed the formation of intermetallic phases such as Al7Cu3Mg3, Mg2Cu6Al5, Cu3Sn, and Mg2Sn. The results indicated an increase in joint strength with increasing bonding time giving the highest joint shear strength of 94 MPa at a bonding duration of 3 hours.

  7. Phonon dispersion relation of Mg-Cu-Gd bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Suthar, P. H.

    2016-05-01

    Collective dynamics and elastic constants of bulk metallic glasses Mg65Cu25Gd10 and Mg60Cu25Gd15 are computed using the Hubbard -Beeby approach and our well recognized model potential. The important ingredients in the present study are the pair potential and local field correction functions (LFCF). The local field correction functions due to Hartree (H), Farid et al (F) and Sarkar Sen et al (S) are employed to investigation the influence of the screening effects on the longitudinal and traversed of phonon modes of glassy system. The results for the elastic constants are found to be in good agreement with experimental data.

  8. Study of Dissolution Process of Solid Cu in Liquid Al

    NASA Astrophysics Data System (ADS)

    Chen, Shuying; Wu, Yang; Chang, Guowei; Zhu, Changxu; Li, Qingchun

    2016-09-01

    The dissolution process of solid Cu in liquid Al influences the compound quality directly when fabricating the copper cladding aluminum (CCA) composite castings utilizing the casting aluminum method. Dissolution rate of solid Cu is investigated utilizing the method of quenching rapidly. Effects of liquid Al temperature and the contact time between solid Cu and liquid Al on the dissolution rate of Cu are investigated; meanwhile, the dissolution mechanism of Cu is explored. Subsequently, the influences of processing parameters on the dissolution thickness of Cu are examined. The results indicate that chemical compounds, such as AlCu2, Cu5Al, CuAl2 and Cu2Al3, may form on the contact surface between solid Cu and liquid Al. These chemical compounds are contributed to decompose the solid Cu, Cu5Al exerts the greatest effect. The dissolution of Cu is affected by the contact time between solid Cu and liquid Al, temperature and cooling method of Cu plate. The dissolution of Cu cannot terminate immediately even though the Cu plate is cooled by the spray. The experimental results will provide a reference for controlling the composite layer thickness.

  9. A DFT study on the complex formation between desferrithiocin and metal ions (Mg(2+), Al(3+), Ca(2+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+)).

    PubMed

    Kaviani, Sadegh; Izadyar, Mohammad; Housaindokht, Mohammad Reza

    2017-04-01

    In recent years, Metal-chelating compounds, namely siderphores have been considered very much because of their crucial role in various fields of the environmental researches. Their importance lies in the fact that they are able to be bonded to a variety of metals in addition to iron. A theoretical study on the structures of desferrithiocin siderphore coordinated to Mg(2+), Al(3+), Ca(2+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+) and Zn(2+) metal ions was carried out, using the CAM-B3LYP/6-31G(d) level of the theory in the water. In order to understand the factors which control the stability, reactivity and the strength of toxic metals excretion as well as microbial uptake of the metal-siderphore complexes, we examined the stability and binding energies of the desferrithiocin and various metal ions with different spin states. The binding affinity of desferrithiocin to Fe(3+) (log β2=23.88) showed that the desferrithiocin can scavenge the excess iron(III) from the labile sources. Also, the binding energy values were well described by addition of the dispersion-corrected D3 functional. Because of the importance of the charge transfer in the complex formation, donor-acceptor interaction energies were evaluated. Based on this analysis, an increase in the effective nuclear charge increases E(2) values. Vibrational analysis showed that the critical bonds (CO stretching and CH bending) are in the range of 1300-1800cm(-1). Finally, some probable correlations between the complexation behavior and quantum chemistry descriptors have been analyzed.

  10. Reduced Cu concentration in CuAl-LPE-grown thin Si layers

    SciTech Connect

    Wang, T.H.; Ciszek, T.F.; Asher, S.; Reedy, R.

    1995-08-01

    Cu-Al has been found to be a good solvent system to grow macroscopically smooth Si layers with thicknesses in tens of microns on cast MG-Si substrates by liquid phase epitaxy (LPE) at temperatures near 900{degrees}C. This solvent system utilizes Al to ensure good wetting between the solution and substrate by removing silicon native oxides, and employs Cu to control Al doping into the layers. Isotropic growth is achieved because of a high concentration of solute silicon in the solution and the resulting microscopically rough interface. The incorporation of Cu in the Si layers, however, was a concern since Cu is a major solution component and is generally regarded as a bad impurity for silicon devices due to its fast diffusivity and deep energy levels in the band gap. A study by Davis shows that Cu will nonetheless not degrade solar cell performance until above a level of 10{sup 17} cm{sup -3}. This threshold is expected to be even higher for thin layer silicon solar cells owing to the less stringent requirement on minority carrier diffusion length. But to ensure long term stability of solar cells, lower Cu concentrations in the thin layers are still preferred.

  11. Structural Characterization of Mg/Al hydrotalcite-like Compounds and their Thermal Stability

    NASA Astrophysics Data System (ADS)

    Zhang, Shuhua; Yang, Siyuan; Wang, Cheng; Liu, Weijun; Gu, Xiaodan; Gan, Wenjun; Xue, Xiaoyu

    2014-03-01

    Hydrotalcite-like compounds, repersented by the formula [M1-x 2 + Mx3+ (OH)2]Xx/n n - . nH2O (M2+ = Ni2+, Mg2+, Cu2+,etc; M3+ = Al3+, Fe3+, etc; Xn- = CO32- , NO3-,etc) possess the brucite-like layers [Mg(OH)2] with positive charge and anionic compounds in the interlayer to form neutral materials. Catalytic effects to decompose NOx from automobile exhaust were highly related with the difference of M2+ and thermal stability because the catylists locate are about 200 ~ 500°. In this paper, Mg-Al-Cu and Mg-Al-Ni hydrotalcite-like compounds were characterized by XRD and FT-IR spectra and the thermal stability were analyzed by TGA and DTA. Even though they both have the typical diffraction peaks of hydrotalcites, but their interlayer spaces are different. Some weak chemical bonds were observed to be formed in Mg-Al-Ni hydrotalcites by FT-IR. Mg-Al-Ni hydrotalcite-like compound degraded at lower temperature, by contrast, Mg-Al-Cu hydrotalcite has the better structural stablilty and thermal stability.

  12. Room Temperature Radiolytic Synthesized Cu@CuAlO2-Al2O3 Nanoparticles

    PubMed Central

    Abedini, Alam; Saion, Elias; Larki, Farhad; Zakaria, Azmi; Noroozi, Monir; Soltani, Nayereh

    2012-01-01

    Colloidal Cu@CuAlO2-Al2O3 bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a 60Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO2-Al2O3 nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO2-Al2O3 nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation. PMID:23109893

  13. Plasma sprayed coatings for containment of Cu-Mg-Si metallic phase change material

    DOE PAGES

    Withey, Elizabeth Ann; Kruizenga, Alan Michael; Andraka, Charles E.; ...

    2016-01-01

    In this study, the performance of Y2O3-stabilized ZrO2 (YSZ), Y2O3, and Al2O3 plasma sprayed coatings are investigated for their ability to prevent attack of Haynes 230 by a near-eutectic Cu-Mg-Si metallic phase change material (PCM) in a closed environment at 820 °C. Areas where coatings failed were identified with optical and scanning electron microscopy, while chemical interactions were clarified through elemental mapping using electron microprobe analysis. Despite its susceptibility to reduction by Mg, the Al2O3 coating performed well while the YSZ and Y2O3 coating showed clear areas of attack. These results are attributed to the evolution of gaseous Mg atmore » 820 °C leading to the formation of MgO and MgAl2O4.« less

  14. Comparative studies of glow peaks and kinetic trapping parameters of LiF(Mg,Cu), LiF(Mg,Cu,P), LiF(Mg,Cu,Si) and LiF(Mg,Cu,Na,Si) single crystals

    NASA Astrophysics Data System (ADS)

    Laopaiboon, R.; Bootjomchai, C.; Pencharee, S.; Laopaiboon, J.

    2014-02-01

    Glow curve structure and kinetic trapping parameter of the thermoluminescent (TL) phosphors based on LiF(Mg,Cu) LiF(Mg,Cu,P) LiF(Mg,Cu,Si) and LiF(Mg,Cu,Na,Si) single crystals were investigated (denoted as SMC, SMCP, SMCS and SMCNS, respectively). Wet mixing and drying before TL phosphors production in single-crystal form were achieved by the Bridgeman method. The transparent solid single crystals were cut to the size of 5.0×5.0×0.6 mm3 for use as thermoluminescence dosimeters (TLD). Four different types of TLD were irradiated with X-ray photon energy 128 keV in the dose of 3 mGy after dual step pre-irradiation annealing. From the glow curve structure, the geometrical factors (μ) were calculated. The graph created by Chen confirms the first-order kinetics. Moreover, the glow curve shape results in more fading of the TLD 100 sample than the SMCS and SMCNS samples. It is evident that the kinetic trapping parameters depend on the type of dopant. The frequency factors of all TLD single crystals are higher than TLD100 (poly-crystal). These results are useful to provide the TL trapping and recombination centers for these materials.

  15. Interdiffusion and Intrinsic Diffusion in the Mg-Al System

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho; Kulkarni, Nagraj S

    2012-01-01

    Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electron microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in the -Al

  16. Electrical properties and initial permeability of Cu-Mg ferrites

    NASA Astrophysics Data System (ADS)

    Ateia, E.; Ahmed, M. A.; Ghouniem, R. M.

    2014-05-01

    A series of polycrystalline spinel ferrites with composition Cu1-xMgxFe2O4 where 0.0 ≤ x ≤ 1 are prepared by the standard ceramic method. The single-phase cubic spinel structure of all the samples has been confirmed from X-ray diffraction analysis. The lattice constant increases linearly with increasing magnesium content obeying Vegard's law. The electrical properties (ɛ‧, and σ) of the prepared samples are measured at different temperatures as a function of applied frequency ranging from 100 kHz up to 5 MHz. The general trend of ɛ‧, and σ is decreased with increasing Mg2+ and increases with increasing temperature. The observed variation of dielectric properties is explained on the basis of Cu2+/Cu1+ ionic concentration as well as the electronic hopping frequency between Fe2+ and Fe3+ ions in the present samples. The data of initial permeability is also discussed.

  17. Growth and Oxidation of Thin Film Al(2)Cu

    SciTech Connect

    SON,KYUNG-AH; MISSERT,NANCY A.; BARBOUR,J. CHARLES; HREN,J.J.; COPELAND,ROBERT GUILD; MINOR,KENNETH G.

    2000-01-18

    Al{sub 2}Cu thin films ({approx} 382 nm) are fabricated by melting and resolidifying Al/Cu bilayers in the presence of a {micro} 3 nm Al{sub 2}O{sub 3} passivating layer. X-ray Photoelectron Spectroscopy (XPS) measures a 1.0 eV shift of the Cu2p{sub 3/2} peak and a 1.6 eV shift of the valence band relative to metallic Cu upon Al{sub 2}Cu formation. Scanning Electron microscopy (SEM) and Electron Back-Scattered Diffraction (EBSD) show that the Al{sub 2}Cu film is composed of 30-70 {micro}m wide and 10-25 mm long cellular grains with (110) orientation. The atomic composition of the film as estimated by Energy Dispersive Spectroscopy (EDS) is 67 {+-} 2% Al and 33 {+-} 2% Cu. XPS scans of Al{sub 2}O{sub 3}/Al{sub 2}Cu taken before and after air exposure indicate that the upper Al{sub 2}Cu layers undergo further oxidation to Al{sub 2}O{sub 3} even in the presence of {approx} 5 nm Al{sub 2}O{sub 3}. The majority of Cu produced from oxidation is believed to migrate below the Al{sub 2}O{sub 3} layers, based upon the lack of evidence for metallic Cu in the XPS scans. In contrast to Al/Cu passivated with Al{sub 2}O{sub 3}, melting/resolidifying the Al/Cu bilayer without Al{sub 2}O{sub 3} results in phase-segregated dendritic film growth.

  18. First-principles study of Be doped CuAlS2 for p-type transparent conductive materials

    NASA Astrophysics Data System (ADS)

    Huang, Dan; Zhao, Yu-Jun; Tian, Ren-Yu; Chen, Di-Hu; Nie, Jian-Jun; Cai, Xin-Hua; Yao, Chun-Mei

    2011-06-01

    CuAlS2 has attracted much attention recently as a p-type transparent conductive material. In this paper, we investigate the site preference of substitutional Be in CuAlS2 and the transition level of BeAl using the first-principles calculation. We find that Be would be doped effectively at Al sites in CuAlS2 as a good p-type dopant. In addition, we speculate that Be-Mg or Be-Zn codoped CuAlS2 could have a mobility enhancement and thus a good p-type conductivity due to low lattice distortion.

  19. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression.

    PubMed

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-08-13

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s(-1) (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g(-1) for the CuAlZn alloy and 5.0 J g(-1) for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  20. The in vitro biocompatibility and macrophage phagocytosis of Mg17Al12 phase in Mg-Al-Zn alloys.

    PubMed

    Liu, Chen; He, Peng; Wan, Peng; Li, Mei; Wang, Kehong; Tan, Lili; Zhang, Yu; Yang, Ke

    2015-07-01

    Mg alloys are gaining interest for applications as biodegradable medical implant, including Mg-Al-Zn series alloys with good combination of mechanical properties and reasonable corrosion resistance. However, whether the existence of second phase particles in the alloys exerts influence on the biocompatibility is still not clear. A deeper understanding of how the particles regulate specific biological responses is becoming a crucial requirement for their subsequent biomedical application. In this work, the in vitro biocompatibility of Mg17Al12 as a common second phase in biodegradable Mg-Al-Zn alloys was investigated via hemolysis, cytotoxicity, cell proliferation, and cell adhesion tests. Moreover, osteogenic differentiation was evaluated by the extracellular matrix mineralization assay. The Mg17Al12 particles were also prepared to simulate the real situation of second phase in the in vivo environment in order to estimate the cellular response in macrophages to the Mg17Al12 particles. The experimental results indicated that no hemolysis was found and an excellent cytocompatibility was also proved for the Mg17Al12 second phase when co-cultured with L929 cells, MC3T3-E1 cells and BMSCs. Macrophage phagocytosis co-culture test revealed that Mg17Al12 particles exerted no harmful effect on RAW264.7 macrophages and could be phagocytized by the RAW264.7 cells. Furthermore, the possible inflammatory reaction and metabolic way for Mg17Al12 phase were also discussed in detail.

  1. Pretreatment of Al and Mg Alloys - Structural and Electronic

    DTIC Science & Technology

    2007-05-17

    specific to discussion Applications on structural alloys and castings OEM and depot/repair/rebuild operations Magnesium Alloys Castings – AZ91 , ZE41...in repair/rework – TCP as conversion coating for both Mg and Al?? Needs for Mg Mg specific resin systems for barrier properties – Nonchromate

  2. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    NASA Astrophysics Data System (ADS)

    Amani, H.; Soltanieh, M.

    2016-08-01

    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods ( i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  3. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liang, Shuhua; Yang, Qing; Wang, Xianhui

    2016-11-01

    Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl2 + HCl solution. Compared to Cu40Al60 and Cu45Al55 alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu17Al83 alloy as the starting alloy. The growth direction of the FDC is <110>, and all angles between the trunks and branches are 60°. Nanoscale Cu2O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu17Al83 alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl2 intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  4. Intermetallic compound formation at Cu-Al wire bond interface

    NASA Astrophysics Data System (ADS)

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du, Yong

    2012-12-01

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 °C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable θ'-CuAl2 IMC phase (tetragonal, space group: I4¯m2, a = 0.404 nm, c = 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable θ'-CuAl2 phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and θ'-CuAl2, which can minimize lattice mismatch for θ'-CuAl2 to grow on Cu.

  5. Laser-Ultrasonic Inspection of MG/AL Castings

    SciTech Connect

    Blouin, Alain; Levesque, Daniel; Monchalin, Jean-Pierre; Baril, Eric; Fischersworring-Bunk, Andreas

    2005-04-09

    Laser-ultrasonics is used to assess the metallurgical bond between Mg/Al materials in die-cast Magnesium/Aluminum composite. The acoustic impedances of Mg, Al and air are such that the amplitude of ultrasonic echoes reflected back from a void is many times larger than the amplitude of those reflected back from a well-bonded interface. In addition, the polarity of echoes from a void is inverted compared to that from a well-bonded interface. Laser-ultrasonic F-SAFT is also used for imaging tilted Mg/Al interfaces. Experimental setup, signal processing and results for detecting voids in the Mg/Al interface of cast parts are presented.

  6. Effect of Cu Addition to Zn-12Al Alloy on Thermal Properties and Wettability on Cu and Al Substrates

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Pstruś, Janusz; Mosińska, Sylwia; Pawlak, Sylwia

    2016-01-01

    The thermal properties, electrical resistivity, thermal linear expansion and tensile strength of a new high-temperature lead-free solder based on a eutectic Zn-Al alloy with 0.5, 1.0, or 1.5 at. pct Cu added were studied. Wettability studies on Cu substrate were performed with flux at 773 K (500 °C) for 60, 180, 240, 900, 1800, and 3600 seconds, and for 480 seconds at 733 K, 753 K, 773 K, 793 K, and 823 K (460 °C, 480 °C, 500 °C, 520 °C, and 550 °C, respectively). The experiment was designed to demonstrate the effect of the addition of Cu on the kinetics of the formation and growth of the CuZn, Cu5Zn8, CuZn4, and Al4Cu9 phases, which were identified by X-ray diffraction analysis. Wetting tests were also performed on the Al substrate, for 15 and 30 seconds at 773 K and 793 K (500 °C and 520 °C, respectively). Very low contact angles on Al pads were obtained. The electrical resistivity of Zn-Al-Cu alloys was slightly higher than that of the ZnAl eutectic alloy. The present results are discussed with respect to the available literature on Zn-Al and Zn-Al-Cu alloys.

  7. Spontaneously intermixed Al-Mg barriers enable corrosion-resistant Mg/SiC multilayer coatings

    DOE PAGES

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; ...

    2012-07-24

    Magnesium/silicon carbide (Mg/SiC) has the potential to be the best-performing reflective multilayercoating in the 25–80 nm wavelength region but suffers from Mg-related corrosion, an insidious problem which completely degrades reflectance. We have elucidated the origins and mechanisms of corrosion propagation within Mg/SiC multilayers. Based on our findings, we have demonstrated an efficient and simple-to-implement corrosion barrier for Mg/SiC multilayers. In conclusion, the barrier consists of nanometer-scale Mg and Al layers that intermix spontaneously to form a partially amorphous Al-Mg layer and is shown to prevent atmospheric corrosion while maintaining the unique combination of favorable Mg/SiC reflective properties.

  8. Influence of Cu-Interlayer Thickness on Microstructures and Mechanical Properties of MIG-Welded Mg-Steel Joints

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Sun, D. Q.; Sun, Y.

    2016-03-01

    The joining of AZ31B Mg alloy to Q235 steel was realized by metal inert-gas arc welding using Cu-interlayer. Microstructure characteristics and mechanical properties of Mg-steel joints with Cu-interlayer of different thicknesses were investigated. The results indicated that acceptable joints with sound appearance could be obtained by adjusting the thickness to the range of 0.1-0.2 mm. In particular, at the thickness of 0.15 mm, the average tensile strength reached a maximum of 190 MPa, representing a 79% joint efficiency relative to the Mg base metal. Further increasing the thickness would cause more formation of coarse and thick Mg-Cu eutectic structure and Mg-Al-Cu ternary phase, which resulted in the decrease of joint strength. Therefore, the best thickness of Cu-interlayer to obtain high strength of Mg-steel MIG-welded joint was in the range of 0.1-0.15 mm. The average microhardness reached the maximum value in the reaction layer because of the presence of FeAl intermetallic compounds.

  9. Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glasses

    NASA Astrophysics Data System (ADS)

    Păduraru, A.; Andersen, U. G.; Thyssen, A.; Bailey, N. P.; Jacobsen, K. W.; Schiøtz, J.

    2010-07-01

    The formation of shear bands during plastic deformation of Cu0.50Zr0.50 and Mg0.85Cu0.15 metallic glasses is studied using atomic-scale computer simulations. The atomic interactions are described using realistic many-body potentials within the effective medium theory, and are compared with similar simulations using a Lennard-Jones description of the material. The metallic glasses are deformed both in simple shear and in a simulated nanoindentation experiment. Plastic shear localizes into shear bands with a width of approximately 5 nm in CuZr and 8 nm in MgCu. In simple shear, the shear band formation is very clear, whereas only incipient shear bands are seen in nanoindentation. The shear band formation during nanoindentation is sensitive to the indentation velocity, indenter radius and the cooling rate during the formation of the metallic glass. For comparison, a similar nanoindentation simulation was made with a nanocrystalline sample, showing how the presence of a polycrystalline structure leads to a different and more spatially distributed deformation pattern, where dislocation avalanches play an important role.

  10. Al addition effect of bulk MgB 2 superconductor

    NASA Astrophysics Data System (ADS)

    Shinohara, K.; Ikeda, H.; Yoshizaki, R.

    2007-10-01

    The properties of transport and magnetization have been investigated for bulk MgB2Alx superconductor with Al addition (x = 0, 0.5, 1 wt%). MgB2 bulk samples sintered at different temperatures at 650-740 °C were prepared in the undoped state. The temperature and applied field dependencies of resistivity and magnetization were measured for the samples. The sample sintered at 690 °C exhibited the highest critical current density (Jc) and the lowest resistivity. This undoped sample was chosen as a criterion sample, and the effect of Al addition on the MgB2 bulk was studied from the transport and magnetization properties in a magnetic field. For MgB2Alx bulk samples sintered at 690 °C, the resistivity increased and Jc decreased as amount of Al was increased.

  11. Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    NASA Astrophysics Data System (ADS)

    Yan, F.; McKay, B. J.; Fan, Z.; Chen, M. F.

    2012-01-01

    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg2Si particles evenly distributed throughout an α-Al matrix with a β-Al3Mg2 fully divorced eutectic phase observed in interdendritic regions. The Mg2Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg2Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al3Mg2 eutectic phase with no evidence of any effect on the primary Mg2Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS.

  12. Al-to-Mg Friction Stir Welding: Effect of Material Position, Travel Speed, and Rotation Speed

    NASA Astrophysics Data System (ADS)

    Firouzdor, Vahid; Kou, Sindo

    2010-11-01

    Because joining dissimilar metals is often difficult by fusion joining, interest has been growing rapidly in using friction stir welding (FSW), which is considered a revolutionary solid-state welding process, as a new way to join dissimilar metals such as Al alloys to Mg alloys, Cu, and steels. Butt FSW of Al to Mg alloys has been studied frequently recently, but the basic issue of how the welding conditions affect the resultant joint strength still is not well understood. Using the widely used alloys 6061 Al and AZ31 Mg, the current study investigated the effect of the welding conditions, including the positions of Al and Mg with respect to the welding tool, the tool travel speed, and the tool rotation speed on the weld strength. Unlike previous studies, the current study (1) determined the heat input by both torque and temperature measurements during FSW, (2) used color metallography with Al, Mg, Al3Mg2, and Al12Mg17 all shown in different colors to reveal clearly the formation of intermetallic compounds and material flow in the stir zone, which are known to affect the joint strength significantly, and (3) determined the windows for travel and rotation speeds to optimize the joint strength for various material positions. The current study demonstrated clearly that the welding conditions affect the heat input, which in turn affects (1) the formation of intermetallics and even liquid and (2) material flow. Thus, the effect of welding conditions in Al-to-Mg butt FSW on the joint strength now can be explained.

  13. Plasma sprayed coatings for containment of Cu-Mg-Si metallic phase change material

    SciTech Connect

    Withey, Elizabeth Ann; Kruizenga, Alan Michael; Andraka, Charles E.; Gibbs, Paul J.

    2016-01-01

    In this study, the performance of Y2O3-stabilized ZrO2 (YSZ), Y2O3, and Al2O3 plasma sprayed coatings are investigated for their ability to prevent attack of Haynes 230 by a near-eutectic Cu-Mg-Si metallic phase change material (PCM) in a closed environment at 820 °C. Areas where coatings failed were identified with optical and scanning electron microscopy, while chemical interactions were clarified through elemental mapping using electron microprobe analysis. Despite its susceptibility to reduction by Mg, the Al2O3 coating performed well while the YSZ and Y2O3 coating showed clear areas of attack. These results are attributed to the evolution of gaseous Mg at 820 °C leading to the formation of MgO and MgAl2O4.

  14. Biocompatibility Assessment of Novel Bioresorbable Alloys Mg-Zn-Se and Mg-Zn-Cu for Endovascular Applications: In- Vitro Studies.

    PubMed

    Persaud-Sharma, Dharam; Budiansky, Noah; McGoron, Anthony J

    2013-01-01

    Previous studies have shown that using biodegradable magnesium alloys such as Mg-Zn and Mg-Zn-Al possess the appropriate mechanical properties and biocompatibility to serve in a multitude of biological applications ranging from endovascular to orthopedic and fixation devices. The objective of this study was to evaluate the biocompatibility of novel as-cast magnesium alloys Mg-1Zn-1Cu wt.% and Mg-1Zn-1Se wt.% as potential implantable biomedical materials, and compare their biologically effective properties to a binary Mg-Zn alloy. The cytotoxicity of these experimental alloys was evaluated using a tetrazolium based- MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and a lactate dehydrogenase membrane integrity assay (LDH). The MTS assay was performed on extract solutions obtained from a 30-day period of alloy immersion and agitation in simulated body fluid to evaluate the major degradation products eluted from the alloy materials. Human foreskin fibroblast cell growth on the experimental magnesium alloys was evaluated for a 72 hour period, and cell death was quantified by measuring lactate dehydrogenase concentrations. Both Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. The Mg-Zn-Cu alloy was found to completely degrade within 72 hours, resulting in lower human foreskin fibroblast cell viability. The Mg-Zn-Se alloy was shown to be less cytotoxic than both the Mg-Zn-Cu and Mg-Zn alloys.

  15. Biocompatibility Assessment of Novel Bioresorbable Alloys Mg-Zn-Se and Mg-Zn-Cu for Endovascular Applications: In- Vitro Studies

    PubMed Central

    Budiansky, Noah; McGoron, Anthony J.

    2013-01-01

    Previous studies have shown that using biodegradable magnesium alloys such as Mg-Zn and Mg-Zn-Al possess the appropriate mechanical properties and biocompatibility to serve in a multitude of biological applications ranging from endovascular to orthopedic and fixation devices. The objective of this study was to evaluate the biocompatibility of novel as-cast magnesium alloys Mg-1Zn-1Cu wt.% and Mg-1Zn-1Se wt.% as potential implantable biomedical materials, and compare their biologically effective properties to a binary Mg-Zn alloy. The cytotoxicity of these experimental alloys was evaluated using a tetrazolium based- MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and a lactate dehydrogenase membrane integrity assay (LDH). The MTS assay was performed on extract solutions obtained from a 30-day period of alloy immersion and agitation in simulated body fluid to evaluate the major degradation products eluted from the alloy materials. Human foreskin fibroblast cell growth on the experimental magnesium alloys was evaluated for a 72 hour period, and cell death was quantified by measuring lactate dehydrogenase concentrations. Both Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. The Mg-Zn-Cu alloy was found to completely degrade within 72 hours, resulting in lower human foreskin fibroblast cell viability. The Mg-Zn-Se alloy was shown to be less cytotoxic than both the Mg-Zn-Cu and Mg-Zn alloys. PMID:24058329

  16. Structure and magnetic properties of Ni/Cu/Fe/MgO(001) films.

    PubMed

    Lauhoff, G; Vaz, C A F; Bland, J A C

    2009-04-15

    The structural and magnetic properties of thin Ni films grown on Cu/Fe/MgO(001) and Cu/MgO(001) buffer layers are investigated and compared to those grown on Cu/Si(001). The use of an Fe seed layer a few monolayers thick leads to the epitaxial growth of high surface quality Cu(001) buffer layers on MgO(001), while Cu growth on the bare MgO(001) substrate results in polycrystalline films. Magneto-optic Kerr effect magnetometry shows that Ni films grown on Cu/Fe/MgO(001) exhibit dominant perpendicular magnetic anisotropy up to ∼90 Å, which is similar to that of Ni films grown on Cu/Si(001). The polycrystalline Ni films also exhibit perpendicular magnetic remanence, but with a dominant in-plane magnetization component.

  17. Effect of aluminum substitution on structural and electromagnetic properties of nanocrystalline MgCuMn ferrites

    SciTech Connect

    Ramesh, T. E-mail: ramanasarabu@gmail.com; Kumar, S. Senthil; Shinde, R. S.; Murthy, S. R.

    2015-06-24

    The effect of substitution of nonmagnetic Al{sup 3+} ions on the structural and electromagnetic properties were studied in nanocrystalline ferrite series of Mg{sub 0.8}Cu{sub 0.2}Al{sub x}Fe{sub 1.95-x}Mn{sub 0.05}O{sub 4} where x varies 0-0.4 in steps of 0.1. This series was synthesized by using microwave hydrothermal method. The nanocrystalline ferrite phase was observed at temperature 150°C/40 min. Synthesized powders were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The synthesized powders were densified using microwave sintering method at 950°C/40 min. The sintered samples were characterized using XRD. Surface morphology was observed by using field effective scanning electron microscopy (FESEM). The electrical and magnetic properties were measured at room temperature. These results led us to interfere that the values of d.c resistivity increases and dielectric constant, initial permeability, saturation magnetization and Curie temperature were observed to be decreased with the substitution of Al{sup 3+} ions with those of Fe{sup 3+}. The low dielectric and magnetic losses and low magnetization exhibited by aluminum substituted MgCuMn ferrites makes them find applications in microwave devices.

  18. Morphological instabilities in Mg-7.7 at % Al

    SciTech Connect

    Maitrejean, S.; Veron, M.; Brechet, Y.; Purdy, G.R.

    1999-11-05

    The process of solid-solid discontinuous precipitation in the undercooled state is increasingly well documented. However, rather less is known about the stability of the discontinuous transformation products against prolonged ageing or against dissolution on reheating. In this contribution, the authors report on the response to ageing and to re-heating of the discontinuous precipitation product in an Mg-Al alloy. This system was chosen in part because of the well-established kinetic and compositional data now available for the discontinuous product, a lamellar composite of the solid solution {alpha} phase (an h.c.p. solution of Al in Mg), which grows at lower temperatures in concert with the intermediate compound Mg{sub 17}Al{sub 12}.

  19. Mercury embrittlement of Cu-Al alloys under cyclic loading

    NASA Technical Reports Server (NTRS)

    Regan, T. M.; Stoloff, N. S.

    1977-01-01

    The effect of mercury on the room temperature, high cycle fatigue properties of three alloys: Cu-5.5 pct Al, Cu-7.3 pct Al, and Cu-6.3 pct Al-2.5 pct Fe has been determined. Severe embrittlement under cyclic loading in mercury is associated with rapid crack propagation in the presence of the liquid metal. A pronounced grain size effect is noted under mercury, while fatigue properties in air are insensitive to grain size. The fatigue results are discussed in relation to theories of adsorption-induced liquid metal embrittlement.

  20. The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions.

    PubMed

    See, Kimberly A; Chapman, Karena W; Zhu, Lingyang; Wiaderek, Kamila M; Borkiewicz, Olaf J; Barile, Christopher J; Chupas, Peter J; Gewirth, Andrew A

    2016-01-13

    Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, (27)Al and (35)Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore the active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ-Cl)3·6THF](+) complex that is observed in the solid state structure. Additionally, conditioning creates free Cl(-) in the electrolyte solution, and we suggest the free Cl(-) adsorbs at the electrode surface to enhance Mg electrodeposition.

  1. An impedance study of complex Al/Cu-Al2O3 electrode

    NASA Astrophysics Data System (ADS)

    Denisova, J.; Katkevics, J.; Erts, D.; Viksna, A.

    2011-06-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate different Cu deposition regimes on Al surface obtained by internal electrolysis and to characterize properties of fabricated electrodes. EIS experimental data confirmed that Cu deposition by internal electrolysis is realized and the complex electrode system is obtained. The main difficulty in preparation of Al/Cu electrodes is to prevent aluminium oxidation before and during electrochemical deposition of Cu particles. In this work NaCl, CH3COONa, K2SO4, mono- and diammonium citrate electrolytes were examined to determine their suitability for impedance measurements. Al/Cu-Al2O3 electrode composition was approved by equivalent circuit analysis, optical and scanning electron microscope methods. The most optimal Cu deposition mode using internal electrolysis was determined. The obtained results are promising for future electrochemical fabrication of nanostructures directly on Al surfaces by internal electrolysis.

  2. Heterogeneity of Mg Isotopes and Variable ^26Al/^27Al Ratio in FUN CAIs

    NASA Astrophysics Data System (ADS)

    Park, C.; Nagashima, K.; Hutcheon, I. D.; Wasserburg, G. J.; Papanastassiou, D. A.; Davis, A. M.; Huss, G. R.; Krot, A. N.

    2013-09-01

    We report high-precision Mg-isotope data of individual minerals from the Axtell 2271, BG82DH8, EK1-4-1, C1, TE, and CG14 FUN CAIs, which shows variations in both Mg-isotope ratio and ^26Al/^27Al ratio.

  3. Removal of boron and fluoride in wastewater using Mg-Al layered double hydroxide and Mg-Al oxide.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2017-03-01

    Mg-Al layered double hydroxide intercalated with NO3(-) and Mg-Al oxide were found to remove hazardous materials such as B and As, as well as Cl(-) and SO4(2-), from artificial and real hot spring wastewater. However, compared with the mixture of Al2(SO4)3 and Ca(OH)2, both adsorbents were inferior for the removal of B from real hot spring wastewater. Both adsorbents were also found to remove F(-) and PO4(3-) from artificial semiconductor plant wastewater. Both adsorbents have the same ability to remove B from landfill wastewater as the mixture of Al2(SO4)3 and Ca(OH)2; furthermore, both remove Cl(-), Br(-), and SO4(2-). The benefit of Mg-Al layered double hydroxide intercalated with NO3(-) is that it does not require neutralization after the treatment. Overall, it can be stated that among the materials tested, Mg-Al layered double hydroxide intercalated with NO3(-) is the most suitable adsorbent for the treatment of hot spring and landfill wastewater.

  4. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects

    PubMed Central

    Liu, Chen; Fu, Xuekun; Pan, Haobo; Wan, Peng; Wang, Lei; Tan, Lili; Wang, Kehong; Zhao, Ying; Yang, Ke; Chu, Paul K.

    2016-01-01

    A series of biodegradable Mg-Cu alloys is designed to induce osteogenesis, stimulate angiogenesis, and provide long-lasting antibacterial performance at the same time. The Mg-Cu alloys with precipitated Mg2Cu intermetallic phases exhibit accelerated degradation in the physiological environment due to galvanic corrosion and the alkaline environment combined with Cu release endows the Mg-Cu alloys with prolonged antibacterial effects. In addition to no cytotoxicity towards HUVECs and MC3T3-E1 cells, the Mg-Cu alloys, particularly Mg-0.03Cu, enhance the cell viability, alkaline phosphatase activity, matrix mineralization, collagen secretion, osteogenesis-related gene and protein expressions of MC3T3-E1 cells, cell proliferation, migration, endothelial tubule forming, angiogenesis-related gene, and protein expressions of HUVECs compared to pure Mg. The favorable osteogenesis and angiogenesis are believed to arise from the release of bioactive Mg and Cu ions into the biological environment and the biodegradable Mg-Cu alloys with osteogenesis, angiogenesis, and long-term antibacterial ability are very promising in orthopedic applications. PMID:27271057

  5. Model for nonprotective oxidation of Al-Mg alloys

    SciTech Connect

    Zayan, M.H. )

    1990-12-01

    The oxidation of Al-5Mg alloy has been studied at 550 C in dry air. Morphological details of the MgO layers which develop on this alloy during high-temperature oxidation have been studied by scanning electron microscopy (SEM). A localized detachment of the protective, adherent MgO layer was found, which is caused by voids formed by vacancy condensation at the metal-oxide interface. The source of these vacancies was the outward diffusion of Mg though the oxide layer. Continuing growth of these voids was responsible for cracking of oxide ridges and nodules, as well as the growth of new MgO having a cauliflower morphology. A model describing the process of the outward diffusion is given.

  6. Low temperature studies in LiF:Mg,Cu,P.

    PubMed

    Mathur, V K; Bandyopadhyay, P K; Barkyoumb, J H; Cai, G G

    2002-01-01

    Despite extensive investigations carried out in LiF:Mg,Cu,P, the nature of the emission centre is not clearly understood. Results of X ray excited emission in this material at room temperature and at 16 K are presented to obtain more data that can throw light on the emission characteristics of this material. At room temperature only a single emission peak is seen around 390 nm but at 16 K the emission appears to consist of more than one emission band. The emission spectra could be fitted with three bands with peaks at 332, 385 and 447 nm. The X ray excited emission at 16 K after annealing at 573 K for 5 min suppresses the 332 nm emission but enhances 447 nm emission. Moreover, annealing at 573 K greatly reduces the emission intensity, which signifies that the luminescent centres are also destroyed in this process. Temperature-dependent X ray excited fluorescence below room temperature provides evidence of the existence of shallow traps, which give rise to a thermoluminescence peak around 130 K. On the basis of the present investigations it is proposed that the complex nature of the emission may be related to the formation of donor-acceptor pairs in this material. The possible nature of this donor-acceptor complex is discussed.

  7. Composition dependence of the electronic properties of Al-Cu-Fe and Al-Cu-Ru-Si semimetallic quasicrystals

    NASA Astrophysics Data System (ADS)

    Pierce, F. S.; Bancel, P. A.; Biggs, B. D.; Guo, Q.; Poon, S. J.

    1993-03-01

    Electronic transport properties and specific heats of ordered icosahedral phase alloys in the Al-Cu-Ru-Si and Al-Cu-Fe systems are examined, and comparison with high-quality rhombohedral (3/2) approximant phase samples of Al-Cu-Fe is made. Strong temperature dependence and sensitivity to composition changes of these properties are observed. The similarity of transport properties between the icosahedral (i) and rhombohedral (r) phases of Al62.5Cu26.5Fe11 is noted. The results can be qualitatively interpreted in terms of band structure. There appears to be sufficient evidence for a rapidly varying conductivity spectrum σ(E) in the ordered i phases. However, important questions concerning the physics of these semimetallic quasicrystals remain to be answered.

  8. Production of Mg and Al Auger electrons by noble gas ion bombardment of Mg and Al surfaces

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Pepper, S. V.

    1976-01-01

    Relative production efficiencies of Mg and Al Auger electrons by He, Ne, Ar, Kr, and Xe ion bombardment are reported as a function of ion energy for energies not exceeding 3 keV. The experimental apparatus employed consisted of a LEED-Auger system equipped with an ion gun and a four-grid retarding-potential analyzer. It is found that: (1) the shape of the ion-excited Auger signal was independent of the rare gas and quite symmetric; (2) the Al signal was about an order of magnitude smaller than the Mg signal for a given bombarding species and ion-gun voltage; (3) no signal was observed for He(+) bombardment under any of the experimental conditions; (4) signal strengths were independent of temperature and ion dose; (5) the Auger production efficiencies differed by no more than a factor of two among the different gases - except for He(+) - on a given metal; (6) all the signal strengths increased with increasing ion-gun voltage, with no maximum exhibited; and (7) the apparent threshold energy for the Al signal was higher than that for the Mg signal. The differences between the results for the two metals are attributed to the fact that the Al 2p orbital lies deeper in energy and closer to the nucleus than the corresponding Mg orbital.

  9. Characterization of Al-Mg Alloy Aged at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Yi, Gaosong; Cullen, David A.; Littrell, Kenneth C.; Golumbfskie, William; Sundberg, Erik; Free, Michael L.

    2017-02-01

    Long-term aged [343 K (70 °C) for 30 months and natural exposure for over 10 years] Al 5456 H116 samples were characterized using electron backscatter diffraction (EBSD), scanning transmission electron microscopy (STEM), state-of-the-art energy-dispersive X-ray spectroscopy (EDS) systems, and small-angle neutron scattering (SANS). ASTM G-67 mass loss tests of the sensitized Al 5456 alloy samples were conducted. Intragranular Mg-rich precipitates, such as Guinier-Preston (GP) zones, were confirmed in Al 5456 H116 aged at 343 K (70 °C) for 30 months, and the volume of these precipitates is 1.39 pct. β' phase is identified at the grain boundary of a navy ship sample, while high-resolution STEM results reveal no intragranular precipitates. Intergranular corrosion (IGC) of Al 5456 was found to be related to the continuity of intergranular precipitates.

  10. Characterization of Al-Mg Alloy Aged at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Yi, Gaosong; Cullen, David A.; Littrell, Kenneth C.; Golumbfskie, William; Sundberg, Erik; Free, Michael L.

    2017-04-01

    Long-term aged [343 K (70 °C) for 30 months and natural exposure for over 10 years] Al 5456 H116 samples were characterized using electron backscatter diffraction (EBSD), scanning transmission electron microscopy (STEM), state-of-the-art energy-dispersive X-ray spectroscopy (EDS) systems, and small-angle neutron scattering (SANS). ASTM G-67 mass loss tests of the sensitized Al 5456 alloy samples were conducted. Intragranular Mg-rich precipitates, such as Guinier-Preston (GP) zones, were confirmed in Al 5456 H116 aged at 343 K (70 °C) for 30 months, and the volume of these precipitates is 1.39 pct. β' phase is identified at the grain boundary of a navy ship sample, while high-resolution STEM results reveal no intragranular precipitates. Intergranular corrosion (IGC) of Al 5456 was found to be related to the continuity of intergranular precipitates.

  11. Divorced Eutectic Solidification of Mg-Al Alloys

    NASA Astrophysics Data System (ADS)

    Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo

    2015-08-01

    We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

  12. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    SciTech Connect

    Lu, Yuan; Zuo, Xu; Feng, Min; Shao, Bin

    2014-05-07

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  13. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Feng, Min; Shao, Bin; Zuo, Xu

    2014-05-01

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  14. Microstructural changes to AlCu6Ni1 alloy after prolonged annealing at elevated temperature.

    PubMed

    Wierzbińska, M; Sieniawski, J

    2010-03-01

    This work presents results of microstructure examination of AlCu(6)Ni(1) aluminium alloy. The commercial AlCu(4)Ni(2)Mg(2) (M-309) alloy is widely used for elements of aircraft and automotive engines. Modification its chemical composition was aimed at improving the stability of mechanical properties of the alloy subjected to long-term exposure to high temperature. The alloy after standard T6 heat treatment (solution heat treated at 818 K/10 h/water quenched followed by ageing at 498 K/8 h/air cooled) was annealed for 150 h at elevated temperature of 573 K corresponding to the maximum value at which structural elements of jet piston engines made of aluminium alloys operate. It was found that applied heat treatment caused an increasing in the particles of hardening phase (theta'-Al(2)Cu) size. The significant growth of the length of theta'-Al(2)Cu precipitations was observed in particularly. Nevertheless, it did not strongly result in change of its shape - the 'crystallites' and 'rods' were still characteristic of hardening phase morphology. The phenomena of the growth of theta'-Al(2)Cu precipitates caused decreasing the mechanical properties of the alloy, what is the subject of further investigations by the authors.

  15. Supercoducting property of Zr-Cu-Al-Ni-Nb alloys

    NASA Astrophysics Data System (ADS)

    Okai, D.; Motoyama, G.; Kimura, H.; Inoue, A.

    The superconducting property of Zr55Cu(30-X)Al10Ni5NbX alloys prepared by arc melting and liquid quenching methods was investigated by magnetic susceptibility measurements. The crystalline alloys with X = 0∼25 at.% prepared by arc melting method exhibited superconductivity with maximum Tc,on of 10.1 K. The alloys (X = 10∼23 at.%) with crystalline particles embedded in an amorphous structure, which were fabricated by melt spinning method, showed superconductivity with Tc,on of less than 4.0 K. The superconducting property of the Zr-Cu-Al-Ni-Nb alloys was attributed to superconducting phases of Zr2Cu, Zr2Ni, Zr65Al10Nb25 and Zr-Nb contained in the Zr-Cu-Al-Ni-Nb alloys. The melt-spun Zr55Cu(30-X)Al10Ni5NbX (X = 10∼20 at.%) alloys exhibited glass transition at 718∼743 K and were found to be superconducting metallic glasses.

  16. Continuous recrystallization during thermomechanical processing of a superplastic Al-10Mg-0.1Zr alloy

    NASA Technical Reports Server (NTRS)

    Hales, S. J.; Mcnelley, T. R.; Crooks, R.

    1990-01-01

    Microstructural evolution via static continuous recrystallization during thermomechanical processing of an Al-Mg-Zr alloy is addressed. Mechanical property data demonstrated that as-rolled material was capable of superplastic response without further treatment. Further, superplastic ductility at 300 C was enhanced by a factor of five by increasing the reheating time between rolling passes during processing also at 300 C. This enhanced ductility was associated with a Cu-texture and a microstructure consisting of predominantly high-angle boundaries. Processing to minimize recovery resulted in a strong Brass-texture component, a predominantly low-angle boundary microstructure and poorer ductility.

  17. In Vitro Degradation Behavior of Ternary Mg-Zn-Se and Mg-Zn-Cu Alloys as Biomaterials

    PubMed Central

    Persaud-Sharma, Dharam; Budiansky, Noah

    2013-01-01

    In this study, the corrosion behavior of Mg-Zn-Se and Mg-Zn-Cu alloys was investigated to evaluate their corrosion behavior related to use as implantable biomaterials. The corrosion behavior of these alloys and a commercially available Mg-Zn alloy were examined using static solution electrochemical testing, dynamic solution gravimetric testing, ion leaching testing, and microscopic evaluation. Fluctuations in the pH of the Dulbecco’s Modified Eagles Medium (DMEM) used for the gravimetric and ion leaching immersion testing were also recorded over the 30-day duration to assess whether the media conditions induced by the alloy degradation would permit for cellular survival. Weight loss experimentation and electrochemical tests revealed the Mg-Zn-Cu alloy to have the greatest corrosion rate. PMID:24465245

  18. Al-26-Mg-26 ages of iron meteorites

    NASA Technical Reports Server (NTRS)

    Herzog, G. F.; Souzis, A. E.; Xue, S.; Klein, J.; Juenemann, D.; Middleton, R.

    1993-01-01

    An exposure age for an iron meteorite can be calculated from measurements of a radioactive nuclide and a stable nuclide that are produced by similar sets of nuclear reactions, provided that the stable nuclide is present with low initial abundance. The standard methods rely on either K-40 (t(sub 1/2) = 1.26 Gy), K-39, and K-41 or on a shorter-lived radionuclide and a stable, noble gas isotope. Widely used pairs of this type include Cl-36/Ar-36 and Al-26/Ne-21. Other pairs that may serve the purpose for iron meteorites contain many stable isotopes besides those of K and the noble gases that are produced partly by cosmic rays. We consider here the calculation of exposure ages, t(sub 26), from measurements of Al-26 (t(sub 1/2) = 0.7 My) and (stable) Mg-26. Ages based on Al-26/Mg-26 ratios, like those based on Cl-36/Ar-36 ratios, are 'buffered' against changes in relative production rates due to shielding because decay of the radioactive nuclide accounts for a good part of the inventory of the stable nuclide.

  19. Stabilization mechanism of γ-Mg17Al12 and β-Mg2Al3 complex metallic alloys

    NASA Astrophysics Data System (ADS)

    Vrtnik, S.; Jazbec, S.; Jagodič, M.; Korelec, A.; Hosnar, L.; Jagličić, Z.; Jeglič, P.; Feuerbacher, M.; Mizutani, U.; Dolinšek, J.

    2013-10-01

    Large-unit-cell complex metallic alloys (CMAs) frequently achieve stability by lowering the kinetic energy of the electron system through formation of a pseudogap in the electronic density of states (DOS) across the Fermi energy ɛF. By employing experimental techniques that are sensitive to the electronic DOS in the vicinity of ɛF, we have studied the stabilization mechanism of two binary CMA phases from the Al-Mg system: the γ-Mg17Al12 phase with 58 atoms in the unit cell and the β-Mg2Al3 phase with 1178 atoms in the unit cell. Since the investigated alloys are free from transition metal elements, orbital hybridization effects must be small and we were able to test whether the alloys obey the Hume-Rothery stabilization mechanism, where a pseudogap in the DOS is produced by the Fermi surface-Brillouin zone interactions. The results have shown that the DOS of the γ-Mg17Al12 phase exhibits a pronounced pseudogap centered almost exactly at ɛF, which is compatible with the theoretical prediction that this phase is stabilized by the Hume-Rothery mechanism. The disordered cubic β-Mg2Al3 phase is most likely entropically stabilized at high temperatures, whereas at lower temperatures stability is achieved by undergoing a structural phase transition to more ordered rhombohedral β‧ phase at 214 ° C, where all atomic sites become fully occupied. No pseudogap in the vicinity of ɛF was detected for the β‧ phase on the energy scale of a few 100 meV as determined by the ‘thermal observation window’ of the Fermi-Dirac function, so that the Hume-Rothery stabilization mechanism is not confirmed for this compound. However, the existence of a much broader shallow pseudogap due to several critical reciprocal lattice vectors \\buildrel{\\rightharpoonup}\\over{G} that simultaneously satisfy the Hume-Rothery interference condition remains the most plausible stabilization mechanism of this phase. At Tc = 0.85 K, the β‧ phase undergoes a superconducting transition

  20. Chemical reduction kinetics of nitrate in aqueous solution by Mg/Cu bimetallic particles.

    PubMed

    Mortazavi, S B; Ramavandi, B; Moussavi, G

    2011-01-01

    Synthesized magnesium/copper (Mg/Cu) bimetallic particles have shown good potential for use in the reduction of nitrate from aqueous solutions. This study was conducted to investigate the main factors affecting the kinetics of nitrate reduction by Mg/Cu particles (<100 microm) in uncontrolled reaction conditions. The Mg/Cu bimetallic particles removed the majority of the various nitrate concentrations tested (50, 100, 150, 200 and 300 mg L(-1)) within a short period. The time required for the removal of 90.6% of the NO3(-) from a 100 mg L(-1) solution was about 20 min using 2 gL(-1) bimetallic Mg/Cu at an initial solution pH of 6. The activation energy (Ea) for nitrate reduction by Mg/Cu over the temperature range of 5 to 60 degrees C was 14.21 kJ mol(-1). The experimental results of the kinetic analysis from batch studies indicated that a higher initial nitrate concentration yielded a greater reaction-rate constant and the denitrification rate increased with increase Mg/Cu dosage.

  1. Controlling Bulk Cu6Sn5 Nucleation in Sn0.7Cu/Cu Joints with Al Micro-alloying

    NASA Astrophysics Data System (ADS)

    Xian, J. W.; Belyakov, S. A.; Gourlay, C. M.

    2016-01-01

    We show that dilute Al additions can control the size of primary Cu6Sn5 rods in Sn-0.7Cu/Cu ball grid array joints. In Sn-0.7Cu-0.05Al/Cu joints, the number of primary Cu6Sn5 per mm2 is ˜7 times higher and the mean three-dimensional length of rods is ˜4 times smaller than in Al-free Sn-0.7Cu/Cu joints, while the area fraction of primary Cu6Sn5 is similar. It is shown that epitaxial nucleation of primary Cu6Sn5 occurs on δ-Cu33Al17 or γ 1-Cu9Al4 particles, which are stable in the Sn-0.7Cu-0.05Al melt during holding at 250°C. The observed facet relationships agree well with previously determined orientation relationships between δ-Cu33Al17 and Cu6Sn5 in hypereutectic Sn-Cu-Al alloys and result in a good lattice match with <˜2.5% lattice mismatch on two different interfacial planes.

  2. Metastability in the MgAl2O4-Al2O3 System

    DOE PAGES

    Wilkerson, Kelley R.; Smith, Jeffrey D.; Hemrick, James G.

    2014-07-22

    Aluminum oxide must take a spinel form ( γ-Al2O3) at elevated temperatures in order for extensive solid solution to form between MgAl2O4 and α-Al2O3. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al2O3 at 1500°C, 83.0 wt% Al2O3 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been defined at temperatures up to 1700°C which could have significant implications for material processing and properties. Additionally, initial processing could have major implications on final chemistry. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevatedmore » temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present, resulting in no eutectic crystal formation during solidification.« less

  3. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Bhushan, Bharat

    2016-08-01

    Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  4. Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios.

    PubMed

    Giordanino, Filippo; Vennestrøm, Peter N R; Lundegaard, Lars F; Stappen, Frederick N; Mossin, Susanne; Beato, Pablo; Bordiga, Silvia; Lamberti, Carlo

    2013-09-21

    Cu-SSZ-13 has been characterized by different spectroscopic techniques and compared with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios and prepared by the same ion exchange procedure. On vacuum activated samples, low temperature FTIR spectroscopy allowed us to appreciate a high concentration of reduced copper centres, i.e. isolated Cu(+) ions located in different environments, able to form Cu(+)(N2), Cu(+)(CO)n (n = 1, 2, 3), and Cu(+)(NO)n (n = 1, 2) upon interaction with N2, CO and NO probe molecules, respectively. Low temperature FTIR, DRUV-Vis and EPR analysis on O2 activated samples revealed the presence of different Cu(2+) species. New data and discussion are devoted to (i) [Cu-OH](+) species likely balanced by one framework Al atom; (ii) mono(μ-oxo)dicopper [Cu2(μ-O)](2+) dimers observed in Cu-ZSM-5 and Cu-β, but not in Cu-SSZ-13. UV-Vis-NIR spectra of O2 activated samples reveal an intense and finely structured d-d quadruplet, unique to Cu-SSZ-13, which is persistent under SCR conditions. This differs from the 22,700 cm(-1) band of the mono(μ-oxo)dicopper species of the O2 activated Cu-ZSM-5, which disappears under SCR conditions. The EPR signal intensity sets Cu-β apart from the others.

  5. Thermoluminescence of K-Mg-Al-Zn fluorophosphate glass

    NASA Astrophysics Data System (ADS)

    Thomas, Sunil; Chithambo, M. L.

    2017-02-01

    The thermoluminescence of beta irradiated K-Mg-Al-Zn fluorophosphate glass is reported. A glow-curve corresponding to 10 Gy measured at 1 °C/s shows two peaks, a weaker-intensity one at 70 °C and a more prominent one at 235 °C, the subject of this report. The main peak was observed to fade with delay between irradiation and measurement and specifically, by 11% in 15 h. Its dose response is superlinear in the dose range 1-190 Gy although the change was linear for the initial 10 Gy. Regarding kinetic analysis, the activation energy of the higher temperature peak was evaluated as 1.31 eV and that of the lower temperature peak was found as 0.47 eV. It was also noted that the main peak is affected by thermal quenching with an activation energy for thermal quenching equal to 1.37 eV. It is proposed that the mechanism associated with the thermoluminescence in K-Mg-Al-Zn fluorophosphate glass is that electrons trapped by the metal cations are released during heating and then recombine with holes at oxygen sites.

  6. High-spin states in 29Al and 27Mg

    NASA Astrophysics Data System (ADS)

    Dungan, R.; Tabor, S. L.; Lubna, R. S.; Volya, A.; Tripathi, Vandana; Abromeit, B.; Caussyn, D. D.; Kravvaris, K.; Tai, P.-L.

    2016-12-01

    The structure of 29Al and 27Mg was investigated using the reactions 18O(14C,p 2 n ) and 18O(14C,α n ) at 40 MeV. The charged particles were detected and identified with a Δ E -E telescope in coincidence with γ radiation detected in the Florida State University Compton suppressed γ detector array. The level and decay schemes of both nuclei have been expanded at higher spins and excitation energies. The positive-parity states up to 3.5-4.5 MeV agree well with shell model calculations using the USDA interaction. The negative-parity states in 27Mg are reproduced relatively well by one-particle-one-hole calculations with the WBP-a interaction. Three 27Mg states unbound by 0.4-1.4 MeV to neutron decay were observed to decay radiatively. One of these states had been previously observed to γ decay in a (d ,p γ ) experiment along with a surprising 16 other neutron unbound states. The competition between neutron and γ decay in these states is discussed in terms of angular momentum barriers and spectroscopic factors.

  7. The electrochemical behaviors of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn in sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Lv, Yanzhuo; Liu, Min; Xu, Yan; Cao, Dianxue; Feng, Jing

    2013-03-01

    The electrochemical oxidation behaviors of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn electrodes in 0.7 mol L-1 NaCl solution are investigated by methods of potentiodynamic polarization, potentiostatic oxidation, electrochemical impedance spectroscopy and scanning electron microscopy. The phase composition of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn alloys is analyzed conducted by X-ray diffraction. The performances of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn as the anode of Mg-H2O2 semi fuel cells are determined. The effect of Zn content on the corrosion resistant of these Mg-Li-based alloys is studied. It is found that the Mg-8Li-3Al-0.5Zn electrode has higher discharge activity and less corrosion resistance than that of Mg-8Li-3Al-1.0Zn electrode in 0.7 mol L-1 NaCl solution. The Mg-H2O2 semi fuel cell with Mg-8Li-3Al-0.5Zn anode presents a maximum power density of 100 mW cm-2 at room temperature, which is higher than that of Mg-8Li-3Al-1.0Zn anode (80 mW cm-2). The performance of semi fuel cell with the Mg-8Li-3Al-0.5Zn electrode is better than that with Mg-8Li-3Al-1.0Zn electrode, especially at higher current density (>30 mA cm-2).

  8. Influence of layer microstructure on the double nucleation process in Cu/Mg multilayers

    SciTech Connect

    Gonzalez-Silveira, M.; Rodriguez-Viejo, J.; Garcia, G.; Pi, F.; Ager, F. J.; Labar, J. L.; Barna, A.; Menyhard, M.; Kotis, L.

    2006-12-01

    We have investigated by differential scanning calorimetry the thermal evolution of Cu/Mg multilayers with different modulation lengths, ranging from 7/28 to 30/120 nm. The Cu and Mg layers were grown by sequential evaporation in an electron beam deposition system. The phase identification and layer microstructure were determined by cross-section transmission electron microscopy, Rutherford backscattering, and scanning electron microscopy with focused ion beam for sample preparation. Upon heating, the intermetallic CuMg{sub 2} forms at the interfaces until coalescence is reached and thickens through a diffusion-limited process. Cross-section transmission electron microscopy observations show a distinct microstructure at the top and bottom of the as-prepared Mg layers, while no significant differences were seen in the Cu layers. We show that this effect is responsible for the observed asymmetry in the nucleation process between the Cu on Mg and the Mg on Cu interfaces. By modeling the calorimetric data we determine the role of both interfaces in the nucleation and lateral growth stages. We also show that vertical growth proceeds by grain development of the product phase, increasing significantly the roughness of the interfaces.

  9. Wettability of AlSi5Mg on Spodumene

    NASA Astrophysics Data System (ADS)

    Fankhänel, Beate; Stelter, Michael; Voigt, Claudia; Aneziris, Christos G.

    2015-02-01

    The development of new filters for the aluminum industry requires investigations on the wettability of aluminum and its alloys on novel filter materials. The requested filter effects require not only an adequate wetting but also information about the interaction between the filter material and the metal. In the present work the wettability of an AlSi5Mg alloy on spodumene (LiAl[Si2O6]) containing substrates is investigated using the sessile drop technique. These measurements were carried out at 1223 K (950 °C) under vacuum. The spodumene-based substrates showed a completely different wetting behavior compared with an alumina substrate. The contact angel reduced more quickly and leveled out at a lower value (75 ± 2 deg) than in case of a pure alumina substrate (90 ± 1 deg). The reason for this behavior is a reaction between the LiAl(Si2O6) and the alloy droplet which supported deoxidation and formed a silica-rich reaction layer at the droplet/substrate interface.

  10. The effect of dispersoid particle size on the superplasticity of Al-Mg alloy

    SciTech Connect

    Chanda, T.; Ghosh, A.K.; Lavender, C.

    1995-12-31

    An Al-Mg alloy containing dispersoid forming elements such as Mn, Cr and Zr was thermomechanically processed with variations in processing history to produce nearly the same grain size ({approximately}6 {micro}m), but different distribution of size and density of intermetallic particles. Mechanical response of these materials were studied within the superplastic deformation regime in terms of stress-strain, stress-strain rate characteristics, cavitation and grain growth, and superplastic tensile elongation. In this work particles of approximately 500 nm size have been found to cause grain refinement after 90% rolling reduction contrary to previous findings of 2 {micro}m particles in an Al-0.45% Cu alloy. Particles with 200 to 500 nm size favorably influence superplastic elongation, but particle sizes in the range of 600 to 900 nm appear to have adverse effect in terms of superplastic flow properties, due to excessive cavitation.

  11. Intermetallic Formation at Interface of Al/Cu Clad Fabricated by Hydrostatic Extrusion and Its Properties.

    PubMed

    Lee, Jongbeom; Jeong, Haguk

    2015-11-01

    Al/Cu clad composed of Al core and Cu sheath has been produced by hydrostatic extrusion at 523 K, at an extrusion rate of 27. The prepared specimen was post-annealed at temperatures of 673 K and 773 K for various time durations, and the effect of annealing conditions have been analyzed. The hardness at the interface between Al and Cu matrix of the Al/Cu bimetal clad increases because of annealing. Results indicate that the hardness is more sensitive to annealing temperature than the annealing time. Three kinds of intermetallic compounds (IMC), namely, CuAl, Cu3Al2, and CuAl2, are formed at the Al-Cu interface, upon annealing at 673 K. On the other hand, four kinds of IMCs, namely, Cu4Al3, CuAl, Cu3Al2, CuAl2, are formed at the annealing temperature of 773 K. The growth of each IMC follows the parabolic law as a function of annealing times at certain annealing temperature. The growth rate of each IMC is limited to its interdiffusion rate constant. The IMC Cu4Al3 appears upon annealing at 773 K, and not during annealing at 673 K, because of the higher value of activation energy associated with its formation, when compared to other IMCs.

  12. Investigation of Al/CuO multilayered thermite ignition

    NASA Astrophysics Data System (ADS)

    Nicollet, Andréa; Lahiner, Guillaume; Belisario, Andres; Souleille, Sandrine; Djafari-Rouhani, Mehdi; Estève, Alain; Rossi, Carole

    2017-01-01

    The ignition of the Al/CuO multilayered material is studied experimentally to explore the effects of the heating surface area, layering, and film thickness on the ignition characteristics and reaction performances. After the description of the micro-initiator devices and ignition conditions, we show that the heating surface area must be properly calibrated to optimize the nanothermite ignition performances. We demonstrated experimentally that a heating surface area of 0.25 mm2 is sufficient to ignite a multilayered thermite film of 1.6 mm wide by a few cm long, with a success rate of 100%. A new analytical and phenomenological ignition model based on atomic diffusion across layers and thermal exchange is also proposed. This model considers that CuO first decomposes into Cu2O, and then the oxygen diffuses across the Cu2O and Al2O3 layers before reaching the Al layer, where it reacts to form Al2O3. The theoretical results in terms of ignition response times confirm the experimental observation. The increase of the heating surface area leads to an increase of the ignition response time and ignition power threshold (go/no go condition). We also provide evidence that, for any heating surface area, the ignition time rapidly decreases when the electrical power density increases until an asymptotic value. This time point is referred to as the minimum response ignition time, which is a characteristic of the multilayered thermite itself. At the stoichiometric ratio (Al thickness is half of the CuO thickness), the minimum ignition response time can be easily tuned from 59 μs to 418 ms by tuning the heating surface area. The minimum ignition response time increases when the bilayer thickness increases. This work not only provides a set of micro-initiator design rules to obtain the best ignition conditions and reaction performances but also details a reliable and robust MicroElectroMechanical Systems process to fabricate igniters and brings new understanding of phenomena

  13. Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si

    PubMed Central

    Hsieh, Shu-Huei; Chen, Wen Jauh; Chien, Chu-Mo

    2015-01-01

    Various structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si were prepared by sputtering and electroplating techniques, in which the ultra-thin trilayer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is used as the diffusion barrier against the interdiffusion between Cu film and Si substrate. The various structures of Cu/Ru/MgO/Ta/Si were characterized by four-point probes for their sheet resistances, by X-ray diffractometers for their crystal structures, by scanning electron microscopes for their surface morphologies, and by transmission electron microscopes for their cross-section and high resolution views. The results showed that the ultra-thin tri-layer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is an effective diffusion barrier against the interdiffusion between Cu film and Si substrate. The MgO, and Ta layers as deposited are amorphous. The mechanism for the failure of the diffusion barrier is that the Ru layer first became discontinuous at a high temperature and the Ta layer sequentially become discontinuous at a higher temperature, the Cu atoms then diffuse through the MgO layer and to the substrate at the discontinuities, and the Cu3Si phases finally form. The maximum temperature at which the structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si are annealed and still have low sheet resistance is from 550 to 750 °C for the annealing time of 5 min and from 500 to 700 °C for the annealing time of 30 min. PMID:28347099

  14. Computation assisted design of favored composition for ternary Mg-Cu-Y metallic glass formation.

    PubMed

    Wang, Q; Li, J H; Liu, B X

    2015-06-14

    With the aid of ab initio calculations, a realistic interatomic potential was constructed for the Mg-Cu-Y ternary system under the proposed formalism of smoothed and long-range second-moment approximation of tight-binding. Taking the potential as the starting base, an atomistic computation/simulation route was developed for designing favored and optimized compositions for Mg-Cu-Y metallic glass formation. Simulations revealed that the physical origin of metallic glass formation is the collapse of crystalline lattice when solute concentration exceeds a critical value, thus leading to predict a hexagonal region in the Mg-Cu-Y composition triangle, within which metallic glass formation is energetically favored. It is proposed that the hexagonal region can be defined as the intrinsic glass formation region, or quantitative glass formation ability of the system. Inside the hexagonal region, the driving force for formation of each specific glassy alloy was further calculated and correlated with its forming ability in practice. Calculations pinpointed the optimized stoichiometry in the Mg-Cu-Y system to be Mg64Cu16Y20, at which the formation driving force reaches its maximum, suggesting that metallic glasses designed to have compositions around Mg64Cu16Y20 are most stable or easiest to obtain. The predictions derived directly from the atomistic simulations are supported by experimental observations reported so far in the literature. Furthermore, Honeycutt-Anderson analysis indicated that pentagonal bipyramids (although not aggregating to form icosahedra) dominate in the local structure of the Mg-Cu-Y metallic glasses. A microscopic picture of the medium-range packing can then be described as an extended network of the pentagonal bipyramids, entangled with the fourfold and sixfold disclination lines, jointly fulfilling the space of the metallic glasses.

  15. A comparison study of Co and Cu doped MgO diluted magnetic thin films

    NASA Astrophysics Data System (ADS)

    Sarıtaş, S.; ćakıcı, T.; Muǧlu, G. Merhan; Kundakcı, M.; Yıldırım, M.

    2017-02-01

    Transition metal-doped MgO diluted magnetic thin films are appropriate candidates for spintronic applications and designing magnetic devices and sensors. Therefore, MgO:Co and MgO:Cu films were deposited on glass substrates by Chemical Spray Pyrolysis (CSP) method different thin film deposition parameters. Deposited different transition metal doped MgO thin films were compared in terms of optic and structural properties. Comparison optic analysis of the films was investigated spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Comparison structural analysis of the thin films was examined by using XRD, Raman Analysis, SEM, EDX and AFM techniques. The transition metal-doped; MgO:Co and MgO:Cu thin films maybe have potential applications in spintronics and magnetic data storage.

  16. Corrosion and protection of heterogeneous cast Al-Si (356) and Al-Si-Cu-Fe (380) alloys by chromate adn cerium inhibitors

    NASA Astrophysics Data System (ADS)

    Jain, Syadwad

    In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the

  17. Hydrogen isotope trapping in Al-Cu binary alloys

    DOE PAGES

    Chao, Paul; Karnesky, Richard A.

    2016-01-01

    In this study, the trapping mechanisms for hydrogen isotopes in Al–X Cu (0.0 at. % < X < 3.5 at. %) alloys were investigated using thermal desorption spectroscopy (TDS), electrical conductivity, and differential scanning calorimetry. Constant heating rate TDS was used to determine microstructural trap energies and occupancies. In addition to the trapping states in pure Al reported in the literature (interstitial lattice sites, dislocations, and vacancies), a trap site due to Al–Cu intermetallic precipitates is observed. The binding energy of this precipitate trap is (18 ± 3) kJ•mol–1 (0.19 ± 0.03 eV). Typical occupancy of this trap is high;more » for Al–2.6 at. % Cu (a Cu composition comparable to that in AA2219) charged at 200 °C with 130 MPa D2 for 68 days, there is ca. there is 3.15×10–7 mol D bound to the precipitate trap per mol of Al, accounting for a third of the D in the charged sample.« less

  18. Hydrogen isotope trapping in Al-Cu binary alloys

    SciTech Connect

    Chao, Paul; Karnesky, Richard A.

    2016-01-01

    In this study, the trapping mechanisms for hydrogen isotopes in Al–X Cu (0.0 at. % < X < 3.5 at. %) alloys were investigated using thermal desorption spectroscopy (TDS), electrical conductivity, and differential scanning calorimetry. Constant heating rate TDS was used to determine microstructural trap energies and occupancies. In addition to the trapping states in pure Al reported in the literature (interstitial lattice sites, dislocations, and vacancies), a trap site due to Al–Cu intermetallic precipitates is observed. The binding energy of this precipitate trap is (18 ± 3) kJ•mol–1 (0.19 ± 0.03 eV). Typical occupancy of this trap is high; for Al–2.6 at. % Cu (a Cu composition comparable to that in AA2219) charged at 200 °C with 130 MPa D2 for 68 days, there is ca. there is 3.15×10–7 mol D bound to the precipitate trap per mol of Al, accounting for a third of the D in the charged sample.

  19. Recyclable Mg-Al layered double hydroxides for fluoride removal: Kinetic and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-12-30

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg-Al LDH) and Cl(-) (Cl · Mg-Al LDH) were found to adsorb fluoride from aqueous solutions. Fluoride is removed by anion exchange in solution with NO3(-) and Cl(-) intercalated in the LDH interlayer. In both cases, the residual F concentration is lower than the effluent standards for F in Japan (8 mg/L). The rate-determining step in the removal of F using NO3 · Mg-Al and Cl · Mg-Al LDH is chemical adsorption involving F(-) anion exchange with intercalated NO3(-) and Cl(-) ions. The removal of F is described by pseudo-second-order reaction kinetics, with Langmuir-type adsorption. The values obtained for the maximum adsorption and the equilibrium adsorption constant are respectively 3.3 mmol g(-1) and 2.8 with NO3 · Mg-Al LDH, and 3.2 mmol g(-1) and 1.5 with Cl · Mg-Al LDH. The F in the F · Mg-Al LDH produced in these reactions was found to exchange with NO3(-) and Cl(-) ions in solution. The regenerated NO3 · Mg-Al and Cl · Mg-Al LDHs thus obtained can be used once more to capture aqueous F. This suggests that NO3 · Mg-Al and Cl · Mg-Al LDHs can be recycled and used repeatedly for F removal.

  20. Theoretics-directed effect of copper or aluminum content on the ductility characteristics of Al-based (Al3Ti, AlTi, AlCu, AlTiCu2) intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Li, Yong; Ma, Xiao-Juan; Liu, Qi-Jun; Kong, Ge-Xing; Ma, Hai-Xia; Wang, Wen-Peng; Wang, Yi-Gao; Jiao, Zhen; Liu, Fu-Sheng; Liu, Zheng-Tang

    2016-11-01

    First-principle simulations have been applied to investigate the effect of copper (Cu) or aluminum (Al) content on the ductility of Al3Ti, AlTi, AlCu, and AlTiCu2 alloys. The mechanical stable and elastic properties of Al-based intermetallic compounds are researched by density functional theory with the generalized gradient approximation (DFT-GGA). The calculated lattice constants are in conformity with the previous experimental and theoretical data. The deduced elastic constants show that the investigated Al3Ti, AlTi, AlCu, and AlTiCu2 structures are mechanically stable. Shear modulus, Young’s modulus, Poisson’s ratio, and the ratio B/G have also been figured out by using reckoned elastic constants. A further analysis of Young’s modulus and Poisson’s ratio reveals that the third added element copper content has significant effects on the Al-Ti-based ICs ductile character. Project supported by the National Natural Science Foundation of China (Grant Nos. 41674088, 11574254, 11272296, and 11547311), the National Basic Research Program of China (Grant No. 2011CB808201), the Fundamental Research Fund for the Central Universities, China (Grant Nos. 2682014ZT30 and 2682014ZT31), and the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University, China (Grant No. SKLSP201511).

  1. Effect of reaction time and (Ca+Mg)/Al molar ratios on crystallinity of Ca-Mg-Al layered double Hydroxide

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Nugrahaningtyas, K. D.; Sanjaya, F. B.; Darojat, A. A.; Handayani, D. S.; Hidayat, Y.

    2016-02-01

    Ca-Mg-Al Layered Double Hydroxides (Ca-Mg-Al-LDH) compounds were successfully synthesized from brine water and AlCl3.6H2O as the starting materials by coprecipitation method. The product result was characterized by X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR). The effects of the reaction time and the molar ratios of the raw material on the crystallinity of Ca-Mg-Al-LDH were examining. Results show that increasing reaction time (30; 60 and 90 min.) could improve the crystallinity and monodispersity of layered double hydroxide compounds particles. The well-defined Ca-Mg- Al-LDH could be prepared with (Ca+Mg)/Al molar ratios 0.5.

  2. Indium Helps Strengthen Al/Cu/Li Alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  3. Viscous and acoustic properties of AlCu melts

    NASA Astrophysics Data System (ADS)

    Khusnutdinoff, R. M.; Mokshin, A. V.; Menshikova, S. G.; Beltyukov, A. L.; Ladyanov, V. I.

    2016-05-01

    The atomic dynamics of the binary Al100- x Cu x system is simulated at a temperature T = 973 K, a pressure p = 1.0 bar, and various copper concentrations x. These conditions (temperature, pressure) make it possible to cover the equilibrium liquid Al100- x Cu x phase at copper concentrations 0 ≤ x ≤ 40% and the supercooled melt in the concentration range 40% ≤ x ≤ 100%. The calculated spectral densities of the time correlation functions of the longitudinal {tilde C_L}( k, ω) and transverse {tilde C_T}( k, ω) currents in the Al100- x Cu x melt at a temperature T = 973 K reveal propagating collective excitations of longitudinal and transverse polarizations in a wide wavenumber range. It is shown that the maximum sound velocity in the v L ( x) concentration dependence takes place for the equilibrium melt at an atomic copper concentration x = 10 ± 5%, whereas the supercooled Al100- x Cu x melt saturated with copper atoms ( x ≥ 40%) is characterized by the minimum sound velocity. In the case of the supercooled melt, the concentration dependence of the kinematic viscosity ν( x) is found to be interpolated by a linear dependence, and a deviation from the linear dependence is observed in the case of equilibrium melt at x < 40%. An insignificant shoulder in the ν( x) dependence is observed at low copper concentrations ( x < 20%), and it is supported by the experimental data. This shoulder is caused by the specific features in the concentration dependence of the density ρ( x).

  4. Corrosion of MgO-MgAl{sub 2}O{sub 4} spinel refractory bricks by calcium aluminosilicate slag

    SciTech Connect

    Goto, Kiyoshi; Argent, B.B.; Lee, W.E.

    1997-02-01

    Microstructural analysis of MgO-MgAl{sub 2}O{sub 4} refractory bricks corroded at 1,400--1,500 C by calcium aluminosilicate slag reveals secondary spinel, monticellite, merwinite, and MgO as microscopic corrosion products, generally forming in this sequence as the brick is penetrated. The secondary spinel forms an incomplete layer close to (but not at) the MgO grain. Thermodynamic calculations are used to support a detailed model of the corrosion mechanism.

  5. Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si.

    PubMed

    Hsieh, Shu-Huei; Chen, Wen Jauh; Chien, Chu-Mo

    2015-11-03

    Various structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5-3 nm)/Ta (2 nm)/Si were prepared by sputtering and electroplating techniques, in which the ultra-thin trilayer of Ru (2 nm)/MgO (0.5-3 nm)/Ta (2 nm) is used as the diffusion barrier against the interdiffusion between Cu film and Si substrate. The various structures of Cu/Ru/MgO/Ta/Si were characterized by four-point probes for their sheet resistances, by X-ray diffractometers for their crystal structures, by scanning electron microscopes for their surface morphologies, and by transmission electron microscopes for their cross-section and high resolution views. The results showed that the ultra-thin tri-layer of Ru (2 nm)/MgO (0.5-3 nm)/Ta (2 nm) is an effective diffusion barrier against the interdiffusion between Cu film and Si substrate. The MgO, and Ta layers as deposited are amorphous. The mechanism for the failure of the diffusion barrier is that the Ru layer first became discontinuous at a high temperature and the Ta layer sequentially become discontinuous at a higher temperature, the Cu atoms then diffuse through the MgO layer and to the substrate at the discontinuities, and the Cu₃Si phases finally form. The maximum temperature at which the structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5-3 nm)/Ta (2 nm)/Si are annealed and still have low sheet resistance is from 550 to 750 °C for the annealing time of 5 min and from 500 to 700 °C for the annealing time of 30 min.

  6. Investigation of new type Cu-Hf-Al bulk glassy alloys

    NASA Astrophysics Data System (ADS)

    Nagy, E.; Rontó, V.; Sólyom, J.; Roósz, A.

    2009-01-01

    In the last years new type Cu-Hf-Al ternary alloys were developed with high glass forming ability and ductility. The addition of Al to Cu-Hf alloys results in improvements in glass formation, thermal stability and mechanical properties of these alloys. We have investigated new Cu-based bulk amorphous alloys in Cu-Hf-Al ternary system. The alloys with Cu49Hf42Al9, Cu46Hf45Al9, Cu50Hf42.5Al7.5 and Cu50Hf45Al5 compositions were prepared by arc melting. The samples were made by centrifugal casting and were investigated by X-ray diffraction method. Thermodynamic properties were examined by differential scanning calorimetry and the structure of the crystallising phases by scanning electron microscopy. The determination of liquidus temperatures of alloys were measured by differential thermal analysis.

  7. The effect of Mg location on Co-Mg-Ru/γ-Al2O3 Fischer–Tropsch catalysts

    PubMed Central

    Combes, Gary B.; Ozkaya, Don; Enache, Dan I.; Ellis, Peter R.; Kelly, Gordon; Rosseinsky, Matthew J.

    2016-01-01

    The effectiveness of Mg as a promoter of Co-Ru/γ-Al2O3 Fischer–Tropsch catalysts depends on how and when the Mg is added. When the Mg is impregnated into the support before the Co and Ru addition, some Mg is incorporated into the support in the form of MgxAl2O3+x if the material is calcined at 550°C or 800°C after the impregnation, while the remainder is present as amorphous MgO/MgCO3 phases. After subsequent Co-Ru impregnation MgxCo3−xO4 is formed which decomposes on reduction, leading to Co(0) particles intimately mixed with Mg, as shown by high-resolution transmission electron microscopy. The process of impregnating Co into an Mg-modified support results in dissolution of the amorphous Mg, and it is this Mg which is then incorporated into MgxCo3−xO4. Acid washing or higher temperature calcination after Mg impregnation can remove most of this amorphous Mg, resulting in lower values of x in MgxCo3−xO4. Catalytic testing of these materials reveals that Mg incorporation into the Co oxide phase is severely detrimental to the site-time yield, while Mg incorporation into the support may provide some enhancement of activity at high temperature. PMID:26755760

  8. First-principles study on Al4Sr as the heterogeneous nucleus of Mg2Si

    NASA Astrophysics Data System (ADS)

    Xia, Zhi; Li, Ke

    2016-12-01

    The interfacial structure, electronic structure, work of adhesion and interfacial energy of the Al4Sr(100)/Mg2Si(100) interface have been studied with first-principles calculations to clarify the heterogeneous nucleation potential of the Al4Sr particle for a primary Mg2Si phase. Eight models of the Al4Sr(100)/Mg2Si(100) interface with OT and HCP stacking were adopted for the interfacial model geometries. The results show that the Al-Mg terminations of HCP and Al-Si terminations of OT stacking, with lower interfacial spacing and higher interfacial adhesion, are the most favorable structures after relaxation. Al-Mg- and Al-Si-terminated interfaces, with a lower interfacial distance, form chemical bonds more easily. Metallic bonds are formed near the Al-Mg-terminated interface, while the Al-Si-terminated interface exhibits predominantly covalent bond characteristics. Moreover, the calculated interfacial energies of both terminations are negative in conditions involving excess Mg atoms. The interfacial energies of Al-Si are lower than those of Al-Mg termination, indicating that the Al-Si-terminated interface is more stable. From thermodynamic analysis, we discover that the Al4Sr particle can be an effective heterogeneous nucleation substrate for Mg2Si in a Mg-Al-Si alloy melt.

  9. Removal of SO2 with a Mg-Al oxide slurry via reconstruction of a Mg-Al layered double hydroxide.

    PubMed

    Kameda, Tomohito; Kodama, Aki; Fubasami, Yuki; Kumagai, Shogo; Yoshioka, Toshiaki

    2012-06-01

    Although effective treatments of SO(x) are essential for preventing air pollution, current methods pose other environmental problems such as increased amounts of desulfurized gypsum and reduced landfill lifetimes. We report a process for removing SO(2) from waste streams using a Mg-Al oxide slurry. The ability of the mixed oxide to remove SO(2) increased with slurry quantity and temperature but decreased with time. SO(2) was removed through the reconstruction of a Mg-Al layered double hydroxide (Mg-Al LDH) intercalated with SO(3)(2-), which was derived from the dissociation of H(2)SO(3) upon dissolution of SO(2) in the slurry. SO(2) was not adsorbed onto the surface of the Mg-Al oxide. These results suggest that SO(2) removal using a Mg-Al oxide slurry may be possible without the concomitant problems of conventional treatment methods.

  10. Study on biodegradation of the second phase Mg17Al12 in Mg-Al-Zn alloys: in vitro experiment and thermodynamic calculation.

    PubMed

    Liu, Chen; Yang, Huazhe; Wan, Peng; Wang, Kehong; Tan, Lili; Yang, Ke

    2014-02-01

    The in vitro biodegradation behavior of Mg17Al12 as a second phase in Mg-Al-Zn alloys was investigated via electrochemical measurement and immersion test. The Hank's solutions with neutral and acidic pH values were adopted as electrolytes to simulate the in vivo environment during normal and inflammatory response process. Furthermore, the local orbital density functional theory approach was employed to study the thermodynamical stability of Mg17Al12 phase. All the results proved the occurrence of pitting corrosion process with crackings for Mg17Al12 phase in Hank's solution, but with a much lower degradation rate compared with both AZ31 alloy and pure magnesium. Furthermore, a preliminary explanation on the biodegradation behaviors of Mg17Al12 phase was proposed.

  11. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities.

    PubMed

    Bakhsheshi-Rad, H R; Hamzah, E; Low, H T; Kasiri-Asgarani, M; Farahany, S; Akbari, E; Cho, M H

    2017-04-01

    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5MgAl-0.3MgAl-0.1MgAl. The cytotoxicity tests exhibited that the Zn-0.5Al-0.5Mg alloy presents higher viability of MC3T3-E1 cell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material.

  12. TL-OSL study of Li{sub 3}PO{sub 4}: Mg, Cu phosphor

    SciTech Connect

    Rahangdale, S. R. Wankhede, S. P.; Dhabekar, B. S.; Palikundwar, U. A.; Moharil, S. V.

    2015-08-28

    In the present work, we report the thermoluminescence and optically stimulated luminescence properties of Mg and Cu doped Li{sub 3}PO{sub 4} phosphor. The phosphor was synthesized by precipitation method. The thermoluminescence dosimetric peak temperature for the phosphor varies with concentrations of Mg and Cu. Li{sub 3}PO{sub 4} shows good response to 470nm optical stimulation. The OSL sensitivity of the phosphor is approximately 12 times than that of standard Lithium magnesium phosphate. This study may help to develop this material for the application in real time dosimetry using optically stimulated luminescence.

  13. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  14. Investigations on structural, vibrational and dielectric properties of nanosized Cu doped Mg-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Yadav, Anand; Rajpoot, Rambabu; Dar, M. A.; Varshney, Dinesh

    2016-05-01

    Transition metal Cu2+ doped Mg-Zn ferrite [Mg0.5Zn0.5-xCuxFe2O4 (0.0 ≤ x ≤ 0.5)] were prepared by sol gel auto combustion (SGAC) method to probe the structural, vibrational and electrical properties. X-ray diffraction (XRD) pattern reveals a single-phase cubic spinel structure without the presence of any secondary phase corresponding to other structure. The average particle size of the parent Mg0.5Zn0.5Fe2O4 is found to be ~29.8 nm and is found to increase with Cu2+ doping. Progressive reduction in lattice parameter of Mg0.5Zn0.5Fe2O4 has been observed due to difference in ionic radii of cations with improved Cu doping. Spinel cubic structure is further confirmed by Raman spectroscopy. Small shift in Raman modes towards higher wave number has been observed in doped Mg-Zn ferrites. The permittivity and dielectric loss decreases at lower doping and increases at higher order doping of Cu2+.

  15. Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction

    NASA Astrophysics Data System (ADS)

    Kotadia, H. R.; Panneerselvam, A.; Mokhtari, O.; Green, M. A.; Mannan, S. H.

    2012-04-01

    The interfacial intermetallic compound (IMC) formation between Cu substrate and Sn-3.8Ag-0.7Cu-X (wt.%) solder alloys has been studied, where X consists of 0-5% Zn or 0-2% Al. The study has focused on the effect of solder volume as well as the Zn or Al concentration. With low solder volume, when the Zn and Al concentrations in the solder are also low, the initial Cu-Zn and Al-Cu IMC layers, which form at the solder/substrate interface, are not stable and spall off, displaced by a Cu6Sn5 IMC layer. As the total Zn or Al content in the system increases by increasing solder volume, stable CuZn or Al2Cu IMCs form on the substrate and are not displaced. Increasing concentration of Zn has a similar effect of stabilizing the Cu-Zn IMC layer and also of forming a stable Cu5Zn8 layer, but increasing Al concentration alone does not prevent spalling of Al2Cu. These results are explained using a combination of thermodynamic- and kinetics-based arguments.

  16. Martensitic transformation in a Cu-Zn-Al alloy studied by 63Cu and 27Al NMR

    NASA Astrophysics Data System (ADS)

    Rubini, S.; Dimitropoulos, C.; Gotthardt, R.; Borsa, F.

    1991-08-01

    27Al and 63Cu line shape, Knight shift, and relaxation rates over a wide range of temperature and external magnetic field are reported for a Cu-Zn-Al alloy displaying a martensitic phase transformation (MPT) at MS=152 K. Changes in line shape, linewidth, and T-12 at the MPT are detected for both nuclei, and are found to be consistent with the local atomic rearrangement occurring at the transformation. A double structure for the 27Al NMR line is observed in a small range of temperature below MS, and interpreted as the superposition of the signals arising from the two coexisting phases. It is shown that the growth of the martensitic phase during the cooling can be monitored by means of the deconvolution of the 27Al spectrum into the two components. From the analysis, it is inferred that a sudden formation of extensive regions in the martensitic phase occurs at the transition. The Knight shift and the Korringa term (T1T)-1 are slightly different in the two phases, indicating a small increase of the density of s electrons at the Fermi surface at the nuclear sites. The enhancement factors of the susceptibility and of the spin-lattice relaxation rate do not seem to be affected by the MPT but are different when measured at the Al or Cu site, indicating a local nonuniform charge-density distribution in the unit cell. A small enhancement of T-11 is observed for both nuclei in the temperature interval in which the growth of the martensite within the austenite is detected. The anomalous contribution to the relaxation is interpreted as due to strong local charge-density fluctuations caused by atomic motion at the interfaces between the two phases. No precursor effects were detected on the NMR parameters above MS, indicating the absence of a static or long-lived microstructure of the product phase and of a static short-wavelength modulation of the lattice.

  17. Solidification behavior and structure of Al-Cu alloy welds

    SciTech Connect

    Brooks, J.A.; Li, M.; Yang, N.C.Y.

    1997-09-01

    The microsegregation behavior of electron beam (EB) and gas tungsten arc (GTA) welds of Al-Cu alloys covering a range from 0.19 to 7.74 wt% Cu were characterized for dendrite core concentrations and fraction eutectic solidification. Although a single weld speed of 12.7 mm/sec was used, some differences were observed in the segregation behavior of the two weld types. The microsegregation behavior was also modeled using a finite differences technique considering dendrite tip and eutectic undercooling and solid state diffusion. Fairly good agreement was observed between measured and calculated segregation behavior although differences between the two weld types could not be completely accounted for. The concept of dendrite tip undercooling was used to explain the formation of a single through thickness centerline grain in the higher alloy content GTA welds.

  18. Growth and oxidation of thin film Al{sub 2}Cu

    SciTech Connect

    Son, K.A.; Missert, N.A.; Barbour, J.C.; Hren, J.J.; Copeland, R.G.; Minor, K.G.

    1999-11-09

    Al{sub 2}Cu thin films ({approximately}382 nm) are fabricated by melting and resolidifying Al/Cu bilayers in the presence of a {approximately}3 nm Al{sub 2}O{sub 3} passivating layer. X-ray Photoelectron Spectroscopy (XPS) measures a 1.0 eV shift of the Cu2p{sub 3/2} peak and a 1.6 eV shift of the valence band relative to metallic Cu upon Al{sub 2}Cu formation. Scanning Electron Microscopy (SEM) and Electron Back-Scattered Diffraction (EBSD) show that the Al{sub 2}Cu film is composed of 30--70 {mu}m wide and 10--25 mm long cellular grains with (110) orientation. The atomic composition of the film as estimated by Energy Dispersive Spectroscopy (EDS) is 67{+-}2% Al and 33{+-}2% Cu. XPS scans of Al{sub 2}O{sub 3}/Al{sub 2}Cu taken before and after air exposure indicate that the upper Al{sub 2}Cu layers undergo further oxidation to Al{sub 2}O{sub 3} even in the presence of {approximately}5 nm Al{sub 2}O{sub 3}. The majority of Cu produced from oxidation is believed to migrate below the Al{sub 2}O{sub 3} layers, based upon the lack of evidence for metallic Cu in the XPS scans. In contrast to Al/Cu passivated with Al{sub 2}O{sub 3}, melting/resolidifying the Al/Cu bilayer without Al{sub 2}O{sub 3} results in phase-segregated dendritic film growth.

  19. Phosphatizing of Mg particles to improve the protective performance of Mg-rich primer on A2024 Al alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Zuo, Yu; Tang, Yuming; Lu, Xiangyu

    2014-02-01

    Mg-rich primer as a new type protective coating provides cathodic protection for Al alloy. In this paper, a kind of phosphatizing surface treatment on Mg particles was studied in order to improve the protective performance of Mg-rich primer. After treated with phosphoric acid, a protective magnesium phosphate layer was formed on the surface of Mg particles, which had no negative influence on the cathodic protection of the Mg-rich primer for Al alloy. The coating resistance of the treated Mg-rich primer was bigger than that of untreated primer, meanwhile the coating capacitance of the treated Mg-rich primer was smaller than that of untreated primer, suggesting that the barrier effect of the primer was improved and the lifetime was extended. The magnesium phosphate layer could reduce the consumption rate of Mg particles. Meanwhile, the phosphate radicals transported to Al alloy substrate to form a product layer composed of magnesium phosphate and aluminum phosphate on the substrate surface, which decreased the corrosion rate of Al alloy and improved the protective performance of the primer.

  20. Atomic structure of amorphous Mg40Cu35Ti25 alloy: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2013-01-01

    Ab initio molecular dynamics simulations are carried out to model amorphous Mg40Cu35Ti25 and its local structural packing are investigated using a variety of analyzing techniques. Cu-atoms commonly form 12 fold coordinated clusters and some of which are perfect or defective types icosahedrons, implying an icosohedral short range order around Cu atoms. Mg and Ti atoms, on the other hand, favor to structure in higher coordinated polyhedrons. The coordination number of Ti atoms is slightly less than Mg atoms. The immiscibility effect between Ti and Mg is reflected by a low fraction of Mg-Ti bonding in the model. The atomic packing of Mg40Cu35Ti25 appears to be noticeably different from that of Mg-Cu-X (X=Y and Gd) metallic glasses even though all these materials exhibit primarily the same type of bonding natures.

  1. High Strength, Nano-Structured Mg-Al-Zn Alloy

    DTIC Science & Technology

    2011-01-01

    nanocrystalline (nc) Mg AZ80 alloy, synthesized via a cryomilling and spark plasma sintering (SPS) approach are reported and discussed. The effects of...nanocrystalline (nc) Mg AZ80 alloy, synthesized via a cryomilling and spark plasma sintering (SPS) approach are reported and discussed. The effects of...forging capability [23,24]. Therefore, the Mg AZ80 alloy system was selected and processed using a cryomilling and spark plasma sintering (SPS

  2. Nucleosynthesis in AGB stars: Observation of Mg-25 and Mg-26 in IRC+10216 and possible detection of Al-26

    NASA Technical Reports Server (NTRS)

    Guelin, M.; Forestini, M.; Valiron, P.; Ziurys, L. M.; Anderson, M. A.; Cernicharo, J.; Kahane, C.

    1995-01-01

    We report the detection in the circumstellar envelope IRC+10216 of millimeter lines of the rare isotopomers (25)MgNC and (26)MgNC, as well as of a line at 234433 MHz, which could be the J= 7-6 transition of (26)AlF (an alternate, although less likely identified would be the J= 9-8 transition of NaF). The derived Mg-24:Mg-25:Mg-26 isotopic abundance ratios (78 : 11+/- 1 : 11 +/-1) are consistent with the solar system values (79.0:10.0:11.0), following Anders & Grevesse 1989). According to new calculations of evolutionary models of 3 solar mass and 5 solar mass asymptotic giant branch (AGB) stars, these ratios and the previously measured N, O and Si isotopic ratios imply that the central star had an initial mass 3 solar mass (less than or equal to M(sub *, ini) less than 5 solar mass and has already experienced many 3rd dredge-up events. From this, it can be predicted that the Al-26/Al-27 isotopics ratio lies between 0.01 and 0.08; in fact, the value derived in the case that U234433 arises from (26)AlF is Al-26/Al-27 = 0.04. The identification of the (25)MgNC and (26)MgNC lines was made possible by ab-initio quantum mechanical calculations of the molecule geometrical structure. It was confirmed through millimeter-wave laboratory measurements. The quantum mechanical calculations are briefly described and the laboratory results presented in some detail. The rotation constants B, D, H and the spin-rotation constant gamma of (25)MgNC and (26)MgNC are determined from a fit of laboratory and astronomical data.

  3. CO sub 2 induced inhibition of the localized corrosion of aluminum, Al-0. 5% Cu, and Al-2% Cu in dilute HF solution

    SciTech Connect

    Scully, J.R. . Dept. of Materials Science); Peebles, D.E. )

    1991-01-01

    This study presents work on corrosion of aluminum, Al-.5% Cu, and Al-2% Cu. Electrochemical tests were performed in dilute HF solutions both with and without CO{sub 2} sparging. It is suggested that CO{sub 2} or its reaction products interact with the passive film so that exposure of Cu in the oxide-solution interface is minimized. CO{sub 2} is investigated as a corrosion inhibitor. 4 refs. (JDL)

  4. Characterisation of magnesium oxide and its interface with α-Mg in Mg-Al-based alloys

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fan, Z.; Zhou, X.; Thompson, G. E.

    2011-08-01

    Magnesium oxide (MgO) films and particles have been collected by pressurised filtration of a Mg-8.6wt%Al-0.67wt%Zn (AZ91D) alloy melt. The morphology of the oxides and their interfaces with the α-Mg phase were investigated by high-resolution transmission electron microscopy. It was found that the oxide films consisted of large numbers of sub-micrometre-sized MgO particles, and that melt shearing can effectively break up the oxide films and disperse the oxide particles. For the first time, orientation relationships (ORs) of OR I: [1 overline 1 1]MgO∼2° from (0 0 0 1)α-Mg and (0 1 1)MgO //[2 overline 1 overline 1 0)α-Mg; and OR II: (overline 1 overline 1 1)MgO//(1 overline 1 0 1)α-Mg and [0 1 1]MgO//[overline 1 2 overline 1 1]α-Mg, were observed between the MgO particles and the α-Mg matrix. The calculated Bramfitt planar disregistries were 5.5% and 2.5% for the two ORs, respectively, indicating good lattice matching between MgO and α-Mg at the interface. With the evidence of grain refinement effect observed in the sheared AZ91D magnesium alloy, the possibility of MgO particles to act as potent nucleants for heterogeneous nucleation of α-Mg grains is discussed in terms of the crystallographic criterion.

  5. Crystal structure of 1/0-2/1-1/0 Cu-Al-Sc approximant

    NASA Astrophysics Data System (ADS)

    Ishimasa, Tsutomu; Hirao, Arina; Honma, Takahiro; Mihalkovič, Marek

    2011-07-01

    The new crystal structure of an orthorhombic phase formed at the alloy composition Cu48.1Al36.4Sc15.5 was analyzed by means of the Rietveld method using synchrotron radiation diffraction data. The starting model for this analysis was constructed theoretically using the so-called 'cell constrained melt-quenching technique'. The space group of the final model is Cmmm, and the unit cell includes 49.0 Cu, 39.0 Al and 16.0 Sc atoms. The lattice parameters are a = 8.337(4) Å, b = 22.02(1) Å and c = 8.305(4) Å, which are related to the six-dimensional lattice parameter, a 6D = 6.959 Å, of the corresponding Cu-Al-Sc icosahedral quasicrystal as 1/0, 2/1 and 1/0 approximations, respectively. The characteristics of the structure can be understood as a framework consisting of Sc atoms, which is regarded as a tiling of five local structural units; the largest is an icosahedron similar to that included in the Tsai-type quasicrystal. The second exhibits structural similarity to a Mg2Zn11-type crystal and the third is an octahedron.

  6. Corrosion behavior of Cu and the Cu-Zn-Al shape memory alloy in simulated uterine fluid.

    PubMed

    Chen, Bangyi; Liang, Chenghao; Fu, Daojun; Ren, Deming

    2005-09-01

    Chemical immersion tests, electrochemical methods and atomic absorption spectrometry were employed to investigate the corrosion behavior of Cu and the Cu-Zn-Al shape memory alloy (SMA) in simulated uterine fluid. The effect of pH on corrosion rate and corrosion potential was also investigated. The results indicated that in the static state in simulated uterine fluid, dealuminumification of the Cu-Zn-Al alloy occurred with Cl- combining with aluminum ions to form hydroxyl aluminum chloride. The hydroxyl aluminum chloride hydrolyzed readily and facilitated further dealuminumification corrosion. The corrosion process of Cu and Cu-Zn-Al SMA in simulated uterine fluid was controlled by cathodic reduction of oxygen. Because the tendency for surface ionization is greater for aluminum than for zinc, a compact protective aluminum layer was formed, which inhibited the cathodic reduction of oxygen. Hence, the corrosion rate of Cu-Zn-Al SMA was smaller than that of Cu in simulated uterine fluid. With increasing pH, the corrosion rate of Cu and Cu-Zn-Al SMA in simulated uterine fluid decreased and the open-circuit potential moved in a positive direction.

  7. IMPACT OF A REVISED {sup 25}Mg(p, {gamma}){sup 26}Al REACTION RATE ON THE OPERATION OF THE Mg-Al CYCLE

    SciTech Connect

    Straniero, O.; Cristallo, S.; Imbriani, G.; DiLeva, A.; Limata, B.; Strieder, F.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Corvisiero, P.; Costantini, H.; Lemut, A.; Formicola, A.; Gustavino, C.; Junker, M.; Elekes, Z.; Fueloep, Zs.; Gyuerky, Gy.; Gervino, G.; Guglielmetti, A.; and others

    2013-02-15

    Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the {sup 25}Mg(p, {gamma}){sup 26}Al reaction affect the production of radioactive {sup 26}Al{sup gs} as well as the resulting Mg/Al abundance ratio. Reliable estimations of these quantities require precise measurements of the strengths of low-energy resonances. Based on a new experimental study performed at the Laboratory for Underground Nuclear Astrophysics, we provide revised rates of the {sup 25}Mg(p, {gamma}){sup 26}Al{sup gs} and the {sup 25}Mg(p, {gamma}){sup 26}Al {sup m} reactions with corresponding uncertainties. In the temperature range 50-150 MK, the new recommended rate of {sup 26}Al {sup m} production is up to five times higher than previously assumed. In addition, at T = 100 MK, the revised total reaction rate is a factor of two higher. Note that this is the range of temperature at which the Mg-Al cycle operates in a H-burning zone. The effects of this revision are discussed. Due to the significantly larger {sup 25}Mg(p, {gamma}){sup 26}Al {sup m} rate, the estimated production of {sup 26}Al{sup gs} in H-burning regions is less efficient than previously obtained. As a result, the new rates should imply a smaller contribution from Wolf-Rayet stars to the galactic {sup 26}Al budget. Similarly, we show that the asymptotic giant branch (AGB) extra-mixing scenario does not appear able to explain the most extreme values of {sup 26}Al/{sup 27}Al, i.e., >10{sup -2}, found in some O-rich presolar grains. Finally, the substantial increase of the total reaction rate makes the hypothesis of self-pollution by massive AGBs a more robust explanation for the Mg-Al anticorrelation observed in globular-cluster stars.

  8. Corrosion and Discharge Behaviors of Al-Mg-Sn-Ga-In in Different Solutions

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yin, Xiang; Yan, Yang; Dai, Yilong; Fan, Sufeng; Qiao, Xueyan; Yu, Kun

    2016-08-01

    Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga-0.05 wt.%In and Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga alloys were prepared by melting, casting and cold rolling. Corrosion and discharge behaviors of the two experimental alloys were investigated by electrochemical measurement, self-corrosion rate measurement, air battery testing, and scanning electron microscopy. The results showed that Al-Mg-Sn-Ga-In alloy exhibited higher electrochemical activity than Al-Mg-Sn-Ga alloy in 2 M NaCl solution, while it showed lower electrochemical activity than Al-Mg-Sn-Ga alloy in 4 M NaOH solution. By comparison with the air battery based on Al-Mg-Sn-Ga alloy, the battery with Al-Mg-Sn-Ga-In alloy cannot exhibit better discharge performance in 4 M NaOH electrolyte. However, the performance of the air battery based on Al-Mg-Sn-Ga-In alloy was greatly improved due to the In-rich inclusions and the uniform corroded morphology in 2 M NaCl electrolyte. Thus, Al-Mg-Sn-Ga-In alloy was a good anode material for Al-air battery in 2 M NaCl electrolyte.

  9. Band edge modulation and interband optical transition in AlN:Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} nanotubes

    NASA Astrophysics Data System (ADS)

    Huang, Pu; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Zhong, Hong-xia; Ding, Yi-min; Lu, Jing; Wang, Xihua

    2014-04-01

    AlN nanotubes (NTs) have many novel characteristics and great potential applications in electronic and optoelectronic nanodevices. However, little is known about the influence of Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} co-doping effects on their optical properties. Here, we focus on investigating the electronic structures, clarify the interband optical transition mechanism and give a clear atomic picture for the important electron/hole localization centre in AlN:Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} NTs using the GGA-1/2 method. We find that the Mg_{{\\rm{Al}}} doping efficiency can be improved effectively due to O_{{\\rm{N}}} doping in AlN NTs. The Mg_{{\\rm{Al}}} and O_{{\\rm{N}}} form Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} defect complex easily along the AlN NT axis (C-axis). The Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} defect complex can result in a remarkable charge transfer around it and modify the valence band maximum and conduction band minimum significantly. Meanwhile, the Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} defect complex also forms the important exciton localization centre and effectively enhances the interband radiative recombination rate. Moreover, the light emission/absorption sensitively depends on its polarization. The parallel polarized light ({\\mathbf{E}}\\shortparallel {\\rm{C}}) is much stronger than the perpendicular one ({\\mathbf{E}}\\bot {\\rm{C}}). The Mg_{{\\rm{Al}}}-O_{{\\rm{N}}} co-doping thus paves a new way for improving the performance of electronic and optoelectronic nanodevices based on AlN NTs.

  10. Thermal, solution and reductive decomposition of Cu-Al layered double hydroxides into oxide products

    SciTech Connect

    Britto, Sylvia; Vishnu Kamath, P.

    2009-05-15

    Cu-Al layered double hydroxides (LDHs) with [Cu]/[Al] ratio 2 adopt a structure with monoclinic symmetry while that with the ratio 0.25 adopt a structure with orthorhombic symmetry. The poor thermodynamic stability of the Cu-Al LDHs is due in part to the low enthalpies of formation of Cu(OH){sub 2} and CuCO{sub 3} and in part to the higher solubility of the LDH. Consequently, the Cu-Al LDH can be decomposed thermally (150 deg. C), hydrothermally (150 deg. C) and reductively (ascorbic acid, ambient temperature) to yield a variety of oxide products. Thermal decomposition at low (400 deg. C) temperature yields an X-ray amorphous residue, which reconstructs back to the LDH on soaking in water or standing in the ambient. Solution decomposition under hydrothermal conditions yields tenorite at 150 deg. C itself. Reductive decomposition yields a composite of Cu{sub 2}O and Al(OH){sub 3}, which on alkali-leaching of the latter, leads to the formation of fine particles of Cu{sub 2}O (<1 {mu}m). - Graphical abstract: SEM image of (a) the Cu{sub 2}O-Al(OH){sub 3} composite obtained on reductive decomposition of CuAl{sub 4}-LDH and (b) Cu{sub 2}O obtained on leaching of Al(OH){sub 3} from (a).

  11. Evaluation of commercially available bulk Mg and Al oxides and hydroxides for the production of transparent MgAl2O4

    NASA Astrophysics Data System (ADS)

    Sutorik, Anthony C.; Gilde, Gary; Kilczewski, Steven M.; Lidie, Ashley

    2009-05-01

    A significant challenge in the fielding of transparent MgAl2O4 (spinel) ceramic parts for a variety of military applications is the limited availability and fairly high cost of starting powder with consistent quality and performance. In addition, available powders often require additional processing (particularly the addition of a sintering aid such as LiF) prior to ceramic forming and sintering. Although the current sources of commercial spinel powder are limited, separate Mg and Al oxides or hydroxides are among the most widely produced ceramic powders on the market. If stoichiometric combinations of such powders could be substituted with modest effort into existing procedures for transparent spinel manufacture, significant gains could be made in cost, availability, and consistency of the resulting ceramic bodies. To this end we have studied the suitability of various commercial sources of MgO, Mg(OH)2, γ-Al2O3, and AlOOH for transparent MgAl2O4 production. Our methods have been kept simple to facilitate comparisons between trials and to maintain a focus on eventual manufacturing feasibility. Stoichiometric mixtures of Mg and Al powders are thoroughly mixed in an aqueous slurry. The solids are collected, dried, calcined, milled with LiF (as a sintering aid), and sieved. The powders are sintered into dense ceramics with standard hot pressing and hot isostatic pressing procedures. Resulting ceramic transmission is measured and correlated with the purity, surface area, and phase composition of the prepared powders.

  12. Thermal diffusivity of Al-Mg based metallic matrix composite reinforced with Al2O3 ceramic particles

    NASA Astrophysics Data System (ADS)

    Cruz-Orea, A.; Morales, J. E.; Saavedra S, R.; Carrasco, C.

    2010-03-01

    Thermal diffusivities of Al-Mg based metallic matrix composite reinforced with ceramic particles of Al2O3 are reported in this article. The samples were produced by rheocasting and the studied operational condition in this case is the shear rate: 800, 1400 and 2000 rpm. Additionally, the AlMg base alloy was tested. Measurements of thermal diffusivity were performed at room temperature by using photoacoustic technique.

  13. Influence of homogenization and artificial aging heat treatments on corrosion behavior of Mg-Al alloys

    SciTech Connect

    Beldjoudi, T.; Fiaud, C.; Robbiola, L. . Lab. d'Etudes de la Corrosion)

    1993-09-01

    The influence of heat treatment on corrosion behavior of magnesium-aluminum (Mg-9Al) alloys was investigated by studying the electrochemical properties of Mg-9Al in the solution-treated (T4) and artificially aged (T6) conditions. The alloys' properties were compared to those of pure Mg, the intermetallic Mg[sub 17]Al[sub 12] phase, and different Mg-Al-based alloys (Mg-3Al, AZ91). The Mg-9Al alloy exhibited better corrosion resistance in the T6 condition than in the T4 condition because of the intermetallic Mg[sub 17]Al[sub 12] precipitates present n the T6 alloy. The mechanism responsible for this behavior was attributed to a more protective porous film on the T6 matrix alloy than on the T4 alloy. Addition of zinc did not modify these results. Localized corrosion testing showed the Mg-Al alloys were attacked preferentially in relation to magnesium silicide (Mg[sub 2]Si) precipitates which were characterized clearly using metallurgical examinations.

  14. Thermodynamic analysis and experimental study on the oxidation of the Zn-Al-Mg coating baths

    NASA Astrophysics Data System (ADS)

    Su, Xuping; Zhou, Jie; Wang, Jianhua; Wu, Changjun; Liu, Ya; Tu, Hao; Peng, Haoping

    2017-02-01

    Surface oxidation of molten Zn-6Al baths containing 0.0, 3.0 and 6.0 wt. % Mg were analyzed using X-ray photoelectron spectroscopy. γ-Al2O3 is formed on the surface of the Zn-6Al bath, while MgAl2O4 and MgO occur at 460 °C in the Zn-6Al-3Mg and Zn-6Al-6Mg baths, respectively. Thermodynamic analysis on the oxidation of the Zn-Al-Mg baths was performed. Calculated phase diagrams at 460 °C and 560 °C show good agreements with the experimental results. MgO or MgAl2O4 exists in almost the entire composition range of the calculated oxidation diagrams. According to the calculation, oxidation products depend on the composition and temperature of the baths. The primary and secondary oxidation products of the Zn-Al-Mg baths can be reasonably explained by oxidation phase diagrams. Utilizing these results, the favorable practical bath melts and operating conditions can be designed.

  15. A study on atomic diffusion behaviours in an Al-Mg compound casting process

    SciTech Connect

    Liu, Yongning; Chen, Yiqing; Yang, Chunhui

    2015-08-15

    Al and Mg alloys are main lightweight alloys of research interest and they both have superb material properties, i.e., low density and high specific strength, etc. Being different from Al alloys, the corrosion of Mg alloys is much more difficult to control. Therefore to combine merits of these two lightweight alloys as a composite-like structure is an ideal solution through using Al alloys as a protective layer for Mg alloys. Compound casting is a realistic technique to manufacture such a bi-metal structure. In this study, a compound casting technique is employed to fabricate bi-layered samples using Al and Mg and then the samples are analysed using electron probe micro-analyzer (EPMA) to determine diffusion behaviours between Al and Mg. The diffusion mechanism and behaviours between Al and Mg are studied numerically at atomic scale using molecular dynamics (MD) and parametric studies are conducted to find out influences of ambient temperature and pressure on the diffusion behaviours between Al and Mg. The results obtained clearly show the effectiveness of the compound casting process to increase the diffusion between Al and Mg and thus create the Al-base protection layer for Mg.

  16. Characterization and Electrical Properties of Al-Doped Cu(In,Ga)Se2 Semiconductors with Various Cu Contents

    NASA Astrophysics Data System (ADS)

    Monsefi, Mehrdad; Kuo, Dong-Hau

    2014-04-01

    Cu(In,Ga)Se2 (CIGSe) semiconductor, which shows record photovoltaic conversion efficiencies near 20%, has become a leading material for thin-film solar cell applications. In this work, Al-doped CIGSe (Al-CIGSe) bulk material with different Cu contents has been prepared by a liquid-phase reactive sintering method at 650°C. Sintering of the Al-CIGSe bulk material has been carried out in the presence of Sb2S3 and Te. The bulk Cu x [(In0.6Al0.1)Ga0.3]Se2 semiconductor was n-type for x = 0.7 and p-type for higher Cu content. The defect chemistry of Al-CIGSe was studied by measuring the electrical properties as a function of copper content. The changes in the conductivity type and carrier concentration were related to defect states involving Cu vacancy and antisite defects of In Cu 2+ and Cu B 2 - in a Cu B IIISe2-type phase. The lattice parameters were in good agreement with other evidence for the existence of different defect states.

  17. Vanishing quasiparticle density in a hybrid Al/Cu/Al single-electron transistor

    NASA Astrophysics Data System (ADS)

    Saira, O.-P.; Kemppinen, A.; Maisi, V. F.; Pekola, J. P.

    2012-01-01

    The achievable fidelity of many nanoelectronic devices based on superconducting aluminum is limited by either the density of residual nonequilibrium quasiparticles nqp or the density of quasiparticle states in the gap, characterized by Dynes parameter γ. We infer upper bounds nqp<0.033μm-3 and γ<1.6×10-7 from transport measurements performed on Al/Cu/Al single-electron transistors, improving previous results by an order of magnitude. Owing to efficient microwave shielding and quasiparticle relaxation, a typical number of quasiparticles in the superconducting leads is zero.

  18. Effect of Mg or Ag addition on the evaporation field of Al.

    PubMed

    Aruga, Yasuhiro; Nako, Hidenori; Tsuneishi, Hidemasa; Hasegawa, Yuki; Tao, Hiroaki; Ichihara, Chikara; Serizawa, Ai

    2013-09-01

    It is known that the distribution of the charge-states as well as the evaporation field shift to higher values as the specimen temperature is decreased at a constant rate of evaporation. This study has explored the effect of Mg or Ag addition on the evaporation field of Al in terms of the charge state distribution of the field evaporated Al ions. The fractional abundance of Al(2+) ions with respect to the total Al ions in Al-Mg alloy is lower than that in pure Al, whereas it shows higher level in the Al-Ag alloy at lower temperatures. The temperature dependence of the fractional abundance of Al(2+) ions has been also confirmed, suggesting that Al atoms in the Al-Mg alloy need lower evaporation field, while higher field is necessary to evaporate Al atoms in the Al-Ag alloy, compared with pure Al. This tendency is in agreement with that of the evaporation fields estimated theoretically by means of measurements of the work function and calculations of the binding energy of the pure Al, Al-Mg and Al-Ag alloys.

  19. Effect of Thermomechanical Processing on the Elevated Temperature Behavior of Lithium-Containing High-Mg, Al-Mg Alloys.

    DTIC Science & Technology

    1986-06-01

    predict as accurately as possible the true elongations from the charted values, a scale factor equal to the ratio of the measured elongation at...the volume fraction of precipitated B, Mg5AI8 , is the most influential factor affecting flow stress and strain-rate sensitivity. How Li additions...of 13 precipitated is the most influential factor affecting flow stress, - and strain-rate sensitivity coefficient, m. 7. The Al-Mg-Li alloys tested

  20. Evaluation of the performance of two LiF:Mg,Ti and LiF:Mg,Cu,P dosemeters for extremity monitoring.

    PubMed

    Freire, L C; Pereira, M F; Calado, A M; Santos, L M; Cardoso, J V; Alves, J G

    2011-03-01

    In this paper, the results aimed at assessing the performance of two varieties of LiF detectors (LiF:Mg,Ti and LiF:Mg,Cu,P) in photon fields relatively to reproducibility, detection threshold and angular dependence as defined in the ISO 12794 standard are presented. The fading properties and the limit of detection were also investigated for both materials. The results suggest that both LiF varieties are well suited for extremity monitoring. However, better fading properties of LiF:Mg,Cu,P when compared with LiF:Mg,Ti, combined with previous results relatively to energy dependence suggests that LiF:Mg,Cu,P dosemeters are better suited for extremity monitoring.

  1. Ab initio molecular dynamics simulations of short-range order in Zr50Cu45Al5 and Cu50Zr45Al5 metallic glasses

    SciTech Connect

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.

    2016-02-01

    Comparative analysis between Zr-rich Zr50Cu45Al5 and Cu-rich Cu50Zr45Al5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr50Cu45Al5 and Cu50Zr45Al5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons < 0,0,12,0 > is dominant, and in the Cu-rich one the distorted icosahedral orders, especially < 0,2,8,2 > and < 0,2,8,1 >, are prominent. And the < 0,2,8,2 > polyhedra in Cu50Zr45Al5 MG mainly originate from Al-centered clusters, while the < 0,0,12,0 > in Zr50Cu45Al5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. Lastly, the relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr50Cu45Al5.

  2. Evaluation of intermediate phases formed on the bonding interface of hot pressed Cu/Al clad materials

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Seok; Lee, Sangmok; Lee, Jong-Sup; Kim, Yong-Bae; Lee, Geun-An; Lee, Sang-Pill; Bae, Dong-Su

    2016-09-01

    The aim of the present study is to identify the properties of intermediate phases formed on the bonding interface of hot pressed Cu/Al clad materials by transmission electron microscopy and nano-indentation analyses. Cu/Al clad materials were fabricated by hot pressing under 200 MPa at 250 °C for 1 h and then heat treated at 400 °C for 1 h. Nano-indentation measurement was conducted to evaluate the nanohardness and modulus of the intermediate phases formed between the Cu/Al interfaces. A 3-tier diffusion layer was observed at the Cu/Al interfaces. Knoop microhardness values at the bonding interface were 7 to 11 times that of the Cu and Al matrix metals. The intermediate phases formed at the bonding interface were Al4Cu9, AlCu, and Al2Cu. A mapping analysis confirmed that the Al and Cu particles moved via mutual diffusion toward the intermediate phases formed at the bonding interface. The nanohardness values of η2-AlCu and γ1-Al4Cu9 were 4 to 7 times that of the Cu and Al matrix metals. Nanohardness and Knoop microhardness measurement curves exhibited similar tendencies. The rigidity values of the respective intermediate phases can be arranged in descending order as follows: γ1-Al4Cu9 > η2-AlCu > θ-Al2Cu.

  3. Physical properties of CuAlO 2 single crystal

    NASA Astrophysics Data System (ADS)

    Brahimi, R.; Bellal, B.; Bessekhouad, Y.; Bouguelia, A.; Trari, M.

    2008-09-01

    CuAlO 2 single crystal elaborated by the flux method is a narrow band gap semiconductor crystallizing in the delafossite structure (SG R3¯m). Oxygen insertion in the layered lattice generates p-type conductivity where most holes are trapped in surface-polaron states. The detailed photoelectrochemical characterization and electrochemical impedance spectroscopy (EIS) have been reported for the first time on the single crystal. The study is confined in the basal plan and reversible oxygen insertion is evidenced from the intensity potential characteristics. The oxide is characterized by an excellent chemical stability; the semi-logarithmic plot gave a corrosion potential of-0.82 V SCE and an exchange current density of 0.022 μA cm -2 in KCl (0.5 M) electrolyte. The capacitance measurement ( C-2- V) shows a linear behavior from which a flat band potential of +0.42 V SCE and a doping density NA of 10 16 cm -3 have been determined. The valence band, located at 5.24 eV (0.51 V SCE) below vacuum, is made up of Cu-3d orbital. The Nyquist plot exhibits a pseudo-semicircle whose center is localized below the real axis with an angle of 20°. This can be attributed to a single relaxation time of the electrical equivalent circuit and a constant phase element (CPE). The absence of straight line indicates that the process is under kinetic control.

  4. First-principles study of Al-Cu energetics and consequences on athermal formation of Cu-rich compounds

    NASA Astrophysics Data System (ADS)

    Besson, R.; Kwon, J.; Thuinet, L.; Avettand-Fènoël, M.-N.; Legris, A.

    2014-12-01

    In spite of its practical interest, the Al-Cu system remains largely unexplored, especially on its Cu-rich side. In order to improve the knowledge of this system, we perform a thorough ab initio study of fcc-based Al-Cu energetics, using the recently proposed M2BCE reciprocal-space cluster expansion approach. We demonstrate the existence of two clearly distinct composition domains, revealing complex ground-state properties. Below 50% Cu, the GP 2 -A l3Cu compound appears as highly favored, in agreement with the well-documented transformation sequence in Al-based alloys. Conversely, the domain between 50% and 80% Cu displays a much shallower landscape, characterized by the existence of a wealth of compounds undergoing fcc →bcc structural instabilities. While such "Bain paths" have been identified for a long time in iron-based alloys, our work gives evidence for their existence in the Al-Cu system. As a striking application, these instabilities provide plausible athermal mechanisms for the formation of Cu-rich phases, in particular for the unexpected emergence of γ1-A l4C u9 , a Hume-Rothery compound observed in various nonequilibrium conditions.

  5. Fracture toughness of an Al-Li-Cu-In alloy

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Gangloff, Richard P.

    1992-01-01

    The crack initiation and growth fracture toughness of select AL-Li-Cu alloy variants are characterized and elucidated. Conventionally processed plates form large DC cast ingots are investigated to eliminate the variation in microstructure associated with laboratory scale and SPF-processed material. Fracture resistance is characterized using the J-integral method to establish crack initiation and growth behavior at 25 and -185 C. It is shown that state-of-the-art 2090-T81 has superior toughness compared to 2090 + In-T6 at both test temperatures, with the low toughness of 2090 + In-T6 associated with intersubgranular fracture attributed to a high density of subboundary precipitates.

  6. Dosimetric Characteristics of a LKB:Cu,Mg Solid Thermoluminescence Detector

    NASA Astrophysics Data System (ADS)

    Yasser Saleh Mustafa, Alajerami; Suhairul, Hashim; Ahmad Termizi, Ramli; Muneer Aziz, Saleh; Ahmad Bazlie, Bin Abdul Kadir; Mohd., Iqbal Saripan

    2013-01-01

    We present the main thermoluminescence characteristics of a newly borate glass dosimeter modified with lithium and potassium carbonate (LKB) and co-doped with CuO and MgO. An enhancement of about three times has been shown with the increment of 0.1mol% MgO as a co-dopant impurity. The effects of dose linearity, storage capacity, effective atomic number and energy dose response are studied. The proposed dosimeter shows a simple glow curve, good linearity up to 103 Gy, close effective atomic number and photon energy independence. The current results suggest using the proposed dosimeter in different dosimetric applications.

  7. Assessment of the mean glandular dose using LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu TL detectors in mammography radiation fields

    NASA Astrophysics Data System (ADS)

    Fartaria, M. J.; Reis, C.; Pereira, J.; Pereira, M. F.; Cardoso, J. V.; Santos, L. M.; Oliveira, C.; Holovey, V.; Pascoal, A.; Alves, J. G.

    2016-09-01

    The aim of this paper is the characterization of four thermoluminescence detectors (TLD), namely, LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu for the measurement of the entrance surface air kerma (ESAK) and estimation of the mean glandular dose (MGD) in digital mammography examinations at hospitals and clinics. Low-energy x-ray beams in the typical energy ranges of mammography, produced with a tungsten target and additional 60 µm molybdenum filtration were implemented and characterized at the Laboratory of Metrology of Ionizing Radiation at Instituto Superior Técnico. These beams were used for the characterization of the TLDs in terms of sensitivity, linearity, reproducibility, energy dependence and fading at 40 °C. The energy dependence test was further extended using clinical beams produced by mammography units at hospitals and clinics. The method proposed by the International Atomic Energy Agency was used for the measurement of ESAK and assessment of MGD. The combined standard uncertainty for the measurement of ESAK (and MGD) was determined in accordance to the Guide to the expression of uncertainty in measurement. The x-ray beams generated in the 23-40 kVp range presented HVL values from 0.36 to 0.46 mm Al. The beam produced at 28 kVp (HVL 0.39 mm Al) was considered as reference. The radiation field defined a circle with 84 mm diameter with a maximum variation of the beam intensity of less than 1% at the top flat (plateau) within 4 cm of the central axis. The estimated total uncertainty for the measurement of air kerma was 0.42%. All the TL detectors tested showed good performance except the commercial Li2B4O7:Mn (or TLD-800) which was excluded due to its poor sensitivity in our experimental set up. Both lithium fluorides showed better linearity and reproducibility as well as lower energy dependence and fading when compared to lithium borates. The stable behaviour of LiF:Mg,Ti and LiF:Mg,Cu,P detectors is reflected in the low combined standard

  8. Temperature effect on ideal shear strength of Al and Cu

    NASA Astrophysics Data System (ADS)

    Iskandarov, Albert M.; Dmitriev, Sergey V.; Umeno, Yoshitaka

    2011-12-01

    According to Frenkel’s estimation, at critical shear stress τc=G/2π, where G is the shear modulus, plastic deformation or fracture is initiated even in defect-free materials. In the past few decades it was realized that, if material strength is probed at the nanometer scale, it can be close to the theoretical limit, τc. The weakening effect of the free surface and other factors has been discussed in the literature, but the effect of temperature on the ideal strength of metals has not been addressed thus far. In the present study, we perform molecular dynamics simulations to estimate the temperature effect on the ideal shear strength of two fcc metals, Al and Cu. Shear parallel to the close-packed (111) plane along the [112¯] direction is studied at temperatures up to 800 K using embedded atom method potentials. At room temperature, the ideal shear strength of Al (Cu) is reduced by 25% (22%) compared to its value at 0 K. For both metals, the shear modulus, G, and the critical shear stress at which the stacking fault is formed, τc, decrease almost linearly with increasing temperature. The ratio G/τc linearly increases with increasing temperature, meaning that τc decreases with temperature faster than G. Critical shear strain, γc, also decreases with temperature, but in a nonlinear fashion. The combination of parameters, Gγc/τc, introduced by Ogata as a generalization of Frenkel’s formula, was found to be almost independent of temperature. We also discuss the simulation cell size effect and compare our results with the results of abinitio calculations and experimental data.

  9. Synthesis and characterization studies of MgO:CuO nanocrystals by wet-chemical method

    NASA Astrophysics Data System (ADS)

    Kaviyarasu, K.; Maria Magdalane, C.; Anand, K.; Manikandan, E.; Maaza, M.

    2015-05-01

    In this report, we examine the progress in adapting these nanomaterials for several predominantly photonics device fabrication by wet-chemical method. Nanocomposite of magnesium oxide (MgO) with copper oxide (CuO) doped nanoparticles were characterized by X-ray powder diffraction (XRD) and the observed peaks are quite agreeable with the pure phase cubic structure. High-resolution transmission electron microscopic (HR-TEM) results reveal that the resultant nanopowders are porous and agglomerated with polycrystalline nano-entities. Field emission of selected-area electron diffraction (SAED) studies showed that the average size of the nanoparticles were 20 nm. Photoluminescence spectra of MgO:CuO were investigated, showing emission peaks around 375 nm relating to new energy levels induced by defects or defect levels generation and confocal micro-Raman images indicated that the chemical molecular vibrational band structure and morphology of the product which is spherical shaped nanoparticles with an average particle size of ∼25 nm with standard deviation. The electrochemical response of MgO:CuO which is proves that the nano-copper/magnesium has high functionality due to the small size and it has higher electrochemical activity without any modifications.

  10. On the shear homeotypism in the MgCu 2 family

    NASA Astrophysics Data System (ADS)

    Schubert, K.

    1984-07-01

    It is well known that there are several homeotypes of MgCu 2 which are distinguished by different shears between double layers of atoms parallel to (111) MgCu 2 (Friauf-Laves phases) and that they are stable at specific valence electron concentrations (rule of Komura). This phenomenon may be interpreted by the two-correlations model, a valence model for metallic phases. The correlation of the peripheral core electrons ( c correlation) and its commensurability to the crystal cell a is the same for all quasi-homologous shear homeotypes of MgCu 2, but the correlation of the valence electrons ( b correlation) depends on the valence-electron concentration. The b correlation exhibits different discrete commensurabilities with respect to the c correlation in the hexagonal basal plane of a. Also, the distances of the b correlation planes parallel to the hexagonal basal plane exhibit energetically favorable commensurabilities to a. These different commensurabilities correspond to observed phases. The b electron correlation induces transitory electrical dipole vectors at the atoms with component in a3 direction (the hexagonal axis) and the interactions of the dipoles determine the stacking sequence of the double layers.

  11. TL and OSL studies of carbon doped magnesium aluminate (MgAl2O4:C)

    NASA Astrophysics Data System (ADS)

    Raj, Sanu S.; Mishra, D. R.; Soni, Anuj; Grover, V.; Polymeris, G. S.; Muthe, K. P.; Jha, S. K.; Tyagi, A. K.

    2016-10-01

    The MgAl2O4:C has been synthesized by using two different methods by electron gun and vacuum assisted melting of MgAl2O4 in presence of graphite. The MgAl2O4:C phosphor thus developed by these two different methods have similar types of the TL/OSL defects with multiple overlapping TL glow peaks from 100 °C to 400 °C. The Computerized Curve De-convolution Analysis (CCDA) has been used to measure TL parameters such as thermal trap depth, frequency factor and order of kinetic associated with charge transfer process in TL phenomenon. The investigated TL/OSL results show that these two methods of incorporating carbon in MgAl2O4 have generated closely resemble the defects of similar types in MgAl2O4:C lattice. However, the MgAl2O4:C synthesized by electron gun shows relatively larger concentration of the TL/OSL defects as compared to MgAl2O4:C synthesized using vacuum assisted melting method. The photo-ionization cross-section (PIC) associated with fastest OSL component of MgAl2O4: C is found to be ∼ 0.5 times than that of fastest OSL component of commercially available dosimetric grade α-Al2O3:C. The MgAl2O4:C thus developed shows good dynamic OSL dose linearity from few mGy to 1 Gy. This work reveals that MgAl2O4:C could be developed as potential tissue equivalent OSL / TL material.

  12. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  13. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    PubMed Central

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  14. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  15. Thermodynamically destabilized hydride formation in "bulk" Mg-AlTi multilayers for hydrogen storage.

    PubMed

    Kalisvaart, Peter; Shalchi-Amirkhiz, Babak; Zahiri, Ramin; Zahiri, Beniamin; Tan, XueHai; Danaie, Mohsen; Botton, Gianluigi; Mitlin, David

    2013-10-21

    Thermodynamic destabilization of MgH2 formation through interfacial interactions in free-standing Mg-AlTi multilayers of overall "bulk" (0.5 μm) dimensions with a hydrogen capacity of up to 5.5 wt% is demonstrated. The interfacial energies of Mg-AlTi and Mg-Ti (examined as a baseline) are calculated to be 0.81 and 0.44 J m(-2). The enhanced interfacial energy of AlTi opens the possibility of creating ultrathin alloy interlayers that provide further thermodynamic improvements in metal hydrides.

  16. Reactive wetting of amorphous silica by molten Al-Mg alloys and their interfacial structures

    NASA Astrophysics Data System (ADS)

    Shi, Laixin; Shen, Ping; Zhang, Dan; Jiang, Qichuan

    2016-07-01

    The reactive wetting of amorphous silica substrates by molten Al-Mg alloys over a wide composition range was studied using a dispensed sessile drop method in a flowing Ar atmosphere. The effects of the nominal Mg concentration and temperature on the wetting and interfacial microstructures were discussed. The initial contact angle for pure Al on the SiO2 surface was 115° while that for pure Mg was 35° at 1073 K. For the Al-Mg alloy drop, it decreased with increasing nominal Mg concentration. The reaction zone was characterized by layered structures, whose formation was primarily controlled by the variation in the alloy concentration due to the evaporation of Mg and the interfacial reaction from the viewpoint of thermodynamics as well as by the penetration or diffusion of Mg, Al and Si from the viewpoint of kinetics. In addition, the effects of the reaction and the evaporation of Mg on the movement of the triple line were examined. The spreading of the Al-Mg alloy on the SiO2 surface was mainly attributed to the formation of Mg2Si at the interface and the recession of the triple line to the diminishing Mg concentration in the alloy.

  17. Mg/Al double-metal hydroxide regeneration of anion exchange resin by electric field intensification.

    PubMed

    Wang, Ying; Li, Zhun; Li, Yansheng; Liu, Zhigang

    2017-03-01

    Fouled anion exchange resins were regenerated by electric field intensification of Mg/Al double-metal hydroxides. Regenerative experiments were performed with varying voltages (10-30 V) and dosages of Mg/Al hydroxides (0.045-0.135 mol and 0.015-0.045 mol, respectively) for 1-5 h. Optimal results were obtained under the following regenerative conditions: 20 V, 4 h, and 0.09/0.03 mol of Mg/Al hydroxides. The maximum regenerative capacity of resins was increased to 41.07%. The regenerative mechanism was presented by Fourier-transform infrared spectrum of resins and Mg/Al hydroxides, and the regenerative degree was analyzed with respect to conductivity, pH value, and electric current. Mg/Al hydroxides were also recycled after the regeneration. This method was proven to be cost-effective and environmentally friendly.

  18. Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization

    NASA Astrophysics Data System (ADS)

    Wang, Linzhi; Liu, Ying; Chang, Sen

    2016-05-01

    Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.

  19. Geometric and Chemical Composition Effects on Healing Kinetics of Voids in Mg-bearing Al Alloys

    NASA Astrophysics Data System (ADS)

    Song, Miao; Du, Kui; Wang, Chunyang; Wen, Shengping; Huang, Hui; Nie, Zuoren; Ye, Hengqiang

    2016-05-01

    The healing kinetics of nanometer-scale voids in Al-Mg-Er and Al-Mg-Zn-Er alloy systems were investigated with a combination of in situ transmission electron microscopy and electron tomography at different temperatures. Mg was observed completely healing the voids, which were then rejuvenated to the alloy composition with further aging, in the Al-Mg-Er alloy. On the contrary, Mg51Zn20 intermetallic compound was formed in voids in the Al-Mg-Zn-Er alloy, which leads to complete filling of the voids but not rejuvenation for the material. For voids with different geometrical aspects, different evolution processes were observed, which are related to the competition between bulk and surface diffusion of the alloys. For voids with a large size difference in their two ends, a viscous flow of surface atoms can be directly observed with in situ electron microscopy, when the size of one end becomes less than tens of nanometers.

  20. Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr 3 , AlCu 3 , and AlCu 2 Zr: First-principles study

    NASA Astrophysics Data System (ADS)

    Parvin, R.; Parvin, F.; Ali, M. S.; Islam, A. K. M. A.

    2016-08-01

    The electronic properties (Fermi surface, band structure, and density of states (DOS)) of Al-based alloys AlM 3 (M = Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method within the generalized gradient approximation (GGA). The structural parameters and elastic constants are evaluated and compared with other available data. Also, the pressure dependences of mechanical properties of the compounds are studied. The temperature dependence of adiabatic bulk modulus, Debye temperature, specific heat, thermal expansion coefficient, entropy, and internal energy are all obtained for the first time through quasi-harmonic Debye model with phononic effects for T = 0 K-100 K. The parameters of optical properties (dielectric functions, refractive index, extinction coefficient, absorption spectrum, conductivity, energy-loss spectrum, and reflectivity) of the compounds are calculated and discussed for the first time. The reflectivities of the materials are quite high in the IR-visible-UV region up to ˜ 15 eV, showing that they promise to be good coating materials to avoid solar heating. Some of the properties are also compared with those of the Al-based Ni3Al compound.

  1. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    DOE PAGES

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  2. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    SciTech Connect

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  3. Removal of borate by coprecipitation with Mg/Al layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Kurashina, Masashi; Inoue, Tatsuki; Tajima, Chihiro; Kanezaki, Eiji

    2015-03-01

    Borate has been used for various industrial products and excessive dose of boron is harmful to humans. We investigated the removal of borate by direct coprecipitation with Mg/Al layered double hydroxide. In this study, the maximum removal of boron was 90% when Mg 30 mmol and Al 15 mmol at pH = 10 were used for 498 mg/l as B. The boron adsorption isotherms could be fitted to Langmuir model. The calculated constant Ws, saturation limit of boron adsorption, is 25 ± 2 mg/g and it is larger than that of ion exchange reaction (Ws = 15±1 mg/g).

  4. Mechanical properties of Al-Cu alloy-SiC composites

    SciTech Connect

    Anggara, B. S.; Handoko, E.; Soegijono, B.

    2014-09-25

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  5. Al-Mg Isotope Study of Allende 5241

    NASA Technical Reports Server (NTRS)

    Kerekgyarto, A. G.; Jeffcoat, C. R.; Lapen, T. J.; Andreasen, R.; Righter, M.; Ross, D. K.; Simon, J. I.

    2016-01-01

    The defining characteristic of type B1 CAIs is a large (.5- 3mm) concentric melilite mantle [1]. In [2] we presented two isochrons from separate traverses across the melilite mantle of Allende EK 459-5-1. The primary petrographic differences between the traverses was the preservation of strong oscillatory zoning. The traverse that crossed the distinctive oscillatory zone produced a pristine internal isochron, while the other that did not have a strongly preserved oscillatory zone produced a disturbed isochron indicated by more scatter (higher MSWD) and a positive (delta)26Mg* intercept. The implication simply being that the oscillatory zone may represent varying conditions during the mantle formation event. We targeted a similar texture in Allende 5241 using the same methodology in an attempt to achieve similar results.

  6. Plasma electrolytic oxidation coating of synthetic Al-Mg binary alloys

    SciTech Connect

    Tarakci, Mehmet

    2011-12-15

    The binary Al-Mg synthetic alloys were prepared in a vacuum/atmosphere controlled furnace with the addition of 0.5, 1, 2, 4, 7, and 15 wt.% pure Mg into pure aluminum as substrate material. The surfaces of the Al-Mg alloys and pure aluminum were coated for 120 min by plasma electrolytic oxidation in the same electrolyte of 12 g/L sodium silicate and 2 g/L KOH in distilled water. The coating was characterized by X-ray diffraction, scanning electron microscopy, profilometry and Vickers microhardness measurements. There regions of loose outer layer, dense inner layer with precipitate like particles of {alpha}-Al{sub 2}O{sub 3} and a thin transition layer were identified for the coated samples. The coating thickness increases from 85 to 150 {mu}m with Mg contents in the alloys. The surface morphology becomes more porous and consequently surface roughness tends to increase with plasma electrolytic oxidation treatment and further with Mg content. The increase in magnesium content reduces the formation of {alpha}-Al{sub 2}O{sub 3} and crystalline mullite phases in the coating and decreases microhardness of coating. The Mg concentration is constant throughout the other loose and dense regions of coating though it gradually decreases in the thin inner region. - Research Highlights: Black-Right-Pointing-Pointer The average thickness of PEO coating of Al-Mg alloys increases with Mg content. Black-Right-Pointing-Pointer The addition of Mg reduces and prevents the formation of {alpha}-Al{sub 2}O{sub 3} and mullite. Black-Right-Pointing-Pointer The surface roughness increases with Mg content in the Al-Mg alloys. Black-Right-Pointing-Pointer The hardness values of the coating decreases with the Mg amount in the substrate. Black-Right-Pointing-Pointer The Mg concentration is constant throughout the main regions of coating.

  7. Al-TiC Composites Fabricated by a Thermally Activated Reaction Process in an Al Melt Using Al-Ti-C-CuO Powder Mixtures: Part II. Microstructure Control and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Cho, Young-Hee; Lee, Jung-Moo; Kim, Su-Hyeon

    2015-03-01

    Controlling the processing parameters is important to minimize such undesirable microstructural features in Al/TiC composites as unreacted C, incomplete reaction products of Al3Ti and TiC aggregates, which originate from the pellet microstructure upon the combustion reaction of an Al-Ti-C-CuO pellet in an Al melt. In particular, the mean particle size of elemental powders is a key factor linked to the formation of TiC aggregates, which is significantly suppressed with smaller initial particles of Ti and C by mixing them homogenously by ball milling. Al-Cu-Mg alloys reinforced with up to 12 vol pct TiC are fabricated by the developed process, followed by extrusion. The composites after heat treatment exhibit high elastic modulus and an ultimate tensile strength of 93 GPa and 461 MPa, respectively, with a low coefficient of thermal expansion of 17.11 ppm/K.

  8. Structural and electronic properties of CuI doped with Zn, Ga and Al

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Gu, Mu; Pandey, Ravindra

    2013-08-01

    The structural and electronic properties of CuI doped with Zn, Ga and Al are investigated using density functional theory. The calculated results find that the solubility of the cation dopants considered is primarily determined by the difference in the electronic configurations between host and dopants. The order of the formation energy of the dopants is predicted to be E(ZnCu)>E(AlCu)>E(GaCu) in CuI. Furthermore, dopants at the octahedral interstitial sites have lower formation energies as compared to dopants located at the tetrahedral interstitial sites in the lattice. The defect complex consisting of ZnCu and the copper vacancy (ZnCu+VCu) is predicted to be preferred in the lattice, suggesting that incorporation of Zn is expected to enhance the concentration of copper vacancies in CuI.

  9. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy

    PubMed Central

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D.; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-01-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase’s total volume and decrease of each column’s transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope. PMID:27091383

  10. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D.; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-04-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase’s total volume and decrease of each column’s transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope.

  11. Interconnection between microstructure and microhardness of directionally solidified binary Al-6wt.%Cu and multicomponent Al-6wt.%Cu-8wt.%Si alloys.

    PubMed

    Vasconcelos, Angela J; Kikuchi, Rafael H; Barros, André S; Costa, Thiago A; Dias, Marcelino; Moreira, Antonio L; Silva, Adrina P; Rocha, Otávio L

    2016-05-31

    An experimental study has been carried out to evaluate the microstructural and microhardness evolution on the directionally solidified binary Al-Cu and multicomponent Al-Cu-Si alloys and the influence of Si alloying. For this purpose specimens of Al-6wt.%Cu and Al-6wt.%Cu-8wt.%Si alloys were prepared and directionally solidified under transient conditions of heat extraction. A water-cooled horizontal directional solidification device was applied. A comprehensive characterization is performed including experimental dendrite tip growth rates (VL) and cooling rates (TR) by measuring Vickers microhardness (HV), optical microscopy and scanning electron microscopy with microanalysis performed by energy dispersive spectrometry (SEM-EDS). The results show, for both studied alloys, the increasing of TR and VL reduced the primary dendrite arm spacing (l1) increasing the microhardness. Furthermore, the incorporation of Si in Al-6wt.%Cu alloy to form the Al-6wt.%Cu-8wt.%Si alloy influenced significantly the microstructure and consequently the microhardness but did not affect the primary dendritic growth law. An analysis on the formation of the columnar to equiaxed transition (CET) is also performed and the results show that the occurrence of CET is not sharp, i.e., the CET in both cases occurs in a zone rather than in a parallel plane to the chill wall, where both columnar and equiaxed grains are be able to exist.

  12. First stage of reaction of molten Al with MgO substrate

    SciTech Connect

    Morgiel, J.; Sobczak, N.; Pomorska, M.; Nowak, R.

    2015-05-15

    The Al/MgO couple was produced in vacuum (~ 5 × 10{sup −} {sup 4} Pa) by contact heating from RT up to 1000 °C and holding at that temperature for 1 h of a small 4 × 4 × 4 mm aluminium (5 N) sample placed on the [100] MgO single crystal substrate. TEM observations backed with electron diffraction analysis indicated that the interaction between liquid aluminium and MgO starts from a redox reaction producing a continuous layer of MgAl{sub 2}O{sub 4} spinel on the substrate surface. Its growth is controlled by solid state out-diffusion of magnesium and oxygen towards the surface being in contact with liquid metal. The thickening of spinel layer is accompanied by its cracking and infiltration with aluminium. The above process enables local dissolution of the MgO substrate and formation in it of a thin region of interpenetrating metallic channels walled with spinel. The removal of dissolved magnesium through open aluminium channels towards the drop and to vacuum locally produces areas of aluminium enriched with dissolved oxygen, which results in the nucleation of α-Al{sub 2}O{sub 3} at spinel clad walls. The growth of α-Al{sub 2}O{sub 3} is controlled only by the dissolution rate of MgO by aluminium, liquid state diffusion of Mg to drop/vacuum and oxygen to the front of the of α-Al{sub 2}O{sub 3} crystallites growing into MgO substrate. - Highlights: • New unique evidence of first stages of interaction of liquid Al with MgO substrates • Interaction of liquid Al with MgO starts with the formation of a layer MgAl{sub 2}O{sub 4}. • Growth of MgAl{sub 2}O{sub 4} is slow as controlled by solid state out-diffusion of Mg and O. • MgAl{sub 2}O{sub 4} serves as a nucleation site for Al{sub 2}O{sub 3} and consumed by it soon after. • Growth of Al{sub 2}O{sub 3} is fast as controlled by diffusion in liquid state.

  13. Thermoluminescence kinetic analysis and dosimetry features of MgSO4:Dy and MgSO4:Cu nano-rods

    NASA Astrophysics Data System (ADS)

    Zahedifar, M.; Almasifard, F.; Sadeghi, E.; Biroon, M. Kashefi; Ramazani-Moghaddam-Arani, A.

    2016-08-01

    MgSO4:Dy and MgSO4:Cu nano-rods (NRs) were synthesized for the first time by semi co- precipitation method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were utilized for sample characterization. The optimum amount of dysprosium and copper concentrations were obtained both at 0.1 mol% in MgSO4:Dy and MgSO4:Cu NRs. Tm-Tstop and computerized glow curve deconvolution (CGCD) methods were used for identifying the number of component glow peaks and kinetic parameters of the synthesized NRs. Initial rise and variable heating rate methods were also used to ensure the reliability of obtained kinetic parameters. Results show that the TL sensitivity of MgSO4:Dy is about 7 times more than that of magnesium sulfate doped with Cu. The TL dose response of MgSO4:Dy and MgSO4:Cu NRs are linear up to absorbed dose of 10 KGy. Other TL dosimetry characteristics of the produced NRs are also presented and discussed.

  14. The Low-Lying States of AlCu and AlAg

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1994-01-01

    The singlet and triplet states of AlCu and AlAg below about 32 000/cm are studied using the internally contracted multireference configuration-interaction method. A more elaborate study of the X(sup 1)Sum(sup +) ground state of AlCu is undertaken using extended Gaussian basis sets, including the effect of inner-shell correlation and including a perturbational estimate of relativistic effects. Our best estimate of the spectroscopic constants (r(sub 0), DeltaG(sub 1/2), and D(sub 0)) for the X(sup 1)Sum(sup+) state with the experimental values in parentheses are: 4.416(4.420) a(sub 0), 295 (294) /cm, and 2.318 (2.315) eV. The calculations definitively assign the upper state in the observed transition at 14 892/cm to the lowest (sup 1)Prod state. The calculated spectroscopic constants and radiative lifetime for the (sup 1)Prod state are in good agreement with experiment. The calculations support the tentative assignments of Behm et al. for three band systems observed in the visible region between 25 000 and 28 000 / cm. However, the computed spectroscopic constants are in very poor agreement with those deduced from an analysis of the spectra. Analogous theoretical results for AlAg suggest that the (2)(sup 3)Prod, (3)(sup 3)Prod, and (3)(sup 1)Sum(sup +) states account for the bands observed, but not assigned, by Duncan and co-workers.

  15. Electrochemical Codeposition of Al-Li-Mg Alloys at Solid Aluminum Electrode from LiCl-KCl-MgCl2 Molten Salt System

    NASA Astrophysics Data System (ADS)

    Ye, Ke; Zhang, Mi Lin; Chen, Ye; Han, Wei; de Yan, Yong; Cao, Peng

    2010-06-01

    The electrochemical codeposition of Mg and Li at an aluminium electrode in LiCl-KCl (50:50 wt pct) melts containing different concentrations of MgCl2 at 893 K (620 °C) to form Al-Li-Mg alloys was investigated. Cyclic voltammograms showed that the potential of Li metal deposition at an Al electrode, before the addition of MgCl2, is more positive than that of Li metal deposition at an Mo electrode, which indicated the formation of an Al-Li alloy. The underpotential deposition of magnesium at an aluminium electrode leads to the formation of Al-Mg alloys, and the succeeding underpotential deposition of lithium on predeposited Al-Mg alloys leads to the formation of Al-Li-Mg alloys. Chronopotentiometric measurements indicated that the codeposition of Mg and Li occurs at current densities lower than -0.668 A cm-2 in LiCl-KCl-MgCl2 (8 wt pct) melts at an aluminium electrode. The chronoamperometric studies indicated that the onset potential for the codeposition of Mg and Li is -2.000 V, and the codeposition of Mg and Li at an aluminium electrode is formed into Al-Li-Mg alloys when the applied potentials are more negative than -2.000 V. X-ray diffraction and inductively coupled plasma analysis indicated that Al-Li-Mg alloys with different lithium and magnesium contents were prepared via potentiostatic and galvanostatic electrolysis. The microstructure of typical dual phases of the Al-Li-Mg alloy was characterized by an optical microscope and by scanning electron microscopy. The analysis of energy dispersive spectrometry showed that the elements of Al and Mg distribute homogeneously in the Al-Li-Mg alloy. The lithium and magnesium contents of Al-Li-Mg alloys can be controlled by MgCl2 concentrations and by electrolytic parameters.

  16. Synthesis and characterization of Cu doped magnesium hydroxide fluoride, Mg1-xCuxFOH

    NASA Astrophysics Data System (ADS)

    Rosyadi, A. Sirojul Anam Izza; Murwani, Irmina K.

    2017-03-01

    A series of Cu doped magnesium hydroxide fluoride, Mg1-xCuxFOH, were synthesized via sol-gel method followed by vacuum drying. The characterization of synthesized solids with XRD revealed the presence of an X-ray amorphous phase of the samples and appearance of some humps. FTIR spectra of solids synthesized showed a band at 3700 cm-1 which is an isolated OH group, wide band at 3750-3000 cm-1 supported by the peak at 1650 cm-1 indicated the presence of absorbed water on the surface. Characteristic peaks for Mg-F and Mg-O vibrations were seen at 500-400 cm-1 and 600-500 cm-1 respectively.

  17. Preparation of Al-Cu-Fe-(Sn,Si) quasicrystalline bulks by laser multilayer cladding

    NASA Astrophysics Data System (ADS)

    Feng, Li-ping; Fleury, Eric; Zhang, Guo-sheng

    2012-05-01

    (Al65Cu20Fe15)100- x Sn x ( x=0, 12, 20, 30) and Al57Si10Cu18Fe15 powders were cladded on a medium carbon steel (45# steel) substrate by laser multilayer cladding, respectively. The phases and properties of the produced quasicrystalline bulks were investigated. It was found that the main phases in the Al65Cu20Fe15 sample were crystalline λ-Al13Fe4 and icosahedral quasicrystal together with a small volume fraction of θ-Al2Cu phase. The volume fraction of icosahedral phase decreased as the Sn content in the (Al65Cu20Fe15)100- x Sn x samples increased owing to the formation of β-CuSn phase. The increase of Sn content improved the brittleness of the quasicrystal samples. The morphology of the solidification microstructure in the Al57Si10Cu18Fe15 sample changed from elongated shape to spherical shape due to the addition of Si. The nanohardness of the laser multilayer cladded quasicrystal samples was equal to that of the as-cast sample prepared by vacuum quenching. In terms of hardness, the laser cladded Al57Si10Cu18Fe15 quasicrystalline alloy has the highest value among all the investigated samples.

  18. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    NASA Astrophysics Data System (ADS)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  19. Precise lattice location of substitutional and interstitial Mg in AlN

    SciTech Connect

    Amorim, L. M.; Pereira, L. M. C.; Decoster, S.; Temst, K.; Vantomme, A.; Wahl, U.; Correia, J. G.; Silva, D. J.; Silva, M. R. da; Gottberg, A.

    2013-12-23

    The lattice site location of radioactive {sup 27}Mg implanted in AlN was determined by means of emission channeling. The majority of the {sup 27}Mg was found to substitute for Al, yet significant fractions (up to 33%) were also identified close to the octahedral interstitial site. The activation energy for interstitial Mg diffusion is estimated to be between 1.1 eV and 1.7 eV. Substitutional Mg is shown to occupy ideal Al sites within a 0.1 Å experimental uncertainty. We discuss the absence of significant displacements from ideal Al sites, in the context of the current debate, on Mg doped nitride semiconductors.

  20. Friction Stir Welding of Al-Cu Bilayer Sheet by Tapered Threaded Pin: Microstructure, Material Flow, and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Beygi, R.; Kazeminezhad, M.; Kokabi, A. H.; Loureiro, A.

    2015-06-01

    The fracture behavior and intermetallic formation are investigated after friction stir welding of Al-Cu bilayer sheets performed by tapered threaded pin. To do so, temperature, axial load, and torque measurements during welding, and also SEM and XRD analyses and tensile tests on the welds are carried out. These observations show that during welding from Cu side, higher axial load and temperature lead to formation of different kinds of Al-Cu intermetallics such as Al2Cu, AlCu, and Al4Cu9. Also, existence of Al(Cu)-Al2Cu eutectic structures, demonstrates liquation during welding. The presence of these intermetallics leads to highly brittle fracture and low strength of the joints. In samples welded from Al side, lower axial load and temperature are developed during welding and no intermetallic compound is observed which results in higher strength and ductility of the joints in comparison with those welded from Cu side.

  1. Interdiffusion and impurity diffusion in polycrystalline Mg solid solution with Al or Zn

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Sohn, Yong Ho

    2014-01-01

    Interdiffusion and impurity diffusion in Mg binary solid solutions, Mg(Al) and Mg(Zn) were investigated at temperatures ranging from 623 to 723 K. Interdiffusion coef cients were determined via the Boltzmann Matano Method using solid-to-solid diffusion couples assembled with polycrystalline Mg and Mg(Al) or Mg(Zn) solid solutions. In addition, the Hall method was employed to extrapolate the impurity diffusion coef cients of Al and Zn in pure polycrystalline Mg. For all diffusion couples, electron micro-probe analysis was utilized for the measurement of concentration pro les. The interdiffusion coef cient in Mg(Zn) was higher than that of Mg(Al) by an order of magnitude. Additionally, the interdiffusion coef cient increased signi cantly as a function of Al content in Mg(Al) solid solution, but very little with Zn content in Mg(Zn) solid solution. The activation energy and pre-exponential factor for the average effective interdiffusion coef cient in Mg(Al) solid solution were determined to be 186.8 ( 0.9) kJ/mol and 7.69 x 10-1 ( 1.80 x 10-1) m2/s, respectively, while those determined for Mg(Zn) solid solution were 139.5 ( 4.0) kJ/mol and 1.48 x 10-3 ( 1.13 x 10-3) m2/s. In Mg, the Zn impurity diffusion coef cient was an order of magnitude higher than the Al impurity diffusion coef cient. The activation energy and pre-exponential factor for diffusion of Al impurity in Mg were determined to be 139.3 ( 14.8) kJ/mol and 6.25 x 10-5 ( 5.37 x 10-4) m2/s, respectively, while those for diffusion of Zn impurity in Mg were determined to be 118.6 ( 6.3) kJ/mol and 2.90 x 10-5 ( 4.41 x 10-5) m2/s.

  2. Plasmon-exciton couplings in Al-CuCl nanoshells and the effects of oxidation

    NASA Astrophysics Data System (ADS)

    Yao, Jie; Ji, WenQian; Wu, DaJian; Cheng, Ying; Liu, XiaoJun

    2017-04-01

    The plasmon-exciton couplings in the Al-CuCl nanoshells have been investigated by using the Mie scattering theory. It is found that the bright dipole mode of the Al nanosphere can couple well with the exciton mode of the outer CuCl shell in the UV region by changing the geometry. The strong plasmon-exciton couplings in the Al-CuCl nanoshell lead to two hybrid plexcitonic modes and hence the Rabi splitting. We study the dispersion curves of the plexcitonic modes of the Al-CuCl nanoshells and obtain the splitting energy of about 135 meV. Furthermore, the influences of the metal oxide on the plasmon-exciton couplings in the Al-CuCl nanoshells have been studied. It is found that the Rabi splitting energy will shrink with the oxide.

  3. The application of LiF:Mg,Cu,P to large scale personnel dosimetry: current status and future directions.

    PubMed

    Moscovitch, M; St John, T J; Cassata, J R; Blake, P K; Rotunda, J E; Ramlo, M; Velbeck, K J; Luo, L Z

    2006-01-01

    LiF:Mg,Cu,P is starting to replace LiF:Mg,Ti in a variety of personnel dosimetry applications. LiF:Mg,Cu,P has superior characteristics as compared to LiF:Mg,Ti including, higher sensitivity, improved energy response for photons, lack of supralinearity and insignificant fading. The use of LiF:Mg,Cu,P in large scale dosimetry programs is of particular interest due to the extreme sensitivity of this material to the maximum readout temperature, and the variety of different dosimetry aspects and details that must be considered for a successful implementation in routine dosimetry. Here we discuss and explain the various aspects of large scale LiF:Mg,Cu,P based dosimetry programs including the properties of the TL material, new generation of TLD readers, calibration methodologies, a new generation of dose calculation algorithms based on the use of artificial neural networks and the overall uncertainty of the dose measurement. The United States Navy (USN) will be the first US dosimetry processor who will use this new material for routine applications. Until June 2002, the Navy used two types of thermoluminescent materials for personnel dosimetry, CaF2:Mn and LiF:Mg,Ti. A program to upgrade the system and to implement LiF:Mg,Cu,P, started in the mid 1990s and was recently concluded. In 2002, the new system replaced the LiF:Mg,Ti and is scheduled to start replacing the CaF2:Mn system in 2006. A pilot study to determine the dosimetric performance of the new LiF:Mg,Cu,P based dosimetry system was recently completed, and the results show the new system to be as good or better than the current system in all areas tested. As a result, LiF:Mg,Cu,P is scheduled to become the primary personnel dosimeter for the entire US Navy in 2006.

  4. Variations in dose response with x-ray energy of LiF:Mg,Cu,P thermoluminescence dosimeters: implications for clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Duggan, Lisa; Hood, Claire; Warren-Forward, Helen; Haque, Mamoon; Kron, Tomas

    2004-09-01

    In many medical procedures where accurate radiation dose measurements are needed, the variation of detector response with x-ray energy is of concern. The response of LiF:Mg,Cu,P TLDs to a range of x-ray energies was analysed in monoenergetic (synchrotron), diagnostic and therapy radiation beams with the aim of implementing this dosimeter into clinical practice where existing dosimetry techniques are limited due to lack of sensitivity or tissue equivalence (e.g. neonatal radiography, mammography and brachytherapy). LiF:Mg,Cu,P TLDs in different forms from two manufacturers (MCP-N: TLD Poland, GR-200: SDDML China) were irradiated using x-ray beams covering 10 keV to 18 MVp. Dose readings were compared with an ionization chamber. The effect of different TLD types and annealing cycles on clinical utility was investigated. The measured energy response of LiF:Mg,Cu,P TLDs was fit to a simple model devised by Kron et al (1998 Phys. Med. Biol. 43 3235-59) to describe the variation of TLD response with x-ray energy. If TLDs are handled as recommended in the present paper, the energy response of LiF:Mg,Cu,P deviates by a maximum of 15% from unity and agrees with the model to within 5% or experimental uncertainty between 15 keV and 10 MeV. LiF:Mg,Cu,P TLDs of all forms have consistent and superior energy response compared to the standard material LiF:Mg,Ti and are therefore suitable for a wide range of applications in diagnostic radiology and radiotherapy.

  5. Inhomogeneous 2D linear intergrowth structures among novel Y-Cu-Mg ternary compounds with yttrium/copper equiatomic ratio

    NASA Astrophysics Data System (ADS)

    Solokha, Pavlo; De Negri, Serena; Pavlyuk, Volodymyr; Saccone, Adriana

    2009-04-01

    Single crystals of the Y 5Cu 5Mg 8, Y 5Cu 5Mg 13, Y 5Cu 5Mg 16 and YCuMg 4 compounds were synthesized by heating in a resistance furnace evacuated quartz vials containing Ta-crucibles with element pieces. SEM-EDXS analyses were performed to check phases composition. The structures were refined from X-ray single crystal diffraction data. Y 5Cu 5Mg 8, Y 5Cu 5Mg 13 and Y 5Cu 5Mg 16 represent new structure types: Y 5Cu 5Mg 8 - orthorhombic, Pmma, oP36, a = 2.63723(15), b = 0.40066(2), c = 0.74115(6) nm, Z = 2, wR2 = 0.0597, 939 F2 values, 60 variables; Y 5Cu 5Mg 13 - orthorhombic, Cmcm, oS92, a = 0.40973(2), b = 1.92794(8), c = 2.57907(11) nm, Z = 4, wR2 = 0.1134, 1208 F2 values, 75 variables; Y 5Cu 5Mg 16 - orthorhombic, Cmcm, oS104, a = 0.41360(8), b = 1.9239(4), c = 2.9086(6) nm, Z = 4, wR2 = 0.0760, 1383 F2 values, 84 variables. YCuMg 4 crystallizes in the TbCuMg 4 structure type ( Cmmm, oS48, a = 1.35754(4), b = 2.03153(6), c = 0.39060(1) nm, Z = 8, wR2 = 0.0401, 661 F2 values, 45 variables). The crystal chemistry of these two-layer structures is comparatively discussed. Majority of novel compounds were characterized as members of inhomogeneous 2D intergrowth structure series of R 5M 5X 5, X 4 (Mg 4) and empty Mg octahedra building blocks of general formula R 5 kM 5 kX 5 k + 4 l + m. The common pentagonal prism derivative structural fragments around the most electropositive yttrium atoms were outlined in all these intermetallics.

  6. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  7. Effect of Melt-to-Solid Insert Volume Ratio on Mg/Al Dissimilar Metals Bonding

    NASA Astrophysics Data System (ADS)

    Emami, S. M.; Divandari, M.; Arabi, H.; Hajjari, E.

    2013-01-01

    Compound casting is used as a process to join various similar and dissimilar metallic couples. The ratio of melt-to-solid volume is one of the main factors that can affect the contact time between melt and the solid insert. In this investigation, magnesium and aluminum metals (magnesium as the cast metal and aluminum as the solid insert) having melt-to-solid volume ratios ( V m/ V s) of 1.25, 3, and 5.25 were successfully bonded via compound casting. Results demonstrated that by increasing the ratio of V m/ V s from 1.25 to 5.25, the thickness of the reaction interface between Al and Mg varies within the range of 200 to 1800 μm. X-ray diffraction, scanning electron microscopy, and Vickers microhardness study of the bonding of these two metals showed that the interface consisted of three separate sub-layers within reaction layer. These sub-layers had higher hardness than those of the Al and Mg bulk metals. In all specimens, composition of the sub-layer adjacent to Al (layer I) was Al3Mg2 and that adjacent to Mg (layer III) was Al12Mg17/(Mg) eutectic structure. The intermediate layer composition (layer II) in specimens with volume ratio of 1.25 and 3 was a single-phase Al12Mg17, while for the case of volume ratio 5.25 this sub-layer consisted of Al12Mg17/(Mg) eutectic dispersed in Al12Mg17 intermetallic. The results of this research showed that in low melt/solid volume ratios, diffusion-reaction was the dominant mechanism for formation of Al-Mg intermetallic. However, when V m/ V s and the melt/solid insert contact time increased, the dominant mechanism of Al-Mg intermetallics changed to fusion-solidification due to increase in surface melting of the solid insert. Also the results of push-out tests showed that shear strengths of the interface decrease from 27.1 to 15.1 and 8.3 MPa for the Al/Mg couples prepared at 1.25, 3, and 5.25 V m/ V s respectively.

  8. MgO/Cu2O Superlattices: Growth of Epitaxial Two-Dimensional Nanostructures

    NASA Astrophysics Data System (ADS)

    Yang, M. J.; Wadekar, P. V.; Hsieh, W. C.; Huang, H. C.; Lin, C. W.; Chou, J. W.; Liao, C. H.; Chang, C. F.; Seo, H. W.; You, S. T.; Tu, L. W.; Lo, I. K.; Ho, N. J.; Yeh, S. W.; Liao, H. H.; Chen, Q. Y.; Chu, W. K.

    2016-12-01

    Alternated stacking of dissimilar layers can produce novel superlattice materials with multiple functionalities. The majority of such work reported in literature on epitaxial superlattices has been on alternating layers with the same space group (SG) and crystal structure (CS), whereas superlattices with the same CS but different SG have not been studied as much. We have grown superlattices with two well-known oxide materials, viz. cuprite (Cu2O, CS = cubic and SG = Pn bar{3} m) and magnesium oxide (MgO, CS = cubic, SG = Fm bar{3} m). An MgO buffer layer grown near 650°C at the film-substrate interface was found to be essential to achieving reasonable long-range atomic order. Grazing-angle x-ray diffraction, x-ray reflectivity, and electron diffraction analyses as well as transmission electron microscopy were used to investigate the interface abruptness, smoothness, and general crystallinity of the individual layers. Interdiffusion between MgO and Cu2O near interfacial regions places a limit of 250°C on the growth temperature for fabrication of superlattices with reasonably sharp interfaces.

  9. High transport critical current density in Cu-clad multifilament MgB2 tape

    NASA Astrophysics Data System (ADS)

    Liu, C. F.; Du, S. J.; Yan, G.; Fu, B. Q.; Feng, Y.; Ji, P.; Wang, J. R.; Liu, X. H.; Zhang, P. X.; Wu, X. Z.; Zhou, L.; Cao, L. Z.; Ruan, K. Q.; Wang, C. Y.; Li, X. G.; Zhou, G. E.; Zhang, Y. H.

    2002-05-01

    Cu-clad multifilament MgB2 tapes with Ta or NbZr buffer have been fabricated by using a powder-in-tube (PIT). Mg+2B mixture powder was used as the central conductor core in single filament with Cu sheath and Ta or NbZr buffer wall. The composite tapes with 18 filaments were heat-treated in pure Ar atmosphere at 600-1000 °C for 1-10 h, and reacted in-situ to form MgB2. The phase composition and microstructure in the samples were examined by using X-ray diffraction and optical microscopy. Transport critical current was measured by a standard four-probe technique at different magnetic fields and temperatures. The sample with 18 filaments and NbZr buffer shows a high transport critical current density of 8×104 A/cm2 (10 K, 0 T) and 1.36×104 A/cm2 (10 K, 1 T).

  10. Synthesis, thermoluminescence, defect centers and dosimetric characteristics of LiF:Mg,Cu,B phosphor.

    PubMed

    Preto, Prince David; Balraj, Vidyavathy; Dhabekar, Bhushan S; Watanabe, S; Rao, T K Gundu

    2016-12-01

    The present paper reports the thermoluminescence (TL), dosimetric characteristics and electron spin resonance (ESR) of LiF: Mg, Cu,B (MCB) phosphor synthesized by a solid state method. Its glow curve structure is similar to that of LiF: Mg, Cu,P (MCP) phosphor with the main dosimetric peak at 218°C. MCB is 12 times more sensitive than LiF: Mg, Ti and about 1.9 times less sensitive than MCP phosphor. A noteworthy feature is that the phosphor exhibits a linear dose response up to 100Gy with a minimum detectable dose of 17μGy. The TL emission spectrum was recorded and the post irradiation fading in MCB at ambient temperatures and humidity was negligible for a period of one month. Room temperature ESR spectrum of irradiated phosphor consists of at least two distinct centers. Center I with an isotropic g factor 2.0061 is attributable to an F-center and is the likely recombination center for the main TL peak at 220°C. Center II characterized by a g-factor 2.0090 and an unusual broad line (linewidth ~ 415G) is also identified as an F-center. A third defect center, observable during thermal annealing at high temperature, is assigned to another F-center.

  11. Preparation, thermoluminescence, photoluminescence and dosimetric characteristics of LiF:Mg,Cu,P,B phosphor

    NASA Astrophysics Data System (ADS)

    Preto, Prince D.; Vidyavathy, B.; Dhabekar, Bhushan S.

    2017-01-01

    This paper presents the preparation, thermoluminescence, thermoluminescence (TL) emission, photoluminescence (PL) emission and dosimetric properties of a new LiF:Mg,Cu,P,B (MCPB) phosphor. This phosphor shows an enhanced sensitivity and is 27 times more sensitive than LiF:Mg,Ti and 1.15 times more sensitive than LiF:Mg,Cu,P (MCP). The position and shape of the glow curve of MCPB is very much similar to that of MCP, but the intensity of the main dosimetric peak increases, reaches a maximum at a concentration of about 0.025 mol% and then decreases slowly upon further addition of boron. The main dosimetric peak of the phosphor appears at 220 °C and is linear up to 10 Gy with a minimum detectable dose of about 10 μGy. MCPB phosphor can be reused up to 10 cycles at an annealing temperature of 260 °C for 10 min without loss in TL sensitivity. MCPB exhibits a very low residual signal (0.42 %) when compared to that of GR-200A and GR-200P reported in the literature. The structural and morphological characteristics of the phosphor have been studied using X-ray diffraction method and scanning electron microscope. Both the TL and PL emission spectrum are recorded and analyzed. The various other dosimetric properties like annealing temperature, fading, reusability and residual signal are also presented in this study.

  12. Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): The effect of Eudragit S 100 covering

    SciTech Connect

    Arco, M. del; Fernandez, A.; Martin, C.; Rives, V.

    2010-12-15

    Following different preparation routes, fenbufen has been intercalated in the interlayer space of layered double hydroxides with Mg{sup 2+} and Al{sup 3+} or Mg{sup 2+}, Al{sup 3+} and Fe{sup 3+} in the layers. Well crystallized samples were obtained in most of the cases (intercalation was not observed by reconstruction of the MgAlFe matrix), with layer heights ranging between 16.1 and 18.8 A. The presence of the LDH increases the solubility of fenbufen, especially when used as a matrix. The dissolution rate of the drug decreases when the drug is intercalated, and is even lower in those systems containing iron; release takes place through ionic exchange with phosphate anions from the solution. Preparation of microspheres with Eudragit S 100 leads to solids with an homogeneous, smooth surface with efficient covering of the LDH surface, as drug release was not observed at pH lower than 7. - Graphical abstract: LDHs containing Mg, Al, Fe increase fenbufen solubility, release takes place through ionic exchange with phosphate anions from the medium. Spherical solids with homogeneous, smooth surface are formed when using Eudragit S 100, efficiently covering the LDH surface. Display Omitted

  13. Fermi surface-Brillouin-zone-induced pseudogap in γ-Mg17Al12 and a possible stabilization mechanism of β-Al3Mg2

    NASA Astrophysics Data System (ADS)

    Mizutani, U.; Kondo, Y.; Nishino, Y.; Inukai, M.; Feuerbacher, M.; Sato, H.

    2010-12-01

    The electronic structure of γ phase in the system Mg17Al12 containing 58 atoms per unit cell with space group I\\bar {4}3m has been calculated by using the WIEN2k-FLAPW program package. A pseudogap is found across the Fermi level. The FLAPW-Fourier spectra at the symmetry points N and Γ of the bcc Brillouin zone revealed that electronic states across the Fermi level at these symmetry points are dominated by |G|2 = 26 and 24 states corresponding to centers of {510} + {431} and {422} zone planes, respectively. The 1253-wave nearly-free-electron (NFE) band calculations identified that a combination of the two Fermi surface-Brillouin-zone (FsBz) interactions associated with |G|2 = 26 and 24 account well for the observed DOS pseudogap in γ-Mg17Al12, most likely leading to the stabilization of this complex metallic compound. The β-Al3Mg2 containing 1178 atoms per cubic unit cell is suggested to be stabilized by satisfying the Hume-Rothery matching condition expressed in terms of e/uc, the number of electrons per unit cell, versus critical |G|2. A critical |G|2 is predicted to be 200 in β-Al3Mg2, which results in 84 Brillouin zone planes interacting almost simultaneously with a more or less spherical Fermi surface.

  14. Revisiting 26Al-26Mg systematics of plagioclase in H4 chondrites

    NASA Astrophysics Data System (ADS)

    Telus, M.; Huss, G. R.; Nagashima, K.; Ogliore, R. C.

    2014-06-01

    Zinner and Göpel found clear evidence for the former presence of 26Al in the H4 chondrites Ste. Marguerite and Forest Vale. They assumed that the 26Al-26Mg systematics of these chondrites date "metamorphic cooling of the H4 parent body." Plagioclase in these chondrites can have very high Al/Mg ratios and low Mg concentrations, making these ion probe analyses susceptible to ratio bias, which is inversely proportional to the number of counts of the denominator isotope (Ogliore et al.). Zinner and Göpel used the mean of the ratios to calculate the isotope ratios, which exacerbates this problem. We analyzed the Al/Mg ratios and Mg isotopic compositions of plagioclase grains in thin sections of Ste. Marguerite, Forest Vale, Beaver Creek, and Sena to evaluate the possible influence of ratio bias on the published initial 26Al/27Al ratios for these meteorites. We calculated the isotope ratios using total counts, a less biased method of calculating isotope ratios. The results from our analyses are consistent with those from Zinner and Göpel, indicating that ratio bias does not significantly affect 26Al-26Mg results for plagioclase in these chondrites. Ste. Marguerite has a clear isochron with an initial 26Al/27Al ratio indicating that it cooled to below 450 °C 5.2 ± 0.2 Myr after CAIs. The isochrons for Forest Vale and Beaver Creek also show clear evidence that 26Al was alive when they cooled, but the initial 26Al/27Al ratios are not well constrained. Sena does not show evidence that 26Al was alive when it cooled to below the Al-Mg closure temperature. Given that metallographic cooling rates for Ste. Marguerite, Forest Vale, and Beaver Creek are atypical (>5000 °C/Myr at 500 °C) compared with most H4s, including Sena, which have cooling rates of 10-50 °C/Myr at 500 °C (Scott et al.), we conclude that the Al-Mg systematics for Ste. Marguerite, Forest Vale, and Beaver Creek are the result of impact excavation of these chondrites and cooling at the surface of the

  15. Investigation of structure in Al23 via resonant proton scattering of Mg22+p and the 22Mg(p,γ) Al23 astrophysical reaction rate

    NASA Astrophysics Data System (ADS)

    He, J. J.; Kubono, S.; Teranishi, T.; Notani, M.; Baba, H.; Nishimura, S.; Moon, J. Y.; Nishimura, M.; Iwasaki, H.; Yanagisawa, Y.; Hokoiwa, N.; Kibe, M.; Lee, J. H.; Kato, S.; Gono, Y.; Lee, C. S.

    2007-11-01

    Proton resonant states in Al23 have been investigated for the first time by the resonant elastic and inelastic scattering of Mg22+p with a Mg22 beam at 4.38 MeV/nucleon bombarding a thick (CH2)n target. The low-energy Mg22 beam was separated by the CNS radioactive ion beam separator (CRIB). The energy spectra of recoiled protons were measured at average scattering angles of θlab≈4°,17° and 23°. A new state has been observed at Ex=3.00 MeV with a spin-parity assignment of (3/2+). In addition, resonant inelastic scattering has populated three more states at excitation energies of 3.14, 3.26, and 3.95 MeV, with proton decay to the first excited state in Mg22 being observed. The new state at 3.95 MeV has been assigned a spin-parity of Jπ=(7/2+). The resonant parameters were determined by an R-matrix analysis of the excitation functions with a SAMMY-M6-BETA code. The core-excited structure of Al23 is discussed within a shell-model picture. The stellar reaction rate of the Mg22(p,γ)Al23 reaction has been reevaluated, and the revised total reaction rate is about 40% greater than the previous result for temperatures beyond T9=0.3.

  16. A new layered copper oxide - LaSrCuAlO5

    NASA Astrophysics Data System (ADS)

    Wiley, J. B.; Markham, L. M.; Vaughey, J. T.; McCarthy, T. J.; Sabat, M.

    This paper describes the synthesis, crystal structure, and conductivity of a new layered copper oxide, LaSrCuAlO5. The compound was prepared by solid state reaction of Aldrich cupric oxide, strontium carbonate, lanthanum oxide, and aluminum nitrate. The results of XRD studies showed that, although the crystal structure of LaSrCuAlO5 is similar to Ca2Fe2O5 and Ca2AlFeO5, there are significant differences in the ordering of oxygen vacancies. The LaSrCuAlO5 prepared was found to be semiconducting, with a resistivity at room temperature of 0.065 ohm cm.

  17. Static mechanical properties for Ca48Mg27Cu25 bulk metallic glass by ultrasonic velocity measurement

    NASA Astrophysics Data System (ADS)

    Okai, D.; Inoue, M.; Mori, T.; Fukami, T.; Kobayashi, E.; Yamasaki, T.; Kimura, H. M.; Inoue, A.

    2009-01-01

    The static mechanical properties of a Ca48Mg27Cu25 bulk metallic glass were investigated using a technique of ultrasonic measurement and compressive test. The Young's modulus (E), Poisson's ratio (v), shear modulus (G) and bulk modulus (B) for the Ca48Mg27Cu25 alloy at room temperature are significantly smaller than those for Zr- and Pd- based bulk metallic glasses. The values of E, v, G and B for the Ca48Mg27Cu25 alloy are 29.8GPa, 0.230, 12.1GPa and 18.4GPa, respectively. The results of compression test for the Ca48Mg27Cu25 alloy have been also described.

  18. The stress-corrosion behavior of Al-Li-Cu alloys: A comparison of test methods

    NASA Technical Reports Server (NTRS)

    Rizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1982-01-01

    Two powder metallurgy processed (Al-Li-Cu) alloys with and without Mg addition were studied in aqueous 3.5% NaCl solution during the alternate immersion testing of tuning fork specimens, slow crack growth tests using fracture mechanics specimens, and the slow strain rate testing of straining electrode specimens. Scanning electron microscopy and optical metallography were used to demonstrate the character of the interaction between the Al-Li-Cu alloys and the selected environment. Both alloys are susceptible to SC in an aqueous 3.5% NaCl solution under the right electrochemical and microstructural conditions. Each test method yields important information on the character of the SC behavior. Under all conditions investigated, second phase particles strung out in rows along the extrusion direction in the alloys were rapidly attacked, and played principal role in the SC process. With time, larger pits developed from these rows of smaller pits and under certain electrochemical conditions surface cracks initiated from the larger pits and contributed directly to the fracture process. Evidence to support slow crack growth was observed in both the slow strain rate tests and the sustained immersion tests of precracked fracture mechanics specimens. The possible role of H2 in the stress corrosion cracking process is suggested.

  19. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice.

    PubMed

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-14

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  20. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  1. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    PubMed Central

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-01-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN. PMID:28290480

  2. Multiple diffraction in an icosahedral Al-Cu-Fe quasicrystal

    NASA Astrophysics Data System (ADS)

    Fan, C. Z.; Weber, Th.; Deloudi, S.; Steurer, W.

    2011-07-01

    In order to reveal its influence on quasicrystal structure analysis, multiple diffraction (MD) effects in an icosahedral Al-Cu-Fe quasicrystal have been investigated in-house on an Oxford Diffraction four-circle diffractometer equipped with an Onyx™ CCD area detector and MoKα radiation. For that purpose, an automated approach for Renninger scans (ψ-scans) has been developed. Two weak reflections were chosen as the main reflections (called P) in the present measurements. As is well known for periodic crystals, it is also observed for this quasicrystal that the intensity of the main reflection may significantly increase if the simultaneous (H) and the coupling (P-H) reflections are both strong, while there is no obvious MD effect if one of them is weak. The occurrence of MD events during ψ-scans has been studied based on an ideal structure model and the kinematical MD theory. The reliability of the approach is revealed by the good agreement between simulation and experiment. It shows that the multiple diffraction effect is quite significant.

  3. Reflection polarizers for the vacuum ultraviolet using Al + MgF2 mirrors and an MgF2 plate

    NASA Technical Reports Server (NTRS)

    Hass, G.; Hunter, W. R.

    1978-01-01

    Consideration is given to the design and operation of a three-mirror reflecting polarizer where one of the reflecting surfaces is an MgF2 plate, the other surfaces are Al + MgF2 coatings, and one reflection occurs at or near the true Brewster angle. It is found that the polarizer is most efficient in the 1200-2000 A wavelength region, and that by optimum selection of the angle of incidence on the MgF2 plate, polarization values of 100 and over are yielded from 900 to 3000 A. The polarizer may be used at wavelengths as short as 500 A, although it is observed that at such wavelengths the polarization value decreases to about 10. It is noted that all reflecting polarizers operating in the vacuum ultraviolet wavelength may manifest changing characteristics as their mirrors become contaminated, and that polarization must therefore be occasionally remeasured.

  4. New investigation of phase equilibria in the system Al-Cu-Si.

    PubMed

    Ponweiser, Norbert; Richter, Klaus W

    2012-01-25

    The phase equilibria and invariant reactions in the system Al-Cu-Si were investigated by a combination of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and electron probe micro analysis (EPMA). Isothermal phase equilibria were investigated within two isothermal sections. The isothermal section at 500 °C covers the whole ternary composition range and largely confirms the findings of previous phase diagram investigations. The isothermal section at 700 °C describes phase equilibria only in the complex Cu-rich part of the phase diagram. A new ternary compound τ was found in the region between (Al,Cu)-γ(1) and (Cu,Si)-γ and its solubility range was determined. The solubility of Al in κ-CuSi was found to be extremely high at 700 °C. In contrast, no ternary solubility in the β-phase of Cu-Al was found, although this phase is supposed to form a complete solid solution according to previous phase diagram assessments. Two isopleths, at 10 and 40 at.% Si, were investigated by means of DTA and a partial ternary reaction scheme (Scheil diagram) was constructed, based on the current work and the latest findings in the binary systems Al-Cu and Cu-Si. The current study shows that the high temperature equilibria in the Cu-rich corner are still poorly understood and additional studies in this area would be favorable.

  5. Synthesis of MgO nanoparticle loaded mesoporous Al2O3 and its defluoridation study

    NASA Astrophysics Data System (ADS)

    Dayananda, Desagani; Sarva, Venkateswara R.; Prasad, Sivankutty V.; Arunachalam, Jayaraman; Parameswaran, Padmanabhan; Ghosh, Narendra N.

    2015-02-01

    MgO nanoparticle loaded mesoporous alumina has been synthesized using a simple aqueous solution based cost effective method for removal of fluoride from water. Wide angle powder X-ray diffraction, nitrogen adsorption desorption analysis, transmission electron microscopy techniques and energy dispersive X-ray spectroscopy were used to characterize the synthesized adsorbents. Synthesized adsorbents possess high surface area with mesoporous structure. The adsorbents have been thoroughly investigated for the adsorption of F- using batch adsorption method. MgO nanoparticle loading on mesoporous Al2O3 enhances the F- adsorption capacity of Al2O3 from 56% to 90% (initial F- concentration = 10 mg L-1). Kinetic study revealed that adsorption kinetics follows the pseudo-second order model, suggesting the chemisorption mechanism. The F- adsorption isotherm data was explained by both Langmuir and Freundlich model. The maximum adsorption capacity of 40MgO@Al2O3 was 37.35 mg g-1. It was also observed that, when the solutions having F- concentration of 5 mg L-1 and 10 mg L-1 was treated with 40MgO@Al2O3, the F- concentration in treated water became <1 mg L-1, which is well below the recommendation of WHO.

  6. Influence of nano-Cu additive on MgB2 phase formation, processing temperature, and transport properties

    NASA Astrophysics Data System (ADS)

    Varghese, Neson; Vinod, K.; Rahul, S.; Devadas, K. M.; Thomas, Syju; Pradhan, S.; Syamaprasad, U.

    2011-02-01

    Pure and nano-Cu doped MgB2/Fe superconducting wires were prepared by in situ powder-in-tube method at different temperatures (550-675 °C). The phase formation, microstructure, and transport critical current density of the wires were investigated as a function of the heat-treatment temperature. A small amount of nano-Cu addition (2.5 wt %) was found to dramatically decrease the reaction temperature of magnesium and boron, forming MgB2 without any degradation in the transport critical current. From x-ray diffraction and scanning electron microscopy analyses, it was found that the added Cu form a reacted phase Mg2Cu with Mg which melts at around 550 °C. This liquid phase helps the formation of MgB2 at a significant lower temperature with improved grain connectivity, grain size, and density. All Cu doped samples heat treated in the range of 550-650 °C exhibited a transport JC quite comparable to that of the pure sample processed at 650 °C, which shows that high quality MgB2 conductors can be produced even at 550 °C with minor Cu doping.

  7. Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Kempen, K.; Thijs, L.; Van Humbeeck, J.; Kruth, J.-P.

    Selective Laser Melting (SLM) is an Additive Manufacturing (AM) technique in which a part is built up in a layer- by-layer manner by melting the top surface layer of a powder bed with a high intensity laser according to sliced 3D CAD data. In this work, mechanical properties like tensile strength, elongation, Young's modulus, impact toughness and hardness are investigated for SLM-produced AlSi10Mg parts, and compared to conventionally cast AlSi10Mg parts. It is shown that AlSi10Mg parts with mechanical properties comparable or even exceeding to those of conventionally cast AlSi10Mg can be produced by SLM.

  8. Structure and electromagnetic properties of FeSiAl particles coated by MgO

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhou, Ting-dong

    2017-03-01

    FeSiAl particles with a layer of MgO surface coating have excellent soft magnetic and electromagnetic properties. In order to obtain the FeSiAl/MgO composites, Mg(OH)2 sol prepared by sol-gel process was well-mixed with FeSiAl flake particles, and then treated by calcination at 823 K in vacuum. The microstructural, morphological and electromagnetic parameters of FeSiAl/MgO particles were tested. Accordingly, the electromagnetic wave reflection loss in the frequency range of 0.5-18 GHz was calculated. The results show that the surface coating increases coercivity Hc and decreases complex permittivity, leading to a good impedance matching. When the coating amount was 7.5%, reflection loss of the composite particles can reach to -33 dB.

  9. Effect of scandium on the microstructure and ageing behaviour of cast Al-6Mg alloy

    SciTech Connect

    Kaiser, M.S.; Datta, S.; Roychowdhury, A. Banerjee, M.K.

    2008-11-15

    Microstructural modification and grain refinement due to addition of scandium in Al-6Mg alloy has been studied. Transmission electron microscopy is used to understand the microstructure and precipitation behaviour in Al-6Mg alloy doped with scandium. It is seen from the microstructure that the dendrites of the cast Al-6Mg alloy have been refined significantly due to addition of scandium. Increasing amount of scandium leads to a greater dendrite refinement. The age hardening effect in scandium added Al-6Mg alloys has been studied by subjecting the alloys containing varying amount of scandium ranging from 0.2 wt.% to 0.6 wt.% to isochronal and isothermal ageing at various temperatures for different times. It is observed that significant hardening takes place in the aged alloys due to the precipitation of scandium aluminides.

  10. Research of Mechanical Property Gradient Distribution of Al-Cu Alloy in Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Sun, Zhi; Sui, Yanwei; Liu, Aihui; Li, Bangsheng; Guo, Jingjie

    Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases with the increase in the rotation speed. Moreover, the mechanical properties of casting centerline two sides have asymmetry. The reason is that the grain size of casting centerline two sides and Al2Cu phase and Cu content change correspondingly.

  11. The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2015-09-01

    A simple and fast method of the analysis of green coffee infusions was developed to measure total concentrations of Ca, Cu, Fe, Mg and Mn by high resolution-continuum source flame atomic absorption spectrometry. The precision of the method was within 1-8%, while the accuracy was within -1% to 2%. The method was used to the analysis of infusions of twelve green coffees of different geographical origin. It was found that Ca and Mg were leached the easiest, i.e., on average 75% and 70%, respectively. As compared to the mug coffee preparation, the rate of the extraction of elements was increased when infusions were prepared using dripper or Turkish coffee preparation methods. Additionally, it was established that the antioxidant activity of green coffee infusions prepared using the mug coffee preparation was high, 75% on average, and positively correlated with the total content of phenolic compounds and the concentration of Ca in the brew.

  12. 26Al-26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Nagashima, Kazuhide; Krot, Alexander N.; Komatsu, Mutsumi

    2017-03-01

    We report the mineralogy, petrography, and in situ measured 26Al-26Mg systematics in chondrules from the least metamorphosed CV3 (Vigarano-type) chondrites, Kaba and Yamato (Y) 980145. Two Y 980145 chondrules measured show no resolvable excesses in 26Mg (26Mg∗), a decay product of a short-lived (t1/2 ∼0.7 Ma) radionuclide 26Al. Plagioclase in one of the chondrules is replaced by nepheline, indicative of thermal metamorphism. The lack of 26Mg∗ in the Y 980145 chondrules is most likely due to disturbance of their 26Al-26Mg systematics during the metamorphism. Although Kaba experienced extensive metasomatic alteration (<300 °C), it largely avoided subsequent thermal metamorphism, and the 26Al-26Mg systematics of its chondrules appear to be undisturbed. All eight Kaba chondrules measured show 26Mg∗, corresponding to the initial 26Al/27Al ratios [(26Al/27Al)0] ranging from (2.9 ± 1.7) × 10-6 to (6.3 ± 2.7) × 10-6. If CV parent asteroid accreted rapidly after chondrule formation, the inferred (26Al/27Al)0 ratios in Kaba chondrules provide an upper limit on 26Al available in this asteroid at the time of its accretion. The estimated initial abundance of 26Al in the CV asteroid is too low to melt it and contradicts the existence of a molten core in this body suggested from the paleomagnetic records of Allende [Carporzen et al. (2011) Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proc. Natl. Acad. Sci. USA108, 6386-6389] and Kaba [Gattacceca et al. (2013) More evidence for a partially differentiated CV parent body from the meteorite Kaba. Lunar Planet. Sci.44, abstract#1721].

  13. Analysis of Relations Between the Level of Mg, Zn, Ca, Cu, and Fe and Depressiveness in Postmenopausal Women.

    PubMed

    Szkup, Małgorzata; Jurczak, Anna; Brodowska, Aleksandra; Brodowska, Agnieszka; Noceń, Iwona; Chlubek, Dariusz; Laszczyńska, Maria; Karakiewicz, Beata; Grochans, Elżbieta

    2017-03-01

    Numerous observations suggest a possible connection between the levels of Mg, Zn, Fe, and Zn and the incidence of depressive symptoms. Depression is two to three times more common in women than in men. The menopausal period is extremely conducive to depressive disorders. The aim of this study was to assess the severity of depressive symptoms in postmenopausal women depending on the levels of Mg, Zn, Ca, Cu, and Fe. The study included 198 healthy postmenopausal women at the average age of 56.26 ± 5.55 years. In the first part of the study, standardized research tools were used, namely the Primary Care Evaluation of Mental Disorders (PRIME-MD) and the Beck Depression Inventory (BDI). The second part involved biochemical analysis of Mg, Zn, Ca, Cu, and Fe levels in blood serum. The lowest Cu levels were observed in women without depressive symptoms (1.07 ± 0.22 mg/l) and the highest in those with severe depressive symptoms (1.19 ± 0.17 mg/l), (p ≤ 0.05). The lowest Mg levels were observed in women with depressive symptoms (14.28 ± 2.13 mg/l), and the highest in women without depressive symptoms (16.30 ± 3.51 mg/l), (p ≤ 0.05). The average serum Mg levels (15.75 ± 3.23 mg/l) decreased compared to the reference values (18.77-24 mg/l). What is striking is a potential relation between the levels of Mg and Cu and depressiveness. Our results indicate to a higher vulnerability to depression in a group of women with lower levels of Mg and higher levels of Cu.

  14. Thermodynamics-Based Computational Design of Al-Mg-Sc-Zr Alloys

    NASA Astrophysics Data System (ADS)

    Haidemenopoulos, G. N.; Katsamas, A. I.; Kamoutsi, H.

    2010-04-01

    Alloying additions of Sc and Zr raise the yield strength of Al-Mg alloys significantly. We have studied the effects of Sc and Zr on the grain refinement and recrystallization resistance of Al-Mg alloys with the aid of computational alloy thermodynamics. The grain refinement potential has been assessed by Scheil-Gulliver simulations of solidification paths, while the recrystallization resistance (Zener drag) has been assessed by calculation of the precipitation driving forces of the Al3Sc and Al3Zr intermetallics. Microstructural performance indices have been derived, used to rank several alloy composition variants, and finally select the variant with the best combination of grain refinement and recrystallization resistance. The method can be used, with certain limitations, for a thermodynamics-based design of Al-Mg and other alloy compositions.

  15. Evaluation of corrosion behavior of Al-Mg-Li alloys in seawater

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Abdul Aleem, B. J.

    1996-04-01

    Weldalite 050, a high-strength Al-Mg-Li alloy, was evaluated for its corrosion resistance in deaerated and air saturated Arabian Gulf water to determine its suitability for marine applications. Weight loss and electrochemical studies showed that the alloy had minimum corrosion rates of 1.82 and 4.82 mpy (mils per year), respectively, in deaerated and air saturated Arabian Gulf water with very high total dissolved solids (TDS) content. Weldalite 050 exhibited good resistance to corrosion at velocities up to 3.9 m/s. The formation of Al2MgLi, Al-Li, Al12Mg17, and Al-Li precipitates has a pronounced effect on its corrosion resistance. The corrosion resistance of Weldalite 050 compares favorably with that of alloys 5052 and 5054, wrought alloys 6061 and 6013, and silicon carbide (SiC) reinforced alloys 6061 and 6013.

  16. Crystal structure of novel compounds in the systems Zr-Cu-Al, Mo-Pd-Al and partial phase equilibria in the Mo-Pd-Al system.

    PubMed

    Khan, Atta U; Rogl, P; Giester, G

    2012-02-28

    The crystal structures of three Al-rich compounds have been solved from X-ray single crystal diffractometry: τ(1)-MoPd(2-x)Al(8+x) (x = 0.067); τ(7)-Zr(Cu(1-x)Al(x))(12) (x = 0.514) and τ(9)-ZrCu(1-x)Al(4) (x = 0.144). τ(1)-MoPd(2-x)Al(8+x) adopts a unique structure type (space group Pbcm; lattice parameters a = 0.78153(2), b = 1.02643(3) and c = 0.86098(2) nm), which can be conceived as a superstructure of the Mo(Cu(x)Al(1-x))(6)Al(4) type. Whereas Mo-atoms occupy the 4d site, Pd(2) occupies the 4c site, Al and Pd(1) atoms randomly share the 4d position and the rest of the positions are fully occupied by Al. A Bärnighausen tree documents the crystallographic group-subgroup relation between the structure types of Mo(Cu(x)Al(1-x))(6)Al(4) and τ(1). τ(7)-Zr(Cu(1-x)Al(x))(12) (x = 0.514) has been confirmed to crystallize with the ThMn(12) type (space group I4/mmm; lattice parameters a = 0.85243(2) and c = 0.50862(3) nm). In total, 4 crystallographic sites were defined, out of which, Zr occupies site 2a, the 8f site is fully occupied by Cu, the 8i site is entirely occupied by Al, but the 8j site turned out to comprise a random mixture of Cu and Al atoms. The compound τ(9)-ZrCu(1-x)Al(4) (x = 0.144) crystallizes in a unique structure type (space group P4/nmm; lattice parameters a = 0.40275(3) and c = 1.17688(4) nm) which exhibits full atom order but a vacancy (14.4%) on the 2c site, shared with Cu atoms. τ(9)-ZrCu(1-x)Al(4) is a superstructure of Cu with an arrangement of three unit cells of Cu in the direction of the c-axis. A Bärnighausen tree documents this relationship. The ZrCu(1-x)Al(4) type (n = 3) is part of a series of structures which follow this building principle: Cu (n = 1), TiAl(3) (n = 2), τ(5)-TiNi(2-x)Al(5) (n = 4), HfGa(2) (n = 6) and Cu(3)Pd (n = 7). A partial isothermal section for the Al-rich part of the Mo-Pd-Al system at 860 °C has been established with two ternary compounds τ(1)-MoPd(2-x)Al(8+x) and τ(2) (unknown structure). The

  17. The Nature of Interfaces in Al-1050/Al-1050 and Al-1050/Mg-AZ31 Couples Joined by Magnetic Pulse Welding (MPW)

    NASA Astrophysics Data System (ADS)

    Stern, A.; Aizenshtein, M.; Moshe, G.; Cohen, S. R.; Frage, N.

    2013-07-01

    The microstructure and the phase composition of the interfaces of Al-1050/Al-1050 and Al-1050/Mg-AZ31 magnetic pulse welding (MPW) joints were characterized by SEM and TEM analyses. The mechanical properties were tested by nanoindentation. Properties of the Al-1050/Al-1050 interface joint were established. The interface is almost free from Al3Fe precipitates, which are present in the base metal. The hardness value is higher than that of the base metal; however, values of the Young's modulus of the interface and base metal are similar. It was suggested that the interface evolution in the Al-1050/Al-1050 system includes local melting and rapid solidification of the base materials. A wavy shaped heterogeneous interface was detected in the Al-1050/Mg-AZ31 joints. Some areas are free from visible intermetallic phases (IMPs), while others contain pockets of relatively coarse intermetallic precipitates. The presence of a relatively large fraction of globular porosity at the interface indicates that local melting takes place in the course of MPW. TEM characterization of regions free of IMPs at the interface reveals regions consisting of fcc supersaturated Al-Mg solid solution, apparently formed as a result of local mechanical alloying during MPW. In other regions, the composition and structure correspond to the Mg17Al12 phase, which was probably formed by local melting and rapid solidification.

  18. Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Grant, P. S.; O'Reilly, K. A. Q.

    2016-06-01

    The evolution of iron (Fe) bearing intermetallics (Fe-IMCs) during direct chill casting and homogenization of a grain-refined 6063 aluminum-magnesium-silicon (Al-Mg-Si) alloy has been studied. The as-cast and homogenized microstructure contained Fe-IMCs at the grain boundaries and within Al grains. The primary α-Al grain size, α-Al dendritic arm spacing, IMC particle size, and IMC three-dimensional (3D) inter-connectivity increased from the edge to the center of the as-cast billet; both α c-AlFeSi and β-AlFeSi Fe-IMCs were identified, and overall α c-AlFeSi was predominant. For the first time in industrial billets, the different Fe-rich IMCs have been characterized into types based on their 3D chemistry and morphology. Additionally, the role of β-AlFeSi in nucleating Mg2Si particles has been identified. After homogenization, α c-AlFeSi predominated across the entire billet cross section, with marked changes in the 3D morphology and strong reductions in inter-connectivity, both supporting a recovery in alloy ductility.

  19. Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides

    SciTech Connect

    Wang Jun; Zhou Jideng; Li Zhanshuang; He Yang; Lin Shuangshuang; Liu Qi; Zhang Milin; Jiang Zhaohua

    2010-11-15

    We report the preparation of mesoporous mixed metal oxides (MMOs) through a soft template method. Different amounts of P123 were used as structure directing agent to synthesize P123-templated Mg-Al layered double hydroxides (LDHs). After calcination of as-synthesized LDHs at 500 {sup o}C, the ordered mesopores were obtained by removal of P123. The mesoporous Mg-Al MMOs fabricated by using 2 wt% P123 exhibited a high specific surface area of 108.1 m{sup 2}/g, and wide distribution of pore size (2-18 nm). An investigation of the 'memory effect' of the mesoporous MMOs revealed that they were successfully reconstructed to ibuprofen intercalated LDHs having different gallery heights, which indicated different intercalation capacities. Due to their mesoporosity these unique MMOs have particular potential as drug or catalyst carriers. - Graphical abstract: Ordered mesoporous Mg-Al MMOs can be obtained through the calcination of P123-templated Mg-Al-CO{sub 3} LDHs. The pore diameter is 2.2 nm. At the presence of ibuprofen, the Mg-Al MMOs can recover to Mg-Al-IBU LDHs, based on its 'remember effect'. Display Omitted

  20. Mechanical Properties and Tensile Failure Analysis of Novel Bio-absorbable Mg-Zn-Cu and Mg-Zn-Se Alloys for Endovascular Applications

    PubMed Central

    Persaud-Sharma, Dharam; Budiansky, Noah; McGoron, Anthony J.

    2013-01-01

    In this paper, the mechanical properties and tensile failure mechanism of two novel bio-absorbable as-cast Mg-Zn-Se and Mg-Zn-Cu alloys for endovascular medical applications are characterized. Alloys were manufactured using an ARC melting process and tested as-cast with compositions of Mg-Zn-Se and Mg-Zn-Cu, being 98/1/1 wt.% respectively. Nanoindentation testing conducted at room temperature was used to characterize the elastic modulus (E) and surface hardness (H) for both the bare alloys and the air formed oxide layer. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties that can increase their biocompatibility, degradation kinetics, and the potential for medical device creation. PMID:23543822

  1. Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations

    PubMed Central

    Liu, Yin; Gong, Yuxuan; Mellott, Nathan P.; Wang, Bu; Ye, Haitao; Wu, Yiquan

    2016-01-01

    Abstract CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations. PMID:27877870

  2. Effect of Al2Gd on microstructure and properties of laser clad Mg-Al-Gd coatings

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Zhang, Ke; Yao, Chengwu; Dong, Jie; Li, Zhuguo; Emmelmann, Claus

    2015-03-01

    In order to investigate the effects of Gd addition on the microstructures and properties of magnesium coatings, the Mg-7.5Al-xGd (x = 0, 2.5, 5.0 and 7.5 wt.%) coatings on cast magnesium alloy were fabricated by laser cladding with wire feeding. The results indicated that the gadolinium (Gd) addition led to the formation of a cubic Al2Gd phase as well as suppressed the precipitation of eutectic Mg17Al12 phase. The laser clad coating containing nominally 7.5 wt.% Gd presented the highest microhardness, ultimate tensile strength and yield strength at both room temperature and high temperatures. The enhancement of heat resistant capacities was chiefly attributed to the existence of thermally stable Al2Gd particles, which prevented tiny liquation of eutectic phases along the grain boundaries and made great contributions on maintaining high yield ratio during high-temperature deformation.

  3. Role of Grain Boundaries in the Mechanism of Plasma Hydrogenation of Nanocrystalline MgAl Films

    SciTech Connect

    Milcius, Darius; Pranevicius, Liudas; Templier, Claude; Bobrovaite, Birute; Barnackas, Irmantas

    2006-05-24

    Nanocrystalline aluminum hydrides (alanates) are potential hydrogen storage materials for PEM fuel cell applications. One of candidates is magnesium alanate, Mg(AlH4)2, which contains 9.3 wt. % of hydrogen. In the present work, the effects of Ti catalyst in improving the kinetics of hydrogen uptake and release are investigated. The 2-5 {mu}m thick MgAl films have been hydrogenated employing plasma immersion ion implantation technique as a function of Ti-content. Nanocrystalline MgAl films were prepared by magnetron sputter deposition in vacuum. Titanium atoms were incorporated simultaneously into the growing film. Morphological and structural properties were studied by scanning electron and atomic force microcopies and X-ray diffraction technique. It is shown that the microstructure of the hydrided/dehydrided MgAl film is highly defected and demonstrates dispersed/amorphous cluster-like structure. Ti atoms in MgAl film kinetically enhance the dehydrogenation of magnesium alanate film. For Ti-doped MgAl film the dehydrogenation process becomes about 1.5 times shorter and the dehydrogenation temperature about 50 K less than for Ti-undoped film for the temperature rise rate equal to 18 K-min-1. It is shown when hydrogenated MgAl film is exposed to air a compact amorphous Al2O3 layer with typically 3-5 nm thickness grows on the surface. Thin native oxide acts as a permeation barrier for hydrogen. It has been found that the major part of hydrogen effuses at {approx}630 K and the effusion process is controlled by the migration of hydrogen through the surface oxide layer.

  4. Microstructural variations in Cu/Nb and Al/Nb nanometallic multilayers

    SciTech Connect

    Polyakov, M. N.; Hodge, A. M.; Courtois-Manara, E.; Wang, D.; Kuebel, C.; Chakravadhanula, K.

    2013-06-17

    Miscible (Al/Nb) and immiscible (Cu/Nb) nanometallic multilayer systems were characterized by means of transmission electron microscopy techniques, primarily by automated crystallographic orientation mapping, which allows for the resolution of crystal structures and orientations at the nanoscale. By using this technique, distinctive Nb orientations in relation to the crystallographic state of the Al and Cu layer structures can be observed. Specifically, the Al and Cu layers were found to consist of amorphous, semi-amorphous, and crystalline regions, which affect the overall multilayer microstructure.

  5. The shape memory capability and life of Cu-Al-Be-X alloys

    SciTech Connect

    Dong, Y.Y.; Dar, K.Z. ); Wang, T.M. ); Zin, S.J. )

    1994-09-01

    The shape memory capacity and the shape memory life of three alloys of the Cu-11.6Al-0.4Be-X type have been investigated using the strain angle restoration method and compared with the alloy Cu-25Zn-4Al. The alloys were subjected to various normalizing and normalizing plus aging treatments, and all were found to possess excellent shape memory properties. The alloy Cu-11.6Al-0.4Be-0.2Cr demonstrated the best shape memory capacity and life.

  6. Cetyltrimethyl ammonium bromide-Mg/Al hydrotalcite for removal phenol in water

    NASA Astrophysics Data System (ADS)

    Kurniawati, Puji; Wiyantoko, Bayu; Purbaningtias, Tri Esti; Muzdalifah

    2017-03-01

    Hydrotalcite materials was synthesized by using Cetyltrimethyl Ammonium Bromide (CTAB) and Mg/Al layered double hydroxide with ratio molar 3:1. Synthesis of CTAB-Mg/Al hydrotalcite was carried out using ex situ co-precipitation method at pH 10±0.5. Removal of phenol was optimum at medium pH 6 and it had optimum contact time in 300 min. It followed pseudo second order with adsorption rate constant was 1.15.10-4 mM-1.min-1. The maximum adsorption capacities obtained from the Langmuir model was 35.71 mg.g-1 at room temperature.

  7. Thermoelectric properties of Al doped Mg{sub 2}Si material

    SciTech Connect

    Kaur, Kulwinder Kumar, Ranjan; Rani, Anita

    2015-08-28

    In the present paper we have calculated thermoelectric properties of Al doped Mg{sub 2}Si material (Mg{sub 2−x}Al{sub x}Si, x=0.06) using Pseudo potential plane wave method based on DFT and Semi classical Boltzmann theory. The calculations showed n-type conduction, indicating that the electrical conduction are due to electron. The electrical conductivity increasing with increasing temperature and the negative value of Seebeck Coefficient also show that the conduction is due to electron. The thermal conductivity was increased slightly by Al doping with increasing temperature due to the much larger contribution of lattice thermal conductivity over electronic thermal conductivity.

  8. Ultra-Fine Grain Structures Of Model Al-Mg-Si Alloys Produced By Hydrostatic Extrusion

    NASA Astrophysics Data System (ADS)

    Adamczyk-Cieślak, Bogusława; Mizera, Jarosław

    2011-01-01

    Microstructure and mechanical properties were studied in model Al-Mg-Si alloys (Al-1 % Mg-0.8% Si and Al-0.5% Mg-0.3% Si-wt %) deformed by hydrostatic extrusion (HE) to strains of 1.4 and 3.8. In these alloys the different percentage of two hardening second-phase precipitates (Mg2Si and Si) were observed. The microstructure was characterized by transmission electron microscopy and optical microscopy. The microstructure of the alloys in the initial state was built of coarse grains of an average diameter of ˜30 rim. The refined microstructure was examined qualitatively and quantitatively using the stereological method and a computer image analysis. The deformation-processed structures evolved very rapidly, forming ultrafine grained (UFG) materials with grains of about 0.4 μm. In addition, the grain refinement in the HE-treated materials has a substantial effect on their properties, such as the mechanical strength and micro-hardness which increase significantly. It has been found that, after ɛ = 3.8 in the Al-1% Mg-0.8% Si alloy, the micro-hardness increases approximately twofold. The yield stress is more than four times higher in the UFG alloys, in comparison to the initial state. Similar results were identified in the Al-0.5% Mg-0.3% Si. This is due to the very rapid refinement of the microstructure during the deformation and presence of second-phase particles.

  9. Ultra-Fine Grain Structures Of Model Al-Mg-Si Alloys Produced By Hydrostatic Extrusion

    SciTech Connect

    Adamczyk-Cieslak, Boguslawa; Mizera, Jaroslaw

    2011-01-17

    Microstructure and mechanical properties were studied in model Al-Mg-Si alloys (Al-1 % Mg-0.8% Si and Al-0.5% Mg-0.3% Si-wt %) deformed by hydrostatic extrusion (HE) to strains of 1.4 and 3.8. In these alloys the different percentage of two hardening second-phase precipitates (Mg{sub 2}Si and Si) were observed. The microstructure was characterized by transmission electron microscopy and optical microscopy. The microstructure of the alloys in the initial state was built of coarse grains of an average diameter of {approx}30 rim. The refined microstructure was examined qualitatively and quantitatively using the stereological method and a computer image analysis. The deformation-processed structures evolved very rapidly, forming ultrafine grained (UFG) materials with grains of about 0.4 {mu}m. In addition, the grain refinement in the HE-treated materials has a substantial effect on their properties, such as the mechanical strength and micro-hardness which increase significantly. It has been found that, after {epsilon} = 3.8 in the Al-1% Mg-0.8% Si alloy, the micro-hardness increases approximately twofold. The yield stress is more than four times higher in the UFG alloys, in comparison to the initial state. Similar results were identified in the Al-0.5% Mg-0.3% Si. This is due to the very rapid refinement of the microstructure during the deformation and presence of second-phase particles.

  10. A new scaling relation for n-AlN doped superconducting MgB2

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Dey, T. K.

    2013-09-01

    The scaling behavior of nano-aluminum nitride added polycrystalline MgB2 superconductor is discussed. A series of polycrystalline MgB2 samples with different amounts of nanosized AlN addition are synthesized by solid reaction. All the synthesized pellets are subjected to x-ray diffraction, field emission gun scanning electron microscopy (FEG-SEM), and transmission electron microscopy (TEM) to examine their micro-structural features. A marginal decrease in lattice parameters of pure MgB2 with AlN nanoparticles addition is observed. Surface morphology reveals randomly oriented hexagonal MgB2 grains decorated with AlN nanoparticles between the grain boundaries and also scattered on the grain surface. For higher concentration, n-AlN agglomerates are visible. Resistivity data confirm a decrease in superconducting transition temperature (Tc) from 38.5 to 37 K and increase in transition width (ΔTc) with increased loading of n-AlN in MgB2. The critical current density (Jc) of the pellets at 4, 10, 20, and 30 K is evaluated from the magnetization data between ±6 T and is explained well in the framework of collective pinning model. The normalized pinning force density of n-AlN doped MgB2 at various temperatures indicates an excellent scaling with respect to Hn (the field corresponding to which Fp drops to half of its maximum value) as the scaling field. A new scaling expression derived, using the expression of field dependence of Jc proposed by "collective pinning model" in small bundle regime, demonstrates an excellent agreement with the measured normalized pinning force density (viz., Fp/Fpmax vs. hn) of the AlN nanoparticles doped MgB2 superconductors.

  11. Dual-scale phase-field simulation of Mg-Al alloy solidification

    NASA Astrophysics Data System (ADS)

    Monas, A.; Shchyglo, O.; Höche, D.; Tegeler, M.; Steinbach, I.

    2015-06-01

    Phase-field simulations of the nucleation and growth of primary α-Mg phase as well as secondary, β-phase of a Mg-Al alloy are presented. The nucleation model for α- and β-Mg phases is based on the “free growth model” by Greer et al.. After the α-Mg phase solidification we study a divorced eutectic growth of α- and β-Mg phases in a zoomed in melt channel between α-phase dendrites. The simulated cooling curves and final microstructures of α-grains are compared with experiments. In order to further enhance the resolution of the interdendritic region a high-performance computing approach has been used allowing significant simulation speed gain when using supercomputing facilities.

  12. A declaration of independence for Mg/Si. [Al/Si intensity ratio predictive usefulness for Mg/Si intensity ratio in lunar X-ray fluorescence

    NASA Technical Reports Server (NTRS)

    Hubbard, N.; Keith, J. E.

    1978-01-01

    The weak covariation that exists between Al/Si and Mg/Si for large areas of the lunar surface is little, if any, stronger than that forced on a random set of numbers that are subject to closure. The Mg and Al variations implied by the Mg/Si and Al/Si intensity ratio data are qualitatively like those seen in lunar soil sample data. Two petrogenetic provinces are suggested for terra materials; one appears to have 50% higher Mg values than the other. Using the improved data, Mg/Si variations can be studied at a signal-to-noise ratio greater than 5/1.

  13. New Solid-Base Cu-MgO for CO2 Capture at 473 K and Removal of Nitrosamine.

    PubMed

    Li, Yan Y; Dong, Xin Y M; Sun, Xiao D; Wang, Ying; Zhu, Jian H

    2016-11-09

    To fabricate a new solid base with high efficiency in the adsorption of CO2 at 473 K and catalytic activity in the degradation of nitrosamines, magnesium oxalate and copper nitrate are mixed with the assistance of microwave irradiation followed by calcination to immobilize CuO among MgO particles. The binary solid base CuO-MgO is thus moderately reduced to form the Cu-inserted MgO composite with highly exposed strong basic sites, and it can capture 34.6 mg g(-1) of CO2 in the harsh instantaneous adsorption at 473 K and keep a high strong basicity while trapping the CO2 mixed with SO2 and NO. Besides this, the new solid base exhibits high activity in the removal of volatile nitrosamine N-nitrosopyrrolidine (NPYR), for the first time expanding the application of solid bases to environmental catalysis.

  14. Structural, magnetic, DC-AC electrical conductivities and thermo electric studies of MgCuZn Ferrites for microinductor applications.

    PubMed

    Varalaxmi, N; Sivakumar, K V

    2013-01-01

    Multilayer chip inductors (MLCIs) have been rapidly developed for electromagnetic applications. NiCuZn ferrites are the most preferred ferrite materials to produce MLCIs. MgCuZn ferrites have similar properties to those of NiCuZn ferrites. MgCuZn ferrites owing to their superior properties like low magnetostriction, environmental stability, low stress sensitivity, high resistivity and low cost can replace NiCuZn ferrites, which have a wide range of electronic applications. In view of this, a series of polycrystalline MgCuZn ferrites with generic formula MgxCu0.5Zn0.5-xFe2O4 (X=0.0 0.1, 0.2, 0.3, 0.4 and 0.5) are successfully synthesized by conventional double sintering technique. The samples were then characterized by the X-ray diffraction patterns (XRD) microstructural studies and the grain size was estimated using SEM micrographs. The sintered ferrites have been investigated in their magnetic, electrical and thermoelectric effect studies, which were carried out in the temperature range from 30 °C to 490 °C. The investigated ferrites are found to exhibit excellent properties that are suitable for the core materials in multilayer chip inductors, and the results are discussed.

  15. Effect of current reversal on the failure mechanism of Al-Cu-Si narrow interconnects

    SciTech Connect

    Kim, C.U.; Kang, S.H.; Morris, J.W. Jr. |

    1996-02-01

    The work reported here concerns the effect of a brief exposure to a reversed current on the electromigration failure of narrow Al-Cu thin-film conducting lines. While the precise mechanism by which Cu retards electromigration in Al-Cu alloys is not fully understood, the consistent observation that electromigration failure is preceded by the sweeping of Cu from the failure site can be used to improve electromigration resistance by stabilizing the distribution of Cu. One way of doing this is to expose the Al-Cu line to a reverse current for some period of time. The present work shows that this method is particularly effective in thin lines with `quasi-bamboo` microstructures. It has the effect of building a reservoir of Cu at the upstream ends of the polygranular segments that are the preferred failure sites, and significantly increases both the mean time of failure, and the time to first failure of a distribution of lines. It can be inferred from these results that Al-Cu lines that conduct alternating current should be exceptionally resistant to electromigration failure. 11 refs., 8 figs.

  16. Mixed oxide semiconductor CuInAlO4 nanoparticles: synthesis, structure and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Qin, Chuanxiang; Bi, Shala; Wan, Yingpeng; Huang, Yanlin; Wang, Yaorong; Seo, Hyo Jin

    2017-01-01

    CuInAlO4 nanoparticles were synthesized via the facile sol-gel route. The phase formations were investigated by x-ray powder diffraction and structure refinements. The morphological characteristic of the nano-oxides was tested with scanning electron microscopy, transmission electron microscopy, energy-dispersive spectra, N2-adsorption-desorption isotherms and the x-ray photoelectron spectrum. The optical absorption, band energy and structures of the nanoparticles were measured. CuInAlO4 has wide optical absorption from UV to visible wavelength. The nano-oxides have a narrow band energy of 2.191 eV. The photocatalysis ability of CuInAlO4 nanoparticles was confirmed by its efficient photodegradation on methylene blue (MB) dye under the excitation of the visible wavelengths: CuInAlO4 demonstrates efficient photocatalysis on MB photodegradation.

  17. Finite Element Modeling for the Structural Analysis of Al-Cu Laser Beam Welding

    NASA Astrophysics Data System (ADS)

    Hartel, Udo; Ilin, Alexander; Bantel, Christoph; Gibmeier, Jens; Michailov, Vesselin

    Laser beam welding of aluminum and copper (Al-Cu) materials is a cost efficient joining technology to produce e.g. connector elements for battery modules. Distortion low connections can be achieved, which have electrical favorable properties. Numerical simulation of the laser beam welding process of Al-Cu dissimilar materials can provide further insight into principal process mechanisms and mechanical response of the joint parts. In this paper a methodology is introduced to investigate the structural behavior of Al-Cu joints in overlap joint with respect to welding distortions and residual stresses. First the material model of the homogeneous base materials are validated. Next, a generic material model approach is used to simulate the structural behavior of heterogeneous Al-Cu connections.

  18. Complex metallic surface phases in the Al/Cu(111) system: An experimental and computational study

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Gaudry, E.; Deniozou, T.; Ledieu, J.; de Weerd, M. C.; Belmonte, T.; Dubois, J. M.; Fournée, V.

    2009-11-01

    The growth of complex intermetallics as surface alloys is investigated by annealing Al thin films deposited on Cu(111) substrate in ultrahigh vacuum. Already at room temperature, the large lattice mismatch between Al and Cu results in interfacial intermixing. Upon annealing, various phases are formed by diffusion depending on the thickness of the Al films and the annealing temperature. The surface structures are characterized by scanning tunneling microscopy, low-energy electron diffraction, and x-ray photoelectron spectroscopy. Three different superlattice phases are identified as well as the complex Hume-Rothery γ-Al4Cu9 phase. The epitaxial relationships between the surface phases and the Cu(111) substrate are determined. We further investigate the electronic structure of the γ phase by density functional calculations. Experimental valence bands are compared to calculated density of states and simulated STM images are used to identify possible bulk planes appearing as surface termination.

  19. Postperovskite phase equilibria in the MgSiO3-Al2O3 system.

    PubMed

    Tsuchiya, Jun; Tsuchiya, Taku

    2008-12-09

    We investigate high-P,T phase equilibria of the MgSiO(3)-Al(2)O(3) system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh(2)O(3)(II) phase, present calculations demonstrate that (i) dissolving Al(2)O(3) tends to decrease the postperovskite transition pressure of MgSiO(3) but the effect is not significant ( approximately -0.2 GPa/mol% Al(2)O(3)); (ii) Al(2)O(3) produces the narrow perovskite+postperovskite coexisting P,T area (approximately 1 GPa) for the pyrolitic concentration (x(Al2O3) approximately 6 mol%), which is sufficiently responsible to the deep-mantle D'' seismic discontinuity; (iii) the transition would be smeared (approximately 4 GPa) for the basaltic Al-rich composition (x(Al2O3) approximately 20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh(2)O(3)(II) with increasing the Al concentration involving small displacements of the Mg-site cations.

  20. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices

    PubMed Central

    Zheng, T. C.; Lin, W.; Liu, R.; Cai, D. J.; Li, J. C.; Li, S. P.; Kang, J. Y.

    2016-01-01

    A novel multidimensional Mg-doped superlattice (SL) is proposed to enhance vertical hole conductivity in conventional Mg-doped AlGaN SL which generally suffers from large potential barrier for holes. Electronic structure calculations within the first-principle theoretical framework indicate that the densities of states (DOS) of the valence band nearby the Fermi level are more delocalized along the c-axis than that in conventional SL, and the potential barrier significantly decreases. Hole concentration is greatly enhanced in the barrier of multidimensional SL. Detailed comparisons of partial charges and decomposed DOS reveal that the improvement of vertical conductance may be ascribed to the stronger pz hybridization between Mg and N. Based on the theoretical analysis, highly conductive p-type multidimensional Al0.63Ga0.37N/Al0.51Ga0.49N SLs are grown with identified steps via metalorganic vapor-phase epitaxy. The hole concentration reaches up to 3.5 × 1018 cm−3, while the corresponding resistivity reduces to 0.7 Ω cm at room temperature, which is tens times improvement in conductivity compared with that of conventional SLs. High hole concentration can be maintained even at 100 K. High p-type conductivity in Al-rich structural material is an important step for the future design of superior AlGaN-based deep ultraviolet devices. PMID:26906334

  1. CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route

    PubMed Central

    Huo, Chengli; Ouyang, Jing; Yang, Huaming

    2014-01-01

    Highly ordered aluminum-containing mesoporous silica (Al-MCM-41) was prepared using attapulgite clay mineral as a Si and Al source. Mesoporous complexes embedded with CuO nanoparticles were subsequently prepared using various copper sources and different copper loadings in a direct synthetic route. The resulting CuO/Al-MCM-41 composite possessed p6mm hexagonally symmetry, well-developed mesoporosity, and relatively high BET surface area. In comparison to pure silica, these mesoporous materials embedded with CuO nanoparticles exhibited smaller pore diameter, thicker pore wall, and enhanced thermal stability. Long-range order in the aforementioned samples was observed for copper weight percentages as high as 30%. Furthermore, a significant blue shift of the absorption edge for the samples was observed when compared with that of bulk CuO. H2-TPR measurements showed that the direct-synthesized CuO/Al-MCM-41 exhibited remarkable redox properties compared to the post-synthesized samples, and most of the CuO nanoparticles were encapsulated within the mesoporous structures. The possible interaction between CuO and Al-MCM-41 was also investigated. PMID:24419589

  2. Fatigue characteristics and microcosmic mechanism of Al-Si-Mg alloys under multiaxial proportional loadings

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Song; He, Guo-Qiu; Liu, Bing; Zhu, Zheng-Yu; Zhang, Wei-Hua

    2011-08-01

    With the increasing use of Al-Si-Mg alloys in the automotive industry, the fatigue performance of Al-Si-Mg alloy has become a major concern with regard to their reliability. The fatigue characteristics and microcosmic mechanism of an Al-Si-Mg alloy under multiaxial proportional loadings were investigated in this research. As low cycle fatigue life and material strengthening behavior are closely related, the effect of equivalent strain amplitude on the multiaxial fatigue properties was analyzed. Fatigue tests were conducted to determine the influence of equivalent strain amplitude on the multiaxial proportional fatigue properties. The fatigue life exhibits a stable behavior under multiaxial proportional loadings. The dislocation structures of the Al-Si-Mg alloy were observed by transmission electron microscopy (TEM). The dislocation structure evolution of the Al-Si-Mg alloy under multiaxial proportional loadings during low cycle fatigue develops step by step by increasing fatigue cycles. Simultaneously, the dislocation structure changes with the change in equivalent strain amplitude under multiaxial proportional loadings. The experimental evidence indicates that the multiaxial fatigue behavior and life are strongly dependent on the microstructure of the material, which is caused by multiaxial proportional loadings.

  3. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries

    PubMed Central

    Yan, Jianfeng; Heckman, Nathan M.; Velasco, Leonardo; Hodge, Andrea M.

    2016-01-01

    The sensitization and subsequent intergranular corrosion of Al-5.3 wt.% Mg alloy has been shown to be an important factor in stress corrosion cracking of Al-Mg alloys. Understanding sensitization requires the review of grain boundary character on the precipitation process which can assist in developing and designing alloys with improved corrosion resistance. This study shows that the degree of precipitation in Al-Mg alloy is dependent on grain boundary misorientation angle, adjacent grain boundary planes and grain boundary types. The results show that the misorientation angle is the most important factor influencing precipitation in grain boundaries of the Al-Mg alloy. Low angle grain boundaries (≤15°) have better immunity to precipitation and grain boundary acid attack. High angle grain boundaries (>15°) are vulnerable to grain boundary acid attack. Grain boundaries with adjacent plane orientations near to {100} have potential for immunity to precipitation and grain boundary acid attack. This work shows that low Σ (Σ ≤ 29) coincident site lattice (CSL) grain boundaries have thinner β precipitates. Modified nitric acid mass loss test and polarization test demonstrated that the global corrosion resistance of sputtered Al-Mg alloy is enhanced. This may be attributed to the increased fractions of low Σ (Σ ≤ 29) CSL grain boundaries after sputtering. PMID:27230299

  4. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries

    NASA Astrophysics Data System (ADS)

    Yan, Jianfeng; Heckman, Nathan M.; Velasco, Leonardo; Hodge, Andrea M.

    2016-05-01

    The sensitization and subsequent intergranular corrosion of Al-5.3 wt.% Mg alloy has been shown to be an important factor in stress corrosion cracking of Al-Mg alloys. Understanding sensitization requires the review of grain boundary character on the precipitation process which can assist in developing and designing alloys with improved corrosion resistance. This study shows that the degree of precipitation in Al-Mg alloy is dependent on grain boundary misorientation angle, adjacent grain boundary planes and grain boundary types. The results show that the misorientation angle is the most important factor influencing precipitation in grain boundaries of the Al-Mg alloy. Low angle grain boundaries (≤15°) have better immunity to precipitation and grain boundary acid attack. High angle grain boundaries (>15°) are vulnerable to grain boundary acid attack. Grain boundaries with adjacent plane orientations near to {100} have potential for immunity to precipitation and grain boundary acid attack. This work shows that low Σ (Σ ≤ 29) coincident site lattice (CSL) grain boundaries have thinner β precipitates. Modified nitric acid mass loss test and polarization test demonstrated that the global corrosion resistance of sputtered Al-Mg alloy is enhanced. This may be attributed to the increased fractions of low Σ (Σ ≤ 29) CSL grain boundaries after sputtering.

  5. Simultaneous removal of SO2 and NO2 using a Mg-Al oxide slurry treatment.

    PubMed

    Kameda, Tomohito; Kodama, Aki; Yoshioka, Toshiaki

    2013-11-01

    SO2 and NO2 were simultaneously removed from a mixed gas using a Mg-Al oxide slurry treatment. Both adsorption to the oxide material itself and dissolution of the gases in the aqueous slurry contributed to the removal. A comparison was made between removal of the two gases separately and the simultaneous process. The removal of SO2 using both the simultaneous and individual process was similar; however, the removal of NO2 was lower for the simultaneous process. For the individual treatments, SO2 and NO2 were separately dissolved in the Mg-Al oxide slurry to produce SO3(2-), NO2(-), and NO3(-), which were subsequently removed by the Mg-Al oxide. However, when the simultaneous process was employed, the dissolved gases were seen to have a significant effect on each other. It was speculated that the production of NO2(-) was increased by the reduction of NO2 by SO3(2-). On increasing the quantity of the Mg-Al oxide, or on raising the temperature of the system, the removal of SO2 increased, with a concurrent decrease in NO2 removal. The increase in removal of SO3(2-) was speculated to hinder the conversion of NO2 to NO2(-), therefore decreasing the removal of the nitrogen species. The results demonstrate that the Mg-Al oxide slurry was highly effective for simultaneously removing NO2 and SO2 from a mixed gas.

  6. Correlating Hardness Retention and Phase Transformations of Al and Mg Cast Alloys for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Kasprzak, W.; Czerwinski, F.; Niewczas, M.; Chen, D. L.

    2015-03-01

    The methodology based on correlating hardness and phase transformations was developed and applied to determine the maximum temperature of hardness retention of selected Al-based and Mg-based alloys for aerospace applications. The Al alloys: A356, F357, and C355 experienced 34-66% reduction of the initial hardness, in comparison to 4-22% hardness reduction observed in Mg alloys: QE22A, EV31A, ZE41A, and WE43B after the same annealing to 450 °C. For Al alloys the hardness reduction showed a steep transition between 220 and 238 °C. In contrast, Mg alloys showed a gradual hardness decrease occurring at somewhat higher temperatures between 238 and 250 °C. The hardness data were correlated with corresponding phase transformation kinetics examined by dilatometer and electrical resistivity measurements. Although Mg alloys preserved hardness to higher temperatures, their room temperature tensile strength and hardness were lower than Al alloys. The experimental methodology used in the present studies appears to be very useful in evaluating the softening temperature of commercial Al- and Mg-based alloys, permitting to assess their suitability for high-temperature applications.

  7. Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method

    NASA Astrophysics Data System (ADS)

    Ateia, Ebtesam. E.; Mohamed, Amira. T.

    2017-03-01

    The spinel ferrite Mg0.7Cr0.3Fe2O4, and Mg0.7Al0.3Fe2O4 were prepared by the citrate technique. All samples were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Micrographs (HRTEM), Energy Dispersive X ray Spectroscopy (EDAX) and Atomic Force Microscope (AFM). XRD confirmed the formation of cubic spinel structure of the investigated samples. The average crystallite sizes were found to be between 24.7 and 27.5 nm for Al3+ and Mg2+ respectively. The substitution of Cr3+/Al3+ in place of Mg2+ ion initiates a crystalline anisotropy due to large size mismatch between Cr /Al and Mg2+, which creates strain inside the crystal volume. According to VSM results, by adding Al3+ or Cr3+ ions at the expense of Mg2+, the saturation magnetization increased. The narrow hysteresis loop of the samples indicates that the amount of dissipated energy is small, which is desirable for soft magnetic applications. Magnetic dynamics of the samples were studied by measuring magnetic susceptibility versus temperature at different magnetic fields. The band gap energy, which was calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function, decreases with increasing the particle size. Furthermore, the band gaps were quite narrow (1.5-1.7 eV), hence the investigated samples could act as visible light driven photo catalysts. To sum up the addition of trivalent Al3+, and Cr3+ ions enhanced the optical, magnetic and structure properties of the samples. Mg0.7 Cr0.3Fe2O4 sample will be a better candidate for the optical applications and will also be a guaranteeing hopeful for technological applications.

  8. Use of Mg-Al oxide for boron removal from an aqueous solution in rotation: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2016-01-01

    Mg-Al oxide prepared through the thermal treatment of [Formula: see text] intercalated Mg-Al layered double hydroxides (CO3·Mg-Al LDH) was found to remove boron (B) from an aqueous solution. B was removed by the rehydration of Mg-Al oxide accompanied by combination with [Formula: see text] . When using twice the stoichiometric quantity of Mg-Al oxide for Mg/Al = 4, the residual concentration of B dropped from 100 to 2.8 mg/L in 480 min, and for Mg/Al = 2, it decreased from 100 to 2.5 mg/L in 240 min. In both cases, the residual concentration of B was highlighted to be lower than the current Japanese effluent standards (10 mg/L). The removal of B can be explained by way of pseudo-first-order reaction kinetics. The apparent activation energy of 63.5 kJ mol(-1), calculated from the Arrhenius plot indicating that a chemical reaction dominates the removal of B by Mg-Al oxide (Mg/Al = 2). The adsorption of B acts upon a Langmuir-type phenomena. The maximum adsorption (qm) and equilibrium adsorption constants (KL) were 7.4 mmol g(-1) and 1.9 × 10(3), respectively, for Mg-Al oxide (Mg/Al = 2). [Formula: see text] in B(OH)4·Mg-Al LDH produced by the removal of B was observed to undergo anion exchange with [Formula: see text] in solution. Following regeneration, the Mg-Al oxide maintained the ability to remove B from an aqueous solution. This study has clarified the possibility of recycling Mg-Al oxide for B removal.

  9. The effect of milling time on the synthesis of Cu54Mg22Ti18Ni6 alloy

    NASA Astrophysics Data System (ADS)

    Kursun, C.; Gogebakan, M.

    2016-03-01

    In the present work, nanocrystalline Cu54Mg22Ti18Ni6 alloy was produced by mechanical alloying from mixtures of pure crystalline Cu, Mg, Ti and Ni powders using a Fritsch planetary ball mill with a ball to powder ratio of 10:1. Morphological changes, microstructural evolution and thermal behaviour of the Cu-Mg-Ti-Ni powders at different stages of milling were characterised by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray detection (SEM/EDX) and differential thermal analysis (DTA). This alloy resulted in formation of single phase solid solution with FCC structure α-Cu (Mg, Ti, Ni) after 80 h of milling. In the initial stage of milling different sized and shaped elemental powders became uniform during mechanical alloying. The homogeneity of the Cu54Mg22Ti18Ni6 alloy increased with increasing milling time. The EDX result also confirmed the compositional homogeneity of the powder alloy. The crystallite size of alloy was calculated below 10 nm from XRD data.

  10. Conduction electron spin resonance in Mg 1 - x Al x B2

    NASA Astrophysics Data System (ADS)

    Likodimos, V.; Koutandos, S.; Pissas, M.; Papavassiliou, G.; Prassides, K.

    2003-01-01

    Conduction electron spin resonance is employed to study the interplay of the electronic and structural properties in the normal state of Mg 1 - x Al x B2 alloys as a function of Al-doping for 0 <= x <= 1. The x-dependence of the spin susceptibility reveals considerable reduction of the total density of states N(EF) with increasing Al concentration, complying with theoretical predictions for a predominant filling effect of the hole σ bands by electron doping. The CESR linewidth exhibits significant broadening, especially prominent in the high-Al-content region, indicative of the presence of enhanced structural disorder, consistent with the presence of compositional fluctuations.

  11. Study of Different Al/Mg Powders in Hydroreactive Fuel Propellant Used for Water Ramjet

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Tao; Zou, Mei-Shuai; Guo, Xiao-Yan; Yang, Rong-Jie; Li, Yun-Kai; Jiang, En-Zhou; Li, Zhong-Shan

    2014-05-01

    Experiments were conducted to study the effect of magnesium-aluminum alloy on the combustion performance of hydroreactive fuel propellants. The raw metal powders added to the propellants were ball-milled magnesium-50% aluminum alloy (m-AM), magnesium-50% aluminum alloy (AM), and Al and magnesium (Mg) powders, which were characterized using scanning electron microscopy, X-ray diffraction (XRD), and simultaneous thermogravimetric analysis (TGA). A high-pressure combustor and a metal/steam reactor were used to simulate the two-stage combustion of hydroreactive propellants used for a water ramjet. The combustion performance of the metal powders in propellant was studied experimentally, and the efficiency of the Al reaction in the propellants during the two-stage combustion was calculated. TGA traces in air indicated that the oxidation onset temperature of AM powders is much lower than for both Mg and Al powders. The XRD patterns for the AM and m-AM alloys exhibited Al12Mg17 diffraction peaks. The hydroreactive fuel propellant systems with added m-AM powder exhibited good performance in terms of burning rate, combustion heat, and the Al reaction efficiency, which was better than that for the propellants containing AM, Mg, and Al powders. At the pressure studied (3.0 MPa), the burning rate of the m-AM-containing propellant was found to be 15 mm s-1, and the heat of primary combustion was 6,878.1 kJ kg-1.

  12. Effect of rare earth substitution on the structural and electrical properties of Cu-Mg ferrite

    NASA Astrophysics Data System (ADS)

    Ateia, E.; Ahmed, M. A.; Ghouniem, R. M.

    2015-07-01

    The samples of Cu0.9Mg0.1RyFe2-yO4, where y = 0.01 and R = Sm, Dy, Ho and Hf, were prepared by standard ceramic method. All investigated samples were sintered at 1150°C with a heating rate of 4°C/min and sintering time of 8 h. X-ray diffraction study of the compositions revealed the formation of cubic spinel structure with the appearance of small peaks indicating the presence of secondary phases. Seebeck coefficient was obtained from thermo-electromotive force (emf) measurements. The alternation of the Seebeck coefficient sign between (+)ve and (-)ve means that the two conduction mechanisms take place simultaneously. The dielectric parameters such as dielectric constant, quality factor were determined as a function of temperature and at different frequencies. The decrease in Fe3+ ions on the octahedral site decreased the polarization of the system, through the dielectric transition point.

  13. Theoretical study of AuCu nanoalloys adsorbed on MgO(001)

    NASA Astrophysics Data System (ADS)

    Cerbelaud, M.; Barcaro, G.; Fortunelli, A.; Ferrando, R.

    2012-06-01

    The structures of AuCu clusters adsorbed on the (001) face of MgO are searched for by a two-step methodology. In a first step, the relevant structural motifs are singled out by global optimization searches within an atomistic model. In a second step, the lowest energy structures of each motif are relaxed by density-functional calculations. Three different sizes (30, 40 and 50 atoms) are considered. For each size, three compositions are analyzed. For size 30, a competition between fcc pyramids and a new motif (the daisy structure) is found. For 40 and 50 atoms, icosahedral fragments prevail. The results are discussed in connection with experimental data related to clusters of larger sizes.

  14. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    SciTech Connect

    Ganz, P. R.; Schaadt, D. M.

    2011-12-23

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  15. Microstructure and Erosion Resistance Performance of ZrAlN/Cu Coating

    NASA Astrophysics Data System (ADS)

    Du, Jun; Zhu, Xiaoying; Zhang, Ping; Cai, Zhihai

    ZrAlN/Cu coating has been deposited onto Ti-6Al-4 V substrate by reactive magnetron sputtering in order to improve its erosion resistance. The morphology and microstructure were studied combined with Field Emission Scanning Electron Microscrope(FSEM), X-ray Diffraction(XRD), X-ray Photoelectron Spectroscopy(XPS) and Transmission Electron Microscopy(TEM). Coatings hardness and toughness were measured by nano-indentation method and Vicker indentation method respectively. It has been found that Zr0.79Al0.19Cu0.02N coating possess dense columnar structure with 20∼40 nm columnar grains exbibiting (100) preferential orientation. XRD reflection peaks slightly shifts to higher angle, showing some of 19at%Al and 2at%Cu substitutely dissolves into face-centered cubic(FCC) ZrN lattice, XPS proves the existence of AlN and Cu phase in coating. Zr0.79Al0.19Cu0.02N coating demonstrates best erosion resistance at 15°∼90° impingement angle compared with Ti6Al4 V substrate, ZrN and Zr0.80Al0.20N coating, attributing to combination of high hardness(40.7 GPa) and good toughness.

  16. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  17. Optical Measurement of Forming Limit and Formability of Cu/Al Clad Metals

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Liang, Jin; Guo, Xiang; Ren, Maodong; Wang, Lizhong

    2015-04-01

    A digital image deformation measurement and analysis control system (XJTUDIC 8.0) was employed to measure the forming limit strain for Cu/Al clad metals produced via explosive welding technique. A contrast test between the digital image correlation (DIC) method and the conventional grid method was also implemented using the SPCC sheet metal forming limit test. The effect of heat treatment and contact status on forming limit was discussed based on the forming limit strain of Cu/Al clad metals. The interfacial and fracture structures were analyzed using scanning electron microscopy. The fracture site was predicted by finite element method. Results demonstrate that the forming limit curve of Cu/Al clad metals through DIC is more likely to reflect the formability of SPCC accurately. The forming limit of the clad with Al in the inner layer is higher than that of the clad with Cu in the inner layer. The formability of the annealed clads is superior to that of the non-annealed clads. The local interface failure induces the microcracks in Cu/Al clad metals during the forming process, which could be the main failure mode. With the finite element method, the fracture location of Cu/Al clad metals caused by uniaxial tensile during the forming limit test using DIC method is predicted accurately.

  18. Formation of CuAlO2 Film by Ultrasonic Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Iping, S.; Lockman, Zainovia; Hutagalung, S. D.; Kamsul, A.; Matsuda, Atsunori

    2011-10-01

    Smooth, crack free and homogenous CuAlO2 film was produced by chemical solution deposition process via spray pyrolysis technique on a cleaned Si substrate. The precursor solution used was comprised of a mixture of 45.87 mmol Cu(NO3)2.3H2O and 90 mmol Al(NO3)3.9H2O at ratio of Cu:Al = 1.2:1. The precursor solution was placed in a mist chamber and was atomized by a nebulizer to produce precursor mist. The precursor mist was then carried out by Ar gas and was sprayed onto a heated Si. Two main parameters were studied: the distance between the nozzle of the precursor mist chamber and the Si and the temperature of the Si substrate. It appears that from the XRD data, CuAlO2 can be detected for samples prepared by spraying the precursor mist at temperature of > 550 °C with distance between the nozzle and the substrate of 3cm. Reaction of the Cu and Al ions in the mist near the substrate may have promoted the crystallisation of CuAlO2.

  19. Azide SHS of aluminium nitride nanopowder and its application for obtaining Al-Cu-AlN cast nanocomposite

    NASA Astrophysics Data System (ADS)

    Titova, Y. V.; Sholomova, A. V.; Kuzina, A. A.; Maidan, D. A.; Amosov, A. P.

    2016-11-01

    Method of azide self-propagating high-temperature synthesis (SHS-Az), using sodium azide (NaN3) as a nitriding reagent, was used for obtaining the nanopowder of aluminum nitride (AlN) from precursor that was sodium hexafluoroaluminate (Na3AlF6). The product of burning the mixture of Na3AlF6 + 3NaN3 after water rinsing consisted of micro - and nanoparticles of AlN (65%) and the residue of salt Na3AlF6 (35%). This product of SHS-Az was mixed with copper powder and pressed into a briquette of nanopowdery master alloy Cu- 4%(65%AlN+35%Na3AlF6), which was successfully introduced into aluminium melt at a temperature of 850°C. The salt Na3AlF6 in the product of combustion played a role of flux during introducing into the aluminum melt and was not included in the final composition of the composite alloy. The microstructure of the obtained cast composite aluminum alloy with the calculated composition of Al-1.2%Cu-0.035%AlN showed that the reinforcing particles of AlN of different sizes, including nanoparticles, were distributed mainly along the grain boundaries of the aluminum alloy.

  20. Removal of perchlorate in water by calcined MgAl-CO3 layered double hydroxides.

    PubMed

    Yang, Yiqiong; Gao, Naiyun; Deng, Yang; Yu, Guoping

    2013-04-01

    Perchlorate is widely known as an inorganic endocrine disruptor. In this study, MgAl-CO3 layered double hydroxides with different Mg/Al molar ratios were prepared using a coprecipitation method and followed by a calcination process at a temperature range of 300 to 700 degrees C. Results showed that the best synthesis conditions were a calcination temperature of 550 degrees C and Mg/Al molar ratio of 3. Further, the adsorbent and its adsorption product were characterized by x-ray diffraction, Fourier transform-infrared spectroscopy, and thermogravimetric-differential thermal analysis. The layered double hydroxides structures in the adsorbent were lost during calcination at 550 degrees C but were reconstructed subsequent to adsorption of perchlorate, indicating that the "memory effect" appeared to play an important role in perchlorate adsorption. The perchlorate adsorption pattern was best described by the pseudo-second-order kinetics model, while the Freundlich isotherms appropriately explained perchlorate adsorption data.

  1. [Adsorption of perchlorate by calcined Mg/Zn/Al layered double hydroxides].

    PubMed

    Wang, Hong-Yu; Liu, Yan

    2014-07-01

    The adsorption capacity of perchlorate by Mg/Zn/Al layered double hydroxides was investigated. The samples were characterized by X-ray diffraction (XRD) and the adsorption isothermal model and dynamic model were discussed. The effect of calcination temperature, Mg/Zn/Al molar ratio, pH value of solution, adsorption time and dosage on the adsorption capacity of samples were studied. The experiment results showed that the removal ratio and adsorption capacity reached the highest and the pH value had good applicability when the molar ratio was Mg/Zn/Al = 2: 1 : 1. The adsorption of perchlorate basically conformed to the pseudo-second kinetics and Langmuir, Freundlich isotherm model.

  2. Al- and Cu-doped BaSi2 films on Si(111) substrate by molecular beam epitaxy and evaluation of depth profiles of Al and Cu atoms

    NASA Astrophysics Data System (ADS)

    Ajmal Khan, M.; Takeishi, M.; Matsumoto, Y.; Saito, T.; Suemasu, T.

    The main objective of the present work is to evaluate and compare the depth profiles of Al and Cu atoms in in-situ doped BaSi2. Furthermore, it is also desired to investigate and compare the carrier concentration of Al-doped as well as Cu-doped BaSi2 films and qualify as a potential dopant-candidate for more efficient solar cells of BaSi2. During the experiment, reactive deposition epitaxy and molecular beam epitaxy were used to develop the samples. X-ray diffraction (XRD) measurements and secondary ion mass spectroscopy (SIMS), were used to determine the structure, depth profile and composition of the already grown films. The electrical properties were characterized by Hall measurement using the van der Pauw method. In case of Al-doped BaSi2 films, it was not encouraging result due to diffusion and segregation of Al in both the surface and BaSi2/ Si interface regions. On the other hand, those phenomena were not observed for Cu-doped BaS2 films. Heavily Cu-doped BaSi2 showed n+ conductivity, differently from our prediction.

  3. Wetting of TiC by Al-Cu alloys and interfacial characterization.

    PubMed

    Contreras, A

    2007-07-01

    The wetting behavior and the interfacial reactions that occurred between molten Al-Cu alloys (1, 4, 8, 20, 33, and 100 wt% Cu) and solid TiC substrates were studied by the sessile drop technique in the temperature range of 800-1130 degrees C. The effect of wetting behavior on the interfacial reaction layer was studied. All the Al-Cu alloys react with TiC at the interface forming an extensive reaction layer. The interface thickness varied with the samples, and depends on the temperature, chemical composition of the alloy and the time of the test. Wetting increases with increasing concentration of copper in the Al-Cu alloy at 800 and 900 degrees C. In contrast, at higher temperature such as 1000 degrees C wetting decreases with increasing copper content. The spreading kinetics and the work of adhesion were evaluated. The high values of activation energies indicated that spreading is not a simple viscosity controlled phenomenon but is a chemical reaction process. The spreading of the aluminum drop is observed to occur according to the formation of Al4C3, CuAl2O4, CuAl2, TiCux mainly, leading to a decreases in the contact angle. As the contact angle decreases the work of adhesion increases with increasing temperature. Al-Cu/TiC assemblies showed cohesive fracture corresponding to a strong interface. However, using pure Cu the adhesion work is poor, and the percentage of cohesion work is also too low (27-34%).

  4. Intruder configurations in the A=33 isobars: 33Mg and 33Al.

    PubMed

    Tripathi, Vandana; Tabor, S L; Mantica, P F; Utsuno, Y; Bender, P; Cook, J; Hoffman, C R; Lee, Sangjin; Otsuka, T; Pereira, J; Perry, M; Pepper, K; Pinter, J S; Stoker, J; Volya, A; Weisshaar, D

    2008-10-03

    The beta decay of 33Mg (N=21) presented in this Letter reveals intruder configurations in both the parent and the daughter nucleus. The lowest excited states in the N=20 daughter nucleus, 33Al, are found to have nearly 2p-2h intruder configuration, thus extending the "island of inversion" beyond Mg. The allowed direct beta-decay branch to the 5/2{+} ground state of the daughter nucleus 33Al implies positive parity for the ground state of the parent 33Mg, contrary to an earlier suggestion of negative parity from a g-factor measurement. An admixture of 1p-1h and 3p-3h configurations is proposed for the ground state of 33Mg to explain all of the experimental observables.

  5. Intruder Configurations in the A=33 Isobars: {sup 33}Mg and {sup 33}Al

    SciTech Connect

    Tripathi, Vandana; Tabor, S. L.; Bender, P.; Hoffman, C. R.; Lee, Sangjin; Perry, M.; Pepper, K.; Volya, A.; Mantica, P. F.; Utsuno, Y.; Cook, J.; Pereira, J.; Weisshaar, D.; Otsuka, T.; Pinter, J. S.; Stoker, J.

    2008-10-03

    The {beta} decay of {sup 33}Mg (N=21) presented in this Letter reveals intruder configurations in both the parent and the daughter nucleus. The lowest excited states in the N=20 daughter nucleus, {sup 33}Al, are found to have nearly 2p-2h intruder configuration, thus extending the 'island of inversion' beyond Mg. The allowed direct {beta}-decay branch to the 5/2{sup +} ground state of the daughter nucleus {sup 33}Al implies positive parity for the ground state of the parent {sup 33}Mg, contrary to an earlier suggestion of negative parity from a g-factor measurement. An admixture of 1p-1h and 3p-3h configurations is proposed for the ground state of {sup 33}Mg to explain all of the experimental observables.

  6. Characteristics of Pt-K/MgAl2O4 lean NOx trap catalysts

    SciTech Connect

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos; Zhu, Haiyang; Kwak, Ja Hun; Peden, Charles HF

    2012-04-30

    We report the various characteristics of Pt-K/MgAl{sub 2}O{sub 4} lean NOx trap (LNT) catalysts including the effect of K loading on nitrate formation/decomposition, NOx storage activity and durability. Upon the adsorption of NO{sub 2} on K/MgAl{sub 2}O{sub 4} samples, potassium nitrates formed on Mg-related sites in MgAl{sub 2}O{sub 4} support are observed, in addition to the typical two potassium nitrates (ionic and bidentate) formed also on Al{sub 2}O{sub 3} supported sample. Based on NO{sub 2} TPD and FTIR results, the Mg-bound KNO{sub 3} thermally decompose at higher temperature than Al-bound KNO{sub 3}, implying its superior thermal stability. At a potassium loading of 5wt%, the temperature of maximum NOx uptake (T{sub max}) is 300 C. Increasing the potassium loading from 5wt% to 10 wt%, the T{sub max} gradually shifted from 300 C to 450 C, indicating the dependence of T{sub max} on the potassium loading. However, increase in potassium loading above 10 wt% only gives rise to the reduction in the overall NOx storage capacity. This work also underlines the obstacles these materials have prior to their practical application (e.g., durability and sulfur poisoning/ removal). This work provides fundamental understanding of Pt-K/MgAl{sub 2}O{sub 4}-based lean NOx trap catalysts, which could be good candidates for high temperature LNT applications.

  7. Length scale of the dendritic microstructure affecting tensile properties of Al-(Ag)-(Cu) alloys

    NASA Astrophysics Data System (ADS)

    Duarte, Roberto N.; Faria, Jonas D.; Brito, Crystopher; Veríssimo, Nathalia C.; Cheung, Noé; Garcia, Amauri

    2016-12-01

    The dependence of tensile properties on the length scale of the dendritic morphology of Al-Cu, Al-Ag and Al-Ag-Cu alloys is experimentally investigated. These alloys were directionally solidified (DS) under a wide range of cooling rates (Ṫ), permitting extensive microstructural scales to be examined. Experimental growth laws are proposed relating the primary dendritic arm spacing, λ1 to Ṫ and tensile properties to λ1. It is shown that the most significant effect of the scale of λ1 on the tensile properties is that of the ternary alloy, which is attributed to the more homogeneous distribution of the eutectic mixture for smaller λ1 and by the combined reinforcement roles of the intermetallics present in the ternary eutectic: Al2Cu and nonequilibrium Ag3Al.

  8. A Pyrolitic Lower Mantle with (Mg,Fe3+)(Si,Al3+)O3 Bridgmanite

    NASA Astrophysics Data System (ADS)

    Wang, X.; Tsuchiya, T.

    2014-12-01

    To better understand the Earth's lower mantle (LM), thermodynamic properties (TDPs) of LM minerals should be illustrated clearly. We have so far reported the TDPs of Fe (and Al)-bearing MgO, MgSiO3 bridgmanite (Br) and post bridgmanite [1-5] by using the internally consistent LSDA+U method and the lattice dynamics method. In this work, two spin states, the high (HS) and low spin (LS) state, and several possible distribution configurations are considered in the LM pressure range. For Fe incorporated in Br, only Fe3+ at the Si site undergoes a HS to LS transition. However, this is suppressed by Al incorporation, because Al3+ prefers the Si site and attracts HS Fe3+ at the adjacent Mg site forming Fe3+-Al3+ pair. Br with geophysically relevant 6.25 mol% Fe2+ or Fe3+-Al3+ pair is found vibrationally stable. Incorporation of these elements increases the Br volume a little but gives marginal effects on the TDPs. Simulated densities, adiabatic bulk moduli, and bulk sound velocities of possible LM mineral aggregations show that a composition close to pyrolite with (Mg,Fe3+)(Si,Al3+)O3 Br is accountable for the reference Earth model, while Fe2+-bearing Br instead gives unignorable disagreements in deeper part. Neither Si-richer nor Si-poorer composition improves the disagreements. This indicates that Fe in LM bridgmanite should predominantly be ferric acquiring the HS state, and pyrolitic composition with (Mg,Fe3+)(Si,Al3+)O3 Br is a reasonable LM model. References:[1] A. Metsue, and T. Tsuchiya, J. Geophys. Res. 116, B08207 (2011). [2] A. Metsue, and T. Tsuchiya, Geophys. J. Int. 190, 310 (2012). [3] H. Fukui, T. Tsuchiya, and A. Q. R. Baron, J. Geophys. Res. 117, B12202 (2012). [4] T. Tsuchiya, and X. Wang, J. Geophys. 118, 83 (2013). [5] X. Wang, and T. Tsuchiya, under reviewing.

  9. Synthesis and analysis of nanocrystalline β1-Cu3Al and β2-NiAl intermetallic-reinforced aluminum matrix composite by high energy ball milling

    NASA Astrophysics Data System (ADS)

    Nguyen, Hong-Hai; Nguyen, Minh-Thuyet; Kim, Won Joo; Kim, Jin-Chun

    2017-01-01

    Nanocrystalline β1-Cu3Al and β2-NiAl intermetallic compounds were in-situ reinforced in the aluminum matrix with the atomic composition of Al67Cu20Ni13 by the mechanical alloying of elemental powders. Both β1-Cu3Al, β2-NiAl phases that can be only co-synthesized in Cu base alloys have been obtained after 15h milling in this study. The phase evolution during milling process was investigated by X-ray diffraction. The β1-Cu3Al, β2-NiAl phases were metastable with further milling time up to 40 h. Specially, unreacted Al matrix has been totally transformed to amorphous state in the final powder. A remarkable crystalline size of 6.5 nm was reached after 15 h milling time. Thermal stability of the milled powder was also studied by differential thermal analysis. It is shown that β1-Cu3Al, β2-NiAl phases were stable up to higher than 550 °C. Moreover, the inter-diffusion between Al matrix and Cu3Al within the temperature range of 620-740 °C led to the formation of superstructure ζ1-Al3Cu4 phase.

  10. On the quasi-1D magnetic behavior of Ba 2MnCoAl 2F 14, Ba 2MnCuAl 2F 14 and related compounds

    NASA Astrophysics Data System (ADS)

    le Lirzin, A.; Darriet, J.; Georges, R.; Soubeyroux, J. L.

    1992-02-01

    Two new fluorides Ba 2MnCoAl 2F 14 and Ba 2MnCoAl 2F 14, isostructural with the natural compound usovite Ba 2CaMgAl 2F 14, have been synthesized. The nuclear structures of both compounds, refined from neutron diffraction data, give evidence for strongly disordered bimetallic chains MnCu or MnCo along the b-axis: two new theoretical treatments are suggested in order to account for the magnetic behavior of each compound but, due to their intrinsic limitations, they are in fact applied here to solid solutions between the parent compound and BaMnAlF 7, namely Ba 2Mn 1+ yCu 1- yAl2F14 and Ba 2Mn1+ yCo1- yAl 2F 14, leading to a rather good agreement with the measured values of the susceptibilities.

  11. Melting and thermodynamic properties of pyrope (Mg3Al2Si3O12)

    USGS Publications Warehouse

    Tequi, C.; Robie, R.A.; Hemingway, B.S.; Neuville, D.R.; Richet, P.

    1991-01-01

    The heat capacity of Mg3Al2Si3O12 glass has been measured from 10 to 1000 K by adiabatic and differential scanning calorimetry. The heat capacity of crystalline pyrope has been determined from drop-calorimetry measurements between 820 and 1300 K. From these and previously published results a consistent set of thermodynamic data is presented for pyrope and Mg3Al2Si3O12 glass and liquid for the interval 0-2000 K. The enthalpy of fusion at 1570 ?? 30 K, the metastable congruent 1-bar melting point, is 241 ?? 12 kJ/mol. ?? 1991.

  12. P- T- X controls on Ca and Na distribution between Mg-Al tourmaline and fluid

    NASA Astrophysics Data System (ADS)

    Berryman, Eleanor J.; Wunder, Bernd; Rhede, Dieter; Schettler, Georg; Franz, Gerhard; Heinrich, Wilhelm

    2016-04-01

    Ca-Na partitioning between tourmaline and a coexisting fluid is investigated in the system CaO-Na2O-B2O3-Al2O3-MgO-SiO2-H2O-Cl between 0.2-4.0 GPa and 500-700 °C. The synthesis experiments produced a mineral assemblage of tourmaline, coesite/quartz, and in some cases additional phases, typically comprising <1 wt% of the solid product. The synthesized tourmalines are solid solutions of dravite [NaMg3Al6Si6O18(BO3)3(OH)3(OH)], "oxy-uvite" (i.e. "Ca-Mg-O root name") [CaMg3Al6Si6O18(BO3)3(OH)3O], and magnesio-foitite [☐(Mg2Al)Al6Si6O18(BO3)3(OH)3(OH)]. Starting materials comprised a fluid of constant ionic strength (2.00 m) and an oxide mixture with a constant Mg/Al ratio. As a result, the number of vacancies at the X site and the Mg/Al ratio of tourmaline crystals synthesized at the same temperature vary only slightly. The major solid solution is Ca-Na exchange at the X site via the exchange vector X Ca W O[ X Na W (OH)]-1, with the exchange vector X (Ca☐)[ X Na2]-1 serving as a secondary Ca-incorporation mechanism. Tourmaline's X-site composition reflects the fluid composition, whereby the Ca (or Na) concentration in the fluid corresponds with the Ca (or Na) content in tourmaline at each pressure and temperature. At 0.2 GPa, 700 °C, Ca preferentially partitions into tourmaline, producing the most Ca-rich tourmaline crystals synthesized here. At pressures >1.0 GPa, Ca partitions preferentially into the fluid, resulting in Na-dominant tourmaline compositions. Temperature has a secondary effect on Ca-Na partitioning, with higher temperatures correlating with increased Ca incorporation in tourmaline. Based on the experimental findings, tourmaline is expected to have Ca-rich compositions when it forms in low pressure, high-temperature Ca-rich rocks, consistent with the current record of tourmaline occurrence. The bulk Mg/Al ratio and the pH of the tourmaline-forming system may also affect Ca incorporation in tourmaline, but remain to be investigated experimentally.

  13. Mass spectrometric study of the evaporation of MgAl2O4 spinel

    NASA Astrophysics Data System (ADS)

    Shornikov, S. I.

    2017-01-01

    The evaporation of MgAl2O4 spinel is studied via high-temperature Knudsen effusion mass spectrometry in the temperature range of 1850-2250 K. In the gas phase, molecular components typical of the simple oxides in the spinel and traces of gaseous complex oxide MgAlO are identified above the samples. The resulting values of the partial vapor pressures of the molecular components contained in the gas phase over the spinel are compared with those corresponding to simple oxides for the first time.

  14. The Portevin-Le Chatelier effect in an Al-Mg alloy

    NASA Astrophysics Data System (ADS)

    Mogucheva, Anna; Saenko, Mikhail; Kaibyshev, Rustam

    2016-11-01

    The Portevin-Le Chatelier (PLC) effect has been studied in an Al-Mg alloy. A series off tensile tests was carried out at temperatures ranging from -100 to 150°C at plastic strain rates ranging from a low 10-1 s-1 to a high of 10-5 s-1. The coarse-grained material displays tensile curves typical of Al-Mg alloys with an extensive initial strain hardening and an overall parabolic shape until necking. Mixed type (A + B) serrations take place during the strain hardening stage.

  15. Incorporation of transition metals into Mg-Al layered double hydroxides: Coprecipitation of cations vs. their pre-complexation with an anionic chelator

    SciTech Connect

    Tsyganok, Andrey; Sayari, Abdelhamid . E-mail: Abdel.Sayari@science.uottawa.ca

    2006-06-15

    A comparative study on two different methods for preparing Mg-Al layered double hydroxides (LDH) containing various divalent transition metals M (M=Co, Ni, Cu) has been carried out. The first (conventional) method involved coprecipitation of divalent metals M(II) with Mg(II) and Al(III) cations using carbonate under basic conditions. The second approach was based on the ability of transition metals to form stable anionic chelates with edta{sup 4-} (edta{sup 4-}=ethylenediaminetetraacetate) that were synthesized and further introduced into LDH by coprecipitation with Mg and Al. The synthesized LDHs were characterized by X-ray diffraction (XRD) and X-ray fluorescence (XRF) methods, thermogravimetry with mass-selective detection of decomposition products (TG-MSD), Fourier transform infrared (FTIR) and Raman spectroscopy techniques. The results obtained were discussed in terms of efficiency of transition metal incorporation into the LDH structure, thermal stability of materials and the ability of metal chelates to intercalate the interlayer space of Mg-Al LDH. Vibrational spectroscopy studies confirmed that the integrity of the metal chelates was preserved upon incorporation into the LDH. - Graphical abstract: Two ways for introducing transition metals M(II) into Mg-Al layered double hydroxides (MY{sup 2-} denotes the edta chelate of transition metal M(II)).0.

  16. Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg

    SciTech Connect

    Nandipati, Giridhar; Govind, Niranjan; Andersen, Amity; Rohatgi, Aashish

    2016-03-16

    Atomistic on-lattice self-learning kinetic Monte Carlo (SLKMC) method was used to examine the vacancy-mediated diffusion of an Al atom in pure hcp Mg. Local atomic environment dependent activation barriers for vacancy-atom exchange processes were calculated on-the-fly using climbing image nudged-elastic band method (CI-NEB) and using a Mg-Al binary modified embedded-atom method (MEAM) interatomic potential. Diffusivities of vacancy and Al atom in pure Mg were obtained from SLKMC simulations and are compared with values available in the literature that are obtained from experiments and first-principle calculations. Al Diffusivities obtained from SLKMC simulations are lower, due to larger activation barriers and lower diffusivity prefactors, than those available in the literature but have same order of magnitude. We present all vacancy-Mg and vacancy-Al atom exchange processes and their activation barriers that were identified in SLKMC simulations. We will describe a simple mapping scheme to map a hcp lattice on to a simple cubic lattice that would enable hcp lattices to be simulated in an on-lattice KMC framework. We also present the pattern recognition scheme used in SLKMC simulations.

  17. The β Decay of 35Mg and the Structure of 35Al

    NASA Astrophysics Data System (ADS)

    Carls, A. B.; Rajabali, M. M.; Ash, J. E.; Griffin Collaboration

    2016-09-01

    Far from the line of beta-stability, the well described shell structure of nuclei falls apart. Near the N = 20 shell closure lies the ``island of inversion'', an area in which the nuclei exhibit ground states deformed with an intruder configuration. The 35Al nucleus is near this region and whether it belongs to the island is a focus of this study. The experiment to study the β decay of 35Mg was performed at TRIUMF Laboratory. Studying the resulting data provides the information to obtain half-life measurements for 35Mg and 35Al, new level information for 35Al, and provides branching ratios for the feeding of the Si decay chain from Mg. Analyzing the data from the isotope implantation and decay cycles yielded spectra featuring the exponential decay of the nuclei. Fitting this curve will provide the desired half-lives for 35Mg and 35Al. The level scheme for 35Al will be pieced together through a methodical study of the γ - γ coincidences with in a β - γ time difference gate. A detailed description of the methods for eliminating erroneous and unnecessary data will be presented along with the results. This work is funded in part by the Office of Provost and Research Office of Tennessee Tech University.

  18. Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy)acetic acid (MCPA): systems Mg-Al, Mg-Fe and Mg-Al-Fe.

    PubMed

    Bruna, F; Celis, R; Pavlovic, I; Barriga, C; Cornejo, J; Ulibarri, M A

    2009-09-15

    Hydrotalcite-like compounds [Mg(3)Al(OH)(8)]Cl x 4H(2)O; [Mg(3)Fe(OH)(8)]Cl x 4H(2)O; [Mg(3)Al(0.5)Fe(0.5)(OH)(8)]Cl x 4H(2)O (LDHs) and calcined product of [Mg(3)Al(OH)(8)]Cl x 4H(2)O, Mg(3)AlO(4.5) (HT500), were studied as potential adsorbents of the herbicide MCPA [(4-chloro-2-methylphenoxy)acetic acid] as a function of pH, contact time and pesticide concentration, and also as support for the slow release of this pesticide, with the aim to reduce the hazardous effects that it can pose to the environment. The information obtained in the adsorption study was used for the preparation of LDH-MCPA complexes. The results showed high and rapid adsorption of MCPA on the adsorbents as well as that MCPA formulations based on LDHs and HT500 as pesticide supports displayed controlled release properties and reduced herbicide leaching in soil columns compared to a standard commercial MCPA formulation. Thereby, we conclude that the LDHs employed in this study can be used not only as adsorbents to remove MCPA from aqueous solutions, but also as supports for the slow release of this highly mobile herbicide, thus controlling its immediate availability and leaching.

  19. The β decay of 34,35Mg and the structure of 34Al

    NASA Astrophysics Data System (ADS)

    Rajabali, Mustafa; Griffin Collaboration On Experiment S1367 Team

    2016-09-01

    Nuclei in the island of inversion, near the N = 20 shell closure, exhibit a fascinating behavior where the nuclear ground states show deformed configurations dominated by particle-hole excitations across the neutron shell gap. The 31-35Mg nuclei are in or at the border of this island displaying intruder ground-state configurations, while the 31-35Al isotopes are suggested to have mixed ground-state configurations of normal and intruder type and thus serve as a transition from intruder dominated Mg isotopes to the normal ground-state configuration in Si isotopes. An experiment was performed at the TRIUMF-ISAC-I facility with the goal of populating states in 33-35Al via the beta decay of 33-35Mg. Mg ions were produced, transported and implanted onto a moving Mylar tape at the center of the GRIFFIN spectrometer. Results obtained from the analysis of the 34,35Mg decay data from this experiment will be presented. This includes the half-lives of 34,35Mg and 34,35Al which clarify current conflicting information in the literature. This work is supported by Tennessee Technological University Research Office, the Canadian Founda- tion for Innovation, the National Research Council of Canada and the Natural Sciences and Engineering Research Council of Canada.

  20. Effect of hydrogen on Al2O3/Cu interfacial structure and adhesion

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Smith, John R.; Scheffler, Matthias

    2002-08-01

    We have carried out an ab initio investigation of the effect of hydrogen on the Al2O3/Cu interface. H on the Al2O3 surface can play a bridging role in the formation of the interface. The interfacial OH bond is stable in the presence of two atomic layers of Cu. In contrast, an Al monolayer would dissociate the surface OH bond. For thicker Cu, one-third of a monolayer of H remains stable in the interface, lowering the work of separation by 2.3 J/m2. The interfacial work of separation remains larger than that of bulk Cu, however. These results are consistent with available experimental data.

  1. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  2. A new paradigm in personal dosimetry using LiF:Mg,Cu,P.

    PubMed

    Cassata, J R; Moscovitch, M; Rotunda, J E; Velbeck, K J

    2002-01-01

    The United States Navy has been monitoring personnel for occupational exposure to ionising radiation since 1947. Film was exclusively used until 1973 when thermoluminescence dosemeters were introduced and used to the present time. In 1994, a joint research project between the Naval Dosimetry Center, Georgetown University, and Saint Gobain Crystals and Detectors (formerly Bicron RMP formerly Harshaw TLD) began to develop a state of the art thermoluminescent dosimetry system. The study was conducted from a large-scale dosimetry processor point of view with emphasis on a systems approach. Significant improvements were achieved by replacing the LiF:Mg,Ti with LiF:Mg,Cu,P TL elements due to the significant sensitivity increase, linearity, and negligible hiding. Dosemeter filters were optimised for gamma and X ray energy discrimination using Monte Carlo modelling (MCNP) resulting in significant improvement in accuracy and precision. Further improvements were achieved through the use of neural-network based dose calculation algorithms. Both back propagation and functional link methods were implemented and the data compared with essentially the same results. Several operational aspects of the system are discussed, including (1) background subtraction using control dosemeters, (2) selection criteria for control dosemeters, (3) optimisation of the TLD readers, (4) calibration methodology, and (5) the optimisation of the heating profile.

  3. Preparation and Characterization of Mg Substituted NiCuZn Nano Ferrites for Multilayer Chip Inductors

    NASA Astrophysics Data System (ADS)

    Ch, Sujatha; Reddy K, Venugopal; Babu K, Sowri; Reddy A, R. C.; K, H. Rao

    2012-02-01

    The present paper examines the effect of magnesium substitution on structural and magnetic properties of NiCuZn nano ferrites synthesized by sol - gel method. Formation of single phase spinel structure was confirmed both from XRD and FTIR. The initial permeability shows decreasing trend with increasing Mg concentration due to reduced magnetization, grain size and increased magneto - crystalline anisotropy constant. At the same time, the cut off frequency increases with increasing Mg content. This is attributed to domain wall pinning arising due to the presence of non magnetic magnesium ions. Also the permeability is observed to be constant up to 10MHz frequency range showing compositional stability and quality of the material. The magnetic loss factor shows very low values at higher frequencies. It is concluded that even though both zinc and magnesium are non magnetic ions, substitution of one cation by another prone to influence the magnetic properties due to their change in dimension and cation distribution among the two available sites of a spinel system. These samples have advantages of low sintering temperature find applications in multilayer chip inductors due to their high and constant permeability even at higher frequencies.

  4. Structure, grain connectivity and pinning of as-deformed commercial MgB2 powder in Cu and Fe/Cu sheaths

    NASA Astrophysics Data System (ADS)

    Kovác, P.; Husek, I.; Pachla, W.; Melisek, T.; Diduszko, R.; Fröhlich, K.; Morawski, A.; Presz, A.; Machajdik, D.

    2002-07-01

    Single-core MgB2 wires and tapes have been made by the powder-in-tube (PIT) method using commercial MgB2 powder (Alfa Aesar). Composites have been made using the two-axial rolling process in Cu and/or Fe/Cu sheaths. Alternative deformations by wire drawing, rotary swaging and cold isostatic pressing have been applied to PIT wires and tapes. Current-voltage characteristics and transport current densities in the self-field and in the external field were measured. It was found that the grain connectivity of ex situ MgB2 is affected by the applied sheath and the mode of deformation. Two-axial rolling has generated the highest powder density resulting in the best grain connectivity. The highest transport current densities of 8700 A cm-2 and 55 830 A cm-2 were measured for Cu and Fe/Cu sheathed square wires, respectively. Cold isostatic pressing at 1.5 GPa has increased current density and n-exponent, which suggests an improvement in grain connectivity. It was found that the external pressure improves the inter-grain connectivity but decreases the pinning in MgB2 cores.

  5. Microstructure evolution and strain localization in Cu and Cu-8Al single crystals subjected to channel-die compression.

    PubMed

    Lewandowska, Małgorzata; Swiatnicki, Wiesław; Piatkowski, Andrzej; Jasienski, Zdzisław

    2006-09-01

    Single crystals of pure Cu and Cu-8%Al with two initial orientations, {112}111 and {112}110, were subjected to monotonic compression in channel-die at room temperature (293 K). The dislocation microstructure and local crystallography were investigated by transmission electron microscopy after different amounts of deformation. Various factors, such as initial single crystal orientation, chemical composition and amount of plastic deformation, were analysed in order to determine their influence on the microstructure evolution, local orientation variations and strain localization phenomena.

  6. Thermal evolution of Mg-Al and Ni-Al layered double hydroxides: the structure of the dehydrated phase.

    PubMed

    Cherepanova, Svetlana; Leont'eva, Natalya; Drozdov, Vladimir; Doronin, Vladimir

    2016-11-01

    Simulation of X-ray diffraction patterns on the basis of the models of one-dimensional disordered crystals was used to investigate the structure of the dehydrated phase produced by dehydration of Mg-Al and Ni-Al layered double hydroxides at a temperature of ∼473-498 K. It was found that the removal of water molecules transforms the initial structure, which is a mixture of 3R1 and 2H1 polytypes, into a structure that comprises preferentially fragments of 3R2 and 1H polytypes and has some turbostratic disorder.

  7. X-ray Diffraction Analysis on Post Treatment of Ca-Mg-Al-Layered Double Hydroxide Slurry

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Nugrahaningtyas, K. D.; Heriyanto

    2017-02-01

    This research objectives to study post treatment on Ca-Mg-Al-Layered Double Hydroxide (Ca-Mg-Al-LDH) slurry which was prepared from brine water by cooling treatment. The cooling rate was varied from 1 to 3 °C/min by using stirring and without stirring, and the cooling time was done at 0, 30 minutes and 24 hours. The quantitative X-ray diffraction (QXRD) was employed on Ca-Mg-Al-LDH using Le Bail refinement method. The refinement results found another Mg-Al-LDH and Ca-Al-LDH phases, such as Mg(OH)2, Al(OH)3 and CaCO3. The highest phase composition on material Ca-Mg-Al-LDH using Le Bail refinement was showed by Al(OH)3.

  8. Electronic structure of Rh-based CuRh0.9Mg0.1O2 oxide thermoelectrics

    NASA Astrophysics Data System (ADS)

    Vilmercati, P.; Martin, E.; Cheney, C. Parks; Bondino, F.; Magnano, E.; Parmigiani, F.; Sasagawa, T.; Mannella, N.

    2013-03-01

    The electronic structure of the Rh-based CuRh0.9Mg0.1O2 oxide thermoelectric compound has been studied with a multitechnique approach consisting of photoemission, x-ray absorption, and x-ray emission spectroscopies. The data indicate that the region of the valence band in the proximity of the Fermi level is dominated by Rh-derived states. These findings outline the importance of the electronic structure of the Rh ions for the large thermoelectric power in CuRh0.9Mg0.1O2 at high temperature.

  9. In situ transmission electron microscopy observations of precipitation and a new orientation relationship between γ-Mg17Al12 and magnesium-based matrix in an Mg-Al-Zn-Sn alloy

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Zhao, Dongshan; Nie, Xin; Tao, Hongyu; Wang, Jianbo; Gui, Jianian

    2012-12-01

    An in situ observation of the precipitation of γ-Mg17Al12 phase in a die-cast Mg-Al-Zn-Sn alloy was performed using a transmission electron microscope equipped with a heating stage maintained at 403 K for 100 min. The addition of a small amount of Sn to the AZ91 system accelerates the development of the γ-Mg17Al12 phase formed during continuous precipitation. A new orientation relationship between the γ-Mg17Al12 precipitate and α-Mg matrix was identified as ? .

  10. Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides

    SciTech Connect

    Shimamura, Akihiro; Kanezaki, Eiji; Jones, Mark I.; Metson, James B.

    2012-02-15

    The grafting of interlayer phosphate in synthetic Mg/Al layered double hydroxides with interlayer hydrogen phosphate (LDH-HPO{sub 4}) has been studied by XRD, TG/DTA, FT-IR, XPS and XANES. The basal spacing of crystalline LDH-HPO{sub 4} decreases in two stages with increasing temperature, from 1.06 nm to 0.82 nm at 333 K in the first transition, and to 0.722 nm at 453 K in the second. The first stage occurs due to the loss of interlayer water and rearrangement of the interlayer HPO{sub 4}{sup 2-}. In the second transition, the interlayer phosphate is grafted to the layer by the formation of direct bonding to metal cations in the layer, accompanied by a change in polytype of the crystalline structure. The grafted phosphate becomes immobilized and cannot be removed by anion-exchange with 1-octanesulfonate. The LDH is amorphous at 743 K but decomposes to Mg{sub 3}(PO{sub 4}){sub 2}, AlPO{sub 4}, MgO and MgAl{sub 2}O{sub 4} after heated to 1273 K. - Graphical abstract: The cross section of the synthetic Mg, Al layered double hydroxides in Phase 1, with interlayer hydrogen phosphate Phase 2, and with grafted phosphate, Phase 3. Highlights: Black-Right-Pointing-Pointer The grafting of hydrogen phosphate intercalated Mg/Al-LDH has been studied. Black-Right-Pointing-Pointer The basal spacing of crystalline LDH-HPO{sub 4} decreases in two stages with increasing temperature. Black-Right-Pointing-Pointer The first decrease is due to loss of interlayer water, the second is attributed to phosphate grafting. Black-Right-Pointing-Pointer The grafted interlayer phosphate becomes immobilized and cannot be removed by anion-exchange.

  11. Phosphate adsorption ability of biochar/Mg-Al assembled nanocomposites prepared by aluminum-electrode based electro-assisted modification method with MgCl₂ as electrolyte.

    PubMed

    Jung, Kyung-Won; Jeong, Tae-Un; Hwang, Min-Jin; Kim, Kipal; Ahn, Kyu-Hong

    2015-12-01

    In this work, the textural properties and phosphate adsorption capability of modified-biochar containing Mg-Al assembled nanocomposites prepared by an effective electro-assisted modification method with MgCl2 as an electrolyte have been determined. Structure and chemical analyses of the modified-biochar showed that nano-sized stonelike or flowerlike Mg-Al assembled composites, MgO, spinel MgAl2O4, AlOOH, and Al2O3, were densely grown and uniformly dispersed on the biochar surface. The adsorption isotherm and kinetics data suggested that the biochar/Mg-Al assembled nanocomposites have an energetically heterogeneous surface and that phosphate adsorption could be controlled by multiple processes. The maximum phosphate adsorption capacity was as high as 887 mg g(-1), as fitted by the Langmuir-Freundlich model, and is the highest value ever reported. It was concluded that this novel electro-assisted modification is a very attractive method and the biochar/Mg-Al assembled nanocomposites provide an excellent adsorbent that can effectively remove phosphate from aqueous solutions.

  12. Ab Initio Molecular Dynamics Simulation of the Amorphous Structure of Ca-Mg-Cu and Ca-Mg-Zn Alloys (Preprint)

    DTIC Science & Technology

    2012-08-01

    believed to depend on the type of short range order (SRO) and medium range order ( MRO ) of alloying elements in the amorphous structure. It is...which allowed calculation of local structural features (SRO and MRO ) such as total and partial CN, type and distribution of characteristic...indicate the presence of MRO in these alloys [32,33], as well as the fluctuation in the atomic scattering cross-sections: The solutes, Cu, Zn and Mg

  13. Subnanometer three-dimensional atom-probe investigation of segregation at MgO/Cu ceramic/metal heterophase interfaces.

    PubMed

    Sebastian, J T; Rüsing, J; Hellman, O C; Seidman, D N; Vriesendorp, W; Kooi, B J; De Hosson JTh

    2001-10-01

    Three-dimensional atom-probe (3DAP) microscopy has been applied to the study of segregation at ceramic/metal (C/M) interfaces. In this article, results on the MgO/Cu(X) (where X = Ag or Sb) systems are summarized. Nanometer-size MgO precipitates with atomically clean and atomically sharp interfaces were prepared in these systems by internal oxidation. Segregation of the ternary component (Ag or Sb) at the MgO/Cu heterophase interface was enhanced by extended low-temperature anneals. Magnesia precipitates in the 3DAP reconstructions were delineated as isoconcentration surfaces, and segregation of each ternary component at the C/M interfaces was analyzed with the proximity histogram method developed at Northwestern University. This method allows the direct extraction of the Gibbsian interfacial excess of solute at the C/M interfaces from the experimental data. A value of (3.2+/-2.0) x 10(17)m(-2) at 500 degrees C is obtained for the segregation of Ag at a MgO/Cu(Ag) interface, while a value of (2.9+/-0.9) x 10(18) m(-2) at 500 degrees C is obtained for the segregation of Sb at a MgO/Cu(Sb) interface. The larger Gibbsian excess for Sb segregation at this ceramic/metal heterophase interface is most likely due to the so-called pdeltaV effect.

  14. Atomic simulation of mechanical behavior of Mg in a super-lattice of nanocrystalline Mg and amorphous Mg-Al alloy

    SciTech Connect

    Song, H. Y.; An, M. R.; Li, Y. L. Deng, Q.

    2014-12-07

    The mechanical properties of a super-lattice architecture composed of nanocrystalline Mg and Mg-Al amorphous alloy are investigated using molecular dynamics simulation. The results indicate that deformation mechanism of nanocrystalline Mg is obviously affected by the amorphous boundary spacing and temperature. The strength of the material increases with the decrease of amorphous boundary spacing, presenting a Hall-Petch effect at both 10 K and 300 K. A stress platform and following stiffness softening, as well as a linear strengthening in the plastic stage, are observed when the amorphous boundary spacing below 8.792 nm at 10 K. The implying reason may be that the amorphous boundary acts as the dislocations emission and absorption source. However, the second stress peak is not observed for the models at 300 K. Instead, the flow stress in plastic stage is a nearly constant value. The simulation demonstrates the emergence of the new grain, accompanied by the deformation twins and stacking faults associated with the plastic behaviors at 300 K. The general conclusions derived from this work may provide a guideline for the design of high-performance hexagonal close-packed metals.

  15. A new type of Cu-Al-Ta shape memory alloy with high martensitic transformation temperature

    NASA Astrophysics Data System (ADS)

    Wang, C. P.; Su, Y.; Y Yang, S.; Shi, Z.; Liu, X. J.

    2014-02-01

    In this study, a new type of Cu-Al-Ta (Cu86Al12Ta2 wt%) shape memory alloy with high martensitic transformation temperature is explored. The microstructure, reversible martensitic transformation and shape memory properties are investigated by means of optical microscopy, back-scattered electron, electron probe microanalysis, x-ray diffraction, differential scanning calorimetry and tensile tests. It is proposed that Cu86Al12Ta2 alloy consists of a mixture of primarily {\\beta }_{1}^{\\prime} martensite and a little {\\gamma }_{1}^{\\prime} martensite and some different precipitates. The tiny thin-striped Ta2(Al,Cu)3 precipitate is predominant in the as-quenched condition, whereas the particle-shaped Cu(Al, Ta) precipitate is dominant after hot-rolling. Additionally, the dendritic-shaped γ1(Cu9Al4) phase begins to appear after hot-rolling, but it disappears when the sample is re-quenched. All studied samples have reversible martensitic transformation temperatures higher than 450 ° C. The results show that two-step martensitic transformation behavior is observed for Cu86Al12Ta2 alloy in all three different conditions due to the transformations between ({\\beta }_{1}^{\\prime}+{\\gamma }_{1}^{\\prime}) martensites and the austenite parent phase. The results further show that the recovery ratios are almost 100% when the pre-strains are ≤2.5%, then they gradually decrease with further increase of the pre-strains. The shape memory effects clearly increase as a result of increase of the pre-strains, up to a maximum value of 3.2%.

  16. Electrodeposition of Mg-Li-Al-La Alloys on Inert Cathode in Molten LiCl-KCl Eutectic Salt

    NASA Astrophysics Data System (ADS)

    Han, Wei; Chen, Qiong; Sun, Yi; Jiang, Tao; Zhang, Milin

    2011-12-01

    Electrochemical preparation of Mg-Li-Al-La alloys on inert electrodes was investigated in LiCl-KCl melt at 853 K (580 °C). Cyclic voltammograms (CVs) and square wave voltammograms (SWVs) show that the existence of AlCl3 or AlF3 could promote La deposition on an active Al substrate, which is predeposited on inert electrodes. All electrochemical tests show that the reduction of La3+ is a one-step reduction process with three electrons exchanged. The reduction of La(III)→La(0) occurred at -2.04 V, and the underpotential deposition (UPD) of La was detected at -1.55 V ( vs Ag/AgCl). The same phenomena concerning La UPD were observed on two inert cathodes, W and Mo. In addition, Mg-Li-Al-La alloys were obtained by galvanostatic electrolysis on the W cathode from La2O3 in LiCl-KCl-MgCl2-KF melts with aluminum as the anode. X-ray diffraction (XRD) measurements indicated that various phases like the Al2La, Al12Mg17, and βLi phase (LiMg/Li3Mg7) existed in the Mg-Li-Al-La alloys. The distribution of Mg, Al, and La in Mg-Li-Al-La alloys from the analysis of a scan electron micrograph (SEM) and energy dispersive spectrometry (EDS) indicated that the elements Mg, Al, and La distributed homogeneously in the alloys.

  17. Structure of aging Al-Li-Cu-Zr-Sc-Ag alloy after severe plastic deformation and long-term storage

    NASA Astrophysics Data System (ADS)

    Kaigorodova, L. I.; Rasposienko, D. Yu.; Pushin, V. G.; Pilyugin, V. P.; Smirnov, S. V.

    2015-11-01

    Structural and phase transformations in commercial aging aluminum-lithium Al-1.2 Li-3.2 Cu-0.09 Zr-0.11 Sc-0.4 Ag-0.3 Mg alloy have been studied after severe plastic deformation by high-pressure torsion (at a pressure of 4 GPa with 1, 5, and 10 revolutions of the anvil) and natural aging (roomtemperature storage) for 1 week and 2 years. It has been found that, in this case, the process of static recrystallization is achieved in the alloy, the degree of which increases with an increasing degree of deformation and time of storage.

  18. Microstructural Observations in a Cast Al-Si-Cu/TiC Composite

    NASA Astrophysics Data System (ADS)

    Karantzalis, A. E.; Lekatou, A.; Georgatis, E.; Poulas, V.; Mavros, H.

    2010-06-01

    A 3-5 vol.% TiC particulate Al-Si-Cu composite was prepared by diluting Al/20 vol.% TiC composite in an Al-7Si-4Cu alloy matrix. TiC particle distribution consists of isolated and clustered particles which are both located at the primary-α grain boundaries and at the areas of the last solidified liquid. Particle pushing by the solidification front is responsible for the final particle location. The solidified microstructure consists of primary and intermetallic phases formed by a sequence of possible eutectic reactions. No evidence of TiC particle degradation was observed.

  19. A Study of Phase Composition and Structure of Alloys of the Al - Mg - Si - Fe System

    NASA Astrophysics Data System (ADS)

    Mailybaeva, A. D.; Zolotorevskii, V. S.; Smagulov, D. U.; Islamkulov, K. M.

    2017-03-01

    The Thermo-Calc software is used to compute the phase transformations occurring during cooling of alloys. Polythermal and isothermal sections of the phase diagram of the Al - Mg - Si - Fe system are plotted. The phase composition and the structure of aluminum alloys in cast condition and after a heat treatment are studied experimentally.

  20. Effect of Rolling on High-Cycle Fatigue and Fracture of an Al - Mg - Sc Alloy

    NASA Astrophysics Data System (ADS)

    Zhemchuzhnikova, D. A.; Petrov, A. P.; Eremeev, N. V.; Eremeev, V. V.; Kaibyshev, R. O.

    2016-07-01

    The tensile strength and fatigue properties of alloy 1575 of the Al - Mg - Sc system are studied after hot deformation (at 360°C) and subsequent cold rolling with different reduction ratios. The effect of the deformed structure on the properties and mechanisms of fracture of the alloy under cyclic tests is determined.

  1. Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.

    2015-01-01

    The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.

  2. Defects in Mg doped (Al,In)GaN thin films and nanostructures

    NASA Astrophysics Data System (ADS)

    Shahedipour-Sandvik, Fatemeh

    2009-03-01

    Development of p-type (Al,In)GaN revolutionized the field of solid state lighting in the way that it was hard to imagine, development and introduction to market of light emitters in short period of time and tremendous amount of progress in other areas that was enabled by such development. Although many studies have been done to understand the defects related to Mg incorporation in epitaxially grown AlInGaN films, there are still many open questions. These include the relationship between the defects (type and density) and Mg incorporated and the electrical property of the film. An interesting open question is how optical characteristics of Mg doped (Al, In) GaN can predict its electrical property. In this presentation, we try to address this question. Recent advances in development of nanostructures based on III-nitrides include growth of high quality GaN nanowires. Although large body of work exists in growth and characterization of Si doped GaN nanowires the report work on Mg doped GaN is scarce. In the present work, we will discuss our recent progress in studying optical and electrical characteristics of Mg doped GaN nanowires and defect stabilization in nanostructure and thin films.[4pt] In collaboration with M. Reshchikov, Department of Physics, Virginia Commonwealth University, Richmond, VA 23284; N. Tripathi, B. J. Messer, and M. Tungare, College of Nanoscale Science and Engineering, UAlbany-State University of New York, Albany, NY 12203

  3. Dynamic Wetting of CaO-Al2O3-SiO2-MgO Liquid Oxide on MgAl2O4 Spinel

    NASA Astrophysics Data System (ADS)

    Abdeyazdan, Hamed; Dogan, Neslihan; Rhamdhani, M. Akbar; Chapman, Michael W.; Monaghan, Brian J.

    2015-02-01

    Inclusion type and content in steel is critical in steelmaking, affecting both productivity through clogging, and downstream physical properties of the steel. They are normally removed from steel by reacting with a slag (liquid oxide) phase. For efficient inclusion removal, the inclusions must attach/bond with this liquid phase. The strength of the attachment can be in part characterized by the wettability of the liquid oxide on the inclusions. In this study, the dynamic wetting of liquid oxides of the CaO-Al2O3-SiO2-MgO system on a solid spinel (MgAl2O4) substrate with low porosity of 1.9 pct was measured at 1773 K (1500 °C) using a modified sessile drop technique. The dynamic contact angle between the liquid and solid spinel was determined for different CaO/Al2O3 mass percent ratios ranging from 0.98 to 1.55. Characteristic curves of wettability ( θ) vs time showed a rapid decrease in wetting in the first 10 seconds tending to a plateau value at extended times. A mathematical model for spreading behavior of liquid oxides by Choi and Lee was adopted and shown to provide a reasonable representation of the spreading behavior with time. The chemical interaction at the interface between spinel (MgAl2O4) and slag was analyzed by carrying out detailed thermodynamic evaluation and characterization using scanning electron microscopy/energy dispersive spectroscopy. There is evidence of liquid penetrating the substrate via pores and along grain boundaries, forming a penetration layer in the substrate. The depth of the penetration layer was found to be a function of substrate porosity and sample cooling rate. It decreased from ~350 µm for 6.7 pct-porous substrate to ~190 µm for substrate with porosity of 1.9 pct and from ~190 µm to ~50 µm for a slow-cooled liquid oxide-spinel substrate sample in the furnace to a rapidly cooled liquid cooled-spinel substrate sample, respectively.

  4. Interfacial Characterization of Dissimilar Joints Between Al/Mg/Al-Trilayered Clad Sheet to High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Macwan, A.; Jiang, X. Q.; Chen, D. L.

    2015-07-01

    Magnesium (Mg) alloys are increasingly used in the automotive and aerospace sectors to reduce vehicle weight. Al/Mg/Al tri-layered clad sheets are deemed as a promising alternative to improve the corrosion resistance and formability of Mg alloys. The structural application of Al/Mg/Al tri-layered clad sheets inevitably involves welding and joining in the multi-material vehicle body manufacturing. This study aimed to characterize the bonding interface microstructure of the Al/Mg/Al-clad sheet to high-strength low-alloy steel with and without Zn coating using ultrasonic spot welding at different levels of welding energy. It was observed that the presence of Zn coating improved the bonding at the interface due to the formation of Al-Zn eutectic structure via enhanced diffusion. At a higher level of welding energy, characteristic flow patterns of Zn into Al-clad layer were observed with an extensive penetration mainly along some high angle grain boundaries. The dissimilar joints without Zn coating made at a high welding energy of 800 J failed partially from the Al/Fe weld interface and partially from the Al/Mg clad interface, while the joints with Zn coating failed from the Al/Mg clad interface due to the presence of brittle Al12Mg17 phase.

  5. AlCu alloy films prepared by the thermal diffusion technique

    SciTech Connect

    Oliva, A.I.; Corona, J.E.; Sosa, V.

    2010-07-15

    100-nm thick films of Al{sub 1-x}Cu{sub x} alloys were prepared on glass substrates by thermal diffusion technique. The Cu atomic concentration was varied from 10% to 90%. Alloys were prepared at different temperatures into a vacuum oven with Argon atmosphere. Two thermal processes were used: i) heating the film at 400 deg. C in a single step, and ii) heating the films in sequential steps at 100, 200, 300 and 400 deg. C. Morphology, electrical resistivity, and crystalline orientation of the alloys were studied. The electrical resistivity and surface roughness of the alloys were found to depend strongly on the atomic composition and the diffusion temperature. However, we did not find differences between samples prepared under the two thermal processes. Alloys prepared with x = 0.6 and x = 0.1-0.3 as Cu at concentration exhibited values on electrical resistivity and surface roughness lower than pure Al. Different phases of the Al{sub 1} {sub -} {sub x}Cu{sub x} films were observed as a function of Cu concentration showing a good agreement with the AlCu phase diagram.

  6. Effect of Ag Addition on the Electrochemical Performance of Cu10Al in Artificial Saliva

    PubMed Central

    Salgado-Salgado, R. J.; Sotelo-Mazon, O.; Rodriguez-Diaz, R. A.; Salinas-Solano, G.

    2016-01-01

    In this work we proposed to evaluate the corrosion resistance of four different alloys by electrochemical techniques, a binary alloy Cu10Al, and three ternary alloys Cu10Al-xAg (x = 5, 10, and 15 wt.%) to be used like biomaterials in dental application. Biomaterials proposed were tested in artificial saliva at 37°C for 48 h. In addition, pure metals Cu, Al, Ag, and Ti as reference materials were evaluated. In general the short time tests indicated that the Ag addition increases the corrosion resistance and reduces the extent of localized attack of the binary alloy. Moreover, tests for 48 hours showed that the Ag addition increases the stability of the passive layer, thereby reducing the corrosion rate of the binary alloy. SEM analysis showed that Cu10Al alloy was preferably corroded by grain boundaries, and the Ag addition modified the form of attack of the binary alloy. Cu-rich phases reacted with SCN− anions forming a film of CuSCN, and the Ag-rich phase is prone to react with SCN− anions forming AgSCN. Thus, binary and ternary alloys are susceptible to tarnish in the presence of thiocyanate ions. PMID:27660601

  7. X-ray emission study of ion beam mixed Cu/Al films on polyimide

    SciTech Connect

    Kurmaev, E.Z.; Zatsepin, D.A.; Winarski, R.P.; Stadler, S.; Ederer, D.L.; Moewes, A.; Fedorenko, V.V.; Shamin, S.N.; Galakhov, V.R.; Chang, G.S.; Whang, C.N.

    1999-03-01

    Cu (40 nm)/Al/polyimide/Si was mixed with 80 keV Ar{sup +} and N{sub 2}{sup +} from 5.0{times}10{sup 15} to 15{times}10{sup 15} ions/cm{sup 2}. Ultrasoft x-ray emission valence spectra (XES) of Cu, C, N and O excited by electron and photon radiation were used for study of chemical reactions in Cu/Al/PI/Si and PI/Si systems induced by ion beam mixing in dependence of type of ions and dose. It is found that ion beam mixing changes the chemical state of Cu atoms with respect to that of pure metal. These changes depend on the dose of ion beam bombardment and type of ions and are attributed to a formation of CuAl{sub 2}O{sub 4} interfacial layer, which can be responsible for enhanced interfacial adhesion strength. On the other hand, it is shown that the shape of C {ital K}{alpha}, N {ital K}{alpha} and O {ital K}{alpha} XES of ion beam mixed polyimide layer (PI/Si) is modified with ion bombardment. This means that the ion-beam mixing process is able to break the bonding of constituent atoms of irradiated PI layers and can induce the formation of chemically bonded complexes linking atoms in the Cu, Al and PI layers.{copyright} {ital 1999 American Vacuum Society.}

  8. Crystal Chemistry of MgAl2O4 Spinel Solid Solution

    NASA Astrophysics Data System (ADS)

    Yoshiasa, Akira; Maekawa, Hidemi; Sugiyama, Kazumasa

    Considerable efforts have been devoted to the structural studies of spinel group minerals or type compounds because of their importance as constituents of the Earth’s crust and mantle. Despite their simple structures, many spinel type compounds exhibit complex disordering phenomena involving the mixing of cation on two sites, which have important consequences for both thermodynamic and physical properties. The cation distributions and the structural variation in MgAl2-xGaxO4 solid-solution have been clarified using 27Al MAS NMR measurements and single crystal X-ray diffraction. The determined local distance in the solid solution corresponds with the bond distance expected from the effective ionic radii except Al-O distance in the tetrahedral site. We have revealed that the Al-O distance in the tetrahedral site in spinel solid solution is about 0.15 Å longer than the expected value. Boron is the same group element as Al and Ga and its ionic radius is considerably small. Single crystals of MgAl2-xBxO4 spinel were synthesized under high pressure and high temperature. The maximum content of boron was about x = 0.13 at 1273 K and 11 GPa. The smallest B ion occupies the octahedral site in top priority in the spinel solid solution of the Mg-Al-B systems. The B3+ ions can replace considerably bigger Al3+ ion under pressure. These spinel solid-solutions are largely disordered crystals. Only the positional shifts of oxygen ion have been relaxing the disorder in the solid solution.

  9. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys.

    PubMed

    Chen, J H; Costan, E; van Huis, M A; Xu, Q; Zandbergen, H W

    2006-04-21

    Atomic-resolution electron microscopy reveals that pillarlike silicon double columns exist in the hardening nanoprecipitates of AlMgSi alloys, which vary in structure and composition. Upon annealing, the Si2 pillars provide the skeleton for the nanoparticles to evolve in composition, structure, and morphology. We show that they begin as tiny nuclei with a composition close to Mg2Si2Al7 and a minimal mismatch with the aluminum matrix. They subsequently undergo a one-dimensional growth in association with compositional change, becoming elongated particles. During the evolution toward the final Mg5Si6 particles, the compositional change is accompanied by a characteristic structural change. Our study explains the nanoscopic reasons that the alloys make excellent automotive materials.

  10. h -AlN-Mg(OH)2 van der Waals bilayer heterostructure: Tuning the excitonic characteristics

    NASA Astrophysics Data System (ADS)

    Bacaksiz, C.; Dominguez, A.; Rubio, A.; Senger, R. T.; Sahin, H.

    2017-02-01

    Motivated by recent studies that reported the successful synthesis of monolayer Mg (OH) 2 [Suslu et al., Sci. Rep. 6, 20525 (2016), 10.1038/srep20525] and hexagonal (h -)AlN [Tsipas et al., Appl. Phys. Lett. 103, 251605 (2013), 10.1063/1.4851239], we investigate structural, electronic, and optical properties of vertically stacked h -AlN and Mg (OH) 2 , through ab initio density-functional theory (DFT), many-body quasiparticle calculations within the GW approximation and the Bethe-Salpeter equation (BSE). It is obtained that the bilayer heterostructure prefers the A B' stacking having direct band gap at the Γ with Type-II band alignment in which the valance band maximum and conduction band minimum originate from different layer. Regarding the optical properties, the imaginary part of the dielectric function of the individual layers and heterobilayer are investigated. The heterobilayer possesses excitonic peaks, which appear only after the construction of the heterobilayer. The lowest three exciton peaks are analyzed in detail by means of band decomposed charge density and the oscillator strength. Furthermore, the wave function calculation shows that the first peak of the heterobilayer originates from spatially indirect exciton where the electron and hole localized at h -AlN and Mg (OH) 2 , respectively, which is important for the light harvesting applications.

  11. Variations of Microsegregation and Second Phase Fraction of Binary Mg-Al Alloys with Solidification Parameters

    NASA Astrophysics Data System (ADS)

    Paliwal, Manas; Kang, Dae Hoon; Essadiqi, Elhachmi; Jung, In-Ho

    2014-07-01

    A systematic experimental investigation on microsegregation and second phase fraction of Mg-Al binary alloys (3, 6, and 9 wt pct Al) has been carried out over a wide range of cooling rates (0.05 to 700 K/s) by employing various casting techniques. In order to explain the experimental results, a solidification model that takes into account dendrite tip undercooling, eutectic undercooling, solute back diffusion, and secondary dendrite arm coarsening was also developed in dynamic linkage with an accurate thermodynamic database. From the experimental data and solidification model, it was found that the second phase fraction in the solidified microstructure is not determined only by cooling rate but varied independently with thermal gradient and solidification velocity. Lastly, the second phase fraction maps for Mg-Al alloys were calculated from the solidification model.

  12. Crystallization kinetics of rapidly quenched Cu50Zr50 and Cu46Zr46Al8 glass-forming alloys

    NASA Astrophysics Data System (ADS)

    Kulikova, T. V.; Ryltseva, A. A.; Bykov, V. A.; Estemirova, S. Kh; Shuhyaev, K. Yu

    2017-01-01

    We studied the crystallization processes, the structure and thermal properties of amorphous alloys Cu50Zr50 and Cu46Zr46Al8 in a wide temperature range. Comparative study of the crystallization kinetics of these amorphous alloys was carried out for the first time using multivariate non-linear regression. It was found that mechanisms of the crystallization of studied metallic glasses are substantially different. The binary alloy is crystallized by branched reaction complex in four steps. For the ternary system was proposed two-step kinetic model of the crystallization process with consecutive reactions. The values of the total energy of activation for each crystallization stage reach to Cu50Zr50: E1 (345.2 kJ/mol); E2 (307.9 kJ/mol), E3 (281.1 kJ/mol), E4 (259.51 kJ/mol) and Cu46Zr46Al8: E1 (350.7 kJ/mol); E2 (150.4 kJ/mol).

  13. The Al-Rich Part of the System CaO-Al 2O 3-MgO . Part I. Phase Relationships

    NASA Astrophysics Data System (ADS)

    Göbbels, M.; Woermann, E.; Jung, J.

    1995-12-01

    In the Al-rich part of the ternary system CaO-Al 2O 3MgO two new ternary phases Ca 2Mg 2Al 28O 46 (CAM-I) and CaMg 2Al 16O 27 (CAM-II) with limited solid solution ranges were found. Due to the fact that the compositions of the Mg-rich end members of these solid solutions lie on the join between hibonite (CaAl 12O 19) and spinel (MgAl 2O 4), the model of the crystal structures of these phases can be constructed by a suitable combination of hibonite and spinel units. Both phases, CAM-I and CAM-II, exhibit solid solution ranges described by a substitution mechanism also found in the binary spinel phase, MgAl 2O 4: 3 Mg 2+ = 2 Al 3+ + □. Thus the ternary phases can be expressed by the chemical formulas. Ca 2Mg 2-3 xAl 28+2 x□ xO 46 for CAM-I with 0 ≤ x ≤ 0.30 and CaMg 2-3 yAl 16+2 y□ yO 27 for CAM-II with 0 ≤ y ≤ 0.2.

  14. New treatment method for boron in aqueous solutions using Mg-Al layered double hydroxide: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-08-15

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg - Al LDHs) and with Cl(-) (Cl · Mg - Al LDHs) were found to take up boron from aqueous solutions. Boron was removed by anion exchange of B(OH)4(-) in solution with NO3(-) and Cl(-) intercalated in the interlayer of the LDH. Using three times the stoichiometric quantity of NO3 · Mg-Al LDH, the residual concentration of B decreased from 100 to 1.9 mg L(-1) in 120 min. Using five times the stoichiometric quantity of Cl · Mg - Al LDH, the residual concentration of B decreased from 100 to 5.6 mg L(-1) in 120 min. It must be emphasized that, in both cases, the residual concentration of B was less than the effluent standards in Japan (10 mg L(-1)). The rate-determining step of B removal by the NO3 · Mg - Al and Cl · Mg - Al LDHs was found to be chemical adsorption involving anion exchange of B(OH)4(-) with intercalated NO3(-) and Cl(-). The removal of B was well described by a pseudo second-order kinetic equation. The adsorption of B by NO3 · Mg - Al LDH and Cl · Mg - Al LDH followed a Langmuir-type adsorption. The values of the maximum adsorption and the equilibrium adsorption constant were 3.6 mmol g(-1) and 1.7, respectively, for NO3 · Mg - Al LDH, and 3.8 mmol g(-1) and 0.7, respectively, for Cl · Mg-Al LDH. The B(OH)4(-) in B(OH)4 · Mg - Al LDH produced by removal of B was found to undergo anion exchange with NO3(-) and Cl(-) in solution. The NO3 · Mg - Al and Cl · Mg - Al LDHs obtained after this regeneration treatment were able to remove B from aqueous solutions, indicating the possibility of recycling NO3 · Mg - Al and Cl · Mg - Al LDHs for B removal.

  15. Electroless Cu Plating on Anodized Al Substrate for High Power LED.

    PubMed

    Rha, Sa-Kyun; Lee, Youn-Seoung

    2015-03-01

    Area-selective copper deposition on screen printed Ag pattern/anodized Al/Al substrate was attempted using a neutral electroless plating processes for printed circuit boards (PCBs), according to a range of variation of pH 6.5-pH 8 at 70 °C. The utilized basic electroless solution consisted of copper(II) sulfate pentahydrate, sodium phosphinate monohydrate, sodium citrate tribasic dihydrate, ammonium chloride, and nickel(II) sulfate hexahydrate. The pH of the copper plating solutions was adjusted from pH 6.5 to pH 8 using NH4OH. Using electroless plating in pH 6.5 and pH 7 baths, surface damage to the anodized Al layer hardly occurred; the structure of the plated Cu-rich films was a typical fcc-Cu, but a small Ni component was co-deposited. In electroless plating at pH 8, the surface of the anodized Al layer was damaged and the Cu film was composed of a lot of Ni and P which were co-deposited with Cu. Finally, in a pH 7 bath, we can make a selectively electroless plated Cu film on a PCB without any lithography and without surface damage to the anodized Al layer.

  16. Optical properties of undoped and Mg doped CuCrO{sub 2} powders synthesized by sol-gel route

    SciTech Connect

    Srinivasan, Radhakrishnan; Bolloju, Satish

    2014-01-28

    In this work, CuCrO{sub 2} was synthesized by sol-gel method using citric acid as a gelling agent. The different parameters like ratio of citric acid to metal ions, calcination temperature, and duration were studied. A green colored powder with particle size around 300 nm was formed at the calcination temperature of 800 °C for four hours duration. The increase in temperature has a profound impact on crystallite size and in turn effected the optical properties. Band gap of the obtained CuCrO{sub 2} has varied from 2.3 to 1.7 eV by increasing the temperature from 800 °C to 900 °C. Doping studies were performed by introducing Mg{sup 2+} ion to substitute Cr{sup 3+} in CuCrO{sub 2}. X-ray powder diffraction and SEM studies on 2% Mg doped samples indicated a clear formation of side phases. According to the X-ray powder patterns, the reflections from side phases were increasing with the increase in doping concentrations of Mg from 2 to 5%. The side phases were found to be MgCr{sub 2}O{sub 4} spinel and CuO. The band gap has decreased for doped samples in comparison to undoped one. In this paper, sol-gel synthesis and characterization by Xray powder diffraction, SEM studies and UV-Vis-Diffuse Reflectance spectra are presented.

  17. Microstructural development in Al/MgAl2O4in situ metal matrix composite using value-added silica sources.

    PubMed

    Madathil Sreekumar, Vadakke; Marimuthu Pillai, Raman; Chandrasekhara Pai, Bellampettu; Chakraborty, Madhusudhan

    2008-01-01

    Al/MgAl2O4in situ metal matrix composites have been synthesized using value-added silica sources (microsilica and rice husk ash) containing ∼97% SiO2 in Al-5 wt.% Mg alloy. The thermodynamics and kinetics of MgAl2O4 formation are discussed in detail. The MgO and MgAl2O4 phases were found to dominate in microsilica (MS) and rice husk ash (RHA) value-added composites, respectively, during the initial stage of holding the composites at 750 °C. A transition phase between MgO and MgAl2O4 was detected by the scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS) analysis of the particles extracted from the composite using 25% NaOH solution. This confirms that MgO is gradually transformed to MgAl2O4 by the reaction 3SiO2(s)+2MgO(s)+4Al(l)→2MgAl2O4(s)+3Si(l). The stoichiometry of MgAl2O4, n, computed by a new methodology is between 0.79 and 1.18. The reaction between the silica sources and the molten metal stopped after 55% of the silica source was consumed. A gradual increase in mean MgAl2O4 crystallite size, D, from 24 to 36 nm was observed in the samples held for 10 h.

  18. Microstructural development in Al/MgAl2O4 in situ metal matrix composite using value-added silica sources

    PubMed Central

    Madathil Sreekumar, Vadakke; Marimuthu Pillai, Raman; Chandrasekhara Pai, Bellampettu; Chakraborty, Madhusudhan

    2008-01-01

    Al/MgAl2O4 in situ metal matrix composites have been synthesized using value-added silica sources (microsilica and rice husk ash) containing ∼97% SiO2 in Al-5 wt.% Mg alloy. The thermodynamics and kinetics of MgAl2O4 formation are discussed in detail. The MgO and MgAl2O4 phases were found to dominate in microsilica (MS) and rice husk ash (RHA) value-added composites, respectively, during the initial stage of holding the composites at 750 °C. A transition phase between MgO and MgAl2O4 was detected by the scanning electron microscopy and energy-dispersive spectroscopy (SEM–EDS) analysis of the particles extracted from the composite using 25% NaOH solution. This confirms that MgO is gradually transformed to MgAl2O4 by the reaction 3SiO2(s)+2MgO(s)+4Al(l)→2MgAl2O4(s)+3Si(l). The stoichiometry of MgAl2O4, n, computed by a new methodology is between 0.79 and 1.18. The reaction between the silica sources and the molten metal stopped after 55% of the silica source was consumed. A gradual increase in mean MgAl2O4 crystallite size, D, from 24 to 36 nm was observed in the samples held for 10 h. PMID:27877941

  19. Surface tension of liquid Al-Cu and wetting at the Cu/Sapphire solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Schmitz, J.; Brillo, J.; Egry, I.

    2014-02-01

    For the study of the interaction of a liquid alloy with differently oriented single crystalline sapphire surfaces precise surface tension data of the liquid are fundamental. We measured the surface tension of liquid Al-Cu contactlessly on electromagnetically levitated samples using the oscillating drop technique. Data were obtained for samples covering the entire range of composition and in a broad temperature range. The surface tensions can be described as linear functions of temperature with negative slopes. Moreover, they decrease monotonically with an increase of aluminium concentration. The observed behaviour with respect to both temperature and concentration is in agreement with a thermodynamic model calculation using the regular solution approximation. Surface tensions were used to calculate interfacial energies from the contact angles of liquid Cu droplets, deposited on the C(0001), A(11-20), R(1-102) surfaces of an α-Al2O3 substrate. The contact angles were measured by means of the sessile drop method at 1380 K. In the Cu/α-Al2O3 system, no anisotropy is evident neither for the contact angles nor for the interfacial energies of different surfaces. The work of adhesion of this system is isotropic, too.

  20. Chemical Trend of Superconducting Critical Temperatures in Hole-Doped CuBO2, CuAlO2, CuGaO2, and CuInO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi; Ishikawa, Takahiro; Shimizu, Katsuya

    2016-09-01

    We calculated the superconducting critical temperature (Tc) for hole-doped CuXO2 (X = B, Al, Ga, and In) compounds using first-principles calculations based on rigid band model. The compounds with X = Al, Ga, and In have delafosite-type structures and take maximum Tc values at 0.2-0.3 with respect to the number of holes (Nh) in the unit-cell: 50 K for CuAlO2, 10 K for CuGaO2, and 1 K for CuInO2. The decrease of Tc for this change in X is involved by covalency reduction and lattice softening associated with the increase of ionic mass and radius. For CuBO2 which is a lighter compound than CuAlO2, the delafosite structure is unstable and a body-centered tetragonal structure emerges as the most stable structure. As the results, the electron-phonon interaction is decreased and Tc is lower by approximately 43 K than that of CuAlO2 at the hole-doping conditions of Nh = 0.2-0.3.

  1. Investigation of fluorine adsorption on nitrogen doped MgAl2O4 surface by first-principles

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-07-01

    The nature of fluorine adsorption on pure and N doped MgAl2O4 surface has been investigated by first-principles calculations based on the density functional theory. Calculated results indicate that MgAl2O4 surface is fluorine-loving, not hydrophilic. Nitrogen doped MgAl2O4 (100) surface shows the highest fluorine adsorption performance and fluorine atom preferentially adsorbs on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: Nitrogen doped MgAl2O4 (100) > Al2O3 (0001) > MgAl2O4 (100) > MgO (100). In-depth PDOS analysis suggested that 2p orbitals of F atom strongly hybridized with 3s- and 3p-orbitals of Al atom contribute to its high adsorption intensity. According to the analysis of Hirshfeld charge, the excellent fluorine adsorption performance of nitrogen doped MgAl2O4 attributes to the electron compensation effect of nitrogen atom and strong electrostatic interactions. All these evidences demonstrate a fact nitrogen doped MgAl2O4 is a promising candidate for fluorine removal.

  2. Real-time x-ray microbeam characterization of electromigration effects in Al(Cu) wires

    SciTech Connect

    Wang, P.-C.; Noyan, I. C.; Kaldor, S. K.; Jordan-Sweet, J. L.; Liniger, E. G.; Hu, C.-K.

    2001-04-30

    We report real-time, in situ x-ray microbeam measurements of electromigration-induced Cu redistribution, and the concurrent local stress variation in Al(Cu) wires. The data, which were obtained by combining x-ray microtopography with energy-dispersive fluorescence analysis, encompass both the early and late stages of electromigration as well as the postrelaxation stage at high temperature with the current turned off. We observe that both Cu concentration and stress values show unexpected local variations that may reflect the effect of local configuration such as film--substrate interface integrity or microstructure.

  3. From nGy to MGy - New dosimetry with LiF:Mg,Cu,P thermoluminescence detectors

    SciTech Connect

    Obryk, Barbara

    2013-05-06

    One of the well known advantages of thermoluminescence (TL) detectors made of lithium fluoride doped with magnesium, copper and phosphorus (LiF:Mg,Cu,P) is their very high sensitivity to ionizing radiation. LiF:Mg,Cu,P detectors enable measurements of radiation doses from tens of nanograys up to a few kilograys, when the total saturation of the signal of the so-called main dosimetric peak occurs. Only recently, unprecedented high-temperature emission of LiF detectors heated to temperatures up to 600 Degree-Sign C, was observed after exposures to radiation doses ranging from 1 kGy to 1 MGy. For quantification of the glow-curve shape changes of LiF:Mg,Cu,P detectors in this range of doses and determination of the absorbed dose, the Ultra-High Temperature Ratio coefficient (UHTR) was defined. This newly established dosimetric method was tested in a range of radiation qualities, such as gamma radiation, electron and proton beams, thermal neutron fields and high-energy mixed fields around the SPS and PS accelerators at CERN. The new method for ultra-high dose range monitoring with a single LiF:Mg,Cu,P detector, which is capable of covering at least twelve orders of magnitude of doses, can be used for dosimetry at high energy accelerators, thermonuclear fusion technology facilities and has great potential for accident dosimetry in particular. A number of dosimetric sets with LiF:Mg,Cu,P detectors are currently installed around the LHC at CERN.

  4. Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Perry, Kelly A; Belova, Irina; Murch, Prof. Graeme; Sohn, Yong Ho

    2013-08-01

    Increasing use and development of lightweight Mgalloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As property enhancing components, Al and Zn are two of the most important and common alloying elements for Mg-alloys. We have investigated the concentration dependent interdiffusion of Al and Zn in Mg using diffusion couples of pure polycrystalline Mg mated to Mg solid solutions containing either <9 at.% Al or <3 at.% Zn. Concentration profiles were determined by electron micro-probe microanalysis of the diffusion zone. The interdiffusion coefficients were determined by the classical Boltzmann-Matano method within the Mg solid solution. As the concentration of Al or Zn approaches the dilute ends, we employ an analytical approach based on the Hall method to estimate the impurity diffusion coefficients. Results of Al and Zn impurity diffusion in Mg are reported and compared to published impurity diffusion coefficients typically determined by thin film techniques.

  5. Tailoring acidity of HZSM-5 nanoparticles for methyl bromide dehydrobromination by Al and Mg incorporation

    PubMed Central

    2014-01-01

    Three kinds of HZSM-5 nanoparticles with different acidity were tailored by impregnating MgO or varying Si/Al ratios. Both the textural and acidic properties of the as-prepared nanoparticles were characterized by nitrogen adsorption-desorption measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature-programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy (FTIR or Py-FTIR). It was found that the intensity of Lewis acid sites with weak strength was enhanced by impregnating MgO or reducing Al concentration, and such an enhancement could be explained by the formation of Mg(OH)+ or charge unbalance of the MgO framework on the surface of HZSM-5 support. The effect of HZSM-5 nanoparticles' acidity on methyl bromide dehydrobromination as catalyst was evaluated. As the results, MgHZ-360 catalyst with the highest concentration of Lewis acid sites showed excellent stability, which maintained methyl bromide conversion of up 97% in a period of 400 h on stream. Coke characterization by BET measurements and TGA/DTA and GC/MS analysis revealed that polymethylated naphthalenes species were formed outside the channels of the catalyst with higher acid intensity and higher Brønsted acid concentration during the initial period of reaction, while graphitic carbon formed in the channels of catalyst with lower acid intensity and higher Lewis acid concentration during the stable stage. PMID:25328502

  6. Pulsed laser deposition of AlMgB14 thin films

    SciTech Connect

    Britson, Jason Curtis

    2008-11-18

    Hard, wear-resistant coatings of thin film borides based on AlMgB14 have the potential to be applied industrially to improve the tool life of cutting tools and pump vanes and may account for several million dollars in savings as a result of reduced wear on these parts. Past work with this material has shown that it can have a hardness of up to 45GPa and be fabricated into thin films with a similar hardness using pulsed laser deposition. These films have already been shown to be promising for industrial applications. Cutting tools coated with AlMgB14 used to mill titanium alloys have been shown to substantially reduce the wear on the cutting tool and extend its cutting life. However, little research into the thin film fabrication process using pulsed laser deposition to make AlMgB14 has been conducted. In this work, research was conducted into methods to optimize the deposition parameters for the AlMgB14 films. Processing methods to eliminate large particles on the surface of the AlMgB14 films, produce films that were at least 1m thick, reduce the surface roughness of the films, and improve the adhesion of the thin films were investigated. Use of a femtosecond laser source rather than a nanosecond laser source was found to be effective in eliminating large particles considered detrimental to wear reduction properties from the films. Films produced with the femtosecond laser were also found to be deposited at a rate 100 times faster than those produced with the nanosecond laser. However, films produced with the femtosecond laser developed a relatively high RMS surface roughness around 55nm. Attempts to decrease the surface roughness were largely unsuccessful. Neither increasing the surface temperature of the substrate during deposition nor using a double pulse to ablate the material was found to be extremely successful to reduce the surface roughness. Finally, the adhesion of the thin films to M2 tool steel

  7. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility

    NASA Astrophysics Data System (ADS)

    Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner

    2015-03-01

    Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.

  8. Multistage devitrification behavior of Mg{sub 65}Cu{sub 25}Tb{sub 10} bulk metalic glass.

    SciTech Connect

    Yang, L.; Wang, X. L.; Stoica, A. D.; Ma, D.; Almer, J. D.; Shi, D.; Wang, W. H.; X-Ray Science Division; Univ. of Cincinnati; ORNL; Chinese Academy of Science

    2008-08-01

    The devitrification of Mg{sub 65}Cu{sub 25}Tb{sub 10} bulk metallic glass (BMG) has been studied by time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) simultaneously. By analyzing the interference peaks on SAXS patterns and the Bragg peaks on WAXS patterns, it is found that devitrification initiates by activation of quenched-in short-range orders. Crystallization proceeds in three stages. During stage I, icosahedral clusters are formed that transforms to a quasi-crystalline 1/1 approximant during stage II, accompanied by the formation of cubic TbMg{sub 3}. In stage III, the 1/1 approximant transforms to a 2/1 approximant. The orthorhombic CuMg{sub 2} phase is formed at a higher temperature when the quasi-crystalline phase starts to decompose. Pair distribution functions were evaluated to demonstrate these structural evolutions in real space.

  9. Joule-Heating-Induced Damage in Cu-Al Wedge Bonds Under Current Stressing

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Han; Lin, Yu-Min; Ouyang, Fan-Yi

    2014-01-01

    Copper wires are increasingly used to replace gold wires in wire-bonding technology owing to their better electrical properties and lower cost. However, not many studies have been conducted on electromigration-induced failure of Cu wedge bonds on Al metallization. In this study, we investigated the failure mechanism of Cu-Al wedge bonds under high current stressing from 4 × 104 A/cm2 to 1 × 105 A/cm2 at ambient temperature of 175°C. The resistance evolution of samples during current stressing and the microstructure of the joint interface between the Cu wire and Al-Si bond pad were examined. The results showed that abnormal crack formation accompanying significant intermetallic compound growth was observed at the second joint of the samples, regardless of the direction of electric current for both current densities of 4 × 104 A/cm2 and 8 × 104 A/cm2. We propose that this abnormal crack formation at the second joint is mainly due to the higher temperature induced by the greater Joule heating at the second joint for the same current stressing, because of its smaller bonded area compared with the first joint. The corresponding fluxes induced by the electric current and chemical potential difference between Cu and Al were calculated and compared to explain the failure mechanism. For current density of 1 × 105 A/cm2, the Cu wire melted within 0.5 h owing to serious Joule heating.

  10. Mechanism of resistive switching in Cu/AlOx/W nonvolatile memory structures

    NASA Astrophysics Data System (ADS)

    Sleiman, A.; Sayers, P. W.; Mabrook, M. F.

    2013-04-01

    The mechanism for resistive switching in aluminum oxide (AlOx) based electrochemical metallization memory cells is presented. Copper/AlOx/tungsten (Cu/AlOx/W) cells show reproducible resistive switching with an ON/OFF ratio of about 5 × 102 at a reading voltage of 0.1 V and reliable retention characteristics. Resistive switching occurs due to the formation and rupture of a Cu filament between the active electrode (Cu) and the counter electrode (W). The conduction of the devices was explained through back-to-back Schottky contacts in the OFF state, while it exhibits ohmic behavior in the ON state. Thermionic emission model was used to calculate the barrier heights of the Schottky contacts. The rupture of the Cu filament proved to occur at the weakest point of the filament inside the AlOx. Using Ohms Law, the slope of the linear I-V characteristics in the ON state was used to extract the Cu filament resistance and its diameter was estimated to be between 6 and 23 nm.

  11. Corrosion behaviors of Al-Si-Cu-based filler metals and 6061-T6 brazements

    NASA Astrophysics Data System (ADS)

    Su, T. L.; Wang, S. S.; Tsao, L. C.; Chang, S. Y.; Chuang, T. H.; Yeh, M. S.

    2002-04-01

    The corrosion behaviors of a series of Al-Si-Cu-based filler metals and the 6061-T6 butt joints brazed with these filler metals are evaluated by polarization tests and immersion tests in a 3.5% NaCl aqueous solution. For comparison, a traditional Al-12Si filler metal is also employed. The results indicate that the Al-Si-Cu-based filler metals before brazing possess much higher corrosion current densities and pitting tendencies than the Al-12Si filler metal. However, brazing of the 6061-T6 alloy with an Al-12Si filler metal produces a wider butt joint, which, in this case, creates a more extensive corrosion region. Severe galvanic corrosion occurs at the 6061-T6 joints when brazed with Al-Si-Cu-based filler metals. However, in the case of the 6061-T6/Al-12Si brazements, selective corrosion of the Al-12Si eutectic phase can be observed. The bonding strengths of the 6061-T6 butt joints brazed with various filler metals are also measured before and after the immersion tests.

  12. Timing and extent of Mg and Al isotopic homogenization in the early inner Solar System

    NASA Astrophysics Data System (ADS)

    Mishra, Ritesh Kumar; Chaussidon, Marc

    2014-03-01

    The first million years of the Solar System is a key period when the first solids were formed from the nebula gas. The chronology of the different processes at the origin of these solids is still largely unknown and relies strongly on the assumption made of homogeneous distribution for short-lived radioactive nuclides such as 26Al. This assumption is questioned. In this study, in situ 26Al-26Mg isotope systematics was studied with high precision in 12 calcium, aluminum-rich inclusions (CAIs) (1 type A, 2 type B, 5 type C, and 4 fine grained spinel-rich), 2 amoeboid olivine aggregates (AOAs), and 2 Al-rich chondrules from Efremovka and Vigarano. The (26Al/27Al)i in these early Solar System solids (the subscript ‘i’ stands for the initial isotope ratio obtained from the mineral 26Al isochron) range from ∼6.5×10-5 to 0.2×10-5 with δMgi*26 from -0.08 to +0.37‰. The (26Al/27Al)i and δMgi*26 of CAIs and chondrules can be explained by formation of their precursors from a homogeneous reservoir (Solar System Initial, noted hereafter SSI) with initial magnesium isotopic composition of δMgSSI*26=-0.052±0.013‰ and initial (26Al/27Al)SSI abundance of (5.62±0.42)×10-5. The high precision magnesium isotope data obtained in the present study and literature data allows identifying a few epochs of formation/reprocessing of CAIs. The time periods of these epochs correspond well with the median life times of the pre-main sequence evolution of stars of Solar mass if we anchor the (Al26/Al27)SSI=(5.62±0.42)×10-5 to the beginning of class I phase. This provides a natural explanation to the range of (26Al/27Al)i - (∼6 to 0.02) × 10-5 seen in corundum grains, FUN (Fractionation and Unidentified Nuclear Effects) CAIs, ultrarefractory CAIs, normal CAIs, and chondrules, and suggests a possible relationship between the astrophysical conditions and the formation of these early solids. Corundum grains, FUN CAIs, ultrarefractory CAIs would have formed during the class 0 of

  13. Constitutive Behavior and Modeling of Al-Cu Alloy Systems

    DTIC Science & Technology

    2013-05-01

    annealing to refine the grain structure. All alloys were melted from high purity components by induction heating, and casted into a steel mold. Alloys...summary of the tested alloys with their individual strengthening mechanisms and their processing procedure...containing Mg element were melted in an argon atmosphere to minimize oxidation . Precipitation hardenable alloys additionally aged at a low

  14. Growth of intermetallic phases in Al/Cu composites at various annealing temperatures during the ARB process

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Chun; Shi, Ming-Shou; Wu, Weite

    2012-02-01

    The purpose of this study is to discuss the effect of annealing temperatures on growth of intermetallic phases in Al/Cu composites during the accumulative roll bonding (ARB) process. Pure Al (AA1100) and pure Cu (C11000) were stacked into layered structures at 8 cycles as annealed at 300 °C and 400 °C using the ARB technique. Microstructural results indicate that the necking of layered structures occur after 300 °C annealing. Intermetallic phases grow and form a smashed morphology of Al and Cu when annealed at 400 °C. From the XRD and EDS analysis results, the intermetallic phases of Al2Cu (θ) and Al4Cu9 (γ2) formed over 6 cycles and the AlCu (η2) precipitated at 8 cycles after 300 °C annealing. Three phases (Al2Cu (θ), Al4Cu9 (γ2), and AlCu (η2)) were formed over 2 cycles after 400 °C annealing.

  15. Microstructure properties and microhardness of rapidly solidified Al64Cu20Fe12Si4 quasicrystal alloy

    NASA Astrophysics Data System (ADS)

    Karaköse, Ercan; Keskin, Mustafa

    2012-04-01

    This paper presents differences in the microstructure and microhardness properties of conventional casting (ingot) and rapidly solidified Al64Cu20Fe12Si4 quasicrystal (QC) alloys. The phases present in the Al64Cu20Fe12Si4 ingot alloy were determined to be icosahedral quasicrystalline (IQC) Ψ-Al65Cu20Fe15, cubic β-AlFe, tetragonal θ-Al2Cu, and monoclinic λ-A13Fe4 phases, whereas only IQC Ψ-Al65Cu20Fe15 and cubic β-AlFe phases were identified in the rapidly solidified alloy. The microhardness value of the melt spun alloy was measured to be approximately 790 kg/mm2. Microhardness increases with increasing solidification rates.

  16. Propane dehydrogenation over PtSnMg/Cr2O3·Al2O3 catalysts: effect of the amount of Mg loading

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Guan, Yunfei; Wang, Yanmei; Guo, Xianzhi; Zhang, Jingya; Du, Zongjie; Zhang, Shoumin; Xie, Qinxing; Wu, Shihua

    2017-01-01

    A series of PtSnMg/Cr2O3·Al2O3 catalysts with different Mg loading amounts were synthetized by chemical co-deposition method and their propane dehydrogenation catalytic performances were tested. The catalysts were characterized by XRD, BET, TG, XPS. It was found that alkali metal Mg can reduce the surface acidity of carrier, improve the catalytic performance. Propane conversion peaks at Mg loading of 0.6wt.%, increasing Mg loading further than this saw a decline in conversion.

  17. Resistance to Fracture, Fatigue and Stress-Corrosion of Al-Cu-Li-Zr Alloys

    DTIC Science & Technology

    2007-11-02

    Zr alloyý, 4 Heat treatment and hot rolling schedules fur 66 the Al-Cu-Li-Zr alloys 5 Laue transmission analysis of Al-Cu-Li-Zr alloys 67 6 X-ray...ratio, there appears to be an increase in amount of matrix 6 ’ as well as grain boundary precipitates ( 6 , T-phase) (? 4 ). As a result, there is a...containing 6 ’ precipitates that enhance slip planarity and certain titanium alloys (e.g. alloys with acicular astructure), will be expected to have a

  18. Equation of State of an AlCoCrCuFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Li, Gong; Xiao, Daihong; Yu, Pengfei; Zhang, Lijun; Liaw, Peter K.; Li, Yanchun; Liu, Riping

    2015-08-01

    The pressure-volume (P-V) relationship of the AlCoCrCuFeNi high-entropy alloy (HEA) at room temperature has been studied using in situ high-pressure energy-dispersive x-ray diffraction with synchrotron radiation at high pressures. The equation of state of the AlCoCrCuFeNi HEA is determined by the calculation of the radial distribution function. The experimental results indicate that the HEA keeps a stable face-centered-cubic + body-centered-cubic structure in the experimental pressure range from 0 GPa to 24 GPa.

  19. Very high Cu(II) adsorption efficacy of designed nano-platelet Mg(OH)2 assembly

    NASA Astrophysics Data System (ADS)

    Sekhar Das, Pradip; Bakuli, Suvajit; Samanta, Aniruddha; Mandal, Ashok Kumar; Ghosh, Jiten; Dey, Arjun; Mukhopadhyay, Anoop Kumar

    2017-02-01

    The present work examined the efficacy of designed Mg(OH)2 nano-platelet assembly (DMGHNPA) for toxic Cu(II) waste removal from water. For this purpose, DMGHNPA with surface area as high as 237 m2.g‑1 was synthesized by a very simple and cost effective method at room temperature. The results showed that at concentration range of 80–1000 mg.l‑1, extra-ordinarily high e.g.  >99% Cu(II) ion adsorption efficacy was achieved by the DMGHNPA. Based on the experimental data, adsorption mechanism is proposed to explain the extra-ordinary high adsorption efficacy of the DMGHNPA. The efficient adsorption was occurred through Cu2(NO3)(OH)3 microspheres formation on the surfaces of self-supported DMGHNPA. The implication of such extra-ordinary high adsorption efficacy of the Mg(OH)2 nano-platelet assembly is discussed further in the context of toxic waste e.g. Cu(II) ion removal from water.

  20. Electronic structure and electrical transport in ternary Al-Mg-B films prepared by magnetron sputtering

    SciTech Connect

    Yan, C.; Qian, J. C.; He, B.; Ng, T. W.; Zhang, W. J.; Bello, I.; Jha, S. K.; Zhou, Z. F.; Li, K. Y.; Klemberg-Sapieha, J. E.; Martinu, L.

    2013-03-25

    Nanostructured ternary Al-Mg-B films possess high hardness and corrosion resistance. In the present work, we study their electronic structure and electrical transport. The films exhibit semiconducting characteristics with an indirect optical-bandgap of 0.50 eV, as deduced from the Tauc plots, and a semiconductor behavior with a Fermi level of {approx}0.24 eV below the conduction band. Four-probe and Hall measurements indicated a high electrical conductivity and p-type carrier mobility, suggesting that the electrical transport is mainly due to hole conduction. Their electrical properties are explained in terms of the film nanocomposite microstructure consisting of an amorphous B-rich matrix containing AlMgB{sub 14} nanoparticles.

  1. Interdiffusion in the MgO-Al2O3 spinel with or without some dopants

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Debroy, T.; Seetharaman, S.

    1996-08-01

    With a view to seek an improved understanding of the DIMOX process, interdiffusion of polycrystalline MgO and Al2O3 in the temperature range 1473 to 1873 K was studied by diffusion couple experiments. The interdiffusivities in the spinel layer were calculated as functions of composition and temperature. The spinel portion of the phase diagram in the system MgO-Al2O3 was determined from carefully measured compositions at the phase boundaries, and the low temperature spinel region of the phase diagram was confirmed from the present results. For Zn2+ as dopant in alumina, the growth rate of spinel thickness seems to increase when compared with that of the diffusion couples without dopant. The samples containing Si4+ as dopant reveal the formation of a glass phase, and the effect of Si4+ on the diffusion process appears to be negligible.

  2. Formation of incoherent deformation twin boundaries in a coarse-grained Al-7Mg alloy

    NASA Astrophysics Data System (ADS)

    Jin, S. B.; Zhang, K.; Bjørge, R.; Tao, N. R.; Marthinsen, K.; Lu, K.; Li, Y. J.

    2015-08-01

    Deformation twinning has rarely been observed in coarse grained Al and its alloys except under some extreme conditions such as ultrahigh deformation strain or strain rates. Here, we report that a significant amount of Σ3 deformation twins could be generated in a coarse-grained Al-7 Mg alloy by dynamic plastic deformation (DPD). A systematic investigation of the Σ3 boundaries shows that they are Σ3{112} type incoherent twin boundaries (ITBs). These ITBs have formed by gradual evolution from copious low-angle deformation bands through <111>-twist Σ boundaries by lattice rotation. These findings provide an approach to generate deformation twin boundaries in high stacking fault energy metallic alloys. It is suggested that high solution content of Mg in the alloy and the special deformation mode of DPD played an important role in formation of the Σ and ITBs.

  3. Quantitative determination of Mg in Al-alloys by ion-exchange TLC

    SciTech Connect

    Petrovic, M.; Kastelan-Macan, M. . Lab. for Analytical Chemistry); Turina, S.; Ivankovic, V. . Faculty of Mechanical Engineering and Naval Architecture)

    1993-01-01

    Analytical procedure for the quantitative determination of Mg in Al-alloys using ion-exchange thin layer chromatography is described. Chromatographic plates were coated with Amberlite IRP-69 (strong-acid cation exchanger in H[sup +]-form) mixed in different ratios with microcrystalline cellulose. Solutions of HCl and HNO[sub 3] respectively, in the concentration range from 0.5-2.0 mol dm[sup [minus]3] were used as developers. Chromatograms were visualized by spraying with ethanolic solution of 8-hydroxyquinoline and spots were scanned using Camag Turner Fluorometer 111. The optical separation was obtained on TLC plates containing 23% of ion-exchanger (particle size < 60 [mu]m) and by eluting with 1.25 M HCl. R[sub F] (Al) = 0.12, R[sub F](Mg) = 0.41.

  4. Elasticity and inelasticity of the SiC/Al-13Si-9Mg biomorphic metal ceramics

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Orlova, T. S.; Smirnov, B. I.; Wilkes, T. E.; Faber, K. T.

    2008-10-01

    The acoustic investigations of the elastic (Young’s modulus) and microplastic properties of a composite material, the SiC/Al-13Si-9Mg biomorphic metal ceramic, were performed. The ceramic was prepared by infiltration of the Al-13Si-9Mg melt into porous silicon carbide derived from wood of two species of trees, beech and sapele. The measurements were performed with a composite piezoelectric vibrator under resonance conditions, with rod-shaped samples vibrated longitudinally at about 100 kHz over a wide range of vibrational strain amplitudes, which included both the linear (amplitude-independent) and nonlinear (microplastic) regions. It was shown that the Young’s modulus and the microplastic properties of the composite are anisotropic and depend substantially on the tree species, particularly when longitudinal vibrations are excited in samples cut along the tree fibers.

  5. Cryogenic mechanical properties of low density superplastic Al-Mg-Sc alloys

    SciTech Connect

    Verzasconi, S.L.; Morris, J.W. Jr. )

    1989-06-01

    Spacecraft cryogenic fuel tankage made from superplastic materials is a possible new application for low density aluminum alloys such as Al-Mg-Sc. Examples from this alloy system were examined for cryogenic strength and toughness. Alloys studied were received in the superplastically formable condition, in sheet form. Alloy 2219-T87 sheet was also tested for comparison, since 2219-T8X is currently used in cryogenic tankage. Five compositions of Al-Mg-Sc alloys were tested at 77 and 4 K. Alloys showed the expected increase in strength with decreasing temperature, accompanied by a general slight decrease in elongation and the Kahn tear-yield ratio toughness indicator; however, the strength-tear toughness relationship of this alloy class was as good as or better than that of 2219-T87. Correlations found between the properties, microstructure, and fracture surfaces are discussed. 8 refs., 1 fig., 3 tabs.

  6. Computer Modelling of Age Hardening for Isothermally Aged Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Wu, Linda; Ferguson, W. George

    Computer modelling, due to it saving time and money, has been widely used in industrial simulation. The present model, which is based on the Shercliff-Ashby methodology for the ageing of aluminum alloys, can be used to predict the yield strength (or hardness) of Al-Mg-Si alloys for the artificial ageing temperature below the solvus temperature as a function of time. With suitable input data, this model can be applied to most Al-Mg-Si alloys, wrought or cast. In the present model, input data for aluminium alloys of A356, A357 and 6061 is taken from the open literature, and then the unknown constants are calibrated from these data. After calibration, the ageing curves are constructed for different isothermal ageing temperatures. Finally, experimentally ageing heat treatments at different temperatures for casting alloys of A356 were done to validate the model.

  7. Friction Stir Welding of a Thick Al-Zn-Mg Alloy Plate

    NASA Astrophysics Data System (ADS)

    Buchibabu, V.; Reddy, G. M.; Kulkarni, D.; De, A.

    2016-03-01

    Al-Zn-Mg alloys are widely used as structural materials due to high strength-to-weight ratio and impact toughness. As fusion welds in these alloys commonly face hot cracking and macro porosity, friction stir welding is increasingly becoming the preferred recourse. We report here a detailed experimental study on friction stir welding of a specific Al-Zn-Mg alloy with its chemical compositions close to AA7039. The effect of tool rotational speed and welding speed on the weld profile, joint microstructure, and mechanical properties is studied extensively. The results show sound weld profiles and joint properties within the selected range of process conditions. Within the selected range of welding conditions, the welds made at a tool rotational speed of 350 rpm and welding speed of 3 mm/s have showed joint structure, tensile, and impact toughness properties fairly close to that of the base material.

  8. An investigation of microstructural stability in an Al-Mg alloy with submicrometer grain size

    SciTech Connect

    Wang, J.; Iwahashi, Y.; Horita, Z.; Furukawa, M.; Nemoto, M.; Valiev, R.Z.; Langdon, T.G.

    1996-07-01

    The microstructural stability of an Al-3%Mg solid solution alloy with a submicrometer-grained (SMG) structure ({approximately}0.2 {micro}m) was evaluated using both static annealing and transmission electron microscopy over a range of temperatures from 443 to 803 K and differential scanning calorimetry (DSC) up to 773 K. The results show that the SMG structure contains many non-equilibrium grain boundaries but recrystallization occurs at the higher temperatures giving large grains with boundaries having high-angle equilibrium configurations. There are significant differences between the DSC curves of the SMG alloy and a standard cold-rolled Al-3%Mg alloy, due primarily to the advent of significant heat release at low temperatures in the SMG alloy because of recovery at the non-equilibrium grain boundaries. A temperature of {approximately}500 K, close to half the absolute melting temperature, represents an effective upper limit for utilization of the SMG structure in this material.

  9. Effect of cold compression on precipitation and conductivity of an Al-Li-Cu alloy.

    PubMed

    Khan, A K; Robinson, J S

    2008-12-01

    Transmission electron microscopy has been used to investigate the effect of increasing the degree of deformation applied by cold compression on the ageing kinetics and electrical conductivity response of an Al-Li-Cu alloy containing Mg and Ag. When cold compressed greater than 3%, the increased dislocation density accelerates the widespread precipitation of the T(1) phase resulting in an enhanced age hardening response. The lengthening rate of T(1) precipitates is also reduced in this cold compressed condition owing to the reduced local solute supersaturation, a result of the widespread precipitation of T(1) plates. Cold compression by less than 3% does not increase the age hardening response, and the precipitation of GP zones/theta'' appears to be suppressed. Precipitation of the T(1) phase is also not significantly enhanced compared with that of the more than 3% cold compressed conditions. The anomalous decrease in electrical conductivity is associated with the nucleation and growth of the T(1) phase. Strain fields around T(1) precipitates combined with the increased volume fraction of T(1) are thought to be the cause of the anomalous conductivity behaviour.

  10. Identification of strengthening phases in Al-Cu-Li alloy Weldalite 049

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1989-01-01

    The tensile properties in the peak-strength T8 temper for Weldalite 049, a family of ultrahigh-strength weldable Al-Cu-Li-based alloys with a Li content ranging from 0 to 1.9 wt percent, are investigated, and strengthening precipitates at selected Li levels are identified. Relatively small amounts of Ag and Mg were found to be extremely effective in stimulating precipitation in Weldalite 049, resulting in a homogeneous distribution of fine, platelike precipitates with a 111-type habit plane in the peak-aged, T8 temper. The yield and tensile strengths are strongly dependent on Li content, with a peak in the range of 1.1 to 1.4 wt percent Li. At above 1.4 wt percent Li, strength decreases rapidly, which is associated with delta-prime precipitation. For high-resolution TEM, the structure of T(1)-type precipitates in Weldalite 049 is similar to that of T(1) platelets in 2090.

  11. Re-investigation of phase equilibria in the system Al-Cu and structural analysis of the high-temperature phase η1-Al1-δCu.

    PubMed

    Ponweiser, Norbert; Lengauer, Christian L; Richter, Klaus W

    2011-11-01

    The phase equilibria and reaction temperatures in the system Al-Cu were re-investigated by a combination of optical microscopy, powder X-ray diffraction (XRD) at ambient and elevated temperature, differential thermal analysis (DTA) and scanning electron microscopy (SEM). A full description of the phase diagram is given. The phase equilibria and invariant reactions in the Cu-poor part of the phase diagram could be confirmed. The Cu-rich part shows some differences in phase equilibria and invariant reactions compared to the known phase diagram. A two phase field was found between the high temperature phase η1 and the low temperature phase η2 thus indicating a first order transition. In the ζ1/ζ2 region of the phase diagram recent findings on the thermal stability could be widely confirmed. Contrary to previous results, the two phase field between δ and γ1 is very narrow. The results of the current work indicate the absence of the high temperature β0 phase as well as the absence of a two phase field between γ1 and γ0 suggesting a higher order transition between γ1 and γ0. The structure of γ0 (I-43m, Cu5Zn8-type) was confirmed by means of high-temperature XRD. Powder XRD was also used to determine the structure of the high temperature phase η1-Al1-δCu. The phase is orthorhombic (space group Cmmm) and the lattice parameters are a = 4.1450(1) Å, b = 12.3004(4) Å and c = 8.720(1) Å; atomic coordinates are given.

  12. On the Precipitation Hardening of Selective Laser Melted AlSi10Mg

    NASA Astrophysics Data System (ADS)

    Aboulkhair, Nesma T.; Tuck, Chris; Ashcroft, Ian; Maskery, Ian; Everitt, Nicola M.

    2015-08-01

    Precipitation hardening of selective laser melted AlSi10Mg was investigated in terms of solution heat treatment and aging duration. The influence on the microstructure and hardness was established, as was the effect on the size and density of Si particles. Although the hardness changes according to the treatment duration, the maximum hardening effect falls short of the hardness of the as-built parts with their characteristic fine microstructure. This is due to the difference in strengthening mechanisms.

  13. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  14. Growth of monocrystalline Cu(1 1 1) films on MgO(1 1 1) by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Aweke, F.; Antoni, F.; Hulik, J.; Morvan, G.; Speisser, C.; Veis, P.; Le Normand, F.

    2015-05-01

    Copper (Cu) films with a minimal thickness of 300 nm were grown on MgO(1 1 1) substrates in high vacuum by pulsed laser deposition (PLD) at various temperatures to achieve a single crystal Cu film with flat terraces without grain boundaries. We investigated the effect of the substrate temperature, the pulse repetition rate, the deposition time and the laser fluence. A temperature threshold is observed above which the growth mode is changed from a uniform flat mode to a three dimensional mode. A combined process involving a germination step at moderate temperature followed by a growth step at higher temperature yields a 450 nm almost continuous film.

  15. Thermal Analysis of the Effect of Oxygen Contamination on Undercooling of Zr-Al-Ni-Cu, Cu-Zr-Ti, and Cu-Ni-Zr-Ti Metallic Glasses (Preprint)

    DTIC Science & Technology

    2009-04-01

    been done on systems other than Zr65Al7.5(Cu17.5Ni10). Zr55Al10(Cu30Ni5) was found to be less sensitive to oxygen content than Zr65Al7.5(Cu17.5Ni10...Zr11Ti34 by arc-melting each of the pure elements under a titanium - gettered atmosphere. Starting materials used were: Al pellets, 99.999%; Cu shot...produce 2-6 g alloyed ingots of each composition. Each ingot was flipped typically 4-5 times in a titanium -gettered, high-purity argon atmosphere

  16. Influence of Melt Superheat, Sr Modifier, and Al-5Ti-1B Grain Refiner on Microstructural Evolution of Secondary Al-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Rakhmonov, Jovid; Timelli, Giulio; Bonollo, Franco

    2016-11-01

    The role of impurity elements and melt superheat on the efficiency of Sr modification, grain refinement with Al-Ti-B and the precipitation behavior of intermetallic phases in a secondary Al-7Si-3Cu-0.3Mg alloy were investigated. Metallographic and thermal analysis techniques were used to quantitatively examine the macro- and microstructural changes occurring with modifier and grain refiner additions at various pouring temperatures. The results indicate how the Sr modification and grain refinement with Al-Ti-B can be effective enough despite the presence of impurity elements in the material and the variation of pouring temperature. A slight poisonous effect of impurities, in particular, Zr and V, in the grain refinement efficiency can be eventually induced due to their action in promoting the formation of primary AlSiTi compounds. Moreover, grain refiner addition exerted a pronounced influence on the precipitation sequence of Fe-rich phases. The TiB2 particles appeared to promote the formation of Al5FeSi during solidification by acting as a favorable nucleation site.

  17. Probing the defect state of individual precipitates grown in an Al-Mg-Si alloy

    SciTech Connect

    Klobes, Benedikt; Korff, Bjoern; Balarisi, Osman; Eich, Patrick; Haaks, Matz; Maier, Karl; Sottong, Reinhard; Huehne, Sven-Martin; Mader, Werner; Staab, Torsten E. M.

    2010-08-01

    Precipitates forming in decomposable aluminum alloys such as Al-Mg-Si evolve toward the corresponding intermetallic phase, which is {beta} (Mg{sub 2}Si) in this case, depending on heat-treatment conditions. Individual {beta} precipitates were produced in an Al-1.11 at. % Mg-0.77 at. % Si alloy and identified using optical as well as electron microscopy. The individual {beta} precipitates could be investigated with regard to their intrinsic crystal defects using a finely focused positron microbeam provided by the Bonn Positron Microprobe. Comparison with theoretical calculations of the Doppler broadening of annihilation radiation reveals that {beta} precipitates most likely do not contain vacancies in either sublattice and that 0.16 is the upper bound of the fraction of trapped positrons. The usage of different enhancement factors had only little influence on the calculations whereas the general gradient approximation affected the contribution of Si orbitals, in particular. Additional measurements of the Doppler broadening based on the radioactive source {sup 68}Ge, which emits high-energy positrons probing bulk regions of the sample, were carried out. These measurements show that {beta} precipitates are sparsely distributed in the Al matrix.

  18. Adsorption of methyl orange from aqueous solutions by calcined ZnMgAl hydrotalcite

    NASA Astrophysics Data System (ADS)

    Yuan, Dong; Zhou, Liangqin; Fu, Dayou

    2017-02-01

    The calcined ZnMgAl hydrotalcite was used for degration of methyl orange (MO). The adsorbent was characterized by XRD, SEM, and FT-IR. The results reveal that the ZnMgAl layered structures were disappeared after calcining for 5 h at 500 °C, then were recovered to layer hydrotalcite structure after adsorbing MO anions. The several important affecting factors of adsorption behavior, including the initial pH value of solution, adsorbent dosage, and the initial concentration of solution, were also discussed. The adsorption kinetic processes were fitted with the equations of pseudo-first-order, pseudo-second-order, and intraparticle diffusion, respectively, in which the pseudo-second-order equation fitting results was the better. The equilibrium isotherm of MO was described by both Langmuir and Freundlich model, but better complys with the Langmuir model ( R 2 > 0.98). The possible adsorption mechanism has been presumed. The adsorption experiments indicated that the ZnMgAl hydrotalcite had good adsorption ability to methyl orange in wastewater.

  19. Unique mechanical properties of nanostructured transparent MgAl2O4 ceramics

    PubMed Central

    2013-01-01

    Nanoindentation tests were performed on nanostructured transparent magnesium aluminate (MgAl2O4) ceramics to determine their mechanical properties. These tests were carried out on samples at different applied loads ranging from 300 to 9,000 μN. The elastic recovery for nanostructured transparent MgAl2O4 ceramics at different applied loads was derived from the force-depth data. The results reveal a remarkable enhancement in plastic deformation as the applied load increases from 300 to 9,000 μN. After the nanoindetation tests, scanning probe microscope images show no cracking in nanostructured transparent MgAl2O4 ceramics, which confirms the absence of any cracks and fractures around the indentation. Interestingly, the flow of the material along the edges of indent impressions is clearly presented, which is attributed to the dislocation introduced. High-resolution transmission electron microscopy observation indicates the presence of dislocations along the grain boundary, suggesting that the generation and interaction of dislocations play an important role in the plastic deformation of nanostructured transparent ceramics. Finally, the experimentally measured hardness and Young’s modulus, as derived from the load–displacement data, are as high as 31.7 and 314 GPa, respectively. PMID:23724845

  20. Unique mechanical properties of nanostructured transparent MgAl2O4 ceramics.

    PubMed

    Zhang, Jie; Lu, Tiecheng; Chang, Xianghui; Wei, Nian; Qi, Jianqi

    2013-06-01

    Nanoindentation tests were performed on nanostructured transparent magnesium aluminate (MgAl2O4) ceramics to determine their mechanical properties. These tests were carried out on samples at different applied loads ranging from 300 to 9,000 μN. The elastic recovery for nanostructured transparent MgAl2O4 ceramics at different applied loads was derived from the force-depth data. The results reveal a remarkable enhancement in plastic deformation as the applied load increases from 300 to 9,000 μN. After the nanoindetation tests, scanning probe microscope images show no cracking in nanostructured transparent MgAl2O4 ceramics, which confirms the absence of any cracks and fractures around the indentation. Interestingly, the flow of the material along the edges of indent impressions is clearly presented, which is attributed to the dislocation introduced. High-resolution transmission electron microscopy observation indicates the presence of dislocations along the grain boundary, suggesting that the generation and interaction of dislocations play an important role in the plastic deformation of nanostructured transparent ceramics. Finally, the experimentally measured hardness and Young's modulus, as derived from the load-displacement data, are as high as 31.7 and 314 GPa, respectively.

  1. Low-strain plasticity in a high pressure die cast Mg-Al alloy

    NASA Astrophysics Data System (ADS)

    Vanna Yang, K.; Cáceres, C. H.; Nagasekhar, A. V.; Easton, M. A.

    2012-03-01

    The Kocks-Mecking method was used to compare the strain-hardening behavior at low strains of high pressure die cast Mg-9 mass% Al alloy and gravity cast fine grained pure Mg specimens. The alloy specimens exhibited a rounded flow curve in contrast with the pure metal's for which macroscopic yielding occurred at a well-defined stress. Microhardness mapping of the cross-section of an alloy specimen showed a surface layer, or skin, with hardness values ˜20 HV above those of the centre or core region. On the assumption that the core strain hardens at the same rate as the pure Mg specimen, it was estimated that ˜20% of the alloy specimen's cross-section was still elastic when the core reached full plasticity. The micromechanics of the elasto-plastic transition in the alloy specimens are discussed.

  2. Li0.5Al0.5Mg2(MoO4)3

    PubMed Central

    Ennajeh, Ines; Zid, Mohamed Faouzi; Driss, Ahmed

    2013-01-01

    The title compound, lithium/aluminium dimagnesium tetra­kis­[orthomolybdate(VI)], was prepared by a solid-state reaction route. The crystal structure is built up from MgO6 octa­hedra and MoO4 tetra­hedra sharing corners and edges, forming two types of chains running along [100]. These chains are linked into layers parallel to (010) and finally linked by MoO4 tetra­hedra into a three-dimensional framework structure with channels parallel to [001] in which lithium and aluminium cations equally occupy the same position within a distorted trigonal–bipyramidal coordination environment. The title structure is isotypic with LiMgIn(MoO4)3, with the In site becoming an Mg site and the fully occupied Li site a statistically occupied Li/Al site in the title structure. PMID:24426975

  3. Low temperature thermoluminescence of annealed LiF:Mg, Cu, P

    NASA Astrophysics Data System (ADS)

    Yang, B.; Gao, H.; Townsend, P. D.

    2006-06-01

    Two main thermoluminescence peaks at 123 and 135 K, plus some weaker features near 65, 95, 242 and 265 K, have been observed in LiF:Mg, Cu, P dosimeter samples that had been annealed at 240 °C. The photon wavelengths in the main peaks span the spectral range from 250 to 470 nm and the maximum intensity is near 310 nm. The origin of these main TL peaks at 123 and 135 K are discussed in terms of a range of defect complexes linked to intrinsic defects. In particular the temperatures match the annealing stages for defect perturbed F-H and VK-e type recombination, respectively. The 65 K feature is considered as the result of electron-hole recombination via relaxed exciton decay. These models suggest reasons for the differences between the various emission bands and the longer wavelength emission linked to high temperature electron decay processes. High temperature annealing modifies the component low temperature TL features with annealing up to ∼300 °C resulting in low temperature TL signal loss, but with partial recovery found for all the low temperature TL peaks when the samples were annealed at higher temperatures up to 390 °C. It is suggested that the intensity loss and the recovery are the summation of numerous effects from a wide range of defect complex variations which exist in these heavily doped materials. The low temperature data offer further insights into the changes which occur in the structures related to optimising the high temperature TL dosimetry.

  4. Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy.

    PubMed

    Colić, Miodrag; Rudolf, Rebeka; Stamenković, Dragoslav; Anzel, Ivan; Vucević, Dragana; Jenko, Monika; Lazić, Vojkan; Lojen, Gorazd

    2010-01-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.

  5. Elastic moduli of nanocrystalline binary Al alloys with Fe, Co, Ti, Mg and Pb alloying elements

    NASA Astrophysics Data System (ADS)

    Babicheva, Rita I.; Bachurin, Dmitry V.; Dmitriev, Sergey V.; Zhang, Ying; Kok, Shaw Wei; Bai, Lichun; Zhou, Kun

    2016-05-01

    The paper studies the elastic moduli of nanocrystalline (NC) Al and NC binary Al-X alloys (X is Fe, Co, Ti, Mg or Pb) by using molecular dynamics simulations. X atoms in the alloys are either segregated to grain boundaries (GBs) or distributed randomly as in disordered solid solution. At 0 K, the rigidity of the alloys increases with decrease in atomic radii of the alloying elements. An addition of Fe, Co or Ti to the NC Al leads to increase in the Young's E and shear μ moduli, while an alloying with Pb decreases them. The elastic moduli of the alloys depend on a distribution of the alloying elements. The alloys with the random distribution of Fe or Ti demonstrate larger E and μ than those for the corresponding alloys with GB segregations, while the rigidity of the Al-Co alloy is higher for the case of the GB segregations. The moduli E and μ for polycrystalline aggregates of Al and Al-X alloys with randomly distributed X atoms are estimated based on the elastic constants of corresponding single-crystals according to the Voigt-Reuss-Hill approximation, which neglects the contribution of GBs to the rigidity. The results show that GBs in NC materials noticeably reduce their rigidity. Furthermore, the temperature dependence of μ for the NC Al-X alloys is analyzed. Only the Al-Co alloy with GB segregations shows the decrease in μ to the lowest extent in the temperature range of 0-600 K in comparison with the NC pure Al.

  6. Chemical-mechanical planarization of Al and Cu thin films for the damascene process

    NASA Astrophysics Data System (ADS)

    Wrschka, Peter Thomas

    In this thesis, the chemical-mechanical planarization (CMP) of Al and Cu thin films is investigated. Our results are obtained by polishing blanket and patterned wafers covered with either Al or Cu utilizing various pads and slurries. Removal rates and metal to SiO2 selectivity values at different pressures and velocities are measured. Furthermore, the results of the successful planarization of Al and Cu damascene structures are reported here. We analyze the surface oxidation of Al before and immediately after the polishing of blanket wafers by X-ray photoelectron spectroscopy. The results show that the CMP of Al proceeds by the growth and removal of the metal passivation layer, i.e. Al2O3. A model for the Al removal mechanism is proposed, which states that the in-situ passivation layer thickness is inversely proportional to the removal rate. The CMP of Cu damascene structures found that the Cu line recess, metal line corrosion and the adherence of slurry particles is determined by the slurry formulation. Cu line dishing, comer rounding of the SiO2 spacer and the pattern density dependence of the removal rate is controlled by the type of pad utilized. We found that moderate etch rates (~10 nm/min) yield high removal rates (~1 μm/min) and low Cu line recess (<10% of Cu line thickness). The occurrence of corrosion is favored at small feature sizes in low pattern density areas. However, this can be avoided by employing passivating agents. The dishing of metal lines and the comer rounding of dielectric spacers is prevented by employing a sufficiently hard pad. The diffusion barrier layer removal (Ta), which shows no chemical etching in the slurry, is affected by the pad and the slurry particle type. A hard pad and especially the use of silica particles enhances the liner removal significantly. Silica particles also adhere less to the metal lines and settle at a substantially slower rate in the slurry than alumina particles.

  7. Influence of Al2O3 sol concentration on the microstructure and mechanical properties of Cu-Al2O3 composite coatings

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojin; Yang, Zhendi; Tang, Ying; Gao, Wei

    2015-03-01

    Copper (Cu) is widely used as electrical conducting and contacting material. However, Cu is soft and does not have good mechanical properties. In order to improve the hardness and wear resistance of Cu, sol-enhanced Cu-Al2O3 nanocomposite coatings were electroplated by adding a transparent Al oxide (Al2O3) sol into the traditional electroplating Cu solution. It was found that the microstructure and mechanical properties of the nanocomposite coatings were largely influenced by the Al2O3 sol concentration. The results show that the Al2O3 nanoparticle reinforced the composite coatings, resulting in significantly improved hardness and wear resistance in comparison with the pure Cu coatings. The coating prepared at the sol concentration of 3.93 mol/L had the best microhardness and wear resistance. The microhardness has been improved by 20% from 145.5 HV (Vickers hardness number) of pure Cu coating to 173.3 HV of Cu-Al2O3 composite coatings. The wear resistance was also improved by 84%, with the wear volume loss dropped from 3.2 × 10-3 mm3 of Cu coating to 0.52 × 10-3 mm3 of composite coatings. Adding excessive sol to the electrolyte deteriorated the properties.

  8. Observation and Prediction of the Hot Tear Susceptibility of Ternary Al-Si-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Easton, Mark A.; Wang, Hao; Grandfield, John; Davidson, Cameron J.; StJohn, David H.; Sweet, Lisa D.; Couper, Malcolm J.

    2012-09-01

    An investigation into the hot tear susceptibility of ternary Al-Si-Mg alloys has been made using direct crack observation, measurement of load response, and predictions made by a modified Rappaz-Drezet-Gremaud (RDG) hot tearing model. A peak in both the hot tear susceptibility and the load at solidus occurred at approximately 0.2Si and 0.15Mg, and then the hot tear susceptibility decreased as the total solute content increased. In general, a good correlation was found among the observation of cracks, the load at solidus, and the predictions of the RDG hot tearing model, although it was shown that correlation with the RDG model depended critically on the fraction solid at which solid coalescence was assumed to occur. A combination of these approaches indicated that when the total Si+Mg content and the Si:Mg ratio increased toward four, a decrease occurred in the hot tear susceptibility because of an increase in the amount of final eutectic formed. At the lowest Si:Mg ratio of 0.25, the RDG model also predicted a lower relative hot tear susceptibility than that measured by the load at solidus. In these alloys, the final stages of solidification are predicted to occur over a large temperature range, and hence, both the predictions of the RDG model and the measurement of the load were dependent on which fraction solid was chosen for grain coalescence. In the alloys studied in this article, the formation of small amounts of the ternary eutectic Al+Mg2Si+Si caused the highest hot tear susceptibility.

  9. Numerical investigation on thermal properties at Cu-Al interface in micro/nano manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiang; Yang, Ping; Chen, Min; Liao, Ningbo

    2012-02-01

    A hybrid model by integrating TTM (two-temperature model) and MD (molecular dynamics) is proposed to investigate the properties on interface of dissimilar materials under thermal flux conditions. This model can describe the electron phonon coupling and phonon scattering at the interface of different metals easily. By comparing the Cu-Cu interface and Cu-Al interface, the atoms of the Cu-Cu interface at different sides tend to move together; while, the atoms displacements of Cu and Al are opposite along the interface, which may cause stress and voids at the interface. Moreover, the propagation mechanisms of nanocracks and the corresponding change of temperature distribution and thermal flux are investigated. The results show that the interfaces of dissimilar materials are prone to crack initiations, leading to delaminations because of the high temperature. All these are useful for understanding the deformation and failure of the interfaces structures. It implies a potential method for design and analysis of interface structure in micro/nano manufacturing.

  10. Optoelectronic properties of delafossite structure CuCr0.93Mg0.07O2 sputter deposited coatings

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Arab Pour Yazdi, Mohammad; Sanchette, Frederic; Billard, Alain

    2016-05-01

    CuCr0.93Mg0.07O2 thin films with improved optoelectronic properties were deposited by reactive magnetron sputtering on fused quartz substrates. The influence of annealing temperature under vacuum on optoelectronic properties of the films was investigated. The amorphous films annealed under vacuum at temperatures higher than 923 K are single-phased delafossite structure, while impurity phases like CuCr2O4 that affect the optoelectronic properties of the films are detected below 873 K. c-axis orientation is observed for CuCr0.93Mg0.07O2 layers and the annealing temperature window in which the films are single-phased delafossite is much larger with Mg doping (923 K  →  1073 K) than that for undoped films (~953 K). The optical and electrical behaviours of the films are enhanced by Mg substitution and their direct band gap energy of about 3.12-3.14 eV is measured. The film possesses the optimum properties after annealing under vacuum at about 1023 K its average transmittance in the visible region can reach 54.23% while the film’s conductivity is about 0.27 S cm-1.

  11. Feasibility study of the direct mechano-chemical synthesis of nanostructured magnesium tetrahydroaluminate (alanate) [Mg(AlH(4))(2)] complex hydride.

    PubMed

    Varin, R A; Chiu, Ch; Czujko, T; Wronski, Z

    2005-10-01

    The present work reports a feasibility study of the direct mechano-chemical synthesis by controlled reactive mechanical alloying (CRMA) in a magneto-ball mill of the nanostructured magnesium tetrahydroaluminate (magnesium alanate) Mg(AlH(4))(2) complex hydride. Three stoichiometric Mg-2Al mixtures, (a) elemental Mg and Al powders, (b) elemental Al powder and commercial AZ91 alloy (Mg-Al-Zn alloy) and (c) powder of as-cast Mg-2Al alloy, have been used. No successful synthesis of Mg(AlH(4))(2) has been achieved. The only nanocrystalline hydride formed up to 270 h of CRMA is beta-MgH(2), and it does not react with Al and H(2) to form Mg(AlH(4))(2). It has been found that there is strong competition between formation of Al(Mg) solid solution and the beta-MgH(2) hydride occurring to a various extent up to approximately 10 h of CRMA in all three Mg-2Al mixtures. It is hypothesized that the presence of Al(Mg) solid solution inhibits the reaction of beta-MgH(2), Al and H(2) to form Mg(AlH(4))(2). Furthermore, despite the fact that after prolonged milling the Al(Mg) solution eventually decomposes into secondary Al(s) (derived from solid solution), the latter retains its physico-chemical characteristics of the former solid solution which still inhibits the reaction to form Mg(AlH(4))(2). Experimental evidence from DSC measurements shows increasing ranges of the melting enthalpy with increasing amounts of Al(Mg) solid solution and consequently the secondary Al(s) for all the three Mg-2Al mixtures. This strongly supports the hypothesis about the different nature of Al(Mg) and the secondary Al(s) as compared to the primary elemental Al powder.

  12. The fabricability and corrosion resistance of several Al-Cu-Li aerospace alloys

    SciTech Connect

    Walsh, D.W.; Danford, M.; Sanders, J.

    1996-12-31

    Al-Li-Cu alloys are attractive to the aerospace industry. The high specific strength and stiffness of these alloys will improve lift efficiency, fuel economy, performance and increase payload capabilities. The objectives of this study were to measure the fabricability of Al 2195 (Al-4Cu-1Li) and to assess the effect of welding on corrosion behavior. Al 2219 samples were used in parallel tests to provide a baseline for the data generated. In this study samples were exposed to 3.5% NaCl and mild corrosive water solutions in both the as received and as welded conditions. Fabricability was assessed using Gleeble testing, Varestraint testing and differential scanning calorimetry (DSC). Results indicate that Alloy 2195 is much more susceptible to hot cracking than Al 2219, and that cracking sensitivity is a strong function of chemical composition within specification ranges for Al 2195. Furthermore, for base metal samples, corrosion in mild corrosive water was more severe than corrosion in salt water. In addition, welding increases the corrosion rate in Al 2195 and 2219, and causes severe localization in Al 2195. Furthermore, autogenously welded Al 2195 samples were more susceptible to attack than heterogeneously welded Al 2195 samples and autogenously welded Al2219 samples were less susceptible to corrosion than autogenously welded Al 2195 samples. Heterogeneously welded samples in both materials had high corrosion rates, but only the Al 2195 material was subject to localization of attack. The partially melted zones of Al 2195 samples were subject to severe, focused attack. In all cases, interdendritic constituents in welded areas and intergranular constituents in base material were cathodic to the Al rich matrix materials. Fabricability and corrosion resistance were correlated to material microstructure using optical microscopy, scanning electron microscopy, electron probe microanalysis, polarization resistance and environmental scanning electron microscopy.

  13. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application.

    PubMed

    Zhou, W R; Zheng, Y F; Leeflang, M A; Zhou, J

    2013-11-01

    Mg-Li-based alloys were investigated for future cardiovascular stent application as they possess excellent ductility. However, Mg-Li binary alloys exhibited reduced mechanical strengths due to the presence of lithium. To improve the mechanical strengths of Mg-Li binary alloys, aluminum and rare earth (RE) elements were added to form Mg-Li-Al ternary and Mg-Li-Al-RE quarternary alloys. In the present study, six Mg-Li-(Al)-(RE) alloys were fabricated. Their microstructures, mechanical properties and biocorrosion behavior were evaluated by using optical microscopy, X-ray diffraction, scanning electronic microscopy, tensile tests, immersion tests and electrochemical measurements. Microstructure characterization indicated that grain sizes were moderately refined by the addition of rare earth elements. Tensile testing showed that enhanced mechanical strengths were obtained, while electrochemical and immersion tests showed reduced corrosion resistance caused by intermetallic compounds distributed throughout the magnesium matrix in the rare-earth-containing Mg-Li alloys. Cytotoxicity assays, hemolysis tests as well as platelet adhesion tests were performed to evaluate in vitro biocompatibilities of the Mg-Li-based alloys. The results of cytotoxicity assays clearly showed that the Mg-3.5Li-2Al-2RE, Mg-3.5Li-4Al-2RE and Mg-8.5Li-2Al-2RE alloys suppressed vascular smooth muscle cell proliferation after 5day incubation, while the Mg-3.5Li, Mg-8.5Li and Mg-8.5Li-1Al alloys were proven to be tolerated. In the case of human umbilical vein endothelial cells, the Mg-Li-based alloys showed no significantly reduced cell viabilities except for the Mg-8.5Li-2Al-2RE alloy, with no obvious differences in cell viability between different culture periods. With the exception of Mg-8.5Li-2Al-2RE, all of the other Mg-Li-(Al)-(RE) alloys exhibited acceptable hemolysis ratios, and no sign of thrombogenicity was found. These in vitro experimental results indicate the potential of Mg-Li-(Al

  14. Preparation of Mg/Al-LDHs intercalated with dodecanoic acid and investigation of its antiwear ability

    SciTech Connect

    Zhao, Dong; Bai, Zhimin; Zhao, Fuyan

    2012-11-15

    Graphical abstract: Comparable studies of nano Mg/Al-LDHs powder on the anti-wear properties of lubricating oil were carried out on four-ball and gear testing machine. Mg/Al-NO{sub 3}{sup −}-LDHs and Mg/Al-DA-LDHs powder in base oil possess an excellent friction-reducing property, with a friction coefficient at 23.9% and 22.2% which are lower than that of the base oil Highlights: ► We synthesized nano Mg/Al-NO{sub 3}{sup −}(DA)-LDHs via coprecipitation and anion exchange. ► The optimal exchanging condition is as follows: water dispersion and pH value of 5. ► The tribological properties of LDHs were studied on four-ball and gear machine. ► We reported nano LHDs as anti-wear materials in lubricates for the first time. ► The greatest decline in friction coefficient of lubricates with LDHs is up to 23.9%. -- Abstract: Layered double hydroxides (LDHs) intercalated with dodecanoic acid have been prepared by anion exchange with Mg/Al-NO{sub 3}{sup −}-LDHs as the precursor under acid condition with water and ethanol as the dispersion medium. The obtained materials were characterized by X-ray diffraction (XRD), thermogravimetric and differential thermal analyser (TG–DTA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and BET. Patterns of XRD and FTIR show that interlayer nitrate ions have substituted with dodecanoic acid and the gallery height has increased from 0.88 nm to 1.99 nm. The interlayer distance of the intercalated materials increases with the increase of pH value due to the different arrangement of interlayer anions. The tribological performance of LDHs precursor and intercalated LDHs in base oil were studied for the first time by using four-ball wear machine and gear testing machine. Experimental results show that the LDHs precursor and intercalated LDHs powder are excellent in friction-reducing, with decreases in friction coefficient by 23.9% and 22.2% respectively comparing with base oil.

  15. Composition dependence of superconductivity in YBa2(Cu(3-x)Al(x))O(y)

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.

    1993-01-01

    Eleven different compositions in the system YBa2(Cu(3-x)Al(x))O(y) (x = 0 to 0.3) have been synthesized and characterized by electrical resistivity measurements, powder X-ray diffraction, and scanning electron microscopy. The superconducting transition temperature T sub c (onset) was almost unaffected by the presence of alumina due to its limited solubility in YBa2Cu3O(7-x). However, T sub c(R = 0) gradually decreased, and the resistive tails became longer with increasing Al2O3 concentration. This was probably due to formation of BaAl2O4 and other impurity phases from chemical decomposition of the superconducting phase by reaction with Al2O3.

  16. Composition dependence of superconductivity in YBa2(Cu(3-x)Al(x))Oy

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1991-01-01

    Eleven different compositions in the system YBa2(Cu(3-x)Al(x))O(y) (x = 0 to 0.3) have been synthesized and characterized by electrical resistivity measurements, powder x-ray diffraction, and scanning electron microscopy. The superconducting transition temperature T sub c (onset) was almost unaffected by the presence of alumina due to its limited solubility in YBa2Cu3O(7-x). However, T sub c(R = 0) gradually decreased, and the resistive tails became longer with increasing Al2O3 concentration. This was probably due to formation of BaAl2O4 and other impurity phases from chemical decomposition of the superconducting phase by reaction with Al2O3.

  17. Interdiffusion in epitaxial ultrathin Co2FeAl/MgO heterostructures with interface-induced perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Hadorn, Jason Paul; Okabayashi, Jun; Sukegawa, Hiroaki; Ohkubo, Tadakatsu; Inomata, Koichiro; Mitani, Seiji; Hono, Kazuhiro

    2017-01-01

    The interfacial atomic structure of epitaxial ultrathin Co2FeAl/MgO(001) heterostructures, which is related to the interface-induced perpendicular magnetic anisotropy (PMA), was investigated using scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray magnetic circular dichroism. Al atoms from the Co2FeAl layer significantly interdiffused into MgO, forming an Al-deficient Co-Fe-Al/Mg-Al-O structure near the Co2FeAl/MgO interface. This atomic replacement may have enhanced the PMA, which is consistent with the observed large perpendicular orbital magnetic moments of Fe atoms at the interface. This work suggests that control of interdiffusion at ferromagnet/barrier interfaces is critical for designing an interface-induced PMA system.

  18. Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase

    SciTech Connect

    Sun, Y.F.; Wei, B.C.; Wang, Y.R.; Li, W.H.; Cheung, T.L.; Shek, C.H.

    2005-08-01

    Zr{sub 48.5}Cu{sub 46.5}Al{sub 5} bulk metallic glass matrix composites with diameters of 3 and 4 mm were produced through water-cooled copper mold casting. Micrometer-sized bcc based B2 structured CuZr phase containing martensite plate, together with some densely distributed nanocrystalline Zr{sub 2}Cu and plate-like Cu{sub 10}Zr{sub 7} compound, was found embedded in a glassy matrix. The microstructure formation strongly depends on the composition and cooling rate. Room temperature compression tests reveal significant strain hardening and plastic strains of 7.7% and 6.4% before failure are obtained for the 3-mm- and 4-mm-diam samples, respectively. The formation of the martensite phase is proposed to contribute to the strain hardening and plastic deformation of the materials.

  19. Effects of Heat Treatment on Grain-Boundary β-Mg17Al12 and Fracture Properties of Resistance Spot-Welded AZ80 Mg Alloy

    NASA Astrophysics Data System (ADS)

    Niknejad, Seyed Tirdad; Liu, Lei; Nguyen, Tam; Lee, Mok-Young; Esmaeili, Shahrzad; Zhou, Norman Y.

    2013-08-01

    The distribution and morphology of β-Mg17Al12 intermetallic phase in resistance spot-welded AZ80 Mg alloy were investigated by means of optical microscopy, scanning electron microscopy, and X-ray diffraction. The influence of intermetallic phase on mechanical strength was studied by tensile shear testing and fractography. The results showed that continuous networks of β-Mg17Al12 formed along grain boundaries in both the nugget and heat-affected zone of the spot-welded AZ80 Mg alloy. Those continuous grain-boundary β-Mg17Al12 networks acted as effective crack propagation paths, which had negative effects on the weld strength. Post-weld solution heat treatment effectively reduced the amount of β-Mg17Al12 and broke the grain-boundary intermetallic networks in both the nugget and heat-affected zone. This significantly increased the weld strength of AZ80 Mg alloy and changed the fracture mode from nugget pull-out in the as-welded condition to through-thickness after heat treatment.

  20. Three-Ply Al/Mg/Al Clad Sheets Fabricated by Twin-Roll Casting and Post-treatments (Homogenization, Warm Rolling, and Annealing)

    NASA Astrophysics Data System (ADS)

    Park, Jaeyeong; Song, Hyejin; Kim, Jung-Su; Sohn, Seok Su; Lee, Sunghak

    2017-01-01

    When thin Al alloy sheets are clad on to twin-roll-cast Mg alloy melt, inherent drawbacks of Mg alloys such as poor formability, corrosion resistance, and surface quality can be effectively complemented. In this study, three-ply Al/Mg/Al clad sheets were fabricated by twin-roll casting and post-treatments. Brittle interfacial layers composed of γ (Mg17Al12) and β (Mg2Al3) phases were inevitably formed, but their proper thickening during the post-treatments led to improvement of interfacial bonding and resultant tensile properties. In particular, warm rolling was an effective way to modify interfacial microstructures and tensile properties by minimizing deformation inhomogeneity and stress concentration.

  1. Electron transport in Al-Cu co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Serin, T.; Atilgan, A.; Kara, I.; Yildiz, A.

    2017-03-01

    To investigate the influence of varying Al content on structural, optical, and electrical properties of ZnO thin films, Al-Cu co-doped ZnO thin films with fixed Cu content at 1 wt. % and different Al contents (1, 3, and 5 wt. %) were successfully synthesized on glass substrates using a sol-gel process. The results indicated that the varying Al content affects not only the grain size and band gap but also the electrical conductivity of the films, and a linear relationship was found between the band gap and strain values of the films. The temperature-dependent electrical conductivity data of the films demonstrated that electron transport was mainly controlled by the grain boundaries at intermediate and high temperatures, whereas it was governed by Mott-variable range hopping at low temperatures. Additionally, 3 wt. % Al content improved the electrical conductivity of Al-Cu co-doped ZnO by lowering the trap density and enhancing the hopping probability.

  2. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  3. Complete oxidation of volatile organic compounds over Ce/Cu/gamma-AL2O3 catalyst.

    PubMed

    Kim, S C; Shim, W G

    2008-05-01

    The effect of cerium (Ce) addition into Cu (5, 10 or 15 wt%)/gamma-Al2O3 catalysts on the catalyst properties and catalytic activity was investigated for the complete oxidation of volatile organic compounds (VOCs). X-ray diffraction (XRD), the Brunauer Emmett Teller method (BET), temperature programmed reduction (TPR) by H2, and N2O pulse titration were used to characterize a series of supported copper catalysts modified with cerium. Cerium was observed to be an inhibitor for 5 wt% and promoter for 10 or 15 wt% Cu/gamma-Al2O3 catalyst. The results of TPR, average crystallite size and dispersion indicated that even though Ce loadings on 10 and 15 wt% Cu/gamma-Al2O3 caused a reduction in BET surface area of the catalysts, the loaded amounts of Ce enhanced the catalytic activity through the formation of highly dispersed copper clusters. Kinetic parameters were developed for individual benzene, toluene and o-xylene (BTX) for 5 wt% Ce/10 wt% Cu/gamma-Al2O3 catalyst at temperatures ranging from 210 to 240 degrees C. The Mars and Van Krevelen model was found to be an adequate description of the catalytic oxidation of BTX for this study. The activity sequence with respect to the BTX molecules was found to be benzene > toluene > o-xylene under the surface-reaction-controlled region.

  4. Influence of temperature on AC conductivity of nanocrystalline CuAlO2

    NASA Astrophysics Data System (ADS)

    Prakash, T.

    2012-07-01

    Nanocrystalline CuAlO2 was synthesized by mechanical alloying of Cu2O and α-Al2O3 powders in the molar ratio of 1:1 for 20 h in toluene medium with tungsten carbide balls and vials using planetary ball mill. The ball milling was carried out at 300 rpm with a ball to powder weight ratio of 10:1 and then annealed at 1373 K in a platinum crucible for 20 h to get CuAlO2 phase with average crystallite size 45 nm. Complex impedance spectroscopic measurement in the frequency region 1 Hz to 10 MHz between the temperatures 333 to 473 K was carried out for nanocrystalline CuAlO2 sample. The obtained complex impedance data was analyzed for AC conductivities, DC and AC conductivities correlations and crossover frequencies ( f co ). The BNN (Barton, Nakajima and Namikawa) relation was applied to understand the correlation between DC and AC conductivities. The observed experimental results were discussed in the paper.

  5. X-ray imaging and controlled solidification of Al-Cu alloys toward microstructures by design

    SciTech Connect

    Clarke, Amy J.; Tourret, Damien; Imhoff, Seth D.; Gibbs, Paul J.; Fezzaa, Kamel; Cooley, Jason C.; Lee, Wah -Keat; Deriy, Alex; Patterson, Brian M.; Papin, Pallas A.; Clarke, Kester D.; Field, Robert D.; Smith, James L.

    2015-01-30

    X-ray imaging, which permits the microscopic visualization of metal alloy solidification dynamics, can be coupled with controlled solidification to create microstructures by design. This x-ray image shows a process-derived composite microstructure being made from a eutectic Al-17.1 at.%Cu alloy by successive solidification and remelting steps.

  6. Real-time investigations of selenization reactions in the system Cu-In-Al-Se

    NASA Astrophysics Data System (ADS)

    Jost, Stefan; Hergert, Frank; Hock, Rainer; Purwins, Michael; Enderle, Ralph

    2006-09-01

    In this article we present results of a detailed study of selenization reactions in the quaternary system Cu-In-Al-Se and of the binary subsystem aluminum-selenium. The investigation of solid-state reactions involved in the formation of the compound semiconductor Cu(In,Al)Se2 was performed using real-time X-ray diffraction (XRD) with a time resolution of 22.5 s while annealing an elemental layer stack of the metals covered with selenium. A temperature-resolved phase analysis shows that the formation of the semiconductor takes place via metal-selenides. Ex-situ XRD measurements of the processed thin films show a phase segregation concerning the aluminum content of the formed chalcopyrite. Subsequent Rietveld-refinement of real-time measurements reveals a formation reaction of the quaternary semiconductor Cu(In,Al)Se2 from the -In2Se3 related crystal structure of (Al,In)2Se3 and Cu2Se as educts.

  7. Removal of HCl, SO₂, and NO by treatment of acid gas with Mg-Al oxide slurry.

    PubMed

    Kameda, Tomohito; Uchiyama, Naoya; Yoshioka, Toshiaki

    2011-01-01

    Although effective treatment of acid gases such as HCl, SO(x), and NO(x) is essential for preventing air pollution, current methods pose other environmental problems such as CaCl₂ leaching, reduced landfill lifetimes, and solid waste production. Here we show that acid gases can be treated simply with a Mg-Al oxide slurry. The contribution of Mg-Al oxide to HCl and SO₂ removal increased as a function of the quantity and temperature of Mg-Al oxide. HCl was removed by the reconstruction of Mg-Al layered double hydroxide (Mg-Al LDH) intercalated with Cl⁻ dissociated from HCl in the slurry. SO₂ was oxidized into SO₃ by oxygen in the air flow, dissolved in an aqueous solution, and removed by the reconstruction of Mg-Al LDH intercalated with dissociated SO₄²⁻. Although less pronounced because of surface adsorption, NO was nonetheless removed by Mg-Al oxide. Our results suggest that simultaneous removal of HCl, SO₂, and NO using a Mg-Al oxide slurry may be possible without the concomitant problems of conventional treatment methods.

  8. Influence of temperature on Al/p-CuInAlSe2 thin-film Schottky diodes

    NASA Astrophysics Data System (ADS)

    Parihar, Usha; Ray, Jaymin; Panchal, C. J.; Padha, Naresh

    2016-06-01

    Al/p-CuInAlSe2 Schottky diodes were fabricated using the optimized thin layers of CuInAlSe2 semiconductor. These diodes were used to study their temperature-dependent current-voltage (I-V) and capacitance-voltage (C-V) analysis over a wide range of 233-353 K. Based on these measurements, diode parameters such as ideality factor ( η), barrier height (ϕbo) and series resistance ( R s) were determined from the downward curvature of I-V characteristics using Cheung and Cheung method. The extracted parameters were found to be strongly temperature dependent; ϕbo increases, while η and R s decrease with increasing temperature. This behavior of ϕbo and η with change in temperature has been explained on the basis of barrier inhomogeneities over the MS interface by assuming a Gaussian distribution (GD) of the ϕbo at the interface. GD of barrier height (BH) was confirmed from apparent BH (ϕap) versus q/2 kT plot, and the values of the mean BH and standard deviation (σs) obtained from this plot at zero bias were found to be 1.02 and 0.14 eV, respectively. Also, a modified ln ( {J_{{s}} /T2 } ) - q2 σ_{{s}}2 /2k2 T2 versus q/ kT plot for Al/p-CuInAlSe2 Schottky diodes according to the GD gives ϕbo and Richardson constant ( A ** ) as 1.01 eV and 26 Acm-2 K-2, respectively. The Richardson constant value of 26 Acm-2 K-2 is very close to the theoretical value of 30 Acm-2 K-2. The discrepancy between BHs obtained from I-V and C-V measurements has also been interpreted.

  9. Thermoelectric study of Y-Ba-Cu-O thin film on MgO substrate prepared by resistive evaporation

    NASA Astrophysics Data System (ADS)

    Pekala, M.; Pekala, K.; Lapsker, I.; Verdyan, A.; Azoulay, J.

    1993-04-01

    Thermoelectric measurements were carried out on Y-Ba-Cu-O thin film deposited on MgO substrate by resistive evaporation technique. A pulverized mixture of Y, BaF 2 and Cu weighed in the atomic proportion was evaporated from resistively heated source onto a MgO substrate kept at 400°C using a simple vacuum system. The substrate temperature was then raised to 700°C for insitu heat treatment. Oxygen was injected through a nozzle placed close to subtrate surface, thus raising the pressure to about 7 Pa during the heat treatment, which lasted for about 15 minutes. The film was then gradually cooled down to room temperature and the pressure raised to atmospheric pressure. The films thus obtained were measured and the values of thermoelectric power measurements in the plane of the film were found to be close to the typical thermoelectric power values of crystalline Y-Ba-Cu-O superconductors. As expected, vanishing values of the thermoelectric power have been observed below 80 K. If the relation observed for sintered Y-Ba-Cu-O is applied for thin films, it suggests an extremely low oxygen deficiency.

  10. A basin-hopping Monte Carlo investigation of the structural and energetic properties of 55- and 561-atom bimetallic nanoclusters: the examples of the ZrCu, ZrAl, and CuAl systems

    NASA Astrophysics Data System (ADS)

    De Souza, Douglas G.; Cezar, Henrique M.; Rondina, Gustavo G.; de Oliveira, Marcelo F.; Da Silva, Juarez L. F.

    2016-05-01

    We report a basin-hopping Monte Carlo investigation within the embedded-atom method of the structural and energetic properties of bimetallic ZrCu, ZrAl, and CuAl nanoclusters with 55 and 561 atoms. We found that unary Zr55, Zr561, Cu55, Cu561, Al55, and Al561 systems adopt the well known compact icosahedron (ICO) structure. The excess energy is negative for all systems and compositions, which indicates an energetic preference for the mixing of both chemical species. The ICO structure is preserved if a few atoms of the host system are replaced by different species, however, the composition limit in which the ICO structure is preserved depends on both the host and new chemical species. Using several structural analyses, three classes of structures, namely ideal ICO, nearly ICO, and distorted ICO structures, were identified. As the amounts of both chemical species change towards a more balanced composition, configurations far from the ICO structure arise and the dominant structures are nearly spherical, which indicates a strong minimization of the surface energy by decreasing the number of atoms with lower coordination on the surface. The average bond lengths follow Vegard’s law almost exactly for ZrCu and ZrAl, however, this is not the case for CuAl. Furthermore, the radial distribution allowed us to identify the presence of an onion-like behavior in the surface of the 561-atom CuAl nanocluster with the Al atoms located in the outermost surface shell, which can be explained by the lower surface energies of the Al surfaces compared with the Cu surfaces. In ZrCu and ZrAl the radial distribution indicates a nearly homogeneous distribution for the chemical species, however, with a slightly higher concentration of Al atoms on the ZrAl surface, which can also be explained by the lower surface energy.

  11. Quantification of copper phases, their reducibility and dispersion in doped-CuCl2/Al2O3 catalysts for ethylene oxychlorination.

    PubMed

    Muddada, N B; Olsbye, U; Leofanti, G; Gianolio, D; Bonino, F; Bordiga, S; Fuglerud, T; Vidotto, S; Marsella, A; Lamberti, C

    2010-09-28

    The comprehensive understanding of the composition, behaviour and reactivity of a catalyst used inside industrial plants is an extremely hard task that is rarely achieved. It requires the use of different spectroscopic techniques, applied under in situ or in operando conditions, and combined with the investigation of the catalyst activity. Often the operating experimental conditions are different from technique to technique and the different results must be compared with care. In the present contribution, we combined in situ XANES/EXAFS, IR spectroscopy of adsorbed CO, CO chemisorption and catalytic tests performed using a pulse reactor in depletive mode. This multitechnical approach resulted in the understanding of the role that dopants (LiCl, KCl, CsCl, MgCl(2) LaCl(3)) have in the nature, relative fraction, reducibility and dispersion of Cu-phases on CuCl(2)/gamma-Al(2)O(3) catalysts for oxychlorination reaction, a key step of the PVC chemistry. In the undoped catalyst two Cu phases coexist: Cu-aluminate and supported CuCl(2), being the latter the only active one [J. Catal., 2000, 189, 91]. EXAFS and XANES highlighted that all dopants contribute more or less efficiently in increasing the fraction of the active copper species, that reaches a value of almost 100% in the case of MgCl(2) or LaCl(3). EXAFS directly, and IR indirectly, proved that the addition of KCl or CsCl (and less efficiently of LiCl) results in the formation of mixed CuK(x)Cl(2+x) or CuCs(x)Cl(2+x) phases, so altering the chemical nature of the active phase. XANES spectroscopy indicates that addition of MgCl(2) or LaCl(3) does not affect the reducibility by ethylene (under static conditions) of the active CuCl(2) phase and that the reducibilility of the new copper-dopant mixed chloride are in the order CuCl(2) > CuLi(x)Cl(2+x) > CuK(x)Cl(2+x) > CuCs(x)Cl(2+x). However, when reduction is done inside a pulse reactor, a more informative picture comes out. The last technique is able to differentiate

  12. The effect of CuO and MgO impurities on the optical properties of lithium potassium borate glass

    NASA Astrophysics Data System (ADS)

    Mustafa Alajerami, Yasser Saleh; Hashim, Suhairul; Saridan Wan Hassan, Wan Muhamad; Ramli, Ahmad Termizi

    2012-07-01

    Previous study proved the efficiency of copper as one of the most luminescent activators. In this work, Li2CO3-K2CO3-H3BO3 (LKB) glasses co-doped with copper oxide (CuO) and magnesium oxide (MgO) have been prepared by chemical quenching technique. Two techniques have been applied to investigate the effect of co-dopants on the physical and optical properties of the new glass network. The X-ray Diffraction (XRD) results showed the amorphous nature of the sample. Fourier transform infrared (FTIR) spectra, energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance have been analyzed in the light of the different oxidation states of co-doped ions in the glass matrix. The exchange in the concentration of magnesium and copper ions illustrated the great effect of magnesium as a co-dopant on the Photoluminescence (PL) emission of LKB doped with copper oxide. Due to the change in the copper concentration, a broad green emission with intensity of around 300 (a.u) has been observed. Enhancement of about three times has been shown with the increment of 0.1 mol% of CuO and MgO as a co-dopant technique. It is well known that magnesium oxide alone does not show strong-luminescence, but during this increment, MgO acted as activator (co-dopant) for Cu ions. This enhancement may contribute to the energy transfer from Mg2+ ions to monovalent Cu+ ion. The current results are discussed and compared with other related studies.

  13. Nano Mg1-xNixAl2O4 spinel pigments for advanced applications

    NASA Astrophysics Data System (ADS)

    Sadek, H. E. H.; Khattab, R. M.; Gaber, A. A.; Zawrah, M. F.

    Nano Mg1-xNixAl2O4 spinel pigments were synthesized via polymeric combustion technique upon heat treatment at 210 °C. Citric acid in the presence of ethylene glycol polymer, with mass ratio of 60:40, was successfully used as a host network for the synthesis process. The obtained spinel was calcined at different temperatures; 300-1200 °C and investigated by thermal analysis (TG-DTG/DTA), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). UV-Vis and diffuse reflectance spectroscopy (DRS) using CIE-Lab/parameters methods have been used for color measurements. The addition of colored pigment on different types of glazes was studied. The results revealed that NiMgAl2O4 spinel beside MgNiO phases were crystallized with particle sizes of 9-21 nm at 600 °C and 52-180 nm at 1200 °C. All prepared samples exhibited green to pale green colors due to the inclusion of Ni2+ inside the spinel structure. The pale green color intensity increased with increasing calcination temperature. The prepared pigment was suitable to convert commercial and opaque glazes to color product to be used in different applications.

  14. MgAl2O4 spinel refractory as containment liner for high-temperature alkali salt containing environments

    DOEpatents

    Peascoe-Meisner, Roberta A [Knoxville, TN; Keiser, James R [Oak Ridge, TN; Hemric, James G [Knoxville, TN; Hubbard, Camden R [Oak Ridge, TN; Gorog, J Peter [Kent, WA; Gupta, Amul [Jamestown, NY

    2008-10-21

    A method includes containing a high-temperature alkali salt containing environment using a refractory containment liner containing MgAl.sub.2O.sub.4 spinel. A method, includes forming a refractory brick containing MgAl.sub.2O.sub.4 spinel having an exterior chill zone defined by substantially columnar crystallization and an interior zone defined by substantially equiaxed crystallization; and removing at least a portion of the exterior chill zone from the refractory brick containing MgAl.sub.2O.sub.4 spinel by scalping the refractory brick containing MgAl.sub.2O.sub.4 spinel to define at least one outer surface having an area of substantially equiaxed crystallization. A product of manufacture includes a refractory brick containing MgAl.sub.2O.sub.4 spinel including an interior zone defined by substantially equiaxed crystallization; and at least one outer surface having an area of substantially equiaxed crystallization.

  15. Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Connie, Ashfiqua Tahseen; Zhao, Songrui; Sadaf, Sharif Md.; Shih, Ishiang; Mi, Zetian; Du, Xiaozhang; Lin, Jingyu; Jiang, Hongxing

    2015-05-25

    In this paper, the optical and electrical properties of Mg-doped AlN nanowires are discussed. At room temperature, with the increase of Mg-doping concentration, the Mg-acceptor energy level related optical transition can be clearly measured, which is separated about 0.6 eV from the band-edge transition, consistent with the Mg activation energy in AlN. The electrical conduction measurements indicate an activation energy of 23 meV at 300 K–450 K temperature range, which is significantly smaller than the Mg-ionization energy in AlN, suggesting the p-type conduction being mostly related to hopping conduction. The free hole concentration of AlN:Mg nanowires is estimated to be on the order of 10{sup 16 }cm{sup −3}, or higher.

  16. Influence of strontium addition on the mechanical properties of gravity cast Mg-3Al-3Sn alloy

    SciTech Connect

    Germen, Gülşah Şevik, Hüseyin; Kurnaz, S. Can

    2013-12-16

    In this study, the effect of strontium (0.01, 0.1, 0.5, 1 wt%) addition on the microstructure and mechanical properties of the gravity cast Mg-3Al-3Sn alloy were investigated. X-ray diffractometry revealed that the main phases are α−Mg, β−Mg{sub 17}Al{sub 12} and Mg{sub 2}Sn in the Mg-3Al-3Sn alloy. With addition The tensile testing results showed that the yield and ultimate tensile strength and elongation of Mg-3Al-3Sn alloy increased by adding Sr up to 0.1 wt.% and then is gradually decreased with the addition of more alloying element.

  17. Synthesis and Study of Optical properties of MgO based TM oxide (TM=Cu, Mn and Zn) nanocomposites

    NASA Astrophysics Data System (ADS)

    Tamizh Selvi, K.; Alamelumangai, K.; Priya, M.; Rathnakumari, M.; Kumar, P. Suresh; Sagadevan, Suresh

    2016-11-01

    A nanocomposite of MgO based transition metal (TM) oxide (TM=Zn, Mn, and Cu) was synthesized using sol-gel method. The powder x-ray diffraction confirmed the phase purity and particle size. The surface morphology and elemental composition were examined by High resolution scanning electron microscopy and energy-dispersive x-ray spectroscopy. The change in optical band gap of the synthesized nanocomposites, by increasing the Mg content was determined using UV-vis spectra and the luminescent properties were analyzed using photoluminescence spectra.

  18. Development of Cu alloy anode and separator coated with Al-Ni intermetallic compound

    SciTech Connect

    Toyokura, K.; Hoshino, K.; Yamamoto, M.

    1996-12-31

    Anode made of Cu alloy and separator coated with Al-Ni intermetallic compound have been developed for VCFC. Anode of Ni alloy is usually used. However, the alternative of cost lower than Ni alloy anode should be needed, because Ni is expensive. Cu is attractive as an anode material for VCFC because it is inexpensive and electrochemically noble. However, the creep resistance of Cu is not sufficient, compared with Ni alloy. In this study, strengthening due to oxide-dispersed microstructure has been developed in Cu-Ni-Al alloy with the two-step sintering process. A wet-seal technique has been widely applied for gas-sealing and supporting of electrolyte in MCFC. Since the wet-seal area is exposed to a severe corrosive environment, corrosion resistance of material for wet sealing is related with the cell performance. Al-Ni plating with post-heat treating for stainless steel has been investigated. Stainless steel substrate was plated with Al after being coated with Ni, then heat-treated at 750 {degrees}C for 1 hour in Ar gas atmosphere. Due to the treatment, Al-Ni intermetallic compound ( mainly Al3Ni2 ) layer is formed on stainless steel surface. The long-term immersion test was carried out till 14,500 hours in 62 mol% Li{sub 2}CO{sub 3}-38 mol% K{sub 2}CO{sub 3} at 650 {degrees}C under air-30%CO{sub 2} atmosphere, for the purpose of evaluating the corrosion resistance and thermal stability of Al-Ni intermetallic compound layer in actual generating with VCFC.

  19. Unusual Solidification Behavior of the Suction-Cast Cu-Zr-Al-Y Alloy Doped with Fe

    NASA Astrophysics Data System (ADS)

    Kozieł, Tomasz; Cios, Grzegorz; Latuch, Jerzy; Pajor, Krzysztof; Bała, Piotr

    2017-04-01

    The effect of iron addition on the microstructure of the Cu-Zr-Al-Y glass-forming alloy was studied. Despite a high superficial cooling rate, small Fe additions (1.5 and 3 pct) induced formation of crystalline CuZr and AlCu2Zr phases on the outer layers of suction-cast rods. As the melt composition near the solid/liquid interface was depleted in Fe, the remaining melt vitrified at a relatively low cooling rate.

  20. Elaboration of AlSi10Mg casting alloys using directional solidification processing

    NASA Astrophysics Data System (ADS)

    Ghedjati, Khadoudja; Fleury, Eric; Hamani, Mohamed Seghir; Benchiheub, Mostefa; Bouacha, Khaider; Bolle, Bernard

    2015-05-01

    The effects of pulling velocity on the solidification behavior and microstructural parameters of AlSi10Mg alloys prepared in a Bridgman-type directional solidification furnace were investigated. The microstructure, particularly the secondary dendritic arm spacing (SDAS), and the Brinell hardness (BH) of the solidified AlSi10Mg alloys were characterized for samples with cylindrical shapes and different conicities ( θ = 0°, 5°, and 10°). Microstructural studies revealed an increased density of α-Al phase dendrites and a decreased interdendritic distance with increasing pulling velocity. The dendrites were found to be preferentially oriented along the pulling direction for low pulling velocities. For larger pulling velocities, the dendrites grew first in the cooling direction but then broke as others nucleated and coarsened. The HB values of the solidified samples increased as the pulling velocity increased. In regard to sample conicity, smaller dendrites were observed for an apex angle of θ = 5°, resulting in the largest HB value. This result was interpreted in terms of the favorable orientation of the dendrite along the pulling direction.