Science.gov

Sample records for al doping concentration

  1. Nitrogen-concentration control in GaNAs/AlGaAs quantum wells using nitrogen δ-doping technique

    SciTech Connect

    Mano, Takaaki; Jo, Masafumi; Kuroda, Takashi; Noda, Takeshi; Sugimoto, Yoshimasa; Sakuma, Yoshiki; Elborg, Martin; Sakoda, Kazuaki

    2014-05-15

    GaNAs/Al{sub 0.35}Ga{sub 0.65}As multiple quantum wells (MQWs) with nitrogen δ-doping were fabricated on GaAs (100) substrates by plasma-assisted molecular beam epitaxy. High controllability of nitrogen-concentrations in the MQWs was achieved by tuning nitrogen δ-doping time. The maximum nitrogen concentration in the MQWs was 2.8%. The MQWs exhibit intense, narrow photoluminescence emission.

  2. High carrier concentration ZnO nanowire arrays for binder-free conductive support of supercapacitors electrodes by Al doping.

    PubMed

    Zheng, Xin; Sun, Yihui; Yan, Xiaoqin; Sun, Xu; Zhang, Guangjie; Zhang, Qian; Jiang, Yaru; Gao, Wenchao; Zhang, Yue

    2016-12-15

    Doping semiconductor nanowires (NWs) for altering their electrical and optical properties is a critical strategy for tailoring the performance of nanodevices. Here, we prepared in situ Al-doped ZnO nanowire arrays by using continuous flow injection (CFI) hydrothermal method to promote the conductivity. This reasonable method offers highly stable precursor concentration for doping that effectively avoid the appearance of the low conductivity ZnO nanosheets. Benefit from this, three orders of magnitude rise of the carrier concentration from 10(16)cm(-3) to 10(19)cm(-3) can be achieved compared with the common hydrothermal (CH) mothed in Mott-Schottky measurement. Possible effect of Al-doping was discussed by first-principle theory. On this basis, Al-doped ZnO nanowire arrays was developed as a binder-free conductive support for supercapacitor electrodes and high capacitance was triggered. It is owing to the dramatically decreased transfer resistance induced by the growing free-moving electrons and holes. Our results have a profound significance not merely in the controlled synthesis of other doping nanomaterials by co-precipitation method but also in the application of binder-free energy materials or other materials.

  3. Investigation of Al doping concentration effect on the structural and optical properties of the nanostructured CdO thin film

    NASA Astrophysics Data System (ADS)

    Gencer Imer, Arife

    2016-04-01

    Nanostructured aluminium (Al) doped cadmium oxide (CdO) films with highly electrical conductivity and optical transparency have been deposited for the first time on soda-lime glass substrates preheated at 250 °C by ultrasonic spray coating technique. The aluminium dopant content in the CdO film was changed from 0 to 5 at%. The influencing of Al doping on the structural, morphological, electrical and optical properties of the CdO nanostructured films has been investigated. Atomic force microscopy study showed the grain size of the films is an order of nanometers, and it decreases with increase in Al dopant content. All the films having cubic structure with a lattice parameter 4.69 Å were determined via X ray diffraction analysis. The optical band gap value of the films, obtained by optical absorption, was found to increase with Al doping. Electrical studies exhibited mobility, carrier concentration and resistivity of the film strongly dependent on the doping content. It has been evaluated that optical band gap, and grain size of the nanostructured CdO film could be modified by Al doping.

  4. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping

    SciTech Connect

    Chen, Yingda; Wu, Hualong; Han, Enze; Yue, Guanglong; Chen, Zimin; Wu, Zhisheng; Wang, Gang; Jiang, Hao

    2015-04-20

    High hole concentration was achieved in Mg-doped Al{sub x}Ga{sub 1−x}N (x ∼ 0.4) by using indium-surfactant-assisted delta doping method. A maximum carrier concentration of 4.75 × 10{sup 18 }cm{sup −3} was obtained, which is three times higher than that of the conventionally delta-doped sample. Sheet resistivity as low as 2.46 × 10{sup 4} Ω/sq was realized, benefiting from the high hole concentration (p). Analysis results show that the Mg incorporation is effectively enhanced, while the compensation ratio and acceptor activation energy (E{sub A}) are significantly reduced by using In surfactant. It was also found that the In surfactant may induce stronger valence-band modulation, contributing to the decrease of E{sub A} and the increase of p.

  5. Effects of Al concentration on microstructural characteristics and electrical properties of Al-doped ZnO thin films on Si substrates by atomic layer deposition.

    PubMed

    Lee, Ju Ho; Lee, Jae-Won; Hwang, Sooyeon; Kim, Sang Yun; Cho, Hyung Koun; Lee, Jeong Yong; Park, Jin-Seong

    2012-07-01

    Al-doped ZnO (AZO) thin films with various Al concentrations were synthesized on Si(001) substrates with native oxide layers by atomic layer deposition process. The effects of the Al concentration on the microstructural characteristics of the AZO thin films grown at 250 degrees C and the correlation between their microstructural characteristics and electrical properties of the AZO thin films were investigated by AFM, XRD, HRTEM and Hall measurements. The XRD and HRTEM results revealed that the crystallinity and electrical properties of the undoped ZnO thin films were enhanced by 2.48 at% Al doping. However, 12.62 at% Al doping induced the deterioration of their crystallinity and electrical properties due to the formation of nano-sized metallic Al clusters and randomly oriented ZnO-based nano-crystals. To enhance the electrical properties of the AZO thin films while maintaining their crystallinity and electrical properties, a moderate Al concentration has to be chosen under the solubility limit of Al in ZnO.

  6. Influence of nitrogen-doping concentration on the electronic structure of CuAlO2 by first-principles studies

    NASA Astrophysics Data System (ADS)

    Liu, Wei-wei; Chen, Hong-xia; Liu, Cheng-lin; Wang, Rong

    2017-02-01

    Effect of N doping concentration on the electronic structure of N-doped CuAlO2 was investigated by density functional theory based on generalized-gradient approximation plus orbital potential. Lattice parameters a and c both increase with increasing N-doping concentration. Formation energies increase with increasing N doping concentration and all N-doped CuAlO2 were structurally stable. The calculated band gaps for N-doped CuAlO2 narrowed compared to pure CuAlO2, which was attributed to the stronger hybridization between Cu-3d and N-2p states and the downward shift of Cu-3p states in conduction bands. The higher the N-doping concentration is, the narrower the band gap. N-doped CuAlO2 shows a typical p-type semiconductor. The band structure changed from indirect to direct after N doping which will benefit the application of the CuAlO2 materials in optoelectronic and electronic devices.

  7. Microscopic potential fluctuations in Si-doped AlGaN epitaxial layers with various AlN molar fractions and Si concentrations

    SciTech Connect

    Kurai, Satoshi Yamada, Yoichi; Miyake, Hideto; Hiramatsu, Kazumasa

    2016-01-14

    Nanoscopic potential fluctuations of Si-doped AlGaN epitaxial layers with the AlN molar fraction varying from 0.42 to 0.95 and Si-doped Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with Si concentrations of 3.0–37 × 10{sup 17 }cm{sup −3} were investigated by cathodoluminescence (CL) imaging combined with scanning electron microscopy. The spot CL linewidths of AlGaN epitaxial layers broadened as the AlN molar fraction was increased to 0.7, and then narrowed at higher AlN molar fractions. The experimental linewidths were compared with the theoretical prediction from the alloy broadening model. The trends displayed by our spot CL linewidths were consistent with calculated results at AlN molar fractions of less than about 0.60, but the spot CL linewidths were markedly broader than the calculated linewidths at higher AlN molar fractions. The dependence of the difference between the spot CL linewidth and calculated line broadening on AlN molar fraction was found to be similar to the dependence of reported S values, indicating that the vacancy clusters acted as the origin of additional line broadening at high AlN molar fractions. The spot CL linewidths of Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with the same Al concentration and different Si concentrations were nearly constant in the entire Si concentration range tested. From the comparison of reported S values, the increase of V{sub Al} did not contribute to the linewidth broadening, unlike the case of the V{sub Al} clusters.

  8. Passivation of phosphorus diffused silicon surfaces with Al{sub 2}O{sub 3}: Influence of surface doping concentration and thermal activation treatments

    SciTech Connect

    Richter, Armin Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-12-28

    Thin layers of Al{sub 2}O{sub 3} are well known for the excellent passivation of p-type c-Si surfaces including highly doped p{sup +} emitters, due to a high density of fixed negative charges. Recent results indicate that Al{sub 2}O{sub 3} can also provide a good passivation of certain phosphorus-diffused n{sup +} c-Si surfaces. In this work, we studied the recombination at Al{sub 2}O{sub 3} passivated n{sup +} surfaces theoretically with device simulations and experimentally for Al{sub 2}O{sub 3} deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al{sub 2}O{sub 3} interface. This pronounced maximum was also observed experimentally for n{sup +} surfaces passivated either with Al{sub 2}O{sub 3} single layers or stacks of Al{sub 2}O{sub 3} capped by SiN{sub x}, when activated with a low temperature anneal (425 °C). In contrast, for Al{sub 2}O{sub 3}/SiN{sub x} stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n{sup +} diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al{sub 2}O{sub 3}/SiN{sub x} stacks can provide not only excellent passivation on p{sup +} surfaces but also on n{sup +} surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.

  9. Analysis of doping concentration and composition in wide bandgap AlGaN:Si by wavelength dispersive x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Kusch, Gunnar; Mehnke, Frank; Enslin, Johannes; Edwards, Paul R.; Wernicke, Tim; Kneissl, Michael; Martin, Robert W.

    2017-03-01

    Detailed knowledge of the dopant concentration and composition of wide band gap Al x Ga{}1-x{{N}} layers is of crucial importance for the fabrication of ultra violet light emitting diodes. This paper demonstrates the capabilities of wavelength dispersive x-ray (WDX) spectroscopy in accurately determining these parameters and compares the results with those from high resolution x-ray diffraction (HR-XRD) and secondary ion mass spectrometry (SIMS). WDX spectroscopy has been carried out on different silicon-doped wide bandgap Al x Ga{}1-x{{N}} samples (x between 0.80 and 1). This study found a linear increase in the Si concentration with the SiH4/group-III ratio, measuring Si concentrations between 3× {10}18 cm‑3 and 2.8× {10}19 cm‑3, while no direct correlation between the AlN composition and the Si incorporation ratio was found. Comparison between the composition obtained by WDX and by HR-XRD showed very good agreement in the range investigated, while comparison of the donor concentration between WDX and SIMS found only partial agreement, which we attribute to a number of effects.

  10. The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu2ZnSnS4 thin-film solar cells prepared by electrodeposition method

    NASA Astrophysics Data System (ADS)

    Mkawi, E. M.; Ibrahim, K.; Ali, M. K. M.; Farrukh, M. A.; Mohamed, A. S.

    2015-11-01

    Al-doped ZnO (AZO) thin films were potentiostatically deposited on indium tin oxide substrates. The influence of the doping level of the ZnO:Al films was investigated. The results of the X-ray diffraction and scanning electron microscopy analysis revealed that the structural properties of the AZO films were found polycrystalline with a hexagonal wurtzite-type structure along the (002) plane. The grain size of the AZO films was observed as approximately 3 μm in the film doping with 4 mol% ZnO:Al concentration. The thin films also exhibited an optical transmittance as high as 90 % in the wavelength range of 100-1,000 nm. The optical band gap increased from 3.33 to 3.45 eV. Based on the Hall studies, the lowest resistivity (4.78 × 10-3 Ω cm) was observed in the film doping with 3 mol% ZnO:Al concentration. The sheet resistant, carrier concentration and Hall mobility values were found as 10.78 Ω/ square, 9.03 × 1018 cm-3 and 22.01 cm2/v s, respectively, which showed improvements in the properties of AZO thin films. The ZnO:Al thin films were used as a buffer layer in thin-film solar cells with the structure of soda-lime glass/Mo/Cu2ZnSnS4/ZnS/ZnO/Al grid. The best solar cell efficiency was 2.3 % with V OC of 0.430 V, J SC of 8.24 mA cm-2 and FF of 68.1 %.

  11. Growth of silicon-doped Al0.6Ga0.4N with low carbon concentration at high growth rate using high-flow-rate metal organic vapor phase epitaxy reactor

    NASA Astrophysics Data System (ADS)

    Ikenaga, Kazutada; Mishima, Akira; Yano, Yoshiki; Tabuchi, Toshiya; Matsumoto, Koh

    2016-05-01

    The relationship between the carbon concentration and electrical characteristics of silicon-doped AlGaN (Al > 0.5) was investigated using a high-flow-rate metal organic vapor phase epitaxy (MOVPE) reactor. The carbon concentration and electrical properties of AlGaN (Al > 0.5) were measured as a function of the growth rate, V/III ratio, and growth temperature. The growth rate of Al0.6Ga0.4N was linearly controlled up to 7.2 µm/h under a constant ammonia (NH3) flow rate. However, a decrease in V/III ratio resulted in an increase in carbon concentration to 8 × 1017 cm-3. With increased growth temperature, the carbon concentration decreased to less than 2 × 1017 cm-3 without showing any reduction in growth rate. As a result, n-type Al0.6Ga0.4N with a carrier concentration of 5.4 × 1018 cm-3 and a resistivity of 2.2 × 10-2 Ω·cm was obtained.

  12. Strong adsorption of Al-doped carbon nanotubes toward cisplatin

    NASA Astrophysics Data System (ADS)

    Li, Wei; Li, Guo-Qing; Lu, Xiao-Min; Ma, Juan-Juan; Zeng, Peng-Yu; He, Qin-Yu; Wang, Yin-Zhen

    2016-08-01

    The adsorption of cisplatin molecule on Al-doped CNTs is investigated using density functional theory. The obtained results indicate that Al-doped carbon nanotubes can strongly absorb cisplatin. After absorbing cisplatin, the symmetry of CNTs has some changes. We innovatively defined a parameter of symmetry variation which relates to the adsorption. By analyzing the electronic structure, it can be concluded that under the circumstance that cisplatin was absorbed by Al-doped CNTs through aluminum atom of Al-doped CNTs. In conclusion, Al-doped CNTs is a kind of potential delivery carrier with high quality for anticancer drug cisplatin.

  13. Semiconducting properties of Al doped ZnO thin films.

    PubMed

    Al-Ghamdi, Ahmed A; Al-Hartomy, Omar A; El Okr, M; Nawar, A M; El-Gazzar, S; El-Tantawy, Farid; Yakuphanoglu, F

    2014-10-15

    Aluminum doped ZnO (AZO) thin films were successfully deposited via spin coating technique onto glass substrates. Structural properties of the films were analyzed by X-ray diffraction, atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy. X-ray diffraction results reveal that all the films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction (002) plane. The crystallite size of ZnO and AZO films was determined from Scherrer's formula and Williamson-Hall analysis. The lattice parameters of the AZO films were found to decrease with increasing Al content. Energy dispersive spectroscopy (EDX) results indicate that Zn, Al and O elements are present in the AZO thin films. The electrical conductivity, mobility carriers and carrier concentration of the films are increased with increasing Al doping concentration. The optical band gap (Eg) of the films is increased with increasing Al concentration. The AZO thin films indicate a high transparency in the visible region with an average value of 86%. These transparent AZO films may be open a new avenue for optoelectronic and photonic devices applications in near future.

  14. Native defect properties and p -type doping efficiency in group-IIA doped wurtzite AlN

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Liu, Wen; Niu, Hanben

    2008-01-01

    Using the first-principles full-potential linearized augmented plane-wave (FPLAPW) method based on density functional theory (DFT), we have investigated the native defect properties and p -type doping efficiency in AlN doped with group-IIA elements such as Be, Mg, and Ca. It is shown that nitrogen vacancies (VN) have low formation energies and introduce deep donor levels in wurtzite AlN, while in zinc blende AlN and GaN, these levels are reported to be shallow. The calculated acceptor levels γ(0/-) for substitutional Be (BeAl) , Mg (MgAl) , and Ca (CaAl) are 0.48, 0.58, and 0.95eV , respectively. In p -type AlN, Be interstitials (Bei) , which act as donors, have low formation energies, making them a likely compensating center in the case of acceptor doping. Whereas, when N-rich growth conditions are applied, Bei are energetically not favorable. It is found that p -type doping efficiency of substitutional Be, Mg, and Ca impurities in w-AlN is affected by atomic size and electronegativity of dopants. Among the three dopants, Be may be the best candidate for p -type w-AlN . N-rich growth conditions help us to increase the concentration of BeAl , MgAl , and CaAl .

  15. Effects of Concentration of Precursor and Annealing Temperature on the Optical Properties of Nanostructured Al- doped Zinc Oxide (AZO) Thin films Prepared by Sol-Gel Spin Coating Technique

    NASA Astrophysics Data System (ADS)

    Yusuf, Gbadebo; Awodugba, Ayodeji; Raimi, Adepoju; Efunwole, Hezekiah; Familusi, Timothy

    2013-03-01

    This work investigates the effects of concentration of precursor and annealing temperature on the optical properties of nanostructured Al-doped (AZO) zinc oxide thin films prepared by sol-gel spin coating technique. The sols were prepared using concentration of zinc acetate dehydrate which was varied between 0.1 and 1.4 mole/liter. Aluminium chloride was used as dopant while the annealing temperature of 400° to 650° was chosen. The results show that the concentration between 0.3 to 0.6 moles/liter zinc acetate dehydrate in solution resulted in good thin films with high preferential c-axis orientation and optical transmission reveal a good transmittance within the visible wavelength spectrum region while the concentrations that fall outside this range did not yield films with good c-axis orientation. The films deposited at annealing temperatures 500° and 650° showed surface structures much smaller than 400°. The Spin coating technique creates ZnO films with potential for application as transparent electrodes in optoelectronic devices such as solar cell. The Authors would like to Acknowledge the encouragement and financial support from the Management of Osun state Polytechnic, Iree.

  16. Electrical and optical properties of Al doped Zno film prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Shrestha, Shankar Prasad; Basnet, Pradeep

    2008-04-01

    Transparent conducting thin films of zinc oxides and aluminum doped zinc oxide (AZO) were prepared by the spray pyrolysis technique using an aqueous solution of dehydrate zinc acetate (CH 3COOH. 2H IIO, pure- Merck A. R. grade) and hex hydrate aluminum chloride (AlCl 3 .6H IIO) on the micro glass slides. The prepared thin films are found to be highly adherent to the substrate and possess uniform conduction. The optical and electrical properties of the film were investigated in terms of different Al concentration in the starting solution and different substrate temperature. Four probe method in Van der pauw configuration was used for electrical resistivity measurements. The resistivity of Al doped film is observed to vary with doping concentration. The lowest resistivity is observed in the film doping with 2 at % [Al/Zn]. The Hall coefficient measurements show that both ZnO and AZO show the n-type conduction. The carrier concentration was observed to be highest at 2 at% of Al doping. The optical measurements of all the samples with aluminum concentrations was found to be >85 % showing the film to be highly transparent in nature. With increase in Al concentration, the optical band gap was observed increase from 3.27 eV to 3.41 eV.

  17. Highly piezoelectric co-doped AlN thin films for wideband FBAR applications.

    PubMed

    Yokoyama, Tsuyoshi; Iwazaki, Yoshiki; Onda, Yosuke; Nishihara, Tokihiro; Sasajima, Yuichi; Ueda, Masanori

    2015-06-01

    We report piezoelectric materials composed of charge-compensated co-doped (Mg, β)(x)Al(1-x)N (β = Zr or Hf) thin films. The effect of the dopant element into AlN on the crystal structure, and piezoelectric properties of co-doped AlN was determined on the basis of a first-principles calculation, and the theoretical piezoelectric properties were confirmed by experimentally depositing thin films of magnesium (Mg) and zirconium (Zr) co-doped AlN (Mg-Zr-doped AlN). The Mg-Zrdoped AlN thin films were prepared on Si (100) substrates by using a triple-radio-frequency magnetron reactive co-sputtering system. The crystal structures and piezoelectric coefficients (d33) were investigated as a function of the concentrations, which were measured by X-ray diffraction and a piezometer. The results show that the d33 of Mg-Zr-doped AlN at total Mg and Zr concentrations (both expressed as β) of 0.35 was 280% larger than that of pure AlN. The experimentally measured parameter of the crystal structure and d33 of Mg-Zr-doped AlN (plotted as functions of total Mg and Zr concentrations) were in very close agreement with the corresponding values obtained by the first-principle calculations. Thin film bulk acoustic wave resonators (FBAR) employing (Mg,Zr)0.13Al0.87N and (Mg, Hf)0.13 Al0.87N as a piezoelectric thin film were fabricated, and their resonant characteristics were evaluated. The measured electromechanical coupling coefficient increased from 7.1% for pure AlN to 8.5% for Mg-Zr-doped AlN and 10.0% for Mg- Hf-doped AlN. These results indicate that co-doped (Mg, β)(x)Al(1-x)N (β = Zr or Hf) films have potential as piezoelectric thin films for wideband RF applications.

  18. Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhai, Chen-Hui; Zhang, Rong-Jun; Chen, Xin; Zheng, Yu-Xiang; Wang, Song-You; Liu, Juan; Dai, Ning; Chen, Liang-Yao

    2016-09-01

    The tuning of structural, optical, and electrical properties of Al-doped ZnO films deposited by atomic layer deposition technique is reported in this work. With the increasing Al doping level, the evolution from (002) to (100) diffraction peaks indicates the change in growth mode of ZnO films. Spectroscopic ellipsometry has been applied to study the thickness, optical constants, and band gap of AZO films. Due to the increasing carrier concentration after Al doping, a blue shift of band gap and absorption edge can be observed, which can be interpreted by Burstein-Moss effect. The carrier concentration and resistivity are found to vary significantly among different doping concentration, and the optimum value is also discussed. The modulations and improvements of properties are important for Al-doped ZnO films to apply as transparent conductor in various applications.

  19. Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition.

    PubMed

    Zhai, Chen-Hui; Zhang, Rong-Jun; Chen, Xin; Zheng, Yu-Xiang; Wang, Song-You; Liu, Juan; Dai, Ning; Chen, Liang-Yao

    2016-12-01

    The tuning of structural, optical, and electrical properties of Al-doped ZnO films deposited by atomic layer deposition technique is reported in this work. With the increasing Al doping level, the evolution from (002) to (100) diffraction peaks indicates the change in growth mode of ZnO films. Spectroscopic ellipsometry has been applied to study the thickness, optical constants, and band gap of AZO films. Due to the increasing carrier concentration after Al doping, a blue shift of band gap and absorption edge can be observed, which can be interpreted by Burstein-Moss effect. The carrier concentration and resistivity are found to vary significantly among different doping concentration, and the optimum value is also discussed. The modulations and improvements of properties are important for Al-doped ZnO films to apply as transparent conductor in various applications.

  20. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  1. Thermoelectric properties of Al-doped ZnO: experiment and simulation

    NASA Astrophysics Data System (ADS)

    Jantrasee, S.; Moontragoon, P.; Pinitsoontorn, S.

    2016-09-01

    Advancement in doping other elements, such as Ce, Dy, Ni, Sb, In and Ga in ZnO[1], have stimulated great interest for high-temperature thermoelectric application. In this work, the effects of Al-doping in a ZnO system on the electronic structure and thermoelectric properties are presented, by experiment and calculation. Nanosized powders of Zn1-x Al x O (x = 0,0.01, 0.02, 0.03 and 0.06) were synthesized by hydrothermal method. From XRD results, all samples contain ZnO as the main phase and ZnAl2O4 (spinel phase) peaks were visible when Al additive concentrations were just 6 at%. The shape of the samples changed and the particle size decreased with increasing Al concentration. Seebeck coefficients, on the other hand, did not vary significantly. They were negative and the absolute values increased with temperature. However, the electrical resistivity decreased significantly for higher Al content. The electronic structure calculations were carried out using the open-source software package ABINIT[2], which is based on DFT. The energy band gap, density of states of Al-doped ZnO were investigated using PAW pseudopotential method within the LDA + U. The calculated density of states was then used in combination with the Boltzmann transport equation[3] to calculate the thermoelectric parameters of Al-doped ZnO. The electronic band structures showed that the position of the Fermi level of the doped sample was shifted upwards in comparison to the undoped one. After doping Al in ZnO, the energy band gap was decreased, Seebeck coefficient and electrical conductivity were increased. Finally, the calculated results were compared with the experimental results. The good agreement of thermoelectric properties between the calculation and the experimental results were obtained.

  2. Ferromagnetic behavior due to Al3+ doping into ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Yingsamphancharoen, T.; Nakarungsee, P.; Herng, T. S.; Ding, J.; Tang, I. M.; Thongmee, S.

    2016-12-01

    Al doped ZnO nanorods (NR's) having Al concentration up to 10 mol% were grown by the hydrothermal method. XRD measurements showed that the Al substituted ZnO NR's maintained the hexagonal wurtzite structure for all levels of Al substitution. EDX measurements of the ZnO:Al NR's indicated that the Al substitution created additional Zn vacancies in the wurtzite structure which is reflected in the enhanced photoluminescence emission in the visible light spectra between 450 and 550 nm of the more heavily doped ZnO:Al NR's. SEM images of the heavier doped ZnO:Al nanorods showed nano nodules being formed on the surface of the hexagonal shaped NR's. The saturation magnetizations of the ZnO:Al NR's as measured by a SQUID magnetometer increased to 10.66×10-4 emu/g as more Al was substituted in. The hysteresis loops for the ZnO:Al NR's began to exhibit novel effects, such as horizontal shift (exchange bias field 0.0382 kOe for the 9 mol% NR) and butterfly shapes.

  3. Effect of impurity doping concentration on solar cell output

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Soclof, S. I.

    1975-01-01

    Experimental measurements were made of solar cell and related photovoltaic parameters for silicon with high concentrations of dopant impurities. The cell output peaked for doping levels around 10 to the 17th power per cu cm. Independent measurements of diffusion length and open circuit voltage at high doping levels showed severe reductions at concentrations above 10 to the 18th power per cu cm. Theoretical reasons are given to explain these reductions. Indication is given of the problems requiring solution before increased cell output can be achieved at high doping levels.

  4. Properties of Al-doped ZnS Films Grown by Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Nagamani, K.; Prathap, P.; Lingappa, Y.; Miles, R. W.; Reddy, K. T. R.

    Zinc sulphide (ZnS) buffer layers are a cadmium free, wider energy band gap, alternative to the cadmium sulphide (CdS) buffer layers commonly used in copper indium gallium diselenide (CuInGaSe2)-based solar cells. However extrinsic doping of the ZnS is important to lower the resistivity of the layers and to improve flexibility of device design. In this work, Al-doped ZnS nanocrystalline films have been produced on glass substrates using a chemical bath deposition (CBD) method. The Al- concentration was varied from 0 at. % to 10 at. %, keeping other deposition parameters constant. The elemental composition of a typical sample with 6 at. % 'Al' in ZnS was Zn=44.9 at. %, S=49.8 at. % and Al=5.3 at.%. The X-ray diffraction data taken on these samples showed a broad peak corresponding to the (111) plane of ZnS while the crystallite size varied in the range, 8 - 15 nm, depending on the concentration of Al in the layers. The films with a Al-doping content of 6 at. % had an optical transmittance of 75% in the visible range and the energy band gap evaluated from the data was 3.66 eV. The films n-type electrical conductivities and the electrical resistivity varied in the range, 107-103 Ωcm, it decreasing with an increase of the Al-concentration in the solution.

  5. Substrate temperature effects on the electrical properties of sputtered Al doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kim, Deok-Kyu; Kim, Hong-Bae

    2015-09-01

    Al doped ZnO (AZO) thin films were deposited on glass substrate by RF magnetron sputtering system. The dependence of structural, electrical, and optical properties on the substrate temperature variations in the range of 0-400 °C was investigated. The structural results reveal that the AZO films are (0 0 2) oriented and at 400 °C a considerable crystallinity enhancement of the films is observed. With increasing the substrate temperature, the resistivity is increased by decreasing of the mobility and carrier concentration. X-ray photoelectron spectroscopy (XPS) results show that the mobility and the carrier concentration are decreased by increasing the surface bonding and decreasing the Al content, respectively. In our case, the increase in substrate temperature suppressed the incorporation of Al atoms together with the decrease of oxygen vacancy. The improvement of Al doping efficiency is a very important factor to obtain better electrical properties at high substrate temperatures.

  6. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice.

    PubMed

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-14

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  7. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  8. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    PubMed Central

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-01-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN. PMID:28290480

  9. Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films.

    PubMed

    Hsu, Chih-Hsiung; Chen, Dong-Hwang

    2010-07-16

    Al-doped ZnO (AZO) nanorod array thin films with various Al/Zn molar ratios were synthesized by chemical bath deposition. The resultant AZO nanorods were well-aligned at the glass substrate, growing vertically along the c-axis [001] direction. In addition, they had an average diameter of 64.7 +/- 16.8 nm and an average length of about 1.0 microm with the structure of wurtzite-type ZnO. Analyses of energy dispersive x-ray spectra and x-ray photoelectron spectra indicated that Al atoms had been doped into the ZnO crystal lattice. The doping of Al atoms did not result in significant changes in the structure and crystal orientation, but the electrical resistivity was found to increase first and then decrease with increasing Al content owing to the increase of carrier concentration and the decrease of mobility. In addition, the transmission in the visible region increased but the increase was reduced at higher Al doping levels. After hydrogen treatment, the morphology of the AZO nanorod array thin films remained unchanged. However, the electrical resistivity decreased significantly due to the formation of oxygen vacancies and interstitial hydrogen atoms. When the real Al/Zn molar ratio was about 3.7%, the conductivity was enhanced about 1000 times and a minimum electrical resistivity of 6.4 x 10( - 4) Omega cm was obtained. In addition, the transmission of the ZnO nanorod array thin film in the visible region was significantly increased but the increase was less significant for the AZO nanorod array thin film, particularly at higher Al doping levels. In addition, the current-voltage curves of the thin film devices with ZnO or AZO nanorod arrays revealed that AZO had a higher current response than ZnO and hydrogen treatment led to a more significant enhancement of current responses (about 100-fold).

  10. Tailoring Energy Bandgap of Al Doped ZnO Thin Films Grown by Vacuum Thermal Evaporation Method.

    PubMed

    Vyas, Sumit; Singh, Shaivalini; Chakrabarti, P

    2015-12-01

    The paper presents the results of our experimental investigation pertaining to tailoring of energy bandgap and other associated characteristics of undoped and Al doped ZnO (AZO) thin film by varying the atomic concentration of Al in ZnO. Thin films of ZnO and ZnO doped with Al (1, 3, and 5 atomic percent (at.%)) were deposited on silicon substrate for structural characterization and on glass substrate for optical characterization. The dependence of structural and optical properties of Al doped ZnO on the atomic concentration of Al added to ZnO has been reported. On the basis of the experimental results an empirical formula has been proposed to calculate the energy bandgap of AZO theoretically in the range of 1 to 5 at.% of Al. The study revealed that AZO films are composed of smaller and larger number of grains as compared to pure ZnO counterpart and density of the grains was found to increase as the Al concentration increased (from 1 to 5 at.%). The transmittance in the visible region was greater than 90% and found to increase with increasing Al concentration up to 5 at.%. The optical bandgap was found to increase initially with increase in atomic concentration of Al concentration up to 3 at.% and decrease thereafter with increasing concentration of Al.

  11. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices

    PubMed Central

    Zheng, T. C.; Lin, W.; Liu, R.; Cai, D. J.; Li, J. C.; Li, S. P.; Kang, J. Y.

    2016-01-01

    A novel multidimensional Mg-doped superlattice (SL) is proposed to enhance vertical hole conductivity in conventional Mg-doped AlGaN SL which generally suffers from large potential barrier for holes. Electronic structure calculations within the first-principle theoretical framework indicate that the densities of states (DOS) of the valence band nearby the Fermi level are more delocalized along the c-axis than that in conventional SL, and the potential barrier significantly decreases. Hole concentration is greatly enhanced in the barrier of multidimensional SL. Detailed comparisons of partial charges and decomposed DOS reveal that the improvement of vertical conductance may be ascribed to the stronger pz hybridization between Mg and N. Based on the theoretical analysis, highly conductive p-type multidimensional Al0.63Ga0.37N/Al0.51Ga0.49N SLs are grown with identified steps via metalorganic vapor-phase epitaxy. The hole concentration reaches up to 3.5 × 1018 cm−3, while the corresponding resistivity reduces to 0.7 Ω cm at room temperature, which is tens times improvement in conductivity compared with that of conventional SLs. High hole concentration can be maintained even at 100 K. High p-type conductivity in Al-rich structural material is an important step for the future design of superior AlGaN-based deep ultraviolet devices. PMID:26906334

  12. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    DOE PAGES

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  13. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    SciTech Connect

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  14. Synthesis and Characterization of Al doped ZnO (AZO) by Sol-gel Method

    NASA Astrophysics Data System (ADS)

    Munawaroh, H.; Wahyuningsih, S.; Ramelan, A. H.

    2017-02-01

    Al doped ZnO (AZO) nanoparticles have been successfully synthesized by the simple sol-gel method. The starting materials of Al doped ZnO were Zn(CH3COO)2·2H2O and Al(OH)(CH3COO)2. Preparation of AZO using polyethylene glycol as a surfactant. The solution of precursors was stirred at 60 °C for 2 hour in the conditions of Al contents are 0%, 2%, 3% and 4% (g/mL), respectivelly. In the last step reaction, gelation occurred from solution to sol gel. The sol gel then were dried at 60 °C following by annealing process for crystalization. By this simple sol gel method, the nanoparticles have been produced. The characterizations were conducted X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourrier Transform Infra-Red (FTIR) and X-Ray Fluorescence (XRF). XRD analysis reveals that all samples has crystallizes in polycrystalline nature and exhibit no other impurity phase. The variation of Al doped ZnO slighly affect the crystallinity and crystal size. Both crystallinity and crystal size decrease with increasing of Al content in AZO. Morphology of AZO shown the particle distribution more equitable with increased Al content. The synthesized AZO gaved shift peak absorption of asymetric and symetric vibrations of Zn-O-Zn around wavelengths of 680 cm-1 and 1630 cm-1 atributed of the uptake of the Al-O-Al bond instead Zn-O-Zn. XRF analysis shown that the increase ratio of Al entering into Zn influenced the Al dopant concentration.

  15. FIRST PRINCIPLES STUDY ON ELECTRONIC AND OPTICAL PROPERTIES OF Al-DOPED γ-Ge3N4

    NASA Astrophysics Data System (ADS)

    Ding, Y. C.; Xiang, A. P.; Zhu, X. H.; Luo, J.; Hu, X. F.

    2012-12-01

    First principles study of the structural, electronic and optical properties of Al-doped γ-Ge3N4 with different concentration has been reported using the pseudo-potential plane wave method within the generalized gradient approximation (GGA). The binding energy and the formation energy suggest that Aluminum (Al) impurities prefer to substitute Ge at octahedral sites. Different doping concentrations are considered and the corresponding density of states (DOS) are analyzed. Calculated DOS indicates that there are holes in the top of the valance band after doping, meaning a p-type doping. We study the complex dielectric function, the absorption coefficient, and the electron energy loss spectra. It is demonstrated that for the low Al concentration, the material exhibits the dielectric behavior and for the high Al concentration, the material has possibilities to exhibit some metallic behavior. The γ-Ge3N4 doped with Al has a much higher static dielectric constant than undoped γ-Ge3N4, implying its potential applications in electronics and optics.

  16. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    PubMed

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  17. Exploration of Al-Doped ZnO in Photovoltaic Thin Films

    NASA Astrophysics Data System (ADS)

    Ciccarino, Christopher; Sahiner, M. Alper

    The electrical properties of Al doped ZnO-based thin films represent a potential advancement in the push for increasing solar cell efficiency. Doping with Aluminum will theoretically decrease resistivity of the film and therefore achieve this potential as a viable option in the P-N junction phase of photovoltaic cells. The n-type semi-conductive characteristics of the ZnO layer will theoretically be optimized with the addition of Aluminum carriers. In this study, Aluminum doping concentrations ranging from 1-3% by mass were produced, analyzed, and compared. Films were developed onto ITO coated glass using the Pulsed Laser Deposition technique. Target thickness was 250 nm and ellipsometry measurements showed uniformity and accuracy in this regard. Active dopant concentrations were determined using Hall Effect measurements. Efficiency measurements showed possible applications of this doped compound, with upwards of 7% efficiency measured, using a Keithley 2602 SourceMeter set-up. XRD scans showed highly crystalline structures, with effective Al intertwining of the hexagonal wurtzile ZnO molecular structure. This alone indicates a promising future of collaboration between these two materials.

  18. Al-doping influence on crystal growth of Ni-Al alloy: Experimental testing of a theoretical model

    NASA Astrophysics Data System (ADS)

    Rong, Xi-Ming; Chen, Jun; Li, Jing-Tian; Zhuang, Jun; Ning, Xi-Jing

    2015-12-01

    Recently, a condensing potential model was developed to evaluate the crystallization ability of bulk materials [Ye X X, Ming C, Hu Y C and Ning X J 2009 J. Chem. Phys. 130 164711 and Peng K, Ming C, Ye X X, Zhang W X, Zhuang J and Ning X J 2011 Chem. Phys. Lett. 501 330], showing that the best temperature for single crystal growth is about 0.6Tm, where Tm is the melting temperature, and for Ni-Al alloy, more than 6 wt% of Al-doping will badly reduce the crystallization ability. In order to verify these predictions, we fabricated Ni-Al films with different concentrations of Al on Si substrates at room temperature by pulsed laser deposition, and post-annealed the films at 833, 933, 1033 (˜ 0.6Tm), 1133, and 1233 K in vacuum furnace, respectively. The x-ray diffraction spectra show that annealing at 0.6Tm is indeed best for larger crystal grain formation, and the film crystallization ability remarkably declines with more than 6-wt% Al doping. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130071110018) and the National Natural Science Foundation of China (Grant No. 11274073).

  19. Al- and Cu-doped BaSi2 films on Si(111) substrate by molecular beam epitaxy and evaluation of depth profiles of Al and Cu atoms

    NASA Astrophysics Data System (ADS)

    Ajmal Khan, M.; Takeishi, M.; Matsumoto, Y.; Saito, T.; Suemasu, T.

    The main objective of the present work is to evaluate and compare the depth profiles of Al and Cu atoms in in-situ doped BaSi2. Furthermore, it is also desired to investigate and compare the carrier concentration of Al-doped as well as Cu-doped BaSi2 films and qualify as a potential dopant-candidate for more efficient solar cells of BaSi2. During the experiment, reactive deposition epitaxy and molecular beam epitaxy were used to develop the samples. X-ray diffraction (XRD) measurements and secondary ion mass spectroscopy (SIMS), were used to determine the structure, depth profile and composition of the already grown films. The electrical properties were characterized by Hall measurement using the van der Pauw method. In case of Al-doped BaSi2 films, it was not encouraging result due to diffusion and segregation of Al in both the surface and BaSi2/ Si interface regions. On the other hand, those phenomena were not observed for Cu-doped BaS2 films. Heavily Cu-doped BaSi2 showed n+ conductivity, differently from our prediction.

  20. Structural and optical properties of pure and Al doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Kumari, N.; Tewari, S.; Bhattacharjee, A.

    2013-11-01

    Pure and Al doped zinc oxide (ZnO) were prepared by co-precipitation method. The dopant concentration [Al/Zn in atomic percentage (wt%)] was varied from 0 to 3 wt%. Structural characterisation of the samples performed with XRD and SEM-EDAX confirmed that polycrystalline nature of samples containing ZnO nanoparticles of size in the range of 97-47 nm. UV-Vis studies showed that the absorbance peaks, observed in the wavelength range of 800-250 nm, decreased with the increase in dopant concentration indicating widening of the band gap. The calculations of band gap (analyzed in terms of Burstein-Moss shift) from the reflectance showed an increase from 3.37 to 3.49 eV with increasing Al concentration.

  1. Electron transport in Al-doped ZnO nanolayers obtained by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Blagoev, B. S.; Dimitrov, D. Z.; Mehandzhiev, V. B.; Kovacheva, D.; Terziyska, P.; Pavlic, J.; Lovchinov, K.; Mateev, E.; Leclercq, J.; Sveshtarov, P.

    2016-03-01

    Al-doped ZnO thin films with different Al content were prepared by atomic layer deposition (ALD). To carry out thermal ALD, diethyl zinc (DEZ) and tri-methyl aluminium (TMA) were used as Zn and Al precursors, respectively, and water vapor as oxidant. Various numbers n of DEZ and m TMA cycles was used to obtain different [ZnO] n [Al2O3] m films, where n = 100 - 95, m = 1 - 5. The X-ray diffraction analysis showed a predominantly (100) oriented polycrystalline phase for the ZnO:Al films with a low Al content (m = 1 - 3) and an amorphous structure for pure Al2O3. In ZnO:Al with a higher Al content (m = 4 - 6) the (100) reflection disappeared and the (002) peak increased. The resistivity of the films decreased with the increase in the Al content, reaching a minimum of 3.3×10-3 Ω cm at about 1.1 % Al2O3 for the [ZnO]99[Al2O3]2 sample; for higher dopant concentrations, the resistivity increased because of the increased crystal inhomogeneity due to axis reorientation.

  2. Europium doped lanthanum zirconate nanoparticles with high concentration quenching

    SciTech Connect

    Alaparthi, Suresh B.; Lu, Long; Tian, Yue; Mao, Yuanbing

    2014-01-01

    Graphical abstract: - Highlights: • Eu:La{sub 2}Zr{sub 2}O{sub 7} nanoparticles were prepared facilely by a kinetically modified molten salt method. • High color purity and concentration quenching were achieved in these La{sub 2}Zr{sub 2}O{sub 7}:Eu nanoparticles. • Concentration quenching mechanism was discussed for Eu{sup 3+} in these Eu:La{sub 2}Zr{sub 2}O{sub 7} nanoparticles. - Abstract: A series of Eu{sup 3+} doped lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7}) nanoparticles (NPs, 20 ± 5 nm in diameter) with cubic fluorite structure were facilely synthesized by a kinetically modified molten salt synthetic (MSS) process and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and photoluminescence spectra (PL). Under the excitation of 405 nm, intense red emission with high color purity can be observed in the Eu{sup 3+} doped La{sub 2}Zr{sub 2}O{sub 7} NPs. Moreover, the as-prepared Eu:La{sub 2}Zr{sub 2}O{sub 7} NPs possess high concentration quenching, which is as high as ∼32.5 mol% of europium dopants in the La{sub 2}Zr{sub 2}O{sub 7} host. The corresponding concentration quenching mechanism was discussed as well. Our results confirm that the kinetically modified MSS process is a promising approach for preparing rare earth (RE) ions doped A{sub 2}B{sub 2}O{sub 7} nanoparticles with uniform RE doping and high concentration quenching.

  3. ALCHEMI of Fe-doped B2-ordered NiAl alloys with different doping levels

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1994-09-01

    The ALCHEMI technique yields exact expressions for best-fit parameters in terms of ionization localization constants and site distributions of 3 elements distributed over two sublattices. In this paper, a graphical plotting technique is applied to Fe-doped NiAl B2-ordered alloys Ni{sub 0.5-x}Fe{sub x}Al{sub 0.5}, with x=0.02 or 0.10. The thin foil samples were examined in an electron microscope with an x-ray spectrometer.

  4. Solid-state tellurium doping of AlInP and its application to photovoltaic devices grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dai, P.; Tan, M.; Wu, Y. Y.; Ji, L.; Bian, L. F.; Lu, S. L.; Yang, H.

    2015-03-01

    Solid-state tellurium (Te) is used as an n-type dopant of AlInP grown by molecular beam epitaxy (MBE). The carrier concentration proportionally increases with increasing Te beam equivalent pressure (BEP) up to a high doping density of 1×1019 cm-3. The incorporation of Te into AlInP results in a mirror-like surface at a moderate doping density due to its surfactant effect, while the surface roughness increased with a further rising of Te doping concentration. Furthermore, for the same In and Al flux ratio, the increase of the Te flux leads to a decreased In-content, but little effect on the alloy's disorder is observed. The highly Te-doped AlInP was used in a GaAs solar cell as a window layer. As compared with the solar cell with the Si-doped AlInP window layer, the device with the Te-doped AlInP window layer exhibits the higher efficiency and an extended increase under concentrated solar illumination, due to the benefits of the higher doping density in the Te-doped epilayer.

  5. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    NASA Astrophysics Data System (ADS)

    Nasir, M. F.; Zainol, M. N.; Hannas, M.; Mamat, M. H.; Rahman, S. A.; Rusop, Mohamad

    2016-07-01

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 103 Ωcm-1. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.

  6. Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Liu, Qiang; Li, Jiang; Ivanov, Maxim; Ba, Xuewei; Yuan, Yong; Lin, Li; Chen, Min; Liu, Wenbin; Kou, Huamin; Shi, Yun; Chen, Haohong; Pan, Yubai; Cheng, Xiaonong; Guo, Jingkun

    2014-11-01

    Erbium doped yttrium aluminum garnet (Er:YAG) transparent ceramics with different Er doping concentrations were fabricated from powder mixtures of α-Al2O3, Y2O3, and Er2O3 with tetraethoxysilane (TEOS) and MgO as sintering aids by solid-state reactive sintering. The sintering temperatures were from 1500 °C up to 1750 °C. Densification, microstructure evolution and optical transparency of Er:YAG ceramics with different doping concentrations were examined. For all the doping concentration, fully dense Er:YAG transparent ceramics with homogeneous grain size distributions around 20-23 μm were obtained by sintering at 1750 °C for 50 h, whose transmittances were all above 83% at the wavelength of 1200 nm. The grain growth kinetic of Er:YAG ceramics was also investigated as a function of erbium content. The calculated activation energies for grain growth of the 0.5, 1.0, 5.0, and 10 at%Er:YAG ceramics were 779, 855, 805, and 861 kJ/mol, respectively. The luminescence spectra were also measured and discussed.

  7. Enhanced Dielectric Properties and High-Temperature Microwave Absorption Performance of Zn-Doped Al2O3 Ceramic

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Luo, Fa; Wei, Ping; Zhou, Wancheng; Zhu, Dongmei

    2015-07-01

    To improve the dielectric and microwave absorption properties of Al2O3 ceramic, Zn-doped Al2O3 ceramic was prepared by conventional ceramic processing. X-ray diffraction analysis confirmed that Zn atoms successfully entered the Al2O3 ceramic lattice and occupied Al sites. The complex permittivity increased with increasing Zn concentration, which is mainly attributed to the increase in charged vacancy defects and densification of the Al2O3 ceramic. In addition, the temperature-dependent complex permittivity of 3% Zn-doped Al2O3 ceramic was determined in the temperature range from 298 K to 873 K. Both the real and imaginary parts of the complex permittivity increased monotonically with increasing temperature, which can be ascribed to the shortened relaxation time and increasing electrical conductivity. The increased complex permittivity leads to a great improvement in microwave absorption. In particular, when the temperature is up to 873 K, the 3% Zn-doped Al2O3 ceramic exhibited the best absorption performance with a maximum peak (-12.1 dB) and broad effective absorption bandwidth (reflection loss less than -10 dB from 9.3 GHz to 12.3 GHz). These results reveal that Zn-doped Al2O3 ceramic is a promising candidate for use as a kind of high-temperature microwave absorption material.

  8. Structural, optical and electronic structure studies of Al doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Devi, Vanita; Kumar, Manish; Shukla, D. K.; Choudhary, R. J.; Phase, D. M.; Kumar, Ravindra; Joshi, B. C.

    2015-07-01

    Structural, optical and electronic structure of Al doped ZnO thin films grown using pulsed laser deposition on glass substrate are investigated. X-ray diffraction measurements reveal that all the films are textured along the c-axis and have wurtzite structure. Al doping in ZnO films leads to increase in grain size due to relaxation in compressive stress. Enhancement in band gap of ZnO films with the Al doping is also noticed which can be ascribed to the Brustein-Moss shift. The changes in the electronic structure caused by Al in the doped thin film samples are understood through X-ray absorption measurements.

  9. Negative Magnetoresistance in Silicon Doped AlAs-GaAs Short Period Superlattices

    NASA Astrophysics Data System (ADS)

    Gougam, A. B.; Sicart, J.; Robert, J. L.

    1997-01-01

    We report the negative magnetoresistance effect observed in GaAs-AlAs short period superlattices doped selectively in GaAs or in AlAs or doped uniformly. This doping technique introduces deep donor states with different thermal activation energies. Consequently, the low temperature electron concentration is different in samples doped at the same silicon concentration. We find the magnetic correction to the conductivity increasing with the free carrier density. The low magnetic field data are interpreted in the framework of a weak localization model derived from the Kawabata theory in 3D anisotropic systems. The theory of effective mass in superlattices is applied and we find that the inelastic scattering time does not depend on the doping modulation. Nous présentons des résultats de magnétorésistance négative obtenus avec des superréseaux à courte période de GaAs-AlAs dopés au silicium sélectivement dans GaAs ou AlAs et uniformément dopés. Ce type de dopage permet d'introduire des niveaux donneurs d'énergie d'activation thermique différents. Ceci permet d'obtenir à basse température des concentrations d'électrons différentes à partir d'une concentration initiale de dopant identique pour tous les échantillons. Nous mettons ainsi en évidence une correction magnétique à la conductivité qui augmente avec la densité de porteurs libres. Les mesures à faible champ sont interprétées en termes de faible localisation à partir du modèle de Kawabata 3D dans lequel l'anisotropie de masse effective du superréseau est introduite. Nous trouvons que le temps de diffusion inélastique ne dépend pas de la modulation de dopage.

  10. Phase structure and photoluminescence properties of Er 3+-doped Al 2O 3 powders prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Wang, X. J.; Lei, M. K.; Yang, T.; Wang, H.

    2004-08-01

    The Er 3+-doped Al 2O 3 powders have been prepared by the sol-gel method, using the aluminium isopropoxide [Al(OC 3H 7) 3]-derived Al 2O 3 sols with addition of the erbium nitrate [Er(NO 3) 3 · 5H 2O]. The different phase structure, including three crystalline types of (Al,Er) 2O 3 phases, γ, θ, α, and two Er-Al-O phases, ErAlO 3 and Al 10Er 6O 24, was obtained with the 0-5 mol% Er 3+-doped Al 2O 3 powders at the different sintering temperature of 600-1200 °C. The phase structure has an evident influence on the photoluminescence (PL) properties for the Er 3+-doped Al 2O 3 powders. For the phase mixture of γ-(Al,Er) 2O 3 and θ-(Al,Er) 2O 3 in minor amounts with the different Er 3+ doping concentration sintered at 900 °C, the PL spectra of the full widths at half maximum (FWHM) of about 55 nm were observed with a main peak at λ=1.533 μm and a side peak at λ=1.549 μm. The stronger PL intensity was detected with the 0.5 and 1 mol% Er 3+ doping concentration, and decreased with further increasing the Er 3+ doping concentration. The dramatic concentration quenching effect took place above the 1.5 mol% Er 3+ doping concentration. At the 1 mol% Er 3+ doping concentration, the PL intensity of the Er 3+-doped Al 2O 3 powders increased with the phase structure changed from γ-(Al,Er) 2O 3 → θ-(Al,Er) 2O 3 → α-(Al,Er) 2O 3, corresponding to the increase of sintering temperature from 600 to 1200 °C. The PL spectrum was observed with the main sharp peak at λ=1.533 μm and many sharp side peaks at the different wavelengths for the α-(Al,Er) 2 O 3, ErAlO 3 and Al 10Er 6O 24 phases prepared at 1200 °C.

  11. Enhancement ZnO nanofiber as semiconductor for dye-sensitized solar cells by using Al doped

    NASA Astrophysics Data System (ADS)

    Sutanto, Bayu; Arifin, Zainal; Suyitno, Hadi, Syamsul; Pranoto, Lia Muliani; Agustia, Yuda Virgantara

    2016-03-01

    The purpose of this research is to produce Al-doped ZnO (AZO) nanofibers in order to enhance the performance of Dye-Sensitized Solar Cell (DSSC). AZO nanofiber semiconductor was manufactured by electrospinning process of Zinc Acetate Dehydrate (Zn(CH3COO)2) solution and precursor of Polyvinyl Acetate (PVA). The doping process of Al was built by dissolving 0-4 wt% in concentrations of AlCl3 to Zinc Acetate. AZO green fiber was sintered at temperature 500°C for an hour. The result shows that Al doped ZnO had capability to increase the electrical conductivity of semiconductor for doping 0, 1, 2, 3, and 4 wt% for 2,07×10-3; 3,71×10-3; 3,59 ×10-3; 3,10 ×10-3 and 2,74 ×10-3 S/m. The best performance of DSSC with 3 cm2 active area was obtained at 1 wt% Al-ZnO which the value of VOC, ISC, FF, and efficiency were 508,43 mV, 3,125 mA, 38,76%, and 0,411% respectively. These coincide with the electrical conductivity of semiconductor and the crystal size of XRD result that has the smallest size as compared to other doping variations.

  12. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin; Masson, Denis; Riel, Bruno; Fafard, Simon; Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent

    2010-10-14

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  13. Evolution of Metallic Conductivity in Epitaxial ZnO Thin Films on Systematic Al Doping

    NASA Astrophysics Data System (ADS)

    Chinta, P. V.; Lozano, O.; Wadekar, P. V.; Hsieh, W. C.; Seo, H. W.; Yeh, S. W.; Liao, C. H.; Tu, L. W.; Ho, N. J.; Zhang, Y. S.; Pang, W. Y.; Lo, Ikai; Chen, Q. Y.; Chu, W. K.

    2017-04-01

    The metal-like behaviors and metal-semiconductor transition (MST) of highly conducting Zn1- x Al x O ( x = 1 at.% to 10 at.%) thin films deposited by cosputtering on a-Al2O3 have been investigated. The temperature-dependent transport properties reveal that the Zn1- x Al x O films were highly degenerate. The MST temperature ( T MST) varied from 190 K to 260 K with Al doping from x = 2 at.% to 10 at.%. A simple degenerate band model is used to explain the observed shift in the metal-like behaviors upon Al doping. An empirical approach is used to analyze the resistivity functional below TMST, taking into account the contributions from both the weak localization and Coulomb interactions in explaining the MST. Analysis by least-square fittings of measured data shows excellent agreement. The optical bandgap increases with carrier concentration as n Hall 2/3 , which is interpreted as the Burstein-Moss shift for a nonparabolic effective mass. Such nonparabolicity is scrutinized by quantitative comparisons of the plasma edge values n optical versus the n Hall values.

  14. Evolution of Metallic Conductivity in Epitaxial ZnO Thin Films on Systematic Al Doping

    NASA Astrophysics Data System (ADS)

    Chinta, P. V.; Lozano, O.; Wadekar, P. V.; Hsieh, W. C.; Seo, H. W.; Yeh, S. W.; Liao, C. H.; Tu, L. W.; Ho, N. J.; Zhang, Y. S.; Pang, W. Y.; Lo, Ikai; Chen, Q. Y.; Chu, W. K.

    2016-11-01

    The metal-like behaviors and metal-semiconductor transition (MST) of highly conducting Zn1-x Al x O (x = 1 at.% to 10 at.%) thin films deposited by cosputtering on a-Al2O3 have been investigated. The temperature-dependent transport properties reveal that the Zn1-x Al x O films were highly degenerate. The MST temperature (T MST) varied from 190 K to 260 K with Al doping from x = 2 at.% to 10 at.%. A simple degenerate band model is used to explain the observed shift in the metal-like behaviors upon Al doping. An empirical approach is used to analyze the resistivity functional below TMST, taking into account the contributions from both the weak localization and Coulomb interactions in explaining the MST. Analysis by least-square fittings of measured data shows excellent agreement. The optical bandgap increases with carrier concentration as n {Hall/2/3}, which is interpreted as the Burstein-Moss shift for a nonparabolic effective mass. Such nonparabolicity is scrutinized by quantitative comparisons of the plasma edge values n optical versus the n Hall values.

  15. Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films

    SciTech Connect

    Banerjee, P; Lee, W. J.; Bae, K. R.; Lee, Sang Bok; Rubloff, Gary W

    2010-01-01

    Al-doped ZnO (AZO) films of ~100nm thickness with various Aldoping were prepared at 150°C by atomic layer deposition on quartz substrates. At low Aldoping, the films were strongly textured along the [100] direction, while at higher Aldoping the films remained amorphous. Atomic force microscopy results showed that Al–O cycles when inserted in a ZnOfilm, corresponding to a few atomic percent Al, could remarkably reduce the surface roughness of the films. Hall measurements revealed a maximum mobility of 17.7cm{sup 2} /Vs . Film resistivity reached a minima of 4.4×10{sup -3} Ωcm whereas the carrier concentration reached a maxima of 1.7×10{sup 20} cm{sup -3} , at 3 at.% Al. The band gap of AZO films varied from 3.23 eV for undoped ZnOfilms to 3.73 eV for AZO films with 24.6 at.% Al. Optical transmittance over 80% was obtained in the visible region. The detrimental impact of increased Al resulting in decreased conductivity due to doping past 3.0 at.% is evident in the x-ray diffraction data, as an abrupt increase in the optical band gap and as a deviation from the Burstein–Moss effect.

  16. A clear effect of charge compensation through Na+ co-doping on the luminescence spectra and decay kinetics of Nd3+-doped CaAl4O7

    NASA Astrophysics Data System (ADS)

    Puchalska, M.; Watras, A.

    2016-06-01

    We present a detailed analysis of luminescence behavior of singly Nd3+ doped and Nd3+, Na+ co-doped calcium aluminates powders: Ca1-xNdxAl4O7 and Ca1-2xNdxNaxAl4O7 (x=0.001-0.1). Relatively intense Nd3+ luminescence in IR region corresponding to typical 4F3/2→4IJ (J=9/2-13/2) transitions with maximum located at about 1079 nm was obtained in all samples on direct excitation into f-f levels. The effect of dopant concentration and charge compensation by co-doping with Na+ ions on morphology and optical properties were studied. The results show that both, the Nd3+ concentration and the alkali metal co-doping affected the optical properties but had no influence on the powders morphology. The studies of luminescence spectra (298 and 77 K) in a function of dopant concentration showed an increasing distortion of the local symmetry of Nd3+with raising activator content due to certain defects created in the crystal lattice. On the other hand Na+ addition led to significant narrowing of absorption and luminescence bands and also a reduction of the number of their components, showing smaller disturbance of Nd3+ ions local symmetries. Consequently, charge compensated by Na+ co-doping materials showed significantly enhanced Nd3+ luminescence. The decrease of emission intensity and luminescence lifetimes with increase of activator concentration was attributed mainly to phonon-assisted cross-relaxation processes between Nd3+ ions. Analysis with Inokuti-Hirayama model indicated dipole-dipole mechanism of ion-ion interaction. Na+ addition led to much smaller concentration quenching due to smaller clustering of dopant ions in CaAl4O7 lattice.

  17. Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Connie, Ashfiqua Tahseen; Zhao, Songrui; Sadaf, Sharif Md.; Shih, Ishiang; Mi, Zetian; Du, Xiaozhang; Lin, Jingyu; Jiang, Hongxing

    2015-05-25

    In this paper, the optical and electrical properties of Mg-doped AlN nanowires are discussed. At room temperature, with the increase of Mg-doping concentration, the Mg-acceptor energy level related optical transition can be clearly measured, which is separated about 0.6 eV from the band-edge transition, consistent with the Mg activation energy in AlN. The electrical conduction measurements indicate an activation energy of 23 meV at 300 K–450 K temperature range, which is significantly smaller than the Mg-ionization energy in AlN, suggesting the p-type conduction being mostly related to hopping conduction. The free hole concentration of AlN:Mg nanowires is estimated to be on the order of 10{sup 16 }cm{sup −3}, or higher.

  18. Atomic layer deposition of Al-doped ZnO thin films

    SciTech Connect

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit; Okazaki, Ryuji; Terasaki, Ichiro

    2013-01-15

    Atomic layer deposition has been used to fabricate thin films of aluminum-doped ZnO by depositing interspersed layers of ZnO and Al{sub 2}O{sub 3} on borosilicate glass substrates. The growth characteristics of the films have been investigated through x-ray diffraction, x-ray reflection, and x-ray fluorescence measurements, and the efficacy of the Al doping has been evaluated through optical reflectivity and Seebeck coefficient measurements. The Al doping is found to affect the carrier density of ZnO up to a nominal Al dopant content of 5 at. %. At nominal Al doping levels of 10 at. % and higher, the structure of the films is found to be strongly affected by the Al{sub 2}O{sub 3} phase and no further carrier doping of ZnO is observed.

  19. Hydrothermal growth and conductivity enhancement of (Al, Cu) co-doped ZnO nanorods thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mohua; Mahapatra, Preetilata; Thangavel, R.

    2016-05-01

    The incorporation of Al, Cu co-doping in ZnO host lattice plays an important role in modification of structural, optical and electrical properties in optoelectronic devices. In the present work, we were grown one dimensional ZnO nanorods (NRs) doped with different concentration of Al (0%~5%) and Cu was kept 20 M% on ITO glass substrates using a facile hydrothermal method, and investigated the effect of the codoping on the surface morphology and the electrical and optical performances of the doped ZnO NRs as photo anodes for solar water splitting applications. The crystallite size of NRs shows tuning in the band gap between 3.194 (Zn0.79Al0.01Cu0.2O) to 3.212 eV (Zn0.75Al0.05Cu0.2O) with Aluminium doping concentration and a remarkable improvement in current density (J) from 0.05 mA/cm2 to 4.98 mA/cm2 was achieved by incorporating Al and Cu has a critical effect of ZnO nanorods.

  20. A first principles study of Nd doped cubic LaAlO3 perovskite: mBJ+U study

    NASA Astrophysics Data System (ADS)

    Sandeep; Rai, D. P.; Shankar, A.; Ghimire, M. P.; Khenata, R.; Thapa, R. K.

    2016-11-01

    The structural, electronic and magnetic properties of Nd-doped Rare earth aluminate, La1-xNdxAlO3 (x=0-100%) are studied using the full potential linearized augmented plane-wave (FP-LAPW) method within the density functional theory. The effects of Nd substitution in LaAlO3 are studied using super-cell calculations. The electronic structures were computed using modified Beck Johnson (mBJ) potential based approximation with the inclusion of Coulomb energy (U) for Nd-4f state electrons. The La1-xNdxAlO3 may possess half metallic behavior on Nd doping with finite density of states at EF. The direct and indirect band gaps were studied as a function of Nd concentration in LaAlO3. The calculated magnetic moments in La1-xNdxAlO3 were found to arise mainly from the Nd-4f state electrons. A probable half-metallic nature is suggested for these systems with supportive integral magnetic moments and high spin polarized electronic structures in these doped cases at EF. The controlled decrease in band gap with increase in concentration of Nd doping is a suitable technique for harnessing useful spintronic and magnetic devices.

  1. Improved two-dimensional electron mobility in asymmetric barrier delta-doped GaAs/AlGaAs modulation-doped field-effect transistor structures

    NASA Astrophysics Data System (ADS)

    Das, Sudhakar; Mohapatra, Meryleen; Nayak, Rasmita K.; Panda, Ajit K.; Sahu, Trinath

    2017-03-01

    We study the enhancement of electron mobility μ in barrier delta-doped GaAs/AlGaAs quantum-well-based modulation-doped field-effect transistor (MODFET) structures. We asymmetrically vary the doping concentrations N d1 and N d2 in the barriers on the substrate and surface sides, respectively, to obtain a nonlinear enhancement of μ as a function of the well width w through multi-subband effects. We show that an increase in doping concentration increases the surface electron density N s, which in turn enhances μ. Interchanging N d1 and N d2 leads to no change in N s but rather, an enhancement of μ as a function of w for N d2 > N d1 owing to asymmetric variation of subband wave functions, thereby implying a higher channel conductivity in a surface-doped structure than in an inverted doped structure. By keeping (N d1 + N d2) unchanged, the conductivity of a single-channel MODFET, N d1 (N d2) ≠ 0 and N d2 (N d1) = 0, can be enhanced by considering a MODFET based on an asymmetrically doped (N d1 ≠ N d2 ≠ 0) quantum well structure. We show that the highest N s and μ product for these structures occurs almost before the onset of the occupation of the second subband. Our analysis of the effect of asymmetric doping profiles on channel conductivity can be utilized for the performance improvement of MODFET-like devices.

  2. Using the hydrothermal method to grow p-type ZnO nanowires on Al-doped ZnO thin film to fabricate a homojunction diode.

    PubMed

    Tseng, Yung-Kuan; Hung, Meng-Chun; Su, Shun-Lung; Li, Sheng-Kai

    2014-10-01

    In this study, the hydrothermal method is used to grow phosphorus-doped ZnO nanowires on Si/SiO2 substrates deposited with Al-doped ZnO thin film. This structure forms a homogeneous p-n junction. In this study, we are the pioneers to use ammonium hypophosphite (NH4H2PO2) as a source of phosphorus to prepare the precursor solution. Ammonium hypophosphite of different concentration levels is used to observe its effects on the growth of nanowires. The results show that the precursor solution prepared from ammonium hypophosphite can produce good crystalline ZnO nanowires while there is no linear relationship between the amounts and concentration levels of phosphorus doped into the nanowires. Whether the phosphorus-doped ZnO nanowires have the characteristics of a p-type semiconductor is indirectly verified by measuring whether the p-n junction made up of Al-doped ZnO thin film and phosphorus-doped ZnO nanowires shows rectifying behavior. I-V measurements are made on the specimens. The results show good rectifying behavior, proving that the phosphorus-doped ZnO nanowires and Al-doped AZO films have p-type and n-type semiconductor properties, constituting a good p-n junction. This result also proves that ammonium hypophosphite is a better source of phosphorus in the hydrothermal method to synthesize phosphorus-doped ZnO nanowires.

  3. Urinary human chorionic gonadotropin isoform concentrations in doping control samples.

    PubMed

    Butch, Anthony W; Woldemariam, Getachew A

    2016-11-01

    Anti-doping laboratories routinely use immunoassays to measure urinary concentrations of human chorionic gonadotropin (hCG). To minimize immunoassay differences and false positive screen results from inactive isoforms (free β-subunit (hCGβ), β-subunit core fragment (hCGβcf)) laboratories now use intact hCG instead of total hCG immunoassays to measure hCG. To determine the distribution of hCG isoforms in urine, we determined the concentrations of intact hCG, hCGβ, and hCGβcf in male urine samples based on immunoassay total hCG concentrations using a sequential immunoextraction and a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. hCG was isolated using antibody-conjugated magnetic beads and unique tryptic peptides were quantified by LC-MS/MS. Negative samples with detectable but low total hCG concentrations (1.2-3.5 pmol/L) had intact and hCGβ concentrations <1.2 pmol/L, and hCGβcf concentrations <2.3 pmol/L by LC-MS/MS. Urine samples from an athlete receiving hCG had intact hCG concentrations ranging from 18.8 to 57.6 pmol/L, hCGβ concentrations <0.7 pmol/L, and hCGβcf concentrations ranging from 94 to 243% of the intact hCG concentration. In 27 atypical samples with total hCG concentrations ranging from 16.7 to 412.7 pmol/L with intact hCG <2.7 pmol/L by immunoassay, all samples had intact hCG concentrations <3.8 pmol/L and hCGβ concentrations <6.2 pmol/L by LC-MS/MS. hCGβcf concentrations by LC-MS/MS varied widely and ranged from 1.03 to 21.9 pmol/L. In summary, total hCG immunoassays significantly overestimate hCG concentrations and can produce false positive results. Although the intact hCG immunoassay slightly overestimates hCG concentrations compared to LC-MS/MS, it can distinguish between cases of hCG use and atypical cases with elevated total hCG concentrations. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  5. A new scaling relation for n-AlN doped superconducting MgB2

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Dey, T. K.

    2013-09-01

    The scaling behavior of nano-aluminum nitride added polycrystalline MgB2 superconductor is discussed. A series of polycrystalline MgB2 samples with different amounts of nanosized AlN addition are synthesized by solid reaction. All the synthesized pellets are subjected to x-ray diffraction, field emission gun scanning electron microscopy (FEG-SEM), and transmission electron microscopy (TEM) to examine their micro-structural features. A marginal decrease in lattice parameters of pure MgB2 with AlN nanoparticles addition is observed. Surface morphology reveals randomly oriented hexagonal MgB2 grains decorated with AlN nanoparticles between the grain boundaries and also scattered on the grain surface. For higher concentration, n-AlN agglomerates are visible. Resistivity data confirm a decrease in superconducting transition temperature (Tc) from 38.5 to 37 K and increase in transition width (ΔTc) with increased loading of n-AlN in MgB2. The critical current density (Jc) of the pellets at 4, 10, 20, and 30 K is evaluated from the magnetization data between ±6 T and is explained well in the framework of collective pinning model. The normalized pinning force density of n-AlN doped MgB2 at various temperatures indicates an excellent scaling with respect to Hn (the field corresponding to which Fp drops to half of its maximum value) as the scaling field. A new scaling expression derived, using the expression of field dependence of Jc proposed by "collective pinning model" in small bundle regime, demonstrates an excellent agreement with the measured normalized pinning force density (viz., Fp/Fpmax vs. hn) of the AlN nanoparticles doped MgB2 superconductors.

  6. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    SciTech Connect

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explain that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.

  7. Electrical properties of n-type AlGaN with high Si concentration

    NASA Astrophysics Data System (ADS)

    Takeda, Kunihiro; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2016-05-01

    The electrical properties of Si-doped AlGaN layers (AlN molar fractions: 0.03-0.06) with the donor concentrations (N D) from 8.8 × 1017 to 4.5 × 1020 cm-3 were investigated by variable-temperature Hall effect measurement using the van der Pauw method. A minimum resistivity of 3.6 × 10-4 Ω cm was obtained for Si-doped AlGaN with a smooth surface at room temperature. We found that the activation energy of the Si donor is affected by the Coulomb interaction in the AlGaN layer with N D values from 8.8 × 1017 to 2.5 × 1020 cm-3. In several AlGaN layers, the free-electron concentration did not vary with sample temperature, as expected in the case of degeneracy. The localization of GaN in the AlGaN layer was speculated as a cause of degeneracy of samples.

  8. Electrically tunable diffraction efficiency from gratings in Al-doped ZnO

    NASA Astrophysics Data System (ADS)

    George, David; Li, Li; Lowell, David; Ding, Jun; Cui, Jingbiao; Zhang, Hualiang; Philipose, Usha; Lin, Yuankun

    2017-02-01

    Transparent conducting aluminum-doped zinc oxide (AZO) can be used as part of an active plasmonic device due to its electrically tunable permittivity, which is accomplished by changing the carrier concentration with electrical biasing. In this letter, we report a continuous electrical tuning of diffraction efficiency from AZO gratings in the visible range (specifically 532 nm) when the AZO is under bias voltages between -1 V and -3.5 V. The carrier concentration in AZO under negative bias has been measured and simulated. The diffraction efficiency changes have been explained by the carrier concentration variation and induced complex refractive index change at the Al2O3 and AZO interface. The reported results can lead toward the application of post-fabrication tuning of optoelectronic devices using AZO.

  9. Influence of Electron Doping on Magnetic Order in CeRu2Al10

    DOE PAGES

    Kobayashi, Riki; Kaneko, Koji; Saito, Kotaro; ...

    2014-09-17

    The effect of electron doping by the substitution of Rh for Ru on unconventional magnetic order in CeRu2Al10 was investigated via neutron powder diffraction. In Ce(Ru1-xRhx)2Al10 with x = 0.05, 0.12, and 0.2, reorientation of the ordered moment from the c- to the a-axis takes place in all samples, while the ordering vector q=(0 1 0) remains unchanged within this concentration range. The moment reorientation is accompanied by an enhancement in its size by a factor of ~2.4, from μ=0.43 μB at x=0 to μ =1.06, 1.04, and 1.02 μB for x=0.05, 0.12 and 0.2, respectively. The continuous decrease inmore » N´eel temperature T0(TN), despite an abrupt increase in μ , underlines the strong anisotropy in the exchange interaction in CeRu2Al10, and the fact that this anisotropy is easily suppressed by electron doping.« less

  10. Transparent conductive Al-doped ZnO thin films grown at room temperature

    SciTech Connect

    Wang Yuping; Lu Jianguo; Bie Xun; Gong Li; Li Xiang; Song Da; Zhao Xuyang; Ye Wenyi; Ye Zhizhen

    2011-05-15

    Aluminum-doped ZnO (ZnO:Al, AZO) thin films were prepared on glass substrates by dc reactive magnetron sputtering from a Zn-Al alloy target at room temperature. The effects of the Ar-to-O{sub 2} partial pressure ratios on the structural, electrical, and optical properties of AZO films were studied in detail. AZO films grown using 100:4 to 100:8 Ar-to-O{sub 2} ratio result in acceptable quality films with c-axis orientated crystals, uniform grains, 10{sup -3} {Omega} cm resistivity, greater than 10{sup 20} cm{sup -3} electron concentration, and high transmittance, 90%, in the visible region. The lowest resistivity of 4.11x10{sup -3} {Omega} cm was obtained under the Ar-to-O{sub 2} partial pressure ratio of 100:4. A relatively strong UV emission at {approx}3.26 eV was observed in the room-temperature photoluminescence spectrum. X-ray photoelectron spectroscopy analysis confirmed that Al was introduced into ZnO and substitutes for Zn and doped the film n-type.

  11. Temperature Sensing Above 1000 C Using Cr-Doped GdAlO3 Spin-Allowed Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Chambers, Matthew D.

    2012-01-01

    Cr-doped GdAlO3 (Cr:GdAlO3) is shown to produce remarkably high-intensity spin-allowed broadband luminescence with sufficiently long decay times to make effective luminescence-decay-time based temperature measurements above 1000 C. This phosphor is therefore an attractive alternative to the much lower luminescence intensity rare-earth-doped thermographic phosphors that are typically utilized at these elevated temperatures. In particular, Cr:GdAlO3 will be preferred over rare-earth-doped phosphors, such as Dy:YAG, at temperatures up to 1200 C for intensity-starved situations when the much lower emission intensity from rare-earth-doped phosphors is insufficient for accurate temperature measurements in the presence of significant radiation background. While transition-metal-doped phosphors such as Cr:Al2O3 (ruby) are known to exhibit high luminescence intensity at low dopant concentrations, quenching due to nonradiative decay pathways competing with the (sup 2)E to (sup 4)A(sub 2) radiative transition (R line) has typically restricted their use for temperature sensing to below 600 C. Thermal quenching of the broadband (sup 4)T(sub 2) to (sup 4)A(sub 2) radiative transition from Cr:GdAlO3, however, is delayed until much higher temperatures (above 1000 C). This spin-allowed broadband emission persists to high temperatures because the lower-lying (sup 2)E energy level acts as a reservoir to thermally populate the higher shorter-lived (sup 4)T(sub 2) energy level and because the activation energy for nonradiative crossover relaxation from the (sup 4)T(sub 2) level to the (sup 4)A(sub 2) ground state is high. The strong crystal field associated with the tight bonding of the AlO6 octahedra in the GdAlO3 perovskite structure is responsible for this behavior.

  12. Doping concentration driven morphological evolution of Fe doped ZnO nanostructures

    SciTech Connect

    Sahai, A.; Goswami, N.; Kumar, Y.; Agarwal, V.; Olive-Méndez, S. F.

    2014-10-28

    In this paper, systematic study of structural, vibrational, and optical properties of undoped and 1-10 at.% Fe doped ZnO nanostructures, synthesized adopting chemical precipitation route, has been reported. Prepared nanostructures were characterized employing an assortment of microscopic and spectroscopic techniques, namely Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) Spectroscopy, X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Micro-Raman Spectroscopy (μRS), and UV-visible and Photoluminescence (PL) spectroscopy. With Fe incorporation, a gradual morphological transformation of nanostructures is demonstrated vividly through SEM/TEM characterizations. Interestingly, the morphology of nanostructures evolves with 1–10 at. % Fe doping concentration in ZnO. Nanoparticles obtained with 1 at. % Fe evolve to nanorods for 3 at. % Fe; nanorods transform to nanocones (for 5 at. % and 7 at. % Fe) and finally nanocones transform to nanoflakes at 10 at. % Fe. However, at all these stages, concurrence of primary hexagonal phase of Zn{sub 1-x}Fe{sub x}O along with the secondary phases of cubic ZnFe{sub 2}O{sub 4} and rhombohedric Fe{sub 2}O{sub 3}, is revealed through XRD analysis. Based on collective XRD, SEM, TEM, and EDX interpretations, a model for morphological evolution of nanostructures was proposed and the pivotal role of Fe dopant was deciphered. Furthermore, vibrational properties analyzed through Raman and FTIR spectroscopies unravel the intricacies of formation and gradual enhancement of secondary phases with increased Fe concentration. UV-visible and PL spectroscopic analyses provided further insight of optical processes altering with Fe incorporation. The blue shift and gradual quenching of visible photoluminescence with Fe doping was found in accordance with structural and vibrational analyses and explicated accordingly.

  13. Structural and electronic properties of CuI doped with Zn, Ga and Al

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Gu, Mu; Pandey, Ravindra

    2013-08-01

    The structural and electronic properties of CuI doped with Zn, Ga and Al are investigated using density functional theory. The calculated results find that the solubility of the cation dopants considered is primarily determined by the difference in the electronic configurations between host and dopants. The order of the formation energy of the dopants is predicted to be E(ZnCu)>E(AlCu)>E(GaCu) in CuI. Furthermore, dopants at the octahedral interstitial sites have lower formation energies as compared to dopants located at the tetrahedral interstitial sites in the lattice. The defect complex consisting of ZnCu and the copper vacancy (ZnCu+VCu) is predicted to be preferred in the lattice, suggesting that incorporation of Zn is expected to enhance the concentration of copper vacancies in CuI.

  14. Optical parameters of Al-doped ZnO nanorod array thin films grown via the hydrothermal method.

    PubMed

    Kim, Soaram; Kim, Min Su; Nam, Giwoong; Park, Hyunggil; Yoon, Hyunsik; Leem, Jae-Young

    2013-09-01

    ZnO seed layers were deposited onto a quartz substrate using the sol--gel method, and Al-doped ZnO (AZO) nanorod array thin films with different Al concentrations that ranged from 0 to 2.0 at. % were grown on the ZnO seed layers via the hydrothermal method. Optical parameters, including the optical band gap, the absorption coefficient, the Urbach energy, the refractive index, the dispersion parameter, and the optical conductivity, were studied to investigate the effects of Al doping on the optical properties of AZO nanorod array thin films. The optical band gaps of the ZnO and AZO nanorod array thin films were 3.206 at 0 at.%, 3.214 at 0.5 at.%, 3.226 at 1.5 at.%, and 3.268 at 2.0 at.%. The Urbach energy gradually decreased from 126 meV (0 at.%) to 70 meV (2.0 at.%) as the Al concentration was increased. The dispersion energy, the single-oscillator energy, the average oscillator wavelength, the average oscillator strength, the refractive index, and the optical conductivity of the AZO nanorod array thin films were all affected by Al doping.

  15. Screening of the quantum-confined Stark effect in AlN/GaN nanowire superlattices by germanium doping

    NASA Astrophysics Data System (ADS)

    Hille, P.; Müßener, J.; Becker, P.; de la Mata, M.; Rosemann, N.; Magén, C.; Arbiol, J.; Teubert, J.; Chatterjee, S.; Schörmann, J.; Eickhoff, M.

    2014-03-01

    We report on electrostatic screening of polarization-induced internal electric fields in AlN/GaN nanowire heterostructures with germanium-doped GaN nanodiscs embedded between AlN barriers. The incorporation of germanium at concentrations above 1020 cm-3 shifts the photoluminescence emission energy of GaN nanodiscs to higher energies accompanied by a decrease of the photoluminescence decay time. At the same time, the thickness-dependent shift in emission energy is significantly reduced. In spite of the high donor concentration, a degradation of the photoluminescence properties is not observed.

  16. Screening of the quantum-confined Stark effect in AlN/GaN nanowire superlattices by germanium doping

    SciTech Connect

    Hille, P. Müßener, J.; Becker, P.; Teubert, J.; Schörmann, J.; Eickhoff, M.; Mata, M. de la; Rosemann, N.; Chatterjee, S.; Magén, C.; Arbiol, J.

    2014-03-10

    We report on electrostatic screening of polarization-induced internal electric fields in AlN/GaN nanowire heterostructures with germanium-doped GaN nanodiscs embedded between AlN barriers. The incorporation of germanium at concentrations above 10{sup 20} cm{sup –3} shifts the photoluminescence emission energy of GaN nanodiscs to higher energies accompanied by a decrease of the photoluminescence decay time. At the same time, the thickness-dependent shift in emission energy is significantly reduced. In spite of the high donor concentration, a degradation of the photoluminescence properties is not observed.

  17. Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition

    PubMed Central

    2013-01-01

    ZnO/Al2O3 multilayers were prepared by alternating atomic layer deposition (ALD) at 150°C using diethylzinc, trimethylaluminum, and water. The growth process, crystallinity, and electrical and optical properties of the multilayers were studied with a variety of the cycle ratios of ZnO and Al2O3 sublayers. Transparent conductive Al-doped ZnO films were prepared with the minimum resistivity of 2.4 × 10−3 Ω·cm at a low Al doping concentration of 2.26%. Photoluminescence spectroscopy in conjunction with X-ray diffraction analysis revealed that the thickness of ZnO sublayers plays an important role on the priority for selective crystallization of ZnAl2O4 and ZnO phases during high-temperature annealing ZnO/Al2O3 multilayers. It was found that pure ZnAl2O4 film was synthesized by annealing the specific composite film containing alternative monocycle of ZnO and Al2O3 sublayers, which could only be deposited precisely by utilizing ALD technology. PMID:23537274

  18. U-Mo/Al-Si interaction: Influence of Si concentration

    NASA Astrophysics Data System (ADS)

    Allenou, J.; Palancher, H.; Iltis, X.; Cornen, M.; Tougait, O.; Tucoulou, R.; Welcomme, E.; Martin, Ph.; Valot, C.; Charollais, F.; Anselmet, M. C.; Lemoine, P.

    2010-04-01

    Within the framework of the development of low enriched nuclear fuels for research reactors, U-Mo/Al is the most promising option that has however to be optimised. Indeed at the U-Mo/Al interfaces between U-Mo particles and the Al matrix, an interaction layer grows under irradiation inducing an unacceptable fuel swelling. Adding silicon in limited content into the Al matrix has clearly improved the in-pile fuel behaviour. This breakthrough is attributed to an U-Mo/Al-Si protective layer around U-Mo particles appeared during fuel manufacturing. In this work, the evolution of the microstructure and composition of this protective layer with increasing Si concentrations in the Al matrix has been investigated. Conclusions are based on the characterization at the micrometer scale (X-ray diffraction and energy dispersive spectroscopy) of U-Mo7/Al-Si diffusion couples obtained by thermal annealing at 450 °C. Two types of interaction layers have been evidenced depending on the Si content in the Al-Si alloy: the threshold value is found at about 5 wt.% but obviously evolves with temperature. It has been shown that for Si concentrations ranging from 2 to 10 wt.%, the U-Mo7/Al-Si interaction is bi-layered and the Si-rich part is located close to the Al-Si for low Si concentrations (below 5 wt.%) and close to the U-Mo for higher Si concentrations. For Si weight fraction in the Al alloy lower than 5 wt.%, the Si-rich sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2Al 20, when the other sub-layer (close to U-Mo) is silicon free and made of UAl 3 and U 6Mo 4Al 43. For Si weight concentrations above 5 wt.%, the Si-rich part becomes U 3(Si, Al) 5 + U(Al, Si) 3 (close to U-Mo) and the other sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2Al 20. On the basis of these results and of a literature survey, a scheme is proposed to explain the formation of different types of ILs between U-Mo and Al-Si alloys (i.e. different protective layers).

  19. The effect of deposition power on the electrical properties of Al-doped zinc oxide thin films

    SciTech Connect

    Chun, B. S.; Choi, Daniel S.; Wu, H. C.; Shvets, I. V.; Abid, M.; Chu, I. C.; Serrano-Guisan, S.

    2010-08-23

    We investigated the effect on the electronic properties of aluminum (Al)-zinc oxide (ZnO) films by modulating the radio frequency sputtering power. Our experimental results show that increasing the sputtering power increases the Al doping concentration, decreases the resistivity, and also shifts the Zn 2p and O 1s to higher binding energy states. Our local-density approximation (LDA) and LDA+U calculations show that the shift in higher binding energy and resistivity decrease are due to an enhancement of the O 2p-Zn 3d coupling and the modification of the Zn 4s-O 2p interaction in ZnO induced by Al doping.

  20. High temperature electrical transport study of Si-doped AlN

    NASA Astrophysics Data System (ADS)

    Contreras, Sylvie; Konczewicz, Leszek; Ben Messaoud, Jaweb; Peyre, Hervé; Al Khalfioui, Mohamed; Matta, Samuel; Leroux, Mathieu; Damilano, Benjamin; Brault, Julien

    2016-10-01

    Electrical transport (resistivity and Hall Effect) have been studied in silicon doped aluminum nitride (AlN) thick epitaxial layers from 250 K up to 1000 K. The investigated samples, grown by molecular beam epitaxy were characterized by n-type conduction with an ambient temperature free carrier concentration of about ∼ 1 × 1015 cm-3. The donor level, situated about 250 meV below the conduction band edge, was found to be responsible for the experimentally observed increase of free carrier concentration with temperature. The temperature dependence of carrier mobility has been analyzed in the framework of a multimode scattering model. In the investigated samples the main scattering mechanism is supposed to be dislocation scattering.

  1. Very high carbon delta -doping concentration in AlxGa1 - xAs grown by metalorganic vapor phase epitaxy using trimethylaluminum as a doping precursor

    NASA Astrophysics Data System (ADS)

    Li, G.; Petravić, M.; Jagadish, C.

    1996-04-01

    Using trimethylaluminum (TMAl) or trimethylgallium (TMGa) as a doping precursor, carbon δ-doped AlxGa1-xAs has been grown in metalorganic vapor phase epitaxy. Compared to TMGa, TMAl exhibits very high carbon δ-doping efficiency. The best hole profile of carbon δ-doped Al0.3Ga0.7As grown at 580 °C using TMAl as a doping precursor has a peak hole density of 1.6×1019 cm-3 for a full width at half-maximum of 85 Å with most of the incorporated carbon atoms being electrically active. When TMGa is used as the doping precursor, the hole density of carbon δ-doped AlxGa1-xAs significantly increases with an increase of the Al mole fraction. By comparison, the use of TMAl almost induces independence of the hole density on the Al mole fraction. The hole density of carbon δ-doped Al0.3Ga0.7As weakly increases when reducing the δ-doping temperature regardless of the doping precursors. The hole density of carbon δ-doped Al0.3Ga0.7As grown at 580 °C is proportionally associated with the moles of TMGa or TMAl totally input during a δ-doping step. Using heavily carbon δ-doped layers in Al0.3Ga0.7As, a carbon δ-doped pipi doping superlattice possessing a bulk-doped-like hole profile with an average hole density of 1.1×1019 cm-3 is therefore demonstrated as an alternative with unique advantages over other conventional carbon bulk-doping approaches.

  2. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties.

    PubMed

    Jood, Priyanka; Mehta, Rutvik J; Zhang, Yanliang; Peleckis, Germanas; Wang, Xiaolin; Siegel, Richard W; Borca-Tasciuc, Theo; Dou, Shi Xue; Ramanath, Ganpati

    2011-10-12

    ZnO is a promising high figure-of-merit (ZT) thermoelectric material for power harvesting from heat due to its high melting point, high electrical conductivity σ, and Seebeck coefficient α, but its practical use is limited by a high lattice thermal conductivity κ(L). Here, we report Al-containing ZnO nanocomposites with up to a factor of 20 lower κ(L) than non-nanostructured ZnO, while retaining bulklike α and σ. We show that enhanced phonon scattering promoted by Al-induced grain refinement and ZnAl(2)O(4) nanoprecipitates presages ultralow κ ∼ 2 Wm( -1) K(-1) at 1000 K. The high α∼ -300 μV K(-1) and high σ ∼ 1-10(4) Ω(-1 )m(-1) result from an offsetting of the nanostructuring-induced mobility decrease by high, and nondegenerate, carrier concentrations obtained via excitation from shallow Al donor states. The resultant ZT ∼ 0.44 at 1000 K is 50% higher than that for the best non-nanostructured counterpart material at the same temperature and holds promise for engineering advanced oxide-based high-ZT thermoelectrics for applications.

  3. Controlling the Al-doping profile and accompanying electrical properties of rutile-phased TiO2 thin films.

    PubMed

    Jeon, Woojin; Rha, Sang Ho; Lee, Woongkyu; Yoo, Yeon Woo; An, Cheol Hyun; Jung, Kwang Hwan; Kim, Seong Keun; Hwang, Cheol Seong

    2014-05-28

    The role of Al dopant in rutile-phased TiO2 films in the evaluation of the mechanism of leakage current reduction in Al-doped TiO2 (ATO) was studied in detail. The leakage current of the ATO film was strongly affected by the Al concentration at the interface between the ATO film and the RuO2 electrode. The conduction band offset of the interface increased with the increase in the Al dopant concentration in the rutile TiO2, which reduced the leakage current in the voltage region pertinent to the next-generation dynamic random access memory application. However, the Al doping in the anatase TiO2 did not notably increase the conduction band offset even with a higher Al concentration. The detailed analyses of the leakage conduction mechanism based on the quantum mechanical transfer-matrix method showed that Schottky emission and Fowler-Nordheim tunneling was the dominant leakage conduction mechanism in the lower and higher voltage regions, respectively. The chemical analyses using X-ray photoelectron spectroscopy corroborated the electrical test results.

  4. Al-doping effects on the photovoltaic performance of inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Shi, Ya-feng; Yu, Xiao-ming; Zhang, Jian-jun; Ge, Ya-ming; Chen, Li-qiao; Pan, Hong-jun

    2016-03-01

    The properties of Al-doped ZnO (AZO) play an important role in the photovoltaic performance of inverted polymer solar cells (PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor ( FF) simultaneously, and the power conversion efficiency ( PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.

  5. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    SciTech Connect

    Gupta, D.; Barman, P. B.; Hazra, S. K.; Dutta, D.; Kumar, M.; Som, T.

    2015-10-28

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C–150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C–150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  6. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Dutta, D.; Kumar, M.; Barman, P. B.; Som, T.; Hazra, S. K.

    2015-10-01

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C-150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C-150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  7. Computer modelling of double doped SrAl2O4 for phosphor applications

    NASA Astrophysics Data System (ADS)

    Jackson, R. A.; Kavanagh, L. A.; Snelgrove, R. A.

    2017-02-01

    This paper describes a modelling study of SrAl2O4, which has applications as a phosphor material when doped with Eu2+ and Dy3+ ions. The procedure for modelling the pure and doped material is described and then results are presented for the single and double doped material. Solution energies are calculated and used to deduce dopant location, and mean field calculations are used to predict the effect of doping on crystal lattice parameter. Possible charge compensation mechanisms for Dy3+ ions substituting at a Sr2+ site are discussed.

  8. Effect of the PVA (polyvinyl alcohol) concentration on the optical properties of Eu-doped YAG phosphors

    NASA Astrophysics Data System (ADS)

    Hora, Daniela A.; Andrade, Adriano B.; Ferreira, Nilson S.; Teixeira, Verônica C.; dos S. Rezende, Marcos V.

    2016-10-01

    The influence of the polyvinyl alcohol (PVA) concentration on the synthesis and structural, morphological and optical properties of Y3Al5O13: Eu (Eu-doped YAG) was systematically investigated in this work. The final concentration of PVA in the preparation step influenced the crystallite size and also the degree of particle agglomeration in Eu-doped YAG phosphors. X-ray excited optical luminescence (XEOL) emission spectra results indicated typical Eu3+ emission lines and an abnormally intense 5D0 → 7F4. The intensity parameters Ω2 and Ω4 were calculated and indicated the PVA concentration affects the ratio Ω2:Ω4. X-ray absorption spectroscopy (XAS) results showed Eu valence did not change and the symmetry around the Eu3+ is influenced by the PVA concentration. XEOL-XAS showed the luminescence increases as a function of energy.

  9. Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO2 thin films grown by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kassmi, M.; Pointet, J.; Gonon, P.; Bsiesy, A.; Vallée, C.; Jomni, F.

    2016-06-01

    Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO2 rutile films which are deposited on RuO2 by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz-100 kHz range, for ac electric fields up to 1 MVrms/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreases the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MVrms/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves the high-field dielectric behavior.

  10. Effect of Al Doping on Optical Band Gap Energy of Al-TiO2 Thin Films.

    PubMed

    Song, Yo-Seung; Kim, Bae-Yeon; Cho, Nam-Ihn; Lee, Deuk Yong

    2015-07-01

    Al-TiO2 thin films were prepared using a sol-gel derived spin coating by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the optical band gap energy (Eg) of the films. GAXRD results indicated that Al-TiO2 is composed of anatase and FTO phases when the Al/Ti molar ratio was less than 0.18. Above 0.38, no other peaks except FTO were found and transparency of the films was severely deteriorated. Eg of Al-TiO2 decreased from 3.20 eV to 2.07 eV when the Al/Ti ratio was raised from 0 to 0.38. Eg of 2.59 eV was found for the anatase Al-TiO2 films having the Al/Ti ratio of 0.18. The absorption band of Al-TiO2 coatings shifted dramatically from the UV region to the visible region with increasing the amount of Al dopant. The Al doping was mainly attributed to the optical band gap energy of Al-TiO2.

  11. ZnO:Al Doping Level and Hydrogen Growth Ambient Effects on CIGS Solar Cell Performance: Preprint

    SciTech Connect

    Duenow, J. N.; Gessert, T. A.; Wood, D. M.; Egaas, B.; Noufi, R.; Coutts,T. J.

    2008-05-01

    Cu(In,Ga)Se2 (CIGS) photovoltaic (PV) cells require a highly conducting and transparent electrode for optimum device performance. ZnO:Al films grown from targets containing 2.0 wt.% Al2O3 are commonly used for this purpose. Maximum carrier mobilities of these films grown at room temperature are ~20-25 cm2V-1s-1. Therefore, relatively high carrier concentrations are required to achieve the desired conductivity, which leads to free carrier absorption in the near infrared (IR). Lightly doped films (0.05 - 0.2 wt.% Al2O3), which show less IR absorption, reach mobility values greater than 50 cm2V-1s-1 when deposited in H2 partial pressure. We incorporate these lightly doped ZnO:Al layers into CIGS PV cells produced at the National Renewable Energy Laboratory (NREL). Preliminary results show quantum efficiency values of these cells rival those of a past world-record cell produced at NREL that used 2.0 wt.% Al-doped ZnO films. The highest cell efficiency obtained in this trial was 18.1%.

  12. Thermoelectric Properties of ZnO Ceramics Co-Doped with Al and Transition Metals

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroyuki; Chonan, Yasunori; Oda, Manabu; Komiyama, Takao; Aoyama, Takashi; Sugiyama, Shigeaki

    2011-05-01

    The effect of co-doping with transition metals (Fe, Ni, and Sm) on the thermoelectric properties of Al-doped ZnO (AZO) ceramics was studied. The electrical conductivity σ of AZO was significantly (12%) increased by Ni co-doping, while an unfavorable deterioration in σ was observed for Fe- or Sm-co-doped AZO. Hall-effect measurements indicated that the electron mobility of AZO decreased due to co-doping in all samples. Only the Ni-co-doped AZO sample showed significant enhancement in electron density, resulting in its black color. The thermal conductivity κ decreased drastically due to Ni or Sm co-doping of AZO, while only a small change was observed for Fe co-doping of AZO. The κ value at 1073 K for Ni-co-doped AZO was 77% of that for AZO. A dimensionless figure of merit ZT = 0.126 was attained at 1073 K for Ni-co-doped AZO, representing an improvement over that of conventional AZO by a factor of 1.50.

  13. Multiple Soaking with Different Solution Concentration in Doped Silica Preform Fabrication Using Modified Chemical Vapor Deposition and Solution Doping

    NASA Astrophysics Data System (ADS)

    Aljamimi, S. M.; Khairul Anuar, M. S.; Muhamad-Yassin, S. Z.; Zulkifli, M. I.; Hanif, S.; Tamchek, N.; Yusoff, Z.; Abdul-Rashid, H. A.

    2014-01-01

    Incorporation of alumina (Al2O3) into a silica matrix by modified chemical vapor deposition and a solution doping technique is investigated in this study. Multiple soaking cycles were used to increase the aluminum content in the core layer. The effect of alumina retention in silica matrix soot is focused by multiple cycles of soaking with different solution concentrations, while the effect of the adsorption mechanism is fixed by maintaining the soot deposition process (such as temperature [1,800°C], precursor, total gas flow, and soaking time). The deposited soot is examined for porosity characteristics and effective surface area by a gas adsorption technique with Brunauer-Emett-Teller surface area analysis and the surface and cross-section morphology using scanning electron microscopy. Three different concentrations are used in this work (0.3, 0.7, and 1.2 M) with multiple cycles of soaking. Sintering and the collapsing process is controlled for each preform. The result shows that the alumina content is increased substantially as the number of soaking processes is increased, which may be due to the retention effect as only a small amount of adsorption process takes place as indicated by the slight decrease in the surface area of soot. The collapsed preforms are analyzed using a preform analyzer. Energy dispersive x-ray spectrometry is used to check aluminum content and distribution into the core layer.

  14. Luminescent properties of Mn-doped Y3Al5O12 single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T.; Kuklinski, B.; Grinberg, M.; Wiśniewski, K.; Bilski, P.

    2014-08-01

    The absorption, cathodoluminescence and photoluminescence (PL) spectra as well as PL decay kinetics of Mn doped Y3Al5O12 (YAG:Mn) single crystalline films (SCF) with manganese concentration in the 0.002-0.2 at.% range, grown by the LPE method from PbO to B2O3 based flux onto YAG substrates, were analyzed in this work. The special goal was spectroscopic determination of valence states of manganese ions which are realized in these SCF depending on Mn content. In SCF with Mn content (0.002-0.02 at.%), the incorporation of Mn4+ and Mn2+ ions was found. The absorption and emission spectra of YAG:Mn SCF at higher (0.02-0.2 at.%) content confirmed that the main valence state of manganese ions is Mn3+ state.

  15. Ultra-low resistance ohmic contacts to GaN with high Si doping concentrations grown by molecular beam epitaxy

    SciTech Connect

    Afroz Faria, Faiza; Guo Jia; Zhao Pei; Li Guowang; Kumar Kandaswamy, Prem; Wistey, Mark; Xing Huili; Jena, Debdeep

    2012-07-16

    Ti/Al/Ni/Au ohmic contacts were formed on heavily doped n{sup +} metal-polar GaN samples with various Si doping concentrations grown by molecular beam epitaxy. The contact resistivity (R{sub C}) and sheet resistance (R{sub sh}) as a function of corresponding GaN free carrier concentration (n) were measured. Very low R{sub C} values (<0.09 {Omega} mm) were obtained, with a minimum R{sub C} of 0.035 {Omega} mm on a sample with a room temperature carrier concentration of {approx}5 Multiplication-Sign 10{sup 19} cm{sup -3}. Based on the systematic study, the role of R{sub C} and R{sub sh} is discussed in the context of regrown n{sup +} GaN ohmic contacts for GaN based high electron mobility transistors.

  16. First-Principles Study on Structural and Thermoelectric Properties of Al- and Sb-Doped Mg2Si

    NASA Astrophysics Data System (ADS)

    Hirayama, Naomi; Iida, Tsutomu; Funashima, Hiroki; Morioka, Shunsuke; Sakamoto, Mariko; Nishio, Keishi; Kogo, Yasuo; Takanashi, Yoshifumi; Hamada, Noriaki

    2015-06-01

    We theoretically investigate the structural and thermoelectric properties of magnesium silicide (Mg2Si) incorporating Al or Sb atoms as impurities using first-principles calculations. We optimized the structural properties through variable-cell relaxation using a pseudopotential method based on density functional theory. The result indicates that the lattice constant can be affected by the insertion of impurity atoms into the system, mainly because the ionic radii of these impurities differ from those of the matrix constituents Mg and Si. We then estimate, on the basis of the optimized structures, the site preferences of the impurity atoms using a formation energy calculation. The result shows a nontrivial concentration-dependence of the site occupation, such that Al tends to go into the Si, Mg, and interstitial sites with comparable formation energies at low doping levels (<2 at.%); it can start to substitute for the Mg sites preferentially at higher doping levels (<4 at.%). Sb, on the other hand, shows a strong preference for the Si sites at all impurity concentrations. Furthermore, we obtain the temperature-dependence of the thermoelectromotive force (Seebeck coefficient) of the Al- and Sb-doped Mg2Si using the full-potential linearized augmented-plane-wave method and the Boltzmann transport equation.

  17. Scintillation properties of rare-earth doped NaPO3-Al(PO3)3 glasses

    NASA Astrophysics Data System (ADS)

    Kuro, Tomoaki; Okada, Go; Kawaguchi, Noriaki; Fujimoto, Yutaka; Masai, Hirokazu; Yanagida, Takayuki

    2016-12-01

    We systematically investigated photoluminescence (PL), scintillation and dosimeter properties of rare-earth (RE) doped NaPO3-Al(PO3)3 (NAP) glasses. The NAP glasses doped with a series of RE ions (La-Yb, except Pm) with a consistent concentration (0.3 wt%) were prepared by the conventional melt-quenching method. The PL and scintillation decay time profiles showed fast (ns) and slow (μs or ms) components: the fast components from 15 to 100 ns were due to the host or 5d-4f transition emission, and the slow components from 15 μs to 5 ms were due to the 4f-4f transitions of RE. The thermally stimulated luminescence (TSL) was evaluated as a dosimeter property, and glow peaks appeared around 400 °C in all the samples. The TSL dose response function was examined in the dose range from 10 mGy to 10 Gy. Among the samples tested, Nd and Tb doped glasses showed higher signal by at least one order of magnitude than those of non-doped and other RE-doped samples. Over the dose range tested, the TSL signals are linearly related with the incident X-ray dose, showing a potential for practical applications.

  18. Theoretical study on the phenylpropanolamine drug interaction with the pristine, Si and Al doped [60] fullerenes

    NASA Astrophysics Data System (ADS)

    Moradi, Morteza; Nouraliei, Milad; Moradi, Reza

    2017-03-01

    Phenylpropanolamine (PPA) is a popular drug of abuse and its detection is of great importance for police and drug communities. Herein, we investigated the electronic sensitivity and reactivity of pristine, Al and Si doped C60 fullerenes to the PPA drug, using density functional theory calculations. Two adsorption mechanisms were predicted for PPA on the pristine C60 including cycloaddition and adsorption via -NH2 group. It was found that the pristine C60 has a good sensitivity to this drug but suffers from a weak interaction (adsorption energy -0.1 kcal/mol) because of structural deformation and aromaticity break. The PPA is adsorbed on the Al or Si doped C60 from its -OH or -NH2 groups. The Al-doping significantly improves the reactivity of C60 but decreases its electronic sensitivity. Unlike the Al-doping, the Si-doping increases both the reactivity and electronic sensitivity to the PPA drug. At the presence of PPA drug, the conductivity of the Si-doped C60 considerably increases due to the HOMO-LUMO gap reduction by about 30.3%. Different analyses were used to obtain the results including nucleus independent chemical shift (NICS), density of states (DOS), molecular electrostatic potential (MEP), frontier molecular orbitals (FMO), etc.

  19. Doping-Induced Interband Gain in InAs/AlSb Quantum Wells

    NASA Technical Reports Server (NTRS)

    Kolokolov, K. I.; Ning, C. Z.

    2005-01-01

    A paper describes a computational study of effects of doping in a quantum well (QW) comprising a 10-nm-thick layer of InAs sandwiched between two 21-nm-thick AlSb layers. Heretofore, InAs/AlSb QWs have not been useful as interband gain devices because they have type-II energy-band-edge alignment, which causes spatial separation of electrons and holes, thereby leading to weak interband dipole matrix elements. In the doping schemes studied, an interior sublayer of each AlSb layer was doped at various total areal densities up to 5 X 10(exp 12) / square cm. It was found that (1) proper doping converts the InAs layer from a barrier to a well for holes, thereby converting the heterostructure from type II to type I; (2) the resultant dipole matrix elements and interband gains are comparable to those of typical type-I heterostructures; and (3) dipole moments and optical gain increase with the doping level. Optical gains in the transverse magnetic mode can be almost ten times those of other semiconductor material systems in devices used to generate medium-wavelength infrared (MWIR) radiation. Hence, doped InAs/AlSb QWs could be the basis of an alternative material system for devices to generate MWIR radiation.

  20. Structure and electrical properties of Al-doped HfO₂ and ZrO₂ films grown via atomic layer deposition on Mo electrodes.

    PubMed

    Yoo, Yeon Woo; Jeon, Woojin; Lee, Woongkyu; An, Cheol Hyun; Kim, Seong Keun; Hwang, Cheol Seong

    2014-12-24

    The effects of Al doping in atomic-layer-deposited HfO2 (AHO) and ZrO2 (AZO) films on the evolutions of their crystallographic phases, grain sizes, and electric properties, such as their dielectric constants and leakage current densities, were examined for their applications in high-voltage devices. The film thickness and Al-doping concentration were varied in the ranges of 60-75 nm and 0.5-9.7%, respectively, for AHO and 55-90 nm and 1.0-10.3%, respectively, for AZO. The top and bottom electrodes were sputtered Mo films. The detailed structural and electrical property variations were examined as functions of the Al concentration and film thickness. The AHO films showed a transition from the monoclinic phase (Al concentration up to 1.4%) to the tetragonal/cubic phase (Al concentration 2.0-3.5%), and finally, to the amorphous phase (Al concentration >4.7%), whereas the AZO films remained in the tetragonal/cubic phase up to the Al concentration of 6.4%. For both the AHO and AZO films, the monoclinic and amorphous phases had dielectric constants of 20-25, and the tetragonal/cubic phases had dielectric constants of 30-35. The highest electrical performance levels for the application to the high-voltage charge storage capacitors in flat panel displays were achieved with the 4.7-9.7% Al-doped AHO films and the 2.6% Al-doped AZO films.

  1. Thermoelectric properties of Al doped Mg{sub 2}Si material

    SciTech Connect

    Kaur, Kulwinder Kumar, Ranjan; Rani, Anita

    2015-08-28

    In the present paper we have calculated thermoelectric properties of Al doped Mg{sub 2}Si material (Mg{sub 2−x}Al{sub x}Si, x=0.06) using Pseudo potential plane wave method based on DFT and Semi classical Boltzmann theory. The calculations showed n-type conduction, indicating that the electrical conduction are due to electron. The electrical conductivity increasing with increasing temperature and the negative value of Seebeck Coefficient also show that the conduction is due to electron. The thermal conductivity was increased slightly by Al doping with increasing temperature due to the much larger contribution of lattice thermal conductivity over electronic thermal conductivity.

  2. Heavily-doped ZnO:Al thin films prepared by using magnetron Co-sputtering: Optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Moon, Eun-A.; Jun, Young-Kil; Kim, Nam-Hoon; Lee, Woo-Sun

    2016-07-01

    Photovoltaic applications require transparent conducting-oxide (TCO) thin films with high optical transmittance in the visible spectral region (380 - 780 nm), low resistivity, and high thermal/chemical stability. The ZnO thin film is one of the most common alternatives to the conventional indium-tin-oxide (ITO) thin film TCO. Highly transparent and conductive ZnO thin films can be prepared by doping with group III elements. Heavily-doped ZnO:Al (AZO) thin films were prepared by using the RF magnetron co-sputtering method with ZnO and Al targets to obtain better characteristics at a low cost. The RF sputtering power to each target was varied to control the doping concentration in fixed-thickness AZO thin films. The crystal structures of the AZO thin films were analyzed by using X-ray diffraction. The morphological microstructure was observed by using scanning electron microscopy. The optical transmittance and the band gap energy of the AZO thin films were examined with an UV-visible spectrophotometer in the range of 300 - 1800 nm. The resistivity and the carrier concentration were examined by using a Hall-effect measurement system. An excellent optical transmittance > 80% with an appropriate band gap energy (3.26 - 3.27 eV) and an improved resistivity (~10 -1 Ω·cm) with high carrier concentration (1017 - 1019 cm -3) were demonstrated in 350-nm-thick AZO thin films for thin-film photovoltaic applications.

  3. Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range

    SciTech Connect

    Valenti, Ilaria; Valeri, Sergio; Perucchi, Andrea; Di Pietro, Paola; Lupi, Stefano; Torelli, Piero

    2015-10-28

    The combination of photoemission spectroscopies, infrared and UV-VIS absorption, and electric measurements has allowed to clarify the mechanisms governing the conductivity and the electronic properties of Al-doped ZnO (AZO) films in a wide doping range. The contribution of defect-related in-gap states to conduction has been excluded in optimally doped films (around 4 at. %). The appearance of gap states at high doping, the disappearance of occupied DOS at Fermi level, and the bands evolution complete the picture of electronic structure in AZO when doped above 4 at. %. In this situation, compensating defects deplete the conduction band and increase the electronic bandgap of the material. Electrical measurements and figure of merit determination confirm the high quality of the films obtained by magnetron sputtering, and thus allow to extend their properties to AZO films in general.

  4. Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range

    NASA Astrophysics Data System (ADS)

    Valenti, Ilaria; Benedetti, Stefania; di Bona, Alessandro; Lollobrigida, Valerio; Perucchi, Andrea; Di Pietro, Paola; Lupi, Stefano; Valeri, Sergio; Torelli, Piero

    2015-10-01

    The combination of photoemission spectroscopies, infrared and UV-VIS absorption, and electric measurements has allowed to clarify the mechanisms governing the conductivity and the electronic properties of Al-doped ZnO (AZO) films in a wide doping range. The contribution of defect-related in-gap states to conduction has been excluded in optimally doped films (around 4 at. %). The appearance of gap states at high doping, the disappearance of occupied DOS at Fermi level, and the bands evolution complete the picture of electronic structure in AZO when doped above 4 at. %. In this situation, compensating defects deplete the conduction band and increase the electronic bandgap of the material. Electrical measurements and figure of merit determination confirm the high quality of the films obtained by magnetron sputtering, and thus allow to extend their properties to AZO films in general.

  5. Characterization of epitaxial GaAs MOS capacitors using atomic layer-deposited TiO2/Al2O3 gate stack: study of Ge auto-doping and p-type Zn doping

    PubMed Central

    2012-01-01

    Electrical and physical properties of a metal-oxide-semiconductor [MOS] structure using atomic layer-deposited high-k dielectrics (TiO2/Al2O3) and epitaxial GaAs [epi-GaAs] grown on Ge(100) substrates have been investigated. The epi-GaAs, either undoped or Zn-doped, was grown using metal-organic chemical vapor deposition method at 620°C to 650°C. The diffusion of Ge atoms into epi-GaAs resulted in auto-doping, and therefore, an n-MOS behavior was observed for undoped and Zn-doped epi-GaAs with the doping concentration up to approximately 1017 cm-3. This is attributed to the diffusion of a significant amount of Ge atoms from the Ge substrate as confirmed by the simulation using SILVACO software and also from the secondary ion mass spectrometry analyses. The Zn-doped epi-GaAs with a doping concentration of approximately 1018 cm-3 converts the epi-GaAs layer into p-type since the Zn doping is relatively higher than the out-diffused Ge concentration. The capacitance-voltage characteristics show similar frequency dispersion and leakage current for n-type and p-type epi-GaAs layers with very low hysteresis voltage (approximately 10 mV). PACS: 81.15.Gh. PMID:22297193

  6. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOEpatents

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  7. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOEpatents

    Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.

    1996-01-01

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  8. Effect of Al concentration on the holographic grating efficiency and ionic conductivity in sodium magnesium aluminosilicate glasses

    NASA Astrophysics Data System (ADS)

    Hamad, Abdulatif Y.; Wicksted, James P.; Hogsed, Michael R.; Martin, Joel J.; Hunt, Charles A.; Dixon, George S.

    2002-02-01

    A systematic study of grating formation, erasure, and decay in 15Na2O.12MgO.xAl2O3.(73-x)SiO2 glasses doped with 1.26 mol% Eu2O3 is reported as a function of Al2O3 concentration for x=0 to 15. The permanent change in the index of refraction was a linearly increasing function of Al2O3 concentration. The grating buildup and erasure rates also increased with Al2O3 concentrations. This is attributed to the reduced activation energy for forced diffusion of small modifiers bound to AlO-4 clusters rather than to nonbridging oxygens. Ionic conductivities were also measured to confirm the reduction of the activation energies. The results of this study support the model for grating kinetics in rare-earth sensitized glasses proposed recently by Dixon, Hamad, and Wicksted.

  9. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    SciTech Connect

    Ganz, P. R.; Schaadt, D. M.

    2011-12-23

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  10. Mechanical and optical characteristics of Al-doped C 60 films

    NASA Astrophysics Data System (ADS)

    Nishinaga, Jiro; Aihara, Tomoyuki; Yamagata, Hiroshi; Horikoshi, Yoshiji

    2005-05-01

    Al-doped C 60 films are grown on GaAs and quartz glass substrates by solid source molecular beam epitaxy. Mechanical and optical properties of the films are investigated by Vickers hardness test, absorption and reflectance spectra, and photoluminescence measurements. Vickers hardness of 250 HV is confirmed for the Al-doped C 60 films with the molecular ratio of Al to C 60 of 30, and the Al-doped C 60 films are found to be undissolved in organic solvents. The absorption spectra of pure C 60 films show some peaks caused by the electron transition among the C 60 molecular orbitals. These absorption peaks become less pronounced in Al-doped C 60 films, probably due to Al incorporation in C 60 matrix. In addition, new photoluminescence peaks appear around 1.75, 1.85 and 1.95 eV. The energy of 1.95 eV coincides well with the energy difference between HOMO and LUMO states. These results suggest that the parity forbidden transition is relieved by the molecular distortion due to the Al-C 60 bonding.

  11. Effects of growth temperature on characteristics of Mg-delta-doped p-AlInGaN epi-layers

    NASA Astrophysics Data System (ADS)

    Wu, Zili; Zhang, Xiong; Liang, Tianhui; Feng, Zhe Chuan; Cui, Yiping

    2016-10-01

    The Mg-delta-doped p-AlInGaN epi-layers were successfully grown on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD). The effects of growth temperature on the characteristics of the Mg-delta-doped p-AlInGaN epi-layers were investigated in detail with scanning electron microscopy (SEM), high resolution X-ray diffraction (HR-XRD), photoluminescence (PL), and Hall effect measurements. The characterization results showed that the surfaces of the p-AlInGaN epi-layers were textured with a high density of hexagonal pits, which was found to be strongly dependent on the growth temperature. This feature should be very helpful to enhance the light extraction efficiency when the p-AlInGaN epi-layers were used as the top p-contact layer for making AlInGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs). In addition, the low temperature PL spectra demonstrated that the Mg-H complex-related broad emission band which was observed for the as-grown p-AlInGaN epi-layer samples was not resolvable for the annealed samples. This fact implies that the Mg-H complex can be effectively dissociated by annealing process. Moreover, owing to the improved In incorporation efficiency and crystalline quality for the p-AlInGaN epi-layers, a hole concentration as high as 1.69 × 1017 cm-3 was achieved with the reformed Mg-delta-doping technique developed in this study.

  12. Coherent effect of Er 3+-Yb 3+ co-doping on enhanced photoluminescence properties of Al 2O 3 powders by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Wang, X. J.; Lei, M. K.; Yang, T.; Cao, B. S.

    2004-08-01

    The Er 3+-Yb 3+ co-doped Al 2O 3 powders have been prepared by the sol-gel method, using the aluminium isopropoxide [Al(OC 3H 7) 3]-derived Al 2O 3 sols with the addition of erbium nitrate [Er(NO 3) 3 · 5H 2O] and ytterbium nitrate [Yb(NO 3) 3 · 5H 2O]. The phase structure, including only two crystalline types of Al 2O 3 phases, γ and θ, was obtained for the 0-1 mol% Er 3+ and 0-2 mol% Yb 3+ co-doped Al 2O 3 powders at the different sintering temperature of 800-1000 °C. The evidence for indirect pumping of Er 3+ through transfer of energy from Yb 3+ was found in the Al 2O 3 matrix material. For the 0.5 mol% Er 3+ and 0.5 mol% Yb 3+, the 1.0 mol% Er 3+ and 1.0 mol% Yb 3+ co-doped Al 2O 3 powders, the photoluminescence (PL) peak intensity at 1.533 μm in the spectra increased by a factor of about 2, and the corresponding full widths at half maximum (FWHM) was increased to about 59 nm, compared with that of the 0.5 and 1 mol% Er 3+-doped Al 2O 3 powders, respectively. At the same Er 3+-Yb 3+ co-doping concentration, the PL intensity increased with increasing the sintering temperature from 800 to 1000 °C. Coherent effect of Er 3+-Yb 3+ co-doping on enhanced PL properties of Al 2O 3 powders was observed. A proper molar ratio of 1:1 for Yb 3+ and Er 3+ led to the maximum PL intensity at the same sintering temperature.

  13. Characteristics of Al-doped ZnO films grown by atomic layer deposition for silicon nanowire photovoltaic device.

    PubMed

    Oh, Byeong-Yun; Han, Jin-Woo; Seo, Dae-Shik; Kim, Kwang-Young; Baek, Seong-Ho; Jang, Hwan Soo; Kim, Jae Hyun

    2012-07-01

    We report the structural, electrical, and optical characteristics of Al-doped ZnO (ZnO:Al) films deposited on glass by atomic layer deposition (ALD) with various Al2O3 film contents for use as transparent electrodes. Unlike films fabricated by a sputtering method, the diffraction peak position of the films deposited by ALD progressively moved to a higher angle with increasing Al2O3 film content. This indicates that Zn sites were effectively replaced by Al, due to layer-by-layer growth mechanism of ALD process which is based on alternate self-limiting surface chemical reactions. By adjusting the Al2O3 film content, a ZnO:Al film with low electrical resistivity (9.84 x 10(-4) Omega cm) was obtained at an Al2O3 film content of 3.17%, where the Al concentration, carrier mobility, optical transmittance, and bandgap energy were 2.8 wt%, 11.20 cm2 V(-1) s(-1), 94.23%, and 3.6 eV, respectively. Moreover, the estimated figure of merit value of our best sample was 8.2 m7Omega(-1). These results suggest that ZnO:Al films deposited by ALD could be useful for electronic devices in which especially require 3-dimensional conformal deposition of the transparent electrode and surface passivation.

  14. Photoluminescence lifetime of Al-doped ZnO films in visible region

    NASA Astrophysics Data System (ADS)

    Sharma, Bhupendra K.; Khare, Neeraj; Haranath, D.

    2010-12-01

    ZnO and Al-doped ZnO films have been deposited on quartz substrates by ultrasonically assisted chemical vapor deposition technique. Photoluminescence (PL) spectra of the films reveal that Al doping leads to suppression of defect related visible band. Time resolved photoluminescence studies have been carried out for the measurement of lifetime of deep level luminescence. The decay of PL intensity with time has been found to follow biexponential behavior. The relative contributions of fast decay component (τ1) and slow decay component (τ2) in total decay process are found to be ˜99% and ˜1% respectively. The values of τ1 and τ2 are found to decrease with Al doping in ZnO film. The decrease of both τ1 and τ2 is attributed to increase in non-radiative recombination due to reduction in grain sizes and the decrease in radiative recombination due to suppression of defects.

  15. Gas sensing properties of Al-doped ZnO for UV-activated CO detection

    NASA Astrophysics Data System (ADS)

    Dhahri, R.; Hjiri, M.; El Mir, L.; Bonavita, A.; Iannazzo, D.; Latino, M.; Donato, N.; Leonardi, S. G.; Neri, G.

    2016-04-01

    Al-doped ZnO (AZO) samples were prepared using a modified sol-gel route and charaterized by means of trasmission electron microscopy, x-ray diffraction and photoluminescence analysis. Resistive planar devices based on thick films of AZO deposited on interdigitated alumina substrates were fabricated and investigated as UV light activated CO sensors. CO sensing tests were performed in both dark and illumination condition by exposing the samples to UV radiation (λ  =  400 nm).Under UV light, Al-doped ZnO gas sensors operated at lower temperature than in dark. Furthermore, by photoactivation we also promoted CO sensitivity and made signal recovery of AZO sensors faster. Results demonstrate that Al-doped ZnO might be a promising sensing material for the detection of CO under UV illumination.

  16. (Al, Er) co-doped ZnO nanoparticles for photodegradation of rhodamine blue

    NASA Astrophysics Data System (ADS)

    Ghomri, R.; Shaikh, M. Nasiruzzaman; Ahmed, M. I.; Bououdina, M.; Ghers, M.

    2016-10-01

    Pure and co-doped (Al, Er) ZnO nanoparticles (NPs) have been synthesized by hydrothermal method using (Zn, Er and Al) nitrates. X-ray diffraction patterns reveal the formation of single phase of ZnO würtzite-type structure. The crystallite size for pure ZnO is in the order of 26.5 nm which decreases up to the range 14.2-22.0 nm after (Al, Er) co-doping. SEM micrographs show that the specimen is composed of regular spherical particles in the nanoscale regime with homogeneous size distribution and high tendency to agglomeration. FTIR spectra exhibit absorption lines located at wavenumbers corresponding to vibration modes between the constituent atoms. Raman spectra recorded under excitation ( λ exc = 632.8 nm) reveal peaks related to modes of transverse and longitudinal optical phonons of the würtzite ZnO structure. The energy band gap E g of ZnO:(Al, Er) NPs ranges in 3.264-3.251 eV. The photocatalytic activity of pure and co-doped (Al, Er) ZnO NPs was evaluated by the photodegradation of rhodamine blue under an irradiation of wavelength 554 nm. It is found that a photodegradation rate above 90 % could be achieved for a period of time of 40 min for pure ZnO and 120 min for (Al, Er) co-doped ZnO. A photodegradation mechanism is proposed.

  17. Mixed Al and Si doping in ferroelectric HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Lomenzo, Patrick D.; Takmeel, Qanit; Zhou, Chuanzhen; Chung, Ching-Chang; Moghaddam, Saeed; Jones, Jacob L.; Nishida, Toshikazu

    2015-12-01

    Ferroelectric HfO2 thin films 10 nm thick are simultaneously doped with Al and Si. The arrangement of the Al and Si dopant layers within the HfO2 greatly influences the resulting ferroelectric properties of the polycrystalline thin films. Optimizing the order of the Si and Al dopant layers led to a remanent polarization of ˜20 μC/cm2 and a coercive field strength of ˜1.2 MV/cm. Post-metallization anneal temperatures from 700 °C to 900 °C were used to crystallize the Al and Si doped HfO2 thin films. Grazing incidence x-ray diffraction detected differences in peak broadening between the mixed Al and Si doped HfO2 thin films, indicating that strain may influence the formation of the ferroelectric phase with variations in the dopant layering. Endurance characteristics show that the mixed Al and Si doped HfO2 thin films exhibit a remanent polarization greater than 15 μC/cm2 up to 108 cycles.

  18. Mixed Al and Si doping in ferroelectric HfO{sub 2} thin films

    SciTech Connect

    Lomenzo, Patrick D.; Nishida, Toshikazu; Takmeel, Qanit; Zhou, Chuanzhen; Chung, Ching-Chang; Jones, Jacob L.; Moghaddam, Saeed

    2015-12-14

    Ferroelectric HfO{sub 2} thin films 10 nm thick are simultaneously doped with Al and Si. The arrangement of the Al and Si dopant layers within the HfO{sub 2} greatly influences the resulting ferroelectric properties of the polycrystalline thin films. Optimizing the order of the Si and Al dopant layers led to a remanent polarization of ∼20 μC/cm{sup 2} and a coercive field strength of ∼1.2 MV/cm. Post-metallization anneal temperatures from 700 °C to 900 °C were used to crystallize the Al and Si doped HfO{sub 2} thin films. Grazing incidence x-ray diffraction detected differences in peak broadening between the mixed Al and Si doped HfO{sub 2} thin films, indicating that strain may influence the formation of the ferroelectric phase with variations in the dopant layering. Endurance characteristics show that the mixed Al and Si doped HfO{sub 2} thin films exhibit a remanent polarization greater than 15 μC/cm{sup 2} up to 10{sup 8} cycles.

  19. Highly Al-doped TiO{sub 2} nanoparticles produced by Ball Mill Method: structural and electronic characterization

    SciTech Connect

    Santos, Desireé M. de los Navas, Javier Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-10-15

    Highlights: • Highly Al-doped TiO{sub 2} nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO{sub 2} nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti{sup 4+} ions by Al{sup 3+} in the TiO{sub 2} lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature.

  20. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties

    NASA Astrophysics Data System (ADS)

    Yeom, Da-Young; Jeon, Woojin; Tu, Nguyen Dien Kha; Yeo, So Young; Lee, Sang-Soo; Sung, Bong June; Chang, Hyejung; Lim, Jung Ah; Kim, Heesuk

    2015-05-01

    For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets with desirable electrical properties can be prepared by the simultaneous reduction and boron-doping of graphene oxide (GO) at a high annealing temperature. B-doped graphene nanoplatelets prepared at 1000 °C show a maximum boron concentration of 6.04 ± 1.44 at %, which is the highest value among B-doped graphenes prepared using various methods. With well-mixed GO and g-B2O3 as the dopant, highly uniform doping is achieved for potentially gram-scale production. In addition, as a proof-of-concept, highly B-doped graphene nanoplatelets were used as an electrode of an electrochemical double-layer capacitor (EDLC) and showed an excellent specific capacitance value of 448 F/g in an aqueous electrolyte without additional conductive additives. We believe that B-doped graphene nanoplatelets can also be used in other applications such as electrocatalyst and nano-electronics because of their reliable and controllable electrical properties regardless of the outer environment.

  1. Doping of AlH3 with alkali metal hydrides for enhanced decomposition kinetics

    NASA Astrophysics Data System (ADS)

    Sandrock, Gary; Reilly, James

    2005-03-01

    Aluminum hydride, AlH3, has inherently high gravimetric and volumetric properties for onboard vehiclular hydrogen storage (10 wt% H2 and 0.148 kg H2/L). Yet it has been widely neglected because of its kinetic limitations for low-temperature H2 desorption and the thermodynamic difficulties associated with recharging. This paper considers a scenario whereby doped AlH3 is decomposed onboard and recharged offboard. In particular, we show that particle size control and doping with small levels of alkali metal hydrides (e.g., LiH) results in accelerated H2 desorption rates nearly high enough to supply fuel-cell and ICE vehicles. The mechanism of enhanced H2 desorption is associated with the formation of alanate windows (e.g., LiAlH4) between the AlH3 particles and the external gas phase. These alanate windows can be doped with Ti to further enhance transparency, even to the point of accomplishing slow decomposition of AlH3 at room temperature. It is highly likely 2010 gravimetric and volumetric vehicular system targets (6 wt% H2 and 0.045 kg/L) can be met with AlH3. But a new, low-cost method of offboard regeneration of spent Al back to AlH3 is yet needed.

  2. Effect of Mo-doping concentration on the physical behaviour of sprayed ZnO layers

    SciTech Connect

    Reddy, T. Sreenivasulu; Reddy, M. Vasudeva; Reddy, K. T. Ramakrishna

    2015-06-24

    Mo-doped zinc oxide layers (MZO) have been prepared on cleaned glass substrates by chemical spray pyrolysis technique by varying Mo-doping concentration in the range, 0 – 5 at. %. The X-ray diffraction studies revealed that all the as prepared layers were polycrystalline in nature and exhibited wurtzite structure. The layers prepared with lower Mo-doping concentration (<2 at. %) were preferably oriented along the (100) plane, whereas in the case of higher Mo-doping concentration (>2 at. %), the films showed the (002) plane as the dominant peak. The optical analysis indicated that all the layers had an average optical transmittance of 80% in the visible region and the evaluated band gap varied in the range, 3.28 - 3.50 eV.

  3. Er, Yb doped yttrium based nanosized phosphors: particle size, "host lattice" and doping ion concentration effects on upconversion efficiency.

    PubMed

    Pires, Ana Maria; Heer, Stephan; Güdel, Hans Ulrich; Serra, Osvaldo Antonio

    2006-05-01

    The upconverter phosphors studied herein have different percentages of Er3+ and Yb3+ as doping ions in different Y3+ matrixes (Y2O3, Y2O2S), and were prepared from different precursors (polymeric resin, oxalate, basic carbonate) and method (combustion). Upconversion emission spectra were recorded at 298 K for all the doped samples in the visible region, for efficiency and Green/Red emission relative intensity comparisons. Therefore, an investigation of the influence of the doping ion concentration, particle size and host lattice on the upconversion process is provided in view of the UPT (Upconverting phosphor technology application). On the basis of the results, it was possible to evaluate the best combination for a specific assay, considering whether it is advantageous to have the greatest contribution from the green or red emissions, or from both in comparable intensities.

  4. Preparation of metal oxide doped ACNFs and their adsorption performance for low concentration SO2

    NASA Astrophysics Data System (ADS)

    Yu, Hong-quan; Wu, Yan-bo; Song, Tie-ben; Li, Yue; Shen, Yu

    2013-11-01

    Metal oxide (TiO2 or Co3O4) doped activated carbon nanofibers (ACNFs) were prepared by electrospinning. These nanofibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunner-Emmett-Teller method (BET). The results show that the average diameters of ACNFs were within the range of 200-500 nm, and the lengths were several tens of micrometers. The specific surface areas were 1146.7 m2/g for TiO2-doped ACNFs and 1238.5 m2/g for Co3O4-doped ACNFs, respectively. The electrospun nanofibers were used for adsorption of low concentration sulfur dioxide (SO2). The results showed that the adsorption rates of these ACNFs increased with an increase in SO2 concentration. When the SO2 concentration was 1.0 μg/mL, the adsorption rates of TiO2-doped ACNFs and Co3O4-doped ACNFs were 66.2% and 67.1%, respectively. The adsorption rate also increased as the adsorption time increased. When the adsorption time was 40 min, the adsorption rates were 67.6% and 69.0% for TiO2-doped ACNFs and Co3O4-doped ACNFs, respectively. The adsorption rate decreased as the adsorption temperature increased below 60°C, while it increased as the adsorption temperature increased to more than 60°C.

  5. Sol-gel derived Al and Ga co-doped ZnO thin films: An optoelectronic study

    NASA Astrophysics Data System (ADS)

    Ebrahimifard, Reza; Golobostanfard, Mohammad Reza; Abdizadeh, Hossein

    2014-01-01

    Al and Ga co-doped ZnO (AGZO) thin films with different doping contents of 0.5-4 at.% were synthesized via sol-gel route using dip coating method and the results were compared to the single doped specimens Al:ZnO (AZO) and Ga:ZnO (GZO). All samples were highly transparent in visible region (T > 85%) with band gap values around 3.3 eV. Introduction of Al and Ga to the ZnO crystal structure decreased the crystallinity and reduced the particle size of the films. Electrical resistivity was investigated and engineered in this study as the main parameter. Single doped samples showed reduction of resistivity compared to the un-doped ZnO. In this regard, Ga was more efficient than Al in decreasing the electrical resistivity. Furthermore, samples with 1 at.% Al and 1 at.% Ga showed the minimum amount of electrical resistivity. Co-doping was performed with two different approaches including variable doping content (Al + Ga ≠ cte) and constant doping content (Al + Ga = 0.5, 1, and 2 at.%) for the sake of the comparison with single doped samples. Samples with Al = 1 at.% and Ga = 1 at.% showed the lowest electrical resistivity in AGZO samples of former approach. However, in latter approach the lowest resistivity was obtained in Al + Ga = 2 at.% sample. The results proved the capability of co-doped samples in optoelectronic industry regarding partially substitution of expensive Ga with Al and obtaining co-doped AGZO transparent conductive thin films with lower resistivity compared to conventional AZO thin films and also achieving commercial advantages compared to costly GZO thin films.

  6. Defect assisted saturable absorption characteristics in Al and Li doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    K. M., Sandeep; Bhat, Shreesha; S. M., Dharmaprakash; P. S., Patil; Byrappa, K.

    2016-09-01

    The influence of different doping ratios of Al and Li on the nonlinear optical properties, namely, a two-photon absorption and a nonlinear refraction using single beam Z-scan technique, of nano-crystalline ZnO thin films has been investigated in the present study. A sol-gel spin-coated pure ZnO, Al-doped ZnO (AZO), and Li-doped ZnO (LZO) thin films have been prepared. The stoichiometric deviations induced by the occupancy of Al3+ and Li+ ions at the interstitial sites injects the compressive stress in the AZO and LZO thin films, respectively, while the extended defect states below the conduction band leads to a redshift of energy band gap in the corresponding films as compared to pure ZnO thin film. Switching from an induced absorption in ZnO and 1 at. wt. % doped AZO and LZO films to a saturable absorption (SA) in 2 at. wt. % doped AZO and LZO films has been observed, and it is attributed to the saturation of a linear absorption of the defect states. The closed aperture Z-scan technique revealed the self-focusing (a positive nonlinear refractive index) in all the films, which emerge out of the thermo-optical effects due to the continuous illumination of laser pulses. A higher third-order nonlinear optical susceptibility χ(3) of the order 10-3 esu has been observed in all the films.

  7. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    NASA Astrophysics Data System (ADS)

    Darwish, Ahmed A.; Fadlallah, Mohamed M.; Badawi, Ashraf; Maarouf, Ahmed A.

    2016-07-01

    Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  8. Mechanisms of lighting enhancement of Al nanoclusters-embedded Al-doped ZnO film in GaN-based light-emitting diodes

    SciTech Connect

    Lee, Hsin-Ying; Chou, Ying-Hung; Lee, Ching-Ting

    2010-01-15

    Aluminum (Al)-doped ZnO (AZO) films with embedded Al nanoclusters were proposed and utilized to enhance the light output power and maximum operation current of GaN-based light-emitting diodes (LEDs). The AZO films were sputtered using ZnO and Al targets in a magnetron cosputtering system. With Al dc power of 7 W and ZnO 100 W ac power, the electron concentration of 4.1x10{sup 20} cm{sup -3}, electron mobility of 16.2 cm{sup 2}/V s, and resistivity of 7.2x10{sup -4} {Omega} cm were obtained for the deposited AZO film annealed at 600 deg. C for 1 min in a N{sub 2} ambient. As verified by a high resolution transmission electron microscopy, the deposited AZO films with embedded Al nanoclusters were clearly observed. A 35% increase in light output power of the GaN-based LEDs with Al nanoclusters-embedded AZO films was realized compared with the conventional LEDs operated at 500 mA. It was verified experimentally that the various characteristics of GaN-based LEDs including the antireflection, light scattering, current spreading, and the light extraction efficiency in light emission could be significantly enhanced with the use of Al nanoclusters-embedded AZO films.

  9. Adsorption of cyanogen chloride over Al- and Ga-doped BN nanotubes

    NASA Astrophysics Data System (ADS)

    Soltani, Alireza; Baei, Mohammad T.; Ghasemi, A. S.; Tazikeh Lemeski, E.; Amirabadi, Komail Hosseni

    2014-11-01

    Density functional theory (DFT) studies were performed to evaluate the ability of the pristine (8, 0) and (10, 0) BN nanotubes as sensor for cyanogen chloride (CNCl). The adsorption of CNCl reacting with BN nanotubes are studied at B3LYP 6-31G* level of theory. Compared with carbon nanotube, (8, 0) BN nanotubes can strongly adsorb the CNCl molecule (about -0.22 eV) with -9.31% change in the energy gap. Our results reveal that the length and diameter of tube have not significant effect upon the adsorption process. In contrast with Ga-doped BN nanotube, the Al-doped BN nanotube has a significant change in the energy gap (about -21.44%) with the adsorption energy of -1.01 eV. Therefore, Al doping BN nanotubes can be utilized as a sensor for toxic CNCl.

  10. Luminescent properties of Ln3+ doped tellurite glasses containing AlF3

    NASA Astrophysics Data System (ADS)

    Walas, Michalina; Pastwa, Agata; Lewandowski, Tomasz; Synak, Anna; Gryczyński, Ignacy; Sadowski, Wojciech; Kościelska, Barbara

    2016-09-01

    The low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence spectra of Eu3+, Tb3+, Tm3+ co-doped glasses show apart of the bands corresponding to the 4f-4f transitions of lanthanide ions also band corresponding to glass matrix. AlF3 doping increases emission intensity, although to improve overall emission color further studies on molar composition of samples and the molar ratio of the components should be carried out.

  11. Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Arab, Shermin; Yao, Maoqing; Zhou, Chongwu; Daniel Dapkus, P.; Cronin, Stephen B.

    2016-05-01

    In this letter, the photoluminescence spectra of n-type doped GaAs nanowires, grown by the metal organic chemical vapor deposition method, are measured at 4 K and 77 K. Our measurements indicate that an increase in carrier concentration leads to an increase in the complexity of the doping mechanism, which we attribute to the formation of different recombination centers. At high carrier concentrations, we observe a blueshift of the effective band gap energies by up to 25 meV due to the Burstein-Moss shift. Based on the full width at half maximum (FWHM) of the photoluminescence peaks, we estimate the carrier concentrations for these nanowires, which varies from 6 × 1017 cm-3 (lightly doped), to 1.5 × 1018 cm-3 (moderately doped), to 3.5 × 1018 cm-3 (heavily doped) as the partial pressure of the disilane is varied from 0.01 sccm to 1 sccm during the growth process. We find that the growth temperature variation does not affect the radiative recombination mechanism; however, it does lead to a slight enhancement in the optical emission intensities. For GaAs nanowire arrays measured at room temperature, we observe the same general dependence of band gap, FWHM, and carrier concentration on doping.

  12. Simultaneous enhancement of carrier mobility and concentration via tailoring of Al-chemical states in Al-ZnO thin films

    SciTech Connect

    Kumar, Manish Wen, Long; Sahu, Bibhuti B.; Han, Jeon Geon

    2015-06-15

    Simultaneously achieving higher carriers concentration and mobility is a technical challenge against up-scaling the transparent-conductive performances of transparent-conductive oxides. Utilizing one order higher dense (∼1 × 10{sup 11} cm{sup −3}) plasmas (in comparison to the conventional direct current plasmas), highly c-axis oriented Al-doped ZnO films have been prepared with precise control over relative composition and chemical states of constituting elements. Tailoring of intrinsic (O vacancies) and extrinsic (ionic Al and zero-valent Al) dopants provide simultaneous enhancement in mobility and concentration of charge carriers. Room-temperature resistivity as low as 4.89 × 10{sup −4} Ω cm along the carrier concentration 5.6 × 10{sup 20} cm{sup −3} is obtained in 200 nm thick transparent films. Here, the control of atomic Al reduces the charge trapping at grain boundaries and subdues the effects of grain boundary scattering. A mechanism based on the correlation between electron-hole interaction and carrier mobility is proposed for degenerately doped wide band-gap semiconductors.

  13. Doping CoSb3 p-type with Al substitution for Sb

    NASA Astrophysics Data System (ADS)

    Adams, Michael J.; Nielsen, Michele D.; Heremans, Joseph P.

    2014-03-01

    Skutterudites such as CoSb3 are compounds composed of group IX-B atoms (Co, Rh, and Ir) forming a simple cubic structure, and group V-A3 pnictide atoms (primarily Sb and As) forming rings inside 6 of every 8 cubes. The remaining cubes remain empty. A common method for reducing thermal conductivity is to introduce impurity atoms such as rare-earths in the cubes that act as rattlers. P-type doping of CoSb3 has led to some advances in zT, but the p-type material remains less performing than the n-type material due to the fact that the valence band, dominated by Sb levels, has a low effective mass. A promising method for improving p-type properties is to introduce an effective resonant level into the energy levels occupied by the light hole band, thereby increasing the Seebeck coefficient without strongly effecting other transport properties. A first attempt using Sn substitution was not successful. Here we try various concentrations of Al substituted at Sb sites to generate a resonant level. Material properties are measured and compared with a calculated Pisarenko relation, where thermopower is plotted as a function of hole concentration. Financial support for this investigation was provided by the U.S. Department of Energy (DOE)-U.S.-China Clean Energy Research Center (CERC-CVC) under the award No. DE-PI0000012.

  14. On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures

    NASA Astrophysics Data System (ADS)

    Tran, Nhung Hong; Le, Binh Huy; Zhao, Songrui; Mi, Zetian

    2017-01-01

    Free hole concentrations up to ˜6 × 1017 cm-3 were measured in Mg-doped AlN nanowires at room-temperature, which is several orders of magnitude larger than that of previously reported AlN epilayers. Detailed studies suggest that such unusually high carrier concentrations stem from the efficient hole hopping conduction in the Mg impurity band, driven by the significantly enhanced Mg-dopant incorporation in nearly defect-free AlN nanostructures. Distinct signatures of hole hopping conduction in the Mg impurity band are observed experimentally, including a relatively small activation energy for electrical conductivity and an increase in hole mobility with increasing temperature.

  15. Electrical properties of pure and (Al, Ga and In) doped CdS/PVA nanocomposites

    NASA Astrophysics Data System (ADS)

    Bala, Vaneeta; Rani, Mamta; Tripathi, S. K.; Kumar, Ranjan

    2015-09-01

    (Al, Ga and In) doped CdS/PVA nanocomposites have been prepared by an in situ chemical method. dc conductivity (σd) measurements of thin films have been done at different temperatures from 288-333 K. The variation of current with voltage is found to be symmetric and linear up to the operating range of the applied voltage. At low temperatures (below 300 K), the conduction mechanism is based on the Davis-Mott model, which involve the presence of localized states originating from a lack of long-range order. In this regime, σ varies exponentially with T-1/4. For high temperatures, conduction is through regular band-type conduction in extended states. From the slope of lnσT1/2 versus T-1/4, we have calculated various Mott’s parameters such as degree of disorder (To), density of states N (Ef), hopping distance (R), and hopping energy (W). The doping of group III elements in CdS/PVA thin films results in a decrease in photoconductivity. Further, n-type conduction behaviour is confirmed in pure and (Al, Ga and In) doped CdS/PVA thin films with Hall measurements. Hall mobility increases with the doping of Ga and In, while it remains almost the same with Al doping in CdS/PVA. Dielectric measurements have also been done to see the effect of frequency at different temperatures (293 K, 313 K and 333 K) and at different applied fields (1 Volt and 3 Volt) on pure and (Al, Ga and In) doped CdS/PVA nanocomposites.

  16. Ge doped GaN with controllable high carrier concentration for plasmonic applications

    SciTech Connect

    Kirste, Ronny; Hoffmann, Marc P.; Sachet, Edward; Bobea, Milena; Bryan, Zachary; Bryan, Isaac; Maria, Jon-Paul; Collazo, Ramón; Sitar, Zlatko; Nenstiel, Christian; Hoffmann, Axel

    2013-12-09

    Controllable Ge doping in GaN is demonstrated for carrier concentrations of up to 2.4 × 10{sup 20} cm{sup −3}. Low temperature luminescence spectra from the highly doped samples reveal band gap renormalization and band filling (Burstein-Moss shift) in addition to a sharp transition. Infrared ellipsometry spectra demonstrate the existence of electron plasma with an energy around 3500 cm{sup −1} and a surface plasma with an energy around 2000 cm{sup −1}. These findings open possibilities for the application of highly doped GaN for plasmonic devices.

  17. Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Kik, P. G.; Polman, A.

    2003-05-01

    Erbium doped Al2O3 waveguide amplifiers were fabricated using two different doping methods, namely Er ion implantation into sputter deposited Al2O3, and co-sputtering from an Er2O3/Al2O3 target. Although the Er concentration in both materials is almost identical (0.28 and 0.31 at. %), the amplifiers show a completely different behavior. Upon pumping with 1.48 μm, the co-sputtered waveguide shows a strong green luminescence from the 4S3/2 level, indicating efficient cooperative upconversion in this material. This is confirmed by pump power dependent measurements of the optical transmission at 1.53 μm and the spontaneous emission at 1.53 and 0.98 μm. All measurements can be accurately modeled using a set of rate equations that include first order and second order cooperative upconversion. The first order cooperative upconversion coefficient C24 is found to be 3.5×10-16 cm3 s-1 in the co-sputtered material, two orders of magnitude higher than the value obtained in Er implanted Al2O3 of 4.1×10-18 cm3 s-1. It is concluded that the co-sputtering process results in a strongly inhomogeneous atomic scale spatial distribution of the Er ions. As a result, the co-sputtered waveguides do not show optical gain, while the implanted waveguides do.

  18. Visible upconversion in Er3+/Yb3+ co-doped LaAlO3 phosphors

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Rai, V. K.; Singh, N.; Pathak, M. S.; Rathaiah, M.; Venkatramu, V.; Patel, Rahul V.; Singh, Pramod K.; Dhoble, S. J.

    2017-01-01

    The Er3+ doped and Er3+/Yb3+ co-doped LaAlO3 phosphors have been synthesized by the combustion method and characterized their structural, morphological, elemental, vibrational and optical properties. The optical absorption and upconversion properties of the synthesized phosphors have been studied. Upon co-doping Yb3+ ions into Er3+:LaAlO3, the blue, green and red upconversion emissions of Er3+ ions have been enhanced about 20, 54 and 22 times, under 978 nm laser excitation. The observed upconversion emissions could be due to excited state absorption in Er3+:LaAlO3, whereas energy transfer is dominant mechanism in Er3+/Yb3+:LaAlO3 phosphors. The tuning in the color emitted from the synthesized phosphors towards the green region has been found due to incorporation of the Yb3+ ions. With increase in the pump power, the color emitted from the co-doped phosphor is not tuned significantly, showing its applicability in making the green display devices.

  19. Transparent conducting Si-codoped Al-doped ZnO thin films prepared by magnetron sputtering using Al-doped ZnO powder targets containing SiC

    SciTech Connect

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu

    2009-07-15

    Transparent conducting Al-doped ZnO (AZO) thin films codoped with Si, or Si-codoped AZO (AZO:Si), were prepared by radio-frequency magnetron sputtering using a powder mixture of ZnO, Al{sub 2}O{sub 3}, and SiC as the target; the Si content (Si/[Si+Zn] atomic ratio) was varied from 0 to 1 at. %, but the Al content (Al/[Al+Zn] atomic ratio) was held constant. To investigate the effect of carbon on the electrical properties of AZO:Si thin films prepared using the powder targets containing SiC, the authors also prepared thin films using a mixture of ZnO, Al{sub 2}O{sub 3}, and SiO{sub 2} or SiO powders as the target. They found that when AZO:Si thin films were deposited on glass substrates at about 200 degree sign C, both Al and Si doped into ZnO acted as effective donors and the atomic carbon originating from the sputtered target acted as a reducing agent. As a result, sufficient improvement was obtained in the spatial distribution of resistivity on the substrate surface in AZO:Si thin films prepared with a Si content (Si/[Si+Zn] atomic ratio) of 0.75 at. % using powder targets containing SiC. The improvement in resistivity distribution was mainly attributed to increases in both carrier concentration and Hall mobility at locations on the substrate corresponding to the target erosion region. In addition, the resistivity stability of AZO: Si thin films exposed to air for 30 min at a high temperature was found to improve with increasing Si content.

  20. Structural, electronic and magnetic effects of Al-doped niobium clusters: a density functional theory study.

    PubMed

    Wang, Huai-Qian; Li, Hui-Fang; Wang, Jia-Xian; Kuang, Xiao-Yu

    2012-07-01

    The application of the ab initio stochastic search procedure with Saunders "kick" method has been carried out for the elucidation of global minimum structures of a series of Al-doped clusters, Nb(n)Al (1 ≤ n ≤ 10). We have studied the structural characters, growth behaviors, electronic and magnetic properties of Nb(n)Al by the density functional theory calculations. Unlike the previous literature reported on Al-doped systems where ground state structures undergo a structural transition from the Al-capped frame to Al-encapsulated structure, we found that Al atom always occupies the surface of Nb(n)Al clusters and structural transition does not take place until n = 10. Note that the fragmentation proceeds preferably by the ejection of an aluminum atom other than niobium atom. According to the natural population analysis, charges always transfer from aluminum to niobium atoms. Furthermore, the magnetic moments of the Nb(n)Al clusters are mainly located on the 4d orbital of niobium atoms, and aluminum atom possesses very small magnetic moments.

  1. Co-doping effects on luminescence and scintillation properties of Ce doped (Lu,Gd)3(Ga,Al)5O12 scintillator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroaki; Kamada, Kei; Kurosawa, Shunsuke; Pejchal, Jan; Shoji, Yasuhiro; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2016-11-01

    Mg co-doping effects on scintillation properties of Ce:Lu1Gd2(Ga,Al)5O12 (LGGAG) were investigated. Mg 200 ppm co-doped Ce:LGGAG single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg co-doping. Ce4+ charge transfer absorption was observed below 300 nm in Mg,Ce:LGGAG which is in good agreement with previous reports. The scintillation decay times were accelerated by Mg co-doping.

  2. Atomic layer deposition of highly-doped Er:Al2O3 and Tm:Al2O3 for silicon-based waveguide amplifiers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Roenn, John; Karvonen, Lasse; Pyymäki-Perros, Alexander; Peyghambarian, Nasser; Lipsanen, Harri; Säynätjoki, Antti; Sun, Zhipei

    2016-05-01

    Recently, rare-earth doped waveguide amplifiers (REDWAs) have drawn significant attention as a promising solution to on-chip amplification of light in silicon photonics and integrated optics by virtue of their high excited state lifetime (up to 10 ms) and broad emission spectrum (up to 200 nm) at infrared wavelengths. In the family of rare-earths, at least erbium, holmium, thulium, neodymium and ytterbium have been demonstrated to be good candidates for amplifier operation at moderate concentrations (< 0.1 %). However, efficient amplifier operation in REDWAs is a very challenging task because high concentration of ions (<0.1%) is required in order to produce reasonable amplification over short device length. Inevitably, high concentration of ions leads to energy-transfer between neighboring ions, which results as decreased gain and increased noise in the amplifier system. It has been shown that these energy-transfer mechanisms in highly-doped gain media are inversely proportional to the sixth power of the distance between the ions. Therefore, novel fabrication techniques with the ability to control the distribution of the rare-earth ions within the gain medium are urgently needed in order to fabricate REDWAs with high efficiency and low noise. Here, we show that atomic layer deposition (ALD) is an excellent technique to fabricate highly-doped (<1%) RE:Al2O3 gain materials by using its nanoscale engineering ability to delicately control the incorporation of RE ions during the deposition. In our experiment, we fabricated Er:Al2O3 and Tm:Al2O3 thin films with ALD by varying the concentration of RE ions from 1% to 7%. By measuring the photoluminescence response of the fabricated samples, we demonstrate that it is possible to incorporate up to 5% of either Er- or Tm-ions in Al2O3 host before severe quenching occurs. We believe that this technique can be extended to other RE ions as well. Therefore, our results show the exceptionality of ALD as a deposition technique for

  3. Optical properties of Si-doped and Be-doped InAlAs lattice-matched to InP grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lumb, M. P.; Yakes, M. K.; González, M.; Tischler, J. G.; Walters, R. J.

    2013-09-01

    In this paper, we determine the optical constants and carrier mobilities of Si-doped and Be-doped InAlAs lattice matched to InP. The samples were grown using molecular beam epitaxy and characterized using Hall measurements, variable angle spectroscopic ellipsometry, and room temperature photoluminescence spectroscopy. A Moss-Burstein shift in the fundamental absorption edge was observed in both Si-doped and Be-doped materials. We fitted a multiple-oscillator, critical point model to the dielectric function of the materials extracted using the spectroscopic ellipsometry. The tabulated input parameters of this model allow for accurate calculations of the dielectric function of doped InAlAs to be made, which is useful information for simulating a variety of InP-based optoelectronic devices.

  4. Defects in Mg doped (Al,In)GaN thin films and nanostructures

    NASA Astrophysics Data System (ADS)

    Shahedipour-Sandvik, Fatemeh

    2009-03-01

    Development of p-type (Al,In)GaN revolutionized the field of solid state lighting in the way that it was hard to imagine, development and introduction to market of light emitters in short period of time and tremendous amount of progress in other areas that was enabled by such development. Although many studies have been done to understand the defects related to Mg incorporation in epitaxially grown AlInGaN films, there are still many open questions. These include the relationship between the defects (type and density) and Mg incorporated and the electrical property of the film. An interesting open question is how optical characteristics of Mg doped (Al, In) GaN can predict its electrical property. In this presentation, we try to address this question. Recent advances in development of nanostructures based on III-nitrides include growth of high quality GaN nanowires. Although large body of work exists in growth and characterization of Si doped GaN nanowires the report work on Mg doped GaN is scarce. In the present work, we will discuss our recent progress in studying optical and electrical characteristics of Mg doped GaN nanowires and defect stabilization in nanostructure and thin films.[4pt] In collaboration with M. Reshchikov, Department of Physics, Virginia Commonwealth University, Richmond, VA 23284; N. Tripathi, B. J. Messer, and M. Tungare, College of Nanoscale Science and Engineering, UAlbany-State University of New York, Albany, NY 12203

  5. Auto-combustion synthesis and characterization of Mg doped CuAlO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Naqvi, A. H.

    2015-06-01

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO2nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO2 sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO2 has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  6. Adsorption of Sugars on Al- and Ga-doped Boron Nitride Surfaces: A Computational Study

    NASA Astrophysics Data System (ADS)

    Darwish, Ahmed A.; Fadlallah, Mohamed M.; Badawi, Ashraf; Maarouf, Ahmed A.

    2015-12-01

    Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets ($h$-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on $h$-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  7. Auto-combustion synthesis and characterization of Mg doped CuAlO{sub 2} nanoparticles

    SciTech Connect

    Agrawal, Shraddha Parveen, Azra; Naqvi, A. H.

    2015-06-24

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO{sub 2}nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO{sub 2} sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO{sub 2} has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  8. Significant Enhancement in the Conductivity of Al-Doped Zinc Oxide thin Films for TCO Application

    NASA Astrophysics Data System (ADS)

    Mohite, R. M.; Ansari, J. N.; Roy, A. S.; Kothawale, R. R.

    2016-03-01

    Nanostructured Al-doped Zinc oxide (ZnO) thin films were deposited on glass substrate by chemical bath deposition (CBD) using aqueous zinc nitrate solution and subjected for different characterizations. Effect of Al3+ substitution on the properties of ZnO annealed at 400∘C was studied by XRD and UV-Vis for structural studies, SEM and TEM for surface morphology and DC four probe resistivity measurements for electrical properties. Al3+ substitution does not influence the morphology and well-known peaks related to wurtzite structure of ZnO. Electron microscopy (SEM and TEM) confirms rod shaped Al-doped ZnO nanocrystals with average width of 50nm. The optical band gap determined by UV-Visible spectroscopy was found to be in the range 3.37eV to 3.44eV. An EPR spectrum of AZO reveals peak at g=1.96 is due to shallow donors Zn interstitial. The DC electrical resistivity measurements of Al-doped ZnO show a minimum resistivity of 3.77×10-2Ω-cm. Therefore, these samples have potential use in n-type window layer in optoelectronic devices, organic solar cells, photonic crystals, photo-detectors, light emitting diodes (LEDs), gas sensors and chemical sensors.

  9. Effect of the Chalcogenide Element Doping on the Electronic Properties of Co2FeAl Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Ting; Cheng, Xiao-min; Guan, Xia-wei; Miao, Xiang-shui

    2016-02-01

    The electronic properties of the typical Heusler compound Co2FeAl with chalcogenide element doping were investigated by means of first principles calculations within the local spin-density approximation (LSDA) + Hubbard U parameter (U). The calculations indicate that, only when 25% of the number of Al atoms is substituted by the chalcogenide element, the chalcogenide element-doped Co2FeAl shows the half metallic properties. The Fermi energy ( E F) of the 25% chalcogenide element-doped Co2FeAl is located in the middle of the gap of the minority states instead of around the top of the valence band as in Co2FeAl. Moreover, the band gap of 25% Te-doped Co2FeAl (0.80 eV) is wider than that of Co2FeAl (0.74 eV). These improved electronic structures will make 25% chalcogenide element-doped Co2FeAl more stable against temperature variation. Therefore, the expected excellent stability of the 25% chalcogenide element-doped Co2FeAl make it more suitable for spintronic applications than Co2FeAl.

  10. Cage Structure Formation of Singly Doped Aluminum Cluster Cations Al n TM + ( TM = Ti, V, Cr)

    NASA Astrophysics Data System (ADS)

    Lang, Sandra M.; Claes, Pieterjan; Neukermans, Sven; Janssens, Ewald

    2011-09-01

    Structural information on free transition metal doped aluminum clusters, Al n TM + ( TM = Ti, V, Cr), was obtained by studying their ability for argon physisorption. Systematic size ( n = 5 - 35) and temperature ( T = 145 - 300 K) dependent investigations reveal that bare Al n + clusters are inert toward argon, while Al n TM + clusters attach one argon atom up to a critical cluster size. This size is interpreted as the geometrical transition from surface-located dopant atoms to endohedrally doped aluminum clusters with the transition metal atom residing in an aluminum cage. The critical size, n crit , is found to be surprisingly large, namely n crit = 16 and n crit = 19 - 21 for TM = V, Cr, and TM = Ti, respectively. Experimental cluster-argon bond dissociation energies have been derived as function of cluster size from equilibrium mass spectra and are in the 0.1-0.3 eV range.

  11. Effect of Titanium Doping of Al(111) Surfaces on Alane Formation Mobility, and Desorption

    SciTech Connect

    Chopra I. S.; Graetz J.; Chaudhuri, S.; Veyan, J.-F.; Chabal, Y. J.

    2011-07-05

    Alanes are critical intermediates in hydrogen storage reactions for mass transport during the formation of complex metal hydrides. Titanium has been shown to promote hydrogen desorption and hydrogenation, but its role as a catalyst is not clear. Combining surface infrared (IR) spectroscopy and density functional theory (DFT), the role of Ti is explored during the interaction of atomic hydrogen with Ti-doped Al(111) surfaces. Titanium is found to reduce the formation of large alanes, due to a decrease of hydrogen mobility and to trapping of small alanes on Ti sites, thus hindering oligomerization. For high doping levels ({approx}0.27 ML Ti) on Al(111), only chemisorbed AlH{sub 3} is observed on Ti sites, with no evidence for large alanes. Titanium also dramatically lowers the desorption temperature of large alanes from 290 to 190 K, due to a more restricted translational motion of these alanes.

  12. Reduced Cu concentration in CuAl-LPE-grown thin Si layers

    SciTech Connect

    Wang, T.H.; Ciszek, T.F.; Asher, S.; Reedy, R.

    1995-08-01

    Cu-Al has been found to be a good solvent system to grow macroscopically smooth Si layers with thicknesses in tens of microns on cast MG-Si substrates by liquid phase epitaxy (LPE) at temperatures near 900{degrees}C. This solvent system utilizes Al to ensure good wetting between the solution and substrate by removing silicon native oxides, and employs Cu to control Al doping into the layers. Isotropic growth is achieved because of a high concentration of solute silicon in the solution and the resulting microscopically rough interface. The incorporation of Cu in the Si layers, however, was a concern since Cu is a major solution component and is generally regarded as a bad impurity for silicon devices due to its fast diffusivity and deep energy levels in the band gap. A study by Davis shows that Cu will nonetheless not degrade solar cell performance until above a level of 10{sup 17} cm{sup -3}. This threshold is expected to be even higher for thin layer silicon solar cells owing to the less stringent requirement on minority carrier diffusion length. But to ensure long term stability of solar cells, lower Cu concentrations in the thin layers are still preferred.

  13. Low doping concentration studies of doped PVA-Coumarin nanocomposite films

    NASA Astrophysics Data System (ADS)

    Tripathi, J.; Tripathi, S.; Bisen, R.; Sharma, A.; Choudhary, A.; Shripathi, T.

    2016-05-01

    The observations of combination of Poly (vinyl) alcohol and Coumarin properties in nanocmposite films are reported. The X-ray diffraction measurements reveal nanocrystalline nature of PVA film, which remains nanocrystalline after doping Coumarin but along with PVA peaks, additional peak due to dopant crystallinity is seen. The absorption edge shows a double edge feature, where distinct bandgaps for PVA host and dopant Coumarin are obtained. However at a higher doping wt % of 1 and 2, the absorption is mainly dominated by Coumarin and single absorption edge is observed giving a bandgap equal to that of bulk Coumarin (3.3 eV). The composite formation affects the bonding of host drastically and is seen through the bond modification in FTIR spectra. The results suggest that doping below 2 wt% is advantageous as combination of PVA and Coumarin properties are obtained but at 2 wt %, the properties are dominated by mainly Coumarin and the signature of PVA from optical properties is completely lost.

  14. Enhancing Graphene Capacitance by Nitrogen: Effects of Doping Configuration and Concentration

    DOE PAGES

    Zhan, Cheng; Cummings, Peter; Jiang, De-en

    2016-01-08

    Recent experiments have shown that nitrogen doping enhances capacitance in carbon electrode supercapacitors. However, a detailed study of the effect of N-doping on capacitance is still lacking. In this paper, we study the doping concentration and the configuration effect on the electric double-layer (EDL) capacitance, quantum capacitance, and total capacitance. It is found that pyridinic and graphitic nitrogens can increase the total capacitance by increasing quantum capacitance, but pyrrolic configuration limits the total capacitance due to its much lower quantum capacitance than the other two configurations. We also find that, unlike the graphitic and pyridinic nitrogens, the pyrrolic configuration's quantummore » capacitance does not depend on the nitrogen concentration, which may explain why some capacitance versus voltage measurements of N-doped graphene exhibit a V-shaped curve similar to that of undoped graphene. Our investigation provides a deeper understanding of the capacitance enhancement of the N-doping effect in carbon electrodes and suggests a potentially effective way to optimize the capacitance by controlling the type of N-doping.« less

  15. Enhancing Graphene Capacitance by Nitrogen: Effects of Doping Configuration and Concentration

    SciTech Connect

    Zhan, Cheng; Cummings, Peter; Jiang, De-en

    2016-01-08

    Recent experiments have shown that nitrogen doping enhances capacitance in carbon electrode supercapacitors. However, a detailed study of the effect of N-doping on capacitance is still lacking. In this paper, we study the doping concentration and the configuration effect on the electric double-layer (EDL) capacitance, quantum capacitance, and total capacitance. It is found that pyridinic and graphitic nitrogens can increase the total capacitance by increasing quantum capacitance, but pyrrolic configuration limits the total capacitance due to its much lower quantum capacitance than the other two configurations. We also find that, unlike the graphitic and pyridinic nitrogens, the pyrrolic configuration's quantum capacitance does not depend on the nitrogen concentration, which may explain why some capacitance versus voltage measurements of N-doped graphene exhibit a V-shaped curve similar to that of undoped graphene. Our investigation provides a deeper understanding of the capacitance enhancement of the N-doping effect in carbon electrodes and suggests a potentially effective way to optimize the capacitance by controlling the type of N-doping.

  16. Achieving optimum carrier concentrations in p-doped SnS thermoelectrics.

    PubMed

    Bhattacharya, Sandip; Gunda, N S Harsha; Stern, Robin; Jacobs, Stéphane; Chmielowski, Radoslaw; Dennler, Gilles; Madsen, Georg K H

    2015-04-14

    Tin(II)sulfide, SnS, is a commercially viable and environmentally friendly thermoelectric material. Recently it was shown how the carrier concentration and the thermoelectric power factor can be optimized by Ag-doping in a sulphur rich environment. Theoretical calculations lead to a fairly accurate estimation of the carrier concentration, whereas the potential of doping with Li(+) is strongly overestimated. Two principally ubiquitous effects that can result in decreasing the hole concentration, namely the formation of coupled defect complexes and oxidation of the dopant, are discussed as possible origins of this disagreement. It is shown that oxidation limits the chemical potential of Li beyond that already set by the formation of Li2S. This work serves as a comprehensive guide to achieve an efficient p-doped SnS thermoelectric material.

  17. Highly (0001)-oriented Al-doped ZnO polycrystalline films on amorphous glass substrates

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Inaba, Katsuhiko; Osada, Minoru; Kobayashi, Shintaro; Makino, Hisao; Yamamoto, Tetsuya

    2016-09-01

    Very thin aluminum-doped zinc oxide (AZO) films with a well-defined (0001) orientation and a surface roughness of 0.357 nm were deposited on amorphous glass substrates at a temperature of 200 °C by radio frequency magnetron sputtering, which are promising, particularly in terms of orientation evolution, surface roughness, and carrier transport, as buffer layers for the subsequent deposition of highly (0001)-oriented AZO polycrystalline films of 490 nm thickness by direct current (DC) magnetron sputtering. Sintered AZO targets with an Al2O3 content of 2.0 wt. % were used. DC magnetron sputtered AZO films on bare glass substrates showed a mixed (0001) and the others crystallographic orientation, and exhibited a high contribution of grain boundary scattering to carrier transport, resulting in reduced Hall mobility. Optimizing the thickness of the AZO buffer layers to 10 nm led to highly (0001)-oriented bulk AZO films with a marked reduction in the above contribution, resulting in AZO films with improved Hall mobility together with enhanced carrier concentration. The surface morphology and point defect density were also improved by applying the buffer layers, as shown by atomic force microscopy and Raman spectroscopy, respectively.

  18. Photoluminescent properties of Tb3+ doped GdSrAl3O7 nanophosphor using solution combustions synthesis

    NASA Astrophysics Data System (ADS)

    Khatkar, Satyender Pal; Singh, Sonika; Lohra, Sheetal; Khatkar, Avni; Taxak, Vinod

    2015-05-01

    A color tunable terbium doped GdSrAl3O7 nanophosphor has been synthesized at low temperature using solution combustion synthesis. The photoluminescent properties of nanophosphors have been explored by analyzing their excitation and emission spectra alongwith their decay curves. The emission spectra exhibit dominating green light at 544 nm due to 5D4→7F5 transition of Tb3+ ions in GdSrAl3O7 on excitation by UV light of 239 nm. Furthermore, the luminescence in Gd( 1- x)SrAl3O7: xTb3+nanophosphors shifted from blue to green color by properly tuning the concentration of terbium ions. Decay curves indicate that non-radiative cross-relaxation is primarily responsible for concentration quenching phenomenon in the GdSrAl3O7 host. X-ray diffraction (XRD) analysis confirmed that single tetragonal phased nanophosphor could be readily obtained at low temperature 550°C. The smooth surfaced nanocrystals with particle size of 45 - 50 nm have also been examined by transmission electron microscopy (TEM). All these features augmented the probability of GdSrAl3O7: Tb3+ nanophosphor for potential applications in optical devices. [Figure not available: see fulltext.

  19. Influence of Electron Doping on Magnetic Order in CeRu2Al10

    SciTech Connect

    Kobayashi, Riki; Kaneko, Koji; Saito, Kotaro; Mignot, Jean-Michel; André, Gilles; Robert, Julien; Wakimoto, Shuichi; Matsuda, Masaaki; Chi, Songxue; Haga, Yoshinori; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Nishioka, Takashi; Matsumura, Masahiro; Tanida, Hiroshi; Sera, Masafumi

    2014-09-17

    The effect of electron doping by the substitution of Rh for Ru on unconventional magnetic order in CeRu2Al10 was investigated via neutron powder diffraction. In Ce(Ru1-xRhx)2Al10 with x = 0.05, 0.12, and 0.2, reorientation of the ordered moment from the c- to the a-axis takes place in all samples, while the ordering vector q=(0 1 0) remains unchanged within this concentration range. The moment reorientation is accompanied by an enhancement in its size by a factor of ~2.4, from μ=0.43 μB at x=0 to μ =1.06, 1.04, and 1.02 μB for x=0.05, 0.12 and 0.2, respectively. The continuous decrease in N´eel temperature T0(TN), despite an abrupt increase in μ , underlines the strong anisotropy in the exchange interaction in CeRu2Al10, and the fact that this anisotropy is easily suppressed by electron doping.

  20. Lateral photovoltaic effect observed in doping-modulated GaAs/Al0.3Ga0.7As.

    PubMed

    Liu, Ji Hong; Qiao, Shuang; Liang, BaoLai; Wang, ShuFang; Fu, GuangSheng

    2017-02-20

    For photovoltaic effect (PE), both barrier height and carrier lifetime are all very important factors. However, how to distinguish their contributions to the PE is very difficult. In this paper, we prepared a series of GaAs/Al0.3Ga0.7As two dimensional electron gas (2DEG) with typical Al0.3Ga0.7As doping concentration of 0.6 × 1018/cm3, 1.2 × 1018/cm3, and 2.5 × 1018/cm3, respectively (sample number: #1, #2, #3), and studied their lateral photovoltaic effects (LPEs). It is found that their position sensitivities all increase with both laser wavelength and laser power. However, the position sensitivity exhibits a non-monotonic behavior with increasing doping concentration, which can be mainly ascribed to the doping concentration-dependent carrier lifetime, especially in the low power regime. With increasing laser power gradually, the position sensitivity difference between sample #1 and sample #2 is still large and increases a little, while the position sensitivity of sample #3 approaches to that of sample #2, suggesting that the doping concentration-dependent barrier height also starts to play an important role in the high power regime. Our results will provide important information for the design and development of novel and multifunctional PE devices.

  1. Microwave-assisted fabrication of strontium doped apatite coating on Ti6Al4V.

    PubMed

    Zhou, Huan; Kong, Shiqin; Pan, Yan; Zhang, Zhiguo; Deng, Linhong

    2015-11-01

    Strontium has been shown to be a beneficial dopant to calcium phosphates when incorporated at nontoxic level. In the present work we studied the possibility of solution derived doping strontium into calcium phosphate coatings on titanium alloy Ti6Al4V based implants by a recently reported microwave-assisted method. By using this method strontium doped calcium phosphate nuclei were deposited to pretreated titanium alloy surface dot by dot to compose a crack-free coating layer. The presence of strontium in solution led to reduced roughness of the coating and finer nucleus size formed. In vitro study found that proliferation and differentiation of osteoblast cells seeded on the coating were influenced by strontium content in coatings, showing an increasing followed by a decreasing behavior with increasing substitution of calcium by strontium. It is suggested that this new microwave-assisted strontium doped calcium phosphate coatings may have great potential in implant modification.

  2. Tailoring structure and magnetic characteristics of strontium hexaferrite via Al doping engineering

    NASA Astrophysics Data System (ADS)

    Wang, H. Z.; Hai, Y. N.; Yao, B.; Xu, Y.; Shan, L.; Xu, L.; Tang, J. L.; Wang, Q. H.

    2017-01-01

    Emerging structure and magnetic properties of Al3+-modified SrFe12O19 M-type hexaferrite system (SrAlxFe12-xO19) had been studied in detail via doping engineering. With Al3+ ion nominal content ranging from 0 to 4 (0≤x≤4), the lattice parameters decrease due to the substitution of Fe3+ ions by smaller Al3+ ions, and the magnetization shows a continuous reduction with the increasing of Al content. For the coercivity, its value initially increases, reaching a maximum value of 16,876.9 Oe at x=3, and then reduces with the Al content further increase. When all the Fe3+ ions (x=4) are replaced by Al3+ ions, the net magnetic moment will be closed to zero, that will weaken the exchange interaction between Fe3+ ions, resulting in decrease of coercivity sharply and transformation ferrimagnetism into antiferromagnetism. The mechanism of the improvement of the magnetic properties induced by Al doping is discussed in the present work.

  3. Reactivity enhancement of oxide skins in reversible Ti-doped NaAlH{sub 4}

    SciTech Connect

    Delmelle, Renaud; Borgschulte, Andreas; Gehrig, Jeffrey C.; Züttel, Andreas

    2014-12-15

    The reversibility of hydrogen sorption in complex hydrides has only been shown unambiguously for NaAlH{sub 4} doped with transition metal compounds. Despite a multitude of investigations of the effect of the added catalyst on the hydrogen sorption kinetics of NaAlH{sub 4}, the mechanism of catalysis remains elusive so far. Following the decomposition of TiCl{sub 3}-doped NaAlH{sub 4} by in-situ X-ray photoelectron spectroscopy (XPS), we link the chemical state of the dopant with those of the hydride and decomposition products. Titanium and aluminium change their oxidation states during cycling. The change of the formal oxidation state of Al from III to zero is partly due to the chemical reaction from NaAlH{sub 4} to Al. Furthermore, aluminium oxide is formed (Al{sub 2}O{sub 3}), which coexists with titanium oxide (Ti{sub 2}O{sub 3}). The interplay of metallic and oxidized Ti with the oxide skin might explain the effectiveness of Ti and similar dopants (Ce, Zr…)

  4. Thermal stability of C-doped GaAs/AlAs DBR structures

    NASA Astrophysics Data System (ADS)

    Liang, M. S.; Bullough, T. J.; Joyce, T. B.

    2008-08-01

    Thermal stability of heavily carbon-doped and undoped DBRs has been investigated by reflectivity measurements and Raman spectroscopy. These analytical techniques are used to study the effect of heavy C-doping on Al-Ga interdiffusion during subsequent high-temperature anneals. Reflectivity spectra around the DBR stop-band wavelength clearly show that the growth-rate is reduced due to etching associated with the CBr4 precursor used, but they also indicate that no Al-Ga interdiffusion that could significantly degrade the DBR performance takes place for any samples during annealing. The results are supported by Raman spectra, which indicate the positions of the LO and LOPC modes do not change when the DBRs are annealed, whether the DBRs are doped or not. Simulations of Al-Ga interdiffusion at GaAs/AlAs DBR interfaces indicates that intermixing up to ∼15 nm on either side of each interface will not affect the reflectivity of the DBR stack significantly. The observed small changes in the stop-band central wavelength and peak reflectivity due to annealing is most likely a consequence of increased surface roughness resulted from annealing.

  5. A first principles study of pristine and Al-doped boron nitride nanotubes interacting with platinum-based anticancer drugs

    NASA Astrophysics Data System (ADS)

    Shakerzadeh, Ehsan; Noorizadeh, Siamak

    2014-03-01

    Interaction of cis-platin and neda-platin, two conventional platinum-based anticancer drugs, with pristine [8,8] and Al-doped [8,0] boron nitride nanotubes (BNNTs) are investigated using the density functional theory (DFT) method. The obtained results indicate that cis-platin and neda-platin weakly interact with pristine zig zag or armchair BNNTs with a little dependency on the adsorbing positions; while both cis-platin and neda-platin are preferentially adsorbed onto the Al atom of the Al-doped BNNT with considerable adsorption energies. Therefore the Al-doped-BNNT might be an efficient carrier for delivery of these drugs in nanomedicine domain. The electronic structures of the stable configurations are also investigated through both DOS and PDOS spectra. The obtained results introduce the Al-doped-BNNT as an efficient carrier for delivery of cis-platin and neda-platin in nanomedicine domain.

  6. Genesis of flake-like morphology and dye-sensitized solar cell performance of Al-doped ZnO particles: a study

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Mondal, B.; Mukherjee, K.

    2017-03-01

    In dye-sensitized solar cell (DSSC) application, the particulate morphologies of photo-anode facilitate efficient dye loading and thus lead to better photo-conversion efficiency than their thin film counterpart. However, till date, the electronic and optical properties as well as the DSSC application of Al-doped ZnO (AZO) particles as photo-anode material is studied less than thin films. Herein, phase formation behavior, morphology evolution, optical properties, and dye-sensitized solar cell performance of wet chemically prepared ZnO and AZO (dopant level: 1-4 mol%) particles are studied. It is found that Al doping modulates significantly the ZnO morphology which in turn results the maximum dye adsorption as well as best photo-conversion efficiency at optimum dopant concentration. Specifically, the nanoparticle of ZnO turns predominantly to flake-like morphology with a higher surface area when 2 mol% Al is doped. Such morphology modulation is expected, since the crystallinity, lattice parameters, and lattice strain of ZnO changes appreciably with Al doping. The variations of optical properties (absorbance, diffused reflectance, and band gap) of AZO materials as compared to primitive ZnO are also identified through UV-vis studies. An attempt is made here to correlate the structural features with the photovoltaic performances of ZnO and AZO.

  7. Effect of Fe doping concentration on photocatalytic activity of ZnO nanosheets under natural sunlight

    SciTech Connect

    Khokhra, Richa; Kumar, Rajesh

    2015-05-15

    A facile room temperature, aqueous solution-based chemical method has been adopted for large-scale synthesis of Fe doped ZnO nanosheets. The XRD and SEM results reveal the as-synthesized products well crystalline and accumulated by large amount of interweave nanosheets, respectively. Energy dispersive spectroscopy data confirmed Fe doping of the ZnO nanosheets with a varying Fe concentration. The photoluminescence spectrum reveals a continuous suppression of defect related emissions intensity by increasing the concentration of the Fe ion. A photocatalytic activity using these samples under sunlight irradiation in the mineralization of methylene blue dye was investigated. The photocatalytic activity of Fe doped ZnO nanosheets depends upon the presence of surface oxygen vacancies.

  8. Possible efficient p-type doping of AlN using Be: An ab initio study

    NASA Astrophysics Data System (ADS)

    Wu, R. Q.; Shen, L.; Yang, M.; Sha, Z. D.; Cai, Y. Q.; Feng, Y. P.; Huang, Z. G.; Wu, Q. Y.

    2007-10-01

    Spin density functional theory based ab initio study is carried out to investigate the feasibility of fabricating p-type AlN using Be as an efficient dopant. It is found that substitutional BeAl is an acceptor with an activation energy of 0.34eV. To overcome the low solubility of direct incorporation of Be into AlN and self-compensation from Be interstitials, we propose a hydrogen-assisted growth scheme which improves the solubility and suppresses interstitials. Oxygen is also found to be an effective codopant to activate Be in AlN. Our results suggest the possibility of improving p-type conductivity of AlN by Be doping.

  9. Concentration dependent spectroscopic properties of Sm3+ doped borophosphate glasses

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R.; Marimuthu, K.

    2015-07-01

    A new series of Sm3+ doped borophosphate glasses 50B2O3 + 20Li2CO3 + 10ZnO + 9SrCO3 + (11 - x)P2O5 + xSm2O3 (x = 0.1, 0.25, 0.5, 1 and 2 in wt%) have been prepared by following melt quenching technique. The structural and optical properties of the prepared glasses were characterized through XRD, FTIR, absorption, luminescence and decay spectral measurements. The XRD spectrum exhibit broad diffusion at lower angles which reveal the amorphous nature and the presence of various functional groups such as Psbnd Osbnd P bonds, Bsbnd O vibrations in BO3 units and Psbnd OH and Bsbnd OH bonds in the title glasses were confirmed through the FTIR spectra. The nature of the metal-ligand bonding and the electronic band structure has been investigated using the absorption spectra. The Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6) were evaluated from the JO theory using the refractive index and the experimental oscillator strength values. The emission spectra exhibit four emission bands in the visible region corresponding to the 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 transitions by monitoring an excitation wavelength at 403 nm. The emission spectra have been characterized through Commission International de I'Eclairage (CIE) 1931 chromaticity diagram to explore the dominant emission from the studied glasses. The radiative parameters such as transition probability (AR), branching ratios (βR) and stimulated emission cross-section ( σPE) were obtained for the emission transitions using JO parameters and the results were discussed and compared with the reported literature.

  10. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing.

  11. Electron transport in Al-Cu co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Serin, T.; Atilgan, A.; Kara, I.; Yildiz, A.

    2017-03-01

    To investigate the influence of varying Al content on structural, optical, and electrical properties of ZnO thin films, Al-Cu co-doped ZnO thin films with fixed Cu content at 1 wt. % and different Al contents (1, 3, and 5 wt. %) were successfully synthesized on glass substrates using a sol-gel process. The results indicated that the varying Al content affects not only the grain size and band gap but also the electrical conductivity of the films, and a linear relationship was found between the band gap and strain values of the films. The temperature-dependent electrical conductivity data of the films demonstrated that electron transport was mainly controlled by the grain boundaries at intermediate and high temperatures, whereas it was governed by Mott-variable range hopping at low temperatures. Additionally, 3 wt. % Al content improved the electrical conductivity of Al-Cu co-doped ZnO by lowering the trap density and enhancing the hopping probability.

  12. Investigation of fluorine adsorption on nitrogen doped MgAl2O4 surface by first-principles

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-07-01

    The nature of fluorine adsorption on pure and N doped MgAl2O4 surface has been investigated by first-principles calculations based on the density functional theory. Calculated results indicate that MgAl2O4 surface is fluorine-loving, not hydrophilic. Nitrogen doped MgAl2O4 (100) surface shows the highest fluorine adsorption performance and fluorine atom preferentially adsorbs on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: Nitrogen doped MgAl2O4 (100) > Al2O3 (0001) > MgAl2O4 (100) > MgO (100). In-depth PDOS analysis suggested that 2p orbitals of F atom strongly hybridized with 3s- and 3p-orbitals of Al atom contribute to its high adsorption intensity. According to the analysis of Hirshfeld charge, the excellent fluorine adsorption performance of nitrogen doped MgAl2O4 attributes to the electron compensation effect of nitrogen atom and strong electrostatic interactions. All these evidences demonstrate a fact nitrogen doped MgAl2O4 is a promising candidate for fluorine removal.

  13. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    NASA Astrophysics Data System (ADS)

    Zawadzki, Wlodek; Raymond, Andre; Kubisa, Maciej

    2016-05-01

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov-de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov-de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of negatively

  14. Structural, optical, morphological and electrical properties of undoped and Al-doped ZnO thin films prepared using sol—gel dip coating process

    NASA Astrophysics Data System (ADS)

    Boukhenoufa, N.; Mahamdi, R.; Rechem, D.

    2016-11-01

    In this work, sol—gel dip-coating technique was used to elaborate ZnO pure and ZnO/Al films. The impact of Al-doped concentration on the structural, optical, surface morphological and electrical properties of the elaborated samples was investigated. It was found that better electrical and optical performances have been obtained for an Al concentration equal to 5%, where the ZnO thin films exhibit a resistivity value equal to 1.64104 Ω·cm. Moreover, highest transparency has been recorded for the same Al concentration value. The obtained results from this investigation make the developed thin film structure a potential candidate for high optoelectronic performance applications.

  15. Engineering the switching dynamics of TiOx-based RRAM with Al doping

    NASA Astrophysics Data System (ADS)

    Trapatseli, Maria; Khiat, Ali; Cortese, Simone; Serb, Alexantrou; Carta, Daniela; Prodromakis, Themistoklis

    2016-07-01

    Titanium oxide (TiOx) has attracted a lot of attention as an active material for resistive random access memory (RRAM), due to its versatility and variety of possible crystal phases. Although existing RRAM materials have demonstrated impressive characteristics, like ultra-fast switching and high cycling endurance, this technology still encounters challenges like low yields, large variability of switching characteristics, and ultimately device failure. Electroforming has been often considered responsible for introducing irreversible damage to devices, with high switching voltages contributing to device degradation. In this paper, we have employed Al doping for tuning the resistive switching characteristics of titanium oxide RRAM. The resistive switching threshold voltages of undoped and Al-doped TiOx thin films were first assessed by conductive atomic force microscopy. The thin films were then transferred in RRAM devices and tested with voltage pulse sweeping, demonstrating that the Al-doped devices could on average form at lower potentials compared to the undoped ones and could support both analog and binary switching at potentials as low as 0.9 V. This work demonstrates a potential pathway for implementing low-power RRAM systems.

  16. Structural defects and photoluminescence studies of sol-gel prepared ZnO and Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2016-11-01

    ZnO and Al-doped ZnO (AZO) films were synthesized using sol-gel spin-coating method. The powder XRD analysis revealed the stress relaxation mechanism upon Al doping in ZnO film. The reduction in the imaginary part of the dielectric constant and suppression of deep level acceptor type octahedral oxygen interstitial defects account for the reduction in carrier concentration in AZO with respect to ZnO. Electrical conductivity measurements and grain boundary conduction model are used to quantify the carrier concentration. From the Commission Internationale d'Eclairge diagram of ZnO and AZO, color parameters like dominant wavelength, color purity and luminosity are determined and reported for the first time. The prepared ZnO and AZO films show considerable blue emission. These films can be used for white light generation.

  17. Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification.

    PubMed

    Yuan, Rongfang; Zhou, Beihai; Hua, Duo; Shi, Chunhong

    2013-11-15

    O3/UV/TiO2 was used to effectively decompose humic acids (HAs) in drinking water. To obtain a large specific surface area and low band gap energy, Al and Fe co-doped TiO2 nanotubes were successfully synthesized using the hydrothermal method. The effect of the optimal co-doped TiO2 nanotubes catalyst on the HAs removal efficiency through O3/UV/co-doped TiO2 process was investigated. The highest HAs removal efficiency (79.4%) that exhibited a pseudo-first-order rate constant of 0.172 min(-1) was achieved, in the presence of 550 °C calcined 1.0% co-doped TiO2 nanotubes with an Al:Fe ratio of 0.25:0.75. The effects of calcination temperature and doping concentration on anatase phase weight fractions, average crystallite sizes, Brunauer-Emmett-Teller surface area, catalyst band gap energy, and catalyst photocatalytic activity were also discussed. The inorganic anions also affected the catalyst photocatalytic ability. In a neutral solution, SO4(2-) slightly promoted HAs removal. However, HCO3(-) was found to significantly inhibit the catalyst activity, whereas Cl(-) had negligible effect on photocatalytic ability.

  18. The effects of cerium doping concentration on the properties and photocatalytic activity of bimetallic Mo/Ce catalyst

    NASA Astrophysics Data System (ADS)

    Allaedini, Ghazaleh; Tasirin, Siti Masrinda; Aminayi, Payam

    2016-10-01

    In this study, the characterization and photocatalytic activity of MoO3 nanoparticles doped with various doping concentrations of cerium have been investigated. The Fourier transform infrared (FT-IR) spectra of the prepared catalysts confirmed that MoO3 particles have been successfully doped by cerium. Field emission scanning electron microscopy (FESEM) was performed to visualize the surface morphology of the obtained catalysts. The XRD patterns suggested that the crystallinity of the sample with the lowest doping concentration of 15 mol % was higher in comparison with samples of higher doping concentrations. The volume-averaged crystal sizes of the obtained catalysts were calculated to be 25, 28, and 32 nm for 15, 35, and 60 mol % samples, respectively. The photocatalytic activity along with the reaction kinetics of Ce-doped MoO3 nanoparticles have also been investigated through the dye degradation of methyl orange. The synthesized Ce-doped MoO3 particles with the lowest dopant concentration of 15 mol % exhibited the highest photocatalytic activity for methyl orange dye degradation. It was observed that photo-degradation activity decreased with an increase in the doping concentration of cerium. The predicted rate constants for samples with 15, 35, and 60 mol % doping concentrations were found to be 0.0432, 0.035, and 0.029 min-1, respectively.

  19. Hydrocracking of cumene over Ni/Al 2O 3 as influenced by CeO 2 doping and γ-irradiation

    NASA Astrophysics Data System (ADS)

    El-Shobaky, G. A.; Doheim, M. M.; Ghozza, A. M.

    2004-01-01

    Cumene hydrocracking was carried out over pure and doped Ni/Al 2O 3 solids and also, on these solids after exposure to different doses of γ-rays between 0.4 and 1.6 MGy. The dopant concentration was varied between 1 and 4 mol% CeO 2. Pure and doped samples were subjected to heat treatment at 400°C and cumene hydrocracking reaction was carried out using various solids at temperatures between 250°C and 400°C by means of micropulse technique. The results showed that both CeO 2 doping and γ-irradiation of the investigated system brought about an increase in its specific surface area. γ-irradiation of pure samples increased their catalytic activities effectively. However, the doping caused a decrease in the catalytic activity. γ-irradiation of the doped samples brought about a net decrease in the catalytic activity. The catalytic reaction products over different investigated solids were ethylbenzene as a major product together with different amounts of toluene, benzene and C 1-C 3 gaseous hydrocarbons. The selectivity towards the formation of various reaction products varies with the reaction temperature, doping and γ-irradiation.

  20. Characterization and Electrical Properties of Al-Doped Cu(In,Ga)Se2 Semiconductors with Various Cu Contents

    NASA Astrophysics Data System (ADS)

    Monsefi, Mehrdad; Kuo, Dong-Hau

    2014-04-01

    Cu(In,Ga)Se2 (CIGSe) semiconductor, which shows record photovoltaic conversion efficiencies near 20%, has become a leading material for thin-film solar cell applications. In this work, Al-doped CIGSe (Al-CIGSe) bulk material with different Cu contents has been prepared by a liquid-phase reactive sintering method at 650°C. Sintering of the Al-CIGSe bulk material has been carried out in the presence of Sb2S3 and Te. The bulk Cu x [(In0.6Al0.1)Ga0.3]Se2 semiconductor was n-type for x = 0.7 and p-type for higher Cu content. The defect chemistry of Al-CIGSe was studied by measuring the electrical properties as a function of copper content. The changes in the conductivity type and carrier concentration were related to defect states involving Cu vacancy and antisite defects of In Cu 2+ and Cu B 2 - in a Cu B IIISe2-type phase. The lattice parameters were in good agreement with other evidence for the existence of different defect states.

  1. Roles of doping ions in afterglow properties of blue CaAl2O4:Eu2+,Nd3+ phosphors

    NASA Astrophysics Data System (ADS)

    Wako, A. H.; Dejene, B. F.; Swart, H. C.

    2014-04-01

    Eu2+ doped and Nd3+ co-doped calcium aluminate (CaAl2O4:Eu2+,Nd3+) phosphor was prepared by a urea-nitrate solution combustion method at furnace temperatures as low as 500 °C. The produced CaAl2O4:Eu2+,Nd3+ powder was investigated in terms of phase composition, morphology and luminescence by X-Ray diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infra Red spectroscopy (FTIR) and Photoluminescence (PL) techniques respectively. XRD analysis depicts a dominant monoclinic phase that indicates no change in the crystalline structure of the phosphor with varying concentration of Eu2+ and Nd3+. SEM results show agglomerates with non-uniform shapes and sizes with a number of irregular network structures having lots of voids and pores. The Energy Dispersive X-ray Spectroscopy (EDS) and (FTIR) spectra confirm the expected chemical components of the phosphor. PL measurements indicated one broadband excitation spectra from 200 to 300 nm centered around 240 nm corresponding to the crystal field splitting of the Eu2+ d-orbital and an emission spectrum in the blue region with a maximum on 440 nm. This is a strong indication that there was dominantly one luminescence center, Eu2+ which represents emission from transitions between the 4f7 ground state and the 4f6-5d1 excited state configuration. High concentrations of Eu2+ and Nd3+ generally reduce both intensity and lifetime of the phosphor powders. The optimized content of Eu2+ is 1 mol% and for Nd3+ is 1 mol% for the obtained phosphors with excellent optical properties. The phosphor also emits visible light at around 587 and 616 nm. Such emissions can be ascribed to the 5D0-7F1 and 5D0-7F2 intrinsic transition of Eu3+ respectively. The decay characteristics exhibit a significant rise in initial intensity with increasing Eu2+ doping concentration while the decay time increased with Nd3+ co-doping. The observed afterglow can be ascribed to the generation of suitable traps due to the presence of the Nd3

  2. Nonprotective Alumina Growth in Sulfur-Doped NiAl(Zr)

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2000-01-01

    The 1200 C oxidation behavior of NiAl was examined at various levels of sulfur and zirconium dopants to test the possibility of a critical S/Zr ratio required for adhesion. Cyclic furnace testing for 200 1 -hr cycles and interrupted testing for 500 hr were used as screening tests. Pure NiAl and NiAl(Zr) with 0. 14 at.% Zr were chosen as model base compositions; they exhibited normal, slow-growing scales (3 Mg/sq cm) with excellent adhesion for the Zr-doped alloys. NiAl with about 120 ppma S exhibited a substantial weight loss (-20 Mg/sq cm) in cyclic tests and a very large weight gain (+60 Mg/sq cm) in interrupted tests. The major surface phase remained as alpha -Al2O3. Sulfur doping the NiAl(Zr) alloy caused massive weight gains of 80 - 100 Mg/sq cm, swelling, cracking, and nearly complete conversion into NiAl2O4, and alpha- Al2O3. The initial objective of determining critical S/Zr ratios for adhesion was therefore unattainable. Initiation of the catastrophic attack was examined after a 10 hr exposure, revealing a few sites of broad, raised, and cracked ridges. In cross-section, the ridges appeared as modular intrusions, with a complex, fractal, oxide-metal interface. They were primarily alumina (with occasional entrapped islands of NiAl2O4 or pure Ni metal). They possessed a unique microstructure consisting of 0.3 microns lamellae, separated by 0.1 microns open channels. This allowed for rapid growth controlled by gaseous diffusion. The microstructure is discussed in terms of SO2 evolution and a sulfur-driven de-passivation process.

  3. Influence of Al doping on optical properties of CdS/PVA nanocomposites: Theory and experiment

    SciTech Connect

    Bala, Vaneeta Tripathi, S. K. Kumar, Ranjan

    2014-04-24

    In the present work theoretical and experimental studies of aluminium doped cadmium sulphide polyvinyl alcohol (Al:CdS/PVA) nanocomposites have been carried out. Tetrahedral cluster AlCd{sub 9}S{sub 2}(SH){sub 18}]{sup 1−} has been encapsulated by small segments of polyvinyl alcohol (PVA) chains in order to simulate experimental environment of nanocomposites. Density functional theory (DFT) using local density approximation (LDA) functionals is employed to study the broadening of band gap upon ligation of nanoclusters. We have used in situ chemical route to synthesize nanocomposites. Optical band gap has been calculated from both experimental and theoretical approach.

  4. Sintering Of MgO and TiO{sub 2} Doped Al-Zr Oxides Composites by Extended Arc Thermal Plasma

    SciTech Connect

    Ray, M.; Pradhan, S. K.; Dash, S.; Roul, B. K.; Mishra, D. K.; Singh, S. K.; Sahu, D.

    2008-10-23

    MgO and TiO{sub 2} doped Al-Zr oxide composites of Zr{sub 0.95}Al{sub 1.05}Mg{sub x}O with x = 0,0.01,...,0.05,0.75,1 and Zr{sub 0.95}-Al{sub 1.05}-Ti{sub z}-O with z = 0, 0.025,....,1 were sintered to high density by both DC thermal plasma assisted rapid sintering as well as conventional sintering. It is observed that the above mentioned MgO and TiO{sub 2} doped Al-Zr oxide composites were sintered to high density end products by the thermal plasma heating technique within a short sintering time (a few minutes) as compared to a conventional long range resistive heating schedule (a few tens of hours). It is also noticed that there exists a critical limiting point of MgO doping concentration (x = 0.05 in Zr{sub 0.95}Al{sub 1.05}Mg{sub x}O) for maximum physical densification in both conventional as well as plasma sintered samples. Sintered specimens were analyzed by XRD studies. XRD studies revealed the presence of a high density phase, Mg{sub 2}Zr{sub 5}O{sub 12} prominently in x = 0.05 sintered sample which resulted in maximum densification of the sample. With increasing doping concentration of TiO{sub 2}(i.e. z=0 to 1), {rho}{sub s}(sintered density) of both plasma sintered and conventional sintered specimens were found to follow a concavity like variation with well defined critical limit of TiO{sub 2} concentration (i.e. at z=0.05) at which {rho}{sub s} became minimum. However, hardness was found to be maximum at z = 0.05.

  5. A large gap opening of graphene induced by the adsorption of CO on the Al-doped site.

    PubMed

    Peyghan, Ali Ahmadi; Noei, Maziar; Tabar, Mohammad Bigdeli

    2013-08-01

    We investigated CO adsorption on the pristine, Stone-Wales (SW) defected, Al- and Si- doped graphenes by using density functional calculations in terms of geometric, energetic and electronic properties. It was found that CO molecule is weakly adsorbed on the pristine and SW defected graphenes and their electronic properties were slightly changed. The Al- and Si- doped graphenes show high reactivity toward CO, so calculated adoption energies are about -11.40 and -13.75 kcal mol(-1) in the most favorable states. It was found that, among all the structures, the electronic properties of Al-doped graphene are strongly sensitive to the presence of CO molecule. We demonstrate the existence of a large Eg opening of 0.87 eV in graphene which is induced by Al-doping and CO adsorption.

  6. Excitation and de-excitation mechanisms of Er-doped GaAs and AlGaAs

    NASA Astrophysics Data System (ADS)

    Elsaesser, David W.

    1992-12-01

    Electrical and optical characterization have been performed on GaAs and Al(x)Ga(1-x)As samples doped with Er either by ion implantation or during Molecular Beam Epitaxial (MBE) growth. Deep Level Transient Spectroscopy (DLTS) and Temperature-Dependent Hall Effect (TDH) measurements indicated the presence of two hole traps in Er-doped GaAs, at 35 and 360 meV above the valence band maximum. The former (shallower) center was thought to be due to Er substituting for a Ga atom (ErGa) and giving rise to an isoelectronic impurity potential. The second center was attributed to an Er atom occupying an interstitial position (Er(i)). Annealing studies performed on Er-implanted GaAs indicated that the ErGa center preferentially formed at higher annealing temperatures (greater than 850 C), with the Er(i) reaching a maximum concentration at an annealing temperature of around 750 C. Optical characterization performed by Photoluminescence (PL) measurements showed that the Er(i) center gave a much stronger Er-related intra-4f shell emission. Mechanisms for the excitation of the 4f shells of these two centers are discussed. Similar optically active Eri centers may be forming in AlGaAs.

  7. Thermal annealing effects on ultra-violet luminescence properties of Gd doped AlN

    SciTech Connect

    Kita, Takashi; Ishizu, Yuta; Tsuji, Kazuma; Harada, Yukihiro; Chigi, Yoshitaka; Nishimoto, Tetsuro; Tanaka, Hiroyuki; Kobayashi, Mikihiro; Ishihara, Tsuguo; Izumi, Hirokazu

    2015-04-28

    We studied energy transfer from AlN to doped Gd{sup 3+} ions as a function of the post-thermal annealing temperature. Gd-doped AlN thin films were deposited on fused-silica substrates using a reactive radio-frequency magnetron sputtering technique. The film is a c-axis oriented polycrystal. The intra-orbital electron transition in Gd{sup 3+} showed an atomically sharp luminescence at 3.9 eV (318 nm). The photoluminescence (PL) excitation spectrum exhibited a resonant peak, indicating efficient energy transfer from the host AlN crystal to Gd{sup 3+} ions. The PL intensity increases approximately ten times by thermal annealing. The PL decay lifetime becomes long with annealing, and mid-gap luminescence relating to the crystal defects in AlN was also found to be reduced by annealing. These results suggest that energy dissipation of excited carriers in AlN was suppressed by annealing, and the efficiency of energy transfer into Gd{sup 3+} was improved.

  8. Effect of boron concentration on recombination at the p-Si–Al{sub 2}O{sub 3} interface

    SciTech Connect

    Black, Lachlan E. Allen, Thomas; Cuevas, Andres; McIntosh, Keith R.

    2014-03-07

    We examine the surface passivation properties of Al{sub 2}O{sub 3} deposited on boron-doped planar 〈100〉 crystalline silicon surfaces as a function of the boron concentration. Both uniformly doped and diffused surfaces are studied, with surface boron concentrations ranging from 9.2 × 10{sup 15} to 5.2 × 10{sup 19} cm{sup −3}. Atmospheric pressure chemical vapor deposition and thermal atomic layer deposition are used to deposit the Al{sub 2}O{sub 3} films. The surface recombination rate of each sample is determined from photoconductance measurements together with the measured dopant profiles via numerical simulation, using the latest physical models. These values are compared with calculations based on the interface properties determined from capacitance–voltage and conductance measurements. It is found that the fundamental surface recombination velocity of electrons, S{sub n0}, which describes the chemical passivation of the interface, is independent of the surface boron concentration N{sub s} for N{sub s} ≤ 3 × 10{sup 19} cm{sup −3}, and in excellent agreement with values calculated from the interface state density D{sub it} and capture coefficients c{sub n} and c{sub p} measured on undiffused boron-doped surfaces. We conclude that the physical properties of the Si–Al{sub 2}O{sub 3} interface are independent of the boron dopant concentration over this range.

  9. Electron mobility and drift velocity in selectively doped InAlAs/InGaAs/InAlAs heterostructures

    SciTech Connect

    Vasil'evskii, I. S. Galiev, G. B.; Klimov, E. A.; Pozela, K.; Pozela, J.; Juciene, V.; Suziedelis, A.; Zurauskiene, N.; Kersulis, S.; Stankevic, V.

    2011-09-15

    An increase in the electron mobility and drift velocity in high electric fields in quantum wells of selectively doped InAlAs/InGaAs/InAsAs heterostructures is obtained experimentally via controlling the composition of semiconductors forming the interface. The electron mobility at the interface in the In{sub 0.8}Ga{sub 0.2}As/In{sub 0.7}Al{sub 0.3}As metamorphic structure with a high molar fraction of In (0.7-0.8) is as high as 12.3 Multiplication-Sign 10{sup 3} cm{sup 2} V{sup -1} s{sup -1} at room temperature. An increase in the electron mobility by a factor of 1.1-1.4 is attained upon the introduction of thin (1-3 nm) InAs layers into a quantum well of selectively doped In{sub 0.53}Ga{sub 0.47}As/In{sub 0.52}Al{sub 0.48}As heterostructures. A maximal drift velocity attains 2.5 Multiplication-Sign 10{sup 7} cm/s in electric fields of 2-5 kV/cm. The threshold field F{sub th} for the intervalley {Gamma}-L electron transfer (the Gunn effect) in the InGaAs quantum well is higher than in the bulk material by a factor of 2.5-3. The effect of two- to threefold decrease in the threshold field F{sub th} in the InGaAs quantum well is established upon increasing the molar fraction of In in the InAlAs barrier, as well as upon the introduction of thin InAs inserts into the InGaAs quantum well.

  10. EL2 distributions in doped and undoped liquid encapsulated Czochralski GaAs. [deep donor concentration

    NASA Technical Reports Server (NTRS)

    Holmes, D. E.; Chen, R. T.; Yang, J.

    1983-01-01

    The longitudinal and radial distributions of EL2 in undoped semi-insulating and intentionally doped n-type GaAs crystals grown by the liquid encapsulated Czochralski technique are compared. Longitudinal profiles in undoped crystals are controlled by changes in melt stoichiometry as the crystal is pulled from the melt. EL2 profiles along crystals doped above about 1 x 10 to the 17th/cu cm, on the other hand, are controlled primarily by the carrier concentration as a result of the suppression of EL2 by free electrons. Radial EL2 profiles are typically W shaped and M shaped in undoped and doped (above threshold) crystals, respectively. The origin of these radial profiles is discussed in terms of residual stress, melt stoichiometry, and the suppresion of EL2 by electrons. The results are also discussed in the light of the antisite model for EL2.

  11. Stabilization of MgAl2O4 spinel surfaces via doping

    DOE PAGES

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; ...

    2016-02-06

    Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalentmore » dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less

  12. Stabilization of MgAl2O4 spinel surfaces via doping

    NASA Astrophysics Data System (ADS)

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; Uberuaga, Blas P.

    2016-07-01

    Surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. Here, we report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalent dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.

  13. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    SciTech Connect

    Stengl, Vaclav; Houskova, Vendula; Bakardjieva, Snejana; Murafa, Nataliya; Marikova, Monika; Oplustil, Frantisek; Nemec, Tomas

    2010-11-15

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr{sup 4+} dopant can increase both the surface area and the surface hydroxylation of the resulting doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr{sup 4+} converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.

  14. Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility.

    PubMed

    Boland, Jessica L; Conesa-Boj, Sonia; Parkinson, Patrick; Tütüncüoglu, Gözde; Matteini, Federico; Rüffer, Daniel; Casadei, Alberto; Amaduzzi, Francesca; Jabeen, Fauzia; Davies, Christopher L; Joyce, Hannah J; Herz, Laura M; Fontcuberta i Morral, Anna; Johnston, Michael B

    2015-02-11

    Reliable doping is required to realize many devices based on semiconductor nanowires. Group III-V nanowires show great promise as elements of high-speed optoelectronic devices, but for such applications it is important that the electron mobility is not compromised by the inclusion of dopants. Here we show that GaAs nanowires can be n-type doped with negligible loss of electron mobility. Molecular beam epitaxy was used to fabricate modulation-doped GaAs nanowires with Al0.33Ga0.67As shells that contained a layer of Si dopants. We identify the presence of the doped layer from a high-angle annular dark field scanning electron microscopy cross-section image. The doping density, carrier mobility, and charge carrier lifetimes of these n-type nanowires and nominally undoped reference samples were determined using the noncontact method of optical pump terahertz probe spectroscopy. An n-type extrinsic carrier concentration of 1.10 ± 0.06 × 10(16) cm(-3) was extracted, demonstrating the effectiveness of modulation doping in GaAs nanowires. The room-temperature electron mobility was also found to be high at 2200 ± 300 cm(2) V(-1) s(-1) and importantly minimal degradation was observed compared with undoped reference nanowires at similar electron densities. In addition, modulation doping significantly enhanced the room-temperature photoconductivity and photoluminescence lifetimes to 3.9 ± 0.3 and 2.4 ± 0.1 ns respectively, revealing that modulation doping can passivate interfacial trap states.

  15. Influence Al doped ZnO nanostructure on structural and optical properties

    NASA Astrophysics Data System (ADS)

    Ramelan, Ari Handono; Wahyuningsih, Sayekti; Chasanah, Uswatul; Munawaroh, Hanik

    2016-04-01

    The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO cause of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.

  16. Strain and defects in Si-doped (Al)GaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Forghani, Kamran; Schade, Lukas; Schwarz, Ulrich T.; Lipski, Frank; Klein, Oliver; Kaiser, Ute; Scholz, Ferdinand

    2012-11-01

    Si is the most common dopant in (Al)GaN based devices acting as a donor. It has been observed that Si induces tensile strain in (Al)GaN films, which leads to an increasing tendency for cracking of such films with the increase of Si content and/or the increase of Al content. Based on x-ray investigations, the Si-doped films have a larger in-plane lattice constant than their undoped buffer layers, indicating involvement of a mechanism other than the change of lattice constants expected from an alloying effect. In this work, we present a model about Si dislocation interaction while debating other proposed models in the literature. According to our model, Si atoms are attracted to the strain dipole of edge-type dislocations in (Al)GaN films. It is expected that Si is more incorporated on that side of the dislocation, which is under compression leading to the formation of off-balanced dipoles with reduced compressive component. In response to such off-balanced dipoles—appearing as tensile dominant strain dipoles—the dislocation lines climb in order to accommodate the excess tensile strain. However, this dislocation climb mechanism is hindered by forces exerted by vacancies created due to the climb process. Accordingly, we have observed a lower strain level in our Si doped layers when they contain fewer dislocations. These findings were further supported by x-ray diffraction, transmission electron microscopy, and micro-photoluminescence investigations.

  17. Optical properties analysis of Ta-doped TiO2 thin films on LaAlO3 substrates

    NASA Astrophysics Data System (ADS)

    Nurfani, Eka; Sutjahja, Inge M.; Winata, Toto; Rusydi, Andrivo; Darma, Yudi

    2015-09-01

    We study optical properties of Ta-doped TiO2 thin film on LaAlO3 substrate using spectroscopy ellipsometry (SE) analysis at energy range of 0.5 - 6.5 eV. Room temperature SE data for Ψ (amplitude ratio) and Δ (phase difference) between p- and s- polarized light waves are taken with multiple incident angles at several spots on the samples. Here, absorption coefficient has been extracted from SE measurements at photon incident angle of 70° for different Ta concentration (0.01, 0.4, and 5 at. %). Multilayer modelling is performed which takes into account reflections at each interface through Fresnel coefficients to obtain reasonably well the fitting of Ψ and Δ data simultaneously. As the results, we estimate that film thickness increases by increasing Ta concentration accompanied by the formation of a new electronic structure. By increasing Ta impurities, the blueshift of absorption coefficient (α) peaks is observable. This result indicates that TiO2 thin film becomes optically resistive by introducing Ta doping. Schematic model of interband transition inTiO2:Ta will be proposed base on obtained optical properties. This study enables us to predict the role of Ta doping on the electronic and optical band structures of TiO2 thin film. Due to a processing error by AIP Publishing, an incorrect version of the above article was published on 30 September 2015 that omitted the name of author Toto Winata. AIP Publishing apologizes for this error. All online versions of the article were corrected on 7 October 2015. The author names and affiliations appear correctly above.

  18. Luminescence properties of Eu 2+- and Ce 3+-doped CaAl 2S 4 and application in white LEDs

    NASA Astrophysics Data System (ADS)

    Yu, Ruijin; Wang, Jing; Zhang, Jianhui; Yuan, Haibin; Su, Qiang

    2008-03-01

    The Eu 2+- and Ce 3+-doped CaAl 2S 4 phosphors were comparatively synthesized by conventional solid-state reaction and the evacuated sealed quartz ampoule. The X-ray diffraction (XRD) patterns show that the sample with better crystalline quality was prepared by the evacuated sealed quartz ampoule, resulting in the enhancement of the emission intensity of Eu 2+ ion by a factor of 1.7. The intensive green LEDs were also fabricated by combining CaAl 2S 4:Eu 2+ with near-ultraviolet InGaN chips ( λem=395 nm). The dependence of as-fabricated green LEDs on forward-bias currents shows that it presents good chromaticity stability and luminance saturation, indicating that CaAl 2S 4:Eu 2+ is a promising green-emitting phosphor for a near-UV InGaN-based LED. In addition, the optical properties of CaAl 2S 4:Ce 3+ were systematically investigated by means of diffuse reflectance, photoluminescence excitation and emission, concentrating quenching and the decay curve.

  19. Work function increase of Al-doped ZnO thin films by B+ ion implantation.

    PubMed

    Hong, Sang-Jin; Heo, Gi-Seok; Park, Jong-Woon; Lee, In-Hwan; Choi, Bum-Ho; Lee, Jong-Ho; Park, Se-Yeon; Shin, Dong-Chan

    2007-11-01

    The work function of an Al-doped ZnO (AZO) thin film can be increased via B+ ion implantation from 3.92 eV up to 4.22 eV. The ion implantation has been carried out with the ion dose of 1 x 10(16) cm(-2) and ion energy of 5 keV. The resistance of the B+ implanted AZO films has been a bit raised, while their transmittance is slightly lowered, compared to those of un-implanted AZO films. These behaviors can be explained by the doping profile and the resultant band diagram. It is concluded that the coupling between the B+ ions and oxygen vacancies would be the main reason for an increase in the work function and a change in the other properties. We also address that the work function is more effectively alterable if the defect density of the top transparent conducting oxide layer can be controlled.

  20. Improved short-channel GaAs MESFET's by use of higher doping concentration

    NASA Astrophysics Data System (ADS)

    Daembkes, H.; Brockerhoff, W.; Heime, K.; Cappy, A.

    1984-08-01

    GaAs MESFET's with highly doped channels up to 5 x 10 to the 18th per cu cm and with both micrometer and submicrometer gates were fabricated and evaluated. FET's with 1.2 micron gates show an extrinsic transconductance of more than 250 mS/mm, cutoff frequencies around 20 GHz, and a noise figure of 2 dB at 8 GHz with 9-dB associated gain. Breakdown voltage is higher than 6 V. FET's with 1.2- and 0.4-micron gates were simultaneously fabricated on the same wafer to investigate short-channel effects. The short-channel devices show a good saturation behavior and no shift in the threshold voltage compared to the long-channel devices thus demonstrating a pronounced alleviation of short-channel effects as experienced for 1 x 10 to the 17th per cu cm doping levels. The influence of doping concentration on the performance of devices with micrometer and submicrometer gates upon doping concentration is investigated by detailed computer simulations. Good agreement between theoretical and experimental results is obtained. From these results improved technological approaches are pointed out.

  1. Anchorage of γ-Al2O3 nanoparticles on nitrogen-doped multiwalled carbon nanotubes

    DOE PAGES

    Rodríguez-Pulido, A.; Martínez-Gutiérrez, H.; Calderon-Polania, G. A.; ...

    2016-06-07

    Nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) have been decorated with γ-Al2O3 nanoparticles by a novel method. This process involved a wet chemical approach in conjunction with thermal treatment. During the particle anchoring process, individual CNx-MWNT nanotubes agglomerated into bundles, resulting in arrays of aligned CNx-MWNT coated with γ-Al2O3. Extensive characterization of the resulting γ-Al2O3/CNx-MWNT bundles was performed using a range of electron microscopy imaging and microanalytical techniques. In conclusion, a possible mechanism explaining the nanobundle alignment is described, and possible applications of these materials for the fabrication of ceramic composites using CNx-MWNTs are briefly discussed.

  2. Origin of Ferromagnetism in Al and Ni Co-doped ZnO Based DMS Materials

    NASA Astrophysics Data System (ADS)

    Murtaza, Saleem; Saadat, A. Siddiqi; Shahid, M. Ramay; Shahid, Atiq; Shahzad, Naseem

    2012-10-01

    Zn0.95Ni0.05O and Zn0.90Ni0.05Al0.05O compositions of nanocrystallites are synthesised using the well recognised auto-combustion technique. The x-ray diffraction patterns demonstrate the phase pure characteristic wurtzite-type crystal structure with space group P63mc in both the compositions. The elemental incorporation of Ni and Al contents into the ZnO structure is confirmed by energy dispersive x-ray analysis. The micrographs of scanning electron microscopy show an approximate ordered morphology. The electrical resistivity is observed to decrease with the rising temperature, depicting the characteristic semiconductor behaviour of the samples. The lower values of resistivity and ferromagnetic interactions in the Al-doped sample correspond to an increase of carrier's density. It is observed that the carrier mediated mechanism is mainly responsible for ferromagnetism in ZnO-based diluted magnetic semiconductors.

  3. Thermal properties of (Al,Gd)O3 doped uranium dioxide

    NASA Astrophysics Data System (ADS)

    Pokrovskiy, S. A.; Baranov, V. G.; Tenishev, A. V.

    2016-04-01

    In this paper were defined thermal characteristics (thermal diffusivity up to 2000 °C, heat capacity up to 1250 ° C and thermal conductivity of up to 1250 °C) of oxide nuclear fuel with additives of burnable neutron absorber in the form of (Al,Gd)O3. Also for comparison samples UO2 with gadolinium Gd2O3 and pure uranium dioxide were studied. It is shown that the thermal diffusivity and thermal conductivity of UO2 with dopant of gadolinium in the form of (Al, Gd) O3 is considerably higher than those of Gd2O3 -doped uranium dioxide, due to the fact that (Al, Gd)O3 does not form a solid solution with UO2.

  4. Electrical activation of carbon δ-doped (Al,Ga)As grown by metalorganic vapour-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Li, G.; Petravić, M.; Jagadish, C.

    1997-04-01

    Carbon δ-doped (Al,Ga)As was grown by metalorganic vapour-phase epitaxy using trimethylaluminium (TMAl) or trimethylgallium (TMGa) as a doping precursor. The best C δ-doped Al 0.3Ga 0.7As has a peak hole density of 1.6 × 10 19 (1.4 × 10 19 for GaAs) cm -3 with a full hole profile width at half maximum of 85 Å (84 Å for GaAs). For C δ-doped Al 0.3Ga 0.7 As grown at 630°C, the use of TMGa as a doping precursor leads to both the sheet C atom density and the free hole density increasing with an increase in the total TMGa moles introduced during a δ-doping step. As a result, the electrical activation remains almost constant with the change of TMGa moles supplied. The sheet C atom density always increases with increasing supply of TMAl, but approaches its maximum value at an amount of TMAl of 6.4 × 10 -7 mol. The electrical activation reduces from > 90% to < 10% when the supply of TMAl increases from 2.1 × 10 -7 to 8 × 10 -7 mol. Regardless of the doping precursors, the hole density weakly decreases and the C atom density significantly increases with increasing growth temperature. Low growth temperatures are required for high electrical activation. Using optimised growth conditions, C δ-doped pipi doping superlattices with different average hole densities are fabricated to obtain C bulk-doped-like layers.

  5. Density Functional Theory Based Kinetic Monte Carlo Approach for Understanding Atomistic Mechanisms for Reversible Hydrogen Storage in Metal Hydrides: Application to Alane Formation on Ti Doped Al Surfaces

    NASA Astrophysics Data System (ADS)

    Karim, A.; Muckerman, J.; Sutter, P.; Muller, E.

    2008-03-01

    We describe a density functional kinetic Monte Carlo approach enabling us to study and simulate the steady-state situation of dissociative adsorption of hydrogen along with diffusion and reaction of Al and H atoms leading towards the formation of alane species on Ti-doped Al surfaces. In the first step, density functional theory is used in conjunction with the nudged elastic band/drag method to obtain the energetics of the relevant atomistic processes of Al and H diffusion and their reactions on Al surfaces with different concentration of dopant Ti atoms. Subsequently, the kinetic Monte Carlo method is employed, which accounts for the spatial distribution, fluctuations, and evolution of chemical species at Ti-doped Al surfaces under steady-state conditions. This DFT-based KMC approach provides an insight into the kinetics of alanes at technologically relevant pressure and temperature conditions. Our computed production rates of AlH3 on Al surfaces are in agreement with experimental data. We also obtained temperature programmed desorption spectra of different alane species, which is agreeing well with experiments.

  6. Crystal Structure and Photocatalytic Activity of Al-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Lee, Deuk Yong; Lee, Myung-Hyun; Kim, Bae-Yeon; Cho, Nam-Ihn

    2016-05-01

    Al-TiO2 nanofibers were prepared using a sol-gel derived electrospinning by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the crystal structure and the photocatalytic activity of Al-TiO2 for methylene blue (MB) degradation. XRD results indicated that as the Al/Ti molar ratio rose, crystal structure of Al-TiO2 was changed from anatase/rutile (undoped), anatase (0.07-0.18), to amorphous phase (0.38-0.73), which was confirmed by XPS and Raman analysis. The degradation kinetic constant increased from 7.3 x 10(-4) min(-1) to 4.5 x 10(-3) min(-1) with the increase of Al/Ti molar ratios from 0 to 0.38, but decreased to 3.4 x 10(-3) min(-1) when the Al/Ti molar ratio reached 0.73. The Al-TiO2 catalyst doped with 0.38 Al/Ti molar ratio demonstrated the best MB degradation. Experimental results indicated that the Al doping in Al-TiO2 was mainly attributed to the crystal structure of TiO2 and the photocatalytic degradation of MB.

  7. Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses

    NASA Astrophysics Data System (ADS)

    Shao, Chongyun; Xu, Wenbin; Ollier, Nadege; Guzik, Malgorzata; Boulon, Georges; Yu, Lu; Zhang, Lei; Yu, Chunlei; Wang, Shikai; Hu, Lili

    2016-10-01

    Yb3+/Al3+ co-doped silica glasses with different Ce2O3 contents were prepared using the sol-gel method combined with high-temperature sintering. Changes in refractive index, absorption, emission and fluorescence lifetime of these glasses caused by X-ray irradiation were recorded and analyzed systematically. It is found that co-doping with certain amount of Ce could greatly improve the radiation resistance without evident negative effects on the basic optical properties of the Yb3+ ions in the near-infrared region. The nature of the radiation-induced color centres and the mechanism by which Ce prevented the formation of these centres were studied using optical absorption, electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS) methods. Direct evidence confirmed that trapped electron centres (Yb2+/Si-E'/Al-E') and trapped hole centres (Al-OHCs) were effectively inhibited by Ce doping, which was correlated to the coexistence of the redox couple Ce3+/Ce4+ in the glasses. These results are helpful to understand the micro-structural origin and the suppression mechanism by Ce co-doping of the photodarkening effect in Yb3+-doped silica fibers.

  8. The Effects of Cd2+ Concentration on the Structure, Optical and Luminescence Properties of MgAl2O4: x% Cd2+ (0 < x ≤ 1.75) Nanophosphor Prepared by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Motloung, S. V.; Dejene, F. B.; Sithole, M. E.; Koao, L. F.; Ntwaeaborwa, O. M.; Swart, H. C.; Motaung, T. E.

    2016-10-01

    Cadmium-doped magnesium aluminate (MgAl2O4: x% Cd2+) powders with different cadmium concentrations (0 < x ≤ 1.75) were prepared by the sol-gel method. Energy dispersive x-ray spectroscopy (EDS) analysis confirmed the presence of the expected elements (Mg, Al, O, and Cd). The x-ray diffraction (XRD) analysis revealed that the powders crystallized into the cubic spinel structure. Cd2+ doping influenced crystallinity of the powder samples. The crystallite size and particle morphology were not affected by variation in the Cd2+ concentration. Ultraviolet-visible spectroscopy (UV-vis) measurements revealed that the band gap of the MgAl2O4 was influenced by Cd2+ doping. Un-doped and Cd2+-doped MgAl2O4 nanophosphors exhibited violet emission at 392 nm. There was no evidence of the emission peak shift, which suggested that all emissions originated from the defects within the host material. Increasing the Cd2+ concentration up-to 0.88 mol.% lead to luminescence intensity enhancement, while further increase of Cd2+ concentration lead to concentration quenching. The critical energy transfer distance ( R c) between the neighbouring donors and acceptors was found to be 5.21 Å, suggesting that the multipole-multipole interaction (M-MI) is the major cause of concentration quenching. Commission Internationale de l'Elcairage (CIE) colour coordinates confirmed non-tuneable violet emission with intensity dependent on the Cd2+ concentration.

  9. Effects of doping concentration and co-doping with cerium on the luminescence properties of Gd3Ga5O12:Cr3+ for thermometry applications

    NASA Astrophysics Data System (ADS)

    Pareja, Jhon; Litterscheid, Christian; Molina, Alejandro; Albert, Barbara; Kaiser, Bernhard; Dreizler, Andreas

    2015-09-01

    The accuracy of surface temperature measurements using thermographic phosphors relies on an extensive knowledge of the temperature-dependent properties of the phosphor. This paper addresses the effects of doping concentration and co-doping with cerium on the luminescence properties of the Gd3Ga5O12:Cr3+ phosphor. High-crystallinity Gd3Ga5O12:Cr3+,Ce3+ powder samples (GGG:Cr,Ce) with different Cr3+ and Ce3+ concentrations were synthesized, and their luminescence spectra as well as their decay lifetime properties were characterized after UV laser excitation. Results revealed that the concentration quenching decreases the luminescence lifetime at concentrations above 0.5 mol% Cr3+ while the emission spectrum remains independent of the Cr3+ concentration. Co-doping with small amounts of Ce3+ improves the temperature-dependent luminescence characteristics by reducing the afterglow and producing fairly mono-exponential luminescence decays without changing the lifetime.

  10. Dissociation of H{sub 2} on carbon doped aluminum cluster Al{sub 6}C

    SciTech Connect

    Yang, Huihui; Zhang, Yan; Chen, Hongshan

    2014-08-14

    The dissociation of H{sub 2} molecule is the first step for chemical storage of hydrogen, and the energy barrier of the dissociation is the key factor to decide the kinetics of the regeneration of the storage material. As a light element, aluminum is an important candidate component for storage materials with high gravimetric density. This paper investigates the adsorption and dissociation of H{sub 2} on carbon doping aluminum cluster Al{sub 6}C. The study shows that doping carbon into aluminum cluster can significantly change the electronic structure and increase the stability. Al{sub 6}C has a few stable isomers with close energies and their structures are quite flexible. The molecular adsorption of H{sub 2} on Al{sub 6}C is very weak, but the H{sub 2} molecule can be dissociated easily on this cluster. The stable product of the dissociated adsorption is searched and the different paths for the dissociation are investigated. During the dissociation of H{sub 2}, the structure of the cluster adjusts accordingly, and strong orbital interaction between the hydrogen and the cluster occurs. The calculated energy barrier for the dissociation is only 0.30 eV, which means the dissociation can take place at moderate temperatures.

  11. Photoluminescence of individual doped GaAs /AlGaAs nanofabricated quantum dots

    NASA Astrophysics Data System (ADS)

    Kalliakos, Sokratis; García, César Pascual; Pellegrini, Vittorio; Zamfirescu, Marian; Cavigli, Lucia; Gurioli, Massimo; Vinattieri, Anna; Pinczuk, Aron; Dennis, Brian S.; Pfeiffer, Loren N.; West, Ken W.

    2007-04-01

    Dilute arrays of GaAs /AlGaAs modulation-doped quantum dots with same sizes fabricated by electron beam lithography and low impact reactive ion etching exhibit highly uniform luminescence lines. Single quantum dots display spectral emission with peak energies and linewidths linked largely to the geometrical diameter of the dot and to the built-in electron population. Multicharged excitonic and biexcitonic emission intensities have activation energy of about 2meV. These results highlight the potential of high quality nanofabricated quantum dots for applications in areas that require fine control of optical emission.

  12. Local structure analysis of diluted magnetic semiconductor Co and Al co-doped ZnO nanoparticles

    SciTech Connect

    Hyodo, K.; Morimoto, S.; Yamazaki, T.; Ishikawa, T.; Ichiyanagi, Y.; Utsumi, J.

    2016-02-01

    In this study, Co and Al ions co-doped ZnO nanoparticles (Zn(Al, Co)O NPs) were prepared by our original chemical preparation method. The obtained samples prepared by this method, were encapsulated in amorphous SiO{sub 2}. X-ray diffraction (XRD) results showed Zn(Al, Co)O NPs had a single-phase nature with hexagonal wurtzite structure. These particle sizes could be controlled to be approximately 30 nm. We investigate the effect that the increase in the carrier has on the magnetization by doping Al to Co-doped ZnO NPs. The local structures were qualitatively analyzed using X-ray absorption fine structure (XAFS) measurements.

  13. Fabrication of deep-profile Al-doped ZnO one- and two-dimensional lattices as plasmonic elements

    NASA Astrophysics Data System (ADS)

    Jensen, Flemming; Shkondin, Evgeniy; Takayama, Osamu; Larsen, Pernille V.; Mar, Mikkel D.; Malureanu, Radu; Lavrinenko, Andrei V.

    2016-09-01

    In this work, we report on fabrication of deep-profile one- and two-dimensional lattices made from Al-doped ZnO (AZO). AZO is considered as an alternative plasmonic material having the real part of the permittivity negative in the near infrared range. The exact position of the plasma frequency of AZO is doping concentration dependent, allowing for tuning possibilities. In addition, the thickness of the AZO film also affects its material properties. Physical vapor deposition techniques typically applied for AZO coating do not enable deep profiling of a plasmonic structure. Using the atomic layer deposition technique, a highly conformal deposition method, allows us to fabricate high-aspect ratio structures such as one-dimensional lattices with a period of 400 nm and size of the lamina of 200 nm in width and 3 μm in depth. Thus, our structures have an aspect ratio of 1:15 and are homogeneous on areas of 2×2 cm2 and more. We also produce two-dimensional arrays of circular nanopillars with similar dimensions. Instead of nanopillars hollow tubes with a wall thickness on demand from 20 nm up to a complete fill can be fabricated.

  14. Synthesis and Characterization of Varying Concentrations of Ag-doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Hachlica, Justin; Wadie-Ibrahim, Patrick; Sahiner, M. Alper

    Silver doped ZnO is a promising compound for photovoltaic solar cell use. Doping this compound with varying amounts of silver will theoretically make this type of thin film more efficient by reducing the overall resistance and increasing the voltage and current output. The extent of this promise is being tested experimentally, by analysis of both the electrical and the surface roughness properties of the cells. Ag-doped Zinc Oxide is deposited by method of Pulsed Laser Deposition (PLD) onto Indium Tin Oxide (ITO) coated Glass. Annealing effects were also observed by varying the temperature at which the annealing occurred after synthesis of the sample. Thickness is confirmed by use of Ellipsometery. X-Ray Diffraction (XRD) measurements confirmed a ZnO crystal structure on the thin films. The active dopant carrier concentrations were determined using a Hall Effect Measuring System. Finally, the photovoltaic properties of the film are recorded by using a Keithley Source Meter. The structural characterization and electrical results of the effect of Ag doping on ZnO will then be discussed.

  15. Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration

    PubMed Central

    2014-01-01

    Cu-doped ZnO nanorods have been grown at 90°C for 90 min onto a quartz substrate pre-coated with a ZnO seed layer using a hydrothermal method. The influence of copper (Cu) precursor and concentration on the structural, morphological, and optical properties of ZnO nanorods was investigated. X-ray diffraction analysis revealed that the nanorods grown are highly crystalline with a hexagonal wurtzite crystal structure grown along the c-axis. The lattice strain is found to be compressive for all samples, where a minimum compressive strain of −0.114% was obtained when 1 at.% Cu was added from Cu(NO3)2. Scanning electron microscopy was used to investigate morphologies and the diameters of the grown nanorods. The morphological properties of the Cu-doped ZnO nanorods were influenced significantly by the presence of Cu impurities. Near-band edge (NBE) and a broad blue-green emission bands at around 378 and 545 nm, respectively, were observed in the photoluminescence spectra for all samples. The transmittance characteristics showed a slight increase in the visible range, where the total transmittance increased from approximately 80% for the nanorods doped with Cu(CH3COO)2 to approximately 90% for the nanorods that were doped with Cu(NO3)2. PMID:24855460

  16. Spatial fluctuation enhancement and nonradiative-recombination-center generation due to high Si-doping into GaAs/AlAs short-period-superlattices

    NASA Astrophysics Data System (ADS)

    Kobori, H.; Shigetani, A.; Umezu, I.; Sugimura, A.

    2006-04-01

    Through the time-resolved photoluminescence (TR-PL) measurement for excitons, we have studied the enhancement of spatial fluctuation (SF) and the generation of nonradiative-recombination-centers (NRC) due to high Si-doping into GaAs/AlAs short-period-superlattices (SPS's). We have carried out the exciton transport analysis according to Krivorotov et al. [I.N. Krivorotov, T. Chang, G.D. Gilliland, L.P. Fu, K.K. Bajaj, Phys. Rev. B 58 (1998) 10687]. From this analysis, we have obtained the temperature dependence of the exciton diffusivity, the concentration of the NRC and the average distant between adjacent localized states of excitons. The temperature dependence of the exciton diffusivity is found to be given by the sum of the temperature-independent contribution and the activation-type contribution. For the exciton diffusivity in undoped GaAs/AlAs SPS's, only the activation-type contribution has been observed. Therefore, we point out the possibility that the temperature-independent contribution comes from the tunneling through the impurities. In this experiment, the activation energy and the concentration of the NRC are found to be larger than those of undoped GaAs/AlAs SPS's. We infer that high Si-doping into GaAs/AlAs SPS causes the enhancement of the SF and the generation of NRC.

  17. Enhanced Emission from Li2CaSiO4:Dy3+ Phosphors by Doping with Al3+ and B3+

    NASA Astrophysics Data System (ADS)

    Erdoğmuş, E.

    2016-05-01

    Pure Li2CaSiO4, Li2CaSiO4:Dy3+ and Al3+, B3+ co-doped materials were prepared by a solid-state reaction in air at 900°C for 6 h and characterized by using powder XRD. The luminescence properties of the synthesized phosphors were measured at room temperature with a spectrofluorometer. Li2CaSiO4:Dy3+ emits at 484, 575, and 660 nm upon 352 nm excitation. The emission spectrum intensity of Dy3+ increased from 0.01 to 0.06 mol.%, and beyond 0.06 mol.%, concentration quenching was observed. Also, in this study, the effects of boric acid and aluminum oxide concentration on the photoluminescence properties of Dy3+ doped phosphors were investigated. The results showed that boric acid and aluminum oxide were effective in improving the photoluminescence intensity of Li2CaSiO4:Dy3+ compounds.

  18. Chrystal structure properties of Al-doped Li4Ti5O12 synthesized by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Sandi, Dianisa Khoirum; Priyono, Slamet; Suryana, Risa

    2016-02-01

    This research aim is to analyze the effect of Aluminum (Al) doping in the structural properties of Al-doped Li4Ti5O12 as anode in lithium ion battery. Al-doped Li4Ti5O12 powders were synthesized by solid state reaction method. LiOH.H2O, TiO2, and Al2O3 were raw materials. These materials were milled for 15 h, calcined at temperature of 750oC and sintered at temperature of 800oC. Mole percentage of doping Al (x) was varied at x=0; x=0.025; and x =0.05. Al-doped Li4Ti5O12 powders were synthesized by solid state reaction method. X-ray diffraction was employed to determine the structure of Li4Ti5O12. The PDXL software was performed on the x-ray diffraction data to estimate the phase percentage, the lattice parameter, the unit cell volume, and the crystal density. Al-doped Li4Ti5O12 has cubic crystal structure. Al-doping at x=0 and x=0.025 does not change the phase as Li4Ti5O12 while at x=0.050 the phase changes to the LiTiAlO4. The diffraction patterns show that the angle shifted to the right as the increase of x which indicated that Al substitute Ti site. Percentage of Li4Ti5O12 phase at x=0 and x=0.025 was 97.8% and 96.8%, respectively. However, the lattice parameters, the unit cell volume, and the crystal density does not change significantly at x=0; x=0.025; and x=0.050. Based on the percentage of Li4Ti5O12 phase, the Al-doped Li at x=0 and x=0.025 is promising as a lithium battery anode.

  19. Influence of Ion Beam Irradiation on Structural, Magnetic and Electrical Characteristics of Ho-DOPED AlN Thin Films

    NASA Astrophysics Data System (ADS)

    Hassan, Najam Ul; Hussain, Zahid; Naeem, M.; Shah, Ishfaq Ahmad; Husnain, G.; Ahmad, Ishaq; Ullah, Zaka

    Holmium (Ho)-doped AlN thin films of thicknesses 60, 90 and 300 nm were grown in pure nitrogen atmosphere via RF magnetron sputtering. The deposited thin films were irradiated with protons at a dose of 5×1014 ions/cm2 and the effects of irradiation on structural, magnetic and electrical characteristics of thin films were investigated. Rutherford backscattering spectroscopy (RBS) confirmed the presence of Al, N and Ho in prepared samples. X-ray diffraction analysis showed that crystallinity of the thin films was enhanced after irradiation and thicker films were more crystalline. Atomic force microscopy (AFM) revealed that the surface roughness and porosity of the thin films were increased after irradiation. Magnetic measurements showed that diamagnetic AlN:Ho thin films can be transformed into paramagnetic and ferromagnetic ones via suitable irradiation. The increase in carrier concentrations after irradiation was responsible for tuning the electrical and magnetic characteristics of thin films for applications in various high voltage microelectronic and magnetic devices.

  20. First-principles study of Be doped CuAlS2 for p-type transparent conductive materials

    NASA Astrophysics Data System (ADS)

    Huang, Dan; Zhao, Yu-Jun; Tian, Ren-Yu; Chen, Di-Hu; Nie, Jian-Jun; Cai, Xin-Hua; Yao, Chun-Mei

    2011-06-01

    CuAlS2 has attracted much attention recently as a p-type transparent conductive material. In this paper, we investigate the site preference of substitutional Be in CuAlS2 and the transition level of BeAl using the first-principles calculation. We find that Be would be doped effectively at Al sites in CuAlS2 as a good p-type dopant. In addition, we speculate that Be-Mg or Be-Zn codoped CuAlS2 could have a mobility enhancement and thus a good p-type conductivity due to low lattice distortion.

  1. Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy.

    PubMed

    Brinciotti, Enrico; Gramse, Georg; Hommel, Soeren; Schweinboeck, Thomas; Altes, Andreas; Fenner, Matthias A; Smoliner, Juergen; Kasper, Manuel; Badino, Giorgio; Tuca, Silviu-Sorin; Kienberger, Ferry

    2015-09-21

    We present a new method to extract resistivity and doping concentration of semiconductor materials from Scanning Microwave Microscopy (SMM) S11 reflection measurements. Using a three error parameters de-embedding workflow, the S11 raw data are converted into calibrated capacitance and resistance images where no calibration sample is required. The SMM capacitance and resistance values were measured at 18 GHz and ranged from 0 to 100 aF and from 0 to 1 MΩ, respectively. A tip-sample analytical model that includes tip radius, microwave penetration skin depth, and semiconductor depletion layer width has been applied to extract resistivity and doping concentration from the calibrated SMM resistance. The method has been tested on two doped silicon samples and in both cases the resistivity and doping concentration are in quantitative agreement with the data-sheet values over a range of 10(-3)Ω cm to 10(1)Ω cm, and 10(14) atoms per cm(3) to 10(20) atoms per cm(3), respectively. The measured dopant density values, with related uncertainties, are [1.1 ± 0.6] × 10(18) atoms per cm(3), [2.2 ± 0.4] × 10(17) atoms per cm(3), [4.5 ± 0.2] × 10(16) atoms per cm(3), [4.5 ± 1.3] × 10(15) atoms per cm(3), [4.5 ± 1.7] × 10(14) atoms per cm(3). The method does not require sample treatment like cleavage and cross-sectioning, and high contact imaging forces are not necessary, thus it is easily applicable to various semiconductor and materials science investigations.

  2. Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy

    NASA Astrophysics Data System (ADS)

    Brinciotti, Enrico; Gramse, Georg; Hommel, Soeren; Schweinboeck, Thomas; Altes, Andreas; Fenner, Matthias A.; Smoliner, Juergen; Kasper, Manuel; Badino, Giorgio; Tuca, Silviu-Sorin; Kienberger, Ferry

    2015-08-01

    We present a new method to extract resistivity and doping concentration of semiconductor materials from Scanning Microwave Microscopy (SMM) S11 reflection measurements. Using a three error parameters de-embedding workflow, the S11 raw data are converted into calibrated capacitance and resistance images where no calibration sample is required. The SMM capacitance and resistance values were measured at 18 GHz and ranged from 0 to 100 aF and from 0 to 1 MΩ, respectively. A tip-sample analytical model that includes tip radius, microwave penetration skin depth, and semiconductor depletion layer width has been applied to extract resistivity and doping concentration from the calibrated SMM resistance. The method has been tested on two doped silicon samples and in both cases the resistivity and doping concentration are in quantitative agreement with the data-sheet values over a range of 10-3 Ω cm to 101 Ω cm, and 1014 atoms per cm3 to 1020 atoms per cm3, respectively. The measured dopant density values, with related uncertainties, are [1.1 +/- 0.6] × 1018 atoms per cm3, [2.2 +/- 0.4] × 1017 atoms per cm3, [4.5 +/- 0.2] × 1016 atoms per cm3, [4.5 +/- 1.3] × 1015 atoms per cm3, [4.5 +/- 1.7] × 1014 atoms per cm3. The method does not require sample treatment like cleavage and cross-sectioning, and high contact imaging forces are not necessary, thus it is easily applicable to various semiconductor and materials science investigations.

  3. A clear effect of charge compensation through Na{sup +} co-doping on the luminescence spectra and decay kinetics of Nd{sup 3+}-doped CaAl{sub 4}O{sub 7}

    SciTech Connect

    Puchalska, M.; Watras, A.

    2016-06-15

    We present a detailed analysis of luminescence behavior of singly Nd{sup 3+} doped and Nd{sup 3+}, Na{sup +} co-doped calcium aluminates powders: Ca{sub 1−x}Nd{sub x}Al{sub 4}O{sub 7} and Ca{sub 1−2x}Nd{sub x}Na{sub x}Al{sub 4}O{sub 7} (x=0.001–0.1). Relatively intense Nd{sup 3+} luminescence in IR region corresponding to typical {sup 4}F{sub 3/2}→{sup 4}I{sub J} (J=9/2–13/2) transitions with maximum located at about 1079 nm was obtained in all samples on direct excitation into f–f levels. The effect of dopant concentration and charge compensation by co-doping with Na{sup +} ions on morphology and optical properties were studied. The results show that both, the Nd{sup 3+} concentration and the alkali metal co-doping affected the optical properties but had no influence on the powders morphology. The studies of luminescence spectra (298 and 77 K) in a function of dopant concentration showed an increasing distortion of the local symmetry of Nd{sup 3+}with raising activator content due to certain defects created in the crystal lattice. On the other hand Na{sup +} addition led to significant narrowing of absorption and luminescence bands and also a reduction of the number of their components, showing smaller disturbance of Nd{sup 3+} ions local symmetries. Consequently, charge compensated by Na{sup +} co-doping materials showed significantly enhanced Nd{sup 3+} luminescence. The decrease of emission intensity and luminescence lifetimes with increase of activator concentration was attributed mainly to phonon-assisted cross-relaxation processes between Nd{sup 3+} ions. Analysis with Inokuti–Hirayama model indicated dipole–dipole mechanism of ion-ion interaction. Na{sup +} addition led to much smaller concentration quenching due to smaller clustering of dopant ions in CaAl{sub 4}O{sub 7} lattice.

  4. Optical properties of double layer thin films zinc oxide doping aluminum (ZnO/Al) were deposited on glass substrates by sol gel method spray coating technique

    NASA Astrophysics Data System (ADS)

    Permatasari, Anes; Sutanto, Heri; Marito Siagian, Sinta

    2017-01-01

    Thin films of double layer of ZnO/Al has succeeded in deposition on a glass substrate using sol-gel method and spray coating techniques. Variations of doping Al as much as 2%, 4%, 6% and 8%. ZnO precursor synthesized using zinc acetate dehydrate (Zn(COOCH3)2.2H2O), isopropanol ((CH3)2CHOH) and monoethanolamine (MEA) were stirred using a magnetic stirrer for 45 minutes. ZnO precursor get homogeneous and then added of aluminum nitrate nonahydrate predetermined doping concentration and stirred again for 15 minutes. Deposition solution is done by the spray on a glass substrate and then heated at a temperature of 450°C. A layer of ZnO/Al deposited over the ZnO to produce a thin layer of a double layer. Optical properties layer of ZnO/Al characterized using UV-Vis spectrophotometer. Based on data from UV-Vis absorbance was determined the value of the energy band gap. Pure and dopped layers has different energy due the Al dopping. For pure ZnO layer has energy band gap of 3.347 eV and decreased to 3.09 eV for ZnO layer with Al dopant.

  5. Influence of Ag doping concentration on structural and optical properties of CdS thin film

    SciTech Connect

    Kumar, Pragati; Saxena, Nupur; Gupta, Vinay; Agarwal, Avinash

    2015-05-15

    This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.

  6. The effects of magnesium doping on the modal loss in AlGaN-based deep UV lasers

    NASA Astrophysics Data System (ADS)

    Martens, M.; Kuhn, C.; Simoneit, T.; Hagedorn, S.; Knauer, A.; Wernicke, T.; Weyers, M.; Kneissl, M.

    2017-02-01

    Absorption losses in the Mg-doped layers significantly contribute to the modal losses in group-III-nitride-based lasers. In this paper, we investigate the influence of Mg-doping on the modal absorption of optically pumped UVC lasers grown on epitaxially laterally overgrown AlN/sapphire substrates with an averaged threading dislocation density of 1 × 109 cm-2. By varying the setback of the Mg-doping (˜1 × 1020 cm-3) within the upper Al0.70Ga0.30N waveguide layer, the overlap of the optical mode with the Mg-doped region increases. For all structures, internal losses were derived from gain spectra obtained by the variable stripe length method. The internal losses increase from 10 cm-1 for lasers without Mg-doping to 28 cm-1 for lasers with a fully Mg-doped upper waveguide layer. The overlap of the optical mode with the Mg-doped waveguide ΓMg clearly correlates with the modal losses. This allows to calculate the Mg-induced losses in current injection laser diodes by αm o d M g = Γ M g × 50 cm - 1 .

  7. Influence of layer doping and thickness on predicted performance of NPN AlGaN/GaN HBTs

    NASA Astrophysics Data System (ADS)

    Lee, K. P.; Dabiran, A.; Chow, P. P.; Pearton, S. J.; Ren, F.

    2003-06-01

    The effects of base doping and thickness on dc current gain, collector-emitter saturation voltage, saturation current and collector-emitter breakdown voltage of GaN/AlGaN heterojunction bipolar transistors were investigated using a drift-diffusion transport model. Given the low ionization efficiency of Mg acceptors in the base, it is important to design structures that avoid depletion of the base layer. The presence of a resistive base causes current to flow directly to the collector, severely reducing gain. The effect of emitter doping on current gain and of collector doping on the breakdown voltage of the C-E junction were also investigated.

  8. Al-doped ZnO seed layer-dependent crystallographic control of ZnO nanorods by using electrochemical deposition

    SciTech Connect

    Son, Hyo-Soo; Choi, Nak-Jung; Kim, Kyoung-Bo; Kim, Moojin; Lee, Sung-Nam

    2016-10-15

    Highlights: • Polar and semipolar ZnO NRs were successfully achieved by hydrothermal synthesis. • Semipolar and polar ZnO NRs were grown on ZnO and AZO/m-sapphire, respectively. • Al % of AZO/m-sapphire enhanced the lateral growth rate of polar ZnO NRs. - Abstract: We investigated the effect of an Al-doped ZnO film on the crystallographic direction of ZnO nanorods (NRs) using electrochemical deposition. From high-solution X-ray diffraction measurements, the crystallographic plane of ZnO NRs grown on (1 0 0) ZnO/m-plane sapphire was (1 0 1). The surface grain size of the (100) Al-doped ZnO (AZO) film decreased with increasing Al content in the ZnO seed layer, implying that the Al dopant accelerated the three-dimensional (3D) growth of the AZO film. In addition, it was found that with increasing Al doping concentration of the AZO seed layer, the crystal orientation of the ZnO NRs grown on the AZO seed layer changed from [1 0 1] to [0 0 1]. With increasing Al content of the nonpolar (1 0 0) AZO seed layer, the small surface grains with a few crystallographic planes of the AZO film changed from semipolar (1 0 1) ZnO NRs to polar (0 0 1) ZnO NRs due to the increase of the vertical [0 0 1] growth rate of the ZnO NRs owing to excellent electrical properties.

  9. The formation of tungsten doped Al2O3/ZnO coatings on aluminum by plasma electrolytic oxidation and their application in photocatalysis

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Vasilić, Rastko; Radić, Nenad; Tadić, Nenad; Stefanov, Plamen; Grbić, Boško

    2016-07-01

    Tungsten doped Al2O3/ZnO coatings are formed by plasma electrolytic oxidation of aluminum substrate in supporting electrolyte (0.1 M boric acid + 0.05 M borax + 2 g/L ZnO) with addition of different concentrations of Na2WO4·2H2O. The morphology, crystal structure, chemical composition, and light absorption characteristics of formed surface coatings are investigated. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that formed surface coatings consist of alpha and gamma phase of Al2O3, ZnO, metallic tungsten and WO3. Obtained results showed that incorporated tungsten does not have any influence on the absorption spectra of Al2O3/ZnO coatings, which showed invariable band edge at about 385 nm. The photocatalytic activity of undoped and tungsten doped Al2O3/ZnO coatings is estimated by the photodegradation of methyl orange. The photocatalytic activity of tungsten doped Al2O3/ZnO coatings is higher thanof undoped Al2O3/ZnO coatings; the best photocatalytic activity is ascribed to coatings formed in supporting electrolyte with addition of 0.3 g/L Na2WO4·2H2O. Tungsten in Al2O3/ZnO coatings acts as a charge trap, thus reducing the recombination rate of photogenerated electron-hole pairs. The results of PL measurements are in agreement with photocatalytic activity. Declining PL intensity corresponds to increasing photocatalytic activity of the coatings, indicating slower recombination of electron-hole pairs.

  10. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    SciTech Connect

    Lu, Yuan; Zuo, Xu; Feng, Min; Shao, Bin

    2014-05-07

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  11. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Feng, Min; Shao, Bin; Zuo, Xu

    2014-05-01

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  12. Deep ultraviolet photoluminescence of Tm-doped AlGaN alloys

    SciTech Connect

    Nepal, N.; Zavada, J. M.; Lee, D. S.; Steckl, A. J.; Sedhain, A.; Lin, J. Y.; Jiang, H. X.

    2009-03-16

    The ultraviolet (UV) photoluminescence (PL) properties of Tm-doped Al{sub x}Ga{sub 1-x}N (0.39{<=}x{<=}1) alloys grown by solid-source molecular beam epitaxy were probed using above-bandgap excitation from a laser source at 197 nm. The PL spectra show dominant UV emissions at 298 and 358 nm only for samples with x=1 and 0.81. Temperature dependence of the PL intensities of these emission lines reveals exciton binding energies of 150 and 57 meV, respectively. The quenching of these UV emissions appears related to the thermal activation of the excitons bound to rare-earth structured isovalent (RESI) charge traps, which transfer excitonic energy to Tm{sup 3+} ions resulting in the UV emissions. A model of the RESI trap levels in AlGaN alloys is presented.

  13. Fiber optic thermometer using Cr-doped GdAlO3 broadband emission decay

    NASA Astrophysics Data System (ADS)

    Eldridge, Jeffrey I.; Chambers, Matthew D.

    2015-09-01

    Luminescence decay temperature measurements are performed from 800 to 1200 °C using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor tip on a YAG single crystal fiber. As a thermographic phosphor, Cr:GdAlO3 combines the intense luminescence of transition metal dopants with the high temperature long decay times usually exhibited only by rare earth dopants. The proposed mechanism is emission by the Cr3+ dopant via the spin-allowed 4T2  →  4A2 transition supported by a reservoir state in 2E which populates {}4{{\\text{T}}2} (2E  →  {}4{{\\text{T}}2} ) through thermal equilibration. The relative energy levels and transition probabilities associated with the strong crystal field at the Al3+ site in the perovskite structure of GdAlO3 are favorable for suppressing thermal quenching of luminescence. Results from a single-fiber configuration sensor, based on a YAG fiber for its low background luminescence, are presented. Using a decay curve fitting procedure that accounts for background fluorescence, accuracies of better than  ±5 °C are demonstrated.

  14. Quasi-Two-Dimensional Electron Gas Behavior in Doped LaAlO3 Thin Films on SrTiO3 Substrates

    DTIC Science & Technology

    2013-04-03

    REPORT Quasi-two-dimensional electron gas behavior in doped LaAlO3 thin films on SrTiO3 substrates 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have...demonstrated the growth of Tm and Lu doped LaAlO3 epitaxial thin films on single crystal (001) SrTiO3 substrates. These rare-earth dopants...gas behavior in doped LaAlO3 thin films on SrTiO3 substrates Report Title ABSTRACT We have demonstrated the growth of Tm and Lu doped LaAlO3 epitaxial

  15. Cathodoluminescence emission of REE (Dy, Pr and Eu) doped LaAlO3 phosphors

    NASA Astrophysics Data System (ADS)

    Boronat, C.; Rivera, T.; Garcia-Guinea, J.; Correcher, V.

    2017-01-01

    Luminescence emission from rare earth (REE) ions doped materials are being of interest since can be employed as scintillators, catalysts, battery and magnetic materials, etc. We herein report on the preliminary results obtained from the cathodoluminescence (CL) properties of undoped LaAlO3 (LAO) and LaAlO3: REE3+ (REE=Dy3+, Pr3+ and Eu3+) samples synthesized by a sol-gel process based on the Pechini's method with a spray-drying technique. The samples, previously characterized by means of Environmental Scanning Electron Microscopy and Energy Dispersive X-Ray Analysis Spectrometry, display CL spectra with well-defined peaks that could specifically be associated with the LAO structure (in the range of 300-450 nm) and point defects (from 450 to 800 nm) spectral regions. The observed wavebands are as follows: (i) 480 and 570 from the Dy-doped LAO correspond respectively to 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions, (ii) 490-638 from the Pr-doped LAO is linked to 3P0→3H4, 1D2→3H4 transitions and (iii) 590 and 620 where the dopant Eu3+ gives rise to 5D0→7F1 and 5D0→7F2 transitions and (iv) a UV-blue broad band is associated with NBHOC in undoped LAO. Such emissions are due to the presence of the 4f electrons of rare earth ions that are shielded by the outer 5s and 5p electrons, the intra-4f emission spectra of REE that induce sharp and narrow wavebands.

  16. Strengthening TiN diffusion barriers for Cu metallization by lightly doping Al

    NASA Astrophysics Data System (ADS)

    Yang, L. C.; Hsu, C. S.; Chen, G. S.; Fu, C. C.; Zuo, J. M.; Lee, B. Q.

    2005-09-01

    Thin films of Ti1-xAlxN were deposited on (100) Si by ultrahigh-vacuum dual-target reactive sputtering, and the impact of lightly doping Al of x as small as 0.09 on altering the films's microstructure upon thermal annealing, and hence the performance of the films (40nm thick) as diffusion barriers for Cu metallization was evaluated. The results of transmission electron microscopy, Rutherford backscattering spectroscopy, and grazing-incidence x-ray diffraction show that the TiN barrier layer gives the commonly observed voided, columnar grains composed of 5nm sized subgrains. Upon annealing, the subgrains tend to coalesce into 20nm sized equiaxed grains full of crystalline defects, initiating an inward penetration of Cu and a partial dissociation of TiN, transforming themselves, respectively, into pyramidal (or columnar) Cu3Si precipitates and a dendritic Ti5Si3 layer just after 550°C, 10min annealing. However, the lightly doped Al not only overrides the tendency to form intercolumnar voids inherent in sputter deposition by self-shadowing and statistical roughening, but also substantially enhances the microstructural and thermochemical stability, hence significantly improving barrier property, as evidenced from an annealing test at an elevated temperature (600°C) for a prolonged period of 30min.

  17. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.

    PubMed

    Greenberg, Benjamin L; Ganguly, Shreyashi; Held, Jacob T; Kramer, Nicolaas J; Mkhoyan, K Andre; Aydil, Eray S; Kortshagen, Uwe R

    2015-12-09

    Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation.

  18. Temperature- and doping-concentration-dependent characteristics of junctionless gate-all-around polycrystalline-silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tso, Chia-Tsung; Liu, Tung-Yu; Pan, Fu-Ming; Sheu, Jeng-Tzong

    2017-04-01

    The temperature effects of both gate-all-around polycrystalline silicon nanowire (GAA poly-Si NW) junctionless (JL) and inversion mode (IM) transistor devices at various temperatures (77–410 K) were investigated. The electrical characteristics of these devices, such as subthreshold swing (SS), threshold voltage (V th), and drain-induced barrier lowering (DIBL), were also characterized and compared in this study. Moreover, JL devices with different doping concentrations at various temperatures were also discussed. Both V th and I on showed significant doping concentration dependences for JL devices with doping concentrations of 1 × 1019 and 5 × 1019 cm‑3. However, the electrical characteristics of JL devices showed less thermal sensitivity when the doping concentration reached 1020 cm‑3.

  19. Simultaneous measurement of doping concentration and carrier lifetime in silicon using terahertz time-domain transmission

    NASA Astrophysics Data System (ADS)

    Lenz, M.; Matheisen, C.; Nagel, M.; Knoch, J.

    2017-02-01

    In this work, we present a measurement approach enabling the simultaneous determination of sheet resistance and carrier lifetime in semiconductor samples. It is based on a classic Terahertz (THz) time-domain transmission spectroscopy scheme extended by quasi-steady state optical excitation. The carrier lifetime is determined by contactless THz probing of the increase in sheet conductance associated with quasi-steady-state excitation. Combining a successive etch-back of the surface with repeated THz measurements yields a depth profile of the doping concentration and the carrier lifetime, which is important for the optimization of the emitter of solar cells, for instance. The viability of our approach is demonstrated by investigating a phosphorous doped emitter of a silicon solar cell with the THz approach and comparing the results with electrochemical capacitance voltage measurements.

  20. Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.

    PubMed

    Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi

    2011-04-01

    The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.

  1. Structure and thermoelectric properties of Al-doped ZnO films prepared by thermal oxidization under high magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Shiying; Peng, Sunjuan; Ma, Jun; Li, Guojian; Qin, Xuesi; Li, Mengmeng; Wang, Qiang

    2017-04-01

    This paper studies the effects of high magnetic field (HMF) on the structure, optical and thermoelectric properties of the doped ZnO thin films. The results show that both Al dopant and application of HMF can affect the crystal structure, surface morphology, elemental distribution and so on. The particles of the thin films become small and regular by doping Al. The ZnO films oxidized from the Au/Zn bilayer have needle structure. The ZnO films oxidized from the Au/Zn-Al bilayer transform to spherical from hexagonal due to the application of HMF. The transmittance decreases with doping Al because of the opaque of Al element and decreases with the application of HMF due to the dense structure obtained under HMF. Electrical resistivity (ρ) of the ZnO films without Al decreases with increasing measurement temperature (T) and is about 1.5 × 10-3 Ω·m at 210 °C. However, the ρ of the Al-doped ZnO films is less than 10-5 Ω·m. The Seebeck coefficient (S) of the films oxidized from the Au/Zn-Al films reduces with increasing T. The S values oxidized under 0 T and 12 T conditions are 2.439 μV/K and -3.415 μV/K at 210 °C, respectively. Power factor reaches the maximum value (3.198 × 10-4 W/m·K2) at 210 °C for the film oxidized under 12 T condition. These results indicate that the Al dopant and the application of HMF can be used to control structure and thermoelectric properties of doped ZnO films.

  2. Al-doped TiO2 mesoporous material supported Pd with enhanced catalytic activity for complete oxidation of ethanol

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Mu, Wentao; Su, Liqing; Li, Xingying; Guo, Yuyu; Zhang, Shen; Li, Zhe

    2017-04-01

    Pd catalysts supported on Al-doped TiO2 mesoporous materials were evaluated in complete oxidation of ethanol. The catalysts synthesized by wet impregnation based on evaporation-induced self-assembly were characterized by X-ray diffraction, measurement of pore structure, XPS, FT-IR, temperature programmed reduction and TEM. Characteristic results showed that the aluminium was doped into the lattice of mesoporous anatase TiO2 to form Al-O-Ti defect structure. Catalytic results revealed that Al-doped catalysts were much more active than the pristine one, especially at low temperature (≤200 °C). This should be ascribed to the introduction of aluminium ions that suppressed the strong metal-support interaction and increased the active sites of Pd oxides, enhanced the stabilized anatase TiO2, improved well dispersed high valence palladium species with high reducibility and enriched chemisorption oxygen.

  3. A systematic ALCHEMI study of Fe-doped NiAl alloys

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1995-06-01

    ALCHEMI site-occupation studies of alloying additions to ordered aluminide intermetallic alloys have been performed with varying degrees of success, depending on the ionization delocalization correction. This study examines the variation in the site-occupancy of Fe in B2-ordered NiAl vs solute concentration and alloy stoichiometry. The fraction of Fe on the `Ni` site is plotted vs Fe concentration. The good separation among the data from alloys of the three stoichiometries shows that the site occupancy of iron depends on the relative concentrations of the Ni and Al host elements; however a preference for the `Ni` site is clearly indicated.

  4. The influence of boron-doping on the effectiveness of grain boundary hardening in Ni{sub 3}Al

    SciTech Connect

    Lee, C.S.; Lai, J.K.L.; Han, G.W. |; Smallman, R.E.; Feng, D.

    1999-04-23

    The influence of boron-doping on the effectiveness of grain boundary hardening in Ni{sub 3}Al has been investigated by measuring microhardness profiles across grain boundaries of binary and boron-doped Ni{sub 3}Al bicrystals. It was found that although boron gives rise to significant solution strengthening in Ni{sub 3}Al, the effectiveness of grain boundary hardening in Ni{sub 3}Al is lessened by the addition of boron. Furthermore, the contribution of grain boundary hardening to the overall strength decreases as the segregation extent of boron at the grain boundary increases. A theoretical model of grain boundary hardening considering the various effects of boron-doping has been developed. Application of the model can deconvolute the individual effects of boron-doping on solution hardening, distribution of microcavities along grain boundaries and the interaction of dislocations on different slip systems. Analyzing the experimental results with the model suggests that boron-doping can (1) improve the transfer efficiency of shear stress across a grain boundary by reducing the amount of microcavities along the grain boundary; (2) suppress the hardening effect from the interaction of dislocations moving on different slip systems; and (3) cause a significant solution hardening effect.

  5. Microstructure, Magnetism and Magnetic Field Induced-Strain in Er-Doped Co-Ni-Al Polycrystalline Alloy

    NASA Astrophysics Data System (ADS)

    Ju, Jia; Lou, Shuting; Yan, Chen; Yang, Liu; Li, Tao; Hao, Shuai; Wang, Xingyi; Liu, Huan

    2017-04-01

    A large magnetic field-induced strain (MFIS) was discovered in single-crystal alloys, whereas it is proven difficult for such apparent strain values to be obtained in polycrystalline alloys. In order for an apparent strain discovery to occur, the polycrystalline Co-Ni-Al system was doped by 0-1 at.% of Er and the effects of doping on microstructure, magnetism and MFIS were studied via scanning electron microscopy, x-ray diffraction, transmission electron microscopy and vibrating sample magnetometer in the present work. The microstructure of the alloy was a dual-phase microstructure, including the matrix and the γ phase. Following the Er doping, the γ phase was continuously coarsened, forming a network of precipitates surrounding the grains. Also, a Co-Er-rich intermetallic compound was formed in the Co-rich γ phase when the Er content exceeded 0.1 at.%. The martensitic transformation temperature has a decreasing tendency during the Er being doped from 0 at.% to 1 at.% and the martensitic structure of the sample is of the L10 type, forming twin grains in the (111) twinning plane. On the contrary, the magnetic properties were improved by Er doping, especially saturation magnetization and magneto-crystalline anisotropy constantly increased to 60.45 emu/g and 3.13 × 106 erg/cm3 when the Er content reached 1 at.%, respectively. Also, the strain recovery ratio ( R s) of Co-Ni-Al-Er alloys can be enhanced by thermo-mechanical cycles and Er doping. At 5% of the total strain, the R s value exceeded 83% following thermo-mechanical cycles when the Er doping was 1 at.%. The strain in the applied magnetic field was increased by Er doping and an excess of 140 ppm of MFIS was obtained in the polycrystalline Co-Ni-Al-Er alloys.

  6. Arrays of ZnO/AZO (Al-doped ZnO) nanocables: a higher open circuit voltage and remarkable improvement of efficiency for CdS-sensitized solar cells.

    PubMed

    Deng, Jianping; Wang, Minqiang; Liu, Jing; Song, Xiaohui; Yang, Zhi

    2014-03-15

    Photoelectrode of nanocables (NCs) structure of ZnO nanowires (NWs) coated with Al-doped ZnO (AZO) shells was investigated for CdS quantum dots sensitized solar cells (QDSSCs). ZnO NWs serve as the frame for the preparation of AZO shells, in which electron transport more rapidly due to the more higher electron mobility of AZO (n-ZnO) than that of i-ZnO. AZO shells were assembled onto the surface of ZnO NWs via a spin-coating method. Optical band-gap of the ZnO/AZO films varies from 3.19 eV for pure ZnO to 3.25 eV for AZO (15%) depending on the Al-doping concentration. The PL intensity of AZO/ZnO, V(oc), J(sc) and η of the cells first increased and then decreased with the increase in the Al-doping (from 0% to 20%) and post-annealed temperature. Remarkably, the value of V(oc) can achieve above 0.8 V after Al-doping. The dark current and absorption spectrum provided direct evidence of the increase in J(sc) and V(oc), respectively. Moreover, we discussed the effect of Al-doping on optical band-gap of the samples and the transfer of electron.

  7. Investigation of the interrelation between the chemical state and the electric properties in Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Wang, Jinzhao; Ni, Dongfang; Zhang, Tianjin; Wang, Duofa; Liang, Kun

    2015-09-01

    Transparent conducting Al-doped ZnO (AZO) thin films were prepared on glass substrates by radio frequency magnetron sputtering in pure Ar. The influence of the annealing atmosphere on the microstructure, chemical state, electric and optical properties of the AZO films was investigated with X-ray diffraction, field-emission scanning electron microscopy, X-ray photoelectron spectroscopy and Hall measurements. The AZO thin films annealed under vacuum had the highest carrier concentration of 2.488 × 1020 cm-3 and a Hall mobility of 16.35 cm2 V-1 s-1, while the AZO thin films annealed in air had the lowest carrier concentration of 4.182 × 1017 cm-3 and a Hall mobility of 2.375 cm2 V-1 s-1. The fitted narrow-scan O1 s spectra revealed that O1 s was composed of three components. The AZO thin films annealed under vacuum appeared to have a higher proportion of medium binding energy which correspond to O2- ions in the oxygen-deficient regions within the ZnO matrix, and have a lower proportion of high binding energy component which correspond to loosely bound chemisorbed oxygen. It believed that the oxygen vacancies and chemisorbed oxygen of the films played an important role in the electrical conductance. The carrier concentration increased with the formation of oxygen vacancies. The Hall mobility increased with desorption of the loosely bound oxygen.

  8. Gain-shift induced by dopant concentration ratio in a Thulium-Bismuth doped fiber amplifier.

    PubMed

    Emami, Siamak Dawazdah; Zarifi, Atieh; Rashid, Hairul Azhar Abdul; Muhammad, Ahmad Razif; Paul, Mukul Chandra; Halder, Arindam; Bhadra, Shyamal Kumar; Ahmad, Harith; Harun, Sulaiman Wadi

    2014-03-24

    This paper details the effect of Thulium and Bismuth concentration ratio on gain-shift at 1800 nm and 1400 nm band in a Thulium-Bismuth Doped Fiber Amplifier (TBDFA). The effect of Thulium and Bismuth's concentration ratio on gain shifting is experimentally established and subsequently numerically modeled. The analysis is carried out via the cross relaxation and energy transfer processes between the two dopants. The energy transfer in this process was studied through experimental and numerical analysis of three samples with different Tm/Bi concentration ratio of 2, 0.5 and 0.2, respectively. The optimized length for the three samples (TBDFA-1, TBDFA-2 and TBDFA-3) was determined and set at 6.5, 4 and 5.5 m, respectively. In addition, the experimental result of Thulium Doped Fiber Amplifier (TDFA) was compared with the earlier TBDFA samples. The gain for TBDFA-1, with the highest Tm/Bi ratio, showed no shift at the 1800 nm region, while TBDFA-2 and TBDFA-3, possessing a lower Tm/Bi concentration ratio, shifted to the region of 1950 and 1960 nm, respectively. The gain shifting from 1460 nm to 1490 nm is also observed. The numerical model demonstrates that the common 3F4 layer for 1460 nm emission (3H4→3F4), and 1800 nm emission (3F4→3H6)inversely affects the 1460 nm and 1800 nm gain shifting.

  9. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    PubMed

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  10. Concentration dependent structural parameters of liquid Al-Fe alloys

    NASA Astrophysics Data System (ADS)

    Lalnuntluanga, C.; Mishra, Raj Kumar

    2016-10-01

    Square well potential is perturbed over Lebowtiz solution of hard sphere mixtures to determine direct correlation function,C(0) ij(r) in repulsive and attractive regions under Mean Spherical Model Approximation [1]. Obtained direct correlation functions were employed to derive partial structure factors and then total structure factor, S(k) in liquid Al-Fe alloy at different atomic percent of Al. Fourier transform of partial and total structure factors gives partial and total radial distribution functions, g(r) from which partial and total coordination numbers and the partial nearest-neighbor distances were computed.

  11. Effects of N concentration on electronic and optical properties of N-doped PbTiO3

    NASA Astrophysics Data System (ADS)

    Yinnü, Zhao; Jinliang, Yan

    2015-09-01

    The p-type N-doped PbTiO3 with different doping concentrations have been studied by first-principles calculations. The charge density differences, band structures, density of states and optical properties have been investigated. After an oxygen atom is substituted by a nitrogen atom in the crystals, the valance bands move to high energy levels and the Fermi energy level gets into the top of the valance bands. Results show that the values of the band gaps are decreased and the stability is weakened when the N concentration increases. The 2.5 at% N-doped PbTiO3 shows the best p-type conductivity and the visible-light absorption can be enhanced most at this doping concentration, which is necessary in semiconductors or photocatalysts. Project supported by the National Natural Science Foundation of China (No. 10974077) and the Innovation Project of Shandong Graduate Education, China (No. SDYY13093).

  12. Whey protein concentrate doped electrospun poly(epsilon-caprolactone) fibers for antibiotic release improvement.

    PubMed

    Ahmed, Said Mahmoud; Ahmed, Hanaa; Tian, Chang; Tu, Qin; Guo, Yadan; Wang, Jinyi

    2016-07-01

    Design and fabrication of scaffolds using appropriate biomaterials are a key step for the creation of functionally engineered tissues and their clinical applications. Poly(epsilon-caprolactone) (PCL), a biodegradable and biocompatible material with negligible cytotoxicity, is widely used to fabricate nanofiber scaffolds by electrospinning for the applications of pharmaceutical products and wound dressings. However, the use of PCL as such in tissue engineering is limited due to its poor bioregulatory activity, high hydrophobicity, lack of functional groups and neutral charge. With the attempt to found nanofiber scaffolds with antibacterial activity for skin tissue engineering, in this study, whey protein concentrate (WPC) was used to modify the PCL nanofibers by doping it in the PCL electrospun solution. By adding proteins into PCL nanofibers, the degradability of the fibers may be increased, and this further allows an antibiotic incorporated in the fibers to be efficiently released. The morphology, wettability and degradation of the as-prepared PCL/WPC nanofibers were carefully characterized. The results showed that the PCL/WPC nanofibers possessed good morphology and wettability, as well as high degradation ability to compare with the pristine PCL fibers. Afterwords, tetracycline hydrochloride as a model antibiotic drug was doped in the PCL/WPC nanofibers. In vitro drug release assays demonstrated that PCL/WPC nanofibers had higher antibiotic release capability than the PCL nanofibers. Also, antibacterial activity evaluation against various bacteria showed that the drug-doped PCL/WPC fibers possessed more efficient antibacterial activity than the PCL nanofibers.

  13. Doping concentration evaluation using plasma propagation models in plasma immersion ion implantation (PIII) system

    NASA Astrophysics Data System (ADS)

    Gupta, Dushyant; Prasad, B.; George, P. J.

    2004-01-01

    Plasma immersion ion implantation (PIII) is a high dose-rate implantation process technique in the area of semiconductor device fabrication used to fabricate various device structures like shallow junction, silicon on insulators and in the processing of flat panel display materials, trench doping, etc. The basic mechanism of ions source and their acceleration in PIII technique is different from that of the conventional ion-implantation. In this, the target is immersed in a plasma source and the implantation is done by accelerating the ions with a negative pulse bias voltage, applied to the target. The dynamics of ion transport and the implantation is different from line-of-sight implantation. In this paper, the doping of individual ions (Ar, He and N), in a collisionless PIII system is studied analytically when a negative pulse of 10 kV is applied to the target. The net ion doping concentration in one pulse duration has also been computed during the propagation of plasma sheaths.

  14. Solution-processed organic thermoelectric materials exhibiting doping-concentration-dependent polarity.

    PubMed

    Hwang, Sunbin; Potscavage, William J; Yang, Yu Seok; Park, In Seob; Matsushima, Toshinori; Adachi, Chihaya

    2016-10-26

    Recent progress in conducting polymer-based organic thermoelectric generators (OTEGs) has resulted in high performance due to high Seebeck coefficient, high electrical conductivity (σ), and low thermal conductivity obtained by chemically controlling the materials's redox levels. In addition to improving the properties of individual OTEGs to obtain high performance, the development of solution processes for the fabrication of OTEG modules is necessary to realize large thermoelectric voltage and low-cost mass production. However, the scarcity of good candidates for soluble organic n-type materials limits the use of π-leg module structures consisting of complementary elements of p- and n-type materials because of unbalanced transport coefficients that lead to power losses. In particular, the extremely low σ of n-type materials compared with that of p-type materials is a serious challenge. In this study, poly(pyridinium phenylene) (P(PymPh)) was tested as an n-type semiconductor in solution-processed OTEGs, and the carrier density was controlled by a solution-based chemical doping process using the dopant sodium naphthalenide, a well-known reductant. The electronic structures and doping mechanism of P(PymPh) were explored based on the changes in UV-Vis-IR absorption, ultraviolet photoelectron, and X-ray photoelectron spectra. By controlling the dopant concentration, we demonstrate a maximum n-type power factor of 0.81 μW m(-1) K(-2) with high σ, and at higher doping concentrations, a switch from n-type to p-type TE operation. This is one of the first cases of a switch in polarity just by increasing the concentration of the reductant and may open a new route for simplified fabrication of complementary organic layers.

  15. Optical and structural properties of Al-doped ZnO thin films by sol gel process.

    PubMed

    Jun, Min-Chul; Koh, Jung-Hyuk

    2013-05-01

    Transparent conducting oxide (TCO) materials with high transmittance and good electrical conductivity have been attracted much attention due to the development of electronic display and devices such as organic light emitting diodes (OLEDs), and dye-sensitized solar cells (DSSCs). Aluminum doped zinc oxide thin films (AZO) have been well known for their use as TCO materials due to its stability, cost-effectiveness, good optical transmittance and electrical properties. Especially, AZO thin film, which have low resistivity of 2-4 x 10(-4) omega x cm which is similar to that of ITO films with wide band gap semiconductors. The AZO thin films were deposited on glass substrates by sol-gel spin-coating process. As a starting material, zinc acetate dihydrate (Zn(CH3COO)2 x 2H2O) and aluminum chloride hexahydrate (AlCl3 6H2O) were used. 2-methoxyethanol and monoethanolamine (MEA) were used as solvent and stabilizer, respectively. After deposited, the films were preheated at 300 degrees C on a hotplate and post-heated at 650 degrees C for 1.5 hrs in the furnace. We have studied the structural and optical properties as a function of Al concentration (0-2.5 mol.%).

  16. Microstructure, Martensite Transition and Mechanical Properties Investigations of Polycrystalline Co-Ni-Al Alloys with Er Doping

    NASA Astrophysics Data System (ADS)

    Ju, Jia; Yang, Liu; Hao, Shuai; Mao, Qitong; Lou, Shuting; Liu, Huan

    2017-02-01

    Using a multi-technique approach, we explore the effect of Er doping on the mechanical properties and phase transition temperature of polycrystalline Co-Ni-Al alloy. The un-doped alloy exhibits poor mechanical properties and a very low phase transition temperature. Therefore, the alloy could not obtain the apparent magnetic-field-induced strain. We show that the microstructure is typical of a multi-phase structure at room temperature. Within the grain boundary, a γ phase exists and is shown to continuously grow surrounding the matrix as the Er is being doped. This results in the appearance of Co2Er in the γ phase when Er rises above 0.5 at.%. The phase transformation temperature clearly increases with doping and reaches room temperature when doping is at 1 at.% Er. The yield stress and ductility of the alloy increased remarkably at first and then slightly decreased with further doping. The sample exhibits an interesting shape memory effect that is enhanced by Er doping or thermo-mechanical cycles.

  17. Microstructure, Martensite Transition and Mechanical Properties Investigations of Polycrystalline Co-Ni-Al Alloys with Er Doping

    NASA Astrophysics Data System (ADS)

    Ju, Jia; Yang, Liu; Hao, Shuai; Mao, Qitong; Lou, Shuting; Liu, Huan

    2017-03-01

    Using a multi-technique approach, we explore the effect of Er doping on the mechanical properties and phase transition temperature of polycrystalline Co-Ni-Al alloy. The un-doped alloy exhibits poor mechanical properties and a very low phase transition temperature. Therefore, the alloy could not obtain the apparent magnetic-field-induced strain. We show that the microstructure is typical of a multi-phase structure at room temperature. Within the grain boundary, a γ phase exists and is shown to continuously grow surrounding the matrix as the Er is being doped. This results in the appearance of Co2Er in the γ phase when Er rises above 0.5 at.%. The phase transformation temperature clearly increases with doping and reaches room temperature when doping is at 1 at.% Er. The yield stress and ductility of the alloy increased remarkably at first and then slightly decreased with further doping. The sample exhibits an interesting shape memory effect that is enhanced by Er doping or thermo-mechanical cycles.

  18. High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey; Chambers, Matthew

    2011-01-01

    A new concept has been developed for a high-temperature luminescence-based optical thermometer that both shows the desired temperature sensitivity in the upper temperature range of present state-of-the-art luminescence thermometers (above 1,300 C), while maintaining substantial stronger luminescence signal intensity that will allow these optical thermometers to operate in the presence of the high thermal background radiation typical of industrial applications. This objective is attained by using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor with an orthorhombic perovskite structure, resulting in broadband luminescence that remains strong at high temperature due to the favorable electron energy level spacing of Cr:GdAlO3. The Cr:GdAlO3 temperature (and pressure) sensor can be incorporated into, or applied onto, a component s surface when a non-contact surface temperature measurement is desired, or alternatively, the temperature sensor can be attached to the end of a fiber-optic probe that can then be positioned at the location where the temperature measurement is desired. In the case of the fiber-optic probe, both the pulsed excitation and the luminescence emission travel through the fiber-optic light guide. In either case, a pulsed light source provides excitation of the luminescence, and the broadband luminescence emission is collected. Real-time temperature measurements are obtain ed using a least-squares fitting algorithm that determines the luminescence decay time, which has a known temperature dependence established by calibration. Due to the broad absorption and emission bands for Cr:GdAlO3, there is considerable flexibility in the choice of excitation wavelength and emission wavelength detection bands. The strategic choice of the GdAlO3 host is based on its high crystal field, phase stability, and distorted symmetry at the Cr3+ occupation sites. The use of the broadband emission for temperature sensing at high temperatures is a key feature of the invention and is

  19. Investigations on the roles of position controlled Al layers incorporated into an Al-doped ZnO active channel during atomic layer deposition for thin film transistor applications

    NASA Astrophysics Data System (ADS)

    Kim, Eom-Ji; Lee, Won-Ho; Yoon, Sung-Min

    2016-03-01

    We investigated the effects of the distance between incorporated Al layers on the characteristics of thin-film transistors (TFTs) using Al-doped ZnO (AZO) as the active channels. The intervals between the Al layers were controlled by designing the sequences of Al cycles during the atomic-layer deposition. Two configurations were designed as “scatter” or “focus”, in which the incorporated Al layers were dispersed to bottom and top sides or concentrated on the center region. Electrical conductivities of “scatter” and “focus” films were observed to be different. While the dispersed Al layers could work as dopants, a too-close interval between the Al layers suppressed carrier transport, even with the same incorporated Al amounts. These differences were reflected on the device characteristics. The TFT performance of the “scatter” device was better than that of the “focus” device. Consequently, adequately dispersed Al layers in the AZO channel are very important for improving device performance.

  20. Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth

    SciTech Connect

    Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.; Emami, S. D.; Abdul-Rashid, H. A.; Yusoff, Z.

    2010-07-07

    Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths compared to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.

  1. Studying the effects of the configuration of doped Al atoms on the conductive properties of boron nitride nanotube using density functional theory

    NASA Astrophysics Data System (ADS)

    Tavangar, Zahra; Hamadanian, Masood; Basharnavaz, Hadi

    2017-02-01

    In this paper, we study the effects of the configuration of two Al atoms doped into the unit cell of (7, 0) BNNTs, on their structural and electronic properties in solid state using density functional theory methods. Also, all possible configurations for Al double doped (7, 0) BNNT were investigated. The results showed that with Al doping, band gap decreased. Furthermore, an impurity state appears near the Fermi level when two Al atoms replace two boron atoms of adjacent layers. Contour plots of charge density distribution showed a protuberance surrounding N and B atoms adjacent to the substitute Al atoms.

  2. Adsorption of carbon dioxide on Al12X clusters studied by density functional theory: effect of charge and doping.

    PubMed

    Zhao, Jian-Ying; Zhang, Yu; Zhao, Feng-Qi; Ju, Xue-Hai

    2013-11-27

    The adsorption of a CO2 molecule on neutral and charged X-centered icosahedron Al12X(±z) clusters (X = Al, Be, Zn, Ni, Cu, B, P; z = 0, 1) was investigated by the density functional PW91 and PWC methods. Optimized configurations corresponding to physisorption and chemisorption of CO2 were identified. The adsorption energies, activation barriers, and binding energies involving both the physisorption (Al12X(±z)·CO2-I) and chemisorption (Al12X(±z)·CO2-II) for CO2 were determined. The chemisorption of a CO2 molecule on the Al12X clusters (X is a metallic doping element) requires relatively low activation barriers. The lowest barrier was found to be with the Al12Be cluster. For the Al12X(-) clusters, the barriers are all higher than those of the neutral analogues. For the Al12X(+) clusters, two corresponding configurations are linked by a low-energy barrier, and CO2 molecule chemisorption on the Al12Be(+) cluster has the lowest barrier. The adsorption energies are larger than the energy barriers, which facilitates the chemisorption. The results show that carbon dioxide adsorbed on the Al12X(±z) clusters can be tuned by controllable X doping and the total number of valence electrons and suggest the potential application of Al12X(±z) nanostructures for carbon dioxide capture and activation.

  3. Photon Irradiation Response on Ge and Al-Doped SiO2 Optical Fibres

    NASA Astrophysics Data System (ADS)

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Ali, Hassan; Asni, Hazila

    2010-07-01

    Recently, research groups have reported a number of radiation effects on the applications of SiO2 optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO2 optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  4. [Synthesis and characterization of chromium doped Y3Al5O12 compound pigment].

    PubMed

    Yue, Shi-Juan; Su, Xiao; Jiang, Han-Jie; Liu, Shao-Xuan; Hong, You-Li; Zhang, Kai; Huang, Wan-Xias; Xiong, Zu-Jiang; Zhao, Ying; Liu, Cui-Ge; Wei, Yong-Ju; Meng, Tao; Xu, Yi-Zhuang; Wu, Jin-Guang

    2012-09-01

    The authors synthesized a new kind of green pigment via co-precipitation method by doping Y3Al5O12 with Cr+. The size of the pigment particles is around 200 nm as observed under scanning electron microscope. XRD results demonstrate that the pigment crystalline form of the pigment is yttrium alluminium garnet. UV-Vis spectra were used to investigate the coordination states and transition behavior of the doping ions. In addition, the colour feature was measured by CIE L* a* b* chroma value. The pigment was blended with polypropylene and then polypropylene fiber was produced using the polypropelene-pigment composite via molten spinning process. The distribution of the pigment particles in the polypropylene fibers was characterized by Xray computed tomography (CT) technique on the Beijing synchrotron radiation facility. The result states that the composite oxide pigment particles are homogeneously dispersed in the polypropylene fibers. The pigments are stable, non-toxic to the environment, and may be applied in non-aqueous dyeing to reduce waste water emitted by textile dyeing and printing industry.

  5. Photon Irradiation Response on Ge and Al-Doped SiO{sub 2} Optical Fibres

    SciTech Connect

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Asni, Hazila; Ali, Hassan

    2010-07-07

    Recently, research groups have reported a number of radiation effects on the applications of SiO{sub 2} optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO{sub 2} optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  6. Study of Mössbauer and magnetic properties of Al3+ ions doped superparamagnetic nano ferrites

    NASA Astrophysics Data System (ADS)

    Verma, Satish; Chand, Jagdish; Sarveena, Singh, M.

    2015-06-01

    Nanocrystalline Al3+ ions doped Mg0.2Mn0.5Ni0.3AlyFe2-yO4 compositions, where y=0.0 and 0.10 have been synthesized by citrate precursor method. Crystal structure and magnetic properties have been investigated at room temperature by means of X-ray diffraction, TEM, LCR meter, VSM and Mössbauer spectroscopy. Particle size and lattice parameter has been found to decrease as non-magnetic Al content increased. Relative loss factor has very low value in range of 10-6-10-5 which is three orders of magnitude less than samples prepared by conventional method. The Mössbauer spectroscopy results shows superparamagnetism. The isomer shift corresponding to Fe3+ ions do not show any significant variation which indicates that replacement of Fe3+ ions do not affect significantly the d-electrons density which in turn affects the s-electrons density around Fe3+ nuclei. The nuclear hyperfine magnetic fields have been found to decrease at A-site and B-site with increasing substitution of Al3+ ions in Mg-Mn-Ni ferrite.

  7. Study of Blue Photoluminescence in Titanium Doped Al2O3 Single-Crystals

    NASA Astrophysics Data System (ADS)

    Daimon, T.; Naruse, H.; Watanabe, H.; Oda, H.; Yamanaka, A.

    2011-05-01

    Optical properties have been investigated in titanium doped sapphire, prepared under oxidized condition. Charge-transfer transitions to 3d states of tetravalent Ti4+ from 2p ones of O2- are found to be located below the fundamental absorption edge of Al2O3. The photo-excitation for this band leads to the intense blue emission, the spectrum of which is quite different from the luminescence of the d-d transitions in trivalent Ti3+. The UV-irradiation also leads to an absorption peak below the charge-transfer band, resulted from that the photo-excited electrons in part form color centers. The post-annealing at higher temperatures above 300°C completely destroys the color centers. The blue photoluminescence is found to be greatly suppressed by the UV-irradiation and is recovered by the post-annealing. This fact indicates that the color centers prevent the blue emission.

  8. Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs

    SciTech Connect

    Globisch, B. Dietz, R. J. B.; Stanze, D.; Göbel, T.; Schell, M.

    2014-04-28

    The electron and hole dynamics in low-temperature-grown InGaAs/InAlAs multiple quantum well structures are studied by optical pump-probe transmission measurements for Beryllium (Be) doping levels between 3 × 10{sup 17} cm{sup −3} and 4 × 10{sup 18} cm{sup −3}. We investigate electron dynamics in the limit cases of unsaturated and completely saturated electron trapping. By expanding a rate equation model in these limits, the details of carrier dynamics are revealed. Electrons are trapped by ionized arsenic antisites, whereas recombination occurs between trapped electrons and holes trapped by negatively charged Be dopants.

  9. Sputter deposition of Al-doped ZnO films with various incident angles

    SciTech Connect

    Sato, Yasushi; Yanagisawa, Kei; Oka, Nobuto; Nakamura, Shin-ichi; Shigesato, Yuzo

    2009-09-15

    Al-doped ZnO (AZO) films were sputter deposited on glass substrates heated at 200 degree sign C under incident angles of sputtered particles at 0 degree sign (incidence normal to substrate), 20 deg., 40 deg., 60 deg., and 80 deg. In the case of normal incidence, x-ray diffraction pole figures show a strong [001] preferred orientation normal to the film surface. In contrast, in the case wherein the incident angles were higher than 60 degree sign , the [001] orientation inclined by 25 deg. - 35 deg. toward the direction of sputtered particles. Transmission electron microscopy revealed that the tilt angle of the [001] orientation increased with increasing angle of the incident sputtered particles, whereas the columnar structure did not show any sign of inclination with respect to the substrate plane.

  10. Sputtering deposition of Al-doped zinc oxide thin films using mixed powder targets

    NASA Astrophysics Data System (ADS)

    Ohshima, Tamiko; Maeda, Takashi; Tanaka, Yuki; Kawasaki, Hiroharu; Yagyu, Yoshihito; Ihara, Takeshi; Suda, Yoshiaki

    2016-01-01

    Sputtering deposition generally uses high-density bulk targets. Such a fabrication process has various problems including deterioration of the material during heating and difficulty in mixing a large number of materials in precise proportions. However, these problems can be solved by using a powder target. In this study, we prepared Al-doped ZnO (AZO) as transparent conductive thin films by radio-frequency magnetron sputtering with powder and bulk targets. Both the powder and bulk targets formed crystalline structures. The ZnO (002) peak was observed in the X-ray diffraction measurements. The mean transparency and resistivity of the films prepared with the powder target were 82% and 0.548 Ω · cm, respectively. The deposition rate with the powder target was lower than that with the bulk target.

  11. Plasma reflection from highly Si-doped InGaAs/AlAsSb quantum wells

    SciTech Connect

    Gozu, Shin-ichiro; Mozume, Teruo; Ishikawa, Hiroshi

    2010-01-04

    In this study, we have evaluated the plasma reflection from highly Si-doped In{sub 0.53}Ga{sub 0.47}As/AlAs{sub 0.56}Sb{sub 0.44} multiple quantum wells (MQWs) in order to understand the plasma effect in quantum wells. Plasma resonances were clearly observed in these MQWs for carrier densities larger than 7.5x10{sup 18} /cm{sup 3}. By comparing the experimentally obtained wavenumbers of these plasma resonances with those obtained from a theory and an empirical fit of bulk InGaAs which includes the effect of conduction band non-parabolicity, the plasma resonances of MQWs were found to match well with the empirical fit. This implied that the conduction band non-parabolicity played a role in modifying the plasma resonance, as in bulk InGaAs.

  12. Laser site-selective spectroscopy of Eu3+ ions doped Y4Al2O9

    NASA Astrophysics Data System (ADS)

    Kaczkan, M.; Turczyński, S.; Pawlak, D. A.; Wencka, M.; Malinowski, M.

    2016-08-01

    Eu3+ doped Y4Al2O9 (YAM) crystals were prepared by the micro-pulling down method. Optical-absorption and laser-selective-excitation techniques along with the luminescence decays have been used to reveal that Eu3+ ions in YAM occupy three distinct sites, which were characterized and discussed. The Stark energy levels of Eu3+ at three different sites in YAM were assigned from selectively excited emission spectra at 10 K. The intensity ratio of forced electric dipole (5D0 → 7F2) and magnetic dipole (5D0 → 7F1) transitions was discussed in order to obtain information about the degree of asymmetry of the luminescent centers. These results were confirmed by the luminescence lifetime measurements. The temperature dependent photo-luminescence spectra indicated that there is no energy transfer between different sites in the 10-300 K range.

  13. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    PubMed

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  14. Enhanced Photoluminescence and Raman Properties of Al-Doped ZnO Nanostructures Prepared Using Thermal Chemical Vapor Deposition of Methanol Assisted with Heated Brass

    PubMed Central

    Thandavan, Tamil Many K.; Gani, Siti Meriam Abdul; San Wong, Chiow; Md. Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs. PMID:25756598

  15. Improved photovoltaic performance of inverted polymer solar cells through a sol-gel processed Al-doped ZnO electron extraction layer.

    PubMed

    Kim, Jun Young; Cho, Eunae; Kim, Jaehoon; Shin, Hyeonwoo; Roh, Jeongkyun; Thambidurai, Mariyappan; Kang, Chan-mo; Song, Hyung-Jun; Kim, SeongMin; Kim, Hyeok; Lee, Changhee

    2015-09-21

    We demonstrate that nanocrystalline Al-doped zinc oxide (n-AZO) thin film used as an electron-extraction layer can significantly enhance the performance of inverted polymer solar cells based on the bulk heterojunction of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) and [6,6]-phenyl C(71)-butyric acid methyl ester (PC(70)BM). A synergistic study with both simulation and experiment on n-AZO was carried out to offer a rational guidance for the efficiency improvement. As a result, An n-AZO film with an average grain size of 13 to 22 nm was prepared by a sol-gel spin-coating method, and a minimum resistivity of 2.1 × 10(-3) Ω·cm was obtained for an Al-doping concentration of 5.83 at.%. When an n-AZO film with a 5.83 at.% Al concentration was inserted between the ITO electrode and the active layer (PCDTBT:PC(70)BM), the power conversion efficiency increased from 3.7 to 5.6%.

  16. Comparison of heterojunction device parameters for pure and doped ZnO thin films with IIIA (Al or In) elements grown on silicon at room ambient

    NASA Astrophysics Data System (ADS)

    Kaya, Ahmet; Cansizoglu, Hilal; Mamtaz, Hasina H.; Mayet, Ahmed S.; Islam, M. Saif

    2016-09-01

    In this work, pure and IIIA element doped ZnO thin films were grown on p type silicon (Si) with (100) orientated surface by sol-gel method, and were characterized for comparing their electrical characteristics. The heterojunction parameters were obtained from the current-voltage (I-V) and capacitance-voltage (C-V) characteristics at room temperature. The ideality factor (n), saturation current (Io) and junction resistance of ZnO/p-Si heterojunction for both pure and doped (with Al or In) cases were determined by using different methods at room ambient. Other electrical parameters such as Fermi energy level (EF), barrier height (ΦB), acceptor concentration (Na), built-in potential (Φi) and voltage dependence of surface states (Nss) profile were obtained from the C-V measurements. The results reveal that doping ZnO with IIIA (Al or In) elements to fabricate n-ZnO/p-Si heterojunction can result in high performance diode characteristics.

  17. The ab initio calculations of the doping Zr's influence on the electronic structure of AlCo2Ti

    NASA Astrophysics Data System (ADS)

    Fu, Hongzhi; Peng, Feng; Cheng, Dong; Gao, Tao; Cheng, Xinlu; Yang, Xiangdong

    2007-08-01

    The electronic structures of the ternary (Hume Rothery) L21-phase compound AlCo2Ti are calculated by first-principles using full potential linearized augmented plane wave (FLAPW) method with the generalized gradient approximation (GGA). The ab initio results are analyzed with a simplified model for Al-based compounds containing transition metal (TM) atoms. The results show that the total DOS depends strongly on the positions of TM atoms, and the TM d DOS plays a crucial role in hybridization with other element valence electrons. However, the Al 3s states are repelled far away from the Fermi energy in studied sample, and the Al 3d states are far more extended-like in the character than the d states. Furthermore, the total DOSs are modulated by Al 3p states and the Al 3p states are more sensitive than d states to change in the electronic interactions. Then, the Al 3p is also important for the ternary stability of the intermetallic compound. The Co Ti interaction becomes stronger by the doping element Zr in the Al4Co8Ti3Zr structure. Especially, the doping Al4Co8Ti3Zr alloy has a larger value DOS at the Fermi level and makes the total DOS gap smaller than the AlCo2Ti.

  18. Yb doping concentration and temperature influence on Yb:LuAG thermal lensing

    NASA Astrophysics Data System (ADS)

    Veselský, Karel; Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2016-03-01

    The aim of this study was to investigate whether refractive power of thermal lens for Yb:LuAG crystal at cryogenic temperatures depends on Yb doping concentration which has not been examined yet. The three measured Yb:LuAG laser rods samples (length of 3 mm, diameter 3 mm, AR @ 0.94 μm and 1.03 μm, doping concentration 5.4, 8.4 and 16.6 at. % Yb/Lu) were mounted in the temperature controlled copper holder of the liquid nitrogen cryostat. Samples were longitudinally pumped with fiber coupled CW laser diode at 0.930 μm with the focal point 0.4 mm in diameter. The 38 mm long semi-hemispherical laser resonator consisted of a flat pump mirror (HR @ 1.03 μm and HT 0.94 μm) and curved output coupler (r=500 mm) of reflectivity 94 % @ 1.06 μm. The refractive power of thermal lens was estimated indirectly by measuring of change in the position of focused laser beam focal point. The measurement was performed for constant absorbed power of 10 W in temperature range from 80 up to 240 K. It was observed that cryogenic cooling caused reduction of thermal lens power, which increased linearly with increasing temperature. For temperatures from 80 to 160 K refractive power was identical for all concentration. For higher temperature the refractive power of thermal lens increased with increasing Yb3+ concentration. Presented study shows that application of cryogenic temperature leads to reduction of thermal effect even for high dopant concentration in Yb:LuAG crystal. This is essential for reaching of high output power while maintaining high beam quality.

  19. Effect of gallium concentrations on the morphologies, structural and optical properties of Ga-doped ZnO nanostructures.

    PubMed

    Algarni, H; El-Gomati, M M; Al-Assiri, M S

    2014-07-01

    The effect of gallium ion concentrations (0.5 and 2%) on the morphologies, structural and optical properties of Ga-doped ZnO nanostructures are presented. Ga-doped ZnO nanostructures were synthesized on silicon substrates by simple thermal evaporation process using metallic zinc and Ga powders in the presence of oxygen. Interestingly, it was observed that Ga-ions incorporation in ZnO nanomaterials play an important role on the growth kinetics and hence on the morphologies of as-grown Ga-doped ZnO nanostructures. It was seen that at low Ga-concentration, needle-shaped Ga-doped ZnO nanostructures are formed, presumably by subsequent stacking of hexagonal plates. However, when increasing the Ga-concentration, multipods of Ga-doped ZnO were grown. In addition to the morphologies, incorporating Ga-ions into ZnO also affect the room-temperature photoluminescence properties. Therefore, at lower Ga-ion concentration, an intense UV emission was observed while at high Ga-concentration a deep level emission was seen in the room-temperature photoluminescence spectra. This research demonstrates that by controlling the Ga-ion concentration the morphologies and optical properties of ZnO nanomaterials can be tailored.

  20. Fabrication and laser performance of Yb3+/Al3+ co-doped photonic crystal fiber synthesized by plasma nonchemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Xia, Changming; Zhou, Guiyao; Liu, Jiantao; Wang, Chao; Han, Ying; Zhang, Wei; Yuan, Jinhui

    2015-10-01

    In this paper, the bulk Yb3+/Al3+ co-doped silica glass with 1.3 Yb2O3-2.5Al2O3-96.2SiO2 (wt%) are synthesized by plasma nonchemical vapor deposition method combining solution doping technology, where the inductively coupled plasma is used as the heat source. The influence of different O2/N2 ratios on the fluorescence properties of Yb3+/Al3+ co-doped silica glass are investigated. The large mode area photonic crystal fiber (PCF) is fabricated by using the bulk Yb3+/Al3+ co-doped silica glass as fiber core. The laser performance of Yb3+/Al3+ co-doped photonic crystal fiber is studied.

  1. Pressure-dependent DLTS (Deep Level Transient Spectroscopy) experiments on Si-doped AlGaAs

    NASA Astrophysics Data System (ADS)

    Farmer, J. W.; Hjalmarson, H. P.; Samara, G. A.

    Pressure dependent Deep Level Transient Spectroscopy (DLTS) experiments are used to measure the properties of the deep donors (DX-centers) responsible for the persistent photoconductivity effect in Si-doped AlGaAs. The sample dependence of the DLTS spectra shows evidence for a defect complex involved in the DX-center.

  2. TL and OSL studies of carbon doped magnesium aluminate (MgAl2O4:C)

    NASA Astrophysics Data System (ADS)

    Raj, Sanu S.; Mishra, D. R.; Soni, Anuj; Grover, V.; Polymeris, G. S.; Muthe, K. P.; Jha, S. K.; Tyagi, A. K.

    2016-10-01

    The MgAl2O4:C has been synthesized by using two different methods by electron gun and vacuum assisted melting of MgAl2O4 in presence of graphite. The MgAl2O4:C phosphor thus developed by these two different methods have similar types of the TL/OSL defects with multiple overlapping TL glow peaks from 100 °C to 400 °C. The Computerized Curve De-convolution Analysis (CCDA) has been used to measure TL parameters such as thermal trap depth, frequency factor and order of kinetic associated with charge transfer process in TL phenomenon. The investigated TL/OSL results show that these two methods of incorporating carbon in MgAl2O4 have generated closely resemble the defects of similar types in MgAl2O4:C lattice. However, the MgAl2O4:C synthesized by electron gun shows relatively larger concentration of the TL/OSL defects as compared to MgAl2O4:C synthesized using vacuum assisted melting method. The photo-ionization cross-section (PIC) associated with fastest OSL component of MgAl2O4: C is found to be ∼ 0.5 times than that of fastest OSL component of commercially available dosimetric grade α-Al2O3:C. The MgAl2O4:C thus developed shows good dynamic OSL dose linearity from few mGy to 1 Gy. This work reveals that MgAl2O4:C could be developed as potential tissue equivalent OSL / TL material.

  3. Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3Al2Ga3O12 crystals

    NASA Astrophysics Data System (ADS)

    Lucchini, M. T.; Babin, V.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-04-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd3Al2Ga3O12 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd3Al2Ga3O12 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd3Al2Ga3O12 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  4. Effect of variation in indium concentration on the photosensitivity of chlorine doped In2S3 thin films

    NASA Astrophysics Data System (ADS)

    Cherian, Angel Susan; Kartha, C. Sudha; Vijayakumar, K. P.

    2014-01-01

    Consequence of variation in Indium concentration in chlorine doped In2S3 thin films deposited by spray pyrolysis technique was studied. Chlorine was incorporated in the spray solution, using HCl and Indium concentration was varied by adjusting In/S ratio Interestingly, the photo response of all chlorine doped samples augmented compared to pristine samples; but the highest photosensitivity value of ˜2300 was obtained only when 36ml 0.5M HCl was added to the solution of In2S3 having In/S=2/8. It was also observed that samples with high photosensitivity possess higher band gap and variation in sub band gap absoption levels were observed with increase in Indium concentration. The present study proved that concentration of Indium plays an important role in controlling the crystallinity and photosensitivity of chlorine doped samples.

  5. Structural investigations on Nd-doped silica nanocomposites: effect of sintering temperature and dopant concentration

    NASA Astrophysics Data System (ADS)

    Narang, Surbhi; Rani, Saruchi; Aghamkar, Praveen; Kumar, Sushil

    2014-08-01

    Neodymium-doped silica nanocomposites were prepared from an acid-catalysed sol-gel solution followed by heat treatment. The structural and microstructural properties of the prepared samples as a function of sintering temperature and Nd concentration are reported. Fourier transform infrared spectra show that phase separation occurs during heat treatment. The presence of Nd2O3 and α-Nd2Si2O7 phases in the samples was established by X-ray diffraction (XRD), and transmission electron microscopy (TEM) micrographs revealed the microstructure of the nanocomposites. From XRD patterns, the crystallite size was determined using the Debye-Scherrer formula, while the particle size was estimated from TEM micrographs. The results suggest that sintering at high temperature enhances the crystallinity and density of Nd2O3-SiO2 nanocomposites, while the high concentration of neodymium prevents the crystallization of SiO2.

  6. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    SciTech Connect

    Podhorodecki, A.; Banski, M.; Misiewicz, J.; Lecerf, C.; Marie, P.; Cardin, J.; Portier, X.

    2010-09-15

    Gallium oxide and more particularly {beta}-Ga{sub 2}O{sub 3} matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samples that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.

  7. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Podhorodecki, A.; Banski, M.; Misiewicz, J.; Lecerf, C.; Marie, P.; Cardin, J.; Portier, X.

    2010-09-01

    Gallium oxide and more particularly β-Ga2O3 matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samples that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.

  8. Composition Optimization of Al-DOPING Lithium Manganese Oxide from Al2O3-Li2CO3-MnO2 Ternary System

    NASA Astrophysics Data System (ADS)

    He, Gang; Sun, Xinyan; Hong, Jianhe; He, Mingzhong

    2013-07-01

    In order to synthesize eutectic compound of Al doping lithium manganese oxide which can be used as cathode material in lithium battery, using γ-Al2O3, Li2CO3 and MnO2 as starting raw materials, the composition optimization research work has been done by the solid state synthesis method. A limited composition range was found in Al2O3-Li2CO3-MnO2 ternary system, in which the synthesized Al doping lithium manganese oxides have single spinel structure and good electrochemical performance. The results showed that the LiAl0.04Mn1.96O4 material presented better charge-discharge cycling behavior than pure LiMn2O4, and showed the best electrochemistry property among the compounds in the Al2O3-Li2O-Mn2O3 ternary system. LiAl0.04Mn1.96O4 still kept perfect cubic structure, but LiMn2O4 kept the coexistence of the cubic and tetragonal phases after 50 charge-discharge cycles.

  9. Optical properties analysis of Ta-doped TiO{sub 2} thin films on LaAlO{sub 3} substrates

    SciTech Connect

    Nurfani, Eka; Sutjahja, Inge M.; Rusydi, Andrivo; Darma, Yudi

    2015-09-30

    We study optical properties of Ta-doped TiO{sub 2} thin film on LaAlO{sub 3} substrate using spectroscopy ellipsometry (SE) analysis at energy range of 0.5 – 6.5 eV. Room temperature SE data for Ψ (amplitude ratio) and Δ (phase difference) between p- and s- polarized light waves are taken with multiple incident angles at several spots on the samples. Here, absorption coefficient has been extracted from SE measurements at photon incident angle of 70° for different Ta concentration (0.01, 0.4, and 5 at. %). Multilayer modelling is performed which takes into account reflections at each interface through Fresnel coefficients to obtain reasonably well the fitting of Ψ and Δ data simultaneously. As the results, we estimate that film thickness increases by increasing Ta concentration accompanied by the formation of a new electronic structure. By increasing Ta impurities, the blueshift of absorption coefficient (α) peaks is observable. This result indicates that TiO{sub 2} thin film becomes optically resistive by introducing Ta doping. Schematic model of interband transition inTiO{sub 2}:Ta will be proposed base on obtained optical properties. This study enables us to predict the role of Ta doping on the electronic and optical band structures of TiO{sub 2} thin film.

  10. Measurements of radon gas concentrations in dwellings of Al-Madinah Al-Munawarah province in Saudi Arabia.

    PubMed

    Mohamed, R I; Alfull, Z Z; Dawood, N D

    2014-01-01

    Indoor radon concentration levels in a large number of dwellings in Al-Madinah Al-Munawarah Province have been measured. Al-Madinah Al-Munawarah is in the western region of Saudi Arabia. It is the second holiest city in Islam after Mecca, because it is the burial place of the Islamic Prophet Muhammad. The city was divided into four regions: western (contains nine sites), eastern (contains six sites), northern (contains nine sites) and southern (contains five sites). Radon gas concentration was measured using the closed chamber technique employing 2×2 cm(2) sheets of CR-39 solid-state nuclear track detectors. The detectors were kept for a period of 5 to 6 months from September 2010 to February 2011 in order to expose to radon gas. The results of the survey in the western and eastern sites showed that the overall minimum, maximum and average radon concentration levels were 20±1.6, 27±3.2 and 21±2.5 Bq m(-3), respectively. The lowest average radon concentration (20±1.6 Bq m(-3)) was found in Al Anabes and Al Suqya in the western region and Bani Dhafar in the eastern region, while the highest average concentration (27±3.2 Bq m(-3)) was found in Teeyba in the western region and Al 'Aridh in the eastern region, with an average of 21±2.5 Bq m(-3) in the western and eastern sites of Al-Madinah Al-Munawarah. Also in the northern region, the minimum radon concentration was 20±1.6 Bq m(-3) in Oyun, while the maximum was 42±1.6 Bq m(-3) in Sayyed al Shuhadd and Hai Nasr. In the southern region, the minimum radon concentration was 25±2.6 Bq m(-3) at Hai Al Hejrah, while the maximum value was 37±2.6 Bq m(-3) at Al Awali and Dawadia. The average radon concentration was 26±2.5 Bq m(-3) for Al-Madinah Al-Munawarah (western, eastern, northern and southern regions). The corresponding annual effective dose E (mSv y(-1)) to public from (222)Rn and its progeny was estimated to be 0.66 mSv y(-1) as an average value for Al-Madinah Al-Munawarah. The authors concluded that all

  11. Spark-source mass spectrometric assessment of silicon concentrations in silicon-doped gallium arsenide single crystals.

    PubMed

    Wiedemann, B; Meyer, J D; Jockel, D; Freyhardt, H C; Birkmann, B; Müller, G

    2001-07-01

    The spark-source mass spectrometric assessment of silicon concentrations in silicon-doped vertical-gradient-freeze gallium arsenide is presented. The silicon concentrations determined are compared with the charge-carrier densities measured by means of the Hall effect with van der Pauw symmetry along the axis of a single crystal.

  12. Identification of photoluminescence bands in AlGaAs/InGaAs/GaAs PHEMT heterostructures with donor-acceptor-doped barriers

    SciTech Connect

    Gulyaev, D. V. Zhuravlev, K. S.; Bakarov, A. K.; Toropov, A. I.

    2015-02-15

    The photoluminescence of AlGaAs/InGaAs/GaAs pseudomorphic high-electron mobility transistor heterostructures with donor-acceptor-doped AlGaAs barriers is studied. It is found that the introduction of additional p{sup +}-doped AlGaAs layers into the design brings about the appearance of new bands in the photoluminescence spectra. These bands are identified as resulting from transitions (i) in donor-acceptor pairs in doped AlGaAs layers and (ii) between the conduction subband and acceptor levels in the undoped InGaAs quantum well.

  13. Effects of annealing pressure and Ar+ sputtering cleaning on Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Wang, Jiwei; Mei, Yong; Lu, Xuemei; Fan, Xiaoxing; Kang, Dawei; Xu, Panfeng; Tan, Tianya

    2016-11-01

    Post-treatments of Al-doped ZnO films fabricated by sol-gel method were studied in condition of annealing in air, vacuum and protective ambient, as well as the follow-up Ar+ sputtering cleaning. The effect of annealing pressure on resistivity of AZO films was investigated from 105 to 10-4 Pa, where the resistivity decreased four orders of magnitude as the pressure decreased and approached to its minimum at 10 Pa. It was observed that the main decreasing of resistivity occurred in a very narrow range of middle vacuum (between 100 and 10 Pa) and high vacuum was dispensable. The XRD and XPS characterizations demonstrated that the radical increasing of oxygen vacancy, Zn interstitial and substitution of Al3+ for Zn2+ under middle vacuum were responsible for the significant enhancement of conductivity. The follow-up Ar+ sputtering cleaning can further decrease the resistivity through removing the chemisorbed oxygen on film surface and grain boundaries, meanwhile fulfil the surface texture process, and thus improve both electrical and optical performances for applications.

  14. Optical properties of Eu and Er doped LaAlO{sub 3} nanopowders prepared by low-temperature method

    SciTech Connect

    Maczka, Miroslaw; Bednarkiewicz, Artur; Mendoza-Mendoza, Esmeralda; Fuentes, Antonio F.; Kepinski, Leszek

    2012-10-15

    LaAlO{sub 3} nanoparticles doped with Eu{sup 3+} and Er{sup 3+} ions were synthesized at 500 Degree-Sign C in a two-step process by combining a mechanically induced metathesis reaction and molten salt synthesis. The obtained samples were characterized by XRD and TEM methods, which showed that the mean crystallite size is {approx}45 and {approx}57 nm, respectively. Furthermore, excitation and luminescence spectra as well as decay profiles were measured for the synthesized samples. These studies suggested that the Eu{sup 3+} ions are located at three different local sites without inversion symmetry. Our studies also showed up-conversion emission in the samples doped with Er{sup 3+} ions. The up-conversion mechanism has been discussed. - Graphical abstract: The example up-conversion spectra of 1% and 2% Er{sup 3+}-doped samples under 980 nm photoexcitation (a) and energy transfer scheme (b) in Er{sup 3+}-doped LaAlO{sub 3} nanopowders. Highlights: Black-Right-Pointing-Pointer Er and Eu doped LaAlO{sub 3} samples were synthesized at remarkably low temperatures. Black-Right-Pointing-Pointer The mean crystallite size of the obtained samples is 45-57 nm. Black-Right-Pointing-Pointer Luminescence and excitation spectra as well as decay profiles were measured. Black-Right-Pointing-Pointer Eu{sup 3+} ions are located at three different local sites without inversion symmetry. Black-Right-Pointing-Pointer We discuss mechanism of the up-conversion mechanism in Er{sup 3+} doped samples.

  15. [Influence of erbium ion concentration on Judd-Ofelt parameters of Er3+ -doped tellurite glass].

    PubMed

    Zhou, Gang; Dai, Shi-xun; Yu, Chun-lei; Zhang, Jun-jie; Hu, Li-li; Jiang, Zhong-hong

    2006-03-01

    Er3+ -doped tellurite glasses with four different concentrations were fabricated, and the oscillator strength of Er3+ in the tellurite glasses were calculated through the absorption spectra of the glasses. The Judd-Ofelt intensity parameter omega i, spontaneous transition probability A, fluorescence branching ratio beta, and radiative lifetime tau rad of Er3+ were calculated on the basis of Judd-Ofelt theory, and the effect of the erbium ion concentration on the above optical parameters was also discussed. The fluorescence spectra of Er3+: (4)I(13/2)--> (4)I(15/2) transition and the lifetime of Er3+: (4)I(13/2) level of the samples were measured. The stimulated emission cross-section of (4)I(13/2)--> (4)I(15/2) transition of the samples was finally calculated by using McCumber theory. The results show that with the increase in the Er3+ concentration, the oscillator strength and spontaneous transition probability A of Er3+ increase, while the fluorescence branching ratio beta of Er3+ shows little difference. The stimulated emission cross-section of Er3+: (4)I(13/2)--> (4)I(15/2) transition of the samples changes slightly with the increase in the Er3+ concentration. All the fluorescence effective line widths for the four different Er3+ concentration samples are nearly 50 nm.

  16. Effect of Al and Fe doping in ZnO on magnetic and magneto-transport properties

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Deepika; Tripathi, Malvika; Vaibhav, Pratyush; Kumar, Aman; Kumar, Ritesh; Choudhary, R. J.; Phase, D. M.

    2016-12-01

    The structural, magnetic and magneto-transport of undoped ZnO, Zn0.97Al0.03O, Zn0.95Fe0.05O and Zn0.92Al0.03Fe0.05O thin films grown on Si(100) substrate using pulsed laser deposition were investigated. The single phase nature of the films is confirmed by X-ray diffraction and Raman spectroscopy measurements. The possibility of Fe metal cluster in Fe doped/co-doped films is ruled out by Fe 2p core level photoelectron spectra. From O 1s core level spectra it is observed that oxygen vacancy is present in all the films. The undoped ZnO film shows magnetic ordering below ∼175 K, whereas Fe doped/codoped samples show magnetic ordering even at 300 K. The Al doped sample reveals paramagnetic behavior. The magneto-transport measurements suggest that the mobile carriers undergo exchange interaction with local magnetic moments.

  17. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    SciTech Connect

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T.; Martinez, Julio A.

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  18. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    DOE PAGES

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; ...

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN coremore » of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.« less

  19. Sol-gel synthesis and characterization of undoped and Al-doped ZnO thin films for memristive application

    NASA Astrophysics Data System (ADS)

    Ayana, Dawit G.; Prusakova, Valentina; Collini, Cristian; Nardi, Marco V.; Tatti, Roberta; Bortolotti, Mauro; Lorenzelli, Leandro; Chiappini, Andrea; Chiasera, Alessandro; Ferrari, Maurizio; Lunelli, Lorenzo; Dirè, Sandra

    2016-11-01

    The Sol-gel route is a versatile method to fabricate multi-layer, dense and homogeneous ZnO thin films with a controlled thickness and defects for a memristive application. In this work, sol-gel derived multi-layer undoped and Al-doped ZnO thin films were prepared by a spin-coating technique on SiO2/Ti/Pt and silica glass substrates. The effect of both Al doping and curing conditions on the structural and morphological features of ZnO films was investigated by complementary techniques, including electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction analysis. Electrical measurements were performed on SiO2/Ti/Pt/ZnO/Pt(dishes) and SiO2/Ti/Pt/ZnO(Al)/Pt(dishes) fabricated memristive cells and preliminary current-voltage curves were acquired.

  20. Concentration dependent luminescence properties of Dy3+ doped lead free zinc phosphate glasses for visible applications

    NASA Astrophysics Data System (ADS)

    Reddy Prasad, V.; Babu, S.; Ratnakaram, Y. C.

    2016-10-01

    Dysprosium (Dy3+) doped lead free zinc phosphate glasses with chemical compositions (60 - x) NH4H2PO4 + 20ZnO + 10BaF2 + 10NaF + xDy2O3 (where x = 0.5, 1.0, 1.5, 2.0 mol%) have been prepared by melt quenching technique. The functional groups of vibrational bands have been assigned and clearly elucidated by FTIR and Raman spectral profiles for all these glass samples. Judd-Ofelt (J-O) intensity parameters (Ωλ: λ = 2, 4, 6) have been obtained from spectral intensities of different absorption bands of Dy3+ doped glasses. Radiative properties such as radiative transition probabilities ( A R ), radiative lifetimes ( τ R ), branching ratios ( β R ) and integrated absorption cross-sections ( Σ) for different excited states are calculated by using J-O parameters. Luminescence spectra exhibit three emission bands (from 4F9/2 level to 6H15/2, 6H13/2 and 6H11/2) for all the concentrations of Dy3+ ions before and after gamma irradiation. Various luminescence properties have been studied by varying the Dy3+ concentration for the three spectral profiles. Fluorescence decay curves of 4F9/2 level have been recorded. The energy transfer mechanism that leads to quenching of 4F9/2 state lifetime has been discussed by the variation of Dy3+ concentration. These glasses are expected to be useful for yellow luminescent materials.

  1. Distinguishing impurity concentrations in GaAs and AlGaAs using very shallow undoped heterostructures

    NASA Astrophysics Data System (ADS)

    Mak, W. Y.; Das Gupta, K.; Beere, H. E.; Farrer, I.; Sfigakis, F.; Ritchie, D. A.

    2010-12-01

    We have developed a method of fabricating very shallow, gateable, undoped two-dimensional electron gases (2DEG) and making very low resistivity contacts to these. We studied the evolution of mobility as a function of the depth of the 2DEG (from 310 to 30 nm). We extract quantitative information about the background impurity concentrations in GaAs and AlGaAs, the interface roughness, and the charge in the surface states. Surface charge sets an intrinsic limit to the mobility of very shallow 2DEGs. It is probably impossible to fabricate such shallow high-mobility 2DEGs using modulation doping due to the need to accommodate a spacer layer.

  2. Surfactant assisted synthesis of aluminum doped SrFe10Al2O19 hexagonal ferrite

    NASA Astrophysics Data System (ADS)

    Neupane, D.; Wang, L.; Mishra, S. R.; Poudyal, N.; Liu, J. P.

    2015-05-01

    M-type aluminum doped SrFe10Al2O19 were synthesized via co-precipitation method using cetyltrimethyl ammonium bromide (CTAB) as a surfactant. The effects of CTAB content (x = 0, 1, 3, and 9 wt. %) on the formation, structure, morphology, magnetic, and dielectric properties of the SrFe10Al2O19 nanoparticles were investigated. X-ray diffraction results show elimination of α-Fe2O3 phase from samples prepared using CTAB. Morphological changes including grain and crystallite size was noticed with the increase in the CTAB content. With the increase in CTAB, powder particles grew in hexagonal plates. A linear increase in saturation magnetization, Ms, with CTAB content was observed from 56.5 emu/g at 0% CTAB to 66.4 emu/g at 9% CTAB. This is a net increase of 17.5% in Ms. The coercivity (Hc ˜ 5700 Oe) of sample reached maximum at 1% CTAB and reduced with further CTAB content reaching to a minimum value of 4488 Oe at 9% CTAB. A slight increase in Curie temperature (735 K) was also observed for samples synthesized using CTAB as compared to that of sample prepared in the absence of CTAB (729 K). Samples synthesized with CTAB show higher dielectric constants as compared to samples prepared without CTAB, while dielectric constant for all samples show decrease in value with the increase in frequency. These results imply that CTAB may act as a crystallization master, controlling the nucleation and growth of SrFe10Al2O19 crystal. The study delineates the scope of improving magnetic properties of ferrites without substitution of metal ions.

  3. Anisotropy of solid Si-liquid (Al,Si) interfacial tension in the binary and Sr-doped Al-Si eutectic alloy

    NASA Astrophysics Data System (ADS)

    Sens, H.; Eustathopoulos, N.; Camel, D.

    1989-12-01

    The atomic structure of interfaces between solid Si and liquid Al-Si alloys with or without Sr doping is derived from measurements of the orientation dependence of the interfacial tension at 873 K. This involves analysing the shape of small liquid droplets inside silicon grains. The results are discussed on the basis of simple broken-bond models and the periodic bond chain concept.

  4. Solar-blind Al x Ga1- x N ( x > 0.45) p- i- n photodiodes with a polarization- p-doped emitter

    NASA Astrophysics Data System (ADS)

    Kuznetsova, N. V.; Nechaev, D. V.; Shmidt, N. M.; Karpov, S. Yu.; Rzheutskii, N. V.; Zemlyakov, V. E.; Kaibyshev, V. Kh.; Kazantsev, D. Yu.; Troshkov, S. I.; Egorkin, V. I.; Ber, B. Ya.; Lutsenko, E. V.; Ivanov, S. V.; Jmerik, V. N.

    2016-06-01

    Polarization-induced p-type doping of AlGaN layers with high aluminum content during plasmaassisted MBE growth has been studied. It is shown that a gradient of the AlN molar fraction in AlGaN (composition gradient) on a level of 0.005 nm-1 must be set in order to obtain a hole concentration of ~1018 cm-3 (measured by the C- V method) in Al x Ga1- x N:Mg ( x = 0.52-0.32) layers with dopant concentration [Mg] = 1.3 × 1018 cm-3. p- i- n photodiodes based on AlGaN heterostructures with such layers as p-emitters showed maximum photoresponsitivity in the solar-blind wavelength range (λ = 281 nm) about 35 and 48 mA/W at reverse bias voltage U = 0 and-5 V, respectively, and exhibited a dark current density of 3.9 × 10-8 A/cm2 at U =-5 V.

  5. Effect of capping agent concentration on thermoluminescence and photoluminescence of copper-doped zinc sulfide nanoparticles.

    PubMed

    Wanjari, Lata; Bisen, D P; Brahme, Namita; Sahu, Ishwar Prasad; Sharma, Ravi

    2015-08-01

    Copper-doped zinc sulfide (ZnS:Cu) nanoparticles with varying concentrations of capping agent were prepared using a chemical route technique. These particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy and X-ray diffraction (XRD). Optical absorption studies showed that the absorption edge shifted towards the blue region as the concentration of the capping agent increased. Using effective mass approximation, calculation of the nanoparticle size indicated that effective band gap energy increases with decreasing particle size. The thermoluminescence (TL) properties of sodium hexameta phosphate (SHMP)-passivated ZnS:Cu nanoparticles were investigated after UV irradiation at room temperature. The TL glow curve of capped ZnS:Cu showed variations in TL peak position and intensity with the change in capping agent concentration. The photoluminescence (PL) spectra of ZnS:Cu nanoparticles excited at 254 nm exhibited a broad green emission band peaking around 510 nm, which confirmed the characteristic feature of Zn(2+) as well as Cu(2+) ions as the luminescent centres in the lattice. The PL spectra of ZnS:Cu nanoparticles with increasing capping agent concentrations revealed that the emission becomes more intense and shifted towards shorter wavelengths as the sizes of the samples were reduced.

  6. Diamond field-effect transistors for RF power electronics: Novel NO2 hole doping and low-temperature deposited Al2O3 passivation

    NASA Astrophysics Data System (ADS)

    Kasu, Makoto

    2017-01-01

    Diamond possesses a combination of exceptional physical properties and is expected to be used as a semiconductor material in high-efficiency and high-power electronic devices. In this study, hole doping was observed when using NO2 molecules on a H-diamond surface. The activation energy of hole concentration in NO2/H-diamond was measured as 0.006 eV, and holes were fully activated at room temperature. A thermal stabilization of the hole channel was realized by passivation with an atomic-layer-deposited Al2O3 layer. The passivation method enabled the realization of a thermally stable high-performance diamond field-effect transistor (FET), which exhibited high-performance DC and RF characteristics. NO2 hole-doping and Al2O3-passivation technologies enabled reproducible measurements of MOS structure electric properties. Such technologies also facilitated observations of two-dimensional holes at the MOS interface and type-II band alignment of Al2O3/NO2/H-diamond. Additionally, the band diagram under various gate bias conditions was proposed on the basis of capacitance-voltage measurements and analysis using Poisson’s equations.

  7. Spatial distribution of carrier concentration in un-doped GaN film grown on sapphire

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Chen, X. D.; Beling, C. D.; Fung, S.; Ling, C. C.

    2004-03-01

    The depth and lateral dependent carrier concentration of un-intentionally doped GaN film grown on sapphire substrate have been studied by temperature-dependent Hall effect measurement, confocal micro-Raman spectroscopy and capacitance-voltage (C-V) measurements. The depth-dependent free carrier concentration extracted from the depth-profiled Raman spectra confirms a non-uniform spatial distribution of free carriers in the GaN film with a highly conductive layer of 1 m thickness near the GaN/sapphire boundary. The temperature dependent Hall data have been analyzed using two-layer model to extract the carrier concentration in the GaN bulk film and in the parallel conduction channel adjacent to the GaN/sapphire boundary. The carrier concentrations of the two layers derived from the Raman technique and the Hall measurements agree with each other. The lateral-dependent carrier concentration of the 2-inch GaN epitaxial wafer has also been studied by micro-Raman spectroscopy and C-V measurements. The line-shape fitting of the Raman A1(LO) coupled modes taken from horizontal lateral-different positions on the wafer yielded a rudimentary spatial map of the carrier concentration. These data are compared well with a lateral-dependent carrier concentration map of the wafer revealed by C-V measurements. The study in the article indicates that Raman spectroscopy of the LO phonon-plasmon mode can be used as a nondestructive and reliable, in situ diagnostic for GaN wafer production.

  8. The effect of 0.025 Al-doped in Li4Ti5O12 material on the performance of half cell lithium ion battery

    NASA Astrophysics Data System (ADS)

    Priyono, Slamet; Triwibowo, Joko; Prihandoko, Bambang

    2016-02-01

    The effect of 0.025 Al-doped Li4Ti5O12 as anode material for Lithium Ion battery had been studied. The pure and 0.025 Al-doped Li4Ti5O12 were synthesized through solid state process in air atmosphere. Physical characteristics of all samples were observed by XRD, FTIR, and PSA. The XRD analysis revealed that the obtained particle was highly crystalline and had a face-centered cubic spinel structure. The XRD pattern also showed that the 0.025 Al-doped on the Li4Ti5O12 did not change crystal structure of Li4Ti5O12. FTIR analysis confirmed that the spinel structure in fingerprint region was unchanged when the structure was doped by 0.025 Al. However the doping of 0.025 Al increased particle size significantly. The electrochemical performance was studied by using cyclic voltammetry (CV) and charge-discharge (CD) curves. Electrochemical analysis showed that pure Li4Ti5O12 has higher capacity than 0.025 Al-doped Li4Ti5O12 had. But 0.025 Al-doped Li4Ti5O12 possesses a better cycling stability than pure Li4Ti5O12.

  9. Persistent photoconductivity in uniforndy and selectively silicon doped AlAs / GaAs short period superlattices

    NASA Astrophysics Data System (ADS)

    Jeanjean, P.; Sicart, J.; Robert, J. L.; Mollot, F.; Planel, R.

    1991-04-01

    Hall and photo-Hall measurements have been carried out between 4 K et 400 K on MBE deposited AlAs / GaAs superiattices (SPS) with short period (25 Å < P < 50 Å) SPSs were uniformly or selectively doped with silicon. Galvanomagnetic measurements show that SPSs exhibited an electrical behaviour similar to that of AlxGal{1-x}As : Si alloy (0.32 < x < 0.35). The Hall mobility was increased under illumination and persistent photoconductivity (PPC) was observed at low temperature (DX center). Ibermal annealing of PPC was performed by increasing the measurement temperature. Two plateaus are observed in the n_H(T) curves in uniformly doped SPSs whereas only one plateau was present in selectively doped SPSs. These experimental results are interpreted in terms of the multibarrier model of the DX center recently proposed in AIxGal{1-x}As: Si. Nous présentons des résultats de mesures d'effet Hall et photo-Hall obtenus entre 4 K et 400 K dans des superréseaux AlAs / GaAs de courtes périodes (25 Å < P < 50 Å) déposées par MBE et dopées au silicium de manière uniforme ou sélectivement dans GaAs. Les mesures de concentration de porteurs et de mobilité par effet Hall à l'obscurité montrent que ce type de SPS (short period superiattice) présente un comportement électrique voisin de l'alliage AIxGal{1-x}As: Si de teneur en aluminium équivalente (0.32 < x < 0.35). Les mesures de photo-Hall à basse température montrent que ces SPS présentent également une photeconductivité persistente (PPC) et une augmentation de mobilité sous éclairement. La présence d'un plateau de PPC à basse temperature (T< 90 K) est caractéristique du centre métastable DX dans tous les cas. Des mesures de décroissance du nombre de porteurs mesurés à l'obscurité aprés éclairement quand la température augmente (capture thermique), mettent en évidence la présence de deux plateaux correspondant à deux barrières thermiques de l'état métastable du centre DX dans les SPS

  10. Growth temperature dependence of Si doping efficiency and compensating deep level defect incorporation in Al{sub 0.7}Ga{sub 0.3}N

    SciTech Connect

    Armstrong, Andrew M. Moseley, Michael W.; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan J.

    2015-05-14

    The growth temperature dependence of Si doping efficiency and deep level defect formation was investigated for n-type Al{sub 0.7}Ga{sub 0.3}N. It was observed that dopant compensation was greatly reduced with reduced growth temperature. Deep level optical spectroscopy and lighted capacitance-voltage were used to understand the role of acceptor-like deep level defects on doping efficiency. Deep level defects were observed at 2.34 eV, 3.56 eV, and 4.74 eV below the conduction band minimum. The latter two deep levels were identified as the major compensators because the reduction in their concentrations at reduced growth temperature correlated closely with the concomitant increase in free electron concentration. Possible mechanisms for the strong growth temperature dependence of deep level formation are considered, including thermodynamically driven compensating defect formation that can arise for a semiconductor with very large band gap energy, such as Al{sub 0.7}Ga{sub 0.3}N.

  11. Atomic layer deposition of Al-doped ZnO films using ozone as the oxygen source: A comparison of two methods to deliver aluminum

    SciTech Connect

    Yuan Hai; Luo Bing; Yu Dan; Cheng, An-jen; Campbell, Stephen A.; Gladfelter, Wayne L.

    2012-01-15

    Aluminum-doped ZnO films were prepared by atomic layer deposition at 250 deg. C using diethylzinc (DEZ), trimethylaluminum (TMA), and ozone as the precursors. Two deposition methods were compared to assess their impact on the composition, structural, electrical, and optical properties as a function of Al concentration. The first method controlled the Al concentration by changing the relative number of Al to Zn deposition cycles; a process reported in the literature where water was used as the oxygen source. The second method involved coinjection of the DEZ and TMA during each cycle where the partial pressures of the precursors control the aluminum concentration. Depth profiles of the film composition using Auger electron spectroscopy confirmed a layered microstructure for the films prepared by the first method, whereas the second method led to a homogeneous distribution of the aluminum throughout the ZnO film. Beneath the surface layer the carbon concentrations for all of the films were below the detection limit. Comparison of their electrical and optical properties established that films deposited by coinjection of the precursors were superior.

  12. Pristine and Al-doped hematite printed films as photoanodes of p-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Congiu, Mirko; De Marco, Maria L.; Bonomo, Matteo; Nunes-Neto, Oswaldo; Dini, Danilo; Graeff, Carlos F. O.

    2017-01-01

    We hereby propose a non-expensive method for the deposition of pure and Al-doped hematite photoanodes in the configuration of thin films for the application of dye-sensitized solar cells (DSSC). The electrodes have been prepared from hematite nanoparticles that were obtained by thermal degradation of a chemical precursor. The particles have been used in the preparation of a paste, suitable for both screen printing and doctor blade deposition. The paste was then spread on fluorine-doped tin oxide (FTO) to obtain porous hematite electrodes. The electrodes have been sensitized using N3 and D5 dyes and were characterized through current/voltage curves under simulated sun light (1 sun, AM 1.5) with a Pt counter electrode. Al-doping of hematite showed interesting changes in the physical and electrochemical characteristics of sensitized photoanodes since we could notice the growth of AlFe2O4 (hercynite) as a secondary crystal phase into the oxides obtained by firing the mixtures of two chemical precursors at different molar ratios. Pure and Al-doped hematite electrodes have been used in a complete n-type DSSCs. The kinetics of charge transfer through the interface dye/electrolyte was studied and compared to that of a typical p-type DSSC based on NiO photocathodes sensitized with erythrosine B. The results suggest a potential application of both Fe2O3 and Fe2O3/AlFe2O4 as photoanodes of a tandem DSSC.

  13. 2H and 27Al solid-state NMR study of the local environments in Al-doped 2-line ferrihydrite, goethite, and lepidocrocite

    DOE PAGES

    Kim, Jongsik; Ilott, Andrew J.; Middlemiss, Derek S.; ...

    2015-05-13

    Although substitution of aluminum into iron oxides and oxyhydroxides has been extensively studied, it is difficult to obtain accurate incorporation levels. Assessing the distribution of dopants within these materials has proven especially challenging because bulk analytical techniques cannot typically determine whether dopants are substituted directly into the bulk iron oxide or oxyhydroxide phase or if they form separate, minor phase impurities. These differences have important implications for the chemistry of these iron-containing materials, which are ubiquitous in the environment. In this work, 27Al and 2H NMR experiments are performed on series of Al-substituted goethite, lepidocrocite, and 2-line ferrihydrite in ordermore » to develop an NMR method to track Al substitution. The extent of Al substitution into the structural frameworks of each compound is quantified by comparing quantitative 27Al MAS NMR results with those from elemental analysis. Magnetic measurements are performed for the goethite series to compare with NMR measurements. Static 27Al spin–echo mapping experiments are used to probe the local environments around the Al substituents, providing clear evidence that they are incorporated into the bulk iron phases. As a result, predictions of the 2H and 27Al NMR hyperfine contact shifts in Al-doped goethite and lepidocrocite, obtained from a combined first-principles and empirical magnetic scaling approach, give further insight into the distribution of the dopants within these phases.« less

  14. Effect of Mg2+ ions co-doping on luminescence and defects formation processes in Gd3(Ga,Al)5O12:Ce single crystals

    NASA Astrophysics Data System (ADS)

    Babin, V.; Bohacek, P.; Grigorjeva, L.; Kučera, M.; Nikl, M.; Zazubovich, S.; Zolotarjovs, A.

    2017-04-01

    Photo- and radioluminescence and thermally stimulated luminescence characteristics of Ce3+ - doped and Ce3+, Mg2+ co-doped Gd3(Ga,Al)5O12 (GAGG) single crystals of similar composition are investigated in the 9-500 K temperature range. The Ce3+ - related luminescence spectra and the photoluminescence decay kinetics in these crystals are found to be similar. Under photoexcitation in the Ce3+ - and Gd3+ - related absorption bands, no prominent rise of the photoluminescence intensity in time is observed neither in GAGG:Ce,Mg nor in GAGG:Ce crystals. The afterglow is strongly reduced in GAGG:Ce,Mg as compared to GAGG:Ce, and the afterglow decay kinetics is much faster. Co-doping with Mg2+ results in a drastic decrease of the thermally stimulated luminescence (TSL) intensity in the whole investigated temperature range and in the appearance of a new complex Mg2+ - related TSL glow curve peak around 285 K. After irradiation in the Ce3+ - related 3.6 eV absorption band, the TSL intensity in GAGG:Ce,Mg is found to be comparable with that in the GAGG:Ce epitaxial film of similar composition. The Mg2+ - induced changes in the concentration, origin and structure of the crystal lattice defects and their influence on the scintillation characteristics of GAGG:Ce,Mg are discussed.

  15. Plasmon-enhanced UV and blue upconverted emissions of Tm3+-doped 12CaO·7Al2O3 nanocrystals by attaching Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhu, Hancheng; Liu, Yuxue; Zhao, Dongxing; Zhang, Meng; Yang, Jian; Yan, Duanting; Liu, Chunguang; Xu, Changshan; Layfield, Carter; Ma, Li; Wang, Xiaojun

    2016-09-01

    Tm3+-doped 12CaO·7Al2O3 (C12A7) nanocrystals with the grain size of 360 nm have been fabricated by chemical co-precipitation method. Up-converted emissions at 367, 457, 476, 648, and 682 nm, corresponding to the 1D2 → 3H6, 1D2 → 3F4, 1G4 → 3H6, 1G4 → 3F4, and 3F3 → 3H6 transitions, respectively, are observed under 808 nm excitation. Plasmon-enhanced ultraviolet (UV) and blue upconverted emissions of Tm3+-doped C12A7 nanocrystals have been achieved by attaching Ag nanoparticles onto the surface of nanocrystals. The enhancement of the upconverted emissions is highly wavelength-dependent. The emission intensities of the sample with Ag+ concentration of 5.0 × 10-3 mol/L at 367 and 476 nm are enhanced about 10 and 3 times, respectively, relative to the sample without Ag attachment. The enhancement mechanism can be ascribed to surface plasmon resonance due to the highly localized electric field and the increased radiative decay rate around Ag nanoparticles. Our results suggest that Tm3+-doped C12A7 nanocrystals by attaching Ag nanoparticles might be a potential material for upconversion, compact and tunable short-wavelength lasers.

  16. Performance optimization of p-n homojunction nanowire-based piezoelectric nanogenerators through control of doping concentration

    SciTech Connect

    Liu, Guocheng Ban, Dayan; Abdel-Rahman, Eihab

    2015-09-07

    This paper demonstrates a series of flexible transparent ZnO p-n homojunction nanowire-based piezoelectric nanogenerators (NGs) with different p-doping concentrations. The lithium-doped segments are grown directly and consecutively on top of intrinsic nanowires (n-type). When characterized under cyclic compressive strains, the overall NG performance is enhanced by up to eleven-fold if the doping concentration is properly controlled. This improvement is attributable to reduction in the mobile charge screening effect and optimization of the NGs' internal electrical characteristics. Experimental results also show that an interfacial MoO{sub 3} barrier layer, at an optimized thickness of 5–10 nm, reduces leakage current and substantially improves piezoelectric NG performance.

  17. Atomic and Molecular Hydrogen Interaction with Ti-Doped Al (100): Hydrogen Dissociation and Surface Alane Formation

    NASA Astrophysics Data System (ADS)

    Muller, Erik; Sutter, Peter; Zahl, Percy; Chaudhuri, Santanu; Muckerman, James

    2006-03-01

    A comprehensive research effort on the atomistic mechanisms underlying hydrogen storage in Ti-doped NaAlH4 is aimed at deriving a knowledge base for the rational optimization of this and other related complex hydride materials. Our investigation focuses on the role of the Ti dopants in promoting reversible hydrogenation, a key requirement for any practical hydrogen storage material. The re-hydrogenation reaction proceeds from the crucial initial step of dissociative adsorption of molecular hydrogen on Al or NaH. A specific Al:Ti complex was recently predicted as an active site for H2 dissociation on extended Al(100) surfaces [1]. Combining high-resolution surface imaging experiments (scanning tunneling microscopy, low-energy electron microscopy) with density functional theory, we are investigating the dissociative adsorption of H2 on Ti-doped Al(100) prepared in ultrahigh vacuum. We will discuss our progress toward identifying catalytically active sites for H2 dissociation on this surface, as well as pathways toward the formation of mobile Al-species. [1] S. Chaudhuri and J.T. Muckerman, J. Phys. Chem. B 109, 6952 (2005).

  18. Synthesis and characterization of Tb3+ doped MgSrAl10O17 green emitting phosphor

    NASA Astrophysics Data System (ADS)

    Panse, V. R.; Kokode, N. S.; Dhoble, S. J.

    2013-12-01

    There is a growing demand for economically viable phosphors for newly emerging display devices with on-going technological advancements. Various aluminates are used as hosts for doping rare earth ions in luminescent applications.[1] Green emitting terbium-ion-doped MgSrAl10O17 phosphor prepared using the combustion method. An efficient phosphor can be prepared by this method at around 550°C in a very short time of few minutes. Further phosphor was analyzed by XRD for the confirmation of desired phase and purity. The morphology and structure of the phosphor were characterized by Scanning electron microscopy. The vibrational properties of MgSrAl10O17 phosphor was studied by FTIR.

  19. Effects of F- on the optical and spectroscopic properties of Yb3+/Al3+-co-doped silica glass

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin; Yu, Chunlei; Wang, Shikai; Lou, Fengguang; Feng, Suya; Wang, Meng; Zhou, Qinling; Chen, Danping; Hu, Lili; Guzik, Malgorzata; Boulon, Georges

    2015-04-01

    Yb3+/Al3+-co-doped silica glasses with different F- content were prepared in this work by sol-gel method combined with high temperature sintering. XRF, FTIR and XPS methods were used to confirm the presence of F-. The effects of F- on the optical and spectroscopic properties of these glasses have been investigated. It is worth to notice that the F-/Si4+ mass ratio equal to 9% is a significant value showing a real change in the variation trends of numerous following parameters: refractive index, UV absorption edge, absorption and emission cross sections, scalar crystal-field NJ and fluorescent lifetimes. Furthermore, introduction of F- can adjust the refractive index of Yb3+/Al3+-co-doped silica glass and it is useful for large mode area (LMA) fibers.

  20. Electronic structure of Al- and Ga-doped ZnO films studied by hard X-ray photoelectron spectroscopy

    SciTech Connect

    Gabás, M.; Ramos Barrado, José R.; Torelli, P.; Barrett, N. T.

    2014-01-01

    Al- and Ga-doped sputtered ZnO films (AZO, GZO) are semiconducting and metallic, respectively, despite the same electronic valence structure of the dopants. Using hard X-ray photoelectron spectroscopy we observe that both dopants induce a band in the electronic structure near the Fermi level, accompanied by a narrowing of the Zn 3d/O 2p gap in the valence band and, in the case of GZO, a substantial shift in the Zn 3d. Ga occupies substitutional sites, whereas Al dopants are in both substitutional and interstitial sites. The latter could induce O and Zn defects, which act as acceptors explaining the semiconducting character of AZO and the lack of variation in the optical gap. By contrast, mainly substitutional doping is consistent with the metallic-like behavior of GZO.

  1. Temperature-dependence on the structural, optical, and magnetic properties of Al-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Lu, Xiaofei; Liu, Yongsheng; Si, Xiaodong; Shen, Yulong; Yu, Wenying; Wang, Wenli; Luo, Xiaojing; Zhou, Tao

    2016-12-01

    Al-doped ZnO nanoparticles synthesized by a hydrothermal method at relatively low temperature synthesis and anneal were reported in this paper. The XRD results reveal that all the samples have a hexagonal wurtzite structure. A higher synthesis temperature leads to a slight increase in the grain size and improvement of the crystal quality. Different morphologies evolved from acicular closely-packed morphology to dandelion-like 3D nanostructures can be obtained by controlling the synthesis temperatures. Moreover, the influence of synthesis temperature on optical property indicates that the absorption ability in ultraviolet region declines with increasing the synthesis temperature. In addition, the annealed nanoparticles have an enhancement of the room temperature ferromagnetism (RT-FM) and the saturation magnetization (MS). Those results suggest that Al-doped ZnO nanoparticles synthesized at relatively low temperature could be a promising candidate for photosensitive and room temperature nanolasers applications.

  2. Control of mean ionic radius at Ca site by Sr co-doping for Ce doped LiCaAlF6 single crystals and the effects on optical and scintillation properties

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Yamaji, Akihiro; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2014-10-01

    Sr co-doped Ce:LiCaAlF6 [Ce:Li(Ca,Sr)AlF6] crystals with various Ca/Sr ratios were grown by a micro-pulling-down (μ-PD) method and effects of Sr co-doping on crystal structure, chemical composition, optical and scintillation properties for Ce:LiCaAlF6 crystals were investigated as a neutron scintillator. High transparent Ce2%:Li(Ca,Sr)AlF6 crystals with 2% and 5% Sr contents were obtained while Ce2%:Li(Ca,Sr)AlF6 crystals with 10% and 20% Sr contents included milky parts in the crystals. a- and c-axis lengths of Ce:Li(Ca,Sr)AlF6 phase systematically increased with an increase of Sr content. In addition to the emission at 284 and 308 nm from Ce3+ ion, emission peaks at 367 nm appeared by Sr co-doping.

  3. Luminescence properties of Eu{sup 2+}- and Ce{sup 3+}-doped CaAl{sub 2}S{sub 4} and application in white LEDs

    SciTech Connect

    Yu Ruijin; Wang Jing Zhang Jianhui; Yuan Haibin; Su Qiang

    2008-03-15

    The Eu{sup 2+}- and Ce{sup 3+}-doped CaAl{sub 2}S{sub 4} phosphors were comparatively synthesized by conventional solid-state reaction and the evacuated sealed quartz ampoule. The X-ray diffraction (XRD) patterns show that the sample with better crystalline quality was prepared by the evacuated sealed quartz ampoule, resulting in the enhancement of the emission intensity of Eu{sup 2+} ion by a factor of 1.7. The intensive green LEDs were also fabricated by combining CaAl{sub 2}S{sub 4}:Eu{sup 2+} with near-ultraviolet InGaN chips ({lambda}{sub em}=395 nm). The dependence of as-fabricated green LEDs on forward-bias currents shows that it presents good chromaticity stability and luminance saturation, indicating that CaAl{sub 2}S{sub 4}:Eu{sup 2+} is a promising green-emitting phosphor for a near-UV InGaN-based LED. In addition, the optical properties of CaAl{sub 2}S{sub 4}:Ce{sup 3+} were systematically investigated by means of diffuse reflectance, photoluminescence excitation and emission, concentrating quenching and the decay curve. - Graphical abstract: The Eu{sup 2+}- and Ce{sup 3+}-doped CaAl{sub 2}S{sub 4} phosphors were comparatively synthesized by two methods. The emission intensity of Eu{sup 2+} ion in sample synthesized by the evacuated sealed quartz ampoule method is by a factor of 1.7 as strong as that of Eu{sup 2+} ion in sample prepared by the conventional solid-state reaction method.

  4. Field-induced doping-mediated tunability in work function of Al-doped ZnO: Kelvin probe force microscopy and first-principle theory

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Mookerjee, Sumit; Som, Tapobrata

    2016-09-01

    We demonstrate that the work function of Al-doped ZnO (AZO) can be tuned externally by applying an electric field. Our experimental investigations using Kelvin probe force microscopy show that by applying a positive or negative tip bias, the work function of AZO film can be enhanced or reduced, which corroborates well with the observed charge transport using conductive atomic force microscopy. These findings are further confirmed by calculations based on first-principles theory. Tuning the work function of AZO by applying an external electric field is not only important to control the charge transport across it, but also to design an Ohmic contact for advanced functional devices.

  5. Field-induced doping-mediated tunability in work function of Al-doped ZnO: Kelvin probe force microscopy and first-principle theory.

    PubMed

    Kumar, Mohit; Mookerjee, Sumit; Som, Tapobrata

    2016-09-16

    We demonstrate that the work function of Al-doped ZnO (AZO) can be tuned externally by applying an electric field. Our experimental investigations using Kelvin probe force microscopy show that by applying a positive or negative tip bias, the work function of AZO film can be enhanced or reduced, which corroborates well with the observed charge transport using conductive atomic force microscopy. These findings are further confirmed by calculations based on first-principles theory. Tuning the work function of AZO by applying an external electric field is not only important to control the charge transport across it, but also to design an Ohmic contact for advanced functional devices.

  6. Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses

    SciTech Connect

    Lu, Xiaonan; Neeway, James J.; Ryan, Joseph V.; Du, Jincheng

    2016-11-01

    Transition metal oxides are commonly present in nuclear waste and they can alter the structure, property and especially dissolution behaviors of the glasses used for waste immobilization. In this paper, we investigated vanadium and cobalt oxide induced structural and properties changes, especially dissolution behaviors, of International Simple Glass (ISG), a model nuclear waste glass system. Static chemical durability tests were performed at 90 °C with a pH value of 7 and a surface-area-to-solution-volume of 200 m-1 for 112 days on three glasses: ISG, ISG doped with 0.5 mol% Co2O3, and ISG doped with 2.0 mol% V2O5. ICP-MS was used to analyze the dissolved ion concentrations. It was found that doping with vanadium and cobalt oxide, even at the low doping concentration, significantly reduced the extent of the ISG glass dissolution. Differential Scanning Calorimetry (DSC) analysis showed that vanadium oxide doping reduced the glass transition temperature (Tg) while cobalt oxide did not significantly change the Tg of ISG. X-ray diffraction (XRD), Raman spectrometry and scanning electron microscopy (SEM) were used to analyze the glass samples before and after corrosion to understand the phase and microstructure changes.

  7. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    SciTech Connect

    Das, Palash Biswas, Dhrubes

    2014-04-24

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT.

  8. Maximum drift velocity of electrons in selectively doped InAlAs/InGaAs/InAlAs heterostructures with InAs inserts

    SciTech Connect

    Silenas, A.; Pozela, Yu. Pozela, K.; Juciene, V.; Vasil'evskii, I. S.; Galiev, G. B.; Pushkarev, S. S.; Klimov, E. A.

    2013-03-15

    The dependence of the electron mobility and drift velocity on the growth conditions, thickness, and doping of an InAs insert placed at the center of the quantum well in a selectively doped InAlAs/InGaAs/InAlAs heterostructure has been investigated. Record enhancement of the maximum drift velocity to (2-4) Multiplication-Sign 10{sup 7} cm/s in an electric field of 5 Multiplication-Sign 10{sup 3} V/cm has been obtained in a 17-nm-wide quantum well with an undoped 4-nm-thick InAs insert. In the structures with additional doping of the InAs insert, which facilitates an increase in the density of electrons in the quantum well to 4.0 Multiplication-Sign 10{sup 12} cm{sup -2}, the maximum drift velocity is as high as 2 Multiplication-Sign 10{sup 7} cm/s in an electric field of 7 Multiplication-Sign 10{sup 3} V/cm.

  9. Structure and Properties of Al and Ga- Doped ZnO

    NASA Astrophysics Data System (ADS)

    Temizer, Namik Kemal

    Recently there is tremendous interest in Transparent conducting oxide (TCO) research due to the unlimited and exciting application areas. Current research is mostly focused on finding alternative low cost and sustainable materials in order to replace indium tin oxide (ITO), which caused serious concern due to the increasing cost of indium and chemical stability issues of ITO. The primary aim of this research is to develop alternative TCO materials with superior properties in order to increase the efficiency in optoelectronic applications, as well as to study the properties of these materials to fully characterize them. We have grown Al and Ga-doped ZnO films with an optimized composition under different deposition conditions in order to understand the effect of processing parameters on the film properties. We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110muO-cm) values. The films grown in an ambient oxygen partial pressure (PO2 ) of 50 mTorr and at growth temperatures from room temperature to 600°C showed semiconducting behavior, whereas samples grown at a Po2 of 1 mTorr showed metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical and magnetic properties and such changes in physical properties are controlled predominantly by the defect content. To gain a better understanding of the conduction processes in doped ZnO thin films, we have studied the temperature variation of resistivity of some selected samples that showed some interesting behavior

  10. Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Hsing; Chang, Chiao-Lu

    2016-05-01

    ZnO is a wide bandgap semiconductor that has many potential applications such as solar cells, thin film transistors, light emitting diodes, and gas/biological sensors. In this study, a composite ceramic ZnO target containing 1 wt% Al2O3 and 1.5 wt% ZnF2 was prepared and used to deposit transparent conducting Al and F co-doped zinc oxide (AFZO) thin films on glass substrates by radio frequency magnetron sputtering. The effect of substrate temperatures ranging from room temperature (RT) to 200 °C on structural, morphological, electrical, chemical, and optical properties of the deposited thin films were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), Hall effect measurement, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and UV-vis spectrophotometer. The XRD results showed that all the AFZO thin films had a (0 0 2) diffraction peak, indicating a typical wurtzite structure with a preferential orientation of the c-axis perpendicular to the substrate. The FE-SEM and AFM analyses indicated that the crystallinity and grain size of the films were enhanced while the surface roughness decreased as the substrate temperature increased. Results of Hall effect measurement showed that Al and F co-doping decreased the resistivity more effectively than single-doping (either Al or F doping) in ZnO thin films. The resistivity of the AFZO thin films decreased from 5.48 × 10-4 to 2.88 × 10-4 Ω-cm as the substrate temperature increased from RT to 200 °C due to the increased carrier concentration and Hall mobility. The optical transmittances of all the AFZO thin films were over 92% in the wavelength range of 400-800 nm regardless of substrate temperature. The blue-shift of absorption edge accompanied the rise of the optical band gap, which conformed to the Burstein-Moss effect. The developed AFZO thin films are suitable as transparent conducting electrodes for various optoelectronic

  11. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Yu, Zhiming; Wei, Qiuping; Long, HangYu; Xie, Youneng; Wang, Yijia

    2016-07-01

    In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH3sbnd N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm-2, pH 5.16, flow velocity 6 L h-1. Under these conditions, 87.5% COD and 74.06% NH3sbnd N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m-3. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  12. Spectroscopic characterization of the plasmas formed during the deposition of ZnO and Al-doped ZnO films by plasma-assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liang, Peipei; Cai, Hua; Yang, Xu; Li, Hui; Zhang, Wu; Xu, Ning; Sun, Jian; Wu, Jiada

    2016-11-01

    An oxygen-zinc plasma and an oxygen-zinc-aluminum plasma are formed by pulsed laser ablation of a Zn target or pulsed laser co-ablation of a Zn target and an Al target in an electron cyclotron resonance (ECR) discharge-generated oxygen plasma for the deposition of ZnO and Al-doped ZnO (AZO) films. The plasmas are characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy. Both the oxygen-zinc plasma and the oxygen-zinc-aluminum plasma contain excited species originally present in the working O2 gas and energetic species ablated from the targets. The optical emission of the oxygen-zinc-aluminum plasma is abundant in the emission bands of oxygen molecular ions and the emission lines of mono-atomic oxygen, zinc and aluminum atoms and atomic ions. The time-integrated spectra as well as the time-resolved spectra of the plasma emission indicate that the oxygen species in the ECR oxygen plasma experience additional excitation by the expanding ablation plumes, and the ablated species are excited frequently when traveling accompanying the plume expansion in the oxygen plasma, making the formed plasma highly excited and very reactive, which plays an important role in the reactive growth of ZnO matrix and the in-situ doping of Al into the growing ZnO matrix. The deposited ZnO and AZO films were evaluated for composition analysis by energy dispersive X-ray spectroscopy, structure characterization by X-ray diffraction and optical transmission measurement. The deposited ZnO is slightly rich in O. The Al concentration of the AZO films can be controlled and varied simply by changing the repetition rate of the laser used for Al target ablation. Both the ZnO and the AZO films are featured with hexagonal wurtzite crystal structure and exhibit high optical transparency in a wide spectral region. Al doping results in an improvement in the ultraviolet transparency, a blue shift in the absorption edge and a widening of the band gap.

  13. Effect of AlCl3 concentration on nanoparticle removal by coagulation.

    PubMed

    Zhang, Lizhu; Mao, Jingchun; Zhao, Qing; He, Shaobo; Ma, Jun

    2015-12-01

    In recent years, engineered nanoparticles, as a new group of contaminants emerging in natural water, have been given more attention. In order to understand the behavior of nanoparticles in the conventional water treatment process, three kinds of nanoparticle suspensions, namely multi-walled carbon nanotube-humic acid (MWCNT-HA), multi-walled carbon nanotube-N,N-dimethylformamide (MWCNT-DMF) and nanoTiO2-humic acid (TiO2-HA) were employed to investigate their coagulation removal efficiencies with varying aluminum chloride (AlCl3) concentrations. Results showed that nanoparticle removal rate curves had a reverse "U" shape with increasing concentration of aluminum ion (Al(3+)). More than 90% of nanoparticles could be effectively removed by an appropriate Al(3+) concentration. At higher Al(3+) concentration, nanoparticles would be restabilized. The hydrodynamic particle size of nanoparticles was found to be the crucial factor influencing the effective concentration range (ECR) of Al(3+) for nanoparticle removal. The ECR of Al(3+) followed the order MWCNT-DMF>MWCNT-HA>TiO2-HA, which is the reverse of the nanoparticle size trend. At a given concentration, smaller nanoparticles carry more surface charges, and thus consume more coagulants for neutralization. Therefore, over-saturation occurred at relatively higher Al(3+) concentration and a wider ECR was obtained. The ECR became broader with increasing pH because of the smaller hydrodynamic particle size of nanoparticles at higher pH values. A high ionic strength of NaCl can also widen the ECR due to its strong potential to compress the electric double layer. It was concluded that it is important to adjust the dose of Al(3+) in the ECR for nanoparticle removal in water treatment.

  14. Thermal neutron imaging with rare-earth-ion-doped LiCaAlF 6 scintillators and a sealed 252Cf source

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Noriaki; Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei; Fukuda, Kentaro; Suyama, Toshihisa; Watanabe, Kenichi; Yamazaki, Atsushi; Chani, Valery; Yoshikawa, Akira

    2011-10-01

    Thermal neutron imaging with Ce-doped LiCaAlF 6 crystals has been performed. The prototype of the neutron imager using a Ce-doped LiCaAlF 6 scintillating crystal and a position sensitive photomultiplier tube (PSPMT) which had 64 multi-channel anode was developed. The Ce-doped LiCaAlF 6 single crystal was grown by the Czochralski method. A plate with dimensions of a diameter of 50×2 mm 2 was cut from the grown crystal, polished, and optically coupled to PSPMT by silicone grease. The 252Cf source (<1 MBq) was sealed with 43 mm of polyethylene for neutron thermalization. Alphabet-shaped Cd pieces with a thickness of 2 mm were used as a mask for the thermal neutrons. After corrections for the pedestals and gain of each pixel, we successfully obtained two-dimensional neutron images using Ce-doped LiCaAlF 6.

  15. Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency

    PubMed Central

    Yan, Yuli; Zhang, Guangbiao; Wang, Chao; Peng, Chengxiao; Zhang, Peihong; Wang, Yuanxu; Ren, Wei

    2016-01-01

    The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization. PMID:27406178

  16. Thermoluminescence and optically stimulated luminescence properties of Dy3+-doped CaO-Al2O3-B2O3-based glasses

    NASA Astrophysics Data System (ADS)

    Yahaba, T.; Fujimoto, Y.; Yanagida, T.; Koshimizu, M.; Tanaka, H.; Saeki, K.; Asai, K.

    2017-02-01

    We developed Dy3+-doped CaO-Al2O3-B2O3 based glasses with Dy concentrations of 0.5, 1.0, and 2.0 mol% using a melt-quenching technique. The as-synthesized glasses were applicable as materials exhibiting thermoluminescence (TL) and optically stimulated luminescence (OSL). The optical and radiation response properties of the glasses were characterized. In the photoluminescence (PL) spectra, two emission bands due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ were observed at 480 and 580 nm. In the OSL spectra, the emission band due to the 4F9/2 → 6H15/2 transition of Dy3+ was observed. Excellent TL and OSL responses were observed for dose ranges of 0.1-90 Gy. In addition, TL fading behavior was better than that of OSL in term of the long-time storage. These results indicate that the Dy3+-doped CaO-Al2O3-B2O3-based glasses are applicable as TL materials.

  17. Reducing Mg acceptor activation-energy in Al(0.83)Ga(0.17)N disorder alloy substituted by nanoscale (AlN)₅/(GaN)₁ superlattice using Mg(Ga) δ-doping: Mg local-structure effect.

    PubMed

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-10-23

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  18. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    PubMed Central

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-01-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm−3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN. PMID:25338639

  19. Significant enhancement of thermoelectric properties and metallization of Al-doped Mg{sub 2}Si under pressure

    SciTech Connect

    Morozova, Natalia V.; Korobeinikov, Igor V.; Karkin, Alexander E.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V. E-mail: sergey2503@gmail.com; Takarabe, Ken-ichi; Mori, Yoshihisa; Nakamura, Shigeyuki

    2014-06-07

    We report results of investigations of electronic transport properties and lattice dynamics of Al-doped magnesium silicide (Mg{sub 2}Si) thermoelectrics at ambient and high pressures to and beyond 15 GPa. High-quality samples of Mg{sub 2}Si doped with 1 at. % of Al were prepared by spark plasma sintering technique. The samples were extensively examined at ambient pressure conditions by X-ray diffraction studies, Raman spectroscopy, electrical resistivity, magnetoresistance, Hall effect, thermoelectric power (Seebeck effect), and thermal conductivity. A Kondo-like feature in the electrical resistivity curves at low temperatures indicates a possible magnetism in the samples. The absolute values of the thermopower and electrical resistivity, and Raman spectra intensity of Mg{sub 2}Si:Al dramatically diminished upon room-temperature compression. The calculated thermoelectric power factor of Mg{sub 2}Si:Al raised with pressure to 2–3 GPa peaking in the maximum the values as high as about 8 × 10{sup −3} W/(K{sup 2}m) and then gradually decreased with further compression. Raman spectroscopy studies indicated the crossovers near ∼5–7 and ∼11–12 GPa that are likely related to phase transitions. The data gathered suggest that Mg{sub 2}Si:Al is metallized under moderate pressures between ∼5 and 12 GPa.

  20. Enhancement of the photoluminescence in Er-doped Al2O3 fabricated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Rönn, John; Karvonen, Lasse; Pyymäki-Perros, Alexander; Peyghambarian, Nasser; Lipsanen, Harri; Säynätjoki, Antti; Sun, Zhipei

    2016-02-01

    We show the enhancement of the photoluminescence at λ = 1:5 μm in highly-doped (> 1021 cm-3) Er-Al2O3 samples by controlling the vertical distance between the Er-ions using atomic layer deposition (ALD) technique. Er2O3 and Al2O3 were deposited on top of silicon in an alternating fashion with ALD. Five Er2O3-Al2O3 samples were fabricated by keeping the amount of Er2O3 constant but changing the thickness of the Al2O3-layers between the Er2O3-layers. The PL spectra of the samples reveal that the PL signal enhances up to 90% when the vertical distance (the number of Al2O3-layers) between the Er-ions increases. The PL enhancement can be related to the reduction of up-conversion signal at 532 and 650 nm in the Er-ions. Our results demonstrate that ALD is an excellent technique to fabricate and to optimize Er-doped materials due to its unique depositions properties.

  1. Enhanced Performance in Al-Doped ZnO Based Transparent Flexible Transparent Thin-Film Transistors Due to Oxygen Vacancy in ZnO Film with Zn-Al-O Interfaces Fabricated by Atomic Layer Deposition.

    PubMed

    Li, Yang; Yao, Rui; Wang, Huanhuan; Wu, Xiaoming; Wu, Jinzhu; Wu, Xiaohong; Qin, Wei

    2017-04-05

    Highly conductive and optical transparent Al-doped ZnO (AZO) thin film composed of ZnO with a Zn-Al-O interface was fabricated by thermal atomic layer deposition (ALD) method. The as-prepared AZO thin film exhibits excellent electrical and optical properties with high stability and compatibility with temperature-sensitive flexible photoelectronic devices; film resistivity is as low as 5.7 × 10(-4) Ω·cm, the carrier concentration is high up to 2.2 × 10(21) cm(-3). optical transparency is greater than 80% in a visible range, and the growth temperature is below 150 °C on the PEN substrate. Compared with the conventional AZO film containing by a ZnO-Al2O3 interface, we propose that the underlying mechanism of the enhanced electrical conductivity for the current AZO thin film is attributed to the oxygen vacancies deficiency derived from the free competitive growth mode of Zn-O and Al-O bonds in the Zn-Al-O interface. The flexible transparent transistor based on this AZO electrode exhibits a favorable threshold voltage and Ion/Ioff ratio, showing promising for use in high-resolution, fully transparent, and flexible display applications.

  2. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  3. Efficiency enhancement of regular-type perovskite solar cells based on Al-doped ZnO nanorods as electron transporting layers

    NASA Astrophysics Data System (ADS)

    Huang, Zheng-Lun; Chen, Chih-Ming; Lin, Zheng-Kun; Yang, Sheng-Hsiung

    2017-02-01

    In this paper, we first incorporated Al(NO3)3·9H2O as the Al source into ZnO nanorods (NRs) lattice via the hydrothermal method to modify nature properties of ZnO NRs for the fabrication of perovskite solar cells (PSCs). The X-ray diffraction (XRD) pattern of Al-doped ZnO NRs exhibits higher 2θ values and stronger intensity of (002) plane. Larger optical band gap and higher electrical conductivity of Al-doped ZnO NRs are also observed relative to non-doped ZnO ones. The steady-state photoluminescence shows effective charge extraction and collection at the interface between Al-doped ZnO NRs and perovskite layer. The optimized PSC based on Al-doped ZnO NRs showed an open-circuit voltage of 0.84 V, a short-circuit current density of 21.93 mA/cm2, a fill factor of 57%, and a power conversion efficiency of 10.45% that was 23% higher than the non-doped ZnO ones.

  4. Doping effects on thermoelectric properties of the off-stoichiometric Heusler compounds Fe{sub 2−x}V{sub 1+x}Al

    SciTech Connect

    Nishino, Y. Tamada, Y.

    2014-03-28

    The thermoelectric properties of Heusler-type Fe{sub 2−x}V{sub 1+x}Al{sub 1−y}Si{sub y} and Fe{sub 2−x}V{sub 1+x−y}Ti{sub y}Al alloys have been investigated to clarify which off-stoichiometric alloy, i.e., V-rich (x > 0) or V-poor (x < 0), is more effective in enhancing the Seebeck coefficient when doped by Si and Ti, while retaining a low electrical resistivity. Large Seebeck coefficients of −182 μV/K and 110 μV/K at 300 K are obtained for n-type Fe{sub 1.95}V{sub 1.05}Al{sub 0.97}Si{sub 0.03} and p-type Fe{sub 2.04}V{sub 0.93}Ti{sub 0.03}Al, respectively. When the Seebeck coefficient is plotted as a function of valence electron concentration (VEC), the VEC dependence for the doped off-stoichiometric alloys falls on characteristic curves depending on the off-stoichiometric composition x. It is concluded that a larger Seebeck coefficient with a negative sign can be obtained for the V-rich alloys rather than the V-poor alloys, whilst good p-type materials are always derived from the V-poor alloys. Substantial enhancements in the Seebeck coefficient for the off-stoichiometric alloys could be achieved by a favorable modification in the electronic structure around the Fermi level through the antisite V or Fe defect formation.

  5. Equilibrium and kinetics studies on As(V) and Sb(V) removal by Fe2+ -doped Mg-Al layered double hydroxides.

    PubMed

    Kameda, Tomohito; Kondo, Eisuke; Yoshioka, Toshiaki

    2015-03-15

    Mg-Al layered double hydroxides (Mg-Al LDHs) doped with Fe(2+) adsorbed As(V) [Formula: see text] and Sb(V) [Formula: see text] from an aqueous solution through anion exchange with Cl(-) intercalated in the LDH interlayer. Fe(2+)-doped Mg-Al LDH exhibited superior As(V) removal compared with Mg-Al LDH. The oxidation of Fe(2+) doped in the Mg-Al LDH host layer to Fe(3+) increased the positive layer charge of the LDH, thus increasing the anion-uptake capacity owing to stronger electrostatic attractive force between the positively charged layer and the anion. However, Fe(2+)-doped Mg-Al LDH was not superior to Mg-Al LDH in terms of Sb(V) removal. This was attributed to the preferential intercalation of OH(-) over [Formula: see text] . The As(V) and Sb(V) removal by LDH followed Langmuir-type adsorption, which proceeded via a pseudo-first-order reaction. The equilibrium and kinetics studies confirm that the adsorption of As(V) and Sb(V) by Fe(2+)-doped Mg-Al LDH was the result of chemical adsorption, involving the anion exchange of [Formula: see text] and [Formula: see text] with the intercalated Cl(-).

  6. Radiotherapy dosimetry and the thermoluminescence characteristics of Ge-doped fibres of differing germanium dopant concentration and outer diameter

    NASA Astrophysics Data System (ADS)

    Noor, N. Mohd; Fadzil, M. S. Ahmad; Ung, N. M.; Maah, M. J.; Mahdiraji, G. A.; Abdul-Rashid, H. A.; Bradley, D. A.

    2016-09-01

    We examine the influence of elevated dopant concentration on the thermoluminescence characteristics of novel Ge-doped silica fibres. Basic dosimetric characteristics of the TL media were obtained, including linearity, reproducibility, energy dependence, fading, minimum detectable dose and glow curve analysis, use being made of a 60Co gamma irradiation facility (mean energy 1.25 MeV) and an electron linear accelerator producing photons at an accelerating potential of 6 and 10 MV. The 6 mol% Ge-doped fibres were found to provide TL response superior to that of 8- and 10 mol% Ge-doped fibres, both for fibres with outer diameter of 241 μm and 604 μm. Concerning reproducibility, obtained under three different test conditions, at <10% the 6 mol% Ge dopant concentration was observed to provide the superior coefficient of variation (CV). In regard to energy dependence, the 10 mol% Ge doped cylindrical fibres produced the largest gradient values at 0.364 and 0.327 for the 241 μm and 604 μm diameter cylindrical fibres respectively and thus the greatest energy dependency. Measured 33 days post irradiation; the 6 mol% Ge doped cylindrical fibres showed the least TL signal loss, at 21% for the 241 μm cylindrical fibre and <40% for the 604 μm cylindrical fibres. The results also revealed that the 6 mol% optical fibres provided the lowest minimum detectable dose, at 0.027 Gy for 6 MV photon beams. Evaluations of these characteristics are supporting development of novel Ge-doped optical fibres for dosimetry in radiotherapy.

  7. RETRACTED: Investigation of structural, optical and electronic properties in Al-Sn co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pan, Zhanchang; Tian, Xinlong; Wu, Shoukun; Yu, Xia; Li, Zhuliang; Deng, Jianfeng; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2013-01-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Figures 3 and 4 of this paper have also been presented as belonging to other materials in other publications. This observation is evidence of fraud and therefore it is not certain that the described research and conclusions of this paper belong to the presented images. Figures 3 and 4 of this paper can also be found in: Effect of annealing on the structures and properties of Al and F co-doped ZnO nanostructures, Materials Science in Semiconductor Processing, 2014, 17, 162-167, http://dx.doi.org/10.1016/j.mssp.2013.09.023 Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol-gel method, Journal of Alloys and Compounds, 2014,583, 32-38, http://dx.doi.org/10.1016/j.jallcom.2013.06.192 Properties of fluorine and tin co-doped ZnO thin films deposited by sol-gel method, Journal of Alloys and Compounds, 2013,576, 31-37, http://dx.doi.org/10.1016/j.jallcom.2013.04.132

  8. The effect of sol aging time on Structural and Optical properties of sol gel ZnO doped Al

    NASA Astrophysics Data System (ADS)

    El Hallani, G.; Fazouan, N.; Liba, A.; Khuili, M.

    2016-10-01

    Currently the doped or undoped ZnO semiconductor is of great importance in the field of electronic and optoelectronic devices such as transparent conductors and optical windows of solar cells based on silicon. ZnO thin films are produced by several techniques such as sol-gel method which is a chemical technique usually dependent on solution conditions. However, the sol gel aging time is an important parameter, which can have a significant impact on the properties of thin films. In this work we studied the effect of aging times (0h, 24h, 48h, 72h, 1 week) of the precursor solution on the structural and optical properties of ZnO doped Al (3 at.%). Thin films prepared by spin coating on glass substrates were investigated. The X-ray diffraction (XRD) analysis shows that the ZnO doped Al (3 at.%) exhibit the hexagonal wurtzite structure with a preferential orientation along [002] direction. The shift of (002) peaks towards higher diffraction angles is observed with sol aging time and also, a variation of crystallite sizes and thickness of thin films are shown with increasing sol aging time. All films present an average optical transmittance around 90% in the visible range with some interference fringes indicating a relative smoothness of films. We note an increasing in transmittance level with sol aging time from 0h to 48h. We can conclude that the aging times of the precursor solution influences the structural and optical properties of studied thin films.

  9. Counterion Effects on Ion Mobility and Mobile Ion Concentration of Doped Polyphosphazenes and Polyphosphazene Ionomers

    NASA Astrophysics Data System (ADS)

    Runt, Jim; Klein, Robert

    2007-03-01

    Previous investigations have shed some light on the ion conduction process in polymer electrolytes, yet ion transport is still not well understood. Here, upon the application of a physical model of electrode polarization to two systems with nearly identical chemical structure, one composed of an ionomer (MI) with a single mobile cation, and the other a salt-doped polymer (M+S) with mobile cation and mobile anion, quantitative comparison of the conductivity parameters is achieved. The polymer electrolyte chemistries of both MI and M+S are based on poly(methoxyethoxy-ethoxy phosphazene) (MEEP). The glass transition was found to be an important factor governing the conductivity and ion mobility. However, even accounting for the glass transition, the mobility of ions in the M+S system is 10 times larger than that in the MI system, which must arise from faster diffusion of the anion than the cation. Values for mobile ion concentration are also approximately 10 times higher in M+S than MI. These differences originate from free volume available for diffusion and local environment surrounding the ion pairs, demonstrating that the location of the ion pairs in the polymer matrix has a crucial effect on both conductivity parameters. Research supported by NSF Polymers Program.

  10. Effect of Cobalt Concentration and Oxygen Vacancy on Magnetism of Co Doped ZnO Nanorods.

    PubMed

    Li, Congli; Che, Ping; Sun, Changyan; Li, Wenjun

    2016-03-01

    Zn(1-x)Co(x)O (x = 0-0.07) single-crystalline nanorods were prepared by a modified microemulsion route. The crystalline structure, morphology, optical, and hysteresis loop at low and room temperature of as-prepared materials were characterized by XRD, TEM, PL spectra, and magnetic measurement respectively. The nanorods are 80-250 nm in diameter and about 3 μm in length. X-ray diffraction data, TEM images confirm that the materials synthesized in optimal conditions are ZnO:Co single crystalline solid solution without any impurities related to Co. The PL spectra show that the ferromagnetic samples exhibit strong Zn interstitials and oxygen vacancy emission indicating defects may stabilize ferromagnetic order in the obtained diluted magnetic semiconductors. Magnetic measurements show that the Zn(1-x)Co(x)O nanorods exist obvious ferromagnetic characteristics with T(c) above 300 K. M(s) and coercivities first increase and then decrease with dopant concentration increasing, reaching the highest for 3% doping level. The structural and magnetic properties of these samples support the hypothesis that the FM of DMS nanorods is due to a defect mediated mechanism instead of cobalt nanoclusters and carrier mediated.

  11. Effects of drain doping concentration on switching characteristics of tunnel field-effect transistor inverters

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Woong; Kim, Jang Hyun; Park, Byung-Gook

    2016-11-01

    In order to investigate the effects of the modulation of drain doping concentration (N drain) on alternating current (AC) switching characteristics of a tunnel filed-effect transistor (TFET) inverter, the characteristics of TFETs with various N drains are analyzed rigorously through mixed-mode device and circuit TCAD simulations. As the N drain gets decreased, the drain current (I D) becomes reduced and the gate-to-drain capacitance (C GD) reflects the entire gate capacitance (C GG) at a lower gate voltage (V G), which leads to the degradation of falling/rising delay in TFET inverters. These phenomena are explained successfully by the change of quasi-Fermi energy in the drain (E F_drain) as a function of V G. The E F_drain rises dramatically from when tunneling current starts to flow from the source in the n-type TFET with low N drain. As a result, drain-side channel inversion occurs at a lower V G due to the reduction of the energy barrier between the E F_drain and the conduction band edge of the channel.

  12. Site occupation, phase stability, crystal and electronic structures of the doped S phase (Al2CuMg)

    NASA Astrophysics Data System (ADS)

    Gu, Jianglong; Gu, Huimin; Zhai, Yuchun; Ma, Peihua

    2016-07-01

    The S phase (Al2CuMg) is an important strengthening phase for the Al-Cu-Mg alloys, which are widely used in the aerospace and transportation industries. The commonly added alloying elements (Mn, Ti, Zr) and the impurity elements (Fe and Si) in the Al-Cu-Mg alloys are always found in the S phase. First-principles calculations based on the density functional theory (DFT) were used to investigate the influence of doping Mn, Ti, Zr, Fe and Si elements on the S phase. Key findings demonstrated that these elements prefer to occupy different atomic sites in the S phase. Ti and Zr improved the structural stability of the S phase. The bulk modulus of the Fe, Si, Ti and Zr doped S phases becomes larger than that of the pure S phase. Both the crystal and electronic structures of the S phase are affected by the dopants. The results of this study provide a better theoretical understanding of the S phase, providing guidance for improved composition design and performance optimization of Al-Cu-Mg alloys.

  13. Effects of Al, Ga-DOPING on Transparent Conducting Properties of Amorphous ZnO-SnO2 Films

    NASA Astrophysics Data System (ADS)

    Moriga, Toshihiro; Nishimura, Yusuke; Suketa, Hiroshi; Murai, Kei-Ichiro; Nogami, Kazuhiro; Tominaga, Kikuo; Nakabayashi, Ichiro

    ZnOSnO2 thin films were deposited on glass substrates (Corning#1737) by DC magnetron sputtering. In this works, we examined a doping effect on a ZnO target on transparent conducting properties. ZnO:Al(4wt%), and ZnO:Ga(6wt%) targets were used for a dopant-free ZnO target. Substrate temperature was held at 250°C. The current ratio δ was defined as IZn/IZ+ISn (ZnO target current divided by the sum of ZnO and SnO2 target currents). Compositions of as-deposited films were changed with the current ratio δ. In the ZnO-SnO2 system, amorphous transparent films appeared over the range of 0.33≤δ≤0.73. On the other hand, in the ZnO:Al(4wt%)-SnO2 and ZnO:Ga(6wt%)-SnO2 systems, they appeared over the range of 0.20≤δ≤0.80 and 0.33≤δ≤0.80, ≤δ≤ respectively. The minimum resistivity of amorphous films was about 3.0×10-2 Ωcm for all the systems. Al, Ga doping effect on film resistivity was not clear very much. But optical transparencies were 80-90% in visible region, 10% higher than those of ZnO-SnO2 system at average. Optical band gap for the films with the same current ratio δ also was enhanced by the Al, Ga doping.

  14. Electrical stability of Al-doped ZnO transparent electrode prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Tabassum, Samia; Yamasue, Eiji; Okumura, Hideyuki; Ishihara, Keiichi N.

    2016-07-01

    Al-doped zinc oxide (AZO) thin films have been considered as a promising alternative to tin doped indium oxide (ITO), which is currently used in various optoelectronic applications. However, the environmental stability of AZO film is not satisfactory, in that the resistivity is significantly increases in air. Here, we investigate the resistivity stability of AZO thin films prepared by sol-gel method using various annealing temperatures and durations. The degradation of resistivity property was observed for AZO films stored in ambient or damp heat environment, where the degradation rate was influenced by annealing temperature. A significant improvement of electrical stability was attained in AZO films that were prepared at high annealing temperature. The films, which showed the highest and the lowest increasing rate of resistivity, were further characterized in detail to shed light on the possible mechanisms explaining the improved stability through crystallinity, surface morphology and elemental state of the thin film.

  15. Photoluminescence and energy transfer in Tb{sup 3+}/Mn{sup 2+} co-doped ZnAl{sub 2}O{sub 4} glass ceramics

    SciTech Connect

    Lakshminarayana, Gandham; Wondraczek, Lothar

    2011-08-15

    We report on Tb{sup 3+} as efficient sensitizer for red photoemission from Mn{sup 2+}-centers in ZnO-B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-Si{sub 2}O-Na{sub 2}O-SrO glasses and corresponding gahnite glass ceramics. In comparison to singly or co-doped glasses, the glass ceramics exhibit significantly increased emission intensity. Structural considerations, ESR, and dynamic luminescence spectroscopy indicate partial incorporation of Mn{sup 2+} as well as Tb{sup 3+} into the crystalline phase, the former on octahedral Zn{sup 2+}-sites. Interionic distance and charge transfer probability between both species depend on crystallization conditions. This enables control of the energy transfer process and, hence, tunability of the color of photoemission by simultaneous emission from Tb{sup 3+} and Mn{sup 2+} centers. Concentration quenching in Mn{sup 2+}-singly doped materials was found at a critical dopant concentration of about 1.0 mol%. The energy transfer process was studied in detail by dynamic as well as static luminescence spectroscopy. Spectroscopic results suggest the application of the studied materials as single or dual-mode emitting phosphor for luminescent lighting. - Graphical abstract: In the prepared Tb{sup 3+}/Mn{sup 2+} codoped glass ceramics containing gahnite (ZnAl{sub 2}O{sub 4}) nanocrystals, the luminescence color is changed from green light to yellowish-red light with an increase in Mn{sup 2+} concentration due to enhanced energy transfer from Tb{sup 3+} to Mn{sup 2+} ions. This tunability should have potential applications in solid state lighting to produce white light, which can be obtained by appropriately optimizing the ratio of Tb{sup 3+}/Mn{sup 2+} ions under UV(350 nm) excitation. Highlights: > Photoluminescence from Mn{sup 2+} and Tb{sup 3+} singly and co-doped glasses and gahnite glass ceramics was studied. > Occurrence of energy transfer from Tb{sup 3+} to Mn{sup 2+} was confirmed. > Luminescence color tunability is achieved by varying dopant

  16. Correlation of martensitic transformation temperatures of Ni- Mn-Ga/Al-X alloys to non-bonding electron concentration

    NASA Astrophysics Data System (ADS)

    Ramudu, M.; Satish Kumar, A.; Seshubai, V.; Rajasekharan, T.

    2015-02-01

    The martensitic transformation TM of the alloys of Ni-Mn-Ga and Ni-Mn-Al show a general trend of increase with electron per atom ratio (e/a) calculated from the total number of electrons outside the rare gas shell of the atoms. However prediction of TM fails among iron substituted Ni-Mn-Ga alloys and those with In doped for Ga, due to the absence of a useful trend. A scheme of computing modified electron concentration is presented considering only the non-bonding electrons per atom Ne/a of the compounds, based on Pauling's ideas on the electronic structure of metallic elements. Systematic variation of TM with Ne/a is reproduced for a large number of alloys of Ni-Mn-Ga and the anomaly observed for Fe containing alloys with e/a disappears. The non-bonding electron concentration is thus demonstrated to be effective in predicting TM of shape memory alloys of Ni-Mn-Ga-X system including the isoelectronic compounds of Ni-Mn-Ga-In.

  17. CdS/CdSe-sensitized solar cell based on Al-doped ZnO nanoparticles prepared by the decomposition of zinc acetate solid solution

    NASA Astrophysics Data System (ADS)

    Deng, Jianping; Wang, Minqiang; Ye, Wei; Fang, Junfei; Zhang, Pengchao; Yang, Yongping; Yang, Zhi

    2017-01-01

    In the study, Al-doped ZnO nanoparticles (Al-ZnO NPs) were prepared by the decomposition of zinc acetate solid solution. The X-ray diffraction results showed that Al3+ was successfully doped without the formation of Al and Al2O3 impurity phases. The less Al-doping did not change the hexagonal wurtzite crystal structure of ZnO. The ratio of Al to Al + Zn (9.05%) measured by the energy dispersive X-ray also confirmed the formation of Al-ZnO. The Al-ZnO NPs were used as the photoanode material to prepare CdS/CdSe-sensitized solar cell. Compared with the cell based on commercial ZnO NPs (C-ZnO), the short-circuit current density and the fill factor of the cell were increased from 5.8 mA/cm2 and 34.1% (C-ZnO) to 7.78 mA/cm2 and 48.7% (Al-ZnO), respectively. The cell efficiency was increased from 1.01% (C-ZnO) to (1.9%) (Al-ZnO) and the increase percentage reached 88.1%. The results of electrochemical impedance spectroscopy and open-circuit voltage-decay suggested the lower carrier transport resistance and the longer electron lifetime of Al-ZnO-based cell.

  18. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN

    SciTech Connect

    Gunning, Brendan P.; Fabien, Chloe A. M.; Merola, Joseph J.; Clinton, Evan A.; Doolittle, W. Alan; Wang, Shuo; Fischer, Alec M.; Ponce, Fernando A.

    2015-01-28

    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 × 10{sup 19} cm{sup −3} with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 × 10{sup 20} cm{sup −3} show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 × 10{sup 19} cm{sup −3}. The p-GaN and p-Al{sub 0.11}Ga{sub 0.89}N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3–3.5 V and series resistances of 6–10 Ω without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K.

  19. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN

    SciTech Connect

    Gunning, BP; Fabien, CAM; Merola, JJ; Clinton, EA; Doolittle, WA; Wang, S; Fischer, AM; Ponce, FA

    2015-01-28

    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 x 10(19) cm(-3) with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 x 10(20) cm(-3) show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 x 10(19) cm(-3). The p-GaN and p-Al0.11Ga0.89N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3-3.5V and series resistances of 6-10 Omega without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K. (C) 2015 AIP Publishing LLC.

  20. Ultrafast dynamics of Al-doped zinc oxide under optical excitation (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kinsey, Nathaniel; DeVault, Clayton T.; Kim, Jongbum; Ferrera, Marcello; Kildishev, Alexander V.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2015-09-01

    There is a continual need to explore new and promising dynamic materials to power next-generation switchable devices. In recent years, transparent conducting oxides have been shown to be vital materials for such systems, allowing for both optical and electrical tunability. Using a pump-probe technique, we investigate the optical tunability of CMOS-compatible, highly aluminum doped zinc oxide (AZO) thin films. The sample was pumped at 325 nm and probed with a weak beam at 1.3 μm to determine the timescale and magnitude of the changes by altering the temporal delay between the pulses with a delay line. For an incident fluence of 3.9 mJ/cm2 a change of 40% in reflection and 30% (max 6.3dB/μm modulation depth) in transmission is observed which is fully recovered within 1ps. Using a computational model, the experimental results were fitted for the given fluence allowing the recombination time and induced carrier density to be extracted. For a fluence of 3.9 mJ/cm2 the average excess carrier density within the material is 0.7×10^20cm-3 and the recombination time is 88fs. The ultrafast temporal response is the result of Auger recombination due to the extremely high carrier concentration present in our films, ~10^21 cm-3. By measuring and fitting the results at several incident fluence levels, the recombination time versus carrier density was determined and fitted with an Auger model resulting in an Auger coefficient of C = 1.03×10^20cm6/sec. Consequently, AZO is shown to be a unique, promising, and CMOS-compatible material for high performance dynamic devices in the near future.

  1. Microstructure and mechanical properties of zirconium doped NiAl/Cr(Mo) hypoeutectic alloy prepared by injection casting

    NASA Astrophysics Data System (ADS)

    Sheng, L. Y.; Du, B. N.; Guo, J. T.

    2017-01-01

    NiAl based materials has been considered as most potential candidate of turbine blade, due to its excellent high-temperature properties. However the bad room-temperature properties handicap its application. In the present paper, the zirconium doped NiAl/Cr(Mo) hypoeutectic alloy is fabricated by conventional casting and injection casting technology to improve its room-temperature properties. The microstructure and compressive properties at different temperatures of the conventionally-cast and injection-cast were investigated. The results exhibit that the conventionally-cast alloy comprises coarse primary NiAl phase and eutectic cell, which is dotted with irregular Ni2AlZr Heusler phase. Compared with the conventionally-cast alloy, the injection-cast alloy possesses refined the primary NiAl, eutectic cell and eutectic lamella. In addition, the Ni2AlZr Heusler phase become smaller and distribute uniformly. Moreover, the injection casting decrease the area fraction of primary NiAl phase at the cell interior or cell boundaries. The compressive ductility and yield strength of the injection-cast alloy at room temperature increase by about 100% and 35% over those of conventionally-cast alloy, which should be ascribed to the microstructure optimization.

  2. The effect of sulfur and zirconium Co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1987-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys, the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S sup 0.2 (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggests that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  3. The effect of sulfur and zirconium co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1988-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys (less than 500 ppma), the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S(0.2) (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggest that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  4. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2015-08-01

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (˜1020 cm-3). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  5. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    SciTech Connect

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2015-08-07

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  6. Simulation of the effective concentration profiles in InGaAs/GaAs heterostructures containing δ-doped layers

    SciTech Connect

    Khazanova, S. V. Degtyarev, V. E.; Tikhov, S. V.; Baidus, N. V.

    2015-01-15

    InGaAs/GaAs heterostructures containing quantum wells and δ-doped layers are studied theoretically and experimentally. On the basis of the procedure of self-consistently solving the Schrödinger equation and Poisson equation, the differential capacitance and the apparent electron concentration profiles are numerically calculated for structures with different mutual arrangements of the quantum well and the δ layer. The results of the calculations are compared with the result of analyzing the experimental capacitance-voltage characteristics of the structures. The systematic features of the behavior of the apparent concentration profiles and capacitance-voltage characteristics in relation to the geometric properties of the structure, the temperature, and the doping level are established.

  7. Band alignment at the interface between Ni-doped Cr2O3 and Al-doped ZnO: implications for transparent p-n junctions

    NASA Astrophysics Data System (ADS)

    Arca, Elisabetta; McInerney, Michael A.; Shvets, Igor V.

    2016-06-01

    The realization of transparent electronic and optoelectronic devices requires the use of transparent p-n junctions. In this context, understanding the band alignment at the interface between the p- and n-components represents a fundamental step towards the realization of high performance devices. In this work, the band alignment at the interface between Al-doped ZnO (AZO) and Ni-doped Cr2O3 has been analysed. The formation and evolution of the core levels as the interface progressively forms have been followed by means of x-ray Photoelectron Spectroscopy, x-ray diffraction and x-ray reflectivity. A type two (staggered) band alignment was identified, with the valence band offset and conduction band offset found to be 2.6 eV and 2.5 eV, respectively. The electrical behaviour will be discussed in terms of the position of the bands, the presence of band bending and the expected built-in potential and how these can be engineered in order to achieve the maximum performance for this hetero-structure.

  8. Half-metallic ferromagnetism in Mn-doped zigzag AlN nanoribbon from first-principles

    NASA Astrophysics Data System (ADS)

    Aghili, S.; Beiranvand, R.; Elahi, S. M.; Abolhasani, M. R.

    2016-12-01

    Based on first-principles calculations, we investigate the effect of Mn impurity on the electronic and magnetic properties of H-terminated zigzag AlN nanoribbons (ZAlNNRs), using the band structure results obtained through the full potential linearized augmented plane wave method within the density functional theory. The calculated results show that the H-terminated ZAlNNR is semiconducting and non magnetic material with a direct band gap of about 2.78 eV. Density of state analyses shows that the top of the valence band is mainly contributed by N atoms, while just beside the conduction band the whole DOS is mainly contributed by Al atoms. The main result is a transition from non-magnetic semiconducting character to half-metallic features upon doping. The Mn-doped ZAlNNR shows complete (100%) spin polarization at the Fermi level and the charge transport is totally originated from Manganese spin up electrons in the nanoribbon. These results propose potential application for the development of AlN nanoribbon-based in magneto-electronic devices.

  9. Optical characterization of pure and Al-doped ZnO prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Belka, Radosław; Keczkowska, Justyna; Kasińska, Justyna

    2016-09-01

    In this paper the preparation process and optical characterization of pure and Al3+ doped zinc oxide (Al:ZnO) coatings will be presented. ZnO based materials have been studied extensively due to their potential applications in optoelectronic devices as conductive gas sensors, transparent conductive, electrodes, solar cell windows, varistors, UVfilters or photovoltaic cells. It is II-VI semiconductor with wide-band gap of 3.37 eV and large exciton binding energy of 60meV. It is possible to improve the conductivity of ZnO coating by intentionally doping ZnO with aluminium ions during preparation process. Such transparent and conducting thin films, known as AZO (Aluminium Zinc Oxide) films, are very good candidate for application as transparent conducting materials in many optoelectronic devices. The well-known sol-gel method is used for preparation of solution, coated on glass substrates by dip coating process. Prepared samples were investigated by Raman and UV-VIS spectroscopy. Transmittance as well as specular and diffuse reflectance spectroscopy methods were used for studies of optical parameters. We found that Al admixture influences on optical bandgap of ZnO.

  10. Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide

    SciTech Connect

    Russo, V.; Ghidelli, M.; Gondoni, P.

    2014-02-21

    In this work we present a detailed Raman scattering investigation of zinc oxide and aluminum-doped zinc oxide (AZO) films characterized by a variety of nanoscale structures and morphologies and synthesized by pulsed laser deposition under different oxygen pressure conditions. The comparison of Raman spectra for pure ZnO and AZO films with similar morphology at the nano/mesoscale allows to investigate the relation between Raman features (peak or band positions, width, relative intensity) and material properties such as local structural order, stoichiometry, and doping. Moreover Raman measurements with three different excitation lines (532, 457, and 325 nm) point out a strong correlation between vibrational and electronic properties. This observation confirms the relevance of a multi-wavelength Raman investigation to obtain a complete structural characterization of advanced doped oxide materials.

  11. Crystal growth and optical properties of indium doped LiCaAlF6 scintillator single crystals

    NASA Astrophysics Data System (ADS)

    Tanaka, Chieko; Yokota, Yuui; Kurosawa, Shunsuke; Yamaji, Akihiro; Jary, Vitezslav; Babin, Vladimir; Pejchal, Jan; Ohashi, Yuji; Kamada, Kei; Nikl, Martin; Yoshikawa, Akira

    2017-03-01

    The In-doped LiCaAlF6 [In:LiCAF] single crystals were grown by the micro-pulling-down (μ-PD) method, and the phases, chemical compositions, transmittance and radioluminescence spectra were investigated. All the grown crystals showed high transparency and single phase of LiCAF without visible cracks and inclusions except for the end part of In2%:LiCAF crystal which included the impurity phase. In the radioluminescence spectra of the In:LiCAF crystals under X-ray irradiation, the emission peak around 750 nm was revealed.

  12. Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method

    NASA Astrophysics Data System (ADS)

    Jin, Ying; McGinn, Paul J.

    2011-10-01

    Li7La3Zr2O12 electrolytes doped with different amounts of Al (0, 0.2, 0.7, 1.2, and 2.5 wt.%) were prepared by a polymerized complex (Pechini) method. The influence of aluminum on the structure and conductivity of Li7La3Zr2O12 were investigated by X-ray diffraction (XRD), impedance spectroscopy, scanning electron microscopy (SEM), and thermal dilatometry. It was found that even a small amount of Al (e.g. 0.2 wt.%) added to Li7La3Zr2O12 can greatly accelerate densification during the sintering process. SEM micrographs showed the existence of a liquid phase introduced by Al additions which led to the enhanced sintering rate. The addition of Al also stabilized the higher conductivity cubic form of Li7La3Zr2O12 rather than the less conductive tetragonal form. The combination of these two beneficial effects of Al enabled greatly reduced sintering times for preparation of highly conductive Li7La3Zr2O12 electrolyte. With optimal additions of Al (e.g. 1.2 wt.%), Li7La3Zr2O12 electrolyte sintered at 1200 °C for only 6 h showed an ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature.

  13. La-doped Al2O3 supported Au nanoparticles: highly active and selective catalysts for PROX under PEMFC operation conditions.

    PubMed

    Lin, Qingquan; Qiao, Botao; Huang, Yanqiang; Li, Lin; Lin, Jian; Liu, Xiao Yan; Wang, Aiqin; Li, Wen-Cui; Zhang, Tao

    2014-03-14

    La-doped γ-Al2O3 supported Au catalysts show high activity and selectivity for the PROX reaction under PEMFC operation conditions. The superior performance is attributed to the formation of LaAlO3, which suppresses H2 oxidation and strengthens CO adsorption on Au sites, thereby improving competitive oxidation of CO at elevated temperature.

  14. The stability and electronic structures of Si/O/Al/P atom doped (5,0)boron nitrogen nanotubes with Stone-Wales defects: Density functional theory studies

    NASA Astrophysics Data System (ADS)

    Li, KeJing; Ye, JinQian; Zhang, Juan; Wang, XiYuan; Shao, QingYi

    2017-03-01

    Using density functional theory, we have investigated Si/O/Al/P atoms doped (5,0)BNNTs with SW defects. We have mainly found that Si/O/Al/P have improved the stability of (5,0)BNNTs with SW defects. In view of Mulliken charge, we have thought Si/O/Al/P atoms have donated electrons (charge +e state or charge -e state) to nanotubes, contributing BNNTs with SW defects to stable. Meanwhile, from the aspect of energy band structure and DOS, we have further explained the reason. We have considerred that stability of doped structures has related to hybridization between doped atom and BNNTs. The stability has changed with changing the degree of hybridization. Moreover, B atom can play a crucial role in the insertion of Si/O/Al/P atom into (5,0)BNNTs with SW defects.

  15. Terahertz detectors from Be-doped low-temperature grown InGaAs/InAlAs: Interplay of annealing and terahertz performance

    NASA Astrophysics Data System (ADS)

    Globisch, B.; Dietz, R. J. B.; Nellen, S.; Göbel, T.; Schell, M.

    2016-12-01

    The influence of post-growth annealing on the electrical properties, the transient carrier dynamics and the performance as THz photoconductive receiver of Beryllium (Be) doped InGaAs/InAlAs multilayer heterostructures grown at 130 °C in a molecular beam epitaxy (MBE) system was investigated. We studied samples with nominally Be doping concentrations of 8 ×10 17 cm-3 - 1.2 ×1019 cm3 annealed for 15 min. - 120 min. at temperatures between 500 °C - 600 °C. In contrast to previous publications, the results show consistently that annealing increases the electron lifetime of the material. In analogy to the annealing properties of low-temperature grown (LTG) GaAs we explain our findings by the precipitation of arsenic antisite defects. The knowledge of the influence of annealing on the material properties allowed for the fabrication of broadband THz photoconductive receivers with an electron lifetime below 300 fs and varying electrical properties. We found that the noise of the detected THz pulse trace in time-domain spectroscopy (TDS) was directly determined by the resistance of the photoconductive receiver and the peak-to-peak amplitude of the THz pulse correlated with the electron mobility.

  16. Evaluation of the optoelectronic properties and corrosion behavior of Al2O3-doped ZnO films prepared by dc pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zubizarreta, C.; Berasategui, E. G.; Bayón, R.; Escobar Galindo, R.; Barros, R.; Gaspar, D.; Nunes, D.; Calmeiro, T.; Martins, R.; Fortunato, E.; Barriga, J.

    2014-12-01

    The main requirements for transparent conducting oxide (TCO) films acting as electrodes are a high transmission rate in the visible spectral region and low resistivity. However, in many cases, tolerance to temperature and humidity exposure is also an important requirement to be fulfilled by the TCOs to assure proper operation and durability. Besides improving current encapsulation methods, the corrosion resistance of the developed TCOs must also be enhanced to warrant the performance of optoelectronic devices. In this paper the performance of aluminum-doped zinc oxide (AZO) films deposited by pulsed dc magnetron sputtering has been studied. Structure, optical transmittance/reflectance, electrical properties (resistivity, carrier concentration and mobility) and corrosion resistance of the developed coatings have been analyzed as a function of the doping of the target and the coating thickness. Films grown from a 2.0 wt% Al2O3 target with a thickness of approximately 1 µm showed a very low resistivity of 6.54  ×  10-4 Ωcm and a high optical transmittance in the visible range of 84%. Corrosion studies of the developed samples have shown very low corrosion currents (nanoamperes), very high corrosion resistances (in the order of 107 Ω) and very high electrochemical stability, indicating no tendency for electrochemical corrosion degradation.

  17. High-Hall-Mobility Al-Doped ZnO Films Having Textured Polycrystalline Structure with a Well-Defined (0001) Orientation.

    PubMed

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2016-12-01

    Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility (μ H) of 50.1 cm(2)/Vs with a carrier concentration (N) of 2.55 × 10(20) cm(-3). Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm(2)/Vs with an N of 2.22 × 10(20) cm(-3).

  18. High-Hall-Mobility Al-Doped ZnO Films Having Textured Polycrystalline Structure with a Well-Defined (0001) Orientation

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2016-06-01

    Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility ( μ H) of 50.1 cm2/Vs with a carrier concentration ( N) of 2.55 × 1020 cm-3. Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm2/Vs with an N of 2.22 × 1020 cm-3.

  19. Studies of defects in combustion synthesized europium-doped LiAl{sub 5}O{sub 8} red phosphor

    SciTech Connect

    Singh, Vijay Gundu Rao, T.K.

    2008-06-15

    Europium-doped LiAl{sub 5}O{sub 8} red phosphor was prepared using a self-propagating (combustion) synthesis. The formation of crystalline LiAl{sub 5}O{sub 8} was confirmed by X-ray diffraction. The morphological aspect of the resulting powders was examined by scanning electron microscopy. Electron spin resonance studies have been carried out in order to study the characteristics of the defect centres and the thermoluminescence (TL) peaks observed in this phosphor. Two types of centres (centre I and centre II) have been identified in LiAl{sub 5}O{sub 8}:Eu. Centre I is characteristic of a species exhibiting an isotropic g-value 2.0089 with a line width of 70 G and is assigned to a V-centre. Centre II is also characterized by an isotropic g-value 2.0059 with a line width of about 10 G. Centre II is ascribed to a F{sup +}-centre. A room temperature photoluminescence study shows a strong emission line at 613 nm corresponding to the {sup 5}D{sub 0}{yields}{sup 7}F{sub 2} transition of Eu{sup 3+} ions. - Graphical abstract: LiAl{sub 5}O{sub 8}:Eu{sup 3+} phosphors have been synthesized in a very short time (lt;5 min) by combustion process and are well characterized by XRD and SEM. TL glow peak was observed in gamma-irradiated Eu ion-doped LiAl{sub 5}O{sub 8} at around 180 deg. C. Electron spin resonance studies have been carried out in order to study the characteristics of the defect centres. Photoluminescence studies showed red emission located at about 613 nm and is ascribed to {sup 5}D{sub 0}-{sup 7}F{sub 2} transition of Eu{sup 3+} ions.

  20. Mg co-doping effects on Ce doped Y3(Ga,Al)5O12 scintillator

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Yamaji, Akihiro; Kurosawa, Shunsuke; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2017-02-01

    Nonstoichiometric Lu3Al5+xO12 (x= 0.05, 0.15, 0.35, 0, -0.05, -0.15, -0.35) crystals were grown by the μ-PD method. Luminescence and scintillation properties such as absorption, excitation and emission spectra, light yield and decay time were evaluated. Expected anti-site defect related host emission have been observed in 250-420nm. Emission intensity was increased by increasing the nonstochiometry. The x=-0.35 sample showed the highest light yield of around 12000 photons/MeV and slowest scintillation decay time of 1.96μs.

  1. Efficiency droop enhancement in AlGaN deep ultraviolet light-emitting diodes by making whole barriers but the bottom Mg doped

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Sun, Huiqing; Yi, Xinyan; Yang, Xian; Fan, Xuancong; Zhang, Cheng; Zhang, Zhuding; Guo, Zhiyou

    2016-09-01

    Ultra violet light-emitting diodes (UVLEDs) with different types of Mg-doped barriers have been studied. The energy band diagrams, internal quantum efficiency, total output power and radiative recombination rate are investigated by APSYS software. The simulation results show that the UVLED with only a p-doped top barrier get little enhancement comparing to the conventional one, on the contrary the structure with p-doping in all but the bottom barriers has a much better optical and electrical properties due to enhancement of the holes' injection and the electrons' confinement. The efficiency droop is significantly alleviated and the light output power is greatly enhanced. To avoid forming a PN junction by the bottom barrier and the n-AlGaN in the proposed structure, therefore, the bottom barrier isn't p-doped. Then structures with different hole densities in the Mg-doped barriers have been studied numerically and that confirmed the best.

  2. Interface Energetics and Charge Carrier Density Amplification by Sn-Doping in LaAlO3/SrTiO3 Heterostructure.

    PubMed

    Nazir, Safdar; Cheng, Jianli; Behtash, Maziar; Luo, Jian; Yang, Kesong

    2015-07-08

    Tailoring the two-dimensional electron gas (2DEG) at the n-type (TiO2)(0)/(LaO)(+1) interface between the polar LaAlO3 (LAO) and nonpolar SrTiO3 (STO) insulators can potentially provide desired functionalities for next-generation low-dimensional nanoelectronic devices. Here, we propose a new approach to tune the electronic and magnetic properties in the n-type LAO/STO heterostructure (HS) system via electron doping. In this work, we modeled four types of layer doped LAO/STO HS systems with Sn dopants at different cation sites and studied their electronic structures and interface energetics by using first-principles electronic structure calculations. We identified the thermodynamic stability conditions for each of the four proposed doped configurations with respect to the undoped LAO/STO interface. We further found that the Sn-doped LAO/STO HS system with Sn at Al site (Sn@Al) is energetically most favorable with respect to decohesion, thereby strengthening the interface, while the doped HS system with Sn at La site (Sn@La) exhibits the lowest interfacial cohesion. Moreover, our results indicate that all the Sn-doped LAO/STO HS systems exhibit the n-type conductivity with the typical 2DEG characteristics except the Sn@La doped HS system, which shows p-type conductivity. In the Sn@Al doped HS model, the Sn dopant exists as a Sn(4+) ion and introduces one additional electron into the HS system, leading to a higher charge carrier density and larger magnetic moment than that of all the other doped HS systems. An enhanced charge confinement of the 2DEG along the c-axis is also found in the Sn@Al doped HS system. We hence suggest that Sn@Al doping can be an effective way to enhance the electrical conduction and magnetic moment of the 2DEG in LAO/STO HS systems in an energetically favorable manner.

  3. Micro-photoluminescence of GaAs/AlGaAs triple concentric quantum rings.

    PubMed

    Abbarchi, Marco; Cavigli, Lucia; Somaschini, Claudio; Bietti, Sergio; Gurioli, Massimo; Vinattieri, Anna; Sanguinetti, Stefano

    2011-10-31

    A systematic optical study, including micro, ensemble and time resolved photoluminescence of GaAs/AlGaAs triple concentric quantum rings, self-assembled via droplet epitaxy, is presented. Clear emission from localized states belonging to the ring structures is reported. The triple rings show a fast decay dynamics, around 40 ps, which is expected to be useful for ultrafast optical switching applications.

  4. Chrystal structure properties of Al-doped Li{sub 4}Ti{sub 5}O{sub 12} synthesized by solid state reaction method

    SciTech Connect

    Sandi, Dianisa Khoirum Suryana, Risa; Priyono, Slamet

    2016-02-08

    This research aim is to analyze the effect of Aluminum (Al) doping in the structural properties of Al-doped Li{sub 4}Ti{sub 5}O{sub 12} as anode in lithium ion battery. Al-doped Li{sub 4}Ti{sub 5}O{sub 12} powders were synthesized by solid state reaction method. LiOH.H{sub 2}O, TiO{sub 2}, and Al{sub 2}O{sub 3} were raw materials. These materials were milled for 15 h, calcined at temperature of 750{sup o}C and sintered at temperature of 800{sup o}C. Mole percentage of doping Al (x) was varied at x=0; x=0.025; and x =0.05. Al-doped Li{sub 4}Ti{sub 5}O{sub 12} powders were synthesized by solid state reaction method. X-ray diffraction was employed to determine the structure of Li{sub 4}Ti{sub 5}O{sub 12}. The PDXL software was performed on the x-ray diffraction data to estimate the phase percentage, the lattice parameter, the unit cell volume, and the crystal density. Al-doped Li{sub 4}Ti{sub 5}O{sub 12} has cubic crystal structure. Al-doping at x=0 and x=0.025 does not change the phase as Li{sub 4}Ti{sub 5}O{sub 12} while at x=0.050 the phase changes to the LiTiAlO{sub 4}. The diffraction patterns show that the angle shifted to the right as the increase of x which indicated that Al substitute Ti site. Percentage of Li{sub 4}Ti{sub 5}O{sub 12} phase at x=0 and x=0.025 was 97.8% and 96.8%, respectively. However, the lattice parameters, the unit cell volume, and the crystal density does not change significantly at x=0; x=0.025; and x=0.050. Based on the percentage of Li{sub 4}Ti{sub 5}O{sub 12} phase, the Al-doped Li at x=0 and x=0.025 is promising as a lithium battery anode.

  5. Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: Effect of molar concentrations

    SciTech Connect

    Mene, Ravindra U.; Mahabole, Megha P.; Mohite, K.C.; Khairnar, Rajendra S.

    2014-02-01

    Highlights: • We report improved gas sensing and dielectric characteristics of Fe ion exchanged HAp films. • Fe doped HAp film shows maximum gas response at relatively lower temperature. • Response and gas uptake capacity of sensors is improved for appropriate amount of Fe ions in HAp matrix. • Fe-HAp films exhibit remarkable improvement in dielectric properties compared to pure HAp. • Fe doped HAp films show significant improvement in gas sensing as well as in dielectric properties. - Abstract: In the present work Fe doped hydroxyapatite (Fe-HAp) thick films has been successfully utilized to improve the gas sensing as well as its dielectric properties. Initially, HAp nano powder is synthesized by chemical precipitation process and later on Fe ions are doped in HAp by ion exchange process. Structural and morphological modifications are observed by means of X-ray diffraction and scanning electron microscopy analysis. The sensing parameters such as operating temperature, response/recovery time and gas uptake capacity are experimentally determined. The Fe-HAp (0.05 M) film shows improved CO and CO{sub 2} gas sensing capacity at lower operating temperature compared to pure HAp. Moreover, variation of dielectric constant and dielectric loss for pure and Fe-HAp thick films are studied as a function of frequency in the range of 10 Hz–1 MHz. The study reveals that Fe doped HAp thick films improve the sensing and dielectric characteristics as compared to pure HAp.

  6. Stabilization of MgAl2O4 spinel surfaces via doping

    SciTech Connect

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; Uberuaga, Blas P.

    2016-02-06

    Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalent dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.

  7. Influence of delta doping on intersubband transition and absorption in AlGaN/GaN step quantum wells for terahertz applications

    NASA Astrophysics Data System (ADS)

    Tang, Chenjie; Shi, Junxia

    2015-05-01

    Effects of delta doping location and density on intersubband transitions in AlGaN/GaN step quantum wells for terahertz (THz) applications have been investigated by solving Schrödinger and Poisson equations self-consistently. It shows that delta doping near the GaN well/AlGaN step well interface causes a blue-shift, while delta doping in the barrier or near barrier/GaN well and barrier/step well interfaces cause a red-shift first and then a blue-shift with increasing doping density. The shifts are attributed to the combination of many body effect and internal field modulation effect, and can be more than 200% or 70% of the e1-e2 transition energy, as for blue-shift or red-shift, respectively. In addition, the influences of delta-doping location and density on the absorption coefficient are also investigated in detail. Delta doping at the middle of a layer is found much more desirable over uniform-doping in order to improve the absorption coefficient, especially in the step well.

  8. Optical bistability and multistability in a defect slab doped by GaAs/AlGaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin

    2016-05-01

    We proposed a new model for controlling the optical bistability (OB) and optical multistability (OM) in a defect slab doped with four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al0.3 Ga0.7As barriers. The effects of biexciton energy renormalization, exciton spin relaxation, and thickness of the slab on the OB and OM properties of the defect slab were theoretically investigated. We found that the transition from OB to OM or vice versa is possible by adjusting the controllable parameters in a lab. Moreover, the transmission, reflection, and absorption properties of the weak probe light through the slab were also discussed in detail.

  9. High rate reactive magnetron sputter deposition of Al-doped ZnO with unipolar pulsing and impedance control system

    SciTech Connect

    Nishi, Yasutaka; Hirohata, Kento; Tsukamoto, Naoki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Al-doped ZnO (AZO) films were deposited on quartz glass substrates, unheated and heated to 200 deg. C, using reactive sputtering with a special feedback system of discharge impedance combined with midfrequency pulsing. A planar Zn-Al alloy target was connected to the switching unit, which was operated in a unipolar pulse mode. The oxidation of the target surface was precisely controlled by a feedback system for the entire O{sub 2} flow ratio including ''the transition region''. The deposition rate was about 10-20 times higher than that for films deposited by conventional sputtering using an oxide target. A deposition rate of AZO films of 390 nm/min with a resistivity of 3.8x10{sup -4} {Omega} cm and a transmittance in the visible region of 85% was obtained when the films were deposited on glass substrates heated to 200 deg. C with a discharge power of 4 kW.

  10. High potential of Mn-doped ZnS nanoparticles with different dopant concentrations as novel MRI contrast agents: synthesis and in vitro relaxivity studies

    NASA Astrophysics Data System (ADS)

    Jahanbin, Tania; Gaceur, Meriem; Gros-Dagnac, Hélène; Benderbous, Soraya; Merah, Souad Ammar

    2015-06-01

    Over several decades, metal-doped quantum dots (QDs) with core-shell structure have been studied as dual probes: fluorescence and magnetic resonance imaging (MRI) probes (Dixit et al., Mater Lett 63(30):2669-2671, 2009). However, metal-doped nanoparticles, in which the majority of metal ions are close to the surface, can affect their efficacy as MRI contrast agents (CAs). In this context, herein the high potential of synthesized Mn-doped ZnS QDs via polyol method as imaging probe is demonstrated. The mean diameters of QDs were measured via transmission electron microscopy (TEM) and X-ray diffraction (XRD). Optical and magnetic properties of MnZnS nanoparticles were characterized using fluorescence spectroscopy and super quanducting interference devices magnetometer and electron paramagnetic resonance system, respectively. T1- and T2-weighted images of nanoparticles in aqueous solution were acquired from spin-echo sequences at 3 T. From TEM images and XRD spectra of the prepared nanoparticles, it is observed that the average diameter of particles does not significantly change with Mn dopant content ( 1.6-1.9 nm). All three samples exhibit broad blue emission under UV light excitation. According to the MRI studies, MnZnS nanoparticles generate strong T1 contrast enhancement (bright T1-weighted images) at the low concentration (<0.1 mM). The MnZnS nanoparticles exhibit the high longitudinal ( r 1) relaxivity that increases from 20.34 to 75.5 mM-1 s-1 with the Mn dopant contents varying between 10 and 30 %. Strong signal intensity on T1-weighted images and high r 1 with {r2 }/{r_{1 }} ≈ 1 can demonstrate the high potential of the synthesized Mn:ZnS nanoparticles, which can serve as an effective T1 CA.

  11. Pressure-induced phase transition and electrical properties of thermoelectric Al-doped Mg{sub 2}Si

    SciTech Connect

    Zhao, Jianbao; Tse, John S.; Liu, Zhenxian; Gordon, Robert A.; Takarabe, Kenichi; Reid, Joel

    2015-10-14

    A recent study has shown the thermoelectric performance of Al-doped Mg{sub 2}Si materials can be significantly enhanced at moderate pressure. To understand the cause of this phenomenon, we have performed in situ angle dispersive X-ray diffraction and infrared reflectivity measurements up to 17 GPa at room temperature. Contrary to previous experiment, using helium as a pressure transmission medium, no structural transformation was observed in pure Mg{sub 2}Si. In contrast, a phase transition from cubic anti-fluorite (Fm-3m) to orthorhombic anti-cotunnite (Pnma) was observed in the Al-doped sample at 10 GPa. Infrared reflectivity measurements show the electrical conductivity increases with pressure and is further enhanced after the phase transition. The electron density of states at the Fermi level computed form density functional calculations predict a maximum thermoelectric power factor at 1.9 GPa, which is in good agreement with the experimental observation.

  12. Thermoluminescence of Ge- and Al-Doped SiO2 Optical Fibers Subjected to 0.2-4.0 Gy External Photon Radiotherapeutic Dose

    NASA Astrophysics Data System (ADS)

    Hossain, I.; Wagiran, H.; Yaakob, N. H.

    2013-09-01

    In this work, we studied the thermoluminescence response of Ge- and Al-doped optical fibers, its linearity, energy dependence, and sensitivity. The Ge-doped optical fibers demonstrate useful TL properties and represent an excellent candidate for use in TL dosimetry of ionizing radiation. The TL response increases monotonically over a wide photon dose range, from 0.2 Gy to 4.0 Gy. The TL results for these fibers have been compared with similar TL data for phosphor TLD-100. Commercially available Al- and Ge-doped optical fibers have both been found to yield a linear dose-TL signal relationship, although the Al-doped fiber provides only 5 % of the sensitivity of the Ge-doped fibers. The TL characteristics of Ge-doped optical fiber, plus its small size (125 μm diameter), high flexibility, ease of handling, and low cost compared with other TL materials, make this commercial optical fiber a very promising TL material for use in medicine, industry, reactor operation, and a variety of other areas.

  13. Preparation and characterization of Miocene clay powders in the region of Taza (Morocco) after doping with metal oxides Al2O3

    NASA Astrophysics Data System (ADS)

    Mesrar, L.; Lakrim, M.; Akdim, M.; Benmar, A.; –Sbai, N. ES; Jabrane, R.

    2017-03-01

    The marl’s minerals are abundant untreated material in several areas worldwide. They are often under-valued for human use. However, due to demands of the society in terms of sustainability and energy saving, the valuation of these resources to develop new materials, most environmentally friendly has become a concern both scientific and industrial aims. Ceramics are the growing research to obtain materials with good chemical stability and good hot properties [1]. The balance between these properties and industrial requirements allowed clay materials uses at craft departure (pottery, tile), to progress towards high-tech applications such as electrical and thermal insulation, electric candle, sound insulation [2]. The behavior of the doping (Al2O3), which has more scientific research interest, has been a renewed interest since 1980 [3] with the emergence of alumina very high purity. Miocene marl is one of the widespread geological substrates in Fez-Taza vicinity (Central Morocco). In this study we proceed by a physicochemical characterization of the marl after doping with metal oxides, by various analytical techniques, namely the X-ray fluorescence, the mineralogical analysis and geotechnical test. The doping of these marl was conducted by solid oxides of Al2O3 at different percentages (5%, 10% and 15%). The results of chemical analysis showed the Al2O3 increase during doping. So, the mineralogical analysis of doped clays shows peaks’ increases for kaolin. The marl doped acquired the property of their good plasticity and good mechanical resistance compared to crass marl.

  14. Room temperature synthesis of Mn{sup 2+} doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination

    SciTech Connect

    Kole, A. K.; Kumbhakar, P.; Tiwary, C. S.

    2013-03-21

    Mn{sup 2+} doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn{sup 2+} doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be {approx}1.10 (at. %) corresponding to 40.0 (molar %) of Mn{sup 2+} doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn{sup 2+} doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn{sup 2+} doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn{sup 2+} doped sample shows an enhancement of 33% in PL emission intensity.

  15. Low temperature fabrication and doping concentration analysis of Au/Sb ohmic contacts to n-type Si

    NASA Astrophysics Data System (ADS)

    Liu, J. Q.; Wang, C.; Zhu, T.; Wu, W. J.; Fan, J.; Tu, L. C.

    2015-11-01

    This paper investigates low temperature ohmic contact formation of Au/Sb to n-type Si substrates through AuSb/NiCr/Au metal stacks. Liquid epitaxy growth is utilized to incorporate Sb dopants into Si substrate in AuSi melt. The best specific contact resistivity achieved is 0.003 Ω ṡ cm2 at 425 oC. Scanning electron microscopy (SEM) reveals inverted pyramidal crater regions at the metal/semiconductor interface, indicating that AuSi alloying efficiently occurs at such sites. Secondary ion mass spectroscopy (SIMS) shows that Sb atoms are successfully incorporated into Si as doping impurities during the anneal process, and the Sb doping concentration at the contact interface is found to be higher than the solid solubility limit in a Si crystal. This ohmic contacts formation method is suitable for semiconductor fabrication processes with limited thermal budget, such as post CMOS integration of MEMS.

  16. Low temperature fabrication and doping concentration analysis of Au/Sb ohmic contacts to n-type Si

    SciTech Connect

    Liu, J. Q.; Wang, C.; Zhu, T.; Wu, W. J.; Fan, J.; Tu, L. C.

    2015-11-15

    This paper investigates low temperature ohmic contact formation of Au/Sb to n-type Si substrates through AuSb/NiCr/Au metal stacks. Liquid epitaxy growth is utilized to incorporate Sb dopants into Si substrate in AuSi melt. The best specific contact resistivity achieved is 0.003 Ω ⋅ cm{sup 2} at 425 {sup o}C. Scanning electron microscopy (SEM) reveals inverted pyramidal crater regions at the metal/semiconductor interface, indicating that AuSi alloying efficiently occurs at such sites. Secondary ion mass spectroscopy (SIMS) shows that Sb atoms are successfully incorporated into Si as doping impurities during the anneal process, and the Sb doping concentration at the contact interface is found to be higher than the solid solubility limit in a Si crystal. This ohmic contacts formation method is suitable for semiconductor fabrication processes with limited thermal budget, such as post CMOS integration of MEMS.

  17. Doping the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage.

    PubMed

    Niu, Min; Yu, Guangtao; Yang, Guanghui; Chen, Wei; Zhao, Xingang; Huang, Xuri

    2014-01-06

    Under ab initio computations, several new inorganic electride compounds with high stability, M@x-Al12N12 (M = Li, Na, and K; x = b66, b64, and r6), were achieved for the first time by doping the alkali metal atom M on the fullerene-like Al12N12 nanocage, where the alkali atom is located over the Al-N bond (b66/b64 site) or six-membered ring (r6 site). It is revealed that independent of the doping position and atomic number, doping the alkali atom can significantly narrow the wide gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) (EH-L = 6.12 eV) of the pure Al12N12 nanocage in the range of 0.49-0.71 eV, and these doped AlN nanocages can exhibit the intriguing n-type characteristic, where a high energy level containing the excess electron is introduced as the new HOMO orbital in the original gap of pure Al12N12. Further, the diffuse excess electron also brings these doped AlN nanostructures the considerable first hyperpolarizabilities (β0), which are 1.09 × 10(4) au for Li@b66-Al12N12, 1.10 × 10(4), 1.62 × 10(4), 7.58 × 10(4) au for M@b64-Al12N12 (M = Li, Na, and K), and 8.89 × 10(5), 1.36 × 10(5), 5.48 × 10(4) au for M@r6-Al12N12 (M = Li, Na, and K), respectively. Clearly, doping the heavier Na/K atom over the Al-N bond can get the larger β0 value, while the reverse trend can be observed for the series with the alkali atom over the six-membered ring, where doping the lighter Li atom can achieve the larger β0 value. These fascinating findings will be advantageous for promoting the potential applications of the inorganic AlN-based nanosystems in the new type of electronic nanodevices and high-performance nonlinear optical (NLO) materials.

  18. First-principles study on the electronic and optical properties of Si and Al co-doped zinc oxide for solar cell devices

    NASA Astrophysics Data System (ADS)

    Abbassi, A.; El Amrani, A.; Ez-Zahraouy, H.; Benyoussef, A.; El Amraoui, Y.

    2016-06-01

    Electronic and optical properties of co-doped zinc oxide ZnO with silicon (Si) and aluminum (Al), in Zn1-2 x Si x Al x O (0 ≤ x ≤ 0.0625) original structure forms, are investigated by the first-principles calculations based on the density functional theory (DFT). The optical constants and dielectric functions are investigated with the full-potential linearized augmented plane wave (FP-LAPW) method and the generalized gradient approximation (GGA) by WIEN2k package. The complex dielectric functions, refractive index and band gap of the pure as well as doped and co-doped ZnO were investigated, which are in good agreement with the available experimental results for the undoped ZnO. Thus, the maximum optical transmittance of the co-doped ZnO of about 95 % was achieved; it is higher than that of pure ZnO. Thus, we showed for the Si-Al co-doped ZnO with x = 0.0315 that the optical transmittance can cover a larger range in the visible light region. In addition, an occurrence of important energy levels around Fermi levels was showed, which is mainly due to doping atoms that lead to an overlap between valence and conduction bands, and consequently to the significant conductor behavior of the Si-Al co-doped ZnO. The original Zn1-2 x Si x Al x O structure reveals promising optical and electronic properties, and it can be investigated as good candidates for practical uses as transparent and conducting electrodes in solar cell devices.

  19. Al2O3 influence on structural, elastic, thermal properties of Yb(3+) doped Ba-La-tellurite glass: evidence of reduction in self-radiation trapping at 1μm emission.

    PubMed

    Balaji, S; Biswas, K; Sontakke, A D; Gupta, G; Ghosh, D; Annapurna, K

    2014-12-10

    Ba-La-tellurite glasses doped with Yb(3+) ions have been prepared through melt quenching technique by modifying their composition with the inclusion of varied concentration of Al2O3 to elucidate its effects on glass structural, elastic, thermal properties and Yb(3+) ion NIR luminescence performance. The FTIR spectral analysis indicates Al2O3 addition is promoting the conversion of BOs from NBOs which have been generated during the process of depolymerisation of main glass forming TeO4 units. The elastic properties of the glass revealed an improved rigidity of the glass network on addition of Al2O3. In concurrence to this, differential thermal analysis showed an increase in glass transition temperature with improved thermal stability factor. Also, Yb(3+) fluorescence dynamics demonstrated that, Al2O3 inclusion helps in restraining the detrimental radiation trapping of ∼1μm emission.

  20. Effects of doping concentration ratio on electrical characterization in pseudomorphic HEMT-based MMIC switches for ICT system

    NASA Astrophysics Data System (ADS)

    Mun, Jae-Kyoung; Oh, Jung-Hun; Sung, Ho-Kun; Wang, Cong

    2015-12-01

    The effects of the doping concentration ratios between upper and lower silicon planar-doping layers on the DC and RF characteristics of the double planar doped pseudomorphic high electron mobility transistors (pHEMTs) are investigated. From the device simulation, an increase of maximum extrinsic transconductance and a decrease of total on- and off-state capacitances are observed, as well as an increase of the upper to lower planar-doping concentration ratios (UTLPDR), which give rise to an enhancement of the switching speed and isolation characteristics. On the basis of simulation results, two types of pHEMTs are fabricated with two different UTLPDRs of 4:1 and 1:2. After applying these two types' pHEMTs, single-pole-double-throw (SPDT) transmitter/receiver monolithic microwave integrated circuit (MMIC) switches are also designed and fabricated. The SPDT MMIC switch with a 4:1 UTLPDR shows an insertion loss of 0.58 dB, isolation of 40.2 dB, and switching speed of 100 ns, respectively, which correspondingly indicate a 0.23 dB lower insertion loss, 2.90 dB higher isolation and 2.5 times faster switching speed than those of 1:2 UTLPDR at frequency range of 2-6 GHz. From the simulation results and comparative studies, we propose that the UTLPDR must be greater than 4:1 for the best switching performance. With the abovementioned excellent performances, the proposed switch would be quite promising in the application of information and communications technology system.

  1. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water.

    PubMed

    Chai, Liyuan; Wang, Yunyan; Zhao, Na; Yang, Weichun; You, Xiangyu

    2013-08-01

    A novel adsorbent of sulfate-doped Fe3O4/Al2O3 nanoparticles with magnetic separability was developed for fluoride removal from drinking water. The nanosized adsorbent was characterized and its performance in fluoride removal was evaluated. Kinetic data reveal that the fluoride adsorption was rapid in the beginning followed by a slower adsorption process, nearly 90% adsorption can be achieved within 20 min and only 10-15% additional removal occurred in the following 8 h. The fluoride adsorption isotherm was well described by Elovich model. The calculated adsorption capacity of this nanoadsorbent for fluoride by two-site Langmuir model was 70.4 mg/g at pH 7.0. Moreover, this nanoadsorbent performed well over a considerable wide pH range of 4-10, and the fluoride removal efficiencies reached up to 90% and 70% throughout the pH range of 4-10 with initial fluoride concentrations of 10 mg/L and 50 mg/L, respectively. The observed sulfate-fluoride displacement and decreased sulfur content on the adsorbent surface reveal that anion exchange process was an important mechanism for fluoride adsorption by the sulfate-doped Fe3O4/Al2O3 nanoparticles. Moreover, a shift of the pH of zero point charge (pHPZC) of the nanoparticles and surface analysis based on X-ray photoelectron spectroscopy (XPS) suggest the formation of inner-sphere fluoride complex at the aluminum center as another adsorption mechanism. With the exception of PO4(3-), other co-existing anions (NO3(-), Cl(-) and SO4(2-)) did not evidently inhibit fluoride removal by the nanoparticles. Findings of this study demonstrate the potential utility of the nanoparticles as an effective adsorbent for fluoride removal from drinking water.

  2. Space concentrator solar cells based on multilayer LPE grown AlGaAs/GaAs heterostructure

    NASA Technical Reports Server (NTRS)

    Khvostikov, V. P.; Larionov, V. R.; Paleeva, E. V.; Sorokina, S. V.; Chosta, O. I.; Shvarts, M. Z.; Zimogorova, N. S.

    1995-01-01

    The high efficiency solar cells based on multilayer AlGaAs/GaAs heterostructures, prepared by low temperature liquid phase epitaxy (LPE), were developed and tested. An investigation of the low temperature LPE process for the crystallization of AlGaAs heterostructures of as high as 24.0 to 24.7 percent under AMO conditions at concentration ratios of 20 to 100x, were reached. Developed solar cells show substantial radiation resistance to the damage induced by 3.75 MeV electrons.

  3. Growth and characterisation of NiAl and N-doped NiAl films deposited by closed field unbalanced magnetron sputtering ion plating using elemental ni and Al targets.

    PubMed

    Said, R; Ahmed, W; Abuain, T; Abuazza, A; Gracio, J

    2010-04-01

    Closed Field Unbalanced Magnetron Sputtering Ion Plating (CFUBMSIP) has been used to deposit undoped and nitrogen doped NiAI thin films onto glass and stainless steel 316 substrates. These films have potential applications in tribological, electronic media and thermal barrier coatings. The surface characteristics, composition, mechanical and structural properties have been investigated using stylus profilometry, X-ray diffraction (XRD), Energy dispersive spectroscopy (EDAX), Atomic force microscopy (AFM) and nanoindentation. The average thickness of the films was approximately 1 microm. The X-ray diffraction spectra revealed the presence of the beta NiAl phase. The EDAX results revealed that all of the undoped and nitrogen doped NiAl thin films exhibited the near equiatomic NiAl composition with the best results being achieved using 300 Watts DC power for Ni and 400 Watts DC power for Al targets respectively. AFM results of both types of films deposited on glass samples exhibited a surface roughness of less than 100 nm. The nanoindenter results for coatings on glass substrates displayed hardness and elastic modulus of 7.7 GPa and 100 GPa respectively. The hardest coatings obtained were obtained at 10% of nitrogen.

  4. Near infrared ray annealing effects on the properties of Al-doped ZnO thin films prepared by spin-coating method.

    PubMed

    Jun, Min-Chul; Park, Sang-Uk; Chae, Moon-Soon; Shin, Dong-Jin; Ha, Jae-Geun; Koo, Sang-Mo; Lee, Kyung-Ju; Moon, Byung-Moo; Song, Chi-Young; Koh, Jung-Hyuk

    2013-09-01

    In this research, we will present Al doped ZnO thin films for transparent conducting oxide applications. Aluminum doped zinc oxide (AZO) thin films have been deposited on the glass substrates by sol-gel spin-coating method using zinc acetate dehydrate (Zn(CH3COO)2 2H2O) and aluminum chloride hexahydrate (AlCl3 x 6H2O) as cation sources. In this study, we investigated the effects of near infrared ray (NIR) annealing on the structural, optical and electrical characteristics of the AZO thin films. The experimental results showed that AZO thin films have a hexagonal wurtzite crystal structure and had a good transmittance higher than 85% within the visible wavelength region. It was also found that the additional energy of NIR helps to improve the electrical properties of Al doped ZnO transparent conducting oxides.

  5. Atomic layer deposition of Al-doped ZnO/Al2O3 double layers on vertically aligned carbon nanofiber arrays.

    PubMed

    Malek, Gary A; Brown, Emery; Klankowski, Steven A; Liu, Jianwei; Elliot, Alan J; Lu, Rongtao; Li, Jun; Wu, Judy

    2014-05-14

    High-aspect-ratio, vertically aligned carbon nanofibers (VACNFs) were conformally coated with aluminum oxide (Al2O3) and aluminum-doped zinc oxide (AZO) using atomic layer deposition (ALD) in order to produce a three-dimensional array of metal-insulator-metal core-shell nanostructures. Prefunctionalization before ALD, as required for initiating covalent bonding on a carbon nanotube surface, was eliminated on VACNFs due to the graphitic edges along the surface of each CNF. The graphitic edges provided ideal nucleation sites under sequential exposures of H2O and trimethylaluminum to form an Al2O3 coating up to 20 nm in thickness. High-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy images confirmed the conformal core-shell AZO/Al2O3/CNF structures while energy-dispersive X-ray spectroscopy verified the elemental composition of the different layers. HRTEM selected area electron diffraction revealed that the as-made Al2O3 by ALD at 200 °C was amorphous, and then, after annealing in air at 450 °C for 30 min, was converted to polycrystalline form. Nevertheless, comparable dielectric constants of 9.3 were obtained in both cases by cyclic voltammetry at a scan rate of 1000 V/s. The conformal core-shell AZO/Al2O3/VACNF array structure demonstrated in this work provides a promising three-dimensional architecture toward applications of solid-state capacitors with large surface area having a thin, leak-free dielectric.

  6. Oxidative Recession, Sulfur Release, and Al203 Spallation for Y-Doped Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2001-01-01

    Second-order spallation phenomena have been noted for Y-doped Rene'N5 after long term oxidation at 1150 degrees C. The reason for this behavior has not been conclusively identified. A mass equivalence analysis has shown that the surface recession resulting from oxidation has the potential of releasing about 0.15 monolayer of sulfur for every 1 mg/sq cm of oxygen reacted for an alloy containing 5 ppmw of sulfur. This amount is significant in comparison to levels that have been shown to result in first-order spallation behavior for undoped alloys. Oxidative recession is therefore speculated to be a contributing source of sulfur and second-order spallation for Y-doped alloys.

  7. Microstructure evolution of Al-doped zinc oxide and Sn-doped indium oxide deposited by radio-frequency magnetron sputtering: A comparison

    SciTech Connect

    Nie, Man; Bikowski, Andre; Ellmer, Klaus

    2015-04-21

    The microstructure and morphology evolution of Al-doped zinc oxide (AZO) and Sn-doped indium oxide (ITO) thin films on borosilicate glass substrates deposited by radio-frequency magnetron sputtering at room temperature (RT) and 300 °C were investigated by X-ray diffraction and atomic force microscopy (AFM). One-dimensional power spectral density (1DPSD) functions derived from the AFM profiles, which can be used to distinguish different growth mechanisms, were used to compare the microstructure scaling behavior of the thin films. The rms roughness R{sub q} evolves with film thickness as a power law, R{sub q} ∼ d{sub f}{sup β}, and different growth exponents β were found for AZO and ITO films. For AZO films, β of 1.47 and 0.56 are obtained for RT and 300 °C depositions, respectively, which are caused by the high compressive stress in the film at RT and relaxation of the stress at 300 °C. While for ITO films, β{sub 1} = 0.14 and β{sub 2} = 0.64 for RT, and β{sub 1} = 0.89 and β{sub 2} = 0.3 for 300 °C deposition are obtained, respectively, which is related to the strong competition between the surface diffusion and shadowing effect and/or grain growth. Electrical properties of both materials as a function of film thickness were also compared. By the modified Fuchs-Sondheimer model fitting of the electrical transport in both materials, different nucleation states are pointed out for both types of films.

  8. Investigation of the silicon concentration effect on Si-doped anatase TiO{sub 2} by first-principles calculation

    SciTech Connect

    Shi Weimei; Chen Qifeng; Xu Yao; Wu Dong; Huo Chunfang

    2011-08-15

    A first-principles calculation based on the density functional theory (DFT) was used to investigate the energetic and electronic properties of Si-doped anatase TiO{sub 2} with various silicon concentrations. The theoretical calculations showed that with Si-doping the valence band and conduction band of TiO{sub 2} became hybrid ones with large dispersion, which could benefit the mobility of the photo-generated carriers. This result is in agreement with the experimental reports. At lower doping levels, the band gap of Si-doped anatase TiO{sub 2} decreases about 0.2 eV. With the increase of silicon concentration, the band gap increases gradually and larger formation energies are required during the synthesis of Si-doped TiO{sub 2}. - Graphical abstract: The total density of states (TDOS) of Ti{sub 1-x}Si{sub x}O{sub 2} with (a) x=0, (b) x=0.03125, (c) x=0.0625, (d) x=0.09375 and (e) x=0.125. Highlights: > The effect of Si content on the electronic structure in Si-doped anatase TiO{sub 2}. > Large dispersion of DOS in VB and CB benefits the mobility of the carriers. > Low Si-doping level reduces the band gap of Si-doped anatase TiO{sub 2} with 0.2 eV.

  9. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Liu, Jingmao; Geng, Dongsen; Guo, Peng; Zheng, Jun; Wang, Qimin

    2016-12-01

    DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C2H2 and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C2H2 fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C2H2 fraction. The results show that the Al and Cr contents in the films increased continuously as the C2H2 fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would cause abrasive wear and thus deteriorate the wear performance of the films.

  10. Ferromagnetic ordering in Mn-doped quantum wells GaAs-AlGaAs resulting from the virtual Anderson transition

    SciTech Connect

    Agrinskaya, N. V.; Berezovets, V. A.; Bouravlev, A.; Kozub, V. I.

    2014-08-20

    We present our results obtained for Mn-doped GaAs quantum wells where the evidences of the ferromagnetic transition at relatively high temperatures were found at unusually small Mn concentrations. The observed values of hopping resistance at small temperatures evidenced that the samples are deep in the insulating regime. Thus the corresponding estimates of the overlapping integrals can hardly explain the large values of Curie temperatures T{sub c} ≃ 100 K. We develop a theoretical model qualitatively explaining the experimental results basing on the concept of virtual Anderson transition.

  11. Computational discovery of lanthanide doped and Co-doped Y{sub 3}Al{sub 5}O{sub 12} for optoelectronic applications

    SciTech Connect

    Choudhary, Kamal; Chernatynskiy, Aleksandr; Phillpot, Simon R.; Sinnott, Susan B.; Mathew, Kiran; Bucholz, Eric W.; Hennig, Richard G.

    2015-09-14

    We systematically elucidate the optoelectronic properties of rare-earth doped and Ce co-doped yttrium aluminum garnet (YAG) using hybrid exchange-correlation functional based density functional theory. The predicted optical transitions agree with the experimental observations for single doped Ce:YAG, Pr:YAG, and co-doped Er,Ce:YAG. We find that co-doping of Ce-doped YAG with any lanthanide except Eu and Lu lowers the transition energies; we attribute this behavior to the lanthanide-induced change in bonding environment of the dopant atoms. Furthermore, we find infrared transitions only in case of the Er, Tb, and Tm co-doped Ce:YAG and suggest Tm,Ce:YAG and Tb,Ce:YAG as possible functional materials for efficient spectral up-conversion devices.

  12. Effect of Al and Ca co-doping, in the presence of Te, in superconducting YBCO whiskers growth.

    PubMed

    Pascale, Lise; Truccato, Marco; Operti, Lorenza; Agostino, Angelo

    2016-10-01

    High-Tc superconducting cuprates (HTSC) such as YBa2Cu3O7 - x (YBCO) are promising candidates for solid-state THz applications based on stacks of intrinsic Josephson junctions (IJJs) with atomic thickness. In view of future exploitation of IJJs, high-quality superconducting YBCO tape-like single crystals (whiskers) have been synthesized from Ca-Al-doped precursors in the presence of Te. The main aim of this paper is to determine the importance of the simultaneous use of Al, Te and Ca in promoting YBCO whiskers growth with good superconducting properties (Tc = 79-84 K). Further, single-crystal X-ray diffraction (SC-XRD) refinements of tetragonal YBCO whiskers (P4/mmm) are reported to fill the literature lack of YBCO structure investigations. All the as-grown whiskers have also been investigated by means of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Our results demonstrate that the interplay of Ca, Te and Al elements is clearly necessary in order to obtain superconducting YBCO whiskers. The data obtained from SC-XRD analyses confirm the highly crystalline nature of the whiskers grown. Ca and Al enter the structure by replacing the Y and the octahedral coordinated Cu1 site, respectively, as in other similar orthorhombic compounds, while Te does not enter the structure of whiskers but its presence in the precursor is essential to the growth of the crystals.

  13. Study of Mössbauer and magnetic properties of Al{sup 3+} ions doped superparamagnetic nano ferrites

    SciTech Connect

    Verma, Satish Chand, Jagdish; Sarveena,; Singh, M.

    2015-06-24

    Nanocrystalline Al{sup 3+} ions doped Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2-y}O{sub 4} compositions, where y=0.0 and 0.10 have been synthesized by citrate precursor method. Crystal structure and magnetic properties have been investigated at room temperature by means of X-ray diffraction, TEM, LCR meter, VSM and Mössbauer spectroscopy. Particle size and lattice parameter has been found to decrease as non-magnetic Al content increased. Relative loss factor has very low value in range of 10{sup −6}–10{sup −5} which is three orders of magnitude less than samples prepared by conventional method. The Mössbauer spectroscopy results shows superparamagnetism. The isomer shift corresponding to Fe{sup 3+} ions do not show any significant variation which indicates that replacement of Fe{sup 3+} ions do not affect significantly the d-electrons density which in turn affects the s-electrons density around Fe{sup 3+} nuclei. The nuclear hyperfine magnetic fields have been found to decrease at A-site and B-site with increasing substitution of Al{sup 3+} ions in Mg-Mn-Ni ferrite.

  14. Al doping effect on magnetic phase transitions of magnetoelectric hexaferrite Ba0.7Sr1.3Zn2(Fe1-xAlx)12O22

    NASA Astrophysics Data System (ADS)

    Chang, Hun; Lee, Hak Bong; Song, Young-Sang; Chung, Jae-Ho; Kim, S. A.; Oh, I. H.; Reehuis, M.; Schefer, J.

    2012-02-01

    We investigated the effect of Al doping in magnetic properties of the Y-type hexaferrite Ba0.7Sr1.3Zn2(Fe1-xAlx)12O22 (0≤x≤0.12), which exhibit field-induced magnetoelectric polarization. We find that Al doping increases the pitch of a spin helix and enhances c-axis magnetization, stabilizing longitudinal conical phases. These conical phases eventually collapse at x≥ 0.10. These results suggest that competitions between easy-axis and easy-plane anisotropy fields play a key role in generating stable magnetoelectric polarization in Y-type hexaferrites.

  15. High-efficiency AlGaAs-GaAs Cassegrainian concentrator cells

    NASA Technical Reports Server (NTRS)

    Werthen, J. G.; Hamaker, H. C.; Virshup, G. F.; Lewis, C. R.; Ford, C. W.

    1985-01-01

    AlGaAs-GaAs heteroface space concentrator solar cells have been fabricated by metalorganic chemical vapor deposition. AMO efficiencies as high as 21.1% have been observed both for p-n and np structures under concentration (90 to 100X) at 25 C. Both cell structures are characterized by high quantum efficiencies and their performances are close to those predicted by a realistic computer model. In agreement with the computer model, the n-p cell exhibits a higher short-circuit current density.

  16. Comparative studies of CdS, CdS:Al, CdS:Na and CdS:(Al-Na) thin films prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Yılmaz, S.; Atasoy, Y.; Tomakin, M.; Bacaksız, E.

    2015-12-01

    In the present study, the spray pyrolysis technique was used to prepare pure CdS, 4 at.% Al-doped CdS, 4 at.% Na-doped CdS and (4 at.% Al, 4 at.% Na)-co-doped CdS thin films. It was found from X-ray diffraction data that all the specimens showed hexagonal wurtzite structure with the preferred orientation of (101). Scanning electron microscopy results indicated that 4 at.% Al-doping caused a grain growth in the morphology of CdS thin films whereas the 4 at.% Na-doping and (4 at.% Al, 4 at.% Na)-co-doping led to porous structure with small grains. The band gap value of CdS thin films increased to 2.42 eV after 4 at.% Al-doping. However, it reduced to 2.30 eV and 2.08 eV for 4 at.% Na-doping and (4 at.% Al, 4 at.% Na)-co-doping, respectively. The room temperature photoluminescence measurements illustrated that the peak intensity of CdS thin films enhanced with 4 at.% Al-doping while 4 at.% Na-doping and (4 at.% Al, 4 at.% Na)-co-doping caused a decline in the intensity. The maximum carrier concentration and minimum resistivity were obtained for 4 at.% Al-doped CdS thin films, which is associated with the grain growth. Furthermore, (4 at.% Al, 4 at.% Na)-co-doping gave rise to a slight reduction in the carrier concentration and a slight increment in the resistivity. As a result, it can be said that 4 at.% Al-doped CdS thin films exhibited the best electrical and optical properties, which is important for the opto-electronic applications.

  17. Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration

    SciTech Connect

    Hamida, B A; Cheng, X S; Harun, S W; Naji, A W; Arof, H; Al-Khateeb, W; Khan, S; Ahmad, H

    2012-03-31

    A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achieved with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.

  18. Radiation enhancement in doped AlGaN-structures upon optical pumping

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.; Zhuravlev, K. S.; Zakrevsky, D. E.; Malin, T. V.; Osinnykh, I. V.; Fateev, N. V.

    2017-01-01

    Spectral characteristics of spontaneous and stimulated luminescence have been studied for molecular beam epitaxy synthesized Al x Ga1- x N/AlN solid solutions with x = 0.5 and 0.74 upon optical pumping by pulse laser radiation with λ = 266 nm. Broadband radiation spectra with a width of 260 THz for Al0.5Ga0.5N and 360 THz for Al0.74Ga0.26N have been obtained. The measured enhancement factors are g ≈ 70 cm-1 for Al0.5Ga0.5N at λ ≈ 528 nm and g ≈ 20 cm-1 for Al0.74Ga0.26N at λ ≈ 468 nm.

  19. Nanosized pure and Cr doped Al{sub 2−x}Sc{sub x}(WO{sub 4}){sub 3} solid solutions

    SciTech Connect

    Yordanova, A.; Koseva, I.; Velichkova, N.; Kovacheva, D.; Rabadjieva, D.; Nikolov, V.

    2012-06-15

    Highlights: ► Nanosized pure and Cr-doped Al{sub 2−x}Sc{sub x}(WO{sub 4}){sub 3} obtained for a first time. ► Material for ceramics with different application. ► Co-precipitation method for preparation. ► X-ray, DTA, TEM investigations. ► Co-precipitation method gives 10–70 nm particles. -- Abstract: Nanosized solid solutions of the formula Al{sub 2−x−y}Sc{sub x}Cr{sub y}(WO{sub 4}){sub 3}, where x varies from 0 to 2 and y from 0.02 to 0.1 are synthesized for the first time by the co-precipitation method. X-ray powder diffraction, DTA/TG and TEM analyses demonstrate that the powders are pure solid solution compounds with orthorhombic structure, space group Pnca. Particle sizes between 10 and 70 nm are obtained after thermal treatment of the precipitates at 550 °C for 1 h for all compositions except in the case of Sc{sub 1.9}Cr{sub 0.1}(WO{sub 4}){sub 3}. For the last one mean particle size of 64 nm was obtained after thermal treatment at 500 °C. The influence of the concentrations of Sc and Cr as well as of the temperature and duration of the thermal treatment on the particle size and size distribution are established and discussed.

  20. Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism.

    PubMed

    Tuček, Jiří; Błoński, Piotr; Sofer, Zdeněk; Šimek, Petr; Petr, Martin; Pumera, Martin; Otyepka, Michal; Zbořil, Radek

    2016-07-01

    Imprinting ferromagnetism to a graphene structure by substitution of carbon atoms with sulfur is reported. S-doped graphene (4.2 at%) shows strong ferromagnetic properties with saturation magnetization exceeding 5.5 emu g(-1) at 2 K, which is among the highest values reported for any sp-based system. The remarkable magnetic response is attributed to delocalization of electrons from sulfur injected into the graphene conduction band.

  1. Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field.

    PubMed

    Lv, Yong-an; Zhuang, Gui-lin; Wang, Jian-guo; Jia, Ya-bo; Xie, Qin

    2011-07-21

    To find an effective strategy for the capture and decomposition of nitrous oxide (N(2)O) is very important in order to protect the ozone layer and control the effects of global warming. Based on first-principles calculations, such a strategy is proposed by the systemic study of N(2)O interaction with pristine and Al (or Ga)-doped graphene, and N(2)O dissociation on the surface of Al (or Ga)-doped graphene in an applied electric field. The calculated adsorption energy value shows the N(2)O molecule more firmly adsorbs on the surface of Al (or Ga)-doped graphene than that of pristine graphene, deriving from a stronger covalent bond between the N(2)O molecule and the Al (or Ga) atom. Furthermore, our study suggests that N(2)O molecules can be easily decomposed to N(2) and O(2) with the appropriate electric field, which reveals that Al-doped graphene may be a new candidate for control of N(2)O.

  2. Photoresponsive azo-doped aerosil/7CB nematic nanocomposites: the effect from concentration of the azobenzene photoactive agent

    NASA Astrophysics Data System (ADS)

    Hadjichristov, G. B.; Marinov, Y. G.; Petrov, A. G.; Prasad, S. K.

    2017-01-01

    We studied nanomaterials composed from 3 wt.% aerosil nanospheres and the room-temperature nematic liquid crystal 4-n-heptyl cyanobiphenyl (7CB), as doped with the photoactive liquid crystal 4-(4'-ethoxyphenylazo)phenyl hexanoate (EPH). The molecules of the azobenzene photoactive agent EPH were included at concentration ranging from 1 wt.% to 10 wt.%. The object of our interest is the effect of the EPH amount on the photosensitized electro-optical properties of thin films of aerosil/7CB/EPH nematic nanocomposites.

  3. Brillouin gain spectrum dependences on temperature and strain in erbium-doped optical fibers with different erbium concentrations

    NASA Astrophysics Data System (ADS)

    Ding, Mingjie; Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro

    2013-05-01

    Brillouin Stokes power in erbium-doped optical fibers (EDFs) can be potentially controlled by pumping, but no report has been provided on its detailed characterization. In this study, as the first step toward this goal, the Brillouin gain spectra in EDFs with three different erbium concentrations (0.72, 1.20, and 2.28 wtppt) are measured at 1.55 μm without pumping, and the Brillouin frequency shifts (BFSs) and their dependences on strain, temperature, and erbium concentration are fully investigated. In the EDF with 0.72-wtppt concentration, the BFS was 11.42 GHz, and its temperature and strain coefficients were 0.87 MHz/K and 479 MHz/%, respectively.

  4. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    NASA Astrophysics Data System (ADS)

    George, David; Li, Li; Jiang, Yan; Lowell, David; Mao, Michelle; Hassan, Safaa; Ding, Jun; Cui, Jingbiao; Zhang, Hualiang; Philipose, Usha; Lin, Yuankun

    2016-07-01

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  5. Tunnel spin polarization versus energy for clean and doped Al2O3 barriers.

    PubMed

    Park, B G; Banerjee, T; Lodder, J C; Jansen, R

    2007-11-23

    The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the same device. The intrinsic TSP is reduced below the Fermi level, and more strongly so for tunneling into empty states above the Fermi level. For artificially doped barriers, the low bias TMR decreases due to defect-assisted tunneling. Yet, this mechanism becomes ineffective at large bias, where instead inelastic spin scattering causes a strong TMR decay.

  6. Effects of Mg-codoping on luminescence and scintillation properties of Ce doped Lu3(Ga,Al)5O12 single crystals

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroaki; Kamada, Kei; Pejchal, Jan; Kurosawa, Shunsuke; Shoji, Yasuhiro; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2017-03-01

    Effects of Mg co-doping on scintillation properties of Ce:Lu3(Ga,Al)5O12 (LGAG) were investigated. Mg 200 ppm co-doped Ce:LGAG single crystals were prepared by micro pulling down method. Absorption and radioluminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg co-doping. Ce4+ charge transfer absorption was observed below 340 nm in Mg,Ce:LGAG which is in good agreement with previous reports for other garnet-based crystals. The scintillation decay time showed the tendency to be accelerated and the light yield was enhanced by Mg co-doping.

  7. Interfacial trap states and improvement of low-temperature mobility by doping in InSb/AlInSb quantum wells

    SciTech Connect

    Manago, Takashi; Ishida, Shuichi; Geka, Hirotaka; Shibasaki, Ichiro

    2015-02-14

    The effect of doping on InSb/Al{sub 0.1}In{sub 0.9}Sb quantum wells (QWs) was investigated, and it was found that doping improves the electron mobility at low temperatures and leads to a weaker dependence of the resistivity with temperature. The dependence of the carrier density on the well width revealed trap states at the interfaces of the QW whose sheet density per interface was estimated to be about 4 × 10{sup 10 }cm{sup −2}. The low mobility of undoped InSb QWs, in particular, at low temperature seems to have been caused by positively ionized impurity scattering at the interfacial trap states. Doping compensates for the trap states and enhances mobility by suppressing ionized impurity scattering. Thus, intentional doping is necessary for developing high-mobility InSb QW devices. The origin of the trap states is qualitatively discussed.

  8. Effect of doping of trivalent cations Ga3+, Sc3+, Y3+ in Li1.3Al0.3Ti1.7 (PO4)3 (LATP) system on Li+ ion conductivity

    NASA Astrophysics Data System (ADS)

    Kothari, Dharmesh H.; Kanchan, D. K.

    2016-11-01

    We report the effect of trivalent cations dopants in the Li1.3Al0.3-xRxTi1.7(PO4)3 (R=Ga3+, Sc3+, Y3+) NASICON ceramic system in the concentration range x=0.01,0.03,0.05,0.07, on the Li+ ion conducting properties using impedance spectroscopy. The samples were prepared by solid state reaction method and characterized by X-Ray Diffraction and density measurements. The electrical properties were studied using impedance spectroscopy in frequency range 10 Hz to 20 MHz and temperature range 303 K to 423 K. Although the porosity of the material decreased with doping, the overall Li+ ion conductivity of the system did not improve with doping. Ionic radii of the dopant cations was found to be an important factor in formation of impurity phases and low Li+ ion conductivity. Gallium doped samples exhibited a higher Li+ ion conductivity compared to its scandium and yttrium doped counterparts.

  9. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing.

    PubMed

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-05-16

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10(-2) Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate.

  10. Tb3+ ion doping into Al2O3: Solubility limit and luminescence properties

    NASA Astrophysics Data System (ADS)

    Onishi, Yuya; Nakamura, Toshihiro; Adachi, Sadao

    2016-11-01

    Tb3+-activated Al2O3 phosphors with a molar ratio of \\text{Al}:\\text{Tb} = (1 - x):x are synthesized by metal organic decomposition (x = 0-0.15) and subsequent calcination at T c = 200-1200 °C for 1 h in air. The material properties of the synthesized phosphors are investigated by X-ray diffraction (XRD), photoluminescence (PL) analyses, PL excitation spectroscopy, and luminescence lifetime measurements. At x = 0.015, the metastable phase of γ-Al2O3 is obtained by calcination at T c ˜ 300-1050 °C and a mixture of γ, θ, and α phases at T c ˜ 1050-1150 °C. The high-temperature stable phase of α-Al2O3 is obtained only at T c ≥ 1150 °C. Below T c ˜ 300 °C, the XRD data suggest the formation of boehmite (AlOOH). The solubility limit of Tb3+ in α-Al2O3 is also clearly determined to be x ˜ 0.015 (1.5%). The PL decay time of the Tb3+ green emission in α-Al2O3 is ˜1.1 ms for x < 0.015 and slowly decreases with further increase in x (Tb3+). The schematic energy-level diagram of Tb3+ in α-Al2O3 is proposed for a better understanding of the present phosphor system. Finally, the temperature dependence of the PL intensity is examined between T = 20 and 450 K, yielding quenching energies of E q ˜ 0.28 eV (α-Al2O3 and γ-Al2O3).

  11. Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption.

    PubMed

    Zukal, Arnošt; Mayerová, Jana; Čejka, Jiří

    2010-01-01

    Mesoporous aluminosilicate adsorbents for carbon dioxide were prepared by the grafting of aluminium into SBA-15 silica using an aqueous solution of aluminium chlorohydrate. As the ion exchange sites are primarily associated with the presence of tetrahedrally coordinated aluminium, extra-framework aluminium on the SBA-15 surface was inserted into the silica matrix by a treatment with an aqueous solution of NH(4)OH. Synthesized mesoporous aluminosilicate preserving all the characteristic features of a mesoporous molecular sieve was finally modified by the alkali metal cation exchange. To examine carbon dioxide adsorption on prepared materials, adsorption isotherms in the temperature range from 0 °C to 60 °C were measured. Based on the known temperature dependence of adsorption isotherms, isosteric adsorption heats giving information on the surface energetics of CO(2) adsorption were calculated and discussed. The comparison of carbon dioxide isotherms obtained on aluminosilicate SBA-15, aluminosilicate SBA-15 containing cations Na(+) and K(+) and activated alumina F-200 reveals that the doping with sodium or potassium cations dramatically enhances adsorption in the region of equilibrium pressures lower than 10 kPa. Therefore, synthesized aluminosilicate adsorbents doped with Na(+) or K(+) cations are suitable for carbon dioxide separation from dilute gas mixtures.

  12. Combinatorial approach to MgHf co-doped AlN thin films for Vibrational Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Nguyen, H. H.; Oguchi, H.; Kuwano, H.

    2016-11-01

    In this report, we studied MgHf co-doped AlN ((Mg,Hf)xA11-xN) aiming for developing an AlN-based dielectric material with the large piezoelectric coefficient. To rapidly screen the wide range of composition, we applied combinatorial film growth approach. To get continuous composition gradient on a single substrate, films were deposited on Si (100) substrates by sputtering AlN and Mg-Hf targets simultaneously. Crystal structure was investigated by X-ray diffractometer equipped with a two-dimensional detector (2D-XRD). Composition was determined by Energy Dispersive Spectroscopy (EDS). These studies revealed that we successfully covered the widest ever composition range of 0 < x < 0.24 for this material. In addition, these studies found that we succeeded in realizing largest ever c-axis expansion of 2.7% at x = 0.24, which will lead to the highest enhancement in the piezoelectric coefficient. The results of this study opened the way for high-throughput development of the dielectric materials.

  13. Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure

    NASA Astrophysics Data System (ADS)

    Khmissi, H.; Baira, M.; Sfaxi, L.; Bouzaïene, L.; Saidi, F.; Bru-Chevallier, C.; Maaref, H.

    2011-03-01

    Optical properties of InAs quantum dots (QDs) inserted in AlGaAs/GaAs modulation doped heterostructure are investigated. To study the effect of carrier transfer behavior on the luminescence of self-assembled quantum dots, a series of sample has been prepared using molecular beam epitaxy (Riber 32 system) in which we have varied the thickness separating the delta dopage and the InAs quantum dots layer. Photoluminescence spectra show the existence of two peaks that can be attributed to transition energies from the ground state (E1-HH1) and the first excited state (E2-HH2). Two antagonist effects have been observed, a blue shift of the emission energies result from electron transferred from the AlGaAs/GaAs heterojunction to the InAs quantum dots and a red shift caused by the quantum confined Stark effect due to the internal electric field existing In the AlGaAs/GaAs heterojunction.

  14. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    SciTech Connect

    He, Y.R.; Zheng, M.H.; Rapp, R.A.

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  15. Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure

    SciTech Connect

    Khmissi, H.; Baira, M.; Bouzaieene, L.; Saidi, F.; Maaref, H.; Sfaxi, L.; Bru-Chevallier, C.

    2011-03-01

    Optical properties of InAs quantum dots (QDs) inserted in AlGaAs/GaAs modulation doped heterostructure are investigated. To study the effect of carrier transfer behavior on the luminescence of self-assembled quantum dots, a series of sample has been prepared using molecular beam epitaxy (Riber 32 system) in which we have varied the thickness separating the delta dopage and the InAs quantum dots layer. Photoluminescence spectra show the existence of two peaks that can be attributed to transition energies from the ground state (E{sub 1}-HH{sub 1}) and the first excited state (E{sub 2}-HH{sub 2}). Two antagonist effects have been observed, a blue shift of the emission energies result from electron transferred from the AlGaAs/GaAs heterojunction to the InAs quantum dots and a red shift caused by the quantum confined Stark effect due to the internal electric field existing In the AlGaAs/GaAs heterojunction.

  16. Dopant-induced bandgap shift in Al-doped ZnO thin films prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Hung-Chun Lai, Henry; Basheer, Tahseen; Kuznetsov, Vladimir L.; Egdell, Russell G.; Jacobs, Robert M. J.; Pepper, Michael; Edwards, Peter P.

    2012-10-01

    A series of 1 at. % Al-doped ZnO (AZO) films were deposited onto glass substrates by a spray pyrolysis technique. We find that the observed blue shift in the optical bandgap of 1% AZO films is dominated by the Burstein Moss effect. The Fermi level for an 807 nm thick AZO film rose by some 0.16 eV with respect to the edge of the conduction band. By controlling the film thickness, all AZO films exhibit the same lattice strain values. The influence of strain-induced bandgap shift was excluded by selecting films with nearly the same level of bandgap volume-deformation potentials, and the differences in out-plain strain and in-plain stress remained effectively constant.

  17. Effects of NIR annealing on the characteristics of al-doped ZnO thin films prepared by RF sputtering.

    PubMed

    Jun, Min-Chul; Koh, Jung-Hyuk

    2012-06-06

    Aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed. In this paper, the effects of near infrared ray (NIR) annealing technique on the structural, optical, and electrical properties of the AZO thin films have been researched. Experimental results showed that NIR annealing affected the microstructure, electrical resistance, and optical transmittance of the AZO thin films. X-ray diffraction analysis revealed that all films have a hexagonal wurtzite crystal structure with the preferentially c-axis oriented normal to the substrate surface. Optical transmittance spectra of the AZO thin films exhibited transmittance higher than about 80% within the visible wavelength region, and the optical direct bandgap (Eg) of the AZO films was increased with increasing the NIR energy efficiency.

  18. Enhanced photocatalytic activity of Ce-doped Zn-Al multi-metal oxide composites derived from layered double hydroxide precursors.

    PubMed

    Zhu, Jianyao; Zhu, Zhiliang; Zhang, Hua; Lu, Hongtao; Qiu, Yanling; Zhu, Linyan; Küppers, Stephan

    2016-11-01

    In this work, a series of novel Zn-Al-Ce multi-metal oxide (Zn-Al-Ce-MMO) photocatalysts with different Ce doping contents were prepared by calcination of Ce-doped Zn-Al layered double hydroxide (Zn-Al-Ce-LDH) precursors at various temperatures in air atmosphere. The synthesized Zn-Al-Ce-MMO materials were characterized by XRD, FTIR, TGA, BET, SEM, TEM, XPS and UV-vis DRS. The photocatalytic activities of the Zn-Al-Ce-MMO materials were evaluated by the photodegradation of rhodamine B (RhB) dye and paracetamol in aqueous solution under simulated solar light irradiation. The result of photodegradation of RhB showed that the Zn-Al-Ce-MMO samples exhibit much higher photocatalytic activity than that of Zn-Al-MMO, and the optimal Ce doping content is 5% of mole ratio (nCe/n(Zn+Al+Ce)). The enhanced photocatalytic activity of the Zn-Al-Ce-MMO was mainly attributed to the increasing in the separation efficiency of electrons and holes. The effect of calcination temperature was also studied. The photocatalytic activity of Zn-Al-Ce-MMO increased with increasing calcination temperature up to 750°C, which can be ascribed to the formation of well-crystallized metal oxides during calcination. Under experimental conditions, 97.8% degradation efficiency of RhB and 98.9% degradation efficiency of paracetamol were achieved after 240min. Active species trapping and EPR experiments suggested that hole (h(+)), superoxide radical (O2(-)) and hydroxyl radical (OH) played important roles during the RhB photocatalytic process. Moreover, the results indicated that the synthesized Zn-Al-Ce-MMO materials had good stability and reusability.

  19. Predicting minimum Al concentrations for protective scale fromation on Ni-base alloys. I - Isothermal oxidation. II - Cyclic oxidation

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    1989-01-01

    Criteria proposed to predict the minimum bulk Al concentration for the formation of protective Al2O3 scales on Ni-based alloys during isothermal oxidation (two criteria proposed by Wagner, 1952 and 1959) and cyclic oxidation (the criteria proposed by Wahl, 1983, and Whittle, 1972/Wahl, 1983) were applied to Ni-Al and Ni-Cr-Al(Zr) alloys, respectively. It is shown that the first Wagner (1952) criterion underpredicted, by a factor of 3, the experimentally observed minimum Al concentration for the formation of an external Al2O3 scale on Ni-Al alloys at 1200 C; the second Wagner criterion predicted a transition from internal oxidation to continuous Al2O3 formation in good agreement with experimentally observed concentrations. It was also found that the two criteria for an Al2O3 scale formation during cyclic oxidation of Ni-Cr-Al(Zr) alloys were inadequate to predict the minimum Al concentration necessary for repeated formation of an Al2O3 scale, regardless of the adherence of the scale.

  20. Factors influencing doping control and abrupt metallurgical transitions during atmospheric pressure MOVPE growth of AlGaAs and GaAs

    NASA Astrophysics Data System (ADS)

    Roberts, J. S.; Mason, N. J.; Robinson, M.

    1984-09-01

    Atmospheric pressure MOVPE of GaAs and AlGaAs has been investigated using two gas handling systems and a conventional horizontal reactor. Initially a simple source/carrier gas manifold design was assessed but severe retention of reagents in the pipework resulted in poor control of doping and interface abruptness. However, integration of the reagent and carrier gas in a pressure balanced vent/run configuration gave a significant improvement. AlGaAs/GaAs multilayers and n +/n - GaAs transitions have been used to assess the performance of both systems. Abrupt p-type doping transitions using bis-cyclopentadienylmagnesium proved unsuccessful as long doping tails were observed.

  1. Influence of the P2O5/Al2O3 co-doping on the local environment of erbium ions and on the 1.5 μm quantum efficiency of Er3+-borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Bourhis, Kevin; Boetti, Nadia G.; Koponen, Joona; Milanese, Daniel; Petit, Laetica

    2014-03-01

    In this paper, the absorption properties of Er3+-doped borosilicate glasses with various P2O5 and Al2O3 content are measured for different silica concentrations. The Judd-Ofelt parameters (Ω2, Ω4 and Ω6) have been calculated in order to investigate the local environment of the rare-earth cations. The compositional changes of Ω2 and Ω6 are attributed to changes in the bonding between Er3+ and surrounding ligand groups due to structural modifications occurring with the introduction of P2O5 and Al2O3. The luminescence quantum efficiency of the 4I13/2 → 4I15/2 transition slightly increases with the addition of P2O5 whereas it decreases with the progressive replacement of P2O5 by Al2O3. We noticed that it also increases when the silica content is higher.

  2. Electronic structure and magnetic properties of doped Al1- x Ti x N ( x = 0.03, 0.25) compositions based on cubic aluminum nitride from ab initio simulation data

    NASA Astrophysics Data System (ADS)

    Bannikov, V. V.; Beketov, A. R.; Baranov, M. V.; Elagin, A. A.; Kudyakova, V. S.; Shishkin, R. A.

    2016-05-01

    The phase stability, electronic structure, and magnetic properties of Al1- x Ti x N compositions based on the metastable aluminum nitride modification with the rock-salt structure at low ( x = 0.03) and high ( x = 0.25) concentrations of titanium in the system have been investigated using the results of ab initio band calculations. It has been shown that, at low values of x, the partial substitution is characterized by a positive enthalpy, which, however, changes sign with an increase in the titanium concentration. According to the results of the band structure calculations, the doped compositions have electronic conductivity. For x = 0.03, titanium impurity atoms have local magnetic moments (˜0.6 μB), and the electronic spectrum is characterized by a 100% spin polarization of near-Fermi states. Some of the specific features of the chemical bonding in Al1- x Ti x N cubic phases have been considered.

  3. Sulfuric acid doped poly diaminopyridine/graphene composite to remove high concentration of toxic Cr(VI).

    PubMed

    Dinda, Diptiman; Kumar Saha, Shyamal

    2015-06-30

    Sulfuric acid doped diaminopyridine polymers are synthesized in situ on graphene oxide surface via mutual oxidation-reduction technique. Exploiting large and highly porous surface, we have used this polymer composite as an adsorbent to remove high concentration of toxic Cr(VI) from water. It shows very high adsorption capacity (609.76 mg g(-1)) during removal process. The composite takes only 100 min to remove high concentration of 500 mg L(-1) Cr(VI) from water. Interesting features for this material is the enhancement of removal efficiency at lower acidic condition due to the formation of acid doped emeraldine salt during polymerization. XPS and AAS measurements reveal that our prepared material mainly follows reduction mechanism at higher acidic condition while anions exchange mechanism at lower acidic condition during the removal experiments. Good recycling ability with ∼ 92% removal efficiency after fifth cycle is also noticed for this material. Easy preparation, superior stability in acidic condition, remarkable removal efficiency and excellent recycling ability make this polymer composite an efficient material for modern filtration units in waste water purification.

  4. Effect of annealing atmosphere on photoluminescence and gas sensing of solution-combustion-synthesized Al, Pd co-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Min; Lv, Tan; Wang, Qiong; Zou, Yun-ling; Lian, Xiao-xue; Liu, Hong-peng

    2015-11-01

    Al, Pd co-doped ZnO nanoparticles (NPs) synthesized using a solution combustion method and subsequent annealing process under various atmospheres, including air, nitrogen, and hydrogen, were characterized using x-ray diffraction, energy-dispersive x-ray spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The gas-sensing properties of the sensors based on the NPs were also examined. The results indicated that the Al, Pd co-doped ZnO NPs, with an average crystallite size of 10 nm, exhibited enhanced gas-sensing performance compared with that of pure ZnO and Al-doped ZnO. The response of the Al, Pd co-doped ZnO NPs annealed in N2 to ethanol (49.22) was nearly 5.7 times higher than that to acetone (8.61) and approximately 20 - 27 times higher than that to benzene (2.38), carbon monoxide (2.23), and methane (1.78), which demonstrates their excellent selectivity to ethanol versus other gases. This high ethanol response can be attributed to the combined effects of the small size, Schottky barrier, lattice defects, and catalysis. [Figure not available: see fulltext.

  5. Development of scintillating screens based on the single crystalline films of Ce doped (Gd,Y)3(Al,Ga,Sc)5O12 multi-component garnets

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Gorbenko, Vitaliy; Savchyn, Volodymyr; Zorenko, Tanya; Fedorov, Alexander; Sidletskiy, Oleg

    2014-09-01

    The paper is dedicated to development of scintillators based on single crystalline films of Ce doped (Gd,Y)3(Al,Ga,Sc)5O12 multi-component garnets onto Gd3Ga5O12 substrates using the liquid phase epitaxy method.

  6. Luminescent properties of the Sc3+ doped single crystalline films of (Y,Lu,La)3(Al,Ga)5O12 multi-component garnets

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T.; Vasylkiv, Ya.

    2014-08-01

    The paper is dedicated to studying the luminescent and scintillation properties of the single crystalline films of Sc doped multi-component (Y,Lu,La)3(Al,Ga)5O12 garnets grown by the liquid phase epitaxy method.

  7. Gain properties of doped GaAs/AlGaAs multiple quantum well avalanche photodiode structures

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1995-01-01

    A comprehensive characterization has been made of the static and dynamical response of conventional and multiple quantum well (MQW) avalanche photodiodes (APDs). Comparison of the gain characteristics at low voltages between the MQW and conventional APDs show a direct experimental confirmation of a structure-induced carrier multiplication due to interband impact ionization. Similar studies of the bias dependence of the excess noise characteristics show that the low-voltage gain is primarily due to electron ionization in the MQW-APDS, and to both electron and hole ionization in the conventional APDS. For the doped MQW APDS, the average gain per stage was calculated by comparing gain data with carrier profile measurements, and was found to vary from 1.03 at low bias to 1.09 near avalanche breakdown.

  8. Fabrication of Ag nanowire and Al-doped ZnO hybrid transparent electrodes

    NASA Astrophysics Data System (ADS)

    You, Sslimsearom; Park, Yong Seo; Choi, Hyung Wook; Kim, Kyung Hwan

    2016-01-01

    Among the materials used as transparent electrodes, silver nanowires (AgNWs) have attracted attention because of their high transmittance and excellent conductivity. However, AgNWs have shortcomings, including their poor adhesion, oxidation by atmospheric oxygen, and unstable characteristics at high temperature. To overcome these shortcomings, multi-layer thin films with an aluminum-doped zinc oxide (AZO)/AgNW/AZO structure were fabricated using facing targets sputtering. The samples heated to 350 °C exhibited stable electrical characteristics. In addition, the adhesion to the substrate was improved compared with AgNWs layer. The AZO/AgNW/AZO thin films with multilayer structure overcame the shortcomings of AgNWs, and we propose their use as transparent electrodes with excellent properties for optoelectronic applications.

  9. Structural and superconducting properties of co-doped YBa2-xLaxCu3-xMxOz and La-free YBa2Cu3-xMxOz (M = Al, Zn) high-TC superconductors

    NASA Astrophysics Data System (ADS)

    Hao, S. J.; Jin, W. T.; Guo, C. Q.; Zhang, H.

    2012-05-01

    Two co-doped high-Tc superconducting systems, YBa2-xLaxCu3-xAlxOz and YBa2-xLaxCu3-xZnxOz (0 ⩽ x ⩽ 0.3), both of which have not been reported up to the present, were synthesized. The structural and superconducting properties have been investigated by X-ray diffraction (XRD) and DC magnetization measurement. Comparing the properties of these co-doped systems with single-doped systems YBa2Cu3-xAlxOz and YBa2Cu3-xZnxOz, it shows that in the Al-single-doped YBCO system, the depression of the critical temperature (Tc) with doping is stronger than that in (La, Al)-co-doped system, however, in the Zn-single-doped system, the Tc descends slower than that in (La, Zn)-co-doped system. This is possibly due to the opposite change of the distance between the Ba site and the CuO2 plane induced by the La doping. Besides, the La doping has another effect of improving the solid solubility compared with the Al- or Zn-single-doped system.

  10. Effect of variation in indium concentration on the photosensitivity of chlorine doped In{sub 2}S{sub 3} thin films

    SciTech Connect

    Cherian, Angel Susan; Kartha, C. Sudha; Vijayakumar, K. P.

    2014-01-28

    Consequence of variation in Indium concentration in chlorine doped In2S{sub 3} thin films deposited by spray pyrolysis technique was studied. Chlorine was incorporated in the spray solution, using HCl and Indium concentration was varied by adjusting In/S ratio Interestingly, the photo response of all chlorine doped samples augmented compared to pristine samples; but the highest photosensitivity value of ∼2300 was obtained only when 36ml 0.5M HCl was added to the solution of In{sub 2}S{sub 3} having In/S=2/8. It was also observed that samples with high photosensitivity possess higher band gap and variation in sub band gap absoption levels were observed with increase in Indium concentration. The present study proved that concentration of Indium plays an important role in controlling the crystallinity and photosensitivity of chlorine doped samples.

  11. First principle study of structural stability, electronic structure and optical properties of Ga doped ZnO with different concentrations

    NASA Astrophysics Data System (ADS)

    Berrezoug, H. I.; Merad, A. E.; Aillerie, M.; Zerga, A.

    2017-03-01

    Structural, electronic and optical properties of pure and Ga doped ZnO (GZO), with different concentrations (x  =  6.25%, 12.5% and 25%) are investigated by the ab initio full-potential linearized augmented plane wave (FP-LAPW) method, using the exchange and correlation potential within the generalized gradient approximation and the modified Becke–Johnson (mBJ) exchange potential. In the present work, some electronic properties, such as the band structure and the density of states as well as some optical properties, such as the dielectric function ε(ω), the refractive index n(ω), the reflectivity R(ω) and the electron energy-loss L(ω) were improved. The calculated lattice constants and the optical band gap (3.27 eV) of pure ZnO were found to be in good agreement with the experimental results. We have shown that the increase of the Ga concentration in ZnO creates shallow donor states Ga-4s in the minimum of the conduction band around the Fermi level, increasing the optical band gap and the conductivity. The absorption edge, presents in the imaginary part of the dielectric function, moves to higher energy levels with increasing Ga concentration. The static refractive index and the reflectivity of GZO increased with the increasing Ga concentrations. The L(ω) spectrum shows a single metal property for pure ZnO, and two peaks were observed for GZO, a small one around 2 eV originated from Ga doping and a second moved to higher energies indicating that the metallic character is more present in GZO than in pure ZnO.

  12. Effect of sputtering power on crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO transparent conducting thin films for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Hu, Yu Min; Li, Jung Yu; Chen, Nai Yun; Chen, Chih Yu; Han, Tai Chun; Yu, Chin Chung

    2017-02-01

    The crystallinity and intrinsic defects of transparent conducting oxide (TCO) films have a high impact on their optical and electrical properties and therefore on the performance of devices incorporating such films, including flat panel displays, electro-optical devices, and solar cells. The optical and electrical properties of TCO films can be modified by tailoring their deposition parameters, which makes proper understanding of these parameters crucial. Magnetron sputtering is the most adaptable method for preparing TCO films used in industrial applications. In this study, we investigate the direct and inter-property correlation effects of sputtering power (PW) on the crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO (AZO) TCO films. All of the films were preferentially c-axis-oriented with a wurtzite structure and had an average transmittance of over 80% in the visible wavelength region. Scanning electron microscopy images revealed significantly increased AZO film grain sizes for PW ≥ 150 W, which may lead to increased conductivity, carrier concentration, and optical band gaps but decreased carrier mobility and in-plane compressive stress in AZO films. Photoluminescence results showed that, with increasing PW, the near band edge emission gradually dominates the defect-related emissions in which zinc interstitial (Zni), oxygen vacancy (VO), and oxygen interstitial (Oi) are possibly responsible for emissions at 3.08, 2.8, and 2.0 eV, respectively. The presence of Zni- and Oi-related emissions at PW ≥ 150 W indicates a slight increase in the presence of Al atoms substituted at Zn sites (AlZn). The presence of Oi at PW ≥ 150 W was also confirmed by X-ray photoelectron spectroscopy results. These results clearly show that the crystallinity and intrinsic-defect type of AZO films, which dominate their optical and electrical properties, may be controlled by PW. This understanding may facilitate the development of TCO

  13. Tri-Lateral Noor al Salaam High Concentration Solar Central Receiver Program

    SciTech Connect

    Blackmon, James B

    2008-03-31

    This report documents the efforts conducted primarily under the Noor al Salaam (“Light of Peace”) program under DOE GRANT NUMBER DE-FC36-02GO12030, together with relevant technical results from a closely related technology development effort, the U.S./Israel Science and Technology Foundation (USISTF) High Concentration Solar Central Receiver program. These efforts involved preliminary design, development, and test of selected prototype power production subsystems and documentation of an initial version of the system definition for a high concentration solar hybrid/gas electrical power plant to be built in Zaafarana, Egypt as a first step in planned commercialization. A major part of the planned work was halted in 2007 with an amendment in October 2007 requiring that we complete the technical effort by December 31, 2007 and provide a final report to DOE within the following 90 days. This document summarizes the work conducted. The USISTF program was a 50/50 cost-shared program supported by the Department of Commerce through the U.S./Israel Science and Technology Commission (USISTC). The USISTC was cooperatively developed by President Clinton and the late Prime Minister Rabin of Israel "to encourage technological collaboration" and "support peace in the Middle East through economic development". The program was conducted as a follow-on effort to Israel's Magnet/CONSOLAR Program, which was an advanced development effort to design, fabricate, and test a solar central receiver and secondary optics for a "beam down" central receiver concept. The status of these hardware development programs is reviewed, since they form the basis for the Noor al Salaam program. Descriptions are provided of the integrated system and the major subsystems, including the heliostat, the high temperature air receiver, the power conversion unit, tower and tower reflector, compound parabolic concentrator, and the master control system. One objective of the USISTF program was to conduct

  14. Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field.

    PubMed

    Wu, Yiming; Dai, Yanmeng; Jiang, Shenlong; Ma, Chao; Lin, Yue; Du, Dongxue; Wu, Yukun; Ding, Huaiyi; Zhang, Qun; Pan, Nan; Wang, Xiaoping

    2017-04-05

    Aluminium (Al)-doped zinc oxide (ZnO) nanowires (NWs) with a unique core-shell structure and a Δ-doping profile at the interface were successfully grown using a combination of chemical vapor deposition re-growth and few-layer AlxOy atomic layer deposition. Unlike the conventional heavy doping which degrades the near-band-edge (NBE) luminescence and increases the electron-phonon coupling (EPC), it was found that there was an over 20-fold enhanced NBE emission and a notably-weakened EPC in this type of interfacially Al-doped ZnO NWs. Further experiments revealed a greatly suppressed nonradiative decay process and a much enhanced radiative recombination rate. By comparing the finite-difference time-domain simulation with the experimental results from intentionally designed different NWs, this enhanced radiative decay rate was attributed to the Purcell effect induced by the confined and intensified optical field within the interfacial layer. The ability to manipulate the confinement, transport and relaxation dynamics of ZnO excitons can be naturally guaranteed with this unique interfacial Δ-doping strategy, which is certainly desirable for the applications using ZnO-based nano-photonic and nano-optoelectronic devices.

  15. 2 inch size Czochralski growth and scintillation properties of Li+ co-doped Ce:Gd3Ga3Al2O12

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Shoji, Yasuhiro; Kochurikhin, Vladimir V.; Yoshino, Masao; Okumura, Satoshi; Yamamoto, Seiichi; Yeom, Jung Yeol; Kurosawa, Shunsuke; Yokota, Yuui; Ohashi, Yuji; Nikl, Martin; Yoshino, Masao; Yoshikawa, Akira

    2017-03-01

    The 2 inch size Li 0.15 and 1.35 mol% co-doped Ce:Gd3Al2Ga3O12 single crystals were prepared by the Czochralski (Cz) method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Li co-doping. Ce4+ CT absorption below 350 nm is clearly enhanced by Li co-doping as same as divalent ions co-doping. By 1.35 at.% Li co-doping, light yield was decrease to 88% of the Ce: GAGG standard and decay time was accelerated to 34.3ns 21.0%, 84.6ns 68.7%, 480ns 10.3%. The timing resolution measurement for a pair of 3 × 3 × 3mm3 size Li,Ce:GAGG scintillator crystals was performed using Si-PMs and the timing resolution of the 1.35 at.% Li co-doped Ce:GAGG was 218ps.

  16. Al3+ doped V2O5 nanostructure: Synthesis and structural, morphological and optical characterization

    NASA Astrophysics Data System (ADS)

    Venkatesan, A.; Chandar, N. Krishna; Kumar, M. Krishna; Arjunan, S.; Kumar, R. Mohan; Jayavel, R.

    2013-02-01

    AlxV2-xO5(x = 0,2mol%) nanorods were synthesized at room temperature by facile surfactant free non-aqueous route. The phase pure orthorhombic structure and nanorods-like morphology have been studied by X-ray diffraction (XRD) and High resolution scanning electron microscopy. EDXS spectrum confirms the purity and presence of Al into V2O5 lattice. Optical absorption from DRS UV-Vis spectra showed the band gap broadening due to quantum confinement effect. The results ensure that the dopant cation (Al3+) successfully intercalated with the host cation (V5+) and the products are promising for electrochromic and catalytic applications.

  17. Capacitance behavior of InAlN Schottky diodes in presence of large concentrations of shallow and deep states related to oxygen

    SciTech Connect

    Py, M. A. Lugani, L.; Taniyasu, Y.; Carlin, J.-F.; Grandjean, N.

    2015-05-14

    The capacitance-voltage-temperature characteristics of nonintentionally doped In{sub 0.16}Al{sub 0.84 }N/n{sup +}-GaN Schottky diodes were measured at 1 MHz and in the 90–400 K range. They are discussed in the framework of existing theories, which properly treat the Poisson's equation, especially near the edge of the space-charge region, the so-called transition region. The concentration of a shallow donor and of a deep DX-like center, previously reported, is properly determined. The key parameter to discuss the temperature dependence of the capacitance is the ratio between the frequency of the small ac modulating signal and the temperature-dependent emission rate associated to each level. The capacitance-voltage C-V{sub a} curves were successfully fitted using a three parameters expression over the full range of temperatures. The concentration of both shallow and deep levels exceeds a few 10{sup 18} cm{sup −3}. Based on secondary ion mass spectrometry profiling, we assign both levels to the dominant oxygen impurity. This result supports our previous assignment of the shallow donor to a substitutional oxygen atom on a nitrogen site and the deep state to an O-related DX center, naturally explaining its high concentration. The sluggish kinetics at low temperatures, associated to the large concentration of deep levels located near the transition region, is illustrated by hysteresis loops in the C-V{sub a} curves below 270 K. Furthermore, the contribution of free carriers to the capacitance is revealed below 150 K, when both shallow and deep donors cannot respond anymore due to an emission rate lower than the 1 MHz modulating frequency. Finally, the presence of a highly doped thin surface barrier, as already reported in other III-nitrides, finds further support.

  18. High-transconductance p-channel modulation-doped AlGaAs/GaAs heterostructure FET's

    NASA Astrophysics Data System (ADS)

    Hirano, Makoto; Oe, Kunishige; Yanagawa, Fumihiko

    1986-05-01

    p-channel modulation-doped AlGaAs-GaAs heterostructure FET's (p-HFET's) employing two-dimensional hole gas (2DHG) were fabricated under various geometrical device parameter conditions. The p-HFET characteristics were measured at 300 and 77 K for the following three device-parameter ranges: the gate length Lg(1-320 microns), the gate-source distance Lgs(0.5-5 microns), and the layer thickness d1(35-58 nm) of AlGaAs beneath the gate. Based on the obtained results, a high-performance enhancement-mode p-HFET was fabricated with the following parameters: Lg = 1 microns, Lgs = 0.5 microns, and d1 = 35 nm . The achieved extrinsic transconductance gm was 75 mS/mm at 77 K. This experimental result indicates that a gm greater than 200 mS/mm at 77 K can be obtained in 1-micron gate p-HFET devices.

  19. 27Al fourier-transform electron-spin-echo modulation of Cu 2+-doped zeolites A and X

    NASA Astrophysics Data System (ADS)

    Goldfarb, Daniella; Kevan, Larry

    Cu 2+-doped NaA, CaA, and NaX zeolites were studied using the electron-spin-echo modulation (ESEM) method. In both hydrated and dehydrated samples 27Al modulation has been observed. The time-domain ESEM traces were Fourier transformed and analyzed in the frequency domain. All FT-ESEM spectra of the hydrated samples showed a single peak at the Larmor frequency of 27Ai, indicating that the zeeman interaction is dominant and that the 27Al quadrupole and hyperfine interactions are relatively small. Considerable changes in the spectrum appear upon dehydration. Several frequencies significantly different from the Larmor frequency appear and the spectrum depends on the major cocation present. The major features of the spectra of the dehydrated zeolites could be theoretically reproduced, using exact diagonalization of the nuclear Hamiltonian, with relatively large isotropic hyperfine and quadrupole coupling constants. For example, in CuCaA and CuNaA zeolites the isotropic hyperfine constant is in the range of 0.2-0.5 and 0.8-1.0 MHz, respectively, with the quadrupole coupling constant in the range of 6-10 MHz for both.

  20. Reversible Change in Electrical and Optical Properties in Epitaxially Grown Al-Doped ZnO Thin Films

    SciTech Connect

    Noh, J. H.; Jung, H. S.; Lee, J. K.; Kim, J. Y; Cho, C. M.; An, J.; Hong, K. S.

    2008-01-01

    Aluminum-doped ZnO (AZO) films were epitaxially grown on sapphire (0001) substrates using pulsed laser deposition. As-deposited AZO films had a low resistivity of 8.01 x 10{sup -4} {Omega} cm. However, after annealing at 450 C in air, the electrical resistivity of the AZO films increased to 1.97 x 10{sup -1} {Omega} cm because of a decrease in the carrier concentration. Subsequent annealing of the air-annealed AZO films in H{sub 2} recovered the electrical conductivity of the AZO films. In addition, the conductivity change was reversible upon repeated air and H{sub 2} annealing. A photoluminescence study showed that oxygen interstitial (O{sub i}) is a critical material parameter allowing for the reversible control of the electrical conducting properties of AZO films.

  1. The Structural, optical and electrical properties of nanocrystalline ZnO:Al thin films

    NASA Astrophysics Data System (ADS)

    Benhaoua, Boubaker; Rahal, Achour; Benramache, Said

    2014-04-01

    The Al doped ZnO thin films were deposited by ultrasonic spray technique. The influence of Al doping on structural, optical and electrical properties of the ZnO thin films was studied. A set of Al doped ZnO (0-3.5 wt.%) were deposited at 350 °C. Nanocrystalline films with a hexagonal wurtzite structure with a strong (0 0 2) preferred orientation were observed after Al doping. The maximum value of grain size (33.28 nm) is attained with Al doped ZnO at 3 wt.%. Texture coefficient TC(h k l) of the four major peaks where evaluated. Optically, in visible region the transmissions spectra T(λ) show that the whole doped films exhibit lower values than the non doped one which has as transmittance more than 80%; whereas in the same region the optical transmissions of the doped films are affected by the doping ration. The band gap (Eg) increased after doping from 3.267 to 3.325 eV with increasing concentration of doping from 0 to 2.75 wt.%, respectively, according to the Burstein-Moss effect (blue shift of Eg) then beyond 3 wt.% in doping the band gap exhibit a slight decreasing due to the coexistence of Roth and Burstein-Moss effect. The electrical resistivity of the films decreased from 20 to 5.26 (Ω cm). The best results are achieved with 2.75 wt.% Al doped ZnO film.

  2. Concentration dependent spectroscopic properties of Dy3+ ions doped boro-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Mariyappan, M.; Marimuthu, K.

    2016-05-01

    Dy3+ ions doped boro-phosphate glasses have been synthesized by melt quenching method and characterized through FTIR, absorption and luminescence spectral measurements. The presence of various stretching and bending vibrations of different borate and phosphate groups were identified from the FTIR spectra. In order to examine the electronic band structure of the studied glasses, Optical energy gap (Eopt) and Urbach energy (ΔE) values were estimated from the absorption spectra. The Judd-Ofelt (JO) intensity parameters were calculated to examine the symmetry of the ligand environment around the Dy3+ ions site. The emission spectra exhibit two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions respectively. The emission spectra were characterized through Commission International d'Eclairage (CIE) 1931 chromaticity diagram to explore its suitability for WLED applications.

  3. Effect of growth solution concentration on the performance of gallium doped ZnO nanostructures dye sensitized solar cells (DSSCs)

    NASA Astrophysics Data System (ADS)

    Iwantono, I.; Tugirin, S.; Anggelina, F.; Awitdrus, Taer, Erman; Roza, L.; Umar, A. A.

    2016-02-01

    This paper reports the synthesis of gallium doped ZnO nanostructures via seed mediated growth hydrothermal technique and their application as photo-anode in DSSC. ZnO nanostructures have been grown on Flourin Tin Oxide (FTO). The precursor used in this research was zinc-nitrate-hexahydrate (Zn (NO3)2.6H2O) and hexa-metylene-tetramine (HMT) was chosen as surfactant. The growth process was carried out at various precursor solution concentrations, 0.1, 0.2, 0.3 and 0.4 M at 90°C for 8 hours. The growth solution was then doped with 1% wt gallium nitrate hydrate. The grown ZnO nanostructures were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray (EDX) and UV-Vis Spectroscopy. The samples were crystalline with wurtzite-hexagonal and their crystal orientation was (100), (002), (101), and (110). The morphological shape of the samples changed with the concentration of the precursor. The optical absorption decreased as the concentration increased. As can be seen from SEM images that the diameter of the particles ranged from 95 to 500 nm and the thickness ranged from 1540 to 3640 nm (1.54-3.64 µm). The best performance of DSSC was obtained from the sample utilizing the ZnO nanostructures prepared at 0.1 M precursor, with their photovoltaic parameters were the Jsc of 2.190 mA cm-2, FF of 0.39, and η of 0.41%, respectively.

  4. Influence of doping dependent bandgap grading on electrical performance and design criteria of npn Al zGa 1-zAs/GaAs abrupt heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Mohammad, S. Noor

    1990-03-01

    Current-voltage characteristics of npn Al zGa 1- zAs/GaAs abrupt heterojunction bipolar transistors (HBTs) with nonuniform doping in the emitter and the base has been studied in some details. For the calculation of these characteristics the effects of both conduction band potential spike ΔEb and valence band discontinuity ΔEv have been taken into account. The extra electric field generated due to nonuniform base doping accelerates the flow of electrons, and minimizes the effect of ΔEv on the electron current density Jc.

  5. Bolometric detection of magnetoplasma resonances in microwave absorption by two-dimensional electron systems based on doping layer conductivity measurements in GaAs/AlGaAs heterostructures

    SciTech Connect

    Dorozhkin, S. I. Sychev, D. V.; Kapustin, A. A.

    2014-11-28

    We have implemented a new bolometric method to detect resonances in magneto-absorption of microwave radiation by two-dimensional electron systems (2DES) in selectively doped GaAs/AlGaAs heterostructures. Radiation is absorbed by the 2DES and the thermally activated conductivity of the doping layer supplying electrons to the 2DES serves as a thermometer. The resonant absorption brought about by excitation of the confined magnetoplasma modes appears as peaks in the magnetic field dependence of the low-frequency impedance measured between the Schottky gate and 2DES.

  6. LASERS: High-power single-mode laser diodes based on carbon-doped quantum-well InGaAs/AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Davydova, Evgeniya I.; Ladugin, M. A.; Marmalyuk, Aleksandr A.; Padalitsa, A. A.; Petrovskii, A. V.; Sukharev, A. V.; Uspenskii, Mikhail B.; Shishkin, Viktor A.

    2009-01-01

    Emission parameters of single-mode laser diodes based on InGaAs/GaAs/AlGaAs heterostructures doped with carbon and grown by using the metallorganic vapour phase epitaxy (MOVPE) technique are studied. The obtained results show that maintaining a certain doping profile ensuring optimisation of series resistance and internal optical losses during all fabrication stages of the active element of a diode laser, provides for enhancement of the laser efficiency. Based on laser heterostructures studied in this paper, highly efficient single-transverse-mode laser diodes emitting 300 mW at 980 nm have been manufactured.

  7. Mechanical and thermal behaviors of nitrogen-doped Zr-Cu-Al-Ag-Ta--An alternative class of thin film metallic glass

    NASA Astrophysics Data System (ADS)

    Chen, Pao-Sheng; Chen, Hsien-Wei; Duh, Jenq-Gong; Lee, Jyh-Wei; Shian-Ching Jang, Jason

    2012-10-01

    Super-plasticity and nano-scale surface roughness make thin film metallic glass (TFMG) a candidate for master mold of micro/nano imprint technique. Meanwhile, better mechanical properties of TFMG undoubtedly expand the life time of master mold. In this study, nitrogen is doped into Zr-based TFMG to exhibit the hardness higher than 10 GPa. Different from elements used to be doped into metallic glass, the role of nitrogen atoms plays in metallic glass is distinct and vital owing to its strong electronegativity. From the correlation of thermal and mechanical behavior, the role and effect of nitrogen in Ta-Zr-Cu-Al-Ag TFMG is discussed and proposed.

  8. Doping-Induced Type-II to Type-I Transition and Interband Optical Gain in InAs/AlSb Quantum Wells

    NASA Technical Reports Server (NTRS)

    Kolokolov, K. I.; Ning, C. Z.

    2003-01-01

    We show that proper doping of the barrier regions can convert the well-known type-II InAs/AlSb QWs to type I, producing strong interband transitions comparable to regular type-I QWs. The interband gain for TM mode is as high as 4000 l/cm, thus providing an important alternative material system in the mid-infrared wavelength range. We also study the TE and TM gain as functions of doping level and intrinsic electron-hole density.

  9. Multiple doping structures of the rare-earth atoms in β-SiAlON:Ce phosphors and their effects on luminescence properties.

    PubMed

    Gan, Lin; Xu, Fang-Fang; Zeng, Xiong-Hui; Li, Zuo-Sheng; Mao, Zhi-Yong; Lu, Ping; Zhu, Ying-Chun; Liu, Xue-Jian; Zhang, Lin-Lin

    2015-07-14

    The critical doping structures of rare-earth atoms in the promising β-SiAlON phosphors have long been argued owing to the lack of direct evidence. Here, the exact locations and coordination of the Ce rare-earth atoms in the β-SiAlON structure have been examined using an atom-resolved Cs-corrected scanning transmission electron microscope. Three different occupation sites for the Ce atoms have been directly observed: two of them are in the structural channel coordinated with six and nine N(O) atoms, respectively; the other one is the unexpected substitution site for Si(Al). The chemical valences and stabilities of the doping Ce ions at the different occupation sites have been evaluated using density functional calculations. Correlation of the different doping structures with the luminescence properties has been investigated by the aid of cathodoluminescence (CL) microanalysis, which verifies the different contribution of the interstitial trivalent Ce ions to the light emission while no luminescence is observed for the substitutional doping of quadrivalent Ce.

  10. Simulation, Fabrication, and Characterization of Al-Doped ZnO-Based Ultraviolet Photodetectors

    NASA Astrophysics Data System (ADS)

    Singh, Shaivalini

    2016-01-01

    This paper reports a simulation and experimental study of aluminum-doped zinc oxide (AZO)-based metal-semiconductor-metal (MSM) photodetectors. High-quality AZO thin films were deposited on p-type Si substrates by radiofrequency (RF) sputtering method. Interdigitated palladium metal electrodes were designed over AZO/Si samples by lithographic technique. I- V detector characteristics were investigated in dark as well as illuminated condition, using an ultraviolet (UV) source with wavelength of 0.372 μm and power of 2.8 × 10-6 W. Four different MSM devices with the same width and finger spacing of 5 μm, 10 μm, 20 μm, and 50 μm were fabricated, and the effect of finger spacing on the MSM detector I- V characteristics was investigated. It was found that the photocurrent increased by more than two orders of magnitude with UV light illumination. Simulation of these MSM devices was also carried out by using SENTAURUS TCAD software. The variation of the resistance with the electrode spacing for the MSM devices was examined by both experiment and simulation. The simulated and experimental results were compared and found to be in good agreement with each other. In both conditions (dark as well as under UV illumination), the resistance increased as the spacing between the electrodes was increased. These simulation studies will be useful for designing high-performance optoelectronic devices.

  11. Synthesis and luminescent properties of Gd3Ga2Al3O12 phosphors doped with Eu3+ or Ce3+

    NASA Astrophysics Data System (ADS)

    Oh, M. J.; Kim, H. J.

    2016-09-01

    Eu3+-or Ce3+-doped gadolinium gallium aluminum garnet (GGAG), Gd3Ga2Al3O12, phosphors are fabricated using solid-state reactions with Gd2O3, Ga2O3, Al2O3, CeO2 and Eu2O3 powders. The Eu3+-or Ce3+-doped Gd3Ga2Al3O12 phosphors are sintered at 1300 °C or 1600 °C for 5 hours by using an electric furnace under normal atmosphere. X-ray diffraction and field-emission scanning electron microscopy studies are carried out in order to analyze the physical properties of these materials, and their luminescence properties are also measured by using UV and X-ray sources. The Eu3+-or Ce3+-doped Gd3Ga2Al3O12 phosphors show higher light yields in comparison to commercial phosphors such as Gd2O2S:Tb (gadox). This indicates that Gd3Ga2Al3O12:Eu3+ phosphors are promising materials for use in X-ray imaging and dose monitoring at proton beamlines.

  12. Energy band-gap shift with gamma-ray radiation and carbon n-delta-doping in GaAs/AlGaAs QWs structures

    NASA Astrophysics Data System (ADS)

    Daoudi, M.; Hosni, F.; Khalifa, N.; Dhifallah, I.; Farah, K.; Hamzaoui, A. H.; Ouerghi, A.; Chtourou, R.

    2014-05-01

    The aim of this work is to investigate two different delta-doping (silicon and carbon) after gamma irradiation. Delta-doping GaAs/AlGaAs heterojunctions grown by molecular beam epitaxy on (1 0 0) GaAs substrates have been studied by photoluminescence (PL) spectroscopy. A theoretical study was conducted using the resolution of Schrödinger and Poisson equations written within the Hartree approximation. PL measurements as function of the power excitation at 10 K shows a red-shift due to free carriers effect on properties of GaAs/AlGaAs quantum well (QW). Its dependence on the density of the two-dimensional electron gas (2DEG) at the GaAs/AlGaAs interface has been analyzed on the basis of the quantum confined Stark, the band-gap renormalization and Burstein-Moss (BM) effects. It is noted that the gamma radiation has changed the type of the exciton recombination.

  13. Biocompatibility and bioactivity enhancement of Ce stabilized ZrO(2) doped HA coatings by controlled porosity change of Al(2) O(3) substrates.

    PubMed

    Sima, Felix; Ristoscu, Carmen; Caiteanu, Diana; Mihailescu, Cristian N; Stefan, Nicolaie; Mihailescu, Ion N; Prodan, Gabriel; Ciupina, Victor; Palcevskis, Eriks; Krastins, Janis; Sima, Livia E; Petrescu, Stefana M

    2011-02-01

    Al(2) O(3) substrates with controlled porosity were manufactured from nanosized powders obtained by plasma processing. It was observed that when increasing the sintering temperature the overall porosity was decreasing, but the pores got larger. In a second step, Ce stabilized ZrO(2) doped hydroxyapatite coatings were pulsed laser deposited onto the Al(2) O(3) substrates. It was shown that the surface morphology, consisting of aggregates and particulates in micrometric range, was altered by the substrate porosity and interface properties, respectively. TEM studies evidenced that Ce stabilized ZrO(2) doped HA particulates ranged from 10 to 50 nm, strongly depending on the Al(2) O(3) porosity. The coatings consisted of HA nanocrystals embedded in an amorphous matrix quite similar to the bone structure. These findings were congruent with the increased biocompatibility and bioactivity of these layers confirmed by enhanced growing and proliferation of human mesenchymal stem cells.

  14. Photocatalytic characteristics for the nanocrystalline TiO2 on the Ag-doped CaAl2O4:(Eu,Nd) phosphor

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Sik; Sung, Hyun-Je; Kim, Bum-Joon

    2015-04-01

    This study investigated the photocatalytic behavior of nanocrystalline TiO2 deposited on Ag-doped long-lasting phosphor (CaAl2O4:Eu2+,Nd3+). The CaAl2O4:Eu2+,Nd3+ phosphor powders were prepared via conventional sintering using CaCO3, Al2O3, Eu2O3, and Nd2O3 as raw materials according to the appropriate molar ratios. Silver nanoparticles were loaded on the phosphor by mixing with an aqueous Ag-dispersion solution. Nanocrystalline TiO2 was deposited on Ag-doped CaAl2O4:Eu2+,Nd3+ powders via low-pressure chemical vapor deposition (LPCVD). The TiO2 coated on the phosphor was actively photo-reactive under irradiation with visible light and showed much faster benzene degradation than pure TiO2, which is almost non-reactive. The coupling of TiO2 with phosphor may result in an energy band bending in the junction region, which then induces the TiO2 crystal at the interface to be photo-reactive under irradiation with visible light. In addition, the intermetallic compound of CaTiO3 that formed at the interface between TiO2 and the CaAl2O4:(Eu2+,Nd3+) phosphor results in the formation of oxygen vacancies and additional electrons that promote the photodecomposition of benzene gas. The addition of Ag nanoparticles enhanced the photocatalytic reactivity of the TiO2/CaAl2O4:Eu2+,Nd3+ phosphor. TiO2 on the Ag-doped phosphor presented a higher benzene gas decomposition rate than the TiO2 did on the phosphor without Ag-doping under both irradiation with ultraviolet and visible light.

  15. Preparation and properties of Eu doped CaAlSiN3 red phosphor

    NASA Astrophysics Data System (ADS)

    He, Pan; Zhang, Ning; Man, Shiqing

    2017-03-01

    The Eu2+ activated CaAlSiN3 phosphor was synthesized by solid-state reaction method under a nitrogen atmosphere at 1550°C for 6h. The phosphors structure was measured by X-ray diffraction (XRD); excitation spectra, emission spectra and decay lifetime were obtained by fluorescence spectrophotometer equipped. It showed a broad excitation band originating from the 4f7-4f65d transition of Eu2+ ion extending to 650nm and the peaking at 467nm; a strong emission band centering at 668nm, and the lifetime of Eu2+ in the CaAlSiN3 host is 1.4227 µs.

  16. Influence of thermochemical treatments on TSMG YBCO bulks doped with Li and Al

    NASA Astrophysics Data System (ADS)

    Diko, P.; Antal, V.; Kanuchové, M.; Šefčikové, M.; Kovéč, J.; Chaud, X.; Eisterer, M.; Hörhager, N.; Zehetmayer, M.; Weber, H. W.

    2010-06-01

    The influence of post-growth thermochemical treatments on the transition temperature and the field dependence of the critical current density at 77 K were studied in Y1.5Ba2(Cu,M)3Oy, for M = Li, and Al, bulk superconductors with CeO2 additions prepared by the Top-Seeded Melt-Growth (TSMG) process. The Li and Al dopants react in an opposite way during pre-annealing in an atmosphere with low and high oxygen partial pressure and this behaviour can be associated with the formation and dissolution of dopant clusters. High pressure high temperature oxygenation preserves the peak effect introduced by the dopants and leads to the elimination of oxygenation cracks and consequently to significant increases in the effective critical current density.

  17. Photoluminescence of Ga-doped ZnO film grown on c-Al2O3 (0001) by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Park, H. C.; Byun, D.; Angadi, B.; Hee Park, D.; Choi, W. K.; Choi, J. W.; Jung, Y. S.

    2007-10-01

    High quality gallium doped ZnO (Ga:ZnO) thin films were grown on c-Al2O3(1000) by plasma-assisted molecular beam epitaxy, and Ga concentration NGa was controlled in the range of 1×1018-2.5×1020/cm3 by adjusting/changing the Ga cell temperature. From the low-temperature photoluminescence at 10K, the donor bound exciton I8 related to Ga impurity was clearly observed and confirmed by comparing the calculated activation energy of 16.8meV of the emission peak intensity with the known localization energy, 16.1meV. Observed asymmetric broadening with a long tail on the lower energy side in the photoluminescence (PL) emission line shape could be fitted by the Stark effect and the compensation ratio was approximately 14-17% at NGa⩾1×1020/cm3. The measured broadening of photoluminescence PL emission is in good agreement with the total thermal broadening and potential fluctuations caused by random distribution of impurity at NGa lower than the Mott critical density.

  18. Estimation of Soil Radon Concentration in Al-Qateef's Date Palm Farms, Saudi Arabia

    SciTech Connect

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Baig, M. R.; Al-Sameen, M.

    2011-10-27

    This study involves the measurement of radon concentrations in agricultural soil from two date Palm farms in Al-Qateef province using CR-39 detector. In each farm the palm trees are arranged in rows separated by the irrigation reservoirs. The first farm is about 10000 m{sup 2} and has 350 palm trees and the second farm is about 7000 m{sup 2} and has 320 palm trees. The average distance between trees is about 5.5 m. The rows are separated by an irrigation reservoir where fertilizers are added. Sixty soil samples were collected from each farm and classified in paperboard boxes. These samples were taken from different depths and positions between the trees and from the irrigation reservoir.A newly designed tag type dosimeter is used in which the alpha tracks are registered on both sides of the CR-39 detector. The tag dosimeter was calibrated against a cup type dosimeter which was calibrated at the National Radiological Protection Board (NRPB) at the U.K.The detectors were left to count for five months and then chemically treated in the standard way. Finally an optical microscope is used to count alpha tracks and the data are treated statistically.The study is set to test for significant differences in radon concentrations at different positions and depths in the barren and fertilized soils in the two farms. Measured radon concentrations ranged between 42 and 344Bq/m{sup 3}. No significant difference between the mean concentration values in soil samples taken between the trees and that taken at the depth of 50 cm from the irrigation reservoir. Significant difference was however found between radon concentrations in samples collected directly from the surface of the irrigation reservoir where fertilizers are introduced and those taken from the other two positions. The used fertilizers are found to have higher contents of uranium which is limited to the surface soil of the irrigation reservoir.

  19. Estimation of Soil Radon Concentration in Al-Qateef's Date Palm Farms, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Baig, M. R.; Al-Sameen, M.

    2011-10-01

    This study involves the measurement of radon concentrations in agricultural soil from two date Palm farms in Al-Qateef province using CR-39 detector. In each farm the palm trees are arranged in rows separated by the irrigation reservoirs. The first farm is about 10000 m2 and has 350 palm trees and the second farm is about 7000 m2 and has 320 palm trees. The average distance between trees is about 5.5 m. The rows are separated by an irrigation reservoir where fertilizers are added. Sixty soil samples were collected from each farm and classified in paperboard boxes. These samples were taken from different depths and positions between the trees and from the irrigation reservoir. A newly designed tag type dosimeter is used in which the alpha tracks are registered on both sides of the CR-39 detector. The tag dosimeter was calibrated against a cup type dosimeter which was calibrated at the National Radiological Protection Board (NRPB) at the U.K. The detectors were left to count for five months and then chemically treated in the standard way. Finally an optical microscope is used to count alpha tracks and the data are treated statistically. The study is set to test for significant differences in radon concentrations at different positions and depths in the barren and fertilized soils in the two farms. Measured radon concentrations ranged between 42 and 344Bq/m3. No significant difference between the mean concentration values in soil samples taken between the trees and that taken at the depth of 50 cm from the irrigation reservoir. Significant difference was however found between radon concentrations in samples collected directly from the surface of the irrigation reservoir where fertilizers are introduced and those taken from the other two positions. The used fertilizers are found to have higher contents of uranium which is limited to the surface soil of the irrigation reservoir.

  20. Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte

    NASA Astrophysics Data System (ADS)

    Kang, Joonhee; Chung, Habin; Doh, Chilhoon; Kang, Byoungwoo; Han, Byungchan

    2015-10-01

    Understanding of the fundamental mechanisms causing significant enhancement of Li-ionic conductivity by Al3+ doping to a solid LiGe2(PO4)3 (LGP) electrolyte is pursued using first principles density functional theory (DFT) calculations combined with experimental measurements. Our results indicate that partial substitution Al3+ for Ge4+ in LiGe2(PO4)3 (LGP) with aliovalent (Li1+xAlxGe2-x(PO4)3, LAGP) improves the Li-ionic conductivity about four-orders of the magnitude. To unveil the atomic origin we calculate plausible diffusion paths of Li in LGP and LAGP materials using DFT calculations and a nudged elastic band method, and discover that LAGP had additional transport paths for Li with activation barriers as low as only 34% of the LGP. Notably, these new atomic channels manifest subtle electrostatic environments facilitating cooperative motions of at least two Li atoms. Ab-initio molecular dynamics predict Li-ionic conductivity for the LAGP system, which is amazingly agreed experimental measurement on in-house made samples. Consequently, we suggest that the excess amounts of Li caused by the aliovalent Al3+ doping to LGP lead to not only enhancing Li concentration but also opening new conducting paths with substantially decreases activation energies and thus high ionic conductivity of LAGP solid-state electrolyte.

  1. Room-temperature ferromagnetism in Cr-doped Si achieved by controlling atomic structure, Cr concentration, and carrier densities: A first-principles study

    SciTech Connect

    Wei, Xin-Yuan; Yang, Zhong-Qin; Zhu, Yan; Li, Yun

    2015-04-28

    By using first-principles calculations, we investigated how to achieve a strong ferromagnetism in Cr-doped Si by controlling the atomic structure and Cr concentration as well as carrier densities. We found that the configuration in which the Cr atom occupies the tetrahedral interstitial site can exist stably and the Cr atom has a large magnetic moment. Using this doping configuration, room-temperature ferromagnetism can be achieved in both n-type and p-type Si by tuning Cr concentration and carrier densities. The results indicate that the carrier density plays a crucial role in realizing strong ferromagnetism in diluted magnetic semiconductors.

  2. Boron concentration profiling by high angle annular dark field-scanning transmission electron microscopy in homoepitaxial δ-doped diamond layers

    SciTech Connect

    Araújo, D.; Alegre, M. P.; Piñero, J. C.; Fiori, A.; Bustarret, E.; Jomard, F.

    2013-07-22

    To develop further diamond related devices, the concentration and spatial location of dopants should be controlled down to the nanometer scale. Scanning transmission electron microscopy using the high angle annular dark field mode is shown to be sensitive to boron doping in diamond epilayers. An analytical procedure is described, whereby local boron concentrations above 10{sup 20} cm{sup −3} were quantitatively derived down to nanometer resolution from the signal dependence on thickness and boron content. Experimental boron local doping profiles measured on diamond p{sup −}/p{sup ++}/p{sup −} multilayers are compared to macroscopic profiles obtained by secondary ion mass spectrometry, avoiding reported artefacts.

  3. Growth Temperature Dependence of Si Doping Efficiency and Compensating Deep Level Defect Incorporation in Al0.7Ga0.3N

    SciTech Connect

    Armstrong, Andrew; Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan

    2015-05-11

    The growth temperature dependence of Si doping efficiency and deep level defect formation was investigated for n-type Al0.7Ga0.3N. It was observed that dopant compensation was greatly reduced with reduced growth temperature. Furthermore, deep level optical spectroscopy and lighted capacitance-voltage were used to understand the role of acceptor-like deep level defects on doping efficiency. Deep level defects were observed at 2.34 eV, 3.56 eV, and 4.74 eV below the conduction band minimum. The latter two deep levels were identified as the major compensators because the reduction in their concentrations at reduced growth temperature correlated closely with the concomitant increase in free electron concentration. Possible mechanisms for the strong growth temperature dependence of deep level formation are considered, which includes thermodynamically driven compensating defect formation that can arise for a semiconductor with very large band gap energy, such as Al0.7Ga0.3N.

  4. High-rate oxygen evolution reaction on Al-doped LiNiO2.

    PubMed

    Gupta, Asha; Chemelewski, William D; Buddie Mullins, C; Goodenough, John B

    2015-10-21

    LiNi0.8 Al0.2 O2 with a higher Ni(3+) /Li(+) ordering, synthesized by the solution-combustion method, gives oxygen-evolution-reaction (OER) activity in alkaline solution that is comparable to that of IrO2 . This confirms that the octahedral-site Ni(IV) /Ni(III) couple in an oxide is an active redox center for the OER with -redox energy pinned at the top of the O-2p bands.

  5. Ni-based anode-supported Al2O3-doped-Y2O3-stabilized ZrO2 thin electrolyte solid oxide fuel cells with Y2O3-stabilized ZrO2 buffer layer

    NASA Astrophysics Data System (ADS)

    Lei, Libin; Bai, Yaohui; Liu, Jiang

    2014-02-01

    In order to reduce the sintering temperature of Ni-based anode-supported thin 8 mol% yttria-stabilized zirconia (YSZ) elsectrolyte solid oxide fuel cells (SOFCs), alumina, with a weight percent of 1, 3, 5, and 7, is respectively doped into YSZ as sintering aid. A pure YSZ buffer layer is introduced between the Al2O3-doped-YSZ electrolyte and Ni-YSZ anode, to prevent Al2O3 and NiO from forming non-conductive spinel NiAl2O4. The experimental results show that doping proper amount of Al2O3 doping can reduce the sintering temperature of YSZ, e.g., 1 wt.% doping decreases the temperature from 1673 K to 1573 K. Anode-supported SOFCs are prepared with Al2O3-doped-YSZ electrolytes sintered at different temperatures. Electrochemical characterization of the SOFCs shows that the single cell with 1 wt.% alumina-doped YSZ electrolyte sintered at 1573 K gives the highest output. The effect of alumina doping on sintering behavior and electrical performance of YSZ is discussed in detail.

  6. Colony structure in Ce-doped Al2O3/YAG eutectic systems grown by vertical Bridgman technique

    NASA Astrophysics Data System (ADS)

    Yamada, Seiya; Yoshimura, Masafumi; Sakata, Shin-ichi; Taishi, Toshinori; Hoshikawa, Keigo

    2016-08-01

    We investigated the influence of growth rate and Ce concentration on colony structure variation in Al2O3/YAG:Ce eutectic systems. The distance between boundary zones in the colony structure decreased with increases in either growth rate or Ce concentration. The eutectic spacing in the coarse microstructure in the boundary zone decreased with increasing growth rate but increased with increasing Ce concentration. We conclude that the colony structure is formed by cellular growth driven by constitutional supercooling with an interface instability due to Ce atom accumulation, so that the distance between boundary zones depends on both the growth rate and Ce concentration, and the coarse microstructure in the boundary zone depends on the solidification rate perpendicular to the growth interface at the cell bottom of the microscopic growth interface shape in the cellular growth.

  7. Synthesis Al complex and investigating effect of doped ZnO nanoparticles in the electrical and optical efficiency of OLEDS

    NASA Astrophysics Data System (ADS)

    Shahedi, Zahra; Jafari, Mohammad Reza

    2017-01-01

    In this study, an organometallic complex based on aluminum ions is synthesized. And it is utilized as fluorescent material in the organic light-emitting diodes (OLEDs). The synthesized complex was characterized using XRD, UV-Vis, FT-IR as well as PL spectroscopy analyses. The energy levels of Al complex were determined by cyclic voltammetry measurements. Then, the effects of ZnO nanoparticles (NPs) of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS, on the electrical and optical performance of the organic light-emitting diodes have been investigated. For this purpose, two samples containing ITO/PEDOT:PSS/PVK/Alq3/PBD/Al with two different concentration and two samples containing ITO/PEDOT:PSS:ZnO/PVK/Alq3/PBD/Al with two different concentration were prepared. Then, hole transport, electron transport and emissive layers were deposited by the spin coating method and the cathode layer (Al) was deposited by the thermal evaporation method. The OLED simulation was also done by constructing the model and choosing appropriate parameters. Then, the experimental data were collected and the results interpreted both qualitatively and quantitatively. The results of the simulations were compared with experimental data of the J-V spectra. Comparing experimental data and simulation results showed that the electrical and optical efficiency of the samples with ZnO NPs is appreciably higher than the samples without ZnO NPs.

  8. Crystal growth and spectroscopic properties of Cr3+-doped CaGdAlO4

    NASA Astrophysics Data System (ADS)

    Zhang, Zhu; Huang, Yisheng; Zhang, Lizhen; Sun, Shijia; Yuan, Feifei; Lin, Zhoubin

    2017-04-01

    A Cr3+:CaGdAlO4 single crystal with dimensions of ∅21 × 33 mm3 was grown successfully by Czochralski method for the first time. Its spectral properties including polarized absorption spectra, polarized fluorescence spectra, excitation spectrum and fluorescence decay curves were investigated in detail. The absorption cross-sections at around 573 nm corresponding to the 4A2 → 4T2 transition of Cr3+ ions are 4.75 × 10-20 and 2.56 × 10-20 cm2 for σ- and π-polarizations, respectively. The excitation spectrum shows two broad and intense absorption bands at about 390 nm and 570 nm, which are associated with the 4A2 → 4T1 and 4A2 → 4T2 transitions of Cr3+ ions, respectively. The emission band with peak at around 744 nm is ascribed to the 2E → 4A2 transition of Cr3+ ions, with the emission cross-sections of 5.55 × 10-22 and 5.41 × 10-22 cm2 for σ- and π-polarizations, respectively. The fluorescence lifetime is 4.35 ms at room temperature. The Dq/B value is 2.72, which means that Cr3+ ions occupy the lattice sites with strong crystal field strength. The results show that Cr3+:CaGdAlO4 crystal can be regarded as a potential laser gain medium.

  9. Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition

    SciTech Connect

    Volintiru, I.; Creatore, M.; Kniknie, B. J.; Spee, C. I. M. A.; Sanden, M. C. M. van de

    2007-08-15

    Al-doped zinc oxide (AZO) films were deposited by means of remote plasma-enhanced metalorganic chemical vapor deposition from oxygen/diethylzinc/trimethylaluminum mixtures. The electrical, structural (crystallinity and morphology), and chemical properties of the deposited films were investigated using Hall, four point probe, x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), electron recoil detection (ERD), Rutherford backscattering (RBS), and time of flight secondary ion mass spectrometry (TOF-SIMS), respectively. We found that the working pressure plays an important role in controlling the sheet resistance R{sub s} and roughness development during film growth. At 1.5 mbar the AZO films are highly conductive (R{sub s}<6 {omega}/{open_square} for a film thickness above 1200 nm) and very rough (>4% of the film thickness), however, they are characterized by a large sheet resistance gradient with increasing film thickness. By decreasing the pressure from 1.5 to 0.38 mbar, the gradient is significantly reduced and the films become smoother, but the sheet resistance increases (R{sub s}{approx_equal}100 {omega}/{open_square} for a film thickness of 1000 nm). The sheet resistance gradient and the surface roughness development correlate with the grain size evolution, as determined from the AFM and SEM analyses, indicating the transition from pyramid-like at 1.5 mbar to pillar-like growth mode at 0.38 mbar. The change in plasma chemistry/growth precursors caused by the variation in pressure leads to different concentration and activation efficiency of Al dopant in the zinc oxide films. On the basis of the experimental evidence, a valid route for further improving the conductivity of the AZO film is found, i.e., increasing the grain size at the initial stage of film growth.

  10. Time-dependent stress concentration and microcrack nucleation in TiAl

    SciTech Connect

    Yoo, M.H.

    1995-07-01

    Localized stress evolution associated with the interaction of slip or twinning with an interface is treated by means of a superposition of the {open_quotes}internal loading{close_quotes} of a crystalline subsystem by dynamic dislocation pile-up and the stress relaxation by climb of interfacial dislocations. The peak value of a stress concentration factor depends on both the angular function that includes the effect of mode mixity and the ratio of characteristic times for stress relaxation and internal loading. The available experimental data on orientation and strain-rate dependences of interfacial fracture mode in polysynthetically twinned TiAl crystals are discussed in view of the theoretical concepts presented in this paper.

  11. The influence of Yb, B, and Ga-doped Er3+:Y3Al5O12 on solar light photocatalytic activity of TiO2 in degradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Wang, J.; Li, Y.; Wang, J.; Zhang, L.; Gao, J. Q.; Wang, B. X.; Yang, Q.; Fan, P.

    2014-01-01

    Five up-conversion luminescence agents (Er3+:Y3Al5O12, Er3+:Yb n Y3 - n Al5O12, Er3+:Y3B a Al5 - a O12, Er3+:Y3Ga b Al5 - b O12, and Er3+:Yb n Y3 - n B a Ga b Al5 - a - b O12) were synthesized using sol-gel method and then the corresponding coated composites (Er3+:Y3Al5O12/TiO2, Er3+:Yb n Y3- n Al5O12/TiO2, Er3+:Y3B a Al5 - a O12/TiO2, Er3+:Y3Ga b Al5 - b O12/TiO2, and Er3+:Yb n Y3 - n B a Ga b Al5 - a - b O12/TiO2) as photocatalysts were prepared by sol-gel coating process. The XRD and SEM were used to confirm the crystalline phase and surface morphology. The UV-vis absorption and fluorescence-emission spectra were used to research the effect of doping category and amount on the up-conversion emission ability. The photocatalytic activities were detected through the degradation of Acid Red B dye in aqueous solution. Some key parameters of catalyst amount and initial concentration of organic dye on solar light photocatalytic degradation were also examined. The extensive feasibility of prepared photocatalysts in solar light degradation was detected by other organic dyes. The results suggest that the photocatalysts can be widely used in sewage treatment.

  12. Ionized dopant concentrations at the heavily doped surface of a silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Broder, J. D.; Mazaris, G. A., Jr.; Hsu, L.

    1978-01-01

    Data are combined with concentrations obtained by a bulk measurement method using successive layer removal with measurements of Hall effect and resistivity. From the MOS (metal-oxide-semiconductor) measurements it is found that the ionized dopant concentration N has the value (1.4 + or - 0.1) x 10 to the 20th power/cu cm at distances between 100 and 220 nm from the n(+) surface. The bulk measurement technique yields average values of N over layers whose thickness is 2000 nm. Results show that, at the higher concentrations encountered at the n(+) surface, the MOS C-V technique, when combined with a bulk measurement method, can be used to evaluate the effects of materials preparation methodologies on the surface and near surface concentrations of silicon cells.

  13. Electrochemical oxidation of tramadol in low-salinity reverse osmosis concentrates using boron-doped diamond anodes.

    PubMed

    Lütke Eversloh, Christian; Schulz, Manoj; Wagner, Manfred; Ternes, Thomas A

    2015-04-01

    The electrochemical treatment of low-salinity reverse osmosis (RO) concentrates was investigated using tramadol (100 μM) as a model substance for persistent organic contaminants. Galvanostatic degradation experiments using boron-doped diamond electrodes at different applied currents were conducted in RO concentrates as well as in ultra-pure water containing either sodium chloride or sodium sulfate. Kinetic investigations revealed a significant influence of in-situ generated active chlorine besides direct anodic oxidation. Therefore, tramadol concentrations decreased more rapidly at elevated chloride content. Nevertheless, reduction of total organic carbon (TOC) was found to be comparatively low, demonstrating that transformation rather than mineralization was taking place. Early stage product formation could be attributed to both direct and indirect processes, including demethylation, hydroxylation, dehydration, oxidative aromatic ring cleavage and halogenation reactions. The latter led to various halogenated derivatives and resulted in AOX (adsorbable organic halogens) formation in the lower mg/L-range depending on the treatment conditions. Characterisation of transformation products (TPs) was achieved via MS(n) experiments and additional NMR measurements. Based on identification and quantification of the main TPs in different matrices and on additional potentiostatic electrolysis, a transformation pathway was proposed.

  14. Influence of P{sub 2}O{sub 5} and Al{sub 2}O{sub 3} content on the structure of erbium-doped borosilicate glasses and on their physical, thermal, optical and luminescence properties

    SciTech Connect

    Bourhis, Kevin; Massera, Jonathan; Petit, Laeticia; Ihalainen, Heikki; Fargues, Alexandre; Cardinal, Thierry; Hupa, Leena; Hupa, Mikko; Dussauze, Marc; Rodriguez, Vincent; Boussard-Plédel, Catherine; Bureau, Bruno; Roiland, Claire; Ferraris, Monica

    2015-03-15

    Highlights: • Reorganization of the glass structure induced by the addition of P{sub 2}O{sub 5} or Al{sub 2}O{sub 3}. • Emission properties related to the presence of P or Al in the Er{sup 3+} coordination shell. • Declustering observed upon addition of P{sub 2}O{sub 5}. • No declustering upon addition of Al{sub 2}O{sub 3}. - Abstract: The effect of P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3} addition in Er-doped borosilicate glasses on the physical, thermal, optical, and luminescence properties is investigated. The changes in these glass properties are related to the glass structure modifications induced by the addition of P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3}, which were probed by FTIR, {sup 11}B MAS NMR and X-ray photoelectron spectroscopies. Variations of the polymerization degree of the silicate tetrahedra and modifications in the {sup [3]}B/{sup [4]}B ratio are explained by a charge compensation mechanism due to the formation of AlO{sub 4}, PO{sub 4} groups and the formation of Al-O-P linkages in the glass network. From the absorption and luminescence properties of the Er{sup 3+} ions at 980 nm and 1530 nm, declustering is suspected for the highest P{sub 2}O{sub 5} concentrations while for the highest Al{sub 2}O{sub 3} concentrations no declustering is observed.

  15. Polyaniline/poly(ɛ-caprolactone) composite electrospun nanofiber-based gas sensors: optimization of sensing properties by dopants and doping concentration

    NASA Astrophysics Data System (ADS)

    Low, Karen; Chartuprayoon, Nicha; Echeverria, Cristina; Li, Changling; Bosze, Wayne; Myung, Nosang V.; Nam, Jin

    2014-03-01

    Electrospinning was utilized to synthesize a polyaniline (PANI)/poly(ɛ-caprolactone) (PCL) composite in the form of nanofibers to examine its gas sensing performance. Electrical conductivity of the composite nanofibers was tailored by secondary doping with protonic acids including hydrochloride (HCl) or camphorsulfonic acid (HCSA). FT-IR and diffuse reflectance UV-vis spectroscopy were utilized to examine doping-dependent changes in the chemical structure and the protonation state of the nanofibers, respectively. The oxidation and protonation state of the composite nanofibers were shown to strongly depend on the doping agent and duration, demonstrating a simple way of controlling the electrical conductivity of the composite. PANI/PCL electrospun nanofibers having various electrical conductivities via varying dopants and doping concentrations, were configured to chemiresistors for sensing various analytes, including water vapor, NH3, and NO2. Secondary doping with Cl- and CSA differentially affected sensing behaviors by having distinctive optimal sensitivities. Biphasic sensitivity with respect to electrical conductivity was observed, demonstrating a facile method to enhance gas sensitivity by optimizing secondary doping. A balance between Debye length of the nanofibers and overall charge conduction may play an important role for modulating such an optimal sensitivity.

  16. High drain current density and reduced gate leakage current in channel-doped AlGaN /GaN heterostructure field-effect transistors with Al2O3/Si3N4 gate insulator

    NASA Astrophysics Data System (ADS)

    Maeda, Narihiko; Wang, Chengxin; Enoki, Takatomo; Makimoto, Toshiki; Tawara, Takehiko

    2005-08-01

    Channel-doped AlGaN /GaN heterostructure field-effect transistors (HFETs) with metal-insulator-semiconductor (MIS) structures have been fabricated to obtain the high drain current density and reduced gate leakage current. A thin bilayer dielectric of Al2O3(4nm)/Si3N4(1nm) was used as the gate insulator, to simultaneously take advantage of the high-quality interface between Si3N4 and AlGaN, and high resistivity and a high dielectric constant of Al2O3. A MIS HFET with a gate length of 1.5μm has exhibited a record high drain current density of 1.87A/mm at a gate voltage (Vg) of +3V, which is ascribed to a high applicable Vg and a very high two-dimensional electron gas (2DEG) density of 2.6×1013cm-2 in the doped channel. The gate leakage current was reduced by two or three orders of magnitude, compared with that in normal HFETs without a gate insulator. The transconductance (gm) was 168mS/mm, which is high in the category of the MIS structure. Channel-doped MIS HFETs fabricated have thus been proved to exhibit the high current density, reduced gate leakage current, and relatively high transconductance, hence, promising for high-power applications.

  17. Blue emissions in Dy3+ doped Y4Al2O9 crystals for temperature sensing.

    PubMed

    Boruc, Zuzanna; Kaczkan, Marcin; Fetlinski, Bartosz; Turczynski, Sebastian; Malinowski, Michal

    2012-12-15

    Temperature dependent emission spectra and decay times of trivalent dysprosium (Dy3) activated Y4Al2O9 (YAM) crystals have been studied for the first time (to our knowledge). The ratio of emission lines intensity can be used in temperature measurements, as it is not dependent on the variability of absolute intensity. The Boltzmann model was applied for modeling the temperature variation of the 4I15/2 and 4F9/2 states emissions relative intensities 455 and 481 nm, respectively. The calculated approximation gives highest sensor sensitivity of about 3×10(-3)°C-1 for the 600°C-800°C range, which allows for an expectation of usefulness of Dy3+:YAM in high-temperature luminescence thermometry. Also, the measured decay times are suitable for temperature sensing.

  18. Al-doped ZnO contact to CdZnTe for x- and gamma-ray detector applications

    NASA Astrophysics Data System (ADS)

    Roy, U. N.; Camarda, G. S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Mundle, R. M.; Pradhan, A. K.; James, R. B.

    2016-06-01

    The poor adhesion of common metals to CdZnTe (CZT)/CdTe surfaces has been a long-standing challenge for radiation detector applications. In this present work, we explored the use of an alternative electrode, viz., Al-doped ZnO (AZO) as a replacement to common metallic contacts. ZnO offers several advantages over the latter, such as having a higher hardness, a close match of the coefficients of thermal expansion for CZT and ZnO, and better adhesion to the surface of CZT due to the contact layer being an oxide. The AZO/CZT contact was investigated via high spatial-resolution X-ray response mapping for a planar detector at the micron level. The durability of the device was investigated by acquiring I-V measurements over an 18-month period, and good long-term stability was observed. We have demonstrated that the AZO/CZT/AZO virtual-Frisch-grid device performs fairly well, with comparable or better characteristics than that for the same detector fabricated with gold contacts.

  19. Local probe microscopic studies on Al-doped ZnO: Pseudoferroelectricity and band bending at grain boundaries

    SciTech Connect

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2016-01-07

    In this paper, based on piezoforce measurements, we show the presence of opposite polarization at grains and grain boundaries of Al-doped ZnO (AZO). The polarization can be flipped by 180° in phase by switching the polarity of the applied electric field, revealing the existence of nanoscale pseudoferroelectricity in AZO grown on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate. We also demonstrate an experimental evidence on local band bending at grain boundaries of AZO films using conductive atomic force microscopy and Kelvin probe force microscopy. The presence of an opposite polarization at grains and grain boundaries gives rise to a polarization-driven barrier formation at grain boundaries. With the help of conductive atomic force microscopy, we show that the polarization-driven barrier along with the defect-induced electrostatic potential barrier account for the measured local band bending at grain boundaries. The present study opens a new avenue to understand the charge transport in light of both polarization and electrostatic effects.

  20. In situ analyses on negative ions in the sputtering process to deposit Al-doped ZnO films

    SciTech Connect

    Tsukamoto, Naoki; Watanabe, Daisuke; Saito, Motoaki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    The origin of high energy negative ions during deposition of aluminum doped zinc oxide (AZO) films by dc magnetron sputtering of an AZO (Al{sub 2}O{sub 3}: 2.0 wt %) target was investigated by in situ analyses using the quadrupole mass spectrometer combined with the electrostatic energy analyzer. High energy negative oxygen (O{sup -}) ions which possessed the kinetic energy corresponding to the cathode sheath voltage were detected. The maximum flux of the O{sup -} ions was clearly observed at the location opposite to the erosion track area on the target. The flux of the O{sup -} ions changed hardly with increasing O{sub 2} flow ratio [O{sub 2}/(Ar+O{sub 2})] from 0% to 5%. The kinetic energy of the O{sup -} ions decreased with decreasing cathode sheath voltage from 403 to 337 V due to the enhancement of the vertical maximum magnetic field strength at the cathode surface from 0.025 to 0.100 T. The AZO films deposited with the lower O{sup -} bombardment energy showed the higher crystallinity and improved the electrical conductivity.