Science.gov

Sample records for al doping concentration

  1. Effect of Al Doping Concentration on Microstructure, Photoelectric Properties and Doped Mechanism of Azo Films

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Cai, Yanqing; Hou, Linyan; Ma, Penghua

    2014-05-01

    Al doped ZnO (AZO) thin films were deposited on a glass substrate by atmospheric pressure chemical vapor deposition (APCVD) method. Effect of Al doping concentration on microstructure, photoelectric properties and doped mechanism of AZO thin films were investigated. The analysis results revealed that the structural properties of the films possessed crystalline structure with a preferred (002) orientation. The best crystallization quality and minimum electrical resistivity was obtained at 5 at.% Al doped films and the minimum resistivity was 6.6 × 10-4 Ω ṡ cm. Uniform granular grains were observed on the surface of AZO films, and the average optical transmittance was above 80% in the visible range. The doped mechanism of AZO films was analyzed as follows. With Al doping in ZnO films, AlZn substitute and Ali interstice were produced, which decreased the resistivity of films. While after the limit value and with the continuing increase of Al doping concentration, free electrons were consumed and the resistivity of films increased.

  2. Sol-gel production of Cu/Al co-doped zinc oxide: Effect of Al co-doping concentration on its structure and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Bu, Ian Yi-Yu

    2014-12-01

    Sol-gel deposition of ZnO:Cu:Al thin films were co-doped different Cu:Al ratio. The optoelectronic and structural properties of the resultant film were evaluated using scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy, photoluminescence spectroscopy and UV-VIS spectroscopy. It was found that the Al content leads to narrowing of the band gap and that excessive Al doping concentration greater than 5 at% degrade the film's properties.

  3. Nitrogen-concentration control in GaNAs/AlGaAs quantum wells using nitrogen δ-doping technique

    SciTech Connect

    Mano, Takaaki; Jo, Masafumi; Kuroda, Takashi; Noda, Takeshi; Sugimoto, Yoshimasa; Sakuma, Yoshiki; Elborg, Martin; Sakoda, Kazuaki

    2014-05-15

    GaNAs/Al{sub 0.35}Ga{sub 0.65}As multiple quantum wells (MQWs) with nitrogen δ-doping were fabricated on GaAs (100) substrates by plasma-assisted molecular beam epitaxy. High controllability of nitrogen-concentrations in the MQWs was achieved by tuning nitrogen δ-doping time. The maximum nitrogen concentration in the MQWs was 2.8%. The MQWs exhibit intense, narrow photoluminescence emission.

  4. Investigation of Al doping concentration effect on the structural and optical properties of the nanostructured CdO thin film

    NASA Astrophysics Data System (ADS)

    Gencer Imer, Arife

    2016-04-01

    Nanostructured aluminium (Al) doped cadmium oxide (CdO) films with highly electrical conductivity and optical transparency have been deposited for the first time on soda-lime glass substrates preheated at 250 °C by ultrasonic spray coating technique. The aluminium dopant content in the CdO film was changed from 0 to 5 at%. The influencing of Al doping on the structural, morphological, electrical and optical properties of the CdO nanostructured films has been investigated. Atomic force microscopy study showed the grain size of the films is an order of nanometers, and it decreases with increase in Al dopant content. All the films having cubic structure with a lattice parameter 4.69 Å were determined via X ray diffraction analysis. The optical band gap value of the films, obtained by optical absorption, was found to increase with Al doping. Electrical studies exhibited mobility, carrier concentration and resistivity of the film strongly dependent on the doping content. It has been evaluated that optical band gap, and grain size of the nanostructured CdO film could be modified by Al doping.

  5. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping

    SciTech Connect

    Chen, Yingda; Wu, Hualong; Han, Enze; Yue, Guanglong; Chen, Zimin; Wu, Zhisheng; Wang, Gang; Jiang, Hao

    2015-04-20

    High hole concentration was achieved in Mg-doped Al{sub x}Ga{sub 1−x}N (x ∼ 0.4) by using indium-surfactant-assisted delta doping method. A maximum carrier concentration of 4.75 × 10{sup 18 }cm{sup −3} was obtained, which is three times higher than that of the conventionally delta-doped sample. Sheet resistivity as low as 2.46 × 10{sup 4} Ω/sq was realized, benefiting from the high hole concentration (p). Analysis results show that the Mg incorporation is effectively enhanced, while the compensation ratio and acceptor activation energy (E{sub A}) are significantly reduced by using In surfactant. It was also found that the In surfactant may induce stronger valence-band modulation, contributing to the decrease of E{sub A} and the increase of p.

  6. Effects of Al concentration on microstructural characteristics and electrical properties of Al-doped ZnO thin films on Si substrates by atomic layer deposition.

    PubMed

    Lee, Ju Ho; Lee, Jae-Won; Hwang, Sooyeon; Kim, Sang Yun; Cho, Hyung Koun; Lee, Jeong Yong; Park, Jin-Seong

    2012-07-01

    Al-doped ZnO (AZO) thin films with various Al concentrations were synthesized on Si(001) substrates with native oxide layers by atomic layer deposition process. The effects of the Al concentration on the microstructural characteristics of the AZO thin films grown at 250 degrees C and the correlation between their microstructural characteristics and electrical properties of the AZO thin films were investigated by AFM, XRD, HRTEM and Hall measurements. The XRD and HRTEM results revealed that the crystallinity and electrical properties of the undoped ZnO thin films were enhanced by 2.48 at% Al doping. However, 12.62 at% Al doping induced the deterioration of their crystallinity and electrical properties due to the formation of nano-sized metallic Al clusters and randomly oriented ZnO-based nano-crystals. To enhance the electrical properties of the AZO thin films while maintaining their crystallinity and electrical properties, a moderate Al concentration has to be chosen under the solubility limit of Al in ZnO.

  7. Inhomogeneous distribution of defect-related emission in Si-doped AlGaN epitaxial layers with different Al content and Si concentration

    SciTech Connect

    Kurai, Satoshi Ushijima, Fumitaka; Yamada, Yoichi; Miyake, Hideto; Hiramatsu, Kazumasa

    2014-02-07

    The spatial distribution of luminescence in Si-doped AlGaN epitaxial layers that differ in Al content and Si concentration has been studied by cathodoluminescence (CL) mapping in combination with scanning electron microscopy. The density of surface hillocks increased with decreasing Al content and with increasing Si concentration. The mechanisms giving rise to those hillocks are likely different. The hillocks induced surface roughening, and the compositional fluctuation and local donor-acceptor-pair (DAP) emission at hillock edges in AlGaN epitaxial layers were enhanced irrespective of the origin of the hillocks. The intensity of local DAP emission was related to Si concentration, as well as to hillock density. CL observation revealed that DAP emission areas were present inside the samples and were likely related to dislocations concentrated at hillock edges. Possible candidates for acceptors in the observed DAP emission that are closely related in terms of both Si concentration and hillock edges with large deformations are a V{sub III}-Si{sub III} complex and Si{sub N}, which are unfavorable in ordinary III-nitrides.

  8. Passivation of phosphorus diffused silicon surfaces with Al{sub 2}O{sub 3}: Influence of surface doping concentration and thermal activation treatments

    SciTech Connect

    Richter, Armin Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-12-28

    Thin layers of Al{sub 2}O{sub 3} are well known for the excellent passivation of p-type c-Si surfaces including highly doped p{sup +} emitters, due to a high density of fixed negative charges. Recent results indicate that Al{sub 2}O{sub 3} can also provide a good passivation of certain phosphorus-diffused n{sup +} c-Si surfaces. In this work, we studied the recombination at Al{sub 2}O{sub 3} passivated n{sup +} surfaces theoretically with device simulations and experimentally for Al{sub 2}O{sub 3} deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al{sub 2}O{sub 3} interface. This pronounced maximum was also observed experimentally for n{sup +} surfaces passivated either with Al{sub 2}O{sub 3} single layers or stacks of Al{sub 2}O{sub 3} capped by SiN{sub x}, when activated with a low temperature anneal (425 °C). In contrast, for Al{sub 2}O{sub 3}/SiN{sub x} stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n{sup +} diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al{sub 2}O{sub 3}/SiN{sub x} stacks can provide not only excellent passivation on p{sup +} surfaces but also on n{sup +} surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.

  9. The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu2ZnSnS4 thin-film solar cells prepared by electrodeposition method

    NASA Astrophysics Data System (ADS)

    Mkawi, E. M.; Ibrahim, K.; Ali, M. K. M.; Farrukh, M. A.; Mohamed, A. S.

    2015-11-01

    Al-doped ZnO (AZO) thin films were potentiostatically deposited on indium tin oxide substrates. The influence of the doping level of the ZnO:Al films was investigated. The results of the X-ray diffraction and scanning electron microscopy analysis revealed that the structural properties of the AZO films were found polycrystalline with a hexagonal wurtzite-type structure along the (002) plane. The grain size of the AZO films was observed as approximately 3 μm in the film doping with 4 mol% ZnO:Al concentration. The thin films also exhibited an optical transmittance as high as 90 % in the wavelength range of 100-1,000 nm. The optical band gap increased from 3.33 to 3.45 eV. Based on the Hall studies, the lowest resistivity (4.78 × 10-3 Ω cm) was observed in the film doping with 3 mol% ZnO:Al concentration. The sheet resistant, carrier concentration and Hall mobility values were found as 10.78 Ω/ square, 9.03 × 1018 cm-3 and 22.01 cm2/v s, respectively, which showed improvements in the properties of AZO thin films. The ZnO:Al thin films were used as a buffer layer in thin-film solar cells with the structure of soda-lime glass/Mo/Cu2ZnSnS4/ZnS/ZnO/Al grid. The best solar cell efficiency was 2.3 % with V OC of 0.430 V, J SC of 8.24 mA cm-2 and FF of 68.1 %.

  10. Growth of silicon-doped Al0.6Ga0.4N with low carbon concentration at high growth rate using high-flow-rate metal organic vapor phase epitaxy reactor

    NASA Astrophysics Data System (ADS)

    Ikenaga, Kazutada; Mishima, Akira; Yano, Yoshiki; Tabuchi, Toshiya; Matsumoto, Koh

    2016-05-01

    The relationship between the carbon concentration and electrical characteristics of silicon-doped AlGaN (Al > 0.5) was investigated using a high-flow-rate metal organic vapor phase epitaxy (MOVPE) reactor. The carbon concentration and electrical properties of AlGaN (Al > 0.5) were measured as a function of the growth rate, V/III ratio, and growth temperature. The growth rate of Al0.6Ga0.4N was linearly controlled up to 7.2 µm/h under a constant ammonia (NH3) flow rate. However, a decrease in V/III ratio resulted in an increase in carbon concentration to 8 × 1017 cm-3. With increased growth temperature, the carbon concentration decreased to less than 2 × 1017 cm-3 without showing any reduction in growth rate. As a result, n-type Al0.6Ga0.4N with a carrier concentration of 5.4 × 1018 cm-3 and a resistivity of 2.2 × 10-2 Ω·cm was obtained.

  11. Reduction in the concentration of cation vacancies by proper Si-doping in the well layers of high AlN mole fraction Al{sub x}Ga{sub 1–x}N multiple quantum wells grown by metalorganic vapor phase epitaxy

    SciTech Connect

    Chichibu, S. F. Ishikawa, Y.; Furusawa, K.; Miyake, H.; Hiramatsu, K.

    2015-09-21

    Appropriate-amount Si-doping in the well layers significantly improved the luminescence efficiency of Al{sub 0.68}Ga{sub 0.32}N/Al{sub 0.77}Ga{sub 0.23}N multiple quantum wells. To understand the mechanisms, spatio-time-resolved cathodoluminescence measurements and self-consistent Schrödinger-Poisson calculations were carried out. The increase in the luminescence lifetime at room temperature, which reflects the decrease in the concentration of nonradiative recombination centers (NRCs), was correlated with increased terrace width of Si-doped wells. The results suggest the importance of H{sub 3}SiNH{sub 2} doping-reactant formation that gives rise to enhanced decomposition of NH{sub 3} and provides wetting conditions by surface Si-N bonds, which reduce the total energy and concentration of NRCs composed of cation vacancies.

  12. Strong adsorption of Al-doped carbon nanotubes toward cisplatin

    NASA Astrophysics Data System (ADS)

    Li, Wei; Li, Guo-Qing; Lu, Xiao-Min; Ma, Juan-Juan; Zeng, Peng-Yu; He, Qin-Yu; Wang, Yin-Zhen

    2016-08-01

    The adsorption of cisplatin molecule on Al-doped CNTs is investigated using density functional theory. The obtained results indicate that Al-doped carbon nanotubes can strongly absorb cisplatin. After absorbing cisplatin, the symmetry of CNTs has some changes. We innovatively defined a parameter of symmetry variation which relates to the adsorption. By analyzing the electronic structure, it can be concluded that under the circumstance that cisplatin was absorbed by Al-doped CNTs through aluminum atom of Al-doped CNTs. In conclusion, Al-doped CNTs is a kind of potential delivery carrier with high quality for anticancer drug cisplatin.

  13. Chemical trend of superconducting transition temperature in hole-doped delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-12-01

    We have performed the first-principles calculations about the superconducting transition temperature Tc of hole-doped delafossite CuAlO2, AgAlO2 and AuAlO2. Calculated Tc are about 50 K (CuAlO2), 40 K (AgAlO2) and 3 K(AuAlO2) at maximum in the optimum hole-doping concentration. The low Tc of AuAlO2 is attributed to the weak electron-phonon interaction caused by the low covalency and heavy atomic mass.

  14. Modulating TiO2 photocatalyst by Al doping: Density functional theory approach

    NASA Astrophysics Data System (ADS)

    Zhao, Ya Fei; Li, Can; Lu, Song; Gong, Yin Yan; Niu, Leng Yuan; Liu, Xin Juan

    2016-06-01

    In this work, systematic study of the thermal stability, crystal structure and electronic properties of Al doped TiO2 were studied by the first principles calculations. The results showed that Al atoms preferentially occupying the interstitial site under Ti-rich condition, but substituting the Ti atom under O-rich condition. In contrast to pure TiO2, the values of VBM and CBM are reduced for Al substituting Ti doped mode, but increased for Al interstitial atom doped mode. Thus, we can modulate the preparation condition and dosage concentration for preparing the optimal photocatalyst.

  15. Semiconducting properties of Al doped ZnO thin films.

    PubMed

    Al-Ghamdi, Ahmed A; Al-Hartomy, Omar A; El Okr, M; Nawar, A M; El-Gazzar, S; El-Tantawy, Farid; Yakuphanoglu, F

    2014-10-15

    Aluminum doped ZnO (AZO) thin films were successfully deposited via spin coating technique onto glass substrates. Structural properties of the films were analyzed by X-ray diffraction, atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy. X-ray diffraction results reveal that all the films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction (002) plane. The crystallite size of ZnO and AZO films was determined from Scherrer's formula and Williamson-Hall analysis. The lattice parameters of the AZO films were found to decrease with increasing Al content. Energy dispersive spectroscopy (EDX) results indicate that Zn, Al and O elements are present in the AZO thin films. The electrical conductivity, mobility carriers and carrier concentration of the films are increased with increasing Al doping concentration. The optical band gap (Eg) of the films is increased with increasing Al concentration. The AZO thin films indicate a high transparency in the visible region with an average value of 86%. These transparent AZO films may be open a new avenue for optoelectronic and photonic devices applications in near future. PMID:24840493

  16. Preparation of Al-doped ZnO nanocrystalline aggregates with enhanced performance for dye adsorption

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Que, WenXiu; Yuan, Yuan; Zhong, Peng; Liao, YuLong

    2012-07-01

    Al-doped ZnO (AZO) nanocrystalline aggregates (NCAs) were prepared by a low cost colloid chemistry method and effects of the Al-doped concentration on the morphological and structural properties of the AZO NCAs were studied. The dye adsorption ability of the AZO NCAs with various Al-doped concentrations was also investigated. Results indicate that the doping of the Al ions not only does not change the wurtzite structure of the ZnO crystal but also can reduce the crystallite grain size and the particle size distribution of the NCAs, which gives them a higher specific surface area and dye adsorption ability than that of the ZnO NCAs. The as-prepared AZO NCAs would be a promising material to be applied in the dye sensitized solar cells and water treatment.

  17. Fabrication of Al-Doped ZnO Film with High Conductivity Induced by Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Hong, Jeongsoo; Katsumata, Ken-ichi; Matsushita, Nobuhiro

    2016-06-01

    We have fabricated Al-doped ZnO films by a spin-spray method, achieving high conductivity by Al-ion doping and photocatalytic activity of the ZnO. The surface morphology of the as-deposited films was varied by changing the Al concentration and addition of citrate ions. As-deposited Al-doped ZnO film without citrate ions showed rod array structure with increasing rod width as the Al concentration was increased. Meanwhile, Al-doped ZnO film deposited with addition of citrate ions changed to exhibit dense and continuous surface morphology with high transmittance of 85%. The lowest resistivity recorded for undoped and Al-doped ZnO film was 2.1 × 10-2 Ω cm and 5.9 × 10-3 Ω cm, after ultraviolet (UV) irradiation. The reason for the decreased resistivity is thought to be that Al-ion doping and the photocatalytic activity of ZnO contributed to improve the conductivity.

  18. Fabrication of Al-Doped ZnO Film with High Conductivity Induced by Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Hong, Jeongsoo; Katsumata, Ken-ichi; Matsushita, Nobuhiro

    2016-10-01

    We have fabricated Al-doped ZnO films by a spin-spray method, achieving high conductivity by Al-ion doping and photocatalytic activity of the ZnO. The surface morphology of the as-deposited films was varied by changing the Al concentration and addition of citrate ions. As-deposited Al-doped ZnO film without citrate ions showed rod array structure with increasing rod width as the Al concentration was increased. Meanwhile, Al-doped ZnO film deposited with addition of citrate ions changed to exhibit dense and continuous surface morphology with high transmittance of 85%. The lowest resistivity recorded for undoped and Al-doped ZnO film was 2.1 × 10-2 Ω cm and 5.9 × 10-3 Ω cm, after ultraviolet (UV) irradiation. The reason for the decreased resistivity is thought to be that Al-ion doping and the photocatalytic activity of ZnO contributed to improve the conductivity.

  19. Native cation vacancies in Si-doped AlGaN studied by monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Tenjinbayashi, K.; Tsutsui, T.; Shimahara, Y.; Miyake, H.; Hiramatsu, K.; Oshima, N.; Suzuki, R.; Ishibashi, S.

    2012-01-01

    Native defects in Si-doped AlGaN grown by metalorganic vapor phase epitaxy were probed by monoenergetic positron beams. Doppler broadening spectra of the annihilation radiation and positron lifetimes were measured, and these were compared with results obtained using first-principles calculation. For Si-doped AlxGa1-xN (4 × 1017 Si/cm3), the vacancy-type defects were introduced at above x = 0.54, and this was attributed to the transition of the growth mode to the Stranski-Krastanov mechanism from the Frank-van der Merwe mechanism. For Si-doped Al0.6Ga0.4N, the vacancy concentration increased with increasing Si concentration, and the major defect species was identified as Al vacancies. A clear correlation between the suppression of cathodoluminescence and the defect concentration was obtained, suggesting the cation vacancies act as nonradiative centers in AlGaN.

  20. Highly piezoelectric co-doped AlN thin films for wideband FBAR applications.

    PubMed

    Yokoyama, Tsuyoshi; Iwazaki, Yoshiki; Onda, Yosuke; Nishihara, Tokihiro; Sasajima, Yuichi; Ueda, Masanori

    2015-06-01

    We report piezoelectric materials composed of charge-compensated co-doped (Mg, β)(x)Al(1-x)N (β = Zr or Hf) thin films. The effect of the dopant element into AlN on the crystal structure, and piezoelectric properties of co-doped AlN was determined on the basis of a first-principles calculation, and the theoretical piezoelectric properties were confirmed by experimentally depositing thin films of magnesium (Mg) and zirconium (Zr) co-doped AlN (Mg-Zr-doped AlN). The Mg-Zrdoped AlN thin films were prepared on Si (100) substrates by using a triple-radio-frequency magnetron reactive co-sputtering system. The crystal structures and piezoelectric coefficients (d33) were investigated as a function of the concentrations, which were measured by X-ray diffraction and a piezometer. The results show that the d33 of Mg-Zr-doped AlN at total Mg and Zr concentrations (both expressed as β) of 0.35 was 280% larger than that of pure AlN. The experimentally measured parameter of the crystal structure and d33 of Mg-Zr-doped AlN (plotted as functions of total Mg and Zr concentrations) were in very close agreement with the corresponding values obtained by the first-principle calculations. Thin film bulk acoustic wave resonators (FBAR) employing (Mg,Zr)0.13Al0.87N and (Mg, Hf)0.13 Al0.87N as a piezoelectric thin film were fabricated, and their resonant characteristics were evaluated. The measured electromechanical coupling coefficient increased from 7.1% for pure AlN to 8.5% for Mg-Zr-doped AlN and 10.0% for Mg- Hf-doped AlN. These results indicate that co-doped (Mg, β)(x)Al(1-x)N (β = Zr or Hf) films have potential as piezoelectric thin films for wideband RF applications.

  1. Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition.

    PubMed

    Zhai, Chen-Hui; Zhang, Rong-Jun; Chen, Xin; Zheng, Yu-Xiang; Wang, Song-You; Liu, Juan; Dai, Ning; Chen, Liang-Yao

    2016-12-01

    The tuning of structural, optical, and electrical properties of Al-doped ZnO films deposited by atomic layer deposition technique is reported in this work. With the increasing Al doping level, the evolution from (002) to (100) diffraction peaks indicates the change in growth mode of ZnO films. Spectroscopic ellipsometry has been applied to study the thickness, optical constants, and band gap of AZO films. Due to the increasing carrier concentration after Al doping, a blue shift of band gap and absorption edge can be observed, which can be interpreted by Burstein-Moss effect. The carrier concentration and resistivity are found to vary significantly among different doping concentration, and the optimum value is also discussed. The modulations and improvements of properties are important for Al-doped ZnO films to apply as transparent conductor in various applications.

  2. Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhai, Chen-Hui; Zhang, Rong-Jun; Chen, Xin; Zheng, Yu-Xiang; Wang, Song-You; Liu, Juan; Dai, Ning; Chen, Liang-Yao

    2016-09-01

    The tuning of structural, optical, and electrical properties of Al-doped ZnO films deposited by atomic layer deposition technique is reported in this work. With the increasing Al doping level, the evolution from (002) to (100) diffraction peaks indicates the change in growth mode of ZnO films. Spectroscopic ellipsometry has been applied to study the thickness, optical constants, and band gap of AZO films. Due to the increasing carrier concentration after Al doping, a blue shift of band gap and absorption edge can be observed, which can be interpreted by Burstein-Moss effect. The carrier concentration and resistivity are found to vary significantly among different doping concentration, and the optimum value is also discussed. The modulations and improvements of properties are important for Al-doped ZnO films to apply as transparent conductor in various applications.

  3. Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition.

    PubMed

    Zhai, Chen-Hui; Zhang, Rong-Jun; Chen, Xin; Zheng, Yu-Xiang; Wang, Song-You; Liu, Juan; Dai, Ning; Chen, Liang-Yao

    2016-12-01

    The tuning of structural, optical, and electrical properties of Al-doped ZnO films deposited by atomic layer deposition technique is reported in this work. With the increasing Al doping level, the evolution from (002) to (100) diffraction peaks indicates the change in growth mode of ZnO films. Spectroscopic ellipsometry has been applied to study the thickness, optical constants, and band gap of AZO films. Due to the increasing carrier concentration after Al doping, a blue shift of band gap and absorption edge can be observed, which can be interpreted by Burstein-Moss effect. The carrier concentration and resistivity are found to vary significantly among different doping concentration, and the optimum value is also discussed. The modulations and improvements of properties are important for Al-doped ZnO films to apply as transparent conductor in various applications. PMID:27639580

  4. Origin of carrier scattering in polycrystalline Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Oka, Nobuto; Kusayanagi, Minehide; Nakatomi, Satoshi; Shigesato, Yuzo

    2014-10-01

    We observed the carrier transport phenomena in polycrystalline Al-doped ZnO (AZO) films with carrier densities ranging from 2.0 × 1019 to 1.1 × 1021 cm-3. A comparison of the optical carrier density and Hall carrier density indicates that the conduction band in AZO films is nonparabolic above 2.0 × 1020 cm-3. A transition from grain boundary scattering to ionized impurity scattering is observed at a doping level of ˜4.0 × 1020 cm-3. The trap density at the grain boundary increases with increasing Al concentration in the films, implying that the doping level plays a decisive role in the trap density. The excellent fitting of the optical mobility and carrier density using the Brooks-Herring model shows that the acceptor concentration increases with increasing doping level.

  5. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  6. Tunable p-type conductivity and transport properties of AlN nanowires via Mg doping.

    PubMed

    Tang, Yong-Bing; Bo, Xiang-Hui; Xu, Jun; Cao, Yu-Lin; Chen, Zhen-Hua; Song, Hai-Sheng; Liu, Chao-Ping; Hung, Tak-Fu; Zhang, Wen-Jun; Cheng, Hui-Ming; Bello, Igor; Lee, Shuit-Tong; Lee, Chun-Sing

    2011-05-24

    Arrays of well-aligned AlN nanowires (NWs) with tunable p-type conductivity were synthesized on Si(111) substrates using bis(cyclopentadienyl)magnesium (Cp(2)Mg) vapor as a doping source by chemical vapor deposition. The Mg-doped AlN NWs are single-crystalline and grow along the [001] direction. Gate-voltage-dependent transport measurements on field-effect transistors constructed from individual NWs revealed the transition from n-type conductivity in the undoped AlN NWs to p-type conductivity in the Mg-doped NWs. By adjusting the doping gas flow rate (0-10 sccm), the conductivity of AlN NWs can be tuned over 7 orders of magnitude from (3.8-8.5) × 10(-6) Ω(-1) cm(-1) for the undoped sample to 15.6-24.4 Ω(-1) cm(-1) for the Mg-doped AlN NWs. Hole concentration as high as 4.7 × 10(19) cm(-3) was achieved for the heaviest doping. In addition, the maximum hole mobility (∼6.4 cm(2)/V s) in p-type AlN NWs is much higher than that of Mg-doped AlN films (∼1.0 cm(2)/V s). (2) The realization of p-type AlN NWs with tunable electrical transport properties may open great potential in developing practical nanodevices such as deep-UV light-emitting diodes and photodetectors. PMID:21480640

  7. Optical properties of Bi 12TiO 20 doped with Al, P, Ag, Cu, Co and co-doped with Al+P single crystals

    NASA Astrophysics Data System (ADS)

    Marinova, V.

    2000-11-01

    Large optically homogeneous photorefractive Bi 12TiO 20 (BTO) single crystals doped with Al, P, Ag, Cu, Co and Al+P-co-doping were obtained by the Top Seeded Solution Growth Method (TSSG) in a Bi 2O 3 solution. A strong bleaching effect was observed for the Al, P, Ag and Al+P-doped crystals, whereas doping with Cu and Co induced a strong photochromic effect and increased the absorption coefficients in the red spectral region. Al, P, Al+P-doped crystals increased the values of optical rotator power, while Cu and Ag-doped crystals exhibited a strong decrease in optical activity in comparison with non-doped BTO. The influences of doping elements on the optical rotation power are discussed on the basis of two structural elementary cell units - MO 4 tetrahedra and BiO n polyhedra.

  8. Electrical and optical properties of Fe doped AlGaN grown by molecular beam epitaxy

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Kozhukhova, E. A.; Dabiran, A. M.; Chow, P. P.; Wowchak, A. M.; Pearton, S. J.

    2010-01-15

    Electrical and optical properties of AlGaN grown by molecular beam epitaxy were studied in the Al composition range 15%-45%. Undoped films were semi-insulating, with the Fermi level pinned near E{sub c}-0.6-0.7 eV. Si doping to (5-7)x10{sup 17} cm{sup -3} rendered the 15% Al films conducting n-type, but a large portion of the donors were relatively deep (activation energy 95 meV), with a 0.15 eV barrier for capture of electrons giving rise to strong persistent photoconductivity (PPC) effects. The optical threshold of this effect was {approx}1 eV. Doping with Fe to a concentration of {approx}10{sup 17} cm{sup -3} led to decrease in concentration of uncompensated donors, suggesting compensation by Fe acceptors. Addition of Fe strongly suppressed the formation of PPC-active centers in favor of ordinary shallow donors. For higher Al compositions, Si doping of (5-7)x10{sup 17} cm{sup -3} did not lead to n-type conductivity. Fe doping shifted the bandedge luminescence by 25-50 meV depending on Al composition. The dominant defect band in microcathodoluminescence spectra was the blue band near 3 eV, with the energy weakly dependent on composition.

  9. Effect of impurity doping concentration on solar cell output

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Soclof, S. I.

    1975-01-01

    Experimental measurements were made of solar cell and related photovoltaic parameters for silicon with high concentrations of dopant impurities. The cell output peaked for doping levels around 10 to the 17th power per cu cm. Independent measurements of diffusion length and open circuit voltage at high doping levels showed severe reductions at concentrations above 10 to the 18th power per cu cm. Theoretical reasons are given to explain these reductions. Indication is given of the problems requiring solution before increased cell output can be achieved at high doping levels.

  10. Surface Al doping of 4H-SiC via low temperature annealing

    NASA Astrophysics Data System (ADS)

    Park, Junbo; Kim, Ki-hwan; Park, Young-rak; Kim, Minki; Lee, Hyungseok; Jun, Chi-Hoon; Koo, Sangmo; Ko, Sang Choon

    2016-07-01

    We present a method of forming shallow p-doping on a 4H-SiC surface by depositing a thin Al layer (d = 5 nm) and then thermally annealing it at 1000 °C for 10 min. A secondary ion mass spectrometry analysis of the annealed Al/SiC sample reveals an Al concentration in excess of 1017 cm-3 up to a depth of d ≤ 250 nm. I-V measurements and CV characterizations of Ti-SiC Schottky barrier diodes (SBDs) fabricated on a n-type SiC epi-wafer indicate that the shallow Al doping increases the built-in potential of the junction and the barrier height by Δ V b i = 0.51 eV and Δ ϕ B = 0.26 eV , respectively. Assuming a rectangular doping profile, calculations of the built-in voltage shift and the Schottky barrier height indicate that partial dopant activation (activation ratio ˜2%) can induce the observed barrier height shift. The shallow doping method was then used to fabricate junction terminations in SBDs which increased the breakdown voltage and reduced the reverse leakage current. Technology CAD simulations of the SBD with and without doping verify that a reduction of peak electric field can explain the improvement of the breakdown voltage.

  11. Al-doped ZnO Nanostructured Thin Films: Density Functional Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Sarma, J. V. N.; Rahman, A.; Jayaganthan, R.; Chowdhury, Rajib; Haranath, D.

    2015-06-01

    Nanostructured Al-doped ZnO (AZO) films are deposited on glass substrates by electroless deposition technique in the present work. AZO films with Al concentration from 1 at.% to 5 at.% are investigated for their structural and morphological properties by X-ray diffraction (XRD), and atomic force microscopy (AFM). An excellent homogeneity is achieved with average crystallite sizes of below 32 nm and a nearly constant root mean square (RMS) surface roughness between 1 nm and 3 nm, for various Al doping concentrations. These smooth and uniform films are characterized for their optical and photoluminescence (PL) properties. A higher value of average transparency between 79% and 92% in the wavelength range of 300-800 nm is achieved, and the PL intensity is found to be a strong function of doping. Density functional theory (DFT) calculations agree with the measured transmittance values, in addition to their predicted electronic structure. Moreover, time-resolved PL measurements indicate that the luminescence decay time decreases with increased doping concentration.

  12. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    SciTech Connect

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  13. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    DOE PAGES

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  14. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices

    PubMed Central

    Zheng, T. C.; Lin, W.; Liu, R.; Cai, D. J.; Li, J. C.; Li, S. P.; Kang, J. Y.

    2016-01-01

    A novel multidimensional Mg-doped superlattice (SL) is proposed to enhance vertical hole conductivity in conventional Mg-doped AlGaN SL which generally suffers from large potential barrier for holes. Electronic structure calculations within the first-principle theoretical framework indicate that the densities of states (DOS) of the valence band nearby the Fermi level are more delocalized along the c-axis than that in conventional SL, and the potential barrier significantly decreases. Hole concentration is greatly enhanced in the barrier of multidimensional SL. Detailed comparisons of partial charges and decomposed DOS reveal that the improvement of vertical conductance may be ascribed to the stronger pz hybridization between Mg and N. Based on the theoretical analysis, highly conductive p-type multidimensional Al0.63Ga0.37N/Al0.51Ga0.49N SLs are grown with identified steps via metalorganic vapor-phase epitaxy. The hole concentration reaches up to 3.5 × 1018 cm−3, while the corresponding resistivity reduces to 0.7 Ω cm at room temperature, which is tens times improvement in conductivity compared with that of conventional SLs. High hole concentration can be maintained even at 100 K. High p-type conductivity in Al-rich structural material is an important step for the future design of superior AlGaN-based deep ultraviolet devices. PMID:26906334

  15. Nature of inhomogeneities and luminescence centers in low-resistance Al-doped ZnS single crystals

    SciTech Connect

    Morosova, N.K.; Filipova, V.A.; Galstyan, V.G.; Malyshev, A.A.; Muratova, V.I.

    1985-12-01

    The authors study low-resistance Al-doped ZnS single crytals and find that they exhibit a banding nonuniformity, which is explained by the nonuniform distribution of aluminum and oxygen impurities in them. The intense blue emission of the crystals is caused by the high-resistance layer, in which oxygen concentrates, while aluminum is completely bound to the oxygen. The emission is caused by the annihilation of localized excitons. The low-resistance layers with the weak blue luminescence are intercalations of oxygen-depleted Al-doped ZnS. ZnS crystals containing Al and O in equal concentrations are stable.

  16. Structural and Optical Properties of Carbon-Doped AlN Substrates Grown by Hydride Vapor Phase Epitaxy Using AlN Substrates Prepared by Physical Vapor Transport

    NASA Astrophysics Data System (ADS)

    Nagashima, Toru; Kubota, Yuki; Kinoshita, Toru; Kumagai, Yoshinao; Xie, Jinqiao; Collazo, Ramón; Murakami, Hisashi; Okamoto, Hiroshi; Koukitu, Akinori; Sitar, Zlatko

    2012-12-01

    Freestanding AlN substrates with various carbon (C) concentrations were prepared from C-doped thick layers grown by hydride vapor phase epitaxy (HVPE) on bulk AlN substrates prepared by physical vapor transport (PVT). The structural properties of the AlN substrates up to a C concentration of 3×1019 cm-3 were the same as those of the nominally undoped substrates, while the absorption coefficient α at 265 nm was increased by C doping from 6.6 to 97 cm-1, when C concentration changed from <2×1017 to 1×1019 cm-3, respectively. Photoluminescence (PL) below 4.0 eV also increased by C doping.

  17. Superconductivity and the disorder effect in Ag and Al double doped MgB2

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Zhang, Huarong; Zhou, Shiming; Zhao, Jiyin; Zuo, Jian

    2006-07-01

    A series of polycrystalline bulk samples of Mg1-2x(AgAl)xB2 (0.0%⩽x⩽1.0%) has been synthesized by a solid state reaction method. The structure, Raman spectrum, and superconducting properties have been investigated by x-ray diffraction, Raman spectroscopy, and low-temperature resistivity measurements. It is found that the Ag, Al double doping causes the expansion of crystal lattice along the a- and c-axis orientations due to the substitution inducing ionic size variation. A redshift of peak position is observed in Raman spectra, which is ascribed to the crystal cell volume change inducing the variation of the phonon frequency. The superconducting transition temperature (Tc) is degressive with the doping level (x) increase. By the Ag and Al double doping, the hole concentration is kept to be unchanged in MgB2, which eliminates the effects of the charge carrier concentration change and band filling on Tc. It is suggested that the reason of the Tc suppression caused by the double doping is the co-operating results of the disorder effect and the chemical pressure effect induced by the chemical substitution.

  18. Combustion synthesis and photoluminescence of Tb3+ doped LaAlO3 nanophosphors

    NASA Astrophysics Data System (ADS)

    Dhahri, A.; Horchani-Naifer, K.; Benedetti, A.; Enrichi, F.; Férid, M.; Riello, P.

    2013-04-01

    Terbium doped lanthanum aluminate (LaAlO3) nanophosphors were successfully synthesized by a combustion process using concentrated solution of lanthanum nitrates and aluminate as oxidiser, and glycine acid as fuel. The powders were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), Rietveld refinement, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fluorescence spectroscopy. Pure LaAlO3 phase was obtained at 800 °C heated for 4 h, without formation of any intermediate phase, with an average crystal size, as determined by TEM, of 60 nm. Intense green emission is reported at 542 nm, from the 5D level, which intensity depends on Tb concentration.

  19. FIRST PRINCIPLES STUDY ON ELECTRONIC AND OPTICAL PROPERTIES OF Al-DOPED γ-Ge3N4

    NASA Astrophysics Data System (ADS)

    Ding, Y. C.; Xiang, A. P.; Zhu, X. H.; Luo, J.; Hu, X. F.

    2012-12-01

    First principles study of the structural, electronic and optical properties of Al-doped γ-Ge3N4 with different concentration has been reported using the pseudo-potential plane wave method within the generalized gradient approximation (GGA). The binding energy and the formation energy suggest that Aluminum (Al) impurities prefer to substitute Ge at octahedral sites. Different doping concentrations are considered and the corresponding density of states (DOS) are analyzed. Calculated DOS indicates that there are holes in the top of the valance band after doping, meaning a p-type doping. We study the complex dielectric function, the absorption coefficient, and the electron energy loss spectra. It is demonstrated that for the low Al concentration, the material exhibits the dielectric behavior and for the high Al concentration, the material has possibilities to exhibit some metallic behavior. The γ-Ge3N4 doped with Al has a much higher static dielectric constant than undoped γ-Ge3N4, implying its potential applications in electronics and optics.

  20. Neptunium concentrations in solutions contacting actinide-doped glass

    SciTech Connect

    Rai, D.; McVay, G.L.; Strickert, R.G.

    1982-07-01

    To help predict concentrations of neptunium leached from nuclear waste repositories in geologic environments, the solubility of neptunium in a neptunium-doped borosilicate glass, which simulates a high-level waste glass, was investigated. The concentrations of neptunium in solutions contacting the crushed doped glass were found to be controlled by a neptunium solid phase that is similar to crystalline(c) NpO/sub 2/ in solubility. Thus, the maximum concentration of the neptunium leached from this waste form can be predicted from the solubility of NpO/sub 2/(c). This conclusion is based on similar neptunium concentrations in solutions contacting neptunium-doped glass, neptunium-doped glass plus NpO/sub 2/(c), and NpO/sub 2/(c) alone, under controlled redox potentials and a range of pH values. The quinhydrone used in this study was found to be a very effective redox buffer (the approximate pe + pH = 11.8). The predictions based on the thermodynamic data and the solvent extraction tests showed Np(V) to be the primary oxidation state in solution.

  1. Exploration of Al-Doped ZnO in Photovoltaic Thin Films

    NASA Astrophysics Data System (ADS)

    Ciccarino, Christopher; Sahiner, M. Alper

    The electrical properties of Al doped ZnO-based thin films represent a potential advancement in the push for increasing solar cell efficiency. Doping with Aluminum will theoretically decrease resistivity of the film and therefore achieve this potential as a viable option in the P-N junction phase of photovoltaic cells. The n-type semi-conductive characteristics of the ZnO layer will theoretically be optimized with the addition of Aluminum carriers. In this study, Aluminum doping concentrations ranging from 1-3% by mass were produced, analyzed, and compared. Films were developed onto ITO coated glass using the Pulsed Laser Deposition technique. Target thickness was 250 nm and ellipsometry measurements showed uniformity and accuracy in this regard. Active dopant concentrations were determined using Hall Effect measurements. Efficiency measurements showed possible applications of this doped compound, with upwards of 7% efficiency measured, using a Keithley 2602 SourceMeter set-up. XRD scans showed highly crystalline structures, with effective Al intertwining of the hexagonal wurtzile ZnO molecular structure. This alone indicates a promising future of collaboration between these two materials.

  2. Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries

    NASA Astrophysics Data System (ADS)

    Nasr, B.; Dasgupta, S.; Wang, D.; Mechau, N.; Kruk, R.; Hahn, H.

    2010-11-01

    Highly transparent and conducting Al-doped ZnO (AZO) films are prepared via sol-gel method with a broad range of nominal Al-doping. The film porosity and morphology is determined by the rate of temperature ramping during the drying of the gel phase. The minimum resistivity is observed to occur around 1.5-2 at. % Al-doped films, irrespective of the morphology and microstructure. It is found by local chemical analysis that Al tends to segregate at the grain boundaries and above a critical concentration, the segregated Al starts to dominate the electronic transport in nanocrystalline AZO. The optical measurements corroborate these findings showing a systematic increase in carrier density only up to 1.5-2 at. % Al-doping. It is concluded that the presence of the resistivity minimum is not merely determined by a solubility limit but is a result of the interplay between the changing carrier concentration and carrier scattering at the segregated Al.

  3. The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses

    NASA Astrophysics Data System (ADS)

    Denker, B.; Galagan, B.; Osiko, V.; Shulman, I.; Sverchkov, S.; Dianov, E.

    2009-05-01

    The properties of IR emission centers are investigated in Bi-doped Mg-Al-silicate glasses having moderate melting temperatures to be fabricated by routine melting in alumina crucibles. The quadratic concentration dependence of absorption in the visible range indicates that the considered optical centers can be Bi2 dimers forming in a balanced chemical reaction in the glass melt. Their formation enthalpy is evaluated from their concentration variations with the synthesis temperature. The high (up to 85% at low concentrations) luminescence quantum yield and wide emission spectrum makes this glass a promising material for tunable lasers.

  4. Al-doping influence on crystal growth of Ni-Al alloy: Experimental testing of a theoretical model

    NASA Astrophysics Data System (ADS)

    Rong, Xi-Ming; Chen, Jun; Li, Jing-Tian; Zhuang, Jun; Ning, Xi-Jing

    2015-12-01

    Recently, a condensing potential model was developed to evaluate the crystallization ability of bulk materials [Ye X X, Ming C, Hu Y C and Ning X J 2009 J. Chem. Phys. 130 164711 and Peng K, Ming C, Ye X X, Zhang W X, Zhuang J and Ning X J 2011 Chem. Phys. Lett. 501 330], showing that the best temperature for single crystal growth is about 0.6Tm, where Tm is the melting temperature, and for Ni-Al alloy, more than 6 wt% of Al-doping will badly reduce the crystallization ability. In order to verify these predictions, we fabricated Ni-Al films with different concentrations of Al on Si substrates at room temperature by pulsed laser deposition, and post-annealed the films at 833, 933, 1033 (˜ 0.6Tm), 1133, and 1233 K in vacuum furnace, respectively. The x-ray diffraction spectra show that annealing at 0.6Tm is indeed best for larger crystal grain formation, and the film crystallization ability remarkably declines with more than 6-wt% Al doping. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130071110018) and the National Natural Science Foundation of China (Grant No. 11274073).

  5. Combustion synthesis and photoluminescence of Eu3+ doped LaAlO3 nanophosphors

    NASA Astrophysics Data System (ADS)

    Dhahri, A.; Horchani-Naifer, K.; Benedetti, A.; Enrichi, F.; Ferid, M.

    2012-09-01

    Eu3+ doped LaAlO3 nanophosphors were successfully synthesized by a combustion process using concentrated solution of lanthanum nitrates and aluminate as oxidiser, and glycine acid as fuel. The powders were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fluorescence spectroscopy. Pure LaAlO3 phase was obtained at 800 °C heated for 4 h, without formation of any intermediate phase, with an average crystal size, as determined by TEM, of 60 nm. Intense photoluminescence emission is reported at 616 nm, allowing the use of this material as red phosphor.

  6. ALCHEMI of Fe-doped B2-ordered NiAl alloys with different doping levels

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1994-09-01

    The ALCHEMI technique yields exact expressions for best-fit parameters in terms of ionization localization constants and site distributions of 3 elements distributed over two sublattices. In this paper, a graphical plotting technique is applied to Fe-doped NiAl B2-ordered alloys Ni{sub 0.5-x}Fe{sub x}Al{sub 0.5}, with x=0.02 or 0.10. The thin foil samples were examined in an electron microscope with an x-ray spectrometer.

  7. Europium doped lanthanum zirconate nanoparticles with high concentration quenching

    SciTech Connect

    Alaparthi, Suresh B.; Lu, Long; Tian, Yue; Mao, Yuanbing

    2014-01-01

    Graphical abstract: - Highlights: • Eu:La{sub 2}Zr{sub 2}O{sub 7} nanoparticles were prepared facilely by a kinetically modified molten salt method. • High color purity and concentration quenching were achieved in these La{sub 2}Zr{sub 2}O{sub 7}:Eu nanoparticles. • Concentration quenching mechanism was discussed for Eu{sup 3+} in these Eu:La{sub 2}Zr{sub 2}O{sub 7} nanoparticles. - Abstract: A series of Eu{sup 3+} doped lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7}) nanoparticles (NPs, 20 ± 5 nm in diameter) with cubic fluorite structure were facilely synthesized by a kinetically modified molten salt synthetic (MSS) process and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and photoluminescence spectra (PL). Under the excitation of 405 nm, intense red emission with high color purity can be observed in the Eu{sup 3+} doped La{sub 2}Zr{sub 2}O{sub 7} NPs. Moreover, the as-prepared Eu:La{sub 2}Zr{sub 2}O{sub 7} NPs possess high concentration quenching, which is as high as ∼32.5 mol% of europium dopants in the La{sub 2}Zr{sub 2}O{sub 7} host. The corresponding concentration quenching mechanism was discussed as well. Our results confirm that the kinetically modified MSS process is a promising approach for preparing rare earth (RE) ions doped A{sub 2}B{sub 2}O{sub 7} nanoparticles with uniform RE doping and high concentration quenching.

  8. First principles study of CuAlO2 doping with S

    NASA Astrophysics Data System (ADS)

    Gao, Haigen; Zhou, Jian; Lu, Minghui

    2010-07-01

    We study the electronic properties of CuAlO2 doped with S by the first principles calculations and find that the band gap of CuAlO2 is reduced after the doping. At the same time, the effective masses are also reduced and the density of states could cross the Fermi level. These results show that the conductivity of CuAlO2 could be enhanced by doping the impurities of S, which needs to be further studied.

  9. Charge Compensated (Al, N) Co-Doped Zinc Oxide (ZnO) Films for Photlelectrochemical Application

    SciTech Connect

    Shet, S.

    2012-01-01

    ZnO thin films with significantly reduced bandgaps were synthesized by doping N and co-doping Al and N at 100oC. All the films were synthesized by radio-frequency magnetron sputtering on F-doped tin-oxide-coated glass. We found that co-doped ZnO:(Al,N) thin films exhibited significantly enhanced crystallinity as compared to ZnO doped solely with N, ZnO:N, at the same growth conditions. Furthermore, annealed ZnO:(Al,N) thin films exhibited enhanced N incorporation over ZnO:N films. As a result, ZnO:(Al,N) films exhibited improved photocurrents than ZnO:N films grown with pure N doping, suggesting that charge-compensated donor-acceptor co-doping could be a potential method for bandgap reduction of wide-bandgap oxide materials to improve their photoelectrochemical performance.

  10. Enhanced Dielectric Properties and High-Temperature Microwave Absorption Performance of Zn-Doped Al2O3 Ceramic

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Luo, Fa; Wei, Ping; Zhou, Wancheng; Zhu, Dongmei

    2015-07-01

    To improve the dielectric and microwave absorption properties of Al2O3 ceramic, Zn-doped Al2O3 ceramic was prepared by conventional ceramic processing. X-ray diffraction analysis confirmed that Zn atoms successfully entered the Al2O3 ceramic lattice and occupied Al sites. The complex permittivity increased with increasing Zn concentration, which is mainly attributed to the increase in charged vacancy defects and densification of the Al2O3 ceramic. In addition, the temperature-dependent complex permittivity of 3% Zn-doped Al2O3 ceramic was determined in the temperature range from 298 K to 873 K. Both the real and imaginary parts of the complex permittivity increased monotonically with increasing temperature, which can be ascribed to the shortened relaxation time and increasing electrical conductivity. The increased complex permittivity leads to a great improvement in microwave absorption. In particular, when the temperature is up to 873 K, the 3% Zn-doped Al2O3 ceramic exhibited the best absorption performance with a maximum peak (-12.1 dB) and broad effective absorption bandwidth (reflection loss less than -10 dB from 9.3 GHz to 12.3 GHz). These results reveal that Zn-doped Al2O3 ceramic is a promising candidate for use as a kind of high-temperature microwave absorption material.

  11. Structural, optical and electronic structure studies of Al doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Devi, Vanita; Kumar, Manish; Shukla, D. K.; Choudhary, R. J.; Phase, D. M.; Kumar, Ravindra; Joshi, B. C.

    2015-07-01

    Structural, optical and electronic structure of Al doped ZnO thin films grown using pulsed laser deposition on glass substrate are investigated. X-ray diffraction measurements reveal that all the films are textured along the c-axis and have wurtzite structure. Al doping in ZnO films leads to increase in grain size due to relaxation in compressive stress. Enhancement in band gap of ZnO films with the Al doping is also noticed which can be ascribed to the Brustein-Moss shift. The changes in the electronic structure caused by Al in the doped thin film samples are understood through X-ray absorption measurements.

  12. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    NASA Astrophysics Data System (ADS)

    Nasir, M. F.; Zainol, M. N.; Hannas, M.; Mamat, M. H.; Rahman, S. A.; Rusop, Mohamad

    2016-07-01

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 103 Ωcm-1. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.

  13. Enhancement ZnO nanofiber as semiconductor for dye-sensitized solar cells by using Al doped

    NASA Astrophysics Data System (ADS)

    Sutanto, Bayu; Arifin, Zainal; Suyitno, Hadi, Syamsul; Pranoto, Lia Muliani; Agustia, Yuda Virgantara

    2016-03-01

    The purpose of this research is to produce Al-doped ZnO (AZO) nanofibers in order to enhance the performance of Dye-Sensitized Solar Cell (DSSC). AZO nanofiber semiconductor was manufactured by electrospinning process of Zinc Acetate Dehydrate (Zn(CH3COO)2) solution and precursor of Polyvinyl Acetate (PVA). The doping process of Al was built by dissolving 0-4 wt% in concentrations of AlCl3 to Zinc Acetate. AZO green fiber was sintered at temperature 500°C for an hour. The result shows that Al doped ZnO had capability to increase the electrical conductivity of semiconductor for doping 0, 1, 2, 3, and 4 wt% for 2,07×10-3; 3,71×10-3; 3,59 ×10-3; 3,10 ×10-3 and 2,74 ×10-3 S/m. The best performance of DSSC with 3 cm2 active area was obtained at 1 wt% Al-ZnO which the value of VOC, ISC, FF, and efficiency were 508,43 mV, 3,125 mA, 38,76%, and 0,411% respectively. These coincide with the electrical conductivity of semiconductor and the crystal size of XRD result that has the smallest size as compared to other doping variations.

  14. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin; Masson, Denis; Riel, Bruno; Fafard, Simon; Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent

    2010-10-14

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  15. Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Connie, Ashfiqua Tahseen; Zhao, Songrui; Sadaf, Sharif Md.; Shih, Ishiang; Mi, Zetian; Du, Xiaozhang; Lin, Jingyu; Jiang, Hongxing

    2015-05-25

    In this paper, the optical and electrical properties of Mg-doped AlN nanowires are discussed. At room temperature, with the increase of Mg-doping concentration, the Mg-acceptor energy level related optical transition can be clearly measured, which is separated about 0.6 eV from the band-edge transition, consistent with the Mg activation energy in AlN. The electrical conduction measurements indicate an activation energy of 23 meV at 300 K–450 K temperature range, which is significantly smaller than the Mg-ionization energy in AlN, suggesting the p-type conduction being mostly related to hopping conduction. The free hole concentration of AlN:Mg nanowires is estimated to be on the order of 10{sup 16 }cm{sup −3}, or higher.

  16. A clear effect of charge compensation through Na+ co-doping on the luminescence spectra and decay kinetics of Nd3+-doped CaAl4O7

    NASA Astrophysics Data System (ADS)

    Puchalska, M.; Watras, A.

    2016-06-01

    We present a detailed analysis of luminescence behavior of singly Nd3+ doped and Nd3+, Na+ co-doped calcium aluminates powders: Ca1-xNdxAl4O7 and Ca1-2xNdxNaxAl4O7 (x=0.001-0.1). Relatively intense Nd3+ luminescence in IR region corresponding to typical 4F3/2→4IJ (J=9/2-13/2) transitions with maximum located at about 1079 nm was obtained in all samples on direct excitation into f-f levels. The effect of dopant concentration and charge compensation by co-doping with Na+ ions on morphology and optical properties were studied. The results show that both, the Nd3+ concentration and the alkali metal co-doping affected the optical properties but had no influence on the powders morphology. The studies of luminescence spectra (298 and 77 K) in a function of dopant concentration showed an increasing distortion of the local symmetry of Nd3+with raising activator content due to certain defects created in the crystal lattice. On the other hand Na+ addition led to significant narrowing of absorption and luminescence bands and also a reduction of the number of their components, showing smaller disturbance of Nd3+ ions local symmetries. Consequently, charge compensated by Na+ co-doping materials showed significantly enhanced Nd3+ luminescence. The decrease of emission intensity and luminescence lifetimes with increase of activator concentration was attributed mainly to phonon-assisted cross-relaxation processes between Nd3+ ions. Analysis with Inokuti-Hirayama model indicated dipole-dipole mechanism of ion-ion interaction. Na+ addition led to much smaller concentration quenching due to smaller clustering of dopant ions in CaAl4O7 lattice.

  17. Tracer diffusion in pure and boron-doped Ni/sub 3/Al

    SciTech Connect

    Hoshino, K.; Rothman, S.J.; Averback, R.S.

    1988-05-01

    Diffusion of /sup 63/Ni has been measured in pure and boron-doped polycrystalline Ni/sub 3/Al intermetallic compounds as a function of temperature (692-1352/sup 0/C), Al concentration (24-26 at.%Al), and boron content (0-500 wt ppm). Volume and grain-boundary diffusion of /sup 60/Co and /sup 68/Ge have also been measured in pure Ni/sub 3/Al. Both conventional grinding and ion beam sputtering techniques have been used for the determination of the concentration profiles. The diffusivity of Ni,D*/sub Ni/ is independent of Al content above 1000/sup 0/C, indicating that antisite defects are prevailing on both sides of stoichiometry. However, D*/sub Ni/ shows a minimum at the stoichiometric composition below 1000/sup 0/C, and this trend becomes clearer with decreasing temperature. The diffusivities of /sup 60/Co and /sup 68/Ge are also independent of Al concentration in the temperature range between 880 and 1200/sup 0/C, but their grain-boundary diffusion depends on Al concentration. The addition of boron linearly increases D*/sub Ni/ above 1000/sup 0/C, but at lower temperatures, D*/sub Ni/ in off-stoichiometric compositions decreases to the value for stoichiometric Ni/sub 3/Al on the addition of 100 wt ppm boron, and then increases as above with the further additions of boron to -- 500 wt ppm. The present diffusion data suggest that a small concentration of vacancies, independent of temperature, is present on both sides of, and at, stoichiometry at low temperature.

  18. A first principles study of Nd doped cubic LaAlO3 perovskite: mBJ+U study

    NASA Astrophysics Data System (ADS)

    Sandeep; Rai, D. P.; Shankar, A.; Ghimire, M. P.; Khenata, R.; Thapa, R. K.

    2016-11-01

    The structural, electronic and magnetic properties of Nd-doped Rare earth aluminate, La1-xNdxAlO3 (x=0-100%) are studied using the full potential linearized augmented plane-wave (FP-LAPW) method within the density functional theory. The effects of Nd substitution in LaAlO3 are studied using super-cell calculations. The electronic structures were computed using modified Beck Johnson (mBJ) potential based approximation with the inclusion of Coulomb energy (U) for Nd-4f state electrons. The La1-xNdxAlO3 may possess half metallic behavior on Nd doping with finite density of states at EF. The direct and indirect band gaps were studied as a function of Nd concentration in LaAlO3. The calculated magnetic moments in La1-xNdxAlO3 were found to arise mainly from the Nd-4f state electrons. A probable half-metallic nature is suggested for these systems with supportive integral magnetic moments and high spin polarized electronic structures in these doped cases at EF. The controlled decrease in band gap with increase in concentration of Nd doping is a suitable technique for harnessing useful spintronic and magnetic devices.

  19. Hydrothermal growth and conductivity enhancement of (Al, Cu) co-doped ZnO nanorods thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mohua; Mahapatra, Preetilata; Thangavel, R.

    2016-05-01

    The incorporation of Al, Cu co-doping in ZnO host lattice plays an important role in modification of structural, optical and electrical properties in optoelectronic devices. In the present work, we were grown one dimensional ZnO nanorods (NRs) doped with different concentration of Al (0%~5%) and Cu was kept 20 M% on ITO glass substrates using a facile hydrothermal method, and investigated the effect of the codoping on the surface morphology and the electrical and optical performances of the doped ZnO NRs as photo anodes for solar water splitting applications. The crystallite size of NRs shows tuning in the band gap between 3.194 (Zn0.79Al0.01Cu0.2O) to 3.212 eV (Zn0.75Al0.05Cu0.2O) with Aluminium doping concentration and a remarkable improvement in current density (J) from 0.05 mA/cm2 to 4.98 mA/cm2 was achieved by incorporating Al and Cu has a critical effect of ZnO nanorods.

  20. Bismuth-doped Mg - Al silicate glasses and fibres

    SciTech Connect

    Bufetov, Igor' A; Vel'miskin, V V; Galagan, B I; Denker, B I; Sverchkov, S E; Semjonov, S L; Firstov, Sergei V; Shulman, I L; Dianov, Evgenii M

    2012-09-30

    This paper compares the optical properties of bulk bismuth-doped Mg - Al silicate glasses prepared in an iridium crucible to those of optical fibres prepared by the powder-in-tube method and having a core identical in composition to the glasses. The bulk glasses and fibres are shown to be similar in luminescence properties. The optical loss in the fibres in their IR luminescence band is about one order of magnitude lower than that in the crucible-melted glasses. The level of losses in the fibres and their luminescence properties suggest that such fibres can be made to lase near 1.15 {mu}m. (optical fibres, lasers and amplifiers. properties and applications)

  1. Compensating defects in Si-doped AlN bulk crystals

    NASA Astrophysics Data System (ADS)

    Irmscher, K.; Schulz, T.; Albrecht, M.; Hartmann, C.; Wollweber, J.; Fornari, R.

    2007-12-01

    The rather low n-type conductivity observed in Si-doped sublimation-grown AlN bulk crystals is explained by the formation of high concentrations of compensating defects. The model is based on the experimental verification of a shallow impurity band formed by Si donors and the presence of acceptor-like electron traps within 1 eV below the conduction band edge. Further it is suggested that the majority of the Si donors is compensated by deep acceptors in the lower half of the band gap. This compensation model is an alternative to the controversially discussed assumption of Si DX center formation.

  2. Influence of Electron Doping on Magnetic Order in CeRu2Al10

    NASA Astrophysics Data System (ADS)

    Kobayashi, Riki; Kaneko, Koji; Saito, Kotaro; Mignot, Jean-Michel; André, Gilles; Robert, Julien; Wakimoto, Shuichi; Matsuda, Masaaki; Chi, Songxue; Haga, Yoshinori; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Nishioka, Takashi; Matsumura, Masahiro; Tanida, Hiroshi; Sera, Masafumi

    2014-10-01

    The effect of electron doping by the substitution of Rh for Ru on unconventional magnetic order in CeRu2Al10 was investigated via neutron powder diffraction. In Ce(Ru1-xRhx)2Al10 with x = 0.05, 0.12, and 0.2, reorientation of the ordered moment from the c-axis as in pure CeRu2Al10 to the a-axis takes place in all samples, while the ordering vector q = (0,1,0) remains unchanged within this concentration range. The moment reorientation is accompanied by an increase in its size by a factor of ˜2.4, from μ = 0.43 μB at x = 0 to μ = 1.06, 1.04, and 1.02 μB for x = 0.05, 0.12, and 0.2, respectively. The continuous decrease in the Néel temperature T0(TN), despite an abrupt increase in μ, underlines the strong anisotropy in the exchange interaction in CeRu2Al10 and the fact that this anisotropy is easily suppressed by electron doping.

  3. Thermoelectric properties of Al-doped Mg2Si thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-jian; Zhou, Bai-yang; Li, Jian-xin; Wen, Cui-lian

    2016-11-01

    The Al-doped Mg2Si thin films were fabricated by two-target alternative magnetron sputtering technique, and the influences of different Al doping contents on the thermoelectric properties of Al-doped Mg2Si thin films were investigated. The compositions, crystal structures, electronic transport properties and thermoelectric properties of the thin films were examined using energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Hall coefficient measurement and Seebeck coefficient measurement system, respectively. The EDS results show that the thin films doped with Al target sputtering power of 30 W, 60 W and 90 W have the Al content of 0.68 at.%, 1.56 at.% and 2.85 at.%, respectively. XRD results indicate that the diffraction peaks of Mg2Si become stronger with increasing Al dopant. The results of Hall coefficient measurement and Seebeck coefficient measurement system reveal that all the samples are n-type. The conductivities of Al-doped Mg2Si thin films are significantly greater than that of undoped Mg2Si thin film, and increase with increasing Al doping content. With the increase of temperature, the absolute value of the Seebeck coefficients of Mg2Si base thin films increase firstly and then decrease. The maximum power factor obtained is 3.8 mW m-1 k-2 for 1.56 at.% Al-doped Mg2Si thin film at 573 K.

  4. Thermoelectric properties of Ni-doped CuAlO 2

    NASA Astrophysics Data System (ADS)

    Wongcharoen, Ngamnit; Gaewdang, Thitinai

    2009-07-01

    The polycrystalline Ni-doped CuAlO2 were obtained by solid state reaction method. The mixture of high purity grade of CuO, Al2O3 and Ni(NO3)2.6H2O powders was ground and then pressed by using uniaxial pressure. The obtained pellet was sintered in air at 1423 K for 24 h. XRD patterns showed the crystal structure of the as-sintered CuAl1-xNixO2 (0≤x≤0.10) belonging to rhombohedral, space group. No evidence of second phase was observed when Ni doping up to x=0.01. At Ni content x≥0.01 CuAl1-xNixO2 solid solution phase along with the CuO and CuAl2O4 phases were observed. From SEM micrographs, the grain size decreased from 6 to 2 μm when the amount of Ni in CuAl1-xNixO2 samples increased. Hall mobility and hole concentration of the as-sintered samples were obtained from Hall effect measurements at room temperature. The activation energy values deduced from the electrical resistivity measurements as a function of temperature were reported. The variation of Seebeck coefficient and power factor as a function of temperature was also investigated. From the experimental results, the substitution of Ni2+ ion in Cu+ site of CuAl1-xNixO2 material may be drawn.

  5. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  6. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    SciTech Connect

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explain that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.

  7. Sol-gel derived Al-Ga co-doped transparent conducting oxide ZnO thin films

    NASA Astrophysics Data System (ADS)

    Serrao, Felcy Jyothi; Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2016-05-01

    Transparent conducting ZnO doped with Al, Ga and co-doped Al and Ga (1:1) (AGZO) thin films were grown on glass substrates by cost effective sol-gel spin coating method. The XRD results showed that all the films are polycrystalline in nature and highly textured along the (002) plane. Enhanced grain size was observed in the case of AGZO thin films. The transmittance of all the films was more than 83% in the visible region of light. The electrical properties such as carrier concentration and mobility values are increased in case of AGZO compared to that of Al and Ga doped ZnO thin films. The minimum resistivity of 2.54 × 10-3 Ω cm was observed in AGZO thin film. The co-doped AGZO thin films exhibited minimum resistivity and high optical transmittance, indicate that co-doped ZnO thin films could be used in transparent electronics mainly in display applications.

  8. Temperature Sensing Above 1000 C Using Cr-Doped GdAlO3 Spin-Allowed Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Chambers, Matthew D.

    2012-01-01

    Cr-doped GdAlO3 (Cr:GdAlO3) is shown to produce remarkably high-intensity spin-allowed broadband luminescence with sufficiently long decay times to make effective luminescence-decay-time based temperature measurements above 1000 C. This phosphor is therefore an attractive alternative to the much lower luminescence intensity rare-earth-doped thermographic phosphors that are typically utilized at these elevated temperatures. In particular, Cr:GdAlO3 will be preferred over rare-earth-doped phosphors, such as Dy:YAG, at temperatures up to 1200 C for intensity-starved situations when the much lower emission intensity from rare-earth-doped phosphors is insufficient for accurate temperature measurements in the presence of significant radiation background. While transition-metal-doped phosphors such as Cr:Al2O3 (ruby) are known to exhibit high luminescence intensity at low dopant concentrations, quenching due to nonradiative decay pathways competing with the (sup 2)E to (sup 4)A(sub 2) radiative transition (R line) has typically restricted their use for temperature sensing to below 600 C. Thermal quenching of the broadband (sup 4)T(sub 2) to (sup 4)A(sub 2) radiative transition from Cr:GdAlO3, however, is delayed until much higher temperatures (above 1000 C). This spin-allowed broadband emission persists to high temperatures because the lower-lying (sup 2)E energy level acts as a reservoir to thermally populate the higher shorter-lived (sup 4)T(sub 2) energy level and because the activation energy for nonradiative crossover relaxation from the (sup 4)T(sub 2) level to the (sup 4)A(sub 2) ground state is high. The strong crystal field associated with the tight bonding of the AlO6 octahedra in the GdAlO3 perovskite structure is responsible for this behavior.

  9. Influence of Electron Doping on Magnetic Order in CeRu2Al10

    DOE PAGES

    Kobayashi, Riki; Kaneko, Koji; Saito, Kotaro; Mignot, Jean-Michel; André, Gilles; Robert, Julien; Wakimoto, Shuichi; Matsuda, Masaaki; Chi, Songxue; Haga, Yoshinori; et al

    2014-09-17

    The effect of electron doping by the substitution of Rh for Ru on unconventional magnetic order in CeRu2Al10 was investigated via neutron powder diffraction. In Ce(Ru1-xRhx)2Al10 with x = 0.05, 0.12, and 0.2, reorientation of the ordered moment from the c- to the a-axis takes place in all samples, while the ordering vector q=(0 1 0) remains unchanged within this concentration range. The moment reorientation is accompanied by an enhancement in its size by a factor of ~2.4, from μ=0.43 μB at x=0 to μ =1.06, 1.04, and 1.02 μB for x=0.05, 0.12 and 0.2, respectively. The continuous decrease inmore » N´eel temperature T0(TN), despite an abrupt increase in μ , underlines the strong anisotropy in the exchange interaction in CeRu2Al10, and the fact that this anisotropy is easily suppressed by electron doping.« less

  10. Electrical properties of n-type AlGaN with high Si concentration

    NASA Astrophysics Data System (ADS)

    Takeda, Kunihiro; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2016-05-01

    The electrical properties of Si-doped AlGaN layers (AlN molar fractions: 0.03-0.06) with the donor concentrations (N D) from 8.8 × 1017 to 4.5 × 1020 cm-3 were investigated by variable-temperature Hall effect measurement using the van der Pauw method. A minimum resistivity of 3.6 × 10-4 Ω cm was obtained for Si-doped AlGaN with a smooth surface at room temperature. We found that the activation energy of the Si donor is affected by the Coulomb interaction in the AlGaN layer with N D values from 8.8 × 1017 to 2.5 × 1020 cm-3. In several AlGaN layers, the free-electron concentration did not vary with sample temperature, as expected in the case of degeneracy. The localization of GaN in the AlGaN layer was speculated as a cause of degeneracy of samples.

  11. Order-Disorder Transition and Phase Separation in the MgB2 Metallic Sublattice Induced by Al Doping.

    PubMed

    Brutti, S; Gigli, G

    2009-07-14

    MgB2 is a superconductor constituted by alternating Mg and B planar layers: doping of both the sublattices has been observed experimentally to destroy the outstanding superconductive properties of this simple material. In this study we present the investigation by first principles methods at atomistic scale of the phase separation induced by aluminum doping in the MgB2 lattice. The calculations were performed by Density Functional Theory in generalized gradient approximation and pseudopotentials. Orthorhombic oP36 supercells derived by the primitive hR3 MgB2 cell were built in order to simulate the aluminum-magnesium substitution in the 0-50% composition range. The computational results explained the occurrence of a phase separation in the Mg1-xAlxB2 system. The miscibility gap is predicted to be induced by an order-disorder transition in the metallic sublattice at high Al concentration. Indeed at 1000 K aluminum substitution takes place on random Mg sites for concentration up to 17% of the total metallic sites, whereas at Al content larger than 31% the substitution is energetically more favorable on alternated metallic layers (Mg undoped planes alternate with Mg-Al layers). The formation of this Al-rich phase lead at 50% doping to the formation of the double omega Mg1/2Al1/2B2 ordered lattice. From 17 to 31% the two phases, the disordered Mg1-xAlxB2 (x < 0.17) and the ordered Mg1/2+yAl1/2-yB2 (y < 0.19) lattices, coexist. This phase separation is driven by the balance of the enthalpy and entropy contributions to the Gibbs energy. Present DFT-GGA calculations indicate that this thermodynamically predicted suppression of the Al doping disorder in the metallic sublattice of MgB2 occurs in parallel with the collapse of the superconductive properties of the material.

  12. Electrical and optical properties of in and Al doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Park, Sang-Uk; Koh, Jung-Hyuk

    2013-07-01

    In this study, to improve the electrical and optical properties of aluminium (Al) doped zinc oxide thin films, we have added small amounts of indium (In) to Al doped ZnO thin films. We will present the results of In and Al doped ZnO thin film on glass substrates prepared by the sol-gel processing method. A rapid thermal annealing process was applied to cure the thin film properties. Different amounts of In were used to dope the AZO thin films to find the optimum process condition. The effects of crystallinity were analyzed by an x-ray diffraction method. In addition, the optical transmittance and electrical proprties of In doped AZO thin films were investigated.

  13. Electron irradiation response on Ge and Al-doped SiO 2 optical fibres

    NASA Astrophysics Data System (ADS)

    Yaakob, N. H.; Wagiran, H.; Hossain, I.; Ramli, A. T.; Bradley, D. A.; Hashim, S.; Ali, H.

    2011-05-01

    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  14. Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition

    PubMed Central

    2013-01-01

    ZnO/Al2O3 multilayers were prepared by alternating atomic layer deposition (ALD) at 150°C using diethylzinc, trimethylaluminum, and water. The growth process, crystallinity, and electrical and optical properties of the multilayers were studied with a variety of the cycle ratios of ZnO and Al2O3 sublayers. Transparent conductive Al-doped ZnO films were prepared with the minimum resistivity of 2.4 × 10−3 Ω·cm at a low Al doping concentration of 2.26%. Photoluminescence spectroscopy in conjunction with X-ray diffraction analysis revealed that the thickness of ZnO sublayers plays an important role on the priority for selective crystallization of ZnAl2O4 and ZnO phases during high-temperature annealing ZnO/Al2O3 multilayers. It was found that pure ZnAl2O4 film was synthesized by annealing the specific composite film containing alternative monocycle of ZnO and Al2O3 sublayers, which could only be deposited precisely by utilizing ALD technology. PMID:23537274

  15. Doping concentration driven morphological evolution of Fe doped ZnO nanostructures

    SciTech Connect

    Sahai, A.; Goswami, N.; Kumar, Y.; Agarwal, V.; Olive-Méndez, S. F.

    2014-10-28

    In this paper, systematic study of structural, vibrational, and optical properties of undoped and 1-10 at.% Fe doped ZnO nanostructures, synthesized adopting chemical precipitation route, has been reported. Prepared nanostructures were characterized employing an assortment of microscopic and spectroscopic techniques, namely Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) Spectroscopy, X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Micro-Raman Spectroscopy (μRS), and UV-visible and Photoluminescence (PL) spectroscopy. With Fe incorporation, a gradual morphological transformation of nanostructures is demonstrated vividly through SEM/TEM characterizations. Interestingly, the morphology of nanostructures evolves with 1–10 at. % Fe doping concentration in ZnO. Nanoparticles obtained with 1 at. % Fe evolve to nanorods for 3 at. % Fe; nanorods transform to nanocones (for 5 at. % and 7 at. % Fe) and finally nanocones transform to nanoflakes at 10 at. % Fe. However, at all these stages, concurrence of primary hexagonal phase of Zn{sub 1-x}Fe{sub x}O along with the secondary phases of cubic ZnFe{sub 2}O{sub 4} and rhombohedric Fe{sub 2}O{sub 3}, is revealed through XRD analysis. Based on collective XRD, SEM, TEM, and EDX interpretations, a model for morphological evolution of nanostructures was proposed and the pivotal role of Fe dopant was deciphered. Furthermore, vibrational properties analyzed through Raman and FTIR spectroscopies unravel the intricacies of formation and gradual enhancement of secondary phases with increased Fe concentration. UV-visible and PL spectroscopic analyses provided further insight of optical processes altering with Fe incorporation. The blue shift and gradual quenching of visible photoluminescence with Fe doping was found in accordance with structural and vibrational analyses and explicated accordingly.

  16. Screening of the quantum-confined Stark effect in AlN/GaN nanowire superlattices by germanium doping

    SciTech Connect

    Hille, P. Müßener, J.; Becker, P.; Teubert, J.; Schörmann, J.; Eickhoff, M.; Mata, M. de la; Rosemann, N.; Chatterjee, S.; Magén, C.; Arbiol, J.

    2014-03-10

    We report on electrostatic screening of polarization-induced internal electric fields in AlN/GaN nanowire heterostructures with germanium-doped GaN nanodiscs embedded between AlN barriers. The incorporation of germanium at concentrations above 10{sup 20} cm{sup –3} shifts the photoluminescence emission energy of GaN nanodiscs to higher energies accompanied by a decrease of the photoluminescence decay time. At the same time, the thickness-dependent shift in emission energy is significantly reduced. In spite of the high donor concentration, a degradation of the photoluminescence properties is not observed.

  17. Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods

    PubMed Central

    2014-01-01

    Co-doped titanium dioxide (TiO2) nanorods with different doping concentrations were fabricated by a molten salt method. It is found that the morphology of TiO2 changes from nanorods to nanoparticles with increasing doping concentration. The mechanism for the structure and phase evolution is investigated in detail. Undoped TiO2 nanorods show strong ferromagnetism at room temperature, whereas incorporating of Co deteriorates the ferromagnetic ordering. X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) results demonstrate that the ferromagnetism is associated with Ti vacancy. PMID:25593558

  18. Design Issues of GaAs and AlGaAs Delta-Doped p-i-n Quantum-Well APD's

    NASA Technical Reports Server (NTRS)

    Wang, Yang

    1994-01-01

    We examine the basic design issues in the optimization of GaAs delta-doped and AlGAs delta-doped quantum-well avalanche photodiode (APD) structures using a theoretical analysis based on an ensemble Monte Carlo simulation. The devices are variations of the p-i-n doped quantum-well structure previously described in the literature. They have the same low-noise, high-gain and high-bandwidth features as the p-i-n doped quantum-well device. However, the use of delta doping provides far greater control or the doping concentrations within each stage possibly enhancing the extent to which the device can be depleted. As a result, it is expected that the proposed devices will operate at higher gain levels (at very low noise) than devices previously developed.

  19. High temperature electrical transport study of Si-doped AlN

    NASA Astrophysics Data System (ADS)

    Contreras, Sylvie; Konczewicz, Leszek; Ben Messaoud, Jaweb; Peyre, Hervé; Al Khalfioui, Mohamed; Matta, Samuel; Leroux, Mathieu; Damilano, Benjamin; Brault, Julien

    2016-10-01

    Electrical transport (resistivity and Hall Effect) have been studied in silicon doped aluminum nitride (AlN) thick epitaxial layers from 250 K up to 1000 K. The investigated samples, grown by molecular beam epitaxy were characterized by n-type conduction with an ambient temperature free carrier concentration of about ∼ 1 × 1015 cm-3. The donor level, situated about 250 meV below the conduction band edge, was found to be responsible for the experimentally observed increase of free carrier concentration with temperature. The temperature dependence of carrier mobility has been analyzed in the framework of a multimode scattering model. In the investigated samples the main scattering mechanism is supposed to be dislocation scattering.

  20. Al-doping effects on the photovoltaic performance of inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Shi, Ya-feng; Yu, Xiao-ming; Zhang, Jian-jun; Ge, Ya-ming; Chen, Li-qiao; Pan, Hong-jun

    2016-03-01

    The properties of Al-doped ZnO (AZO) play an important role in the photovoltaic performance of inverted polymer solar cells (PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor ( FF) simultaneously, and the power conversion efficiency ( PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.

  1. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    SciTech Connect

    Gupta, D.; Barman, P. B.; Hazra, S. K.; Dutta, D.; Kumar, M.; Som, T.

    2015-10-28

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C–150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C–150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  2. Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO2 thin films grown by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kassmi, M.; Pointet, J.; Gonon, P.; Bsiesy, A.; Vallée, C.; Jomni, F.

    2016-06-01

    Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO2 rutile films which are deposited on RuO2 by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz-100 kHz range, for ac electric fields up to 1 MVrms/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreases the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MVrms/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves the high-field dielectric behavior.

  3. ZnO:Al Doping Level and Hydrogen Growth Ambient Effects on CIGS Solar Cell Performance: Preprint

    SciTech Connect

    Duenow, J. N.; Gessert, T. A.; Wood, D. M.; Egaas, B.; Noufi, R.; Coutts,T. J.

    2008-05-01

    Cu(In,Ga)Se2 (CIGS) photovoltaic (PV) cells require a highly conducting and transparent electrode for optimum device performance. ZnO:Al films grown from targets containing 2.0 wt.% Al2O3 are commonly used for this purpose. Maximum carrier mobilities of these films grown at room temperature are ~20-25 cm2V-1s-1. Therefore, relatively high carrier concentrations are required to achieve the desired conductivity, which leads to free carrier absorption in the near infrared (IR). Lightly doped films (0.05 - 0.2 wt.% Al2O3), which show less IR absorption, reach mobility values greater than 50 cm2V-1s-1 when deposited in H2 partial pressure. We incorporate these lightly doped ZnO:Al layers into CIGS PV cells produced at the National Renewable Energy Laboratory (NREL). Preliminary results show quantum efficiency values of these cells rival those of a past world-record cell produced at NREL that used 2.0 wt.% Al-doped ZnO films. The highest cell efficiency obtained in this trial was 18.1%.

  4. Experimental and first-principles study of photoluminescent and optical properties of Na-doped CuAlO2: the role of the NaAl-2Na i complex

    NASA Astrophysics Data System (ADS)

    Liu, Ruijian; Li, Yongfeng; Yao, Bin; Ding, Zhanhui; Deng, Rui; Zhang, Ligong; Zhao, Haifeng; Liu, Lei

    2015-08-01

    We report that a band-tail emission at 3.08 eV, lower than near-band-edge energy, is observed in photoluminescence measurements of bulk Na-doped CuAlO2. The band-tail emission is attributed to Na-related defects. Electronic structure calculations based on the first-principles method demonstrate that the donor-acceptor compensated complex of NaAl-2Na i in Na-doped CuAlO2 plays a key role in leading to the band-tail emission and bandgap narrowing. Furthermore, Hall effect measurements indicates that the hole concentration in CuAlO2 is independent on Na doping, which is well understood by the donor-acceptor compensation effect of NaAl-2Na i complex.

  5. The effects of co-doping GeO II and Al 3+ on ytterbium-doped silica-based fiber

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Yan, Fengping; Fu, Yongjun; Li, Yifang; Gong, Taorong; Liu, Peng; Jian, Shuisheng

    2007-11-01

    Four types of YDFs with different Al 3+ concentration and mole content of GeO II were manufactured and the refractive index and absorption spectra of these fibers were explored. With the comparison of four YDFs and detailed analyze, it was found that higher Al 3+ concentration leads to more GeO II volatilization, which results in the refractive index decrease. Therefore, mole content of GeO II should be increased when co-doping Al 3+ in YDF to maintain numerical aperture. Meanwhile, the temperature of making porous layer should be controlled exactly to obtain good repetition of Al 3+- codoped YDF as the little change of temperature has little effect on mole content of GeO II and SiO II but has great effect on compactness of porous layer. By drawing the fiber and testing the related parameters, the results show that the optimum temperature range for making soot layer should between 1440°C and 1480°C where the absorption coefficients were as high as 620dB/m with better repeatability. Finally, the ratio of GeO II to SiO II should be controlled to obtain long fluorescence lifetime for fabricating highly ytterbium-doped fiber with required numerical aperture.

  6. Effect of the PVA (polyvinyl alcohol) concentration on the optical properties of Eu-doped YAG phosphors

    NASA Astrophysics Data System (ADS)

    Hora, Daniela A.; Andrade, Adriano B.; Ferreira, Nilson S.; Teixeira, Verônica C.; dos S. Rezende, Marcos V.

    2016-10-01

    The influence of the polyvinyl alcohol (PVA) concentration on the synthesis and structural, morphological and optical properties of Y3Al5O13: Eu (Eu-doped YAG) was systematically investigated in this work. The final concentration of PVA in the preparation step influenced the crystallite size and also the degree of particle agglomeration in Eu-doped YAG phosphors. X-ray excited optical luminescence (XEOL) emission spectra results indicated typical Eu3+ emission lines and an abnormally intense 5D0 → 7F4. The intensity parameters Ω2 and Ω4 were calculated and indicated the PVA concentration affects the ratio Ω2:Ω4. X-ray absorption spectroscopy (XAS) results showed Eu valence did not change and the symmetry around the Eu3+ is influenced by the PVA concentration. XEOL-XAS showed the luminescence increases as a function of energy.

  7. A DFT study on SO3 capture and activation over Si- or Al-doped graphene

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Saeidi, Nasibeh; Nematollahi, Parisa

    2016-08-01

    This study reports the adsorption and favorable reaction mechanism of SO3 reduction by CO molecule over Si- or Al-doped graphene using DFT calculations. The adsorption energy of the most stable configuration of SO3 is calculated to be about -103 and -124 kcal/mol over the Si- and Al-doped graphene, respectively. The SO3 reduction over these surfaces proceeds through the following elementary steps (a) SO3 → SO2 + Oads and (b) Oads + CO → CO2. The estimated activation energy (Eact) for the dissociation of SO3 over the Si-doped graphene is about 9 kcal/mol smaller than that on the Al-doped graphene.

  8. First-Principles Study on Structural and Thermoelectric Properties of Al- and Sb-Doped Mg2Si

    NASA Astrophysics Data System (ADS)

    Hirayama, Naomi; Iida, Tsutomu; Funashima, Hiroki; Morioka, Shunsuke; Sakamoto, Mariko; Nishio, Keishi; Kogo, Yasuo; Takanashi, Yoshifumi; Hamada, Noriaki

    2015-06-01

    We theoretically investigate the structural and thermoelectric properties of magnesium silicide (Mg2Si) incorporating Al or Sb atoms as impurities using first-principles calculations. We optimized the structural properties through variable-cell relaxation using a pseudopotential method based on density functional theory. The result indicates that the lattice constant can be affected by the insertion of impurity atoms into the system, mainly because the ionic radii of these impurities differ from those of the matrix constituents Mg and Si. We then estimate, on the basis of the optimized structures, the site preferences of the impurity atoms using a formation energy calculation. The result shows a nontrivial concentration-dependence of the site occupation, such that Al tends to go into the Si, Mg, and interstitial sites with comparable formation energies at low doping levels (<2 at.%); it can start to substitute for the Mg sites preferentially at higher doping levels (<4 at.%). Sb, on the other hand, shows a strong preference for the Si sites at all impurity concentrations. Furthermore, we obtain the temperature-dependence of the thermoelectromotive force (Seebeck coefficient) of the Al- and Sb-doped Mg2Si using the full-potential linearized augmented-plane-wave method and the Boltzmann transport equation.

  9. Al and Fe co-doped transparent conducting ZnO thin film for mediator-less biosensing application

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Gupta, Vinay

    2011-12-01

    Highly c-axis oriented Al and Fe co-doped ZnO (ZAF) thin film is prepared by pulsed laser deposition. Fe introduces redox centre along with shallow donor level while Al doping enhances conductivity of ZnO, thus removing the requirement of both mediator and bottom conducting layer in bioelectrode. Model enzyme (glucose oxidase), was immobilized on surface of ZAF matrix. Cyclic voltammetry and photometric assay show that prepared bio-electrode is sensitive to glucose concentration with enhanced response of 0.18 μAmM-1cm-2 and low Km ˜ 2.01 mM. The results illustrate that ZAF is an attractive matrix for realization of miniaturized mediator-less solid state biosensor.

  10. Magnetic properties of transition metal doped AlN nanosheet: First-principle studies

    SciTech Connect

    Shi, Changmin; Qin, Hongwei Zhang, Yongjia; Hu, Jifan; Ju, Lin

    2014-02-07

    We carry out our first-principles calculations within density functional theory to study the 3d transition metal (TM) doped AlN nanosheets. The calculated results indicate that a stoichiometric AlN nanosheet is graphene-like structure and nonmagnetic. The TM impurities can induce magnetic moments, localized mainly on the 3d TM atoms and neighboring N atoms. Our calculated results of TM-doped nanosheet systems indicate a strong interaction between 3d orbit of TM atom and the 2p orbit of N atoms. In addition, the Mn- and Ni-doped AlN nanosheet with half-metal characters seems to be good candidates for spintronic applications. When substituting two Al atoms, the relative energies of the states between ferromagnetic and antiferromagnetic coupling are investigated sufficiently. The exchange coupling of Co- and Ni-doped AlN nanosheets exhibits a transformation with different distances of two TM atoms and that of Cr-, Mn-, and Fe-doped AlN nanosheets is not changed.

  11. Doping-Induced Interband Gain in InAs/AlSb Quantum Wells

    NASA Technical Reports Server (NTRS)

    Kolokolov, K. I.; Ning, C. Z.

    2005-01-01

    A paper describes a computational study of effects of doping in a quantum well (QW) comprising a 10-nm-thick layer of InAs sandwiched between two 21-nm-thick AlSb layers. Heretofore, InAs/AlSb QWs have not been useful as interband gain devices because they have type-II energy-band-edge alignment, which causes spatial separation of electrons and holes, thereby leading to weak interband dipole matrix elements. In the doping schemes studied, an interior sublayer of each AlSb layer was doped at various total areal densities up to 5 X 10(exp 12) / square cm. It was found that (1) proper doping converts the InAs layer from a barrier to a well for holes, thereby converting the heterostructure from type II to type I; (2) the resultant dipole matrix elements and interband gains are comparable to those of typical type-I heterostructures; and (3) dipole moments and optical gain increase with the doping level. Optical gains in the transverse magnetic mode can be almost ten times those of other semiconductor material systems in devices used to generate medium-wavelength infrared (MWIR) radiation. Hence, doped InAs/AlSb QWs could be the basis of an alternative material system for devices to generate MWIR radiation.

  12. Thermoelectric properties of Al doped Mg{sub 2}Si material

    SciTech Connect

    Kaur, Kulwinder Kumar, Ranjan; Rani, Anita

    2015-08-28

    In the present paper we have calculated thermoelectric properties of Al doped Mg{sub 2}Si material (Mg{sub 2−x}Al{sub x}Si, x=0.06) using Pseudo potential plane wave method based on DFT and Semi classical Boltzmann theory. The calculations showed n-type conduction, indicating that the electrical conduction are due to electron. The electrical conductivity increasing with increasing temperature and the negative value of Seebeck Coefficient also show that the conduction is due to electron. The thermal conductivity was increased slightly by Al doping with increasing temperature due to the much larger contribution of lattice thermal conductivity over electronic thermal conductivity.

  13. MgB2; Al and C doping, σ-band filling and anisotropy reduction

    NASA Astrophysics Data System (ADS)

    Ruiz-Chavarria, Sabina; de La Mora, Pablo; Tavizon, Gustavo

    2006-03-01

    Al and C-MgB2 doping adds an electron to the system for each atom. This extra electron fills up the σ-bands thus diminishing the number of σ-carriers; this has been the usual explanation for the Tc reduction. Nevertheless in this work we show that there is also a large reduction of anisotropy in the electrical conductivity due to the σ-carriers which should also have an effect on the Tc reduction. Al and C doping produce a different Tc pattern; this difference can be largely explained by the relative shift between the σ-bands and π-bands. After adjusting to this shift there is a small but visible difference, at low doping Tc in the Al compounds drops faster than in the C compounds, this can be directly related to the faster loss of conductivity anisotropy in the Al compounds.

  14. Al doped ZnO thin films - microstructure, physical and sensor properties

    NASA Astrophysics Data System (ADS)

    Starbov, N.; Balabanov, S.; Bineva, I.; Rachkova, A.; Krumov, E.; Starbova, K.

    2012-12-01

    Thin ZnO films doped with Al are deposited by spray pyrolysis onto glass substrates using starting solution of Zn-acetate + n.AlCl (where 0.1 < n < 30 at.%). The ZnO phase composition and surface morphology are revealed via X-ray diffraction or atomic force and scanning electron microscopy respectively. UV/VIS transmittance/reflectance, as well as DC-conductivity measurements are applied in order to reveal the influence of the Al doping on the optical and electrical transport properties of the films studied. The sensing efficiency of the pure as well as of doped ZnO films for detection of noxious gases is checked via resistivity measurements under saturated vapours of ethanol, acetone, ammonia, dimethylamine and formalin at room temperature. Finally the results obtained are discussed concerning the application of the ZnO:Al films studied in the field of sensor technique.

  15. Heavily-doped ZnO:Al thin films prepared by using magnetron Co-sputtering: Optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Moon, Eun-A.; Jun, Young-Kil; Kim, Nam-Hoon; Lee, Woo-Sun

    2016-07-01

    Photovoltaic applications require transparent conducting-oxide (TCO) thin films with high optical transmittance in the visible spectral region (380 - 780 nm), low resistivity, and high thermal/chemical stability. The ZnO thin film is one of the most common alternatives to the conventional indium-tin-oxide (ITO) thin film TCO. Highly transparent and conductive ZnO thin films can be prepared by doping with group III elements. Heavily-doped ZnO:Al (AZO) thin films were prepared by using the RF magnetron co-sputtering method with ZnO and Al targets to obtain better characteristics at a low cost. The RF sputtering power to each target was varied to control the doping concentration in fixed-thickness AZO thin films. The crystal structures of the AZO thin films were analyzed by using X-ray diffraction. The morphological microstructure was observed by using scanning electron microscopy. The optical transmittance and the band gap energy of the AZO thin films were examined with an UV-visible spectrophotometer in the range of 300 - 1800 nm. The resistivity and the carrier concentration were examined by using a Hall-effect measurement system. An excellent optical transmittance > 80% with an appropriate band gap energy (3.26 - 3.27 eV) and an improved resistivity (~10 -1 Ω·cm) with high carrier concentration (1017 - 1019 cm -3) were demonstrated in 350-nm-thick AZO thin films for thin-film photovoltaic applications.

  16. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOEpatents

    Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.

    1996-01-01

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  17. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOEpatents

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  18. Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range

    SciTech Connect

    Valenti, Ilaria; Valeri, Sergio; Perucchi, Andrea; Di Pietro, Paola; Lupi, Stefano; Torelli, Piero

    2015-10-28

    The combination of photoemission spectroscopies, infrared and UV-VIS absorption, and electric measurements has allowed to clarify the mechanisms governing the conductivity and the electronic properties of Al-doped ZnO (AZO) films in a wide doping range. The contribution of defect-related in-gap states to conduction has been excluded in optimally doped films (around 4 at. %). The appearance of gap states at high doping, the disappearance of occupied DOS at Fermi level, and the bands evolution complete the picture of electronic structure in AZO when doped above 4 at. %. In this situation, compensating defects deplete the conduction band and increase the electronic bandgap of the material. Electrical measurements and figure of merit determination confirm the high quality of the films obtained by magnetron sputtering, and thus allow to extend their properties to AZO films in general.

  19. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    SciTech Connect

    Ganz, P. R.; Schaadt, D. M.

    2011-12-23

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  20. Intraband absorption in self-assembled Ge-doped GaN/AlN nanowire heterostructures.

    PubMed

    Beeler, M; Hille, P; Schörmann, J; Teubert, J; de la Mata, M; Arbiol, J; Eickhoff, M; Monroy, E

    2014-03-12

    We report the observation of transverse-magnetic-polarized infrared absorption assigned to the s-p(z) intraband transition in Ge-doped GaN/AlN nanodisks (NDs) in self-assembled GaN nanowires (NWs). The s-p(z) absorption line experiences a blue shift with increasing ND Ge concentration and a red shift with increasing ND thickness. The experimental results in terms of interband and intraband spectroscopy are compared to theoretical calculations of the band diagram and electronic structure of GaN/AlN heterostructured NWs, accounting for their three-dimensional strain distribution and the presence of surface states. From the theoretical analysis, we conclude that the formation of an AlN shell during the heterostructure growth applies a uniaxial compressive strain which blue shifts the interband optical transitions but has little influence on the intraband transitions. The presence of surface states with density levels expected for m-GaN plane charge-deplete the base of the NWs but is insufficient to screen the polarization-induced internal electric field in the heterostructures. Simulations show that the free-carrier screening of the polarization-induced internal electric field in the NDs is critical to predicting the photoluminescence behavior. The intraband transitions, on the other hand, are blue-shifted due to many-body effects, namely, the exchange interaction and depolarization shift, which exceed the red shift induced by carrier screening. PMID:24502703

  1. Effects of growth temperature on characteristics of Mg-delta-doped p-AlInGaN epi-layers

    NASA Astrophysics Data System (ADS)

    Wu, Zili; Zhang, Xiong; Liang, Tianhui; Feng, Zhe Chuan; Cui, Yiping

    2016-10-01

    The Mg-delta-doped p-AlInGaN epi-layers were successfully grown on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD). The effects of growth temperature on the characteristics of the Mg-delta-doped p-AlInGaN epi-layers were investigated in detail with scanning electron microscopy (SEM), high resolution X-ray diffraction (HR-XRD), photoluminescence (PL), and Hall effect measurements. The characterization results showed that the surfaces of the p-AlInGaN epi-layers were textured with a high density of hexagonal pits, which was found to be strongly dependent on the growth temperature. This feature should be very helpful to enhance the light extraction efficiency when the p-AlInGaN epi-layers were used as the top p-contact layer for making AlInGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs). In addition, the low temperature PL spectra demonstrated that the Mg-H complex-related broad emission band which was observed for the as-grown p-AlInGaN epi-layer samples was not resolvable for the annealed samples. This fact implies that the Mg-H complex can be effectively dissociated by annealing process. Moreover, owing to the improved In incorporation efficiency and crystalline quality for the p-AlInGaN epi-layers, a hole concentration as high as 1.69 × 1017 cm-3 was achieved with the reformed Mg-delta-doping technique developed in this study.

  2. First-principles study of nitrogen-doped CuAlO2

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Ao, Zhi Min; Yuan, Ding Wang

    2012-08-01

    The electronic structure and formation energies of N-doped CuAlO2 are studied using first-principles calculations. It is found that, when a N atom is doped into CuAlO2, the N atom prefers to substitute an O atom rather than to occupy an interstitial site of the Cu layer. The NO acts as a shallow accepter while the Ni acts as a deep accepter. The results of the electronic structure show that the N-doping doesn't alter the band gap of CuAlO2 for the both cases. In the substitutional case, the N impurity states occur at the top of valance band maximum (VBM), which provides holes and increases the p-type conductivity. However, in the interstitial case, the N impurity states occur in the middle of the band gap, which are more localized and this indicates that it is not good for p-type conductivity.

  3. Mixed Al and Si doping in ferroelectric HfO{sub 2} thin films

    SciTech Connect

    Lomenzo, Patrick D.; Nishida, Toshikazu; Takmeel, Qanit; Zhou, Chuanzhen; Chung, Ching-Chang; Jones, Jacob L.; Moghaddam, Saeed

    2015-12-14

    Ferroelectric HfO{sub 2} thin films 10 nm thick are simultaneously doped with Al and Si. The arrangement of the Al and Si dopant layers within the HfO{sub 2} greatly influences the resulting ferroelectric properties of the polycrystalline thin films. Optimizing the order of the Si and Al dopant layers led to a remanent polarization of ∼20 μC/cm{sup 2} and a coercive field strength of ∼1.2 MV/cm. Post-metallization anneal temperatures from 700 °C to 900 °C were used to crystallize the Al and Si doped HfO{sub 2} thin films. Grazing incidence x-ray diffraction detected differences in peak broadening between the mixed Al and Si doped HfO{sub 2} thin films, indicating that strain may influence the formation of the ferroelectric phase with variations in the dopant layering. Endurance characteristics show that the mixed Al and Si doped HfO{sub 2} thin films exhibit a remanent polarization greater than 15 μC/cm{sup 2} up to 10{sup 8} cycles.

  4. Mixed Al and Si doping in ferroelectric HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Lomenzo, Patrick D.; Takmeel, Qanit; Zhou, Chuanzhen; Chung, Ching-Chang; Moghaddam, Saeed; Jones, Jacob L.; Nishida, Toshikazu

    2015-12-01

    Ferroelectric HfO2 thin films 10 nm thick are simultaneously doped with Al and Si. The arrangement of the Al and Si dopant layers within the HfO2 greatly influences the resulting ferroelectric properties of the polycrystalline thin films. Optimizing the order of the Si and Al dopant layers led to a remanent polarization of ˜20 μC/cm2 and a coercive field strength of ˜1.2 MV/cm. Post-metallization anneal temperatures from 700 °C to 900 °C were used to crystallize the Al and Si doped HfO2 thin films. Grazing incidence x-ray diffraction detected differences in peak broadening between the mixed Al and Si doped HfO2 thin films, indicating that strain may influence the formation of the ferroelectric phase with variations in the dopant layering. Endurance characteristics show that the mixed Al and Si doped HfO2 thin films exhibit a remanent polarization greater than 15 μC/cm2 up to 108 cycles.

  5. (Al, Er) co-doped ZnO nanoparticles for photodegradation of rhodamine blue

    NASA Astrophysics Data System (ADS)

    Ghomri, R.; Shaikh, M. Nasiruzzaman; Ahmed, M. I.; Bououdina, M.; Ghers, M.

    2016-10-01

    Pure and co-doped (Al, Er) ZnO nanoparticles (NPs) have been synthesized by hydrothermal method using (Zn, Er and Al) nitrates. X-ray diffraction patterns reveal the formation of single phase of ZnO würtzite-type structure. The crystallite size for pure ZnO is in the order of 26.5 nm which decreases up to the range 14.2-22.0 nm after (Al, Er) co-doping. SEM micrographs show that the specimen is composed of regular spherical particles in the nanoscale regime with homogeneous size distribution and high tendency to agglomeration. FTIR spectra exhibit absorption lines located at wavenumbers corresponding to vibration modes between the constituent atoms. Raman spectra recorded under excitation ( λ exc = 632.8 nm) reveal peaks related to modes of transverse and longitudinal optical phonons of the würtzite ZnO structure. The energy band gap E g of ZnO:(Al, Er) NPs ranges in 3.264-3.251 eV. The photocatalytic activity of pure and co-doped (Al, Er) ZnO NPs was evaluated by the photodegradation of rhodamine blue under an irradiation of wavelength 554 nm. It is found that a photodegradation rate above 90 % could be achieved for a period of time of 40 min for pure ZnO and 120 min for (Al, Er) co-doped ZnO. A photodegradation mechanism is proposed.

  6. Highly Al-doped TiO{sub 2} nanoparticles produced by Ball Mill Method: structural and electronic characterization

    SciTech Connect

    Santos, Desireé M. de los Navas, Javier Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-10-15

    Highlights: • Highly Al-doped TiO{sub 2} nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO{sub 2} nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti{sup 4+} ions by Al{sup 3+} in the TiO{sub 2} lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature.

  7. Analytical Model to Determine the Gate Leakage Current in In0.52Al0.48As/InxGa1-xAs Pseudomorphic Modulation Doped Field-Effect Transistors Caused by Thermionic Field Emission

    NASA Astrophysics Data System (ADS)

    Dickmann, Jürgen; Daembkes, Heinrich; Schildberg, Steffen; Fittng, Hans-Joachim; Ellrod, Peter; Tegude, Franz

    1994-04-01

    The gate leakage current of pulse doped In0.52Al0.48As/In xGa1- xAs pseudomorphic modulation doped field-effect transistors (MODFETs) is analysed by thermionic field emission theory. For the first time, a theoretically based investigation of the leakage current for this type of device is carried out. The influence of parameters of the layer structure design on the gate leakage current such as the thickness of the barrier layer or the doping concentration in the supply layer is predicted. The model adequately predicts the experimental decrease in leakage current with increased thickness of the barrier layer and reduced doping concentration.

  8. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films

    PubMed Central

    2012-01-01

    We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin films regarding crystallization and electrical and optical properties for application in transparent conducting oxide devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol–gel spin-coating process. As a starting material, AlCl3⋅6H2O, Ga(NO3)2, and Zn(CH3COO)2⋅2H2O were used. A lowest sheet resistance of 3.3 × 103 Ω/□ was obtained for the GZO thin film doped with 1.5 mol% of Ga after post-annealing at 650°C for 60 min in air. All the films showed more than 85% transparency in the visible region. We have studied the structural and microstructural properties as a function of Al and Ga concentrations through X-ray diffraction and scanning electron microscopy analysis. In addition, the optical bandgap and photoluminescence were estimated. PMID:23173885

  9. Si-doped GaAs/AlGaAs TJS laser by MBE

    SciTech Connect

    Mitsunaga, K.; Fujiwara, K.; Nunoshita, M.; Nakayama, T.

    1984-04-01

    The effect of high temperature annealing on the properties of silicon-doped GaAs/AlGaAs double heterostructure (DH) grown by molecular beam expitaxy (MBE)= and its application to the fabrication of transverse junction stripe (TJS) lasers are reported. In spite of the amphoteric nature of Si, it was found that the high temperature annealing gave little influence on the electrical and optical quality of the n-type DH wafer. The TJS laser using Si-doped GaAs/AlGaAs wafer has been oscillated cw at room temperature and exhibited low threshold current of 30 mA and high quantum efficiency of 60%.

  10. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties

    PubMed Central

    Yeom, Da-Young; Jeon, Woojin; Tu, Nguyen Dien Kha; Yeo, So Young; Lee, Sang-Soo; Sung, Bong June; Chang, Hyejung; Lim, Jung Ah; Kim, Heesuk

    2015-01-01

    For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets with desirable electrical properties can be prepared by the simultaneous reduction and boron-doping of graphene oxide (GO) at a high annealing temperature. B-doped graphene nanoplatelets prepared at 1000 °C show a maximum boron concentration of 6.04 ± 1.44 at %, which is the highest value among B-doped graphenes prepared using various methods. With well-mixed GO and g-B2O3 as the dopant, highly uniform doping is achieved for potentially gram-scale production. In addition, as a proof-of-concept, highly B-doped graphene nanoplatelets were used as an electrode of an electrochemical double-layer capacitor (EDLC) and showed an excellent specific capacitance value of 448 F/g in an aqueous electrolyte without additional conductive additives. We believe that B-doped graphene nanoplatelets can also be used in other applications such as electrocatalyst and nano-electronics because of their reliable and controllable electrical properties regardless of the outer environment. PMID:25940534

  11. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties.

    PubMed

    Yeom, Da-Young; Jeon, Woojin; Tu, Nguyen Dien Kha; Yeo, So Young; Lee, Sang-Soo; Sung, Bong June; Chang, Hyejung; Lim, Jung Ah; Kim, Heesuk

    2015-01-01

    For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets with desirable electrical properties can be prepared by the simultaneous reduction and boron-doping of graphene oxide (GO) at a high annealing temperature. B-doped graphene nanoplatelets prepared at 1000 °C show a maximum boron concentration of 6.04 ± 1.44 at %, which is the highest value among B-doped graphenes prepared using various methods. With well-mixed GO and g-B2O3 as the dopant, highly uniform doping is achieved for potentially gram-scale production. In addition, as a proof-of-concept, highly B-doped graphene nanoplatelets were used as an electrode of an electrochemical double-layer capacitor (EDLC) and showed an excellent specific capacitance value of 448 F/g in an aqueous electrolyte without additional conductive additives. We believe that B-doped graphene nanoplatelets can also be used in other applications such as electrocatalyst and nano-electronics because of their reliable and controllable electrical properties regardless of the outer environment. PMID:25940534

  12. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties

    NASA Astrophysics Data System (ADS)

    Yeom, Da-Young; Jeon, Woojin; Tu, Nguyen Dien Kha; Yeo, So Young; Lee, Sang-Soo; Sung, Bong June; Chang, Hyejung; Lim, Jung Ah; Kim, Heesuk

    2015-05-01

    For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets with desirable electrical properties can be prepared by the simultaneous reduction and boron-doping of graphene oxide (GO) at a high annealing temperature. B-doped graphene nanoplatelets prepared at 1000 °C show a maximum boron concentration of 6.04 ± 1.44 at %, which is the highest value among B-doped graphenes prepared using various methods. With well-mixed GO and g-B2O3 as the dopant, highly uniform doping is achieved for potentially gram-scale production. In addition, as a proof-of-concept, highly B-doped graphene nanoplatelets were used as an electrode of an electrochemical double-layer capacitor (EDLC) and showed an excellent specific capacitance value of 448 F/g in an aqueous electrolyte without additional conductive additives. We believe that B-doped graphene nanoplatelets can also be used in other applications such as electrocatalyst and nano-electronics because of their reliable and controllable electrical properties regardless of the outer environment.

  13. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    NASA Astrophysics Data System (ADS)

    Darwish, Ahmed A.; Fadlallah, Mohamed M.; Badawi, Ashraf; Maarouf, Ahmed A.

    2016-07-01

    Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  14. Defect assisted saturable absorption characteristics in Al and Li doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    K. M., Sandeep; Bhat, Shreesha; S. M., Dharmaprakash; P. S., Patil; Byrappa, K.

    2016-09-01

    The influence of different doping ratios of Al and Li on the nonlinear optical properties, namely, a two-photon absorption and a nonlinear refraction using single beam Z-scan technique, of nano-crystalline ZnO thin films has been investigated in the present study. A sol-gel spin-coated pure ZnO, Al-doped ZnO (AZO), and Li-doped ZnO (LZO) thin films have been prepared. The stoichiometric deviations induced by the occupancy of Al3+ and Li+ ions at the interstitial sites injects the compressive stress in the AZO and LZO thin films, respectively, while the extended defect states below the conduction band leads to a redshift of energy band gap in the corresponding films as compared to pure ZnO thin film. Switching from an induced absorption in ZnO and 1 at. wt. % doped AZO and LZO films to a saturable absorption (SA) in 2 at. wt. % doped AZO and LZO films has been observed, and it is attributed to the saturation of a linear absorption of the defect states. The closed aperture Z-scan technique revealed the self-focusing (a positive nonlinear refractive index) in all the films, which emerge out of the thermo-optical effects due to the continuous illumination of laser pulses. A higher third-order nonlinear optical susceptibility χ(3) of the order 10-3 esu has been observed in all the films.

  15. Layer disordering and doping compensation of an intersubband AlGaN/AlN superlattice by silicon implantation

    NASA Astrophysics Data System (ADS)

    Wierer, J. J.; Allerman, A. A.; Skogen, E. J.; Tauke-Pedretti, A.; Alford, C.; Vawter, G. A.; Montaño, I.

    2014-09-01

    Layer disordering and doping compensation of an Al0.028Ga0.972N/AlN superlattice by implantation are demonstrated. The as-grown sample exhibits intersubband absorption at ˜1.56 μm which is modified when subject to a silicon implantation. After implantation, the intersubband absorption decreases and shifts to longer wavelengths. Also, with increasing implant dose, the intersubband absorption decreases. It is shown that both layer disordering of the heterointerfaces and doping compensation from the vacancies produced during the implantation cause the changes in the intersubband absorption. Such a method is useful for removing absorption in spatially defined areas of III-nitride optoelectronic devices by, for example, creating low-loss optical waveguides monolithically that can be integrated with as-grown areas operating as electro-absorption intersubband modulators.

  16. Effect of Mo-doping concentration on the physical behaviour of sprayed ZnO layers

    SciTech Connect

    Reddy, T. Sreenivasulu; Reddy, M. Vasudeva; Reddy, K. T. Ramakrishna

    2015-06-24

    Mo-doped zinc oxide layers (MZO) have been prepared on cleaned glass substrates by chemical spray pyrolysis technique by varying Mo-doping concentration in the range, 0 – 5 at. %. The X-ray diffraction studies revealed that all the as prepared layers were polycrystalline in nature and exhibited wurtzite structure. The layers prepared with lower Mo-doping concentration (<2 at. %) were preferably oriented along the (100) plane, whereas in the case of higher Mo-doping concentration (>2 at. %), the films showed the (002) plane as the dominant peak. The optical analysis indicated that all the layers had an average optical transmittance of 80% in the visible region and the evaluated band gap varied in the range, 3.28 - 3.50 eV.

  17. Effect of Mo-doping concentration on the physical behaviour of sprayed ZnO layers

    NASA Astrophysics Data System (ADS)

    Reddy, T. Sreenivasulu; Reddy, M. Vasudeva; Reddy, K. T. Ramakrishna

    2015-06-01

    Mo-doped zinc oxide layers (MZO) have been prepared on cleaned glass substrates by chemical spray pyrolysis technique by varying Mo-doping concentration in the range, 0 - 5 at. %. The X-ray diffraction studies revealed that all the as prepared layers were polycrystalline in nature and exhibited wurtzite structure. The layers prepared with lower Mo-doping concentration (<2 at. %) were preferably oriented along the (100) plane, whereas in the case of higher Mo-doping concentration (>2 at. %), the films showed the (002) plane as the dominant peak. The optical analysis indicated that all the layers had an average optical transmittance of 80% in the visible region and the evaluated band gap varied in the range, 3.28 - 3.50 eV.

  18. Luminescent properties of Ln3+ doped tellurite glasses containing AlF3

    NASA Astrophysics Data System (ADS)

    Walas, Michalina; Pastwa, Agata; Lewandowski, Tomasz; Synak, Anna; Gryczyński, Ignacy; Sadowski, Wojciech; Kościelska, Barbara

    2016-09-01

    The low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence spectra of Eu3+, Tb3+, Tm3+ co-doped glasses show apart of the bands corresponding to the 4f-4f transitions of lanthanide ions also band corresponding to glass matrix. AlF3 doping increases emission intensity, although to improve overall emission color further studies on molar composition of samples and the molar ratio of the components should be carried out.

  19. n-type conductivity in Si-doped amorphous AlN: an ab initio investigation

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2016-04-01

    We report the electronic structure and topology of a heavily Si-doped amorphous aluminium nitride (Al37.5Si12.5N50) using ab initio simulations. The amorphous Al37.5Si12.5N50 system is found to be structurally similar to pure amorphous aluminium nitride. It has an average coordination number of about 3.9 and exhibits a small amount of Si-Si homopolar bonds. The formation of Si-Al bonds is not very favourable. Electronic structure calculations reveal that the Si doping has a negligible effect on the band gap width but causes delocalization of the valence band tail states and a shift of the Fermi level towards the conduction band. Thus, amorphous Al37.5Si12.5N50 alloys show n-type conductivity.

  20. A comparative study on magnetism in Zn-doped AlN and GaN from first-principles

    SciTech Connect

    Xu, Liang; Wang, Lingling E-mail: xiaowenzhi@hnu.edu.cn; Huang, Weiqing; Xiao, Wenzhi E-mail: xiaowenzhi@hnu.edu.cn; Xiao, Gang

    2014-09-14

    First-principles calculations have been used to comparatively investigate electronic and magnetic properties of Zn-doped AlN and GaN. A total magnetic moment of 1.0 μB{sub B} induced by Zn is found in AlN, but not in GaN. Analyses show that the origin of spontaneous polarization not only depend on the localized atomic orbitals of N and sufficient hole concentration, but also the relative intensity of the covalency of matrix. The relatively stronger covalent character of GaN with respect to AlN impedes forming local magnetic moment in GaN matrix. Our study offers a fresh sight of spontaneous spin polarization in d⁰ magnetism. The much stronger ferromagnetic coupling in c-plane of AlN means that it is feasible to realize long-range ferromagnetic order via monolayer delta-doping. This can apply to other wide band-gap semiconductors in wurtzite structure.

  1. Effect of Al(3+) co-doping on the luminescence properties of Cu doped Na2SiF6.

    PubMed

    Barve, R A; Patil, R R; Moharil, S V; Bhatt, B C; Kulkarni, M S

    2016-10-01

    Studies were carried out to assess the correlation between thermoluminescence (TL) and optically stimulated luminescence (OSL) of this phosphor. It was observed that the OSL and TL glow curve consists of a wide distribution of traps having different photo-ionization cross-sections, trap depths and frequency factors. In case of Al doped sample, some of the traps up to 200°C are assumed to act as a source traps for the observance of OSL due to thermal transfer of charge carriers into the deep traps beyond 480°C. This suggests that Al impurities play an important role in the thermal transfer OSL process. As most of the work on this phenomenon is done on natural materials (mainly quartz) in which aluminum is a natural impurity, this study will explain the role of Al in this phenomenon. PMID:27501135

  2. Differences in n-type doping efficiency between Al- and Ga-ZnO films

    NASA Astrophysics Data System (ADS)

    Gabás, Mercedes; Landa-Cánovas, Angel; Luis Costa-Krämer, José; Agulló-Rueda, Fernando; González-Elipe, Agustín R.; Díaz-Carrasco, Pilar; Hernández-Moro, Jorge; Lorite, Israel; Herrero, Pilar; Castillero, Pedro; Barranco, Angel; Ramón Ramos-Barrado, José

    2013-04-01

    A careful and wide comparison between Al and Ga as substitutional dopants in the ZnO wurtzite structure is presented. Both cations behave as n-type dopants and their inclusion improves the optical and electrical properties of the ZnO matrix, making it more transparent in the visible range and rising up its electrical conductivity. However, the same dopant/Zn ratio leads to a very different doping efficiency when comparing Al and Ga, being the Ga cation a more effective dopant of the ZnO film. The measured differences between Al- and Ga-doped films are explained with the hypothesis that different quantities of these dopant cations are able to enter substitutionally in the ZnO matrix. Ga cations seem to behave as perfect substitutional dopants, while Al cation might occupy either substitutional or interstitial sites. Moreover, the subsequent charge balance after doping appear to be related with the formation of different intrinsic defects that depends on the dopant cation. The knowledge of the doped-ZnO films microstructure is a crucial step to optimize the deposition of transparent conducting electrodes for solar cells, displays, and other photoelectronic devices.

  3. DX centers in Sn-doped Ga0.7Al0.3As

    NASA Astrophysics Data System (ADS)

    Hayes, T. M.; Williamson, D. L.; Outzourhit, A.; Small, P.; Gibart, P.; Rudra, A.

    1989-03-01

    We have measured and analyzed the extended fine structure on the Sn K-shell x-ray absorption spectra of GaAs and Ga0.7Al0.3As doped with ˜5 x 1018 cm-3 Sn. Our results and their implications for the atomic structure of DX centers are discussed.

  4. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations

    NASA Astrophysics Data System (ADS)

    Rad, Ali Shokuhi

    2016-03-01

    We have studied the electronic structure and property of pristine as well as Al-doped graphene sheets towards adsorption of some halomethane compounds (trichloromethane, dichloromethane, and difluoromethane) using density functional theory (DFhsT) calculations. The adsorption energies have been calculated for each adsorbed-adsorbent system. Based on our results, compared to pristine graphene, the Al-doped graphene causes significant adsorption energy, higher charge transferring, and smaller bond distances to halomethane compounds. Our calculated adsorption energies of trichloromethane, dichloromethane, and difluoromethane on Al-doped graphene were - 54.1, - 68.3, and - 123.2 kJ mol- 1, respectively, which are categorized in the chemisorption region while the adsorption of these molecules on pristine graphene release insignificant energies which correspond to very weak adsorption on it. Furthermore, we used charge transfer analysis to search the amount of electron allocation. Orbital analysis including the density of states (DOS) was done to find the possible orbital hybridization between adsorbates and two graphene sheets. These results imply the suitability of Al-doped graphene as a good adsorbent/sensor for halomethane compounds.

  5. Simultaneous enhancement of carrier mobility and concentration via tailoring of Al-chemical states in Al-ZnO thin films

    SciTech Connect

    Kumar, Manish Wen, Long; Sahu, Bibhuti B.; Han, Jeon Geon

    2015-06-15

    Simultaneously achieving higher carriers concentration and mobility is a technical challenge against up-scaling the transparent-conductive performances of transparent-conductive oxides. Utilizing one order higher dense (∼1 × 10{sup 11} cm{sup −3}) plasmas (in comparison to the conventional direct current plasmas), highly c-axis oriented Al-doped ZnO films have been prepared with precise control over relative composition and chemical states of constituting elements. Tailoring of intrinsic (O vacancies) and extrinsic (ionic Al and zero-valent Al) dopants provide simultaneous enhancement in mobility and concentration of charge carriers. Room-temperature resistivity as low as 4.89 × 10{sup −4} Ω cm along the carrier concentration 5.6 × 10{sup 20} cm{sup −3} is obtained in 200 nm thick transparent films. Here, the control of atomic Al reduces the charge trapping at grain boundaries and subdues the effects of grain boundary scattering. A mechanism based on the correlation between electron-hole interaction and carrier mobility is proposed for degenerately doped wide band-gap semiconductors.

  6. Stable ferromagnetic state in Si-doped AlN with cation vacancies: Ab-initio study

    NASA Astrophysics Data System (ADS)

    Chintalapati, Sandhya; Feng, Yuan Ping

    2016-09-01

    The magnetic property of Si-doped AlN with Al-vacancy is studied using first principles calculations based on spin polarized density functional theory. The Si dopant alone does not introduce the magnetic moment in AlN. However, the doping of Si in AlN reduces the formation energy caused by Al-vacancy, and stabilizes the spin polarized state. The magnetic moments are mainly localized on N atoms surrounding the defect. The strong ferromagnetic state is obtained in AlN due to the combined role of Al-vacancy and Si-dopant.

  7. Structural, electronic and magnetic effects of Al-doped niobium clusters: a density functional theory study.

    PubMed

    Wang, Huai-Qian; Li, Hui-Fang; Wang, Jia-Xian; Kuang, Xiao-Yu

    2012-07-01

    The application of the ab initio stochastic search procedure with Saunders "kick" method has been carried out for the elucidation of global minimum structures of a series of Al-doped clusters, Nb(n)Al (1 ≤ n ≤ 10). We have studied the structural characters, growth behaviors, electronic and magnetic properties of Nb(n)Al by the density functional theory calculations. Unlike the previous literature reported on Al-doped systems where ground state structures undergo a structural transition from the Al-capped frame to Al-encapsulated structure, we found that Al atom always occupies the surface of Nb(n)Al clusters and structural transition does not take place until n = 10. Note that the fragmentation proceeds preferably by the ejection of an aluminum atom other than niobium atom. According to the natural population analysis, charges always transfer from aluminum to niobium atoms. Furthermore, the magnetic moments of the Nb(n)Al clusters are mainly located on the 4d orbital of niobium atoms, and aluminum atom possesses very small magnetic moments.

  8. Structural and electronic properties of a single Si chain doped zigzag AlN nanoribbon

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Min; Zhang, Jing; Xu, Ke-Wei

    2015-04-01

    The first-principles projector-augmented wave (PAW) potentials within the density function theory (DFT) framework have been used to determine the geometry structures and electronic properties of the zigzag edge AlN nanoribbons (ZAlNNRs) doped with a single Si chain under generalized gradient approximation (GGA). The average Al-Si, Si-Si, Al-N, Si-N, Al-H and N-H bond lengths are 2.39, 2.16, 1.83, 1.74, 1.59 and 1.03 Å, respectively. Pure 7-ZAlNNR is an indirect semiconductor with a large band gap of 2.235 eV, while a semiconductor to metal transformation is taken place after a single Si chain substituting for a single Al-N chain at various positions. In pure 7-ZAlNNR, the HVB and LCB are mainly attributed to the edge N and Al atoms, respectively, while in a single Si chain substituting doped 7-ZAlNNR, the HVB and LCB are mainly attributed to the Si atoms. The Al-N, Al-H and Al-Si bonds are ionic bond, the Si-Si and Si-H bonds are covalent bond, the N-H and N-Si bonds are covalent bond modified ionic bond.

  9. Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Arab, Shermin; Yao, Maoqing; Zhou, Chongwu; Daniel Dapkus, P.; Cronin, Stephen B.

    2016-05-01

    In this letter, the photoluminescence spectra of n-type doped GaAs nanowires, grown by the metal organic chemical vapor deposition method, are measured at 4 K and 77 K. Our measurements indicate that an increase in carrier concentration leads to an increase in the complexity of the doping mechanism, which we attribute to the formation of different recombination centers. At high carrier concentrations, we observe a blueshift of the effective band gap energies by up to 25 meV due to the Burstein-Moss shift. Based on the full width at half maximum (FWHM) of the photoluminescence peaks, we estimate the carrier concentrations for these nanowires, which varies from 6 × 1017 cm-3 (lightly doped), to 1.5 × 1018 cm-3 (moderately doped), to 3.5 × 1018 cm-3 (heavily doped) as the partial pressure of the disilane is varied from 0.01 sccm to 1 sccm during the growth process. We find that the growth temperature variation does not affect the radiative recombination mechanism; however, it does lead to a slight enhancement in the optical emission intensities. For GaAs nanowire arrays measured at room temperature, we observe the same general dependence of band gap, FWHM, and carrier concentration on doping.

  10. Atomic layer deposition of highly-doped Er:Al2O3 and Tm:Al2O3 for silicon-based waveguide amplifiers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Roenn, John; Karvonen, Lasse; Pyymäki-Perros, Alexander; Peyghambarian, Nasser; Lipsanen, Harri; Säynätjoki, Antti; Sun, Zhipei

    2016-05-01

    Recently, rare-earth doped waveguide amplifiers (REDWAs) have drawn significant attention as a promising solution to on-chip amplification of light in silicon photonics and integrated optics by virtue of their high excited state lifetime (up to 10 ms) and broad emission spectrum (up to 200 nm) at infrared wavelengths. In the family of rare-earths, at least erbium, holmium, thulium, neodymium and ytterbium have been demonstrated to be good candidates for amplifier operation at moderate concentrations (< 0.1 %). However, efficient amplifier operation in REDWAs is a very challenging task because high concentration of ions (<0.1%) is required in order to produce reasonable amplification over short device length. Inevitably, high concentration of ions leads to energy-transfer between neighboring ions, which results as decreased gain and increased noise in the amplifier system. It has been shown that these energy-transfer mechanisms in highly-doped gain media are inversely proportional to the sixth power of the distance between the ions. Therefore, novel fabrication techniques with the ability to control the distribution of the rare-earth ions within the gain medium are urgently needed in order to fabricate REDWAs with high efficiency and low noise. Here, we show that atomic layer deposition (ALD) is an excellent technique to fabricate highly-doped (<1%) RE:Al2O3 gain materials by using its nanoscale engineering ability to delicately control the incorporation of RE ions during the deposition. In our experiment, we fabricated Er:Al2O3 and Tm:Al2O3 thin films with ALD by varying the concentration of RE ions from 1% to 7%. By measuring the photoluminescence response of the fabricated samples, we demonstrate that it is possible to incorporate up to 5% of either Er- or Tm-ions in Al2O3 host before severe quenching occurs. We believe that this technique can be extended to other RE ions as well. Therefore, our results show the exceptionality of ALD as a deposition technique for

  11. Controllable synthesis of flake-like Al-doped ZnO nanostructures and its application in inverted organic solar cells

    PubMed Central

    2011-01-01

    Flake-like Al-doped ZnO (AZO) nanostructures including dense AZO nanorods were obtained via a low-temperature (100°C) hydrothermal process. By doping and varying Al concentrations, the electrical conductivity (σ) and morphology of the AZO nanostructures can be readily controlled. The effect of σ and morphology of the AZO nanostructures on the performance of the inverted organic solar cells (IOSCs) was studied. It presents that the optimized power conversion efficiency of the AZO-based IOSCs is improved by approximately 58.7% compared with that of un-doped ZnO-based IOSCs. This is attributed to that the flake-like AZO nanostructures of high σ and tunable morphology not only provide a high-conduction pathway to facilitate electron transport but also lead to a large interfacial area for exciton dissociation and charge collection by electrodes. PMID:21970654

  12. Effect of the Chalcogenide Element Doping on the Electronic Properties of Co2FeAl Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Ting; Cheng, Xiao-min; Guan, Xia-wei; Miao, Xiang-shui

    2016-02-01

    The electronic properties of the typical Heusler compound Co2FeAl with chalcogenide element doping were investigated by means of first principles calculations within the local spin-density approximation (LSDA) + Hubbard U parameter (U). The calculations indicate that, only when 25% of the number of Al atoms is substituted by the chalcogenide element, the chalcogenide element-doped Co2FeAl shows the half metallic properties. The Fermi energy ( E F) of the 25% chalcogenide element-doped Co2FeAl is located in the middle of the gap of the minority states instead of around the top of the valence band as in Co2FeAl. Moreover, the band gap of 25% Te-doped Co2FeAl (0.80 eV) is wider than that of Co2FeAl (0.74 eV). These improved electronic structures will make 25% chalcogenide element-doped Co2FeAl more stable against temperature variation. Therefore, the expected excellent stability of the 25% chalcogenide element-doped Co2FeAl make it more suitable for spintronic applications than Co2FeAl.

  13. Atomic Structure of Luminescent Centers in High-Efficiency Ce-doped w-AlN Single Crystal

    PubMed Central

    Ishikawa, Ryo; Lupini, Andrew R.; Oba, Fumiyasu; Findlay, Scott D.; Shibata, Naoya; Taniguchi, Takashi; Watanabe, Kenji; Hayashi, Hiroyuki; Sakai, Toshifumi; Tanaka, Isao; Ikuhara, Yuichi; Pennycook, Stephen J.

    2014-01-01

    Rare-earth doped wurtzite-type aluminum nitride (w-AlN) has great potential for high-efficiency electroluminescent applications over a wide wavelength range. However, because of their large atomic size, it has been difficult to stably dope individual rare-earth atoms into the w-AlN host lattice. Here we use a reactive flux method under high pressure and high temperature to obtain cerium (Ce) doped w-AlN single crystals with pink-colored luminescence. In order to elucidate the atomic structure of the luminescent centers, we directly observe individual Ce dopants in w-AlN using annular dark-field scanning transmission electron microscopy. We find that Ce is incorporated as single, isolated atoms inside the w-AlN lattice occupying Al substitutional sites. This new synthesis method represents a new alternative strategy for doping size-mismatched functional atoms into wide band-gap materials. PMID:24445335

  14. Atomic structure of luminescent centers in high-efficiency Ce-doped w-AlN single crystal.

    PubMed

    Ishikawa, Ryo; Lupini, Andrew R; Oba, Fumiyasu; Findlay, Scott D; Shibata, Naoya; Taniguchi, Takashi; Watanabe, Kenji; Hayashi, Hiroyuki; Sakai, Toshifumi; Tanaka, Isao; Ikuhara, Yuichi; Pennycook, Stephen J

    2014-01-01

    Rare-earth doped wurtzite-type aluminum nitride (w-AlN) has great potential for high-efficiency electroluminescent applications over a wide wavelength range. However, because of their large atomic size, it has been difficult to stably dope individual rare-earth atoms into the w-AlN host lattice. Here we use a reactive flux method under high pressure and high temperature to obtain cerium (Ce) doped w-AlN single crystals with pink-colored luminescence. In order to elucidate the atomic structure of the luminescent centers, we directly observe individual Ce dopants in w-AlN using annular dark-field scanning transmission electron microscopy. We find that Ce is incorporated as single, isolated atoms inside the w-AlN lattice occupying Al substitutional sites. This new synthesis method represents a new alternative strategy for doping size-mismatched functional atoms into wide band-gap materials. PMID:24445335

  15. Can CO2 molecule adsorb effectively on Al-doped boron nitride single walled nanotube?

    NASA Astrophysics Data System (ADS)

    Shao, Peng; Kuang, Xiao-Yu; Ding, Li-Ping; Yang, Jing; Zhong, Ming-Min

    2013-11-01

    The adsorption of carbon dioxides (CO2) is very important in environmental and industrial applications. The boron nitride nanotube (BNNT) with large surface and polarity may be a good candidate as CO2 capture. Unfortunately, the pristine BNNT is almost inert to the highly stable CO2. To renew technical applications of BNNT for CO2 adsorption, we explore the possibility of CO2 adsorption on various (n, 0) (n = 6, 8, 10, 12 and 14) Al-doped BNNT by density functional theory (DFT) calculations. The results show that the Al-doped BNNT could be a potential CO2 adsorption material, and the CO2 adsorption energies are independent of BNNT diameters. Furthermore, the interactions between CO2 and exemplified (6, 0) Al-doped BNNT are investigated by density of states (DOS) and electron density. We found the interaction between CO2 and AlB-BNNT is stronger than that of CO2 and AlN-BNNT. The adsorption of CO2 can induce new density of state, as well as a local charge fluctuation due to more electron density redistribution on the atoms near CO2 molecule.

  16. Significant Enhancement in the Conductivity of Al-Doped Zinc Oxide thin Films for TCO Application

    NASA Astrophysics Data System (ADS)

    Mohite, R. M.; Ansari, J. N.; Roy, A. S.; Kothawale, R. R.

    2016-03-01

    Nanostructured Al-doped Zinc oxide (ZnO) thin films were deposited on glass substrate by chemical bath deposition (CBD) using aqueous zinc nitrate solution and subjected for different characterizations. Effect of Al3+ substitution on the properties of ZnO annealed at 400∘C was studied by XRD and UV-Vis for structural studies, SEM and TEM for surface morphology and DC four probe resistivity measurements for electrical properties. Al3+ substitution does not influence the morphology and well-known peaks related to wurtzite structure of ZnO. Electron microscopy (SEM and TEM) confirms rod shaped Al-doped ZnO nanocrystals with average width of 50nm. The optical band gap determined by UV-Visible spectroscopy was found to be in the range 3.37eV to 3.44eV. An EPR spectrum of AZO reveals peak at g=1.96 is due to shallow donors Zn interstitial. The DC electrical resistivity measurements of Al-doped ZnO show a minimum resistivity of 3.77×10-2Ω-cm. Therefore, these samples have potential use in n-type window layer in optoelectronic devices, organic solar cells, photonic crystals, photo-detectors, light emitting diodes (LEDs), gas sensors and chemical sensors.

  17. Cage Structure Formation of Singly Doped Aluminum Cluster Cations Al n TM + ( TM = Ti, V, Cr)

    NASA Astrophysics Data System (ADS)

    Lang, Sandra M.; Claes, Pieterjan; Neukermans, Sven; Janssens, Ewald

    2011-09-01

    Structural information on free transition metal doped aluminum clusters, Al n TM + ( TM = Ti, V, Cr), was obtained by studying their ability for argon physisorption. Systematic size ( n = 5 - 35) and temperature ( T = 145 - 300 K) dependent investigations reveal that bare Al n + clusters are inert toward argon, while Al n TM + clusters attach one argon atom up to a critical cluster size. This size is interpreted as the geometrical transition from surface-located dopant atoms to endohedrally doped aluminum clusters with the transition metal atom residing in an aluminum cage. The critical size, n crit , is found to be surprisingly large, namely n crit = 16 and n crit = 19 - 21 for TM = V, Cr, and TM = Ti, respectively. Experimental cluster-argon bond dissociation energies have been derived as function of cluster size from equilibrium mass spectra and are in the 0.1-0.3 eV range.

  18. Auto-combustion synthesis and characterization of Mg doped CuAlO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Naqvi, A. H.

    2015-06-01

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO2nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO2 sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO2 has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  19. Auto-combustion synthesis and characterization of Mg doped CuAlO{sub 2} nanoparticles

    SciTech Connect

    Agrawal, Shraddha Parveen, Azra; Naqvi, A. H.

    2015-06-24

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO{sub 2}nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO{sub 2} sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO{sub 2} has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  20. Theoretical Study of Electronic Structure and Thermoelectric Properties of Doped CuAlO2

    NASA Astrophysics Data System (ADS)

    Poopanya, P.; Yangthaisong, A.; Rattanapun, C.; Wichainchai, A.

    2011-05-01

    The doping level dependence of thermoelectric properties of delafossite CuAlO2 has been investigated in the constant scattering time ( τ) approximation, starting from the first principles of electronic structure. In particular, the lattice parameters and the energy band structure were calculated using the total energy plane-wave pseudopotential method. It was found that the lattice parameters of CuAlO2 are a = 2.802 Å and c = 16.704 Å, and the internal parameter is u = 0.1097. CuAlO2 has an indirect band gap of 2.17 eV and a direct gap of 3.31 eV. The calculated energy band structures were then used to calculate the electrical transport coefficients of CuAlO2. By considering the effects of doping level and temperature, it was found that the Seebeck coefficient S( T) increases with increasing acceptor doping ( A d) level. The values of S( T) in our experiments correspond to an A d level at 0.262 eV, which is identified as the Fermi level of CuAlO2. Based on our experimental Seebeck coefficient and the electrical conductivity, the constant relaxation time is estimated to be 1 × 10-16 s. The power factor is large for a low A d level and increases with temperature. It is suggested that delafossite CuAlO2 can be considered as a promising thermoelectric oxide material at high doping and high temperature.

  1. Influence of Electron Doping on Magnetic Order in CeRu2Al10

    SciTech Connect

    Kobayashi, Riki; Kaneko, Koji; Saito, Kotaro; Mignot, Jean-Michel; André, Gilles; Robert, Julien; Wakimoto, Shuichi; Matsuda, Masaaki; Chi, Songxue; Haga, Yoshinori; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Nishioka, Takashi; Matsumura, Masahiro; Tanida, Hiroshi; Sera, Masafumi

    2014-09-17

    The effect of electron doping by the substitution of Rh for Ru on unconventional magnetic order in CeRu2Al10 was investigated via neutron powder diffraction. In Ce(Ru1-xRhx)2Al10 with x = 0.05, 0.12, and 0.2, reorientation of the ordered moment from the c- to the a-axis takes place in all samples, while the ordering vector q=(0 1 0) remains unchanged within this concentration range. The moment reorientation is accompanied by an enhancement in its size by a factor of ~2.4, from μ=0.43 μB at x=0 to μ =1.06, 1.04, and 1.02 μB for x=0.05, 0.12 and 0.2, respectively. The continuous decrease in N´eel temperature T0(TN), despite an abrupt increase in μ , underlines the strong anisotropy in the exchange interaction in CeRu2Al10, and the fact that this anisotropy is easily suppressed by electron doping.

  2. Highly (0001)-oriented Al-doped ZnO polycrystalline films on amorphous glass substrates

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Inaba, Katsuhiko; Osada, Minoru; Kobayashi, Shintaro; Makino, Hisao; Yamamoto, Tetsuya

    2016-09-01

    Very thin aluminum-doped zinc oxide (AZO) films with a well-defined (0001) orientation and a surface roughness of 0.357 nm were deposited on amorphous glass substrates at a temperature of 200 °C by radio frequency magnetron sputtering, which are promising, particularly in terms of orientation evolution, surface roughness, and carrier transport, as buffer layers for the subsequent deposition of highly (0001)-oriented AZO polycrystalline films of 490 nm thickness by direct current (DC) magnetron sputtering. Sintered AZO targets with an Al2O3 content of 2.0 wt. % were used. DC magnetron sputtered AZO films on bare glass substrates showed a mixed (0001) and the others crystallographic orientation, and exhibited a high contribution of grain boundary scattering to carrier transport, resulting in reduced Hall mobility. Optimizing the thickness of the AZO buffer layers to 10 nm led to highly (0001)-oriented bulk AZO films with a marked reduction in the above contribution, resulting in AZO films with improved Hall mobility together with enhanced carrier concentration. The surface morphology and point defect density were also improved by applying the buffer layers, as shown by atomic force microscopy and Raman spectroscopy, respectively.

  3. Reduced Cu concentration in CuAl-LPE-grown thin Si layers

    SciTech Connect

    Wang, T.H.; Ciszek, T.F.; Asher, S.; Reedy, R.

    1995-08-01

    Cu-Al has been found to be a good solvent system to grow macroscopically smooth Si layers with thicknesses in tens of microns on cast MG-Si substrates by liquid phase epitaxy (LPE) at temperatures near 900{degrees}C. This solvent system utilizes Al to ensure good wetting between the solution and substrate by removing silicon native oxides, and employs Cu to control Al doping into the layers. Isotropic growth is achieved because of a high concentration of solute silicon in the solution and the resulting microscopically rough interface. The incorporation of Cu in the Si layers, however, was a concern since Cu is a major solution component and is generally regarded as a bad impurity for silicon devices due to its fast diffusivity and deep energy levels in the band gap. A study by Davis shows that Cu will nonetheless not degrade solar cell performance until above a level of 10{sup 17} cm{sup -3}. This threshold is expected to be even higher for thin layer silicon solar cells owing to the less stringent requirement on minority carrier diffusion length. But to ensure long term stability of solar cells, lower Cu concentrations in the thin layers are still preferred.

  4. Reactivity enhancement of oxide skins in reversible Ti-doped NaAlH{sub 4}

    SciTech Connect

    Delmelle, Renaud; Borgschulte, Andreas; Gehrig, Jeffrey C.; Züttel, Andreas

    2014-12-15

    The reversibility of hydrogen sorption in complex hydrides has only been shown unambiguously for NaAlH{sub 4} doped with transition metal compounds. Despite a multitude of investigations of the effect of the added catalyst on the hydrogen sorption kinetics of NaAlH{sub 4}, the mechanism of catalysis remains elusive so far. Following the decomposition of TiCl{sub 3}-doped NaAlH{sub 4} by in-situ X-ray photoelectron spectroscopy (XPS), we link the chemical state of the dopant with those of the hydride and decomposition products. Titanium and aluminium change their oxidation states during cycling. The change of the formal oxidation state of Al from III to zero is partly due to the chemical reaction from NaAlH{sub 4} to Al. Furthermore, aluminium oxide is formed (Al{sub 2}O{sub 3}), which coexists with titanium oxide (Ti{sub 2}O{sub 3}). The interplay of metallic and oxidized Ti with the oxide skin might explain the effectiveness of Ti and similar dopants (Ce, Zr…)

  5. Microwave-assisted fabrication of strontium doped apatite coating on Ti6Al4V.

    PubMed

    Zhou, Huan; Kong, Shiqin; Pan, Yan; Zhang, Zhiguo; Deng, Linhong

    2015-11-01

    Strontium has been shown to be a beneficial dopant to calcium phosphates when incorporated at nontoxic level. In the present work we studied the possibility of solution derived doping strontium into calcium phosphate coatings on titanium alloy Ti6Al4V based implants by a recently reported microwave-assisted method. By using this method strontium doped calcium phosphate nuclei were deposited to pretreated titanium alloy surface dot by dot to compose a crack-free coating layer. The presence of strontium in solution led to reduced roughness of the coating and finer nucleus size formed. In vitro study found that proliferation and differentiation of osteoblast cells seeded on the coating were influenced by strontium content in coatings, showing an increasing followed by a decreasing behavior with increasing substitution of calcium by strontium. It is suggested that this new microwave-assisted strontium doped calcium phosphate coatings may have great potential in implant modification.

  6. Low doping concentration studies of doped PVA-Coumarin nanocomposite films

    NASA Astrophysics Data System (ADS)

    Tripathi, J.; Tripathi, S.; Bisen, R.; Sharma, A.; Choudhary, A.; Shripathi, T.

    2016-05-01

    The observations of combination of Poly (vinyl) alcohol and Coumarin properties in nanocmposite films are reported. The X-ray diffraction measurements reveal nanocrystalline nature of PVA film, which remains nanocrystalline after doping Coumarin but along with PVA peaks, additional peak due to dopant crystallinity is seen. The absorption edge shows a double edge feature, where distinct bandgaps for PVA host and dopant Coumarin are obtained. However at a higher doping wt % of 1 and 2, the absorption is mainly dominated by Coumarin and single absorption edge is observed giving a bandgap equal to that of bulk Coumarin (3.3 eV). The composite formation affects the bonding of host drastically and is seen through the bond modification in FTIR spectra. The results suggest that doping below 2 wt% is advantageous as combination of PVA and Coumarin properties are obtained but at 2 wt %, the properties are dominated by mainly Coumarin and the signature of PVA from optical properties is completely lost.

  7. Microstructural analysis and thermoelectric properties of Sn-Al co-doped ZnO ceramics

    NASA Astrophysics Data System (ADS)

    Hoemke, Joshua; Khan, Atta Ullah; Yoshida, Hidehiro; Mori, Takao; Tochigi, Eita; Shibata, Naoya; Ikuhara, Yuichi; Sakka, Yoshio

    2016-08-01

    Sn-Al co-doped polycrystalline ZnO ceramics were prepared by sintering in air. Phase and microstructure analysis was performed by X-ray diffraction and SEM-EDS and thermoelectric properties were measured. XRD analysis showed a ZnO primary phase as well as secondary phase peaks due to the formation of a Zn2SnO4 spinel phase or SnO2(ZnO:Sn-Al)m intergrowth phase. SEM analysis revealed a dense microstructure with a small number of nanometric pores, consistent with the measured density of 5.48 g/cm3. An activated electrical conductivity characteristic of a semiconducting material was observed as well as a negative Seebeck coefficient with both values increasing in absolute value from RT to 730 °C. The power factor had a maximum value of 3.73×10-4 W m-1 K-2 at 730 °C. Thermal conductivity measurements showed a significant reduction over the measured temperature range compared to undoped ZnO. This could be attributed to grain size reduction, the formation of a nanoscale secondary phase or a reduction in crystallinity caused by Sn-Al co-doping. A maximum ZT of 0.06 was obtained at 750 °C for the Sn-Al co-doped ZnO ceramics.

  8. Doping and dopant behavior in (Al,Ga)As grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kuech, T. F.; Tischler, M. A.; Potemski, R.; Cardone, F.; Scilla, G.

    1989-11-01

    The controlled doping of n- and p-type Al xGa 1-xAs has been studied for the dopant elements, C, Zn, Si, and Sn. Both the incorporation characteristics and the electrical properties of these dopants are reviewed and discussed fo Al xGa 1-xAs grown by th metal-organic vapor phase epitaxy (MOVPE) technique. The incorporation of Si from SiH 4 and Si 2H 6 is dominated by heterogeneous and homogenous reactions respectively and represents the best understood of the doping systems. Zinc and carbon both possess complex dependencies on the MOVPE growth system parameters. The electrical behavior of n-Al xGa 1- xAs is dominated by the presence of the DX center. The relationship between this center and the electrical behavior of the material must be understood in order to properly characterize the doping behavior in Al xGa 1-xAs layers and structures.

  9. Enhancing Graphene Capacitance by Nitrogen: Effects of Doping Configuration and Concentration

    DOE PAGES

    Zhan, Cheng; Cummings, Peter; Jiang, De-en

    2016-01-08

    Recent experiments have shown that nitrogen doping enhances capacitance in carbon electrode supercapacitors. However, a detailed study of the effect of N-doping on capacitance is still lacking. In this paper, we study the doping concentration and the configuration effect on the electric double-layer (EDL) capacitance, quantum capacitance, and total capacitance. It is found that pyridinic and graphitic nitrogens can increase the total capacitance by increasing quantum capacitance, but pyrrolic configuration limits the total capacitance due to its much lower quantum capacitance than the other two configurations. We also find that, unlike the graphitic and pyridinic nitrogens, the pyrrolic configuration's quantummore » capacitance does not depend on the nitrogen concentration, which may explain why some capacitance versus voltage measurements of N-doped graphene exhibit a V-shaped curve similar to that of undoped graphene. Our investigation provides a deeper understanding of the capacitance enhancement of the N-doping effect in carbon electrodes and suggests a potentially effective way to optimize the capacitance by controlling the type of N-doping.« less

  10. A first principles study of pristine and Al-doped boron nitride nanotubes interacting with platinum-based anticancer drugs

    NASA Astrophysics Data System (ADS)

    Shakerzadeh, Ehsan; Noorizadeh, Siamak

    2014-03-01

    Interaction of cis-platin and neda-platin, two conventional platinum-based anticancer drugs, with pristine [8,8] and Al-doped [8,0] boron nitride nanotubes (BNNTs) are investigated using the density functional theory (DFT) method. The obtained results indicate that cis-platin and neda-platin weakly interact with pristine zig zag or armchair BNNTs with a little dependency on the adsorbing positions; while both cis-platin and neda-platin are preferentially adsorbed onto the Al atom of the Al-doped BNNT with considerable adsorption energies. Therefore the Al-doped-BNNT might be an efficient carrier for delivery of these drugs in nanomedicine domain. The electronic structures of the stable configurations are also investigated through both DOS and PDOS spectra. The obtained results introduce the Al-doped-BNNT as an efficient carrier for delivery of cis-platin and neda-platin in nanomedicine domain.

  11. Photoluminescence related to the 2-dimensional electron gas in modulation doped GaN/AlGaN structures

    SciTech Connect

    Bergman, J.P.; Lundstroem, T.; Monemar, B.; Amano, H.; Akasaki, I.

    1996-11-01

    The authors report low temperature photoluminescence (PL) spectra related to a two-dimensional electron gas confined at a GaN/AlGaN heterointerface. The recombination between electrons confined in the bottom of the interface potential and photoexcited holes causes a broad PL emission about 50 meV below the bulk GaN exciton emission. A second emission, attributed to the recombination of electrons in the first excited level at the interface, is also observed close to the excitonic band gap in GaN. The data agrees with a self consistent calculation of the energy levels and the electron concentration at the interface. Similar PL data from a modulation doped AlGaN/GaN quantum well exhibit three PL emissions related to the 2D electron gas.

  12. Fabrication of n-type carbon nanotube field-effect transistors by Al doping

    NASA Astrophysics Data System (ADS)

    Oh, Hwangyou; Kim, Ju-Jin; Song, Woon; Moon, Sunkyung; Kim, Nam; Kim, Jinhee; Park, Noejung

    2006-03-01

    We report the effect of an Al layer, covering the central part of the nanotube channel, on the electrical transport properties of carbon nanotube field-effect transistors (CNFETs). The CNFETs, consisting of single-walled carbon nanotube or double-walled carbon nanotube between two Pd electrodes on top of SiO2 layer, which showed p-type or ambipolar transport behaviors, exhibit clear n-type characteristics after the Al deposition. We ascribe such conversions into n-type behaviors to the electron doping in the Al-covered nanotube region, which results in the bending of the nanotube bands nearby the edges of the Al layer. This technique, Al deposition under a high vacuum, may give rise to a practical fabrication method for the n-type CNFET, which may enable us to develop complementary logic nanotube electronic devices.

  13. Stimulated emission at 288 nm from silicon-doped AlGaN-based multiple-quantum-well laser.

    PubMed

    Tian, Yingdong; Yan, Jianchang; Zhang, Yun; Chen, Xiang; Guo, Yanan; Cong, Peipei; Sun, Lili; Wang, Qinjin; Guo, Enqing; Wei, Xuecheng; Wang, Junxi; Li, Jinmin

    2015-05-01

    We demonstrated stimulated emission at 288 nm from a silicon-doped AlGaN-based multiple-quantum-well (MQW) ultraviolet (UV) laser grown on sapphire. The optical pumping threshold energy density of the UV laser was 64 mJ/cm2, while lasing behavior was not observed in undoped AlGaN MQWs. This means silicon doping could effectively reduce the lasing threshold of UV lasers, and the mechanism was studied showing that the silicon-doped AlGaN MQWs had a 41% higher internal quantum efficiency (IQE) compared with the undoped one. The transmission electron microscopy characterization showed that silicon doping explicitly improved the crystallographic quality of MQWs. Calculation of the polarization charge in the MQWs further revealed that the advantage of better structure quality outweighed the reduction of internal polarization field by Si doping for the IQE enhancement and successful stimulated emission.

  14. EXAFS measurements on Mn doped CaF2 phosphor with different Mn concentrations

    NASA Astrophysics Data System (ADS)

    Patra, N.; Bakshi, A. K.; Bhattacharyya, D.

    2016-05-01

    Extended X-ray Absorption Fine Structure (EXAFS) measurements have been carried out on Mn doped CaF2 phosphors with synchrotron radiation at the Mn K edge. Measurements have been carried out on samples prepared with different concentrations of Mn dopants. The data have been analyzed to find out the Mn-F bond lengths and % of Mn doped CaF2 phase in the samples. The change in thermoluminescence glow peak temperature in CaF2:Mn phosphor with variation in Mn concentration has been correlated to the parameters obtained from EXAFS measurements.

  15. Investigation of fluorine adsorption on nitrogen doped MgAl2O4 surface by first-principles

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-07-01

    The nature of fluorine adsorption on pure and N doped MgAl2O4 surface has been investigated by first-principles calculations based on the density functional theory. Calculated results indicate that MgAl2O4 surface is fluorine-loving, not hydrophilic. Nitrogen doped MgAl2O4 (100) surface shows the highest fluorine adsorption performance and fluorine atom preferentially adsorbs on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: Nitrogen doped MgAl2O4 (100) > Al2O3 (0001) > MgAl2O4 (100) > MgO (100). In-depth PDOS analysis suggested that 2p orbitals of F atom strongly hybridized with 3s- and 3p-orbitals of Al atom contribute to its high adsorption intensity. According to the analysis of Hirshfeld charge, the excellent fluorine adsorption performance of nitrogen doped MgAl2O4 attributes to the electron compensation effect of nitrogen atom and strong electrostatic interactions. All these evidences demonstrate a fact nitrogen doped MgAl2O4 is a promising candidate for fluorine removal.

  16. Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber.

    PubMed

    Deschamps, Thierry; Vezin, Hervé; Gonnet, Cédric; Ollier, Nadège

    2013-04-01

    Using a combination of experimental techniques such as optical absorption, Raman scattering, continuous wave and pulse Electron Spin Resonance (ESR), we characterize a set of γ-irradiated Yb(3+) doped silica glass preforms with different contents of phosphorous and aluminum. We demonstrate that when P is introduced in excess compared to Al, nearly no radiodarkening is induced by γ-rays. On the other hand, when Al>P, a large absorption band is induced by radiation. Thermal annealing experiments reveal the correlation between the decrease of the optical absorption band and the decrease of the Al-Oxygen Hole Center (AlOHC) ESR signal, demonstrating the main role of AlOHC defects in the fiber darkening. HYSCORE (HYperfine Sublevel CORElation) pulse-ESR experiments show a high Al-P nuclear spin coupling when P>Al and no coupling when Al>P. This result suggests that both AlOHC and POHC creation is inhibited by Al-O-P linkages. Confronting our data with previous works, we show that the well-known photodarkening process, meaning losses induced by the IR pump, can also be explained in this framework.

  17. Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber.

    PubMed

    Deschamps, Thierry; Vezin, Hervé; Gonnet, Cédric; Ollier, Nadège

    2013-04-01

    Using a combination of experimental techniques such as optical absorption, Raman scattering, continuous wave and pulse Electron Spin Resonance (ESR), we characterize a set of γ-irradiated Yb(3+) doped silica glass preforms with different contents of phosphorous and aluminum. We demonstrate that when P is introduced in excess compared to Al, nearly no radiodarkening is induced by γ-rays. On the other hand, when Al>P, a large absorption band is induced by radiation. Thermal annealing experiments reveal the correlation between the decrease of the optical absorption band and the decrease of the Al-Oxygen Hole Center (AlOHC) ESR signal, demonstrating the main role of AlOHC defects in the fiber darkening. HYSCORE (HYperfine Sublevel CORElation) pulse-ESR experiments show a high Al-P nuclear spin coupling when P>Al and no coupling when Al>P. This result suggests that both AlOHC and POHC creation is inhibited by Al-O-P linkages. Confronting our data with previous works, we show that the well-known photodarkening process, meaning losses induced by the IR pump, can also be explained in this framework. PMID:23571927

  18. Concentric nano rings observed on Al-Cu-Fe microspheres

    NASA Astrophysics Data System (ADS)

    Li, Chunfei; Wang, Limin; Hampikian, Helen; Bair, Matthew; Baker, Andrew; Hua, Mingjian; Wang, Qiongshu; Li, Dingqiang

    2016-05-01

    It is well known that when particle size is reduced, surface effect becomes important. As a result, micro/nanoparticles tend to have well defined geometric shapes to reduce total surface energy, as opposed to the irregular shapes observed in most bulk materials. The surface of such micro/nanostructures are smooth. Any deviation from a smooth surface implies an increased surface energy which is not energetically favorable. Here, we report an observation of spherical particles in an alloy of Al65Cu20Fe15 nominal composition prepared by arc melting. Such spherical particles stand out from those reported so far due to the decoration of concentric nanorings on the surface. Three models for the formation of these concentric ring patterns are suggested. The most prominent ones assume that the rings are frozen features of liquid motion which could open the door to investigate the kinetics of liquid motion on the micro/nanometer scale.

  19. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    NASA Astrophysics Data System (ADS)

    Zawadzki, Wlodek; Raymond, Andre; Kubisa, Maciej

    2016-05-01

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov-de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov-de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of negatively

  20. Investigation of Ti-doped NaAlH4 by solid-state NMR

    SciTech Connect

    Maxwell, R; Majzoub, E; Herberg, J

    2003-11-24

    In recent years, the development of Ti-doped NaAlH{sub 4} as a hydrogen storage material has gained attention because of its large weight percentage of hydrogen ({approx}5%) compared to traditional interstitial hydrides. The addition of transition-metal dopants, in the form of Ti-halides, such as TiCl{sub 3}, dramatically improves the kinetics of the absorption and desorption of hydrogen from NaAlH{sub 4}. However, the role that Ti plays in enhancing the absorption and desorption of H{sub 2} is still unknown. In the present study, {sup 27}Al, {sup 23}Na, and {sup 1}H MAS (Magic Angle Spinning) NMR (Nuclear Magnetic Resonance) has been performed to understand the titanium speciation in Ti-doped NaAlH{sub 4}. All experiments were performed on a sample of crushed single crystals exposed to Ti during growth, a sample of solvent-mixed 4TiCl{sub 3} + 112NaAlH{sub 4}, a reacted sample of solvent-mixed TiCl{sub 3} + {sup 3}NaAlH{sub 4} with THF, and a reacted sample of ball-milled TiCl3 + 3NaAlH{sub 4}. The {sup 27}Al MAS NMR has shown differences in compound formation between solvent-mixed TiCl{sub 3} + 3NaAlH{sub 4} with THF and the mechanically ball-milled TiCl{sub 3} + 3NaAlH{sub 4}. {sup 27}Al MAS NMR of the mechanically ball-milled mixture of fully-reacted TiCl{sub 3} + 3NaAlH{sub 4} showed spectral signatures of TiAl{sub 3} while, the solvent-mixed 4TiCl{sub 3} + 112NaAlH{sub 4}, which is totally reacted, does not show the presences of TiAl{sub 3}, but shows the existence of Al{sub 2}O{sub 3}.

  1. Engineering the switching dynamics of TiOx-based RRAM with Al doping

    NASA Astrophysics Data System (ADS)

    Trapatseli, Maria; Khiat, Ali; Cortese, Simone; Serb, Alexantrou; Carta, Daniela; Prodromakis, Themistoklis

    2016-07-01

    Titanium oxide (TiOx) has attracted a lot of attention as an active material for resistive random access memory (RRAM), due to its versatility and variety of possible crystal phases. Although existing RRAM materials have demonstrated impressive characteristics, like ultra-fast switching and high cycling endurance, this technology still encounters challenges like low yields, large variability of switching characteristics, and ultimately device failure. Electroforming has been often considered responsible for introducing irreversible damage to devices, with high switching voltages contributing to device degradation. In this paper, we have employed Al doping for tuning the resistive switching characteristics of titanium oxide RRAM. The resistive switching threshold voltages of undoped and Al-doped TiOx thin films were first assessed by conductive atomic force microscopy. The thin films were then transferred in RRAM devices and tested with voltage pulse sweeping, demonstrating that the Al-doped devices could on average form at lower potentials compared to the undoped ones and could support both analog and binary switching at potentials as low as 0.9 V. This work demonstrates a potential pathway for implementing low-power RRAM systems.

  2. Effect of Fe doping concentration on photocatalytic activity of ZnO nanosheets under natural sunlight

    SciTech Connect

    Khokhra, Richa; Kumar, Rajesh

    2015-05-15

    A facile room temperature, aqueous solution-based chemical method has been adopted for large-scale synthesis of Fe doped ZnO nanosheets. The XRD and SEM results reveal the as-synthesized products well crystalline and accumulated by large amount of interweave nanosheets, respectively. Energy dispersive spectroscopy data confirmed Fe doping of the ZnO nanosheets with a varying Fe concentration. The photoluminescence spectrum reveals a continuous suppression of defect related emissions intensity by increasing the concentration of the Fe ion. A photocatalytic activity using these samples under sunlight irradiation in the mineralization of methylene blue dye was investigated. The photocatalytic activity of Fe doped ZnO nanosheets depends upon the presence of surface oxygen vacancies.

  3. Nonprotective Alumina Growth in Sulfur-Doped NiAl(Zr)

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2000-01-01

    The 1200 C oxidation behavior of NiAl was examined at various levels of sulfur and zirconium dopants to test the possibility of a critical S/Zr ratio required for adhesion. Cyclic furnace testing for 200 1 -hr cycles and interrupted testing for 500 hr were used as screening tests. Pure NiAl and NiAl(Zr) with 0. 14 at.% Zr were chosen as model base compositions; they exhibited normal, slow-growing scales (3 Mg/sq cm) with excellent adhesion for the Zr-doped alloys. NiAl with about 120 ppma S exhibited a substantial weight loss (-20 Mg/sq cm) in cyclic tests and a very large weight gain (+60 Mg/sq cm) in interrupted tests. The major surface phase remained as alpha -Al2O3. Sulfur doping the NiAl(Zr) alloy caused massive weight gains of 80 - 100 Mg/sq cm, swelling, cracking, and nearly complete conversion into NiAl2O4, and alpha- Al2O3. The initial objective of determining critical S/Zr ratios for adhesion was therefore unattainable. Initiation of the catastrophic attack was examined after a 10 hr exposure, revealing a few sites of broad, raised, and cracked ridges. In cross-section, the ridges appeared as modular intrusions, with a complex, fractal, oxide-metal interface. They were primarily alumina (with occasional entrapped islands of NiAl2O4 or pure Ni metal). They possessed a unique microstructure consisting of 0.3 microns lamellae, separated by 0.1 microns open channels. This allowed for rapid growth controlled by gaseous diffusion. The microstructure is discussed in terms of SO2 evolution and a sulfur-driven de-passivation process.

  4. Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification.

    PubMed

    Yuan, Rongfang; Zhou, Beihai; Hua, Duo; Shi, Chunhong

    2013-11-15

    O3/UV/TiO2 was used to effectively decompose humic acids (HAs) in drinking water. To obtain a large specific surface area and low band gap energy, Al and Fe co-doped TiO2 nanotubes were successfully synthesized using the hydrothermal method. The effect of the optimal co-doped TiO2 nanotubes catalyst on the HAs removal efficiency through O3/UV/co-doped TiO2 process was investigated. The highest HAs removal efficiency (79.4%) that exhibited a pseudo-first-order rate constant of 0.172 min(-1) was achieved, in the presence of 550 °C calcined 1.0% co-doped TiO2 nanotubes with an Al:Fe ratio of 0.25:0.75. The effects of calcination temperature and doping concentration on anatase phase weight fractions, average crystallite sizes, Brunauer-Emmett-Teller surface area, catalyst band gap energy, and catalyst photocatalytic activity were also discussed. The inorganic anions also affected the catalyst photocatalytic ability. In a neutral solution, SO4(2-) slightly promoted HAs removal. However, HCO3(-) was found to significantly inhibit the catalyst activity, whereas Cl(-) had negligible effect on photocatalytic ability.

  5. Influence of Al doping on optical properties of CdS/PVA nanocomposites: Theory and experiment

    SciTech Connect

    Bala, Vaneeta Tripathi, S. K. Kumar, Ranjan

    2014-04-24

    In the present work theoretical and experimental studies of aluminium doped cadmium sulphide polyvinyl alcohol (Al:CdS/PVA) nanocomposites have been carried out. Tetrahedral cluster AlCd{sub 9}S{sub 2}(SH){sub 18}]{sup 1−} has been encapsulated by small segments of polyvinyl alcohol (PVA) chains in order to simulate experimental environment of nanocomposites. Density functional theory (DFT) using local density approximation (LDA) functionals is employed to study the broadening of band gap upon ligation of nanoclusters. We have used in situ chemical route to synthesize nanocomposites. Optical band gap has been calculated from both experimental and theoretical approach.

  6. Raman study of the Verwey transition in magnetite at high-pressure and low-temperature: Effect of Al doping

    NASA Astrophysics Data System (ADS)

    Gasparov, L.; Shirshikova, Z.; Pekarek, T. M.; Blackburn, J.; Struzhkin, V.; Gavriliuk, A.; Rueckamp, R.; Berger, H.

    2012-08-01

    We employed Raman spectroscopy to investigate how the hydrostatic pressure affects the temperature of the Verwey transition in pure (Fe3O4) and Al-doped (Fe2.8Al0.2O4) magnetite. In both samples, pressure suppresses the transition. The Al-doped sample displays no transition above 8 GPa. We do not observe such discontinuity in a pure magnetite, which suggests that the discontinuity is doping driven. Our Clausius-Clapeyron formula based analysis of the pressure-transition temperature dependence is in excellent agreement with our data in pure magnetite. The Al doping leads to a smaller entropy change and larger volume expansion consistent with partial charge ordering at the transition.

  7. Concentration dependent spectroscopic properties of Sm3+ doped borophosphate glasses

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R.; Marimuthu, K.

    2015-07-01

    A new series of Sm3+ doped borophosphate glasses 50B2O3 + 20Li2CO3 + 10ZnO + 9SrCO3 + (11 - x)P2O5 + xSm2O3 (x = 0.1, 0.25, 0.5, 1 and 2 in wt%) have been prepared by following melt quenching technique. The structural and optical properties of the prepared glasses were characterized through XRD, FTIR, absorption, luminescence and decay spectral measurements. The XRD spectrum exhibit broad diffusion at lower angles which reveal the amorphous nature and the presence of various functional groups such as Psbnd Osbnd P bonds, Bsbnd O vibrations in BO3 units and Psbnd OH and Bsbnd OH bonds in the title glasses were confirmed through the FTIR spectra. The nature of the metal-ligand bonding and the electronic band structure has been investigated using the absorption spectra. The Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6) were evaluated from the JO theory using the refractive index and the experimental oscillator strength values. The emission spectra exhibit four emission bands in the visible region corresponding to the 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 transitions by monitoring an excitation wavelength at 403 nm. The emission spectra have been characterized through Commission International de I'Eclairage (CIE) 1931 chromaticity diagram to explore the dominant emission from the studied glasses. The radiative parameters such as transition probability (AR), branching ratios (βR) and stimulated emission cross-section ( σPE) were obtained for the emission transitions using JO parameters and the results were discussed and compared with the reported literature.

  8. Hydrocracking of cumene over Ni/Al 2O 3 as influenced by CeO 2 doping and γ-irradiation

    NASA Astrophysics Data System (ADS)

    El-Shobaky, G. A.; Doheim, M. M.; Ghozza, A. M.

    2004-01-01

    Cumene hydrocracking was carried out over pure and doped Ni/Al 2O 3 solids and also, on these solids after exposure to different doses of γ-rays between 0.4 and 1.6 MGy. The dopant concentration was varied between 1 and 4 mol% CeO 2. Pure and doped samples were subjected to heat treatment at 400°C and cumene hydrocracking reaction was carried out using various solids at temperatures between 250°C and 400°C by means of micropulse technique. The results showed that both CeO 2 doping and γ-irradiation of the investigated system brought about an increase in its specific surface area. γ-irradiation of pure samples increased their catalytic activities effectively. However, the doping caused a decrease in the catalytic activity. γ-irradiation of the doped samples brought about a net decrease in the catalytic activity. The catalytic reaction products over different investigated solids were ethylbenzene as a major product together with different amounts of toluene, benzene and C 1-C 3 gaseous hydrocarbons. The selectivity towards the formation of various reaction products varies with the reaction temperature, doping and γ-irradiation.

  9. Transparent Conducting ZnO Thin Films Doped with Al and Mo

    SciTech Connect

    Duenow, J.; Gessert, T.; Wood, D.; Young, D.; Coutts, T.

    2007-01-01

    Transparent conducting oxide (TCO) thin films are a vital part of photovoltaic cells, flat-panel displays, and electrochromic windows. ZnO-based TCOs, due to the relative abundance of Zn, may reduce production costs compared to those of the prevalent TCO In2O3:Sn (ITO). Undoped ZnO, ZnO:Al (0.5, 1, and 2 wt.% Al2O3), and ZnO:Mo (2 wt.%) films were deposited by RF magnetron sputtering. Controlled incorporation of H2 in the Ar sputtering ambient increased mobility of undoped ZnO by a factor of ~20 to 48 cm2V-1s-1. H2 also appears to catalyze ionization of dopants. This enabled lightly doped ZnO:Al to provide comparable conductivity to the standard 2 wt.%-doped ZnO:Al while demonstrating reduced infrared absorption. Mo was found to be an n-type dopant of ZnO, though material properties did not match those of ZnO:Al. Scattering mechanisms were investigated using temperature-dependent Hall measurements and the method of four coefficients. This abstract is subject to government rights.

  10. Thermal annealing effects on ultra-violet luminescence properties of Gd doped AlN

    SciTech Connect

    Kita, Takashi; Ishizu, Yuta; Tsuji, Kazuma; Harada, Yukihiro; Chigi, Yoshitaka; Nishimoto, Tetsuro; Tanaka, Hiroyuki; Kobayashi, Mikihiro; Ishihara, Tsuguo; Izumi, Hirokazu

    2015-04-28

    We studied energy transfer from AlN to doped Gd{sup 3+} ions as a function of the post-thermal annealing temperature. Gd-doped AlN thin films were deposited on fused-silica substrates using a reactive radio-frequency magnetron sputtering technique. The film is a c-axis oriented polycrystal. The intra-orbital electron transition in Gd{sup 3+} showed an atomically sharp luminescence at 3.9 eV (318 nm). The photoluminescence (PL) excitation spectrum exhibited a resonant peak, indicating efficient energy transfer from the host AlN crystal to Gd{sup 3+} ions. The PL intensity increases approximately ten times by thermal annealing. The PL decay lifetime becomes long with annealing, and mid-gap luminescence relating to the crystal defects in AlN was also found to be reduced by annealing. These results suggest that energy dissipation of excited carriers in AlN was suppressed by annealing, and the efficiency of energy transfer into Gd{sup 3+} was improved.

  11. The Electronic Structure and Formation Energies of Ni-doped CuAlO2 by Density Functional Theory Calculation

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Li, Fei; Sheng, Wei; Nie, Guo-Zheng; Yuan, Ding-Wang

    2014-03-01

    The electronic structure and formation energies of Ni-doped CuAlO2 are calculated by first-principles calculations. Our results show that Ni is good for p-type doping in CuAlO2. When Ni is doped into CuAlO2, it prefers to substitute Al-site. NiAl is a shallow acceptor, while NiCu is a deep acceptor and its formation energy is high. Further electronic structure calculations show that strong hybridization happens between Ni-3d and O-2p states for Ni substituting Al-site, while localized Ni-3d states are found for Ni substituting Cu-site.

  12. Electron mobility and drift velocity in selectively doped InAlAs/InGaAs/InAlAs heterostructures

    SciTech Connect

    Vasil'evskii, I. S. Galiev, G. B.; Klimov, E. A.; Pozela, K.; Pozela, J.; Juciene, V.; Suziedelis, A.; Zurauskiene, N.; Kersulis, S.; Stankevic, V.

    2011-09-15

    An increase in the electron mobility and drift velocity in high electric fields in quantum wells of selectively doped InAlAs/InGaAs/InAsAs heterostructures is obtained experimentally via controlling the composition of semiconductors forming the interface. The electron mobility at the interface in the In{sub 0.8}Ga{sub 0.2}As/In{sub 0.7}Al{sub 0.3}As metamorphic structure with a high molar fraction of In (0.7-0.8) is as high as 12.3 Multiplication-Sign 10{sup 3} cm{sup 2} V{sup -1} s{sup -1} at room temperature. An increase in the electron mobility by a factor of 1.1-1.4 is attained upon the introduction of thin (1-3 nm) InAs layers into a quantum well of selectively doped In{sub 0.53}Ga{sub 0.47}As/In{sub 0.52}Al{sub 0.48}As heterostructures. A maximal drift velocity attains 2.5 Multiplication-Sign 10{sup 7} cm/s in electric fields of 2-5 kV/cm. The threshold field F{sub th} for the intervalley {Gamma}-L electron transfer (the Gunn effect) in the InGaAs quantum well is higher than in the bulk material by a factor of 2.5-3. The effect of two- to threefold decrease in the threshold field F{sub th} in the InGaAs quantum well is established upon increasing the molar fraction of In in the InAlAs barrier, as well as upon the introduction of thin InAs inserts into the InGaAs quantum well.

  13. Effect of Doping Concentration Variations in PVT-Grown 4H-SiC Wafers

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Guo, Jianqiu; Goue, Ouloide; Raghothamachar, Balaji; Dudley, Michael; Chung, Gil; Sanchez, Edward; Quast, Jeff; Manning, Ian; Hansen, Darren

    2016-04-01

    Synchrotron white beam x-ray topography studies carried out on 4H-SiC wafers characterized by locally varying doping concentrations reveals the presence of overlapping Shockley stacking faults generated from residual surface scratches in regions of higher doping concentrations after the wafers have been subjected to heat treatment. The stacking faults are rhombus-shaped and bound by Shockley partial dislocations. The fault generation process is driven by the fact that in regions of higher doping concentrations, a faulted crystal containing double Shockley faults is more stable than a perfect 4H-SiC crystal at the high temperatures (>1000°C) that the wafers are subject to during heat treatment. We have developed a model for the formation mechanism of the rhombus-shaped stacking faults. Our studies show that during heat treatment of the wafer, such double Shockley faults can be generated in regions where dislocation sources are presents (e.g. scratches or low-angle boundaries) and when the nitrogen doping concentration exceeds a certain level.

  14. The effects of cerium doping concentration on the properties and photocatalytic activity of bimetallic Mo/Ce catalyst

    NASA Astrophysics Data System (ADS)

    Allaedini, Ghazaleh; Tasirin, Siti Masrinda; Aminayi, Payam

    2016-10-01

    In this study, the characterization and photocatalytic activity of MoO3 nanoparticles doped with various doping concentrations of cerium have been investigated. The Fourier transform infrared (FT-IR) spectra of the prepared catalysts confirmed that MoO3 particles have been successfully doped by cerium. Field emission scanning electron microscopy (FESEM) was performed to visualize the surface morphology of the obtained catalysts. The XRD patterns suggested that the crystallinity of the sample with the lowest doping concentration of 15 mol % was higher in comparison with samples of higher doping concentrations. The volume-averaged crystal sizes of the obtained catalysts were calculated to be 25, 28, and 32 nm for 15, 35, and 60 mol % samples, respectively. The photocatalytic activity along with the reaction kinetics of Ce-doped MoO3 nanoparticles have also been investigated through the dye degradation of methyl orange. The synthesized Ce-doped MoO3 particles with the lowest dopant concentration of 15 mol % exhibited the highest photocatalytic activity for methyl orange dye degradation. It was observed that photo-degradation activity decreased with an increase in the doping concentration of cerium. The predicted rate constants for samples with 15, 35, and 60 mol % doping concentrations were found to be 0.0432, 0.035, and 0.029 min-1, respectively.

  15. Effect of boron concentration on recombination at the p-Si–Al{sub 2}O{sub 3} interface

    SciTech Connect

    Black, Lachlan E. Allen, Thomas; Cuevas, Andres; McIntosh, Keith R.

    2014-03-07

    We examine the surface passivation properties of Al{sub 2}O{sub 3} deposited on boron-doped planar 〈100〉 crystalline silicon surfaces as a function of the boron concentration. Both uniformly doped and diffused surfaces are studied, with surface boron concentrations ranging from 9.2 × 10{sup 15} to 5.2 × 10{sup 19} cm{sup −3}. Atmospheric pressure chemical vapor deposition and thermal atomic layer deposition are used to deposit the Al{sub 2}O{sub 3} films. The surface recombination rate of each sample is determined from photoconductance measurements together with the measured dopant profiles via numerical simulation, using the latest physical models. These values are compared with calculations based on the interface properties determined from capacitance–voltage and conductance measurements. It is found that the fundamental surface recombination velocity of electrons, S{sub n0}, which describes the chemical passivation of the interface, is independent of the surface boron concentration N{sub s} for N{sub s} ≤ 3 × 10{sup 19} cm{sup −3}, and in excellent agreement with values calculated from the interface state density D{sub it} and capture coefficients c{sub n} and c{sub p} measured on undiffused boron-doped surfaces. We conclude that the physical properties of the Si–Al{sub 2}O{sub 3} interface are independent of the boron dopant concentration over this range.

  16. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    SciTech Connect

    Stengl, Vaclav; Houskova, Vendula; Bakardjieva, Snejana; Murafa, Nataliya; Marikova, Monika; Oplustil, Frantisek; Nemec, Tomas

    2010-11-15

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr{sup 4+} dopant can increase both the surface area and the surface hydroxylation of the resulting doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr{sup 4+} converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.

  17. Stabilization of MgAl2O4 spinel surfaces via doping

    DOE PAGES

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; Uberuaga, Blas P.

    2016-02-06

    Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalentmore » dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less

  18. Stabilization of MgAl2O4 spinel surfaces via doping

    NASA Astrophysics Data System (ADS)

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; Uberuaga, Blas P.

    2016-07-01

    Surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. Here, we report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalent dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.

  19. Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility.

    PubMed

    Boland, Jessica L; Conesa-Boj, Sonia; Parkinson, Patrick; Tütüncüoglu, Gözde; Matteini, Federico; Rüffer, Daniel; Casadei, Alberto; Amaduzzi, Francesca; Jabeen, Fauzia; Davies, Christopher L; Joyce, Hannah J; Herz, Laura M; Fontcuberta i Morral, Anna; Johnston, Michael B

    2015-02-11

    Reliable doping is required to realize many devices based on semiconductor nanowires. Group III-V nanowires show great promise as elements of high-speed optoelectronic devices, but for such applications it is important that the electron mobility is not compromised by the inclusion of dopants. Here we show that GaAs nanowires can be n-type doped with negligible loss of electron mobility. Molecular beam epitaxy was used to fabricate modulation-doped GaAs nanowires with Al0.33Ga0.67As shells that contained a layer of Si dopants. We identify the presence of the doped layer from a high-angle annular dark field scanning electron microscopy cross-section image. The doping density, carrier mobility, and charge carrier lifetimes of these n-type nanowires and nominally undoped reference samples were determined using the noncontact method of optical pump terahertz probe spectroscopy. An n-type extrinsic carrier concentration of 1.10 ± 0.06 × 10(16) cm(-3) was extracted, demonstrating the effectiveness of modulation doping in GaAs nanowires. The room-temperature electron mobility was also found to be high at 2200 ± 300 cm(2) V(-1) s(-1) and importantly minimal degradation was observed compared with undoped reference nanowires at similar electron densities. In addition, modulation doping significantly enhanced the room-temperature photoconductivity and photoluminescence lifetimes to 3.9 ± 0.3 and 2.4 ± 0.1 ns respectively, revealing that modulation doping can passivate interfacial trap states.

  20. THz Transmittance and Electrical Properties Tuning across IMT in Vanadium Dioxide Films by Al Doping.

    PubMed

    Wu, Xuefei; Wu, Zhiming; Ji, Chunhui; Zhang, Huafu; Su, Yuanjie; Huang, Zehua; Gou, Jun; Wei, Xiongbang; Wang, Jun; Jiang, Yadong

    2016-05-11

    Due to the insulator-metal transition (IMT) performance covering the full terahertz (THz) band, VO2 films were extensively investigated as an excellent candidate for modulating, switching, and memory devices. However, some remarkable absorption peaks owing to the infrared-active phonon modes suppressed the films' modulation ability and restricted the films' application in high THz frequency. Here we prepared Al-doped VO2 films on (111) directional silicon substrate, which rapidly counteracted the absorption peak and exhibited widely modulating properties. Al dopants introduced into the films brought a significant shift to high frequency in Raman spectra. The result was attributed to the effect of modifying VO2 crystal, leading the V-O bond to be strained more intensively, contracting the distance of the V-V dimers. All the Raman results indicated an oxidation effect by Al doping. However, the XPS results showed a valence reduction of the vanadium element, which was caused by the valence difference between V and Al atoms. In addition to the surface morphology characterization, the IMT properties of the shrinkage of hysteresis width and resistance variations in both electrical and THz optical aspects have been systemically analyzed. An additional difference is that the temperature of the optical transition behaves lower than the electrical transition observed, which resulted from the mechanism of transition propagation and boundary barriers.

  1. Hydrothermal Synthesis and Luminescent Properties of Eu3+ Doped Sr3Al2O6 Phosphor for White LED.

    PubMed

    Li, Xu; Pan, Heng; Tang, Aiwei; Zhang, Jinping; Guan, Li; Su, Hongxin; Dong, Guoyi; Yang, Zhiping; Wang, Huike; Teng, Feng

    2016-04-01

    Eu3+ ions doped Sr3Al2O6 phosphors were successfully synthesized via a hydrothermal method. The precursor was prepared by low temperature hydrothermal method using ammonia as both alkaline source and precipitator. Then the final product was obtained by high temperature sintering. In addition, the structures, morphologies, and luminescent properties of as-prepared products were thoroughly characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Fluorescence spectroscopy (PL). XRD shown a single phase Sr3Al2O6 prepared by a facile hydrothermal method at 250 °C for 10 h. In the PL spectra of as-prepared samples, the optimal value of Eu3+ concentration is 2 mol%. From the fluorescent spectra, the emission peaks of Sr3Al2O6: Eul+ phosphors are centered at around 591 nm, and the excitation peaks are centered at around 233 nm, 323 nm, 394 nm, and 468 nm, respectively, which were assigned to the characteristic transition of Eu3+ ions. The influence of ammonia, and the synthesis temperature on the luminescent properties of Sr3Al206: Eu3+ phosphors were studied in detail. The alkaline earth aluminates luminescent materials activated by rare earth ions have good prospects in the field of new-generation light sources. PMID:27451652

  2. Effect of ion concentration on slow light propagation in highly doped erbium fibers

    NASA Astrophysics Data System (ADS)

    Melle, Sonia; Calderón, Oscar G.; Carreño, F.; Cabrera, Eduardo; Antón, M. A.; Jarabo, S.

    2007-11-01

    The effect of ion density on slow light propagation enabled by coherent population oscillations has been experimentally investigated for highly doped erbium fibers at room temperature. We found that fractional delay increases with ion density. A saturation effect in the fractional delay has been observed for doping levels above ˜3150 ppm. Ultra-high ion concentration can simultaneously increase the fractional delay and the bandwidth of the signals. We have studied the propagation of Gaussian pulses along the fibers obtaining fractional delays up to 0.7 for the highest doping levels used. It is shown that pulse power can be used as a control parameter to reduce distortion at different pulse bandwidths.

  3. Optical properties analysis of Ta-doped TiO2 thin films on LaAlO3 substrates

    NASA Astrophysics Data System (ADS)

    Nurfani, Eka; Sutjahja, Inge M.; Winata, Toto; Rusydi, Andrivo; Darma, Yudi

    2015-09-01

    We study optical properties of Ta-doped TiO2 thin film on LaAlO3 substrate using spectroscopy ellipsometry (SE) analysis at energy range of 0.5 - 6.5 eV. Room temperature SE data for Ψ (amplitude ratio) and Δ (phase difference) between p- and s- polarized light waves are taken with multiple incident angles at several spots on the samples. Here, absorption coefficient has been extracted from SE measurements at photon incident angle of 70° for different Ta concentration (0.01, 0.4, and 5 at. %). Multilayer modelling is performed which takes into account reflections at each interface through Fresnel coefficients to obtain reasonably well the fitting of Ψ and Δ data simultaneously. As the results, we estimate that film thickness increases by increasing Ta concentration accompanied by the formation of a new electronic structure. By increasing Ta impurities, the blueshift of absorption coefficient (α) peaks is observable. This result indicates that TiO2 thin film becomes optically resistive by introducing Ta doping. Schematic model of interband transition inTiO2:Ta will be proposed base on obtained optical properties. This study enables us to predict the role of Ta doping on the electronic and optical band structures of TiO2 thin film. Due to a processing error by AIP Publishing, an incorrect version of the above article was published on 30 September 2015 that omitted the name of author Toto Winata. AIP Publishing apologizes for this error. All online versions of the article were corrected on 7 October 2015. The author names and affiliations appear correctly above.

  4. Electrical characterization of Si doped AlN films synthesized by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Simeonov, Simeon; Bakalova, Silvia; Szekeres, Anna; Minkov, Ivaylo; Socol, Gabriel; Ristoscu, Carmen; Mihailescu, Ion

    2015-04-01

    The electrical properties of thin AlN films doped with Si (AlN:Si) have been investigated. The films were synthesized on Si substrates at 800 °C by pulsed laser deposition in low-pressure nitrogen ambient. The AlN:Si films exhibit non-ohmic I-V characteristics and the current through these films is controlled by space charge limited current. The C-V dependence of metal-insulator-silicon (MIS) structures with AlN:Si films exhibits an excess capacitance around zero bias voltage. This excess capacitance indicates the presence of deep acceptor levels situated at the boundaries of adjacent grains in the AlN:Si films. The Si donor density in the AlN:Si films, estimated from the 1 MHz C-V characteristics, is of the order of 1018 cm-3. The impedance measurements of these AlN:Si structures at different test voltage frequencies reveal that the charge transport mechanism is dominated by either thermally-activated hopping or electron tunneling from occupied to nearest unoccupied deep levels.

  5. Anchorage of γ-Al2O3 nanoparticles on nitrogen-doped multiwalled carbon nanotubes

    DOE PAGES

    Rodríguez-Pulido, A.; Martínez-Gutiérrez, H.; Calderon-Polania, G. A.; Lozano, M. A. Gonzalez; Cullen, D. A.; Terrones, H.; Smith, D. J.; Terrones, M.

    2016-06-07

    Nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) have been decorated with γ-Al2O3 nanoparticles by a novel method. This process involved a wet chemical approach in conjunction with thermal treatment. During the particle anchoring process, individual CNx-MWNT nanotubes agglomerated into bundles, resulting in arrays of aligned CNx-MWNT coated with γ-Al2O3. Extensive characterization of the resulting γ-Al2O3/CNx-MWNT bundles was performed using a range of electron microscopy imaging and microanalytical techniques. In conclusion, a possible mechanism explaining the nanobundle alignment is described, and possible applications of these materials for the fabrication of ceramic composites using CNx-MWNTs are briefly discussed.

  6. Structural and Morphological Properties of Al doped ZnO Nanoparticles

    NASA Astrophysics Data System (ADS)

    Akdağ, A.; Budak, H. F.; Yılmaz, M.; Efe, A.; Büyükaydın, M.; Can, M.; Turgut, G.; Sönmez, E.

    2016-04-01

    Zinc oxide nanoparticles have a wide area of use because of their unique properties such as catalytic, electrical, and optical properties and low cost. Since the suitable additive materials can be changed the electrical and optical properties of zinc oxide, the demand of the industrial commercial area to the zinc oxide increased. In this study, Al doped ZnO nanoparticles produced by using the methods of reduction thought having materials of the Zn(NO)3, AlCl3 and NaOH. XRD, SEM and EDS used for making analyzing of structural and dimensional of particles. The analyses show that the large amount of the Al3+ ions did nut substitute with Zn2+ successfully with the reduction method. XRD and EDS results confirm this situation.

  7. Crystal Structure and Photocatalytic Activity of Al-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Lee, Deuk Yong; Lee, Myung-Hyun; Kim, Bae-Yeon; Cho, Nam-Ihn

    2016-05-01

    Al-TiO2 nanofibers were prepared using a sol-gel derived electrospinning by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the crystal structure and the photocatalytic activity of Al-TiO2 for methylene blue (MB) degradation. XRD results indicated that as the Al/Ti molar ratio rose, crystal structure of Al-TiO2 was changed from anatase/rutile (undoped), anatase (0.07-0.18), to amorphous phase (0.38-0.73), which was confirmed by XPS and Raman analysis. The degradation kinetic constant increased from 7.3 x 10(-4) min(-1) to 4.5 x 10(-3) min(-1) with the increase of Al/Ti molar ratios from 0 to 0.38, but decreased to 3.4 x 10(-3) min(-1) when the Al/Ti molar ratio reached 0.73. The Al-TiO2 catalyst doped with 0.38 Al/Ti molar ratio demonstrated the best MB degradation. Experimental results indicated that the Al doping in Al-TiO2 was mainly attributed to the crystal structure of TiO2 and the photocatalytic degradation of MB.

  8. Crystal Structure and Photocatalytic Activity of Al-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Lee, Deuk Yong; Lee, Myung-Hyun; Kim, Bae-Yeon; Cho, Nam-Ihn

    2016-05-01

    Al-TiO2 nanofibers were prepared using a sol-gel derived electrospinning by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the crystal structure and the photocatalytic activity of Al-TiO2 for methylene blue (MB) degradation. XRD results indicated that as the Al/Ti molar ratio rose, crystal structure of Al-TiO2 was changed from anatase/rutile (undoped), anatase (0.07-0.18), to amorphous phase (0.38-0.73), which was confirmed by XPS and Raman analysis. The degradation kinetic constant increased from 7.3 x 10(-4) min(-1) to 4.5 x 10(-3) min(-1) with the increase of Al/Ti molar ratios from 0 to 0.38, but decreased to 3.4 x 10(-3) min(-1) when the Al/Ti molar ratio reached 0.73. The Al-TiO2 catalyst doped with 0.38 Al/Ti molar ratio demonstrated the best MB degradation. Experimental results indicated that the Al doping in Al-TiO2 was mainly attributed to the crystal structure of TiO2 and the photocatalytic degradation of MB. PMID:27483928

  9. Room-temperature ferromagnetism with high magnetic moment in Cu-doped AlN single crystal whiskers

    NASA Astrophysics Data System (ADS)

    Jiang, Liang-Bao; Liu, Yu; Zuo, Si-Bin; Wang, Wen-Jun

    2015-02-01

    Ferromagnetism is investigated in high-quality Cu-doped AlN single crystal whiskers. The whiskers exhibit room-temperature ferromagnetism with a magnetic moment close to the results from first-principles calculations. High crystallinity and low Cu concentrations are found to be indispensable for high magnetic moments. The difference between the experimental and theoretical moment values is explored in terms of the influence of nitrogen vacancies. The calculated results demonstrate that nitrogen vacancies can reduce the magnetic moments of Cu atom. Project supported by the National Basic Research Program of China (Grant No. 2013CB932901), the National Natural Science Foundation of China (Grant Nos. 51372267, 51210105026, and 51172270), the Funds from the Chinese Academy of Sciences, the International Centre for Diffraction Data, USA (2013 Ludo Frevel Crystallography Scholarship Award), and the Funds from the Ministry of Education of China (2012 Academic Scholarship Award for Doctoral Candidates).

  10. Studies on charge transport in Al-doped La0.7Ca0.3Mn1-xAlxO3 manganites

    NASA Astrophysics Data System (ADS)

    Rathod, Jalshikhaba S.; Keshvani, M. J.; Solanki, P. S.; Pandya, D. D.; Kataria, Bharat; Shah, N. A.; Kuberkar, D. G.

    2015-12-01

    In this communication, we report the results of the studies on the effect of non-magnetic Al3+-doping on structure and properties of La0.7Ca0.3Mn1-xAlxO3 (LCMAO) manganites synthesized by conventional solid state reaction (SSR) route. The Rietveld refinement of the X-ray diffraction (XRD) data confirms the single phasic nature of the samples without any detectable impurities. All the samples exhibit metal to insulator transition (TP) which decrease with increase in Al3+ doping concentration while it increases with applied magnetic field. To understand the nature of charge transport in metallic and insulating regions of resistivity, various models and mechanisms have been used to fit the observed experimental data.

  11. Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses

    NASA Astrophysics Data System (ADS)

    Shao, Chongyun; Xu, Wenbin; Ollier, Nadege; Guzik, Malgorzata; Boulon, Georges; Yu, Lu; Zhang, Lei; Yu, Chunlei; Wang, Shikai; Hu, Lili

    2016-10-01

    Yb3+/Al3+ co-doped silica glasses with different Ce2O3 contents were prepared using the sol-gel method combined with high-temperature sintering. Changes in refractive index, absorption, emission and fluorescence lifetime of these glasses caused by X-ray irradiation were recorded and analyzed systematically. It is found that co-doping with certain amount of Ce could greatly improve the radiation resistance without evident negative effects on the basic optical properties of the Yb3+ ions in the near-infrared region. The nature of the radiation-induced color centres and the mechanism by which Ce prevented the formation of these centres were studied using optical absorption, electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS) methods. Direct evidence confirmed that trapped electron centres (Yb2+/Si-E'/Al-E') and trapped hole centres (Al-OHCs) were effectively inhibited by Ce doping, which was correlated to the coexistence of the redox couple Ce3+/Ce4+ in the glasses. These results are helpful to understand the micro-structural origin and the suppression mechanism by Ce co-doping of the photodarkening effect in Yb3+-doped silica fibers.

  12. Room temperature synthesis of Mn2+ doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination

    NASA Astrophysics Data System (ADS)

    Kole, A. K.; Tiwary, C. S.; Kumbhakar, P.

    2013-03-01

    Mn2+ doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn2+ doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be ˜1.10 (at. %) corresponding to 40.0 (molar %) of Mn2+ doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn2+ doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn2+ doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn2+ doped sample shows an enhancement of 33% in PL emission intensity.

  13. Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Battiston, S.; Fiameni, S.; Saleemi, M.; Boldrini, S.; Famengo, A.; Agresti, F.; Stingaciu, M.; Toprak, M. S.; Fabrizio, M.; Barison, S.

    2013-07-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1: x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density >95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600°C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600°C.

  14. Dissociation of H{sub 2} on carbon doped aluminum cluster Al{sub 6}C

    SciTech Connect

    Yang, Huihui; Zhang, Yan; Chen, Hongshan

    2014-08-14

    The dissociation of H{sub 2} molecule is the first step for chemical storage of hydrogen, and the energy barrier of the dissociation is the key factor to decide the kinetics of the regeneration of the storage material. As a light element, aluminum is an important candidate component for storage materials with high gravimetric density. This paper investigates the adsorption and dissociation of H{sub 2} on carbon doping aluminum cluster Al{sub 6}C. The study shows that doping carbon into aluminum cluster can significantly change the electronic structure and increase the stability. Al{sub 6}C has a few stable isomers with close energies and their structures are quite flexible. The molecular adsorption of H{sub 2} on Al{sub 6}C is very weak, but the H{sub 2} molecule can be dissociated easily on this cluster. The stable product of the dissociated adsorption is searched and the different paths for the dissociation are investigated. During the dissociation of H{sub 2}, the structure of the cluster adjusts accordingly, and strong orbital interaction between the hydrogen and the cluster occurs. The calculated energy barrier for the dissociation is only 0.30 eV, which means the dissociation can take place at moderate temperatures.

  15. The Effects of Cd2+ Concentration on the Structure, Optical and Luminescence Properties of MgAl2O4: x% Cd2+ (0 < x ≤ 1.75) Nanophosphor Prepared by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Motloung, S. V.; Dejene, F. B.; Sithole, M. E.; Koao, L. F.; Ntwaeaborwa, O. M.; Swart, H. C.; Motaung, T. E.

    2016-10-01

    Cadmium-doped magnesium aluminate (MgAl2O4: x% Cd2+) powders with different cadmium concentrations (0 < x ≤ 1.75) were prepared by the sol-gel method. Energy dispersive x-ray spectroscopy (EDS) analysis confirmed the presence of the expected elements (Mg, Al, O, and Cd). The x-ray diffraction (XRD) analysis revealed that the powders crystallized into the cubic spinel structure. Cd2+ doping influenced crystallinity of the powder samples. The crystallite size and particle morphology were not affected by variation in the Cd2+ concentration. Ultraviolet-visible spectroscopy (UV-vis) measurements revealed that the band gap of the MgAl2O4 was influenced by Cd2+ doping. Un-doped and Cd2+-doped MgAl2O4 nanophosphors exhibited violet emission at 392 nm. There was no evidence of the emission peak shift, which suggested that all emissions originated from the defects within the host material. Increasing the Cd2+ concentration up-to 0.88 mol.% lead to luminescence intensity enhancement, while further increase of Cd2+ concentration lead to concentration quenching. The critical energy transfer distance ( R c) between the neighbouring donors and acceptors was found to be 5.21 Å, suggesting that the multipole-multipole interaction (M-MI) is the major cause of concentration quenching. Commission Internationale de l'Elcairage (CIE) colour coordinates confirmed non-tuneable violet emission with intensity dependent on the Cd2+ concentration.

  16. Spatial fluctuation enhancement and nonradiative-recombination-center generation due to high Si-doping into GaAs/AlAs short-period-superlattices

    NASA Astrophysics Data System (ADS)

    Kobori, H.; Shigetani, A.; Umezu, I.; Sugimura, A.

    2006-04-01

    Through the time-resolved photoluminescence (TR-PL) measurement for excitons, we have studied the enhancement of spatial fluctuation (SF) and the generation of nonradiative-recombination-centers (NRC) due to high Si-doping into GaAs/AlAs short-period-superlattices (SPS's). We have carried out the exciton transport analysis according to Krivorotov et al. [I.N. Krivorotov, T. Chang, G.D. Gilliland, L.P. Fu, K.K. Bajaj, Phys. Rev. B 58 (1998) 10687]. From this analysis, we have obtained the temperature dependence of the exciton diffusivity, the concentration of the NRC and the average distant between adjacent localized states of excitons. The temperature dependence of the exciton diffusivity is found to be given by the sum of the temperature-independent contribution and the activation-type contribution. For the exciton diffusivity in undoped GaAs/AlAs SPS's, only the activation-type contribution has been observed. Therefore, we point out the possibility that the temperature-independent contribution comes from the tunneling through the impurities. In this experiment, the activation energy and the concentration of the NRC are found to be larger than those of undoped GaAs/AlAs SPS's. We infer that high Si-doping into GaAs/AlAs SPS causes the enhancement of the SF and the generation of NRC.

  17. A Back-Gated Ferroelectric Field-Effect Transistor with an Al-Doped Zinc Oxide Channel

    NASA Astrophysics Data System (ADS)

    Jia, Ze; Xu, Jian-Long; Wu, Xiao; Zhang, Ming-Ming; Liou, Juin-J.

    2015-02-01

    We report a back-gated metal-oxide-ferroelectric-metal (MOFM) field-effect transistor (FET) with lead zirconate titanate (PZT) material, in which an Al doped zinc oxide (AZO) channel layer with an optimized doping concentration of 1% is applied to reduce the channel resistance of the channel layer, thus guaranteeing a large enough load capacity of the transistor. The hysteresis loops of the Pt/PZT/AZO/Ti/Pt capacitor are measured and compared with a Pt/PZT/Pt capacitor, indicating that the remnant polarization is almost 40 μC/cm2 and the polarization is saturated at 20 V. The measured capacitance-voltage properties are analyzed as a result of the electron depletion and accumulation switching operation conducted by the modulation of PZT on AZO channel resistance caused by the switchable remnant polarization of PZT. The switching properties of the AZO channel layer are also proved by the current-voltage transfer curves measured in the back-gated MOFM ferroelectric FET, which also show a drain current switching ratio up to about 100 times.

  18. Effects of doping concentration and co-doping with cerium on the luminescence properties of Gd3Ga5O12:Cr3+ for thermometry applications

    NASA Astrophysics Data System (ADS)

    Pareja, Jhon; Litterscheid, Christian; Molina, Alejandro; Albert, Barbara; Kaiser, Bernhard; Dreizler, Andreas

    2015-09-01

    The accuracy of surface temperature measurements using thermographic phosphors relies on an extensive knowledge of the temperature-dependent properties of the phosphor. This paper addresses the effects of doping concentration and co-doping with cerium on the luminescence properties of the Gd3Ga5O12:Cr3+ phosphor. High-crystallinity Gd3Ga5O12:Cr3+,Ce3+ powder samples (GGG:Cr,Ce) with different Cr3+ and Ce3+ concentrations were synthesized, and their luminescence spectra as well as their decay lifetime properties were characterized after UV laser excitation. Results revealed that the concentration quenching decreases the luminescence lifetime at concentrations above 0.5 mol% Cr3+ while the emission spectrum remains independent of the Cr3+ concentration. Co-doping with small amounts of Ce3+ improves the temperature-dependent luminescence characteristics by reducing the afterglow and producing fairly mono-exponential luminescence decays without changing the lifetime.

  19. Nature of magnetism in copper-doped oxides: ZrO2, TiO2, MgO, SiO2, Al2O3, and ZnO

    NASA Astrophysics Data System (ADS)

    Dutta, P.; Seehra, M. S.; Zhang, Y.; Wender, I.

    2008-04-01

    The nature of magnetism in 10% Cu-doped ZrO2, TiO2, MgO, SiO2, and Al2O3 is investigated using superconducting quantum interference device magnetometry and electron magnetic resonance (EMR). The doping was done by the incipient wetness impregnation technique. X-ray diffraction studies showed the presence of some CuO notably in TiO2, SiO2, and Al2O3. However, EMR yielded typical Cu2+ spectra in all the samples, resulting from some doping. Magnetic field (H ) and temperature (T) dependences of the magnetization (M) show only paramagnetism in these oxides in contrast to ferromagnetism with Tc=380K observed in Cu /ZnO. Concentrations x of Cu2+ doped into the oxides are determined from the M vs T and M vs H data, showing Cu /ZrO2 with the largest x and hence largest magnetization.

  20. Chrystal structure properties of Al-doped Li4Ti5O12 synthesized by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Sandi, Dianisa Khoirum; Priyono, Slamet; Suryana, Risa

    2016-02-01

    This research aim is to analyze the effect of Aluminum (Al) doping in the structural properties of Al-doped Li4Ti5O12 as anode in lithium ion battery. Al-doped Li4Ti5O12 powders were synthesized by solid state reaction method. LiOH.H2O, TiO2, and Al2O3 were raw materials. These materials were milled for 15 h, calcined at temperature of 750oC and sintered at temperature of 800oC. Mole percentage of doping Al (x) was varied at x=0; x=0.025; and x =0.05. Al-doped Li4Ti5O12 powders were synthesized by solid state reaction method. X-ray diffraction was employed to determine the structure of Li4Ti5O12. The PDXL software was performed on the x-ray diffraction data to estimate the phase percentage, the lattice parameter, the unit cell volume, and the crystal density. Al-doped Li4Ti5O12 has cubic crystal structure. Al-doping at x=0 and x=0.025 does not change the phase as Li4Ti5O12 while at x=0.050 the phase changes to the LiTiAlO4. The diffraction patterns show that the angle shifted to the right as the increase of x which indicated that Al substitute Ti site. Percentage of Li4Ti5O12 phase at x=0 and x=0.025 was 97.8% and 96.8%, respectively. However, the lattice parameters, the unit cell volume, and the crystal density does not change significantly at x=0; x=0.025; and x=0.050. Based on the percentage of Li4Ti5O12 phase, the Al-doped Li at x=0 and x=0.025 is promising as a lithium battery anode.

  1. Enhanced Emission from Li2CaSiO4:Dy3+ Phosphors by Doping with Al3+ and B3+

    NASA Astrophysics Data System (ADS)

    Erdoğmuş, E.

    2016-05-01

    Pure Li2CaSiO4, Li2CaSiO4:Dy3+ and Al3+, B3+ co-doped materials were prepared by a solid-state reaction in air at 900°C for 6 h and characterized by using powder XRD. The luminescence properties of the synthesized phosphors were measured at room temperature with a spectrofluorometer. Li2CaSiO4:Dy3+ emits at 484, 575, and 660 nm upon 352 nm excitation. The emission spectrum intensity of Dy3+ increased from 0.01 to 0.06 mol.%, and beyond 0.06 mol.%, concentration quenching was observed. Also, in this study, the effects of boric acid and aluminum oxide concentration on the photoluminescence properties of Dy3+ doped phosphors were investigated. The results showed that boric acid and aluminum oxide were effective in improving the photoluminescence intensity of Li2CaSiO4:Dy3+ compounds.

  2. First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations

    NASA Astrophysics Data System (ADS)

    Rad, Ali Shokuhi

    2015-12-01

    We studied the first principles adsorption phenomena of nitrogen dioxide (NO2) and nitrous oxide (N2O) molecules on the surface of pristine graphene and Al-doped graphene using density functional theory (DFT) calculations. The adsorption energies have been calculated for different possible configurations of the molecules on the surface of pristine and Al-doped graphene. Our calculations reveal that the Al-doped graphene has significant adsorption energy, elevated net charge transferring values and smaller bond distances to gases than that of pristine graphene because of the chemical interaction of the mentioned molecules. Furthermore, the calculated density of states (DOS) show the existing of noteworthy orbital hybridization between NO2 as well as N2O and Al-doped graphene during adsorption process which is proving to strong interaction while there is no evidence for hybridization between the those molecules and the pristine graphene. Our calculated adsorption energies for the most stable states for NO2 and N2O was -62.2 kJ mol-1 (-48.5 kJ mol-1 BSSE corrected energy) and -33.9 kJ mol-1 (-22.7 kJ mol-1 corrected energy), which are correspond to chemisorption process. These results point to the suitability of Al-doped graphene as a powerful sensor for practical applications.

  3. The formation of tungsten doped Al2O3/ZnO coatings on aluminum by plasma electrolytic oxidation and their application in photocatalysis

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Vasilić, Rastko; Radić, Nenad; Tadić, Nenad; Stefanov, Plamen; Grbić, Boško

    2016-07-01

    Tungsten doped Al2O3/ZnO coatings are formed by plasma electrolytic oxidation of aluminum substrate in supporting electrolyte (0.1 M boric acid + 0.05 M borax + 2 g/L ZnO) with addition of different concentrations of Na2WO4·2H2O. The morphology, crystal structure, chemical composition, and light absorption characteristics of formed surface coatings are investigated. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that formed surface coatings consist of alpha and gamma phase of Al2O3, ZnO, metallic tungsten and WO3. Obtained results showed that incorporated tungsten does not have any influence on the absorption spectra of Al2O3/ZnO coatings, which showed invariable band edge at about 385 nm. The photocatalytic activity of undoped and tungsten doped Al2O3/ZnO coatings is estimated by the photodegradation of methyl orange. The photocatalytic activity of tungsten doped Al2O3/ZnO coatings is higher thanof undoped Al2O3/ZnO coatings; the best photocatalytic activity is ascribed to coatings formed in supporting electrolyte with addition of 0.3 g/L Na2WO4·2H2O. Tungsten in Al2O3/ZnO coatings acts as a charge trap, thus reducing the recombination rate of photogenerated electron-hole pairs. The results of PL measurements are in agreement with photocatalytic activity. Declining PL intensity corresponds to increasing photocatalytic activity of the coatings, indicating slower recombination of electron-hole pairs.

  4. Origin of leakage paths driven by electric fields in Al-doped TiO2 films.

    PubMed

    Park, Gyeong-Su; Park, Seong Yong; Heo, Sung; Kwon, Ohseong; Cho, Kyuho; Han, Kwan-Young; Kang, Sung Jin; Yoon, Aram; Kim, Miyoung

    2014-12-23

    The growth of leakage current paths in Al-doped TiO2 (ATO) films is observed by in situ TEM under negative bias stress. Through systematic HAADF-STEM, STEM-EDS, and STEM-EELS studies, it is confirmed that the electric field-induced growth of the Ru-doped TiO2 phase is the main reason for the ATO film's negative leakage.

  5. Synthesis and Characterization of Varying Concentrations of Ag-doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Hachlica, Justin; Wadie-Ibrahim, Patrick; Sahiner, M. Alper

    Silver doped ZnO is a promising compound for photovoltaic solar cell use. Doping this compound with varying amounts of silver will theoretically make this type of thin film more efficient by reducing the overall resistance and increasing the voltage and current output. The extent of this promise is being tested experimentally, by analysis of both the electrical and the surface roughness properties of the cells. Ag-doped Zinc Oxide is deposited by method of Pulsed Laser Deposition (PLD) onto Indium Tin Oxide (ITO) coated Glass. Annealing effects were also observed by varying the temperature at which the annealing occurred after synthesis of the sample. Thickness is confirmed by use of Ellipsometery. X-Ray Diffraction (XRD) measurements confirmed a ZnO crystal structure on the thin films. The active dopant carrier concentrations were determined using a Hall Effect Measuring System. Finally, the photovoltaic properties of the film are recorded by using a Keithley Source Meter. The structural characterization and electrical results of the effect of Ag doping on ZnO will then be discussed.

  6. Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration.

    PubMed

    Babikier, Musbah; Wang, Dunbo; Wang, Jinzhong; Li, Qian; Sun, Jianming; Yan, Yuan; Yu, Qingjiang; Jiao, Shujie

    2014-01-01

    Cu-doped ZnO nanorods have been grown at 90°C for 90 min onto a quartz substrate pre-coated with a ZnO seed layer using a hydrothermal method. The influence of copper (Cu) precursor and concentration on the structural, morphological, and optical properties of ZnO nanorods was investigated. X-ray diffraction analysis revealed that the nanorods grown are highly crystalline with a hexagonal wurtzite crystal structure grown along the c-axis. The lattice strain is found to be compressive for all samples, where a minimum compressive strain of -0.114% was obtained when 1 at.% Cu was added from Cu(NO3)2. Scanning electron microscopy was used to investigate morphologies and the diameters of the grown nanorods. The morphological properties of the Cu-doped ZnO nanorods were influenced significantly by the presence of Cu impurities. Near-band edge (NBE) and a broad blue-green emission bands at around 378 and 545 nm, respectively, were observed in the photoluminescence spectra for all samples. The transmittance characteristics showed a slight increase in the visible range, where the total transmittance increased from approximately 80% for the nanorods doped with Cu(CH3COO)2 to approximately 90% for the nanorods that were doped with Cu(NO3)2.

  7. Development of corrosion-resistant improved Al-doped austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Kondo, Keietsu; Miwa, Yukio; Okubo, Nariaki; Kaji, Yoshiyuki; Tsukada, Takashi

    2011-10-01

    Aluminum-doped type 316L SS (316L/Al) has been developed for the purpose of suppressing the degradation of corrosion resistance induced by irradiation in austenitic stainless steels (SSs). The electrochemical corrosion properties of this material were estimated after Ni-ion irradiation at a temperature range from 330 °C to 550 °C. When irradiated at 550 °C up to 12 dpa, 316L/Al showed high corrosion resistance in the vicinity of grain boundaries (GBs) and in grains, while severe GB etching and local corrosion in grains were observed in irradiated 316L and 316 SS. It is supposed that aluminum enrichment was enhanced by high-temperature irradiation at GBs and in grains, to compensate for lost corrosion resistance induced by chromium depletion.

  8. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    SciTech Connect

    Lu, Yuan; Zuo, Xu; Feng, Min; Shao, Bin

    2014-05-07

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  9. Deep ultraviolet photoluminescence of Tm-doped AlGaN alloys

    SciTech Connect

    Nepal, N.; Zavada, J. M.; Lee, D. S.; Steckl, A. J.; Sedhain, A.; Lin, J. Y.; Jiang, H. X.

    2009-03-16

    The ultraviolet (UV) photoluminescence (PL) properties of Tm-doped Al{sub x}Ga{sub 1-x}N (0.39{<=}x{<=}1) alloys grown by solid-source molecular beam epitaxy were probed using above-bandgap excitation from a laser source at 197 nm. The PL spectra show dominant UV emissions at 298 and 358 nm only for samples with x=1 and 0.81. Temperature dependence of the PL intensities of these emission lines reveals exciton binding energies of 150 and 57 meV, respectively. The quenching of these UV emissions appears related to the thermal activation of the excitons bound to rare-earth structured isovalent (RESI) charge traps, which transfer excitonic energy to Tm{sup 3+} ions resulting in the UV emissions. A model of the RESI trap levels in AlGaN alloys is presented.

  10. Magnesium doping on brownmillerite Ca{sub 2}FeAlO{sub 5}

    SciTech Connect

    Malveiro, J.; Ramos, T.; Ferreira, L.P.; Waerenborgh, J.C.

    2007-06-15

    Ca{sub 2}FeAl{sub 1-} {sub x} Mg {sub x} O{sub 5} (x=0, 0.05 and 0.1) compounds adopting the brownmillerite-type structure were prepared by a self-combustion route using two different fuels. Characterisation was performed using X-ray powder diffraction, Moessbauer spectroscopy, magnetisation measurements, chemical analysis, scanning electron microscopy and 4-point dc conductivity measurements. Global results indicate that the solubility limit was reached for x=0.1. An antiferromagnetic behaviour was detected for all studied compositions, with magnetic ordering temperatures of 340 and 290 K for x=0 and 0.05, respectively. Mg doping increases the number of iron cations in tetrahedral sites, which induces magnetisation enhancement at low temperatures through the coupling between octahedral iron cations in different octahedral planes. The compounds exhibit semiconductor behaviour and Mg{sup 2+} doping yields a significant enhancement of the total conductivity, which can be essentially attributed to the presence of Fe{sup 4+} ions. - Graphical abstract: Ca{sub 2}FeAl{sub 1-} {sub x} Mg {sub x} O{sub 5} (x=0, 0.05, 0.1) compounds with the brownmillerite structure were prepared and characterised. The paramagnetic Moessbauer spectra presented were obtained at T=363 K (x=0); T=297 K (x=0.05) and T=353 K (x=0.1)

  11. Strengthening TiN diffusion barriers for Cu metallization by lightly doping Al

    NASA Astrophysics Data System (ADS)

    Yang, L. C.; Hsu, C. S.; Chen, G. S.; Fu, C. C.; Zuo, J. M.; Lee, B. Q.

    2005-09-01

    Thin films of Ti1-xAlxN were deposited on (100) Si by ultrahigh-vacuum dual-target reactive sputtering, and the impact of lightly doping Al of x as small as 0.09 on altering the films's microstructure upon thermal annealing, and hence the performance of the films (40nm thick) as diffusion barriers for Cu metallization was evaluated. The results of transmission electron microscopy, Rutherford backscattering spectroscopy, and grazing-incidence x-ray diffraction show that the TiN barrier layer gives the commonly observed voided, columnar grains composed of 5nm sized subgrains. Upon annealing, the subgrains tend to coalesce into 20nm sized equiaxed grains full of crystalline defects, initiating an inward penetration of Cu and a partial dissociation of TiN, transforming themselves, respectively, into pyramidal (or columnar) Cu3Si precipitates and a dendritic Ti5Si3 layer just after 550°C, 10min annealing. However, the lightly doped Al not only overrides the tendency to form intercolumnar voids inherent in sputter deposition by self-shadowing and statistical roughening, but also substantially enhances the microstructural and thermochemical stability, hence significantly improving barrier property, as evidenced from an annealing test at an elevated temperature (600°C) for a prolonged period of 30min.

  12. Effect of ZDDP concentration on the thermal film formation on steel, hydrogenated non-doped and Si-doped DLC

    NASA Astrophysics Data System (ADS)

    Akbari, S.; Kovač, J.; Kalin, M.

    2016-10-01

    This work focuses on the ZDDP concentration (1, 5 and 20 wt%) to form a ZDDP film on surfaces during static thermal tests at 150 °C. Silicon-doped and hydrogenated DLC coatings, as well as steel as reference, were studied using Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The results show that, on the three surfaces, the structure of the ZDDP thermal film consists of identical groups of pyrophosphate and zinc oxide, while the sulphuric groups are dissimilar. On the steel surface, the sulphuric part consists of a mixture of organic sulphide and sulphohydryl groups, but on H-DLC and Si-DLC only organic sulphide groups are found; there are no sulphohydryl groups. Moreover, both ATR-FTIR and XPS show that different concentrations of ZDDP do not affect the final chemical structure of the ZDDP thermal film on any of the studied surfaces. In addition, the XPS results show that the thickness of the thermal film is linear with the concentration for the whole range from 1 to 20 wt%, supporting also its uniform chemical structure. These thicknesses further show that the reactivity of the ZDDP film is higher on the steel surface than on the DLC coatings.

  13. Electronic transport properties of In-doped ZnO nanobelts with different concentration.

    PubMed

    Su, Jia; Li, Huifeng; Huang, Yunhua; Xing, Xiujun; Zhao, Jing; Zhang, Yue

    2011-05-01

    In this paper, zinc oxide (ZnO) nanobelts with five different indium (In) concentrations (1.98, 2.73, 3.33, 4.20, and 5.16 wt%) were prepared by simple vapor deposition with HAuCl(4) (1% solution) as catalyst. Detailed structural and compositional characterizations were performed by XRD, TEM, EDS, PL, and Raman spectroscopy. Moreover, the current-voltage (I-V) characteristics of In-doped ZnO nanobelts with different In concentrations were determined by nano-manipulation and measurement systems. The results show that the resistivity of these nanobelts decreases with increasing In concentration when the doping concentration of In is lower than 4.20%, but, on the contrary, when the In concentration is higher than 4.20% their resistivity increases. Also, all of the nanobelts keep ohmic contact very well. Simultaneously, the influence of electron beam irradiation (20 kV) on the nanobelts was studied, and it was found that electron beam irradiation can improve the conductivity of the nanobelts. Under the same voltage, the current increased gradually during irradiation until equilibrium was reached. The degree of influence of the irradiation on the resistivity of the nanobelts is the greatest when the In dopant concentration is 4.20%, which is suitable for making irradiation sensors. PMID:21445421

  14. Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy.

    PubMed

    Brinciotti, Enrico; Gramse, Georg; Hommel, Soeren; Schweinboeck, Thomas; Altes, Andreas; Fenner, Matthias A; Smoliner, Juergen; Kasper, Manuel; Badino, Giorgio; Tuca, Silviu-Sorin; Kienberger, Ferry

    2015-09-21

    We present a new method to extract resistivity and doping concentration of semiconductor materials from Scanning Microwave Microscopy (SMM) S11 reflection measurements. Using a three error parameters de-embedding workflow, the S11 raw data are converted into calibrated capacitance and resistance images where no calibration sample is required. The SMM capacitance and resistance values were measured at 18 GHz and ranged from 0 to 100 aF and from 0 to 1 MΩ, respectively. A tip-sample analytical model that includes tip radius, microwave penetration skin depth, and semiconductor depletion layer width has been applied to extract resistivity and doping concentration from the calibrated SMM resistance. The method has been tested on two doped silicon samples and in both cases the resistivity and doping concentration are in quantitative agreement with the data-sheet values over a range of 10(-3)Ω cm to 10(1)Ω cm, and 10(14) atoms per cm(3) to 10(20) atoms per cm(3), respectively. The measured dopant density values, with related uncertainties, are [1.1 ± 0.6] × 10(18) atoms per cm(3), [2.2 ± 0.4] × 10(17) atoms per cm(3), [4.5 ± 0.2] × 10(16) atoms per cm(3), [4.5 ± 1.3] × 10(15) atoms per cm(3), [4.5 ± 1.7] × 10(14) atoms per cm(3). The method does not require sample treatment like cleavage and cross-sectioning, and high contact imaging forces are not necessary, thus it is easily applicable to various semiconductor and materials science investigations.

  15. Influence of Ag doping concentration on structural and optical properties of CdS thin film

    SciTech Connect

    Kumar, Pragati; Saxena, Nupur; Gupta, Vinay; Agarwal, Avinash

    2015-05-15

    This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.

  16. Flexible and fluorophore-doped luminescent solar concentrators based on polydimethylsiloxane.

    PubMed

    Tummeltshammer, Clemens; Taylor, Alaric; Kenyon, Anthony J; Papakonstantinou, Ioannis

    2016-02-15

    We demonstrate a simple and inexpensive method to fabricate flexible and fluorophore-doped luminescent solar concentrators (LSCs). Polydimethylsiloxane (PDMS) serves as a host material which additionally offers the potential to cast LSCs in arbitrary shapes. The laser dye Pyrromethene 567 is used as a prototype fluorophore, and it is shown that it has a high quantum yield of 93% over the concentration range investigated. The optical efficiency and loss channels of the flexible LSCs are investigated; it is also demonstrated that the efficiency remains high while bending the LSC which is essential for flexible LSCs to make an impact on solar energy.

  17. First principles Study on Transparent High-Tc Superconductivity in hole-doped Delafossite CuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-02-01

    The CuAlO2 is the transparent p-type conductor without any intentional doping. Transparent superdoncutivity and high thermoelectric power are suggested in p-type CuAlO2 [1]. Katayama-Yoshida et al. proposed that it may cause a strong electron-phonon interaction and a superconductivity. But, the calculation of superconducting critical temperature Tc is not performed. We performed the first principles calculation about the Tc of hole-doped CuAlO2 by shifting the Fermi level rigidly. In lightly hole-doped CuAlO2, the Fermi level is located at Cu and O anti-bonding band. The electrons of this band strongly interact with the A1L1 phonon mode because the direction of O-Cu-O dumbbell is parallel to the oscillation direction of the A1L1 phonon mode. As a result, Tc of lightly hole-doped CuAlO2 is about 50 K. We also discuss the materials design to enhance the Tc based on the charge-excitation-induced negative effective U system.[4pt] [1] H. Katayama-Yoshida, T. Koyanagi, H. Funashima, H. Harima, A. Yanase: Solid State Communication 126 (2003) 135. [0pt] [2] A. Nakanishi and H. Katayama-Yoshida: Solid State Communication, in printing. (arXiv:1107.2477v3

  18. A systematic ALCHEMI study of Fe-doped NiAl alloys

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1995-06-01

    ALCHEMI site-occupation studies of alloying additions to ordered aluminide intermetallic alloys have been performed with varying degrees of success, depending on the ionization delocalization correction. This study examines the variation in the site-occupancy of Fe in B2-ordered NiAl vs solute concentration and alloy stoichiometry. The fraction of Fe on the `Ni` site is plotted vs Fe concentration. The good separation among the data from alloys of the three stoichiometries shows that the site occupancy of iron depends on the relative concentrations of the Ni and Al host elements; however a preference for the `Ni` site is clearly indicated.

  19. The Concentration Dependence of the Hole Mobility of a Hydrazone Doped Polymer

    NASA Astrophysics Data System (ADS)

    Borsenberger, P.; Magin, E.; Sinicropi, J.; Lin, L.-B.

    1998-01-01

    Hole mobilities of 4-diethylaminobenzaldehyde diphenylhydrazone (HDZ-F) doped poly(styrene) have been measured over a wide concentration range. The results have been described by a formalism based on disorder. The formalism is premised on the argument that charge transport occurs by hopping through a manifold of localized states that are distributed in energy and distance. The key parameter of the formalism is σ, the energy with of the hopping site manifold. For HDZ-F doped PS, σ is concentration-dependent. The maximum value is 0.121 eV and occurs at approximately 15% HDZ-F. The width decreases sharply for concentrations above and below. The concentration dependence is described by a model of dipolr disorder. The model is based on the assumption that the total widths are comprised of a dipolar component and a van der Waals component. The interpretation of the experimental results leads to the conclusion that the concentration dependence of the total width is largely determined by the van der Waals component.

  20. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    PubMed

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  1. Optoelectronic and structural characteristics of Er-doped amorphous AlN films

    SciTech Connect

    Zanatta, A.R.; Ribeiro, C.T.M.; Jahn, U.

    2005-11-01

    This work reports on the optical, electronic, and structural properties of aluminum-nitrogen (AlN) films doped with Er. The films were deposited by conventional radio-frequency sputtering at 200 deg. C in an atmosphere of pure nitrogen. Their main characteristics have been investigated by experimental techniques such as optical transmission, photo- and cathodoluminescence, Raman scattering, and x-ray photoelectron spectroscopy. All films exhibit Er{sup 3+}-related optical emissions in the visible and infrared regions, which are considerably enhanced after thermal annealing and on measurements at low temperature. Moreover, Raman spectroscopy indicates that the films remain amorphous even after thermal treatment at 900 deg. C. Based on the composition and on the structural and luminescent properties of these Er-doped amorphous AlN films it was possible to conclude that energy excitation of Er{sup 3+} ions takes place according to different routes when electrons or photons are used. In the former case, energy is transferred from the amorphous host to the Er{sup 3+} ions by carrier-mediated processes. As a result, relatively strong Er{sup 3+}-related optical transitions can be observed in the {approx}400-1600 nm range. Excitation with 488.0 nm photons also produces visible and infrared Er{sup 3+}-related luminescence, but most of the optical excitation occurs through direct excitation of the {sup 4}F{sub 7/2} level of Er{sup 3+}. Finally, the role played by nitrogen atoms and thermal treatments on the achievement of light emission from the present AlN films is discussed and compared with the existing literature.

  2. Characteristics of Nd:GdVO4 Laser with Different Nd-Doping Concentrations

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Zhang, Chun-Yu; Wei, Zhi-Yi; Zhang, Zhi-Guo; Stephan, Strohmaier; Hans, Eichler J.

    2006-08-01

    We report the properties of a compact diode-pumped continuous-wave Nd:GdVO4 laser with a linear cavity and different Nd-doped laser crystals. In a 0.2 at.% Nd-doped Nd:GdVO4 laser, 1.54 W output laser power is achieved at 912 nm wavelength with a slope efficiency of 24.8% at an absorbed pump power of 9.4 W. With 0.3 at.% Nd-doping concentration, we can obtain the either single-wavelength emission at 1064 nm or 912 nm or the dual-wavelength emission at 1064 nm and 912 nm by controlling the incident pump power. From an incident pump power of 11.6 W, the 1064 nm emission between 4F3/2 and 4I11/2 is suppressed completely by the 912 nm emission between 4F3/2 and 4I9/2. We obtain 670 mW output of the 912 nm single-wavelength laser emission with a slope efficiency of 5.5% by taking an incident pump power of 18.4 W. Using a Nd:GdVO4 laser with 0.4 at.% Nd-doping concentration, we obtain either the single-wavelength emission at 1064 nm or the dual-wavelength emission at both 1064 nm and 912 nm by increasing the incident pump power. We observe a strong competition process in the dual-wavelength laser.

  3. Photoluminescence properties of AlN-doped BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors

    SciTech Connect

    Wang, Yong; Tang, Jianfeng; Ouyang, Xicheng; Liu, Buqiong; Lin, Rong Han

    2013-06-01

    Highlights: ► Ideal hexagonal shape particle size in 5 μm and 2.5–3 μm in thickness are obtained. ► The growth mechanism is studied by a computer simulation. ► The influence of introduced AlN on the sites of Eu{sup 2+} and photoluminescence properties was investigated. - Abstract: The AlN-doped BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors were synthesized by conventional solid-state reaction. Powder X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence spectrum (PL) were used for characterization. The growth mechanism was carried out by computer simulation with CASTEP application, and revealed that an ideal hexagonal shape, particle size in 5 μm and 2.5–3 μm in thickness, could be obtained by AlN doping. Additionally, due to the low electronegativity of N{sup 3−}, the AlN-doped sample showed 35% increase in PL intensity and improvement of thermal stability. These fine particle size and better photoluminescence properties are expected to be applicable to industrial production of BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors.

  4. High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey; Chambers, Matthew

    2011-01-01

    A new concept has been developed for a high-temperature luminescence-based optical thermometer that both shows the desired temperature sensitivity in the upper temperature range of present state-of-the-art luminescence thermometers (above 1,300 C), while maintaining substantial stronger luminescence signal intensity that will allow these optical thermometers to operate in the presence of the high thermal background radiation typical of industrial applications. This objective is attained by using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor with an orthorhombic perovskite structure, resulting in broadband luminescence that remains strong at high temperature due to the favorable electron energy level spacing of Cr:GdAlO3. The Cr:GdAlO3 temperature (and pressure) sensor can be incorporated into, or applied onto, a component s surface when a non-contact surface temperature measurement is desired, or alternatively, the temperature sensor can be attached to the end of a fiber-optic probe that can then be positioned at the location where the temperature measurement is desired. In the case of the fiber-optic probe, both the pulsed excitation and the luminescence emission travel through the fiber-optic light guide. In either case, a pulsed light source provides excitation of the luminescence, and the broadband luminescence emission is collected. Real-time temperature measurements are obtain ed using a least-squares fitting algorithm that determines the luminescence decay time, which has a known temperature dependence established by calibration. Due to the broad absorption and emission bands for Cr:GdAlO3, there is considerable flexibility in the choice of excitation wavelength and emission wavelength detection bands. The strategic choice of the GdAlO3 host is based on its high crystal field, phase stability, and distorted symmetry at the Cr3+ occupation sites. The use of the broadband emission for temperature sensing at high temperatures is a key feature of the invention and is

  5. Adsorption of carbon dioxide on Al12X clusters studied by density functional theory: effect of charge and doping.

    PubMed

    Zhao, Jian-Ying; Zhang, Yu; Zhao, Feng-Qi; Ju, Xue-Hai

    2013-11-27

    The adsorption of a CO2 molecule on neutral and charged X-centered icosahedron Al12X(±z) clusters (X = Al, Be, Zn, Ni, Cu, B, P; z = 0, 1) was investigated by the density functional PW91 and PWC methods. Optimized configurations corresponding to physisorption and chemisorption of CO2 were identified. The adsorption energies, activation barriers, and binding energies involving both the physisorption (Al12X(±z)·CO2-I) and chemisorption (Al12X(±z)·CO2-II) for CO2 were determined. The chemisorption of a CO2 molecule on the Al12X clusters (X is a metallic doping element) requires relatively low activation barriers. The lowest barrier was found to be with the Al12Be cluster. For the Al12X(-) clusters, the barriers are all higher than those of the neutral analogues. For the Al12X(+) clusters, two corresponding configurations are linked by a low-energy barrier, and CO2 molecule chemisorption on the Al12Be(+) cluster has the lowest barrier. The adsorption energies are larger than the energy barriers, which facilitates the chemisorption. The results show that carbon dioxide adsorbed on the Al12X(±z) clusters can be tuned by controllable X doping and the total number of valence electrons and suggest the potential application of Al12X(±z) nanostructures for carbon dioxide capture and activation.

  6. Al-Mg co-doping effect on optical and magnetic properties of ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Si, Xiaodong; Liu, Yongsheng; Wu, Xinfang; Lei, Wei; Lin, Jia; Gao, Tian; Zheng, Li

    2015-07-01

    Zn0.97 - xMgxAl0.03O (x = 0 , 0.01 , 0.03 and 0.05) nanoparticles were prepared by hydrothermal growth, and their optical and magnetic properties were systematically studied by the X-ray diffraction (XRD), the UV-visible spectrophotometer, the infrared spectrometer and the physical properties measurement system (PPMS). These results showed that all the nanopowders had hexagonal wurtzite structures. With increasing the content of Mg, the strength of the (110) intensity peak increased. When Mg atoms were not incorporated into the Zn0.97Al0.03O lattice, the infrared light transmittance was higher than that of other groups of samples. In the UV range, the absorption decreased with the increase of the concentration of Mg. Mg doping weakened the magnetic property of the nanoparticles at room temperature. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves were separated with the decrease of temperature due to the pinning effect between the ferromagnetic domain and antiferromagnetic domain.

  7. Optical properties of Yb3+ doped Lu3Al5O12 crystal fibers grown by μ-pulling down technique

    NASA Astrophysics Data System (ADS)

    Toncelli, Alessandra; Alshourbagy, Mohamed; Tonelli, Mauro

    2008-11-01

    Yb doped Lu3Al5O12 single crystal fibers has been grown with various Yb3+ ion concentrations: 2%, 5%, 10%, 15%, and 50% Yb doping levels. The diameter of the fibers is around 3mm and their length is up to 110mm. The fibers have been annealed in air at 1400°C for 24h to remove Yb2+ produced during the growth in the fibers. Structural characterization by x-ray diffraction method has been performed to confirm the monocrystalline phase and the orientation of the fibers. Absorption measurements have been performed on different pieces of the fibers to check the homogeneity of the distribution of Yb3+ along the fiber length. The results indicate that the distribution coefficient is close to 1. The fluorescence lifetime was measured for different Yb3+ concentrations. Results are in agreement with the literature and can be interpreted as a mixture of the radiation trapping and concentration quenching effects. The emission cross section has been calculated both from absorption spectra and from emission data. The two different independent methods give similar results, but emission data suffer from strong reabsorption effects on some of the lines. On the zero phonon line at high doping levels a central dip appears that can be interpreted with a reabsorption model.

  8. DX center analysis in Sn-doped AlGaAs layer of double heterostructures

    NASA Astrophysics Data System (ADS)

    Kaniewski, J.; Kaniewska, M.; Ždánský, K.

    1987-12-01

    Capacitance as well as photovoltage methods have been used to analyze deep centers in an n-type AlGaAs:Sn layer of double heterostructures. It is suggested that the trap with thermal activation energy equal to ΔE2=0.33±0.02 eV is associated with the L minimum of AlGaAs and could be interpreted as a DX center related to Sn. The observed changes of deep center concentration in double heterostructures are due to different Al contents within the depletion region.

  9. Effects of N concentration on electronic and optical properties of N-doped PbTiO3

    NASA Astrophysics Data System (ADS)

    Yinnü, Zhao; Jinliang, Yan

    2015-09-01

    The p-type N-doped PbTiO3 with different doping concentrations have been studied by first-principles calculations. The charge density differences, band structures, density of states and optical properties have been investigated. After an oxygen atom is substituted by a nitrogen atom in the crystals, the valance bands move to high energy levels and the Fermi energy level gets into the top of the valance bands. Results show that the values of the band gaps are decreased and the stability is weakened when the N concentration increases. The 2.5 at% N-doped PbTiO3 shows the best p-type conductivity and the visible-light absorption can be enhanced most at this doping concentration, which is necessary in semiconductors or photocatalysts. Project supported by the National Natural Science Foundation of China (No. 10974077) and the Innovation Project of Shandong Graduate Education, China (No. SDYY13093).

  10. Photon Irradiation Response on Ge and Al-Doped SiO2 Optical Fibres

    NASA Astrophysics Data System (ADS)

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Ali, Hassan; Asni, Hazila

    2010-07-01

    Recently, research groups have reported a number of radiation effects on the applications of SiO2 optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO2 optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  11. Photon Irradiation Response on Ge and Al-Doped SiO{sub 2} Optical Fibres

    SciTech Connect

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Asni, Hazila; Ali, Hassan

    2010-07-07

    Recently, research groups have reported a number of radiation effects on the applications of SiO{sub 2} optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO{sub 2} optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  12. Whey protein concentrate doped electrospun poly(epsilon-caprolactone) fibers for antibiotic release improvement.

    PubMed

    Ahmed, Said Mahmoud; Ahmed, Hanaa; Tian, Chang; Tu, Qin; Guo, Yadan; Wang, Jinyi

    2016-07-01

    Design and fabrication of scaffolds using appropriate biomaterials are a key step for the creation of functionally engineered tissues and their clinical applications. Poly(epsilon-caprolactone) (PCL), a biodegradable and biocompatible material with negligible cytotoxicity, is widely used to fabricate nanofiber scaffolds by electrospinning for the applications of pharmaceutical products and wound dressings. However, the use of PCL as such in tissue engineering is limited due to its poor bioregulatory activity, high hydrophobicity, lack of functional groups and neutral charge. With the attempt to found nanofiber scaffolds with antibacterial activity for skin tissue engineering, in this study, whey protein concentrate (WPC) was used to modify the PCL nanofibers by doping it in the PCL electrospun solution. By adding proteins into PCL nanofibers, the degradability of the fibers may be increased, and this further allows an antibiotic incorporated in the fibers to be efficiently released. The morphology, wettability and degradation of the as-prepared PCL/WPC nanofibers were carefully characterized. The results showed that the PCL/WPC nanofibers possessed good morphology and wettability, as well as high degradation ability to compare with the pristine PCL fibers. Afterwords, tetracycline hydrochloride as a model antibiotic drug was doped in the PCL/WPC nanofibers. In vitro drug release assays demonstrated that PCL/WPC nanofibers had higher antibiotic release capability than the PCL nanofibers. Also, antibacterial activity evaluation against various bacteria showed that the drug-doped PCL/WPC fibers possessed more efficient antibacterial activity than the PCL nanofibers. PMID:27022878

  13. Quantum criticality and inhomogeneous magnetic order in Fe-doped α -YbAlB4

    NASA Astrophysics Data System (ADS)

    MacLaughlin, D. E.; Kuga, K.; Shu, Lei; Bernal, O. O.; Ho, P.-C.; Nakatsuji, S.; Huang, K.; Ding, Z. F.; Tan, C.; Zhang, Jian

    2016-06-01

    The intermediate-valent polymorphs α - and β -YbAlB4 exhibit quantum criticality and other novel properties not usually associated with intermediate valence. Iron doping induces quantum criticality in α -YbAlB4 and magnetic order in both compounds. We report results of muon spin relaxation (μ SR ) experiments in α -YbAl1 -xFexB4 , x =0.014 and 0.25. For x =0.014 we find no evidence for magnetic order down to 25 mK. The dynamic muon spin relaxation rate λd exhibits a power-law temperature dependence λd∝T-a , a =0.40 (4 ) , in the temperature range 100 mK-2 K, in disagreement with predictions by theories of antiferromagnetic (AFM) or valence quantum critical behavior. For x =0.25 , where AFM order develops in the temperature range 7.5-10 K, we find coexistence of meso- or macroscopically segregated paramagnetic and AFM phases, with considerable disorder in the latter down to 2 K.

  14. Laser site-selective spectroscopy of Eu3+ ions doped Y4Al2O9

    NASA Astrophysics Data System (ADS)

    Kaczkan, M.; Turczyński, S.; Pawlak, D. A.; Wencka, M.; Malinowski, M.

    2016-08-01

    Eu3+ doped Y4Al2O9 (YAM) crystals were prepared by the micro-pulling down method. Optical-absorption and laser-selective-excitation techniques along with the luminescence decays have been used to reveal that Eu3+ ions in YAM occupy three distinct sites, which were characterized and discussed. The Stark energy levels of Eu3+ at three different sites in YAM were assigned from selectively excited emission spectra at 10 K. The intensity ratio of forced electric dipole (5D0 → 7F2) and magnetic dipole (5D0 → 7F1) transitions was discussed in order to obtain information about the degree of asymmetry of the luminescent centers. These results were confirmed by the luminescence lifetime measurements. The temperature dependent photo-luminescence spectra indicated that there is no energy transfer between different sites in the 10-300 K range.

  15. Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs

    SciTech Connect

    Globisch, B. Dietz, R. J. B.; Stanze, D.; Göbel, T.; Schell, M.

    2014-04-28

    The electron and hole dynamics in low-temperature-grown InGaAs/InAlAs multiple quantum well structures are studied by optical pump-probe transmission measurements for Beryllium (Be) doping levels between 3 × 10{sup 17} cm{sup −3} and 4 × 10{sup 18} cm{sup −3}. We investigate electron dynamics in the limit cases of unsaturated and completely saturated electron trapping. By expanding a rate equation model in these limits, the details of carrier dynamics are revealed. Electrons are trapped by ionized arsenic antisites, whereas recombination occurs between trapped electrons and holes trapped by negatively charged Be dopants.

  16. Angle-Dependent Microresonator ESR Characterization of Locally Doped Gd3 + :Al2O3

    NASA Astrophysics Data System (ADS)

    Wisby, I. S.; de Graaf, S. E.; Gwilliam, R.; Adamyan, A.; Kubatkin, S. E.; Meeson, P. J.; Tzalenchuk, A. Ya.; Lindström, T.

    2016-08-01

    Interfacing rare-earth-doped crystals with superconducting circuit architectures provides an attractive platform for quantum memory and transducer devices. Here, we present the detailed characterization of such a hybrid system: a locally implanted rare-earth Gd3 + in Al2O3 spin system coupled to a superconducting microresonator. We investigate the properties of the implanted spin system through angular-dependent microresonator electron spin resonance (micro-ESR) spectroscopy. We find, despite the high-energy near-surface implantation, the resulting micro-ESR spectra to be in excellent agreement with the modeled Hamiltonian, supporting the integration of dopant ions into their relevant lattice sites while maintaining crystalline symmetries. Furthermore, we observe clear contributions from individual microwave field components of our microresonator, emphasizing the need for controllable local implantation.

  17. Large persistent photochromic effect due to DX centers in AlSb doped with selenium

    SciTech Connect

    Becla, P.; Witt, A.G.; Lagowski, J.; Walukiewicz, W.

    1995-04-01

    A large photochromic effect has been observed in bulk AlSb crystals doped with Se. Illumination with light of energy higher than 1 eV leads to an increase of the absorption coefficient in the spectral range 0.1 to 1.6 eV. The enhanced absorption is persistent at temperatures below about K. The effect is a manifestation of a DX-like bistability of Se donors. The illumination transfers the from the DX center to a metastable hydrogenic level. The increased absorption with peaks around 0.2 eV and 0.5 is due to photoionization from the donor level to X{sub l} and X{sub 3} minima of the conduction band.

  18. Spin effects in thermoelectric properties of Al- and P-doped zigzag silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Zberecki, K.; Swirkowicz, R.; Barnaś, J.

    2014-04-01

    Electric and thermoelectric properties of silicene nanoribbons doped with Al and P impurity atoms are investigated theoretically for both antiparallel and parallel orientations of the edge magnetic moments. In the former case, appropriately arranged impurities can lead to a net magnetic moment, and thus also to spin dependent transport and spin thermoelectric phenomena. In the latter case, in turn, spin thermoelectric effects also occur in the absence of impurities. To calculate spin density distribution and transport parameters we use ab initio numerical methods based on the density functional theory. The obtained results clearly show that the spin thermopower can be considerably enhanced by the impurities. This enhancement appears in certain regions of chemical potential.

  19. Sputter deposition of Al-doped ZnO films with various incident angles

    SciTech Connect

    Sato, Yasushi; Yanagisawa, Kei; Oka, Nobuto; Nakamura, Shin-ichi; Shigesato, Yuzo

    2009-09-15

    Al-doped ZnO (AZO) films were sputter deposited on glass substrates heated at 200 degree sign C under incident angles of sputtered particles at 0 degree sign (incidence normal to substrate), 20 deg., 40 deg., 60 deg., and 80 deg. In the case of normal incidence, x-ray diffraction pole figures show a strong [001] preferred orientation normal to the film surface. In contrast, in the case wherein the incident angles were higher than 60 degree sign , the [001] orientation inclined by 25 deg. - 35 deg. toward the direction of sputtered particles. Transmission electron microscopy revealed that the tilt angle of the [001] orientation increased with increasing angle of the incident sputtered particles, whereas the columnar structure did not show any sign of inclination with respect to the substrate plane.

  20. Pulsed laser deposition of Al-doped ZnO films on glass and polycarbonate

    NASA Astrophysics Data System (ADS)

    Tan, Kwan Chu; Lee, Yen Sian; Yap, Seong Ling; Kok, Soon Yie; Nee, Chen Hon; Siew, Wee Ong; Tou, Teck Yong; Yap, Seong Shan

    2014-01-01

    Al-doped ZnO (AZO) films were deposited on glass and polycarbonate (PC) at room temperature by using pulsed Nd:YAG laser at 355 nm. AZO thin films were obtained for both substrates at laser fluences from 2 to 5 J/cm2 in O2 partial pressure of 2.1 Pa. The effects of laser fluence on the structural, electrical, and optical properties of the films were investigated. The films with lowest resistivity and highest transmittance have been obtained at 2 J/cm2. The resistivities were 2.29×10-3 Ω cm for AZO on glass and 1.49×10-3 Ω cm for AZO on PC. With increasing laser fluence, the deposited films have lower crystallinity, higher resistivity, and smaller optical bandgap.

  1. Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: A DFT calculation

    NASA Astrophysics Data System (ADS)

    Sun, Minglei; Hao, Yitong; Ren, Qingqiang; Zhao, Yiming; Du, Yanhui; Tang, Wencheng

    2016-09-01

    Using density functional theory computations, we systematically investigated the structural, electronic and magnetic properties of Al, Si, As and Sb doped blue phosphorene. The electronic properties of blue phosphorene can be effectively turned by substitutional doping. Especially, Al and Sb lead to an indirect-to-direct-gap transition. The interaction between the impurity and P atoms should be responsible for the transition. In addition, blue phosphorene can exhibit dilute magnetic semiconductor property with doping of Si impurity. The magnetic moment in Si-substituted blue phosphorene predominantly originates from the hybridization of Si-s pz and P-pz orbitals. These results provide many useful applications of blue phosphorene in electronics, optoelectronics and spintronics.

  2. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    PubMed

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  3. Enhanced Photoluminescence and Raman Properties of Al-Doped ZnO Nanostructures Prepared Using Thermal Chemical Vapor Deposition of Methanol Assisted with Heated Brass

    PubMed Central

    Thandavan, Tamil Many K.; Gani, Siti Meriam Abdul; San Wong, Chiow; Md. Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs. PMID:25756598

  4. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    PubMed

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs. PMID:25756598

  5. Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth

    SciTech Connect

    Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.; Emami, S. D.; Abdul-Rashid, H. A.; Yusoff, Z.

    2010-07-07

    Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths compared to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.

  6. TL and OSL studies of carbon doped magnesium aluminate (MgAl2O4:C)

    NASA Astrophysics Data System (ADS)

    Raj, Sanu S.; Mishra, D. R.; Soni, Anuj; Grover, V.; Polymeris, G. S.; Muthe, K. P.; Jha, S. K.; Tyagi, A. K.

    2016-10-01

    The MgAl2O4:C has been synthesized by using two different methods by electron gun and vacuum assisted melting of MgAl2O4 in presence of graphite. The MgAl2O4:C phosphor thus developed by these two different methods have similar types of the TL/OSL defects with multiple overlapping TL glow peaks from 100 °C to 400 °C. The Computerized Curve De-convolution Analysis (CCDA) has been used to measure TL parameters such as thermal trap depth, frequency factor and order of kinetic associated with charge transfer process in TL phenomenon. The investigated TL/OSL results show that these two methods of incorporating carbon in MgAl2O4 have generated closely resemble the defects of similar types in MgAl2O4:C lattice. However, the MgAl2O4:C synthesized by electron gun shows relatively larger concentration of the TL/OSL defects as compared to MgAl2O4:C synthesized using vacuum assisted melting method. The photo-ionization cross-section (PIC) associated with fastest OSL component of MgAl2O4: C is found to be ∼ 0.5 times than that of fastest OSL component of commercially available dosimetric grade α-Al2O3:C. The MgAl2O4:C thus developed shows good dynamic OSL dose linearity from few mGy to 1 Gy. This work reveals that MgAl2O4:C could be developed as potential tissue equivalent OSL / TL material.

  7. Determination of charge carrier concentration in doped nonpolar liquids by impedance spectroscopy in the presence of charge adsorption.

    PubMed

    Yezer, Benjamin A; Khair, Aditya S; Sides, Paul J; Prieve, Dennis C

    2016-05-01

    The impedance of dodecane doped with sorbitan trioleate (Span 85), sorbitan monooleate (Span 80) and sorbitan monolaurate (Span 20) was measured as a function of frequency using a 10 mV amplitude sinusoidal voltage applied across a parallel plate cell with a 10 μm spacing. The tested solutions varied in concentration from 1 mM to 100 mM and the frequency range was 10(-2)-10(4) Hz. Nyquist plots of all three surfactants showed the high frequency semicircle characteristic of parallel resistance and capacitance but often exhibited a second semicircle at low frequencies which was attributed to charge adsorption and desorption. The electrical conductivity of each surfactant was proportional to surfactant concentration for concentrations above 10mM. Fitting the data to models for charge migration, differential capacitance, and adsorption allowed extraction of both charge concentration and two kinetic parameters that characterize the rate of adsorption and desorption. Above 10 mM the ratio of charge carriers per surfactant molecule was 22 ppm for Span 20, 3 ppm for Span 80, and 0.2 ppm for Span 85. A higher number of charge carriers per molecule of surfactant was associated with larger micelles. The adsorption rate constants were independent of surfactant concentration while the desorption rate constants were proportional to the surfactant concentration. This dependence indicated that uncharged surfactant, whether in micelles or not, participated in the desorption of charge. Predictions of the adsorption/desorption model for large constant electric fields agreed qualitatively with data from the literature (Karvar et al., 2014).

  8. Impact of Al passivation and cosputter on the structural property of β-FeSi2 for Al-doped β-FeSi2/n-Si(100) based solar cells application.

    PubMed

    Dalapati, Goutam Kumar; Kumar, Avishek; Tan, Cheng Cheh; Liew, Siao Li; Sonar, Prashant; Seng, Hwee Leng; Hui, Hui Kim; Tripathy, Sudhiranjan; Chi, Dongzhi

    2013-06-26

    The aluminum (Al) doped polycrystalline p-type β-phase iron disilicide (p-β-FeSi2) is grown by thermal diffusion of Al from Al-passivated n-type Si(100) surface into FeSi2 during crystallization of amorphous FeSi2 to form a p-type β-FeSi2/n-Si(100) heterostructure solar cell. The structural and photovoltaic properties of p-type β-FeSi2/n-type c-Si structures is then investigated in detail by using X-ray diffraction, Raman spectroscopy, transmission electron microscopy analysis, and electrical characterization. The results are compared with Al-doped p-β-FeSi2 prepared by using cosputtering of Al and FeSi2 layers on Al-passivated n-Si(100) substrates. A significant improvement in the maximum open-circuit voltage (Voc) from 120 to 320 mV is achieved upon the introduction of Al doping through cosputtering of Al and amorphous FeSi2 layer. The improvement in Voc is attributed to better structural quality of Al-doped FeSi2 film through Al doping and to the formation of high quality crystalline interface between Al-doped β-FeSi2 and n-type c-Si. The effects of Al-out diffusion on the performance of heterostructure solar cells have been investigated and discussed in detail.

  9. Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3Al2Ga3O12 crystals

    NASA Astrophysics Data System (ADS)

    Lucchini, M. T.; Babin, V.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E.

    2016-04-01

    Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd3Al2Ga3O12 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd3Al2Ga3O12 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd3Al2Ga3O12 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.

  10. Composition Optimization of Al-DOPING Lithium Manganese Oxide from Al2O3-Li2CO3-MnO2 Ternary System

    NASA Astrophysics Data System (ADS)

    He, Gang; Sun, Xinyan; Hong, Jianhe; He, Mingzhong

    2013-07-01

    In order to synthesize eutectic compound of Al doping lithium manganese oxide which can be used as cathode material in lithium battery, using γ-Al2O3, Li2CO3 and MnO2 as starting raw materials, the composition optimization research work has been done by the solid state synthesis method. A limited composition range was found in Al2O3-Li2CO3-MnO2 ternary system, in which the synthesized Al doping lithium manganese oxides have single spinel structure and good electrochemical performance. The results showed that the LiAl0.04Mn1.96O4 material presented better charge-discharge cycling behavior than pure LiMn2O4, and showed the best electrochemistry property among the compounds in the Al2O3-Li2O-Mn2O3 ternary system. LiAl0.04Mn1.96O4 still kept perfect cubic structure, but LiMn2O4 kept the coexistence of the cubic and tetragonal phases after 50 charge-discharge cycles.

  11. Identification of photoluminescence bands in AlGaAs/InGaAs/GaAs PHEMT heterostructures with donor-acceptor-doped barriers

    SciTech Connect

    Gulyaev, D. V. Zhuravlev, K. S.; Bakarov, A. K.; Toropov, A. I.

    2015-02-15

    The photoluminescence of AlGaAs/InGaAs/GaAs pseudomorphic high-electron mobility transistor heterostructures with donor-acceptor-doped AlGaAs barriers is studied. It is found that the introduction of additional p{sup +}-doped AlGaAs layers into the design brings about the appearance of new bands in the photoluminescence spectra. These bands are identified as resulting from transitions (i) in donor-acceptor pairs in doped AlGaAs layers and (ii) between the conduction subband and acceptor levels in the undoped InGaAs quantum well.

  12. Yb doping concentration and temperature influence on Yb:LuAG thermal lensing

    NASA Astrophysics Data System (ADS)

    Veselský, Karel; Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2016-03-01

    The aim of this study was to investigate whether refractive power of thermal lens for Yb:LuAG crystal at cryogenic temperatures depends on Yb doping concentration which has not been examined yet. The three measured Yb:LuAG laser rods samples (length of 3 mm, diameter 3 mm, AR @ 0.94 μm and 1.03 μm, doping concentration 5.4, 8.4 and 16.6 at. % Yb/Lu) were mounted in the temperature controlled copper holder of the liquid nitrogen cryostat. Samples were longitudinally pumped with fiber coupled CW laser diode at 0.930 μm with the focal point 0.4 mm in diameter. The 38 mm long semi-hemispherical laser resonator consisted of a flat pump mirror (HR @ 1.03 μm and HT 0.94 μm) and curved output coupler (r=500 mm) of reflectivity 94 % @ 1.06 μm. The refractive power of thermal lens was estimated indirectly by measuring of change in the position of focused laser beam focal point. The measurement was performed for constant absorbed power of 10 W in temperature range from 80 up to 240 K. It was observed that cryogenic cooling caused reduction of thermal lens power, which increased linearly with increasing temperature. For temperatures from 80 to 160 K refractive power was identical for all concentration. For higher temperature the refractive power of thermal lens increased with increasing Yb3+ concentration. Presented study shows that application of cryogenic temperature leads to reduction of thermal effect even for high dopant concentration in Yb:LuAG crystal. This is essential for reaching of high output power while maintaining high beam quality.

  13. Effect of gallium concentrations on the morphologies, structural and optical properties of Ga-doped ZnO nanostructures.

    PubMed

    Algarni, H; El-Gomati, M M; Al-Assiri, M S

    2014-07-01

    The effect of gallium ion concentrations (0.5 and 2%) on the morphologies, structural and optical properties of Ga-doped ZnO nanostructures are presented. Ga-doped ZnO nanostructures were synthesized on silicon substrates by simple thermal evaporation process using metallic zinc and Ga powders in the presence of oxygen. Interestingly, it was observed that Ga-ions incorporation in ZnO nanomaterials play an important role on the growth kinetics and hence on the morphologies of as-grown Ga-doped ZnO nanostructures. It was seen that at low Ga-concentration, needle-shaped Ga-doped ZnO nanostructures are formed, presumably by subsequent stacking of hexagonal plates. However, when increasing the Ga-concentration, multipods of Ga-doped ZnO were grown. In addition to the morphologies, incorporating Ga-ions into ZnO also affect the room-temperature photoluminescence properties. Therefore, at lower Ga-ion concentration, an intense UV emission was observed while at high Ga-concentration a deep level emission was seen in the room-temperature photoluminescence spectra. This research demonstrates that by controlling the Ga-ion concentration the morphologies and optical properties of ZnO nanomaterials can be tailored.

  14. Optical properties analysis of Ta-doped TiO{sub 2} thin films on LaAlO{sub 3} substrates

    SciTech Connect

    Nurfani, Eka; Sutjahja, Inge M.; Rusydi, Andrivo; Darma, Yudi

    2015-09-30

    We study optical properties of Ta-doped TiO{sub 2} thin film on LaAlO{sub 3} substrate using spectroscopy ellipsometry (SE) analysis at energy range of 0.5 – 6.5 eV. Room temperature SE data for Ψ (amplitude ratio) and Δ (phase difference) between p- and s- polarized light waves are taken with multiple incident angles at several spots on the samples. Here, absorption coefficient has been extracted from SE measurements at photon incident angle of 70° for different Ta concentration (0.01, 0.4, and 5 at. %). Multilayer modelling is performed which takes into account reflections at each interface through Fresnel coefficients to obtain reasonably well the fitting of Ψ and Δ data simultaneously. As the results, we estimate that film thickness increases by increasing Ta concentration accompanied by the formation of a new electronic structure. By increasing Ta impurities, the blueshift of absorption coefficient (α) peaks is observable. This result indicates that TiO{sub 2} thin film becomes optically resistive by introducing Ta doping. Schematic model of interband transition inTiO{sub 2}:Ta will be proposed base on obtained optical properties. This study enables us to predict the role of Ta doping on the electronic and optical band structures of TiO{sub 2} thin film.

  15. Effects of annealing pressure and Ar+ sputtering cleaning on Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Wang, Jiwei; Mei, Yong; Lu, Xuemei; Fan, Xiaoxing; Kang, Dawei; Xu, Panfeng; Tan, Tianya

    2016-11-01

    Post-treatments of Al-doped ZnO films fabricated by sol-gel method were studied in condition of annealing in air, vacuum and protective ambient, as well as the follow-up Ar+ sputtering cleaning. The effect of annealing pressure on resistivity of AZO films was investigated from 105 to 10-4 Pa, where the resistivity decreased four orders of magnitude as the pressure decreased and approached to its minimum at 10 Pa. It was observed that the main decreasing of resistivity occurred in a very narrow range of middle vacuum (between 100 and 10 Pa) and high vacuum was dispensable. The XRD and XPS characterizations demonstrated that the radical increasing of oxygen vacancy, Zn interstitial and substitution of Al3+ for Zn2+ under middle vacuum were responsible for the significant enhancement of conductivity. The follow-up Ar+ sputtering cleaning can further decrease the resistivity through removing the chemisorbed oxygen on film surface and grain boundaries, meanwhile fulfil the surface texture process, and thus improve both electrical and optical performances for applications.

  16. Modeling of oxidation kinetics of Y-doped Fe-Cr-Al alloys

    SciTech Connect

    Liu, Z.; Gao, W.; He, Y.

    2000-04-01

    Studies using advanced analytical techniques indicated that the reactive elements (RE) segregate along the oxide grain boundaries and at the oxide-alloy interface during oxidation of {alpha}-Al{sub 2}O{sub 3} forming alloys. The segregation results in inward oxygen diffusion along the oxide grain boundaries as the predominant transport process in the oxide growth. The present work establishes a mathematical model based on the mechanisms of inward oxygen diffusion along the grain boundaries and oxide grain coarsening. This model has been used to describe the oxidation kinetics of Y-doped Fe-Cr-Al alloys. The results showed a much better agreement with the experimental data than the parabolic rate law. By using this model, the exponential number for the grain coarsening of alumina scales during oxidation was calculated to be {approximately}3. The activation energy for oxygen diffusing along the grain boundaries was 450 kJ/mol. They are also in good agreement with values reported in the literatures.

  17. Solution doped preform with improved uniformity and concentration using dual-layer soot deposition

    NASA Astrophysics Data System (ADS)

    Muhd-Yassin, S. Z.; Omar, Nasr Y. M.; Mat-Sharif, K. A.; Zulkifli, M. I.; Safar, M. H.; Aljamimi, S. M.; Yusoff, Z.; Emami, S. D.; Paul, M. C.; Abdul-Rashid, H. A.

    2016-03-01

    A new method of soot deposition to improve the characteristics of a solution-doped optical fibre preform is reported. The soot was generated using a modified chemical vapour deposition (MCVD) technique. A better longitudinal uniformity of the core refractive index profile and a higher degree of dopant incorporation were obtained when two layers of soot were deposited in the core. These improvements were further extended by depositing each layer at different temperatures. A variation of 0.15 × 10-2 (%RSD 3.5%) in the refractive index difference along 23 cm of the preform and a core-to-cladding refractive index difference of approximately 0.012 were achieved using a 1.2 M AlCl3 solution.

  18. Computational materials design of negative effective U system in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Fukushima, Tetsuya; Uede, Hiroki; Katayama-Yoshida, Hiroshi

    2015-03-01

    In order to realize the super-high-TC superconductors (TC>1,000K) based on the general design rules for the negative Ueff system, we have performed computational materials design for theUeff<0 system in the hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 from the first principles. We find the interesting chemical trend of TC in 2D and 3D systems; where the TC increases exponentially in the weak coupling regime (|Ueff (-0.44eV)|< W(2eV), W is the band width) for hole-doped CuFeS2, then the TC goes through a maximum when |Ueff (-4.88eV, -4.14eV)| ~ W (2.8eV, 3.5eV) for hole-doped AgAlO2 and AuAlO2, and the TC decreases with increasing |Ueff|in strong coupling regime, where |Ueff (-4.53eV)|> W(1.7eV) for hole-doped CuAlO2

  19. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Podhorodecki, A.; Banski, M.; Misiewicz, J.; Lecerf, C.; Marie, P.; Cardin, J.; Portier, X.

    2010-09-01

    Gallium oxide and more particularly β-Ga2O3 matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samples that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.

  20. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    SciTech Connect

    Podhorodecki, A.; Banski, M.; Misiewicz, J.; Lecerf, C.; Marie, P.; Cardin, J.; Portier, X.

    2010-09-15

    Gallium oxide and more particularly {beta}-Ga{sub 2}O{sub 3} matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samples that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.

  1. Measurements of radon gas concentrations in dwellings of Al-Madinah Al-Munawarah province in Saudi Arabia.

    PubMed

    Mohamed, R I; Alfull, Z Z; Dawood, N D

    2014-01-01

    Indoor radon concentration levels in a large number of dwellings in Al-Madinah Al-Munawarah Province have been measured. Al-Madinah Al-Munawarah is in the western region of Saudi Arabia. It is the second holiest city in Islam after Mecca, because it is the burial place of the Islamic Prophet Muhammad. The city was divided into four regions: western (contains nine sites), eastern (contains six sites), northern (contains nine sites) and southern (contains five sites). Radon gas concentration was measured using the closed chamber technique employing 2×2 cm(2) sheets of CR-39 solid-state nuclear track detectors. The detectors were kept for a period of 5 to 6 months from September 2010 to February 2011 in order to expose to radon gas. The results of the survey in the western and eastern sites showed that the overall minimum, maximum and average radon concentration levels were 20±1.6, 27±3.2 and 21±2.5 Bq m(-3), respectively. The lowest average radon concentration (20±1.6 Bq m(-3)) was found in Al Anabes and Al Suqya in the western region and Bani Dhafar in the eastern region, while the highest average concentration (27±3.2 Bq m(-3)) was found in Teeyba in the western region and Al 'Aridh in the eastern region, with an average of 21±2.5 Bq m(-3) in the western and eastern sites of Al-Madinah Al-Munawarah. Also in the northern region, the minimum radon concentration was 20±1.6 Bq m(-3) in Oyun, while the maximum was 42±1.6 Bq m(-3) in Sayyed al Shuhadd and Hai Nasr. In the southern region, the minimum radon concentration was 25±2.6 Bq m(-3) at Hai Al Hejrah, while the maximum value was 37±2.6 Bq m(-3) at Al Awali and Dawadia. The average radon concentration was 26±2.5 Bq m(-3) for Al-Madinah Al-Munawarah (western, eastern, northern and southern regions). The corresponding annual effective dose E (mSv y(-1)) to public from (222)Rn and its progeny was estimated to be 0.66 mSv y(-1) as an average value for Al-Madinah Al-Munawarah. The authors concluded that all

  2. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    DOE PAGES

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T.; Martinez, Julio A.

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN coremore » of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.« less

  3. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    SciTech Connect

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T.; Martinez, Julio A.

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  4. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.

    PubMed

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T; Martinez, Julio A

    2016-01-01

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  5. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.

    PubMed

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T; Martinez, Julio A

    2016-01-01

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power. PMID:26606258

  6. Computational study of Al- or P-doped single-walled carbon nanotubes as NH3 and NO2 sensors

    NASA Astrophysics Data System (ADS)

    Azizi, Khaled; Karimpanah, Mohammad

    2013-11-01

    Density functional theory (DFT) calculations were carried out to analyze the electronic and structural properties of pristine and aluminum or phosphorus doped (8,0) single walled carbon nanotube (SWCNT) as a sensor for the detection of nitrogen dioxide (NO2) and ammonia (NH3). The binding energies, equilibrium gas-nanotube distances, the amounts of charge transfer and molecular orbital schemes as well as the density of states have been calculated and used to interpret the mechanism of gas adsorption on the surface of nanotubes. In agreement with the experimental data, our results show considerable binding energy and energy gap alteration due to the adsorption of NO2 on pristine SWCNT. The results reveal that the doping of both Al and P atoms increase the capability of the nanotube for the adsorption of NO2, and the effect is more significant for the Al-doped nanotube. The Al-doped nanotube can also be considered as a good sensor for NH3 due to its high binding energy, considerable amount of charge transfer and energy band gap alteration.

  7. Effects of Al(3+) doping on the structure and properties of goethite and its adsorption behavior towards phosphate.

    PubMed

    Li, Wei; Wang, Longjun; Liu, Fan; Liang, Xiaoliang; Feng, Xionghan; Tan, Wenfeng; Zheng, Lirong; Yin, Hui

    2016-07-01

    Al substitution in goethite is common in soils, and has strong influence on the structure and physicochemical properties of goethite. In this research, a series of Al-doped goethites were synthesized, and characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The adsorption behavior of these samples towards PO4(3-) was also investigated. Characterization results demonstrated that increasing Al content in goethite led to a reduction in crystallinity, increase in specific surface area (SSA), and morphology change from needle-like to granular. Rietveld structure refinement revealed that the lattice parameter a remained almost constant and b slightly decreased, but c was significantly reduced, and the calculated crystal density increased. EXAFS analysis demonstrated that the Fe(Al)-O distance in the structure of the doped goethites was almost the same, but the Fe-Fe(Al) distance decreased with increasing Al content. Surface analysis showed that, with increasing Al content, the content of OH groups on the mineral surface increased. The adsorption of phosphate per unit mass of Al-doped goethite increased, while adsorption per unit area decreased owing to the decrease of the relative proportion of (110) facets in the total surface area of the minerals. The results of this research facilitate better understanding of the effect of Al substitution on the structure and properties of goethite and the cycling of phosphate in the environment. PMID:27372115

  8. Effects of Al(3+) doping on the structure and properties of goethite and its adsorption behavior towards phosphate.

    PubMed

    Li, Wei; Wang, Longjun; Liu, Fan; Liang, Xiaoliang; Feng, Xionghan; Tan, Wenfeng; Zheng, Lirong; Yin, Hui

    2016-07-01

    Al substitution in goethite is common in soils, and has strong influence on the structure and physicochemical properties of goethite. In this research, a series of Al-doped goethites were synthesized, and characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The adsorption behavior of these samples towards PO4(3-) was also investigated. Characterization results demonstrated that increasing Al content in goethite led to a reduction in crystallinity, increase in specific surface area (SSA), and morphology change from needle-like to granular. Rietveld structure refinement revealed that the lattice parameter a remained almost constant and b slightly decreased, but c was significantly reduced, and the calculated crystal density increased. EXAFS analysis demonstrated that the Fe(Al)-O distance in the structure of the doped goethites was almost the same, but the Fe-Fe(Al) distance decreased with increasing Al content. Surface analysis showed that, with increasing Al content, the content of OH groups on the mineral surface increased. The adsorption of phosphate per unit mass of Al-doped goethite increased, while adsorption per unit area decreased owing to the decrease of the relative proportion of (110) facets in the total surface area of the minerals. The results of this research facilitate better understanding of the effect of Al substitution on the structure and properties of goethite and the cycling of phosphate in the environment.

  9. Solar-blind Al x Ga1- x N ( x > 0.45) p- i- n photodiodes with a polarization- p-doped emitter

    NASA Astrophysics Data System (ADS)

    Kuznetsova, N. V.; Nechaev, D. V.; Shmidt, N. M.; Karpov, S. Yu.; Rzheutskii, N. V.; Zemlyakov, V. E.; Kaibyshev, V. Kh.; Kazantsev, D. Yu.; Troshkov, S. I.; Egorkin, V. I.; Ber, B. Ya.; Lutsenko, E. V.; Ivanov, S. V.; Jmerik, V. N.

    2016-06-01

    Polarization-induced p-type doping of AlGaN layers with high aluminum content during plasmaassisted MBE growth has been studied. It is shown that a gradient of the AlN molar fraction in AlGaN (composition gradient) on a level of 0.005 nm-1 must be set in order to obtain a hole concentration of ~1018 cm-3 (measured by the C- V method) in Al x Ga1- x N:Mg ( x = 0.52-0.32) layers with dopant concentration [Mg] = 1.3 × 1018 cm-3. p- i- n photodiodes based on AlGaN heterostructures with such layers as p-emitters showed maximum photoresponsitivity in the solar-blind wavelength range (λ = 281 nm) about 35 and 48 mA/W at reverse bias voltage U = 0 and-5 V, respectively, and exhibited a dark current density of 3.9 × 10-8 A/cm2 at U =-5 V.

  10. The effect of 0.025 Al-doped in Li4Ti5O12 material on the performance of half cell lithium ion battery

    NASA Astrophysics Data System (ADS)

    Priyono, Slamet; Triwibowo, Joko; Prihandoko, Bambang

    2016-02-01

    The effect of 0.025 Al-doped Li4Ti5O12 as anode material for Lithium Ion battery had been studied. The pure and 0.025 Al-doped Li4Ti5O12 were synthesized through solid state process in air atmosphere. Physical characteristics of all samples were observed by XRD, FTIR, and PSA. The XRD analysis revealed that the obtained particle was highly crystalline and had a face-centered cubic spinel structure. The XRD pattern also showed that the 0.025 Al-doped on the Li4Ti5O12 did not change crystal structure of Li4Ti5O12. FTIR analysis confirmed that the spinel structure in fingerprint region was unchanged when the structure was doped by 0.025 Al. However the doping of 0.025 Al increased particle size significantly. The electrochemical performance was studied by using cyclic voltammetry (CV) and charge-discharge (CD) curves. Electrochemical analysis showed that pure Li4Ti5O12 has higher capacity than 0.025 Al-doped Li4Ti5O12 had. But 0.025 Al-doped Li4Ti5O12 possesses a better cycling stability than pure Li4Ti5O12.

  11. Growth temperature dependence of Si doping efficiency and compensating deep level defect incorporation in Al{sub 0.7}Ga{sub 0.3}N

    SciTech Connect

    Armstrong, Andrew M. Moseley, Michael W.; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan J.

    2015-05-14

    The growth temperature dependence of Si doping efficiency and deep level defect formation was investigated for n-type Al{sub 0.7}Ga{sub 0.3}N. It was observed that dopant compensation was greatly reduced with reduced growth temperature. Deep level optical spectroscopy and lighted capacitance-voltage were used to understand the role of acceptor-like deep level defects on doping efficiency. Deep level defects were observed at 2.34 eV, 3.56 eV, and 4.74 eV below the conduction band minimum. The latter two deep levels were identified as the major compensators because the reduction in their concentrations at reduced growth temperature correlated closely with the concomitant increase in free electron concentration. Possible mechanisms for the strong growth temperature dependence of deep level formation are considered, including thermodynamically driven compensating defect formation that can arise for a semiconductor with very large band gap energy, such as Al{sub 0.7}Ga{sub 0.3}N.

  12. Study on preparation and luminescent properties of Eu{sup 3+}-doped LaAlO{sub 3} and GdAlO{sub 3}

    SciTech Connect

    Dong, Xiaorui; Cui, Xiaoyun; Fu, Zuoling; Zhou, Shihong; Zhang, Siyuan; Dai, Zhenwen

    2012-02-15

    Graphical abstract: The optical property of Eu{sup 3+} ions is seriously influenced by the two kinds of host materials of LaAlO{sub 3} and GdAlO{sub 3}, especially the charge transfer (CT) band energy of Eu{sup 3+}-O{sup 2-}. We have discussed it in detail based on experiments and quantitative calculations. Highlights: Black-Right-Pointing-Pointer Ln{sub 1-x}AlO{sub 3}:Eu{sub x}{sup 3+} (Ln = La, Gd) phosphors were prepared by sol-gel method. Black-Right-Pointing-Pointer The optical properties of Ln{sub 1-x}AlO{sub 3}:Eu{sub x}{sup 3+} (Ln = La, Gd) phosphors have been investigated in detail. Black-Right-Pointing-Pointer We quantitatively calculated the bond lengths and bond covalency of Gd-O and La-O bonds. Black-Right-Pointing-Pointer The calculated charge transfer energies of Eu{sup 3+}-doped LnAlO{sub 3} (Ln = La, Gd) are in good agreement with our experimental results. -- Abstract: Eu{sup 3+}-doped trigonal LaAlO{sub 3} and orthorhombic GdAlO{sub 3} phosphors have been successfully synthesized by sol-gel method. The crystallization processes of the phosphors have been characterized by X-ray diffraction (XRD) and thermogravimetry-differential scanning calorimetry (TG-DSC). The optical properties of these phosphors were investigated using the photoluminescence (PL) and photoluminescence excitation (PLE) spectra. The influences of the different structures and bonding of the hosts on the luminescence performance of Eu{sup 3+} ion-doped LaAlO{sub 3} and GdAlO{sub 3} were investigated in detail based on chemical bond theory. Under appropriate UV-radiation, the reddish orange light emitted from GdAlO{sub 3}:Eu{sup 3+} was brighter than that from LaAlO{sub 3}:Eu{sup 3+}. Such a brightly luminescent phosphor could be considered as an ideal optical material for the development of new optical display systems.

  13. Atomic layer deposition of Al-doped ZnO films using ozone as the oxygen source: A comparison of two methods to deliver aluminum

    SciTech Connect

    Yuan Hai; Luo Bing; Yu Dan; Cheng, An-jen; Campbell, Stephen A.; Gladfelter, Wayne L.

    2012-01-15

    Aluminum-doped ZnO films were prepared by atomic layer deposition at 250 deg. C using diethylzinc (DEZ), trimethylaluminum (TMA), and ozone as the precursors. Two deposition methods were compared to assess their impact on the composition, structural, electrical, and optical properties as a function of Al concentration. The first method controlled the Al concentration by changing the relative number of Al to Zn deposition cycles; a process reported in the literature where water was used as the oxygen source. The second method involved coinjection of the DEZ and TMA during each cycle where the partial pressures of the precursors control the aluminum concentration. Depth profiles of the film composition using Auger electron spectroscopy confirmed a layered microstructure for the films prepared by the first method, whereas the second method led to a homogeneous distribution of the aluminum throughout the ZnO film. Beneath the surface layer the carbon concentrations for all of the films were below the detection limit. Comparison of their electrical and optical properties established that films deposited by coinjection of the precursors were superior.

  14. Raman study of the Verwey transition in Magnetite at high-pressure and low-temperature; effect of Al doping

    NASA Astrophysics Data System (ADS)

    Gasparov, Lev; Shirshikova, Z.; Pekarek, T. M.; Blackburn, J.; Struzhkin, V.; Gavriliuk, A.; Rueckamp, R.; Berger, H.

    2012-02-01

    We report high-pressure low-temperature Raman measurements of the Verwey transition in pure and Al --doped magnetite (Fe3O4) Al-doped magnetite Fe2.8Al0.2O4 (TV=116.5K) displays a nearly linear decrease of the transition temperature with an increase of pressure yielding dP/dTV=-0.096±0.013 GPa/K. In contrast pure magnetite displays a significantly steeper slope of the PT equilibrium line with dP/dTV = -0.18±0.013 GPa/K. Contrary to earlier high pressure resistivity reports we do not observe quantum critical point behavior at 8 GPa in the pure magnetite. Our data indicates that Al doping leads to a smaller entropy change and larger volume expansion at the transition. The trends displayed by the data are consistent with the mean field model of the transition that assumes charge ordering in magnetite.

  15. Effect of capping agent concentration on thermoluminescence and photoluminescence of copper-doped zinc sulfide nanoparticles.

    PubMed

    Wanjari, Lata; Bisen, D P; Brahme, Namita; Sahu, Ishwar Prasad; Sharma, Ravi

    2015-08-01

    Copper-doped zinc sulfide (ZnS:Cu) nanoparticles with varying concentrations of capping agent were prepared using a chemical route technique. These particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy and X-ray diffraction (XRD). Optical absorption studies showed that the absorption edge shifted towards the blue region as the concentration of the capping agent increased. Using effective mass approximation, calculation of the nanoparticle size indicated that effective band gap energy increases with decreasing particle size. The thermoluminescence (TL) properties of sodium hexameta phosphate (SHMP)-passivated ZnS:Cu nanoparticles were investigated after UV irradiation at room temperature. The TL glow curve of capped ZnS:Cu showed variations in TL peak position and intensity with the change in capping agent concentration. The photoluminescence (PL) spectra of ZnS:Cu nanoparticles excited at 254 nm exhibited a broad green emission band peaking around 510 nm, which confirmed the characteristic feature of Zn(2+) as well as Cu(2+) ions as the luminescent centres in the lattice. The PL spectra of ZnS:Cu nanoparticles with increasing capping agent concentrations revealed that the emission becomes more intense and shifted towards shorter wavelengths as the sizes of the samples were reduced.

  16. Optical properties of Pr and Eu-doped SrAl12O19: A theoretical study

    NASA Astrophysics Data System (ADS)

    Rezende, Marcos V. dos S.; Amaral, Jomar B.; Valerio, Mário E. G.; Jackson, Robert A.

    2015-10-01

    This paper describes a computational study of extrinsic defect and optical properties of SrAl12O19 induced by trivalent rare earth dopants. Solution energies for a range of possible doping mechanisms are calculated, and predictions made of doping sites and charge-compensation schemes. Atomistic modelling is used to calculate the symmetry and detailed geometry of the dopant ion-host lattice system, and this information is then used to calculate the crystal field parameters. It is found that the preferred doping mechanism for Pr is a substitution at Sr2+ sites, with charge compensation by anti-site and for Eu is a substitution at the Al3+ site. Crystal field parameters have been calculated and the results discussed in terms of optical properties of the doped systems. Bkq values indicate that the site symmetry is D2h. The transition levels are then calculated for the Pr3+ and Eu3+-substituted material, and comparisons made with experimental results have a good agreement.

  17. Plasmon-enhanced UV and blue upconverted emissions of Tm3+-doped 12CaO·7Al2O3 nanocrystals by attaching Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhu, Hancheng; Liu, Yuxue; Zhao, Dongxing; Zhang, Meng; Yang, Jian; Yan, Duanting; Liu, Chunguang; Xu, Changshan; Layfield, Carter; Ma, Li; Wang, Xiaojun

    2016-09-01

    Tm3+-doped 12CaO·7Al2O3 (C12A7) nanocrystals with the grain size of 360 nm have been fabricated by chemical co-precipitation method. Up-converted emissions at 367, 457, 476, 648, and 682 nm, corresponding to the 1D2 → 3H6, 1D2 → 3F4, 1G4 → 3H6, 1G4 → 3F4, and 3F3 → 3H6 transitions, respectively, are observed under 808 nm excitation. Plasmon-enhanced ultraviolet (UV) and blue upconverted emissions of Tm3+-doped C12A7 nanocrystals have been achieved by attaching Ag nanoparticles onto the surface of nanocrystals. The enhancement of the upconverted emissions is highly wavelength-dependent. The emission intensities of the sample with Ag+ concentration of 5.0 × 10-3 mol/L at 367 and 476 nm are enhanced about 10 and 3 times, respectively, relative to the sample without Ag attachment. The enhancement mechanism can be ascribed to surface plasmon resonance due to the highly localized electric field and the increased radiative decay rate around Ag nanoparticles. Our results suggest that Tm3+-doped C12A7 nanocrystals by attaching Ag nanoparticles might be a potential material for upconversion, compact and tunable short-wavelength lasers.

  18. Si and Mg pair-doped interlayers for improving performance of AlGaN/GaN heterostructure field effect transistors grown on Si substrate

    NASA Astrophysics Data System (ADS)

    Ni, Yi-Qiang; He, Zhi-Yuan; Yao, Yao; Yang, Fan; Zhou, De-Qiu; Zhou, Gui-Lin; Shen, Zhen; Zhong, Jian; Zheng, Yue; Zhang, Bai-Jun; Liu, Yang

    2015-05-01

    We report a novel structure of AlGaN/GaN heterostructure field effect transistors (HFETs) with a Si and Mg pair-doped interlayer grown on Si substrate. By optimizing the doping concentrations of the pair-doped interlayers, the mobility of 2DEG increases by twice for the conventional structure under 5 K due to the improved crystalline quality of the conduction channel. The proposed HFET shows a four orders lower off-state leakage current, resulting in a much higher on/off ratio (˜ 109). Further temperature-dependent performance of Schottky diodes revealed that the inhibition of shallow surface traps in proposed HFETs should be the main reason for the suppression of leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 51177175 and 61274039), the National Basic Research Project of China (Grant Nos. 2010CB923200 and 2011CB301903), the Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Sci. & Tech. Collaboration Program of China (Grant No. 2012DFG52260), the National High-tech R&D Program of China (Grant No. 2014AA032606), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17).

  19. Alignment and structural control of nitrogen-doped carbon nanotubes by utilizing precursor concentration effect

    NASA Astrophysics Data System (ADS)

    Deng, Weina; Chen, Xiaohua; Chen, Xian; Liu, Zheng; Zeng, Ying; Hu, Aiping; Xiong, Yina; Li, Zhe; Tang, Qunli

    2014-11-01

    Nitrogen-doped carbon nanotubes (NCNTs) were prepared using a simple ultrasonic spray pyrolysis method. The precursor concentration effect was examined to effectively control alignment, open tip and diameter of the NCNTs by changing xylene/cyclohexylamine ratio. The structure and morphology of the resultant NCNTs were characterized by scanning electron microscopy, transmission electron microscopy and x-ray photoelectron spectroscopy. The degree of alignment and the diameter of the NCNTs increased as the xylene/cyclohexylamine precursor mixture was changed from 0 to 35% cyclohexylamine. This precursor composition also caused a large number of open-ended nanotubes to form with graphite layers inside the cavities of the NCNTs. However, further increase cyclohexylamine content in the precursor reduced the degree of alignment and diameter of the NCNTs. We demonstrate control over the NCNT alignment and diameter, along with the formation of open-ended nanotube tips, and propose a growth mechanism to understand how these properties are interlinked.

  20. Alignment and structural control of nitrogen-doped carbon nanotubes by utilizing precursor concentration effect.

    PubMed

    Deng, Weina; Chen, Xiaohua; Chen, Xian; Liu, Zheng; Zeng, Ying; Hu, Aiping; Xiong, Yina; Li, Zhe; Tang, Qunli

    2014-11-28

    Nitrogen-doped carbon nanotubes (NCNTs) were prepared using a simple ultrasonic spray pyrolysis method. The precursor concentration effect was examined to effectively control alignment, open tip and diameter of the NCNTs by changing xylene/cyclohexylamine ratio. The structure and morphology of the resultant NCNTs were characterized by scanning electron microscopy, transmission electron microscopy and x-ray photoelectron spectroscopy. The degree of alignment and the diameter of the NCNTs increased as the xylene/cyclohexylamine precursor mixture was changed from 0 to 35% cyclohexylamine. This precursor composition also caused a large number of open-ended nanotubes to form with graphite layers inside the cavities of the NCNTs. However, further increase cyclohexylamine content in the precursor reduced the degree of alignment and diameter of the NCNTs. We demonstrate control over the NCNT alignment and diameter, along with the formation of open-ended nanotube tips, and propose a growth mechanism to understand how these properties are interlinked.

  1. Mg acceptors in GaN: Dependence of the /g-anisotropy on the doping concentration

    NASA Astrophysics Data System (ADS)

    Hofmann, Detlev M.; Burkhardt, Wolfgang; Leiter, Frank; Walter von Förster; Alves, Helder; Hofstaetter, Albrecht; Meyer, Bruno K.; Romanov, Nikolai G.; Amano, Hiroshi; Akasaki, Isamu

    1999-12-01

    Mg acceptors in GaN epitaxial layers grown by metal-organic vapour-phase epitaxy were investigated by optically detected magnetic resonance (ODMR) spectroscopy. The magnetic resonances were detected on the magnetic circular dichroism (MCD) of the acceptor bound exciton (Mg0X) in the near bandgap region, and in the infrared spectral range on the MCD of the hole ionisation transition Mg0+hν→Mg-+hVB. The observed g-values of the Mg0 acceptors range for g|| from 2.102 to 2.065 and for g⊥ from 1.94 to 2.00, respectively. These variations depend on the Mg doping concentration.

  2. Effect of CSA Concentration on the Ammonia Sensing Properties of CSA-Doped PA6/PANI Composite Nanofibers

    PubMed Central

    Pang, Zengyuan; Fu, Jiapeng; Lv, Pengfei; Huang, Fenglin; Wei, Qufu

    2014-01-01

    Camphor sulfonic acid (CSA)-doped polyamide 6/polyaniline (PA6/PANI) composite nanofibers were fabricated using in situ polymerization of aniline under different CSA concentrations (0.02, 0.04, 0.06, 0.08 and 0.10 M) with electrospun PA6 nanofibers as templates. The structural, morphological and ammonia sensing properties of the prepared composite nanofibers were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), four-point probe techniques, X-ray diffraction (XRD) and a home-made gas sensing test system. All the results indicated that the CSA concentration had a great influence on the sensing properties of CSA-doped PA6/PANI composite nanofibers. The composite nanofibers doped with 0.02 M CSA showed the best ammonia sensing properties, with a significant sensitivity toward ammonia (NH3) at room temperature, superior to that of the composite nanofibers doped with 0.04–0.10 mol/L CSA. It was found that for high concentrations of CSA, the number of PANI–H+ reacted with NH3 would not make up a high proportion of all PANI–H+ within certain limits. As a result, within a certain range even though higher CSA-doped PA6/PANI nanofibers had better conductivity, their ammonia sensing performance would degrade. PMID:25401687

  3. Effect of CSA concentration on the ammonia sensing properties of CSA-doped PA6/PANI composite nanofibers.

    PubMed

    Pang, Zengyuan; Fu, Jiapeng; Lv, Pengfei; Huang, Fenglin; Wei, Qufu

    2014-01-01

    Camphor sulfonic acid (CSA)-doped polyamide 6/polyaniline (PA6/PANI) composite nanofibers were fabricated using in situ polymerization of aniline under different CSA concentrations (0.02, 0.04, 0.06, 0.08 and 0.10 M) with electrospun PA6 nanofibers as templates. The structural, morphological and ammonia sensing properties of the prepared composite nanofibers were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), four-point probe techniques, X-ray diffraction (XRD) and a home-made gas sensing test system. All the results indicated that the CSA concentration had a great influence on the sensing properties of CSA-doped PA6/PANI composite nanofibers. The composite nanofibers doped with 0.02 M CSA showed the best ammonia sensing properties, with a significant sensitivity toward ammonia (NH3) at room temperature, superior to that of the composite nanofibers doped with 0.04-0.10 mol/L CSA. It was found that for high concentrations of CSA, the number of PANI-H+ reacted with NH3 would not make up a high proportion of all PANI-H+ within certain limits. As a result, within a certain range even though higher CSA-doped PA6/PANI nanofibers had better conductivity, their ammonia sensing performance would degrade. PMID:25401687

  4. Electronic structure of Al- and Ga-doped ZnO films studied by hard X-ray photoelectron spectroscopy

    SciTech Connect

    Gabás, M.; Ramos Barrado, José R.; Torelli, P.; Barrett, N. T.

    2014-01-01

    Al- and Ga-doped sputtered ZnO films (AZO, GZO) are semiconducting and metallic, respectively, despite the same electronic valence structure of the dopants. Using hard X-ray photoelectron spectroscopy we observe that both dopants induce a band in the electronic structure near the Fermi level, accompanied by a narrowing of the Zn 3d/O 2p gap in the valence band and, in the case of GZO, a substantial shift in the Zn 3d. Ga occupies substitutional sites, whereas Al dopants are in both substitutional and interstitial sites. The latter could induce O and Zn defects, which act as acceptors explaining the semiconducting character of AZO and the lack of variation in the optical gap. By contrast, mainly substitutional doping is consistent with the metallic-like behavior of GZO.

  5. Effects of F- on the optical and spectroscopic properties of Yb3+/Al3+-co-doped silica glass

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin; Yu, Chunlei; Wang, Shikai; Lou, Fengguang; Feng, Suya; Wang, Meng; Zhou, Qinling; Chen, Danping; Hu, Lili; Guzik, Malgorzata; Boulon, Georges

    2015-04-01

    Yb3+/Al3+-co-doped silica glasses with different F- content were prepared in this work by sol-gel method combined with high temperature sintering. XRF, FTIR and XPS methods were used to confirm the presence of F-. The effects of F- on the optical and spectroscopic properties of these glasses have been investigated. It is worth to notice that the F-/Si4+ mass ratio equal to 9% is a significant value showing a real change in the variation trends of numerous following parameters: refractive index, UV absorption edge, absorption and emission cross sections, scalar crystal-field NJ and fluorescent lifetimes. Furthermore, introduction of F- can adjust the refractive index of Yb3+/Al3+-co-doped silica glass and it is useful for large mode area (LMA) fibers.

  6. Field-induced doping-mediated tunability in work function of Al-doped ZnO: Kelvin probe force microscopy and first-principle theory

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Mookerjee, Sumit; Som, Tapobrata

    2016-09-01

    We demonstrate that the work function of Al-doped ZnO (AZO) can be tuned externally by applying an electric field. Our experimental investigations using Kelvin probe force microscopy show that by applying a positive or negative tip bias, the work function of AZO film can be enhanced or reduced, which corroborates well with the observed charge transport using conductive atomic force microscopy. These findings are further confirmed by calculations based on first-principles theory. Tuning the work function of AZO by applying an external electric field is not only important to control the charge transport across it, but also to design an Ohmic contact for advanced functional devices.

  7. Diffusive electronic transport in superconductor-semiconductor-superconductor junctions of Al or Nb on δ-doped GaAs

    NASA Astrophysics Data System (ADS)

    Kutchinsky, J.; Taboryski, R. J.; Clausen, T.; Sørensen, C. B.; Lindelof, P. E.; Hansen, J. Bindslev; Jacobsen, C. Schelde; Skov, J. L.

    1996-02-01

    We report measurements on planar superconductor-semiconductor-superconductor (S-Sm-S) junctions consisting of a n++ modulation doped conduction layer in MBE grown GaAs with superconducting contacts of Al or Nb. At distances between the two superconducting banks below ≈3.5μm we observe a coupling between the two superconductors, due to multiple Andreev reflections at the S-Sm interfaces.

  8. Observation of multiband effects in the microwave complex conductivity of pure and Al-doped MgB 2 samples

    NASA Astrophysics Data System (ADS)

    Di Gennaro, E.; Lamura, G.; Palenzona, A.; Putti, M.; Andreone, A.

    2004-08-01

    There is presently a general agreement that the simple inter-metallic compound MgB 2 is a conventional, phonon mediated, superconductor, and that the anomalies in its behaviour can be consistently explained by the existence of two different gaps. We present a study of the complex conductivity as a function of temperature in pure and Al-doped MgB 2 pellets by using a dielectrically loaded resonant cavity at 19 GHz.

  9. Characteristics of InAs/AlGaAs self-organized quantum dot modulation doped field effect transistors

    NASA Astrophysics Data System (ADS)

    Phillips, J.; Kamath, K.; Brock, T.; Bhattacharya, P.

    1998-06-01

    We have investigated the dc characteristics of InGaAs/AlGaAs modulation doped field effect transistors in which a layer of self-organized InAs quantum dots is inserted adjacent to the pseudomorphic quantum well channel. Distinct steps and a negative differential resistance are observed in the current-voltage characteristics at room temperature and lower temperatures. These are attributed to conduction through the bound states in the quantum dots.

  10. Influence of Mn ions concentration on optical and magnetic properties of Mn-doped ZnS nanowires

    NASA Astrophysics Data System (ADS)

    Wei, Maobin; Yang, Jinghai; Yan, Yongsheng; Yang, Lili; Cao, Jian; Fu, Hao; Wang, Bingji; Fan, Lin

    2013-08-01

    We successfully synthesized the ZnS:Mn2+ nanowires (NWs) with different Mn2+ doping concentration by the simple hydrothermal method. The optical and magnetic properties can be well tuned by the Mn2+ doping concentration. The yellow-orange emission from the Mn2+ 4T1-6A1 transition can be observed in the PL spectra of ZnS:Mn2+ NWs and the intensity reaches a maximum when the concentration of Mn2+ is 3%. The room-temperature magnetic hysteresis loops of the ZnS:Mn2+ NWs indicate that when the Mn2+ doping concentration is smaller than 3% (x≤3%),the samples exhibit the ferromagnetism characteristics; meanwhile, once the Mn2+ doping concentration is higher than 3% (x>3%), the samples exhibited a ferromagnetism including part paramagnetic characteristics at room-temperature. This variation tendency can be well explained by the competition mechanism between two exchange interactions, i.e. the antiferromagnetic exchange interaction between the near neighbor Mn2+ and Mn2+ ions, and the ferromagnetic exchange interaction between the Mn2+ and Mn2+ ions mediated by their near neighbor S2- ions or native defects such as S vacancies.

  11. Maximum drift velocity of electrons in selectively doped InAlAs/InGaAs/InAlAs heterostructures with InAs inserts

    SciTech Connect

    Silenas, A.; Pozela, Yu. Pozela, K.; Juciene, V.; Vasil'evskii, I. S.; Galiev, G. B.; Pushkarev, S. S.; Klimov, E. A.

    2013-03-15

    The dependence of the electron mobility and drift velocity on the growth conditions, thickness, and doping of an InAs insert placed at the center of the quantum well in a selectively doped InAlAs/InGaAs/InAlAs heterostructure has been investigated. Record enhancement of the maximum drift velocity to (2-4) Multiplication-Sign 10{sup 7} cm/s in an electric field of 5 Multiplication-Sign 10{sup 3} V/cm has been obtained in a 17-nm-wide quantum well with an undoped 4-nm-thick InAs insert. In the structures with additional doping of the InAs insert, which facilitates an increase in the density of electrons in the quantum well to 4.0 Multiplication-Sign 10{sup 12} cm{sup -2}, the maximum drift velocity is as high as 2 Multiplication-Sign 10{sup 7} cm/s in an electric field of 7 Multiplication-Sign 10{sup 3} V/cm.

  12. Thermoelectric properties optimization of Al-doped ZnO thin films prepared by reactive sputtering Zn-Al alloy target

    NASA Astrophysics Data System (ADS)

    Fan, Ping; Li, Ying-zhen; Zheng, Zhuang-hao; Lin, Qing-yun; Luo, Jing-ting; Liang, Guang-xing; Zhang, Miao-qin; Chen, Min-cong

    2013-11-01

    Al-doped ZnO (AZO) has practical applications in the industry for thermoelectric generation, owing to its nontoxicity, low-cost and stability at high temperatures. In this study, AZO thin films with high quality were deposited on BK7 glass substrates at room-temperature by direct current reactive magnetron sputtering using Zn-Al alloy target. The deposited thin films were annealed at various temperatures ranging from 623 K to 823 K with a space of 50 K. It is found that the absolute value of Seebeck coefficient of AZO thin film annealed at 723 K increases stably with increasing of measuring temperature and reaches a value of ∼60 μV/K at 575 K. After that, Al-doping content was varied to further optimize the thermoelectric properties of AZO thin films. The power factor of AZO thin films with Al content of 3 wt% increased with increase of measuring temperature and the maximum power factor of 1.54 × 10-4 W m-1K-2 was obtained at 550 K with the maximum absolute values of Seebeck coefficient of 99 μV/K, which is promising for high temperature thermoelectric application.

  13. Performance optimization of p-n homojunction nanowire-based piezoelectric nanogenerators through control of doping concentration

    SciTech Connect

    Liu, Guocheng Ban, Dayan; Abdel-Rahman, Eihab

    2015-09-07

    This paper demonstrates a series of flexible transparent ZnO p-n homojunction nanowire-based piezoelectric nanogenerators (NGs) with different p-doping concentrations. The lithium-doped segments are grown directly and consecutively on top of intrinsic nanowires (n-type). When characterized under cyclic compressive strains, the overall NG performance is enhanced by up to eleven-fold if the doping concentration is properly controlled. This improvement is attributable to reduction in the mobile charge screening effect and optimization of the NGs' internal electrical characteristics. Experimental results also show that an interfacial MoO{sub 3} barrier layer, at an optimized thickness of 5–10 nm, reduces leakage current and substantially improves piezoelectric NG performance.

  14. Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Hsing; Chang, Chiao-Lu

    2016-05-01

    ZnO is a wide bandgap semiconductor that has many potential applications such as solar cells, thin film transistors, light emitting diodes, and gas/biological sensors. In this study, a composite ceramic ZnO target containing 1 wt% Al2O3 and 1.5 wt% ZnF2 was prepared and used to deposit transparent conducting Al and F co-doped zinc oxide (AFZO) thin films on glass substrates by radio frequency magnetron sputtering. The effect of substrate temperatures ranging from room temperature (RT) to 200 °C on structural, morphological, electrical, chemical, and optical properties of the deposited thin films were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), Hall effect measurement, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and UV-vis spectrophotometer. The XRD results showed that all the AFZO thin films had a (0 0 2) diffraction peak, indicating a typical wurtzite structure with a preferential orientation of the c-axis perpendicular to the substrate. The FE-SEM and AFM analyses indicated that the crystallinity and grain size of the films were enhanced while the surface roughness decreased as the substrate temperature increased. Results of Hall effect measurement showed that Al and F co-doping decreased the resistivity more effectively than single-doping (either Al or F doping) in ZnO thin films. The resistivity of the AFZO thin films decreased from 5.48 × 10-4 to 2.88 × 10-4 Ω-cm as the substrate temperature increased from RT to 200 °C due to the increased carrier concentration and Hall mobility. The optical transmittances of all the AFZO thin films were over 92% in the wavelength range of 400-800 nm regardless of substrate temperature. The blue-shift of absorption edge accompanied the rise of the optical band gap, which conformed to the Burstein-Moss effect. The developed AFZO thin films are suitable as transparent conducting electrodes for various optoelectronic

  15. Structure and Properties of Al and Ga- Doped ZnO

    NASA Astrophysics Data System (ADS)

    Temizer, Namik Kemal

    Recently there is tremendous interest in Transparent conducting oxide (TCO) research due to the unlimited and exciting application areas. Current research is mostly focused on finding alternative low cost and sustainable materials in order to replace indium tin oxide (ITO), which caused serious concern due to the increasing cost of indium and chemical stability issues of ITO. The primary aim of this research is to develop alternative TCO materials with superior properties in order to increase the efficiency in optoelectronic applications, as well as to study the properties of these materials to fully characterize them. We have grown Al and Ga-doped ZnO films with an optimized composition under different deposition conditions in order to understand the effect of processing parameters on the film properties. We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110muO-cm) values. The films grown in an ambient oxygen partial pressure (PO2 ) of 50 mTorr and at growth temperatures from room temperature to 600°C showed semiconducting behavior, whereas samples grown at a Po2 of 1 mTorr showed metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical and magnetic properties and such changes in physical properties are controlled predominantly by the defect content. To gain a better understanding of the conduction processes in doped ZnO thin films, we have studied the temperature variation of resistivity of some selected samples that showed some interesting behavior

  16. Reducing Mg acceptor activation-energy in Al(0.83)Ga(0.17)N disorder alloy substituted by nanoscale (AlN)₅/(GaN)₁ superlattice using Mg(Ga) δ-doping: Mg local-structure effect.

    PubMed

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-10-23

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  17. Spectroscopic characterization of the plasmas formed during the deposition of ZnO and Al-doped ZnO films by plasma-assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liang, Peipei; Cai, Hua; Yang, Xu; Li, Hui; Zhang, Wu; Xu, Ning; Sun, Jian; Wu, Jiada

    2016-11-01

    An oxygen-zinc plasma and an oxygen-zinc-aluminum plasma are formed by pulsed laser ablation of a Zn target or pulsed laser co-ablation of a Zn target and an Al target in an electron cyclotron resonance (ECR) discharge-generated oxygen plasma for the deposition of ZnO and Al-doped ZnO (AZO) films. The plasmas are characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy. Both the oxygen-zinc plasma and the oxygen-zinc-aluminum plasma contain excited species originally present in the working O2 gas and energetic species ablated from the targets. The optical emission of the oxygen-zinc-aluminum plasma is abundant in the emission bands of oxygen molecular ions and the emission lines of mono-atomic oxygen, zinc and aluminum atoms and atomic ions. The time-integrated spectra as well as the time-resolved spectra of the plasma emission indicate that the oxygen species in the ECR oxygen plasma experience additional excitation by the expanding ablation plumes, and the ablated species are excited frequently when traveling accompanying the plume expansion in the oxygen plasma, making the formed plasma highly excited and very reactive, which plays an important role in the reactive growth of ZnO matrix and the in-situ doping of Al into the growing ZnO matrix. The deposited ZnO and AZO films were evaluated for composition analysis by energy dispersive X-ray spectroscopy, structure characterization by X-ray diffraction and optical transmission measurement. The deposited ZnO is slightly rich in O. The Al concentration of the AZO films can be controlled and varied simply by changing the repetition rate of the laser used for Al target ablation. Both the ZnO and the AZO films are featured with hexagonal wurtzite crystal structure and exhibit high optical transparency in a wide spectral region. Al doping results in an improvement in the ultraviolet transparency, a blue shift in the absorption edge and a widening of the band gap.

  18. Substantial band-gap narrowing of α-Si 3N 4 induced by heavy Al doping

    NASA Astrophysics Data System (ADS)

    Xiao, W.; Geng, W. T.

    2011-07-01

    Our first-principles study on the structural and electronic properties of Al-doped α-Si 3N 4 predict a significant band-gap narrowing, which makes this material a more efficient phosphor. Strong attraction of substitutional and interstitial Al atoms leads to the formation of stable (3+1) complexes that behave as isoelectronic traps. The near-mid-gap states of the interstitials reduce nearly half of the band-gap of α-Si 3N 4. Such a new nitride-based semiconductor could be a promising photocatalyst with high reactivity in solar irradiation or interior lighting in visible spectrum.

  19. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    SciTech Connect

    Das, Palash Biswas, Dhrubes

    2014-04-24

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT.

  20. Observation of stimulated emission from a single Fe-doped AlN triangular fiber at room temperature.

    PubMed

    Jiang, Liangbao; Jin, Shifeng; Wang, Wenjun; Zuo, Sibin; Li, Zhilin; Wang, Shunchong; Zhu, Kaixing; Wei, Zhiyi; Chen, Xiaolong

    2015-01-01

    Aluminum nitride (AlN) is a well known wide-band gap semiconductor that has been widely used in fabricating various ultraviolet photo-electronic devices. Herein, we demonstrate that a fiber laser can be achieved in Fe-doped AlN fiber where Fe is the active ion and AlN fiber is used as the gain medium. Fe-doped single crystal AlN fibers with a diameter of 20-50 μm and a length of 0.5-1 mm were preparated successfully. Stimulated emission (peak at about 607 nm and FWHM ~0.2 nm) and a long luminescence lifetime (2.5 ms) were observed in the fibers by a 532 nm laser excitation at room temperature. The high quality long AlN fibers are also found to be good optical waveguides. This kind of fiber lasers may possess potential advantages over traditional fiber lasers in enhancing power output and extending laser wavelengths from infrared to visible regime. PMID:26647969

  1. Observation of stimulated emission from a single Fe-doped AlN triangular fiber at room temperature

    PubMed Central

    Jiang, Liangbao; Jin, Shifeng; Wang, Wenjun; Zuo, Sibin; Li, Zhilin; Wang, Shunchong; Zhu, Kaixing; Wei, Zhiyi; Chen, Xiaolong

    2015-01-01

    Aluminum nitride (AlN) is a well known wide-band gap semiconductor that has been widely used in fabricating various ultraviolet photo-electronic devices. Herein, we demonstrate that a fiber laser can be achieved in Fe-doped AlN fiber where Fe is the active ion and AlN fiber is used as the gain medium. Fe-doped single crystal AlN fibers with a diameter of 20–50 μm and a length of 0.5–1 mm were preparated successfully. Stimulated emission (peak at about 607 nm and FWHM ~0.2 nm) and a long luminescence lifetime (2.5 ms) were observed in the fibers by a 532nm laser excitation at room temperature. The high quality long AlN fibers are also found to be good optical waveguides. This kind of fiber lasers may possess potential advantages over traditional fiber lasers in enhancing power output and extending laser wavelengths from infrared to visible regime. PMID:26647969

  2. Observation of stimulated emission from a single Fe-doped AlN triangular fiber at room temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Liangbao; Jin, Shifeng; Wang, Wenjun; Zuo, Sibin; Li, Zhilin; Wang, Shunchong; Zhu, Kaixing; Wei, Zhiyi; Chen, Xiaolong

    2015-12-01

    Aluminum nitride (AlN) is a well known wide-band gap semiconductor that has been widely used in fabricating various ultraviolet photo-electronic devices. Herein, we demonstrate that a fiber laser can be achieved in Fe-doped AlN fiber where Fe is the active ion and AlN fiber is used as the gain medium. Fe-doped single crystal AlN fibers with a diameter of 20-50 μm and a length of 0.5-1 mm were preparated successfully. Stimulated emission (peak at about 607 nm and FWHM ~0.2 nm) and a long luminescence lifetime (2.5 ms) were observed in the fibers by a 532nm laser excitation at room temperature. The high quality long AlN fibers are also found to be good optical waveguides. This kind of fiber lasers may possess potential advantages over traditional fiber lasers in enhancing power output and extending laser wavelengths from infrared to visible regime.

  3. Significant enhancement of thermoelectric properties and metallization of Al-doped Mg{sub 2}Si under pressure

    SciTech Connect

    Morozova, Natalia V.; Korobeinikov, Igor V.; Karkin, Alexander E.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V. E-mail: sergey2503@gmail.com; Takarabe, Ken-ichi; Mori, Yoshihisa; Nakamura, Shigeyuki

    2014-06-07

    We report results of investigations of electronic transport properties and lattice dynamics of Al-doped magnesium silicide (Mg{sub 2}Si) thermoelectrics at ambient and high pressures to and beyond 15 GPa. High-quality samples of Mg{sub 2}Si doped with 1 at. % of Al were prepared by spark plasma sintering technique. The samples were extensively examined at ambient pressure conditions by X-ray diffraction studies, Raman spectroscopy, electrical resistivity, magnetoresistance, Hall effect, thermoelectric power (Seebeck effect), and thermal conductivity. A Kondo-like feature in the electrical resistivity curves at low temperatures indicates a possible magnetism in the samples. The absolute values of the thermopower and electrical resistivity, and Raman spectra intensity of Mg{sub 2}Si:Al dramatically diminished upon room-temperature compression. The calculated thermoelectric power factor of Mg{sub 2}Si:Al raised with pressure to 2–3 GPa peaking in the maximum the values as high as about 8 × 10{sup −3} W/(K{sup 2}m) and then gradually decreased with further compression. Raman spectroscopy studies indicated the crossovers near ∼5–7 and ∼11–12 GPa that are likely related to phase transitions. The data gathered suggest that Mg{sub 2}Si:Al is metallized under moderate pressures between ∼5 and 12 GPa.

  4. Doping Experiments on Low-Dimensional Oxides and a Search for Unusual Magnetic Properties of MgAlB14

    SciTech Connect

    Julienne Marie Hill

    2002-12-31

    Doping experiments on La{sub 2}CuO{sub 4}, Sr{sub 2}CuO{sub 3} and SrCu{sub 2}(BO{sub 3}){sub 2} were performed with the intent of synthesizing new metallic low-=dimensional cuprate oxide compounds. Magnetic susceptibility {chi}(T) measurements on a polycrystalline La{sub 2}CuO{sub 4} sample chemically oxidized at room temperature in aqueous NaClO showed superconductivity with a superconducting transition temperature T{sub c} of 42.6 K and a Meissner fraction of 26%. They were unable to electrochemically oxidize La{sub 2}CuO{sub 4} in a nonaqueous solution of tetramethylammonium hydroxide (TMAOH) and methanol. Sr{sub 2}CuO{sub 3} was found to decompose upon exposure to air and water. Electron paramagnetic resonance, isothermal magnetization M(H), and {chi}(T) measurements on the primary decomposition product, Sr{sub 2}Cu(OH){sub 6}, were consistent with a nearly isolated, spin S = 1/2, local moment model for the Cu{sup +2} spins. From a fit of {chi}(T) by the Curie-Weiss law and of the M(H) isotherms by a modified Brillouin function, the weakly antiferromagnetic exchange interaction between adjacent Cu{sup +2} spins in Sr{sub 2}Cu(OH){sub 6} was found to be J/k{sub B} = 1.06(4) K. Doping studies on SrCu{sub 2}(BO{sub 3}){sub 2} were inconclusive. {chi}(T) measurements on an undoped polycrystalline sample of SrCu{sub 2}(BO{sub 3}){sub 2}, a sample treated with distilled water, and a sample treated with aqueous NaClO showed no qualitative differences between the samples. In addition, {chi}(T) and M(H, T) studies of the ultra-hard material MgAlB{sub 14} were carried out in search of superconductivity or ferromagnetism in this compound. {chi}(T) measurements on a powder sample revealed temperature-independent diamagnetism from 1.8 K up to room temperature with a Curie-Weiss impurity concentration equivalent to {approx} 1 mol% of spin-1/2 ions. In contrast, M(H, T) data on hot pressed samples showed evidence of ferromagnetic transitions above {approx} 330 K. Scanning

  5. Effect of AlCl3 concentration on nanoparticle removal by coagulation.

    PubMed

    Zhang, Lizhu; Mao, Jingchun; Zhao, Qing; He, Shaobo; Ma, Jun

    2015-12-01

    In recent years, engineered nanoparticles, as a new group of contaminants emerging in natural water, have been given more attention. In order to understand the behavior of nanoparticles in the conventional water treatment process, three kinds of nanoparticle suspensions, namely multi-walled carbon nanotube-humic acid (MWCNT-HA), multi-walled carbon nanotube-N,N-dimethylformamide (MWCNT-DMF) and nanoTiO2-humic acid (TiO2-HA) were employed to investigate their coagulation removal efficiencies with varying aluminum chloride (AlCl3) concentrations. Results showed that nanoparticle removal rate curves had a reverse "U" shape with increasing concentration of aluminum ion (Al(3+)). More than 90% of nanoparticles could be effectively removed by an appropriate Al(3+) concentration. At higher Al(3+) concentration, nanoparticles would be restabilized. The hydrodynamic particle size of nanoparticles was found to be the crucial factor influencing the effective concentration range (ECR) of Al(3+) for nanoparticle removal. The ECR of Al(3+) followed the order MWCNT-DMF>MWCNT-HA>TiO2-HA, which is the reverse of the nanoparticle size trend. At a given concentration, smaller nanoparticles carry more surface charges, and thus consume more coagulants for neutralization. Therefore, over-saturation occurred at relatively higher Al(3+) concentration and a wider ECR was obtained. The ECR became broader with increasing pH because of the smaller hydrodynamic particle size of nanoparticles at higher pH values. A high ionic strength of NaCl can also widen the ECR due to its strong potential to compress the electric double layer. It was concluded that it is important to adjust the dose of Al(3+) in the ECR for nanoparticle removal in water treatment.

  6. Effect of AlCl3 concentration on nanoparticle removal by coagulation.

    PubMed

    Zhang, Lizhu; Mao, Jingchun; Zhao, Qing; He, Shaobo; Ma, Jun

    2015-12-01

    In recent years, engineered nanoparticles, as a new group of contaminants emerging in natural water, have been given more attention. In order to understand the behavior of nanoparticles in the conventional water treatment process, three kinds of nanoparticle suspensions, namely multi-walled carbon nanotube-humic acid (MWCNT-HA), multi-walled carbon nanotube-N,N-dimethylformamide (MWCNT-DMF) and nanoTiO2-humic acid (TiO2-HA) were employed to investigate their coagulation removal efficiencies with varying aluminum chloride (AlCl3) concentrations. Results showed that nanoparticle removal rate curves had a reverse "U" shape with increasing concentration of aluminum ion (Al(3+)). More than 90% of nanoparticles could be effectively removed by an appropriate Al(3+) concentration. At higher Al(3+) concentration, nanoparticles would be restabilized. The hydrodynamic particle size of nanoparticles was found to be the crucial factor influencing the effective concentration range (ECR) of Al(3+) for nanoparticle removal. The ECR of Al(3+) followed the order MWCNT-DMF>MWCNT-HA>TiO2-HA, which is the reverse of the nanoparticle size trend. At a given concentration, smaller nanoparticles carry more surface charges, and thus consume more coagulants for neutralization. Therefore, over-saturation occurred at relatively higher Al(3+) concentration and a wider ECR was obtained. The ECR became broader with increasing pH because of the smaller hydrodynamic particle size of nanoparticles at higher pH values. A high ionic strength of NaCl can also widen the ECR due to its strong potential to compress the electric double layer. It was concluded that it is important to adjust the dose of Al(3+) in the ECR for nanoparticle removal in water treatment. PMID:26702973

  7. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Yu, Zhiming; Wei, Qiuping; Long, HangYu; Xie, Youneng; Wang, Yijia

    2016-07-01

    In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH3sbnd N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm-2, pH 5.16, flow velocity 6 L h-1. Under these conditions, 87.5% COD and 74.06% NH3sbnd N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m-3. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  8. Equilibrium and kinetics studies on As(V) and Sb(V) removal by Fe2+ -doped Mg-Al layered double hydroxides.

    PubMed

    Kameda, Tomohito; Kondo, Eisuke; Yoshioka, Toshiaki

    2015-03-15

    Mg-Al layered double hydroxides (Mg-Al LDHs) doped with Fe(2+) adsorbed As(V) [Formula: see text] and Sb(V) [Formula: see text] from an aqueous solution through anion exchange with Cl(-) intercalated in the LDH interlayer. Fe(2+)-doped Mg-Al LDH exhibited superior As(V) removal compared with Mg-Al LDH. The oxidation of Fe(2+) doped in the Mg-Al LDH host layer to Fe(3+) increased the positive layer charge of the LDH, thus increasing the anion-uptake capacity owing to stronger electrostatic attractive force between the positively charged layer and the anion. However, Fe(2+)-doped Mg-Al LDH was not superior to Mg-Al LDH in terms of Sb(V) removal. This was attributed to the preferential intercalation of OH(-) over [Formula: see text] . The As(V) and Sb(V) removal by LDH followed Langmuir-type adsorption, which proceeded via a pseudo-first-order reaction. The equilibrium and kinetics studies confirm that the adsorption of As(V) and Sb(V) by Fe(2+)-doped Mg-Al LDH was the result of chemical adsorption, involving the anion exchange of [Formula: see text] and [Formula: see text] with the intercalated Cl(-).

  9. Doping effects on thermoelectric properties of the off-stoichiometric Heusler compounds Fe{sub 2−x}V{sub 1+x}Al

    SciTech Connect

    Nishino, Y. Tamada, Y.

    2014-03-28

    The thermoelectric properties of Heusler-type Fe{sub 2−x}V{sub 1+x}Al{sub 1−y}Si{sub y} and Fe{sub 2−x}V{sub 1+x−y}Ti{sub y}Al alloys have been investigated to clarify which off-stoichiometric alloy, i.e., V-rich (x > 0) or V-poor (x < 0), is more effective in enhancing the Seebeck coefficient when doped by Si and Ti, while retaining a low electrical resistivity. Large Seebeck coefficients of −182 μV/K and 110 μV/K at 300 K are obtained for n-type Fe{sub 1.95}V{sub 1.05}Al{sub 0.97}Si{sub 0.03} and p-type Fe{sub 2.04}V{sub 0.93}Ti{sub 0.03}Al, respectively. When the Seebeck coefficient is plotted as a function of valence electron concentration (VEC), the VEC dependence for the doped off-stoichiometric alloys falls on characteristic curves depending on the off-stoichiometric composition x. It is concluded that a larger Seebeck coefficient with a negative sign can be obtained for the V-rich alloys rather than the V-poor alloys, whilst good p-type materials are always derived from the V-poor alloys. Substantial enhancements in the Seebeck coefficient for the off-stoichiometric alloys could be achieved by a favorable modification in the electronic structure around the Fermi level through the antisite V or Fe defect formation.

  10. The dependence of Raman scattering on Mg concentration in Mg-doped GaN grown by MBE

    NASA Astrophysics Data System (ADS)

    Flynn, Chris; Lee, William

    2014-04-01

    Magnesium-doped GaN (GaN:Mg) films having Mg concentrations in the range 5 × 1018-5 × 1020 cm-3 were fabricated by molecular beam epitaxy. Raman spectroscopy was employed to study the effects of Mg incorporation on the positions of the E2 and A1(LO) lines identifiable in the Raman spectra. For Mg concentrations in excess of 2 × 1019 cm-3, increases in the Mg concentration shift both lines to higher wave numbers. The shifts of the Raman lines reveal a trend towards compressive stress induced by incorporation of Mg into the GaN films. The observed correlation between the Mg concentration and the Raman line positions establish Raman spectroscopy as a useful tool for optimizing growth of Mg-doped GaN.

  11. Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency

    PubMed Central

    Yan, Yuli; Zhang, Guangbiao; Wang, Chao; Peng, Chengxiao; Zhang, Peihong; Wang, Yuanxu; Ren, Wei

    2016-01-01

    The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization. PMID:27406178

  12. Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency.

    PubMed

    Yan, Yuli; Zhang, Guangbiao; Wang, Chao; Peng, Chengxiao; Zhang, Peihong; Wang, Yuanxu; Ren, Wei

    2016-01-01

    The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization. PMID:27406178

  13. Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency

    NASA Astrophysics Data System (ADS)

    Yan, Yuli; Zhang, Guangbiao; Wang, Chao; Peng, Chengxiao; Zhang, Peihong; Wang, Yuanxu; Ren, Wei

    2016-07-01

    The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization.

  14. Synthesis and characterization of lithium aluminum-doped spinel (LiAl xMn 2- xO 4) for lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Sung; Kumada, Naoki; Yoshio, Masaki

    LiAl xMn 2- xO 4 has been synthesized using various aluminum starting materials, such as Al(NO 3) 3, Al(OH) 3, AlF 3 and Al 2O 3 at 600-800°C for 20 h in air or oxygen atmosphere. A melt-impregnation method was used to synthesize Al-doped spinel with good battery performance in this research. The Al-doped content and the intensity ratio of (3 1 1)/(4 0 0) peaks can be important parameters in synthesizing Al-doped spinel which satisfies the requirements of high discharge capacity and good cycleability at the same time. The decrease in Mn 3+ ion by Al substitution induces a high average oxidation state of Mn ion in the LiAl xMn 2- xO 4 material. The electrochemical behavior of all samples was studied in Li/LiPF 6-EC/DMC (1:2 by volume)/LiAl xMn 2- xO 4 cells. Especially, the initial and last discharge capacity of LiAl 0.09Mn 1.97O 4 using LiOH, Mn 3O 4 and Al(OH) 3 complex were 128.7 and 115.5 mAh/g after 100 cycles. The Al substitution in LiMn 2O 4 was an excellent method of enhancing the cycleability of stoichiometric spinel during electrochemical cycling.

  15. Effect of aluminum and yttrium doping on zinc sulphide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, Swati; Kashyap, Jyoti; Gupta, Shubhra; Natasha, Kapoor, A.

    2016-05-01

    In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Y doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.

  16. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  17. Green Emission of Tb-doped Mg-Al Layered Double Hydroxide Response to L-lysine.

    PubMed

    Chen, Yufeng; Bao, Yao; Wang, Xiaoqing

    2016-05-01

    The paper describes a study on the green emission of a Tb-doped Mg-Al layered double hydroxide (Tb-LDH) response to L-lysine (Lys). Fluorescent study was found that the Tb-LDH exhibited strong green emission due to (5)D4-(7)FJ (J = 5, 6) transition of Tb(3+), and the green emission almost quenched while the Tb-LDH was exposed to 0.01, 0.05, 0.1, 0.25, and 0.5 mol·L(-1) Lys solution, respectively. Meanwhile the emission attributed to Lys markedly increased as the Tb-LDH was exposed to 0.01 and 0.05 mol·L(-1) Lys solution, then decreased as the concentration of Lys solution further increased to 0.5 from 0.05 mol·L(-1). The green emission of Tb-LDH optimal response to Lys happened at 0.05 mol·L(-1) of Lys solution. XRD results revealed that no reflections ascribed to Lys appeared in the composites of Tb-LDH and Lys. IR spectra suggested that the IR spectra of Tb-LDH obviously changed after it was exposed to Lys solution. These results indicated that the green emission of Tb-LDH response to Lys was possibly owing to interaction between the Tb-LDH and Lys. Moreover, this interaction between the Tb-LDH and Lys may be resulted from absorption. The green emission of Tb-LDH response to Lys would be potential application in detecting L-lysine.

  18. RETRACTED: Investigation of structural, optical and electronic properties in Al-Sn co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pan, Zhanchang; Tian, Xinlong; Wu, Shoukun; Yu, Xia; Li, Zhuliang; Deng, Jianfeng; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2013-01-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Figures 3 and 4 of this paper have also been presented as belonging to other materials in other publications. This observation is evidence of fraud and therefore it is not certain that the described research and conclusions of this paper belong to the presented images. Figures 3 and 4 of this paper can also be found in: Effect of annealing on the structures and properties of Al and F co-doped ZnO nanostructures, Materials Science in Semiconductor Processing, 2014, 17, 162-167, http://dx.doi.org/10.1016/j.mssp.2013.09.023 Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol-gel method, Journal of Alloys and Compounds, 2014,583, 32-38, http://dx.doi.org/10.1016/j.jallcom.2013.06.192 Properties of fluorine and tin co-doped ZnO thin films deposited by sol-gel method, Journal of Alloys and Compounds, 2013,576, 31-37, http://dx.doi.org/10.1016/j.jallcom.2013.04.132

  19. Effect of Al Doping on Performance of CuGaO2 p-Type Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Ursu, D.; Vaszilcsin, N.; Bănica, R.; Miclau, M.

    2016-01-01

    The p-type semiconductor Cu(I)-based delafossite transparent conducting oxides are good candidates to be used as hole collectors in dye-sensitized solar cells. The Al-doped CuGaO2 has been synthesized by hydrothermal method and its properties have been investigated as cathode elements in ruthenium dye N719-sensitized solar cells. The photocurrent density ( J sc) and the open-circuit voltage ( V oc) for 5% Al-doped CuGaO2 microparticles using N719 dye were approximately two times higher than undoped CuGaO2 microparticles. The integration of aluminum dopants in the delafossite structure improves the photovoltaic performance of CuGaO2 thin films, due to the excellent optical transparency of CuGaO2 in the visible range as well as the improved electrical conductivity caused by the apparition of the intrinsic acceptor defect associate (Al Cu •• 2O i ″ )″ with tetrahedrally coordinated Al on the Cu-site.

  20. Room temperature nonlinear magnetoelectric effect in lead-free and Nb-doped AlFeO{sub 3} compositions

    SciTech Connect

    Cótica, Luiz F.; Santos, Guilherme M.; Santos, Ivair A.; Freitas, Valdirlei F.; Coelho, Adelino A.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar S.; Garcia, Ducinei; Eiras, José A.

    2015-02-14

    It is still a challenging problem to obtain technologically useful materials displaying strong magnetoelectric coupling at room temperature. In the search for new effects and materials to achieve this kind of coupling, a nonlinear magnetoelectric effect was proposed in the magnetically disordered relaxor ferroelectric materials. In this context, the aluminum iron oxide (AlFeO{sub 3}), a room temperature ferroelectric relaxor and magnetic spin glass compound, emerges as an attractive lead-free magnetoelectric material along with nonlinear magnetoelectric effects. In this work, static, dynamic, and temperature dependent ferroic and magnetoelectric properties in lead-free AlFeO{sub 3} and 2 at. % Nb-doped AlFeO{sub 3} multiferroic magnetoelectric compositions are studied. Pyroelectric and magnetic measurements show changes in ferroelectric and magnetic states close to each other (∼200 K). The magnetoelectric coefficient behavior as a function of H{sub bias} suggests a room temperature nonlinear magnetoelectric coupling in both single-phase and Nb-doped AlFeO{sub 3}-based ceramic compositions.

  1. Site occupation, phase stability, crystal and electronic structures of the doped S phase (Al2CuMg)

    NASA Astrophysics Data System (ADS)

    Gu, Jianglong; Gu, Huimin; Zhai, Yuchun; Ma, Peihua

    2016-07-01

    The S phase (Al2CuMg) is an important strengthening phase for the Al-Cu-Mg alloys, which are widely used in the aerospace and transportation industries. The commonly added alloying elements (Mn, Ti, Zr) and the impurity elements (Fe and Si) in the Al-Cu-Mg alloys are always found in the S phase. First-principles calculations based on the density functional theory (DFT) were used to investigate the influence of doping Mn, Ti, Zr, Fe and Si elements on the S phase. Key findings demonstrated that these elements prefer to occupy different atomic sites in the S phase. Ti and Zr improved the structural stability of the S phase. The bulk modulus of the Fe, Si, Ti and Zr doped S phases becomes larger than that of the pure S phase. Both the crystal and electronic structures of the S phase are affected by the dopants. The results of this study provide a better theoretical understanding of the S phase, providing guidance for improved composition design and performance optimization of Al-Cu-Mg alloys.

  2. Electronic structure and photocatalytic water splitting of lanthanum-doped Bi{sub 2}AlNbO{sub 7}

    SciTech Connect

    Li Yingxuan; Chen Gang Zhang Hongjie; Li Zhonghua

    2009-04-02

    Bi{sub 2-x}La{sub x}AlNbO{sub 7} (0 {<=} x {<=} 0.5) photocatalysts were synthesized by the solid-state reaction method and characterized by powder X-ray diffraction (XRD), infrared (IR) spectra and ultraviolet-visible (UV-vis) spectrophotometer. The band gaps of the photocatalysts were estimated from absorption edge of diffuse reflectance spectra, which were increased by the doping of lanthanum. It was found from the electronic band structure study that orbitals of La 5d, Bi 6p and Nb 4d formed a conduction band at a more positive level than Bi 6p and Nb 4d orbitals, which results in increasing the band gap. Photocatalytic activity for water splitting of Bi{sub 1.8}La{sub 0.2}AlNbO{sub 7} was about 2 times higher than that of nondoped Bi{sub 2}AlNbO{sub 7}. The increased photocatalytic activity of La-doped Bi{sub 2}AlNbO{sub 7} was discussed in relation to the band structure and the strong absorption of OH groups at the surface of the catalyst.

  3. Crystalline Fraction and Doping Concentration Effect on Heterojunction Solar Cells n-Doped µc-Si:H Back Surface Field Layer.

    PubMed

    Kim, Sangho; Shin, Chonghoon; Balaji, Nagarajan; Yi, Junsin

    2015-03-01

    The back surface field (BSF) plays a vital role for high efficiency in the Heterojunction Intrinsic Thin (HIT) film solar cell. This paper investigated the effect of crystalline volume fraction (Xc) and 1% hydrogen diluted phosphine (PH3) gas doping concentration of the n-type µc-Si:H back surface file (BSF) layer. Initially, the thickness of the n-type µc-Si:H BSF layer was optimized. With increase in Xc from 6% to 59%, the open circuit voltage (Voc) increased from 573 mV to 696 mV, and the fill factor (FF) also increased from 59% to 71%. In the long wavelengths region (≥ 950 nm), the QE of the solar cells decreased over the optimized Xc of the n-doped micro BSF layer, due to the defects of a film. In the second part of this paper, the effect of high conductivity n-type µc-Si:H BSF layer with optimized thickness on the performance of HIT solar cells was investigated, by doping gas ratio variation. Even though Xc decreased, conductivity was increased, with increasing PH3 doping concentration. Under the optimized condition, a n-µc-Si:H BSF layer has a dark conductivity of 2.59 S/cm, activation energy of 0.0519 eV, and X, of 52%. The conversion efficiency of 18.9% was achieved with a Voc of 706 mV, fill factor of 72%, and short circuit current density of 37.1 mW·cm(-2).

  4. Effects of Al, Ga-DOPING on Transparent Conducting Properties of Amorphous ZnO-SnO2 Films

    NASA Astrophysics Data System (ADS)

    Moriga, Toshihiro; Nishimura, Yusuke; Suketa, Hiroshi; Murai, Kei-Ichiro; Nogami, Kazuhiro; Tominaga, Kikuo; Nakabayashi, Ichiro

    ZnOSnO2 thin films were deposited on glass substrates (Corning#1737) by DC magnetron sputtering. In this works, we examined a doping effect on a ZnO target on transparent conducting properties. ZnO:Al(4wt%), and ZnO:Ga(6wt%) targets were used for a dopant-free ZnO target. Substrate temperature was held at 250°C. The current ratio δ was defined as IZn/IZ+ISn (ZnO target current divided by the sum of ZnO and SnO2 target currents). Compositions of as-deposited films were changed with the current ratio δ. In the ZnO-SnO2 system, amorphous transparent films appeared over the range of 0.33≤δ≤0.73. On the other hand, in the ZnO:Al(4wt%)-SnO2 and ZnO:Ga(6wt%)-SnO2 systems, they appeared over the range of 0.20≤δ≤0.80 and 0.33≤δ≤0.80, ≤δ≤ respectively. The minimum resistivity of amorphous films was about 3.0×10-2 Ωcm for all the systems. Al, Ga doping effect on film resistivity was not clear very much. But optical transparencies were 80-90% in visible region, 10% higher than those of ZnO-SnO2 system at average. Optical band gap for the films with the same current ratio δ also was enhanced by the Al, Ga doping.

  5. Radiotherapy dosimetry and the thermoluminescence characteristics of Ge-doped fibres of differing germanium dopant concentration and outer diameter

    NASA Astrophysics Data System (ADS)

    Noor, N. Mohd; Fadzil, M. S. Ahmad; Ung, N. M.; Maah, M. J.; Mahdiraji, G. A.; Abdul-Rashid, H. A.; Bradley, D. A.

    2016-09-01

    We examine the influence of elevated dopant concentration on the thermoluminescence characteristics of novel Ge-doped silica fibres. Basic dosimetric characteristics of the TL media were obtained, including linearity, reproducibility, energy dependence, fading, minimum detectable dose and glow curve analysis, use being made of a 60Co gamma irradiation facility (mean energy 1.25 MeV) and an electron linear accelerator producing photons at an accelerating potential of 6 and 10 MV. The 6 mol% Ge-doped fibres were found to provide TL response superior to that of 8- and 10 mol% Ge-doped fibres, both for fibres with outer diameter of 241 μm and 604 μm. Concerning reproducibility, obtained under three different test conditions, at <10% the 6 mol% Ge dopant concentration was observed to provide the superior coefficient of variation (CV). In regard to energy dependence, the 10 mol% Ge doped cylindrical fibres produced the largest gradient values at 0.364 and 0.327 for the 241 μm and 604 μm diameter cylindrical fibres respectively and thus the greatest energy dependency. Measured 33 days post irradiation; the 6 mol% Ge doped cylindrical fibres showed the least TL signal loss, at 21% for the 241 μm cylindrical fibre and <40% for the 604 μm cylindrical fibres. The results also revealed that the 6 mol% optical fibres provided the lowest minimum detectable dose, at 0.027 Gy for 6 MV photon beams. Evaluations of these characteristics are supporting development of novel Ge-doped optical fibres for dosimetry in radiotherapy.

  6. Formation and Characteristics of Anatase-Type Titania Solid Solution Nanoparticles Doped with Nb5+ M (M = Ga3+, Al3+, Sc3+)

    NASA Astrophysics Data System (ADS)

    Hirano, Masanori; Ito, Takaharu

    2011-10-01

    Anatase-type titania solid solutions co-doped with Nb5+ and cation M (M = Ga3+, Al3+, Sc3+) with composition Ti1-2XNbXMXO2 were directly formed as nanoparticles from precursor solutions of TiOSO4, NbCl5, and metal salts (Ga(SO4)3, Al(NO3)3, and Sc(NO3)3) under mild hydrothermal conditions at 180 °C for 5 h using the hydrolysis of urea. The effect of co-doped cation M on the formation and properties of anatase-type titania solid solutions was investigated. The region of anatse-type solid solution depended on the co-doped cation M. The composition range of anatase-type titania solid solution in the case of M = Sc3+ was much wider than that in the case of M = Ga3+ and Al3+. The increase in the amount of co-doped cation M = Ga3+, Al3+ enhanced the crystallite growth of anatase solid solutions under the hydrothermal conditions. The solid solutions co-doped with M = Al3+ showed the most improved photocatalytic activity in the three cations. The anatase-to-rutile phase transformation of solid solutions was promoted at lower temperature via the presence of co-doped cation M = Ga3+.

  7. Atom probe tomography and transmission electron microscopy of a Mg-doped AlGaN/GaN superlattice.

    PubMed

    Bennett, S E; Ulfig, R M; Clifton, P H; Kappers, M J; Barnard, J S; Humphreys, C J; Oliver, R A

    2011-02-01

    The electronic characteristics of semiconductor-based devices are greatly affected by the local dopant atom distribution. In Mg-doped GaN, the clustering of dopants at structural defects has been widely reported, and can significantly affect p-type conductivity. We have studied a Mg-doped AlGaN/GaN superlattice using transmission electron microscopy (TEM) and atom probe tomography (APT). Pyramidal inversion domains were observed in the TEM and the compositional variations of the dopant atoms associated with those defects have been studied using APT. Rarely has APT been used to assess the compositional variations present due to structural defects in semiconductors. Here, TEM and APT are used in a complementary fashion, and the strengths and weaknesses of the two techniques are compared.

  8. Electrical stability of Al-doped ZnO transparent electrode prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Tabassum, Samia; Yamasue, Eiji; Okumura, Hideyuki; Ishihara, Keiichi N.

    2016-07-01

    Al-doped zinc oxide (AZO) thin films have been considered as a promising alternative to tin doped indium oxide (ITO), which is currently used in various optoelectronic applications. However, the environmental stability of AZO film is not satisfactory, in that the resistivity is significantly increases in air. Here, we investigate the resistivity stability of AZO thin films prepared by sol-gel method using various annealing temperatures and durations. The degradation of resistivity property was observed for AZO films stored in ambient or damp heat environment, where the degradation rate was influenced by annealing temperature. A significant improvement of electrical stability was attained in AZO films that were prepared at high annealing temperature. The films, which showed the highest and the lowest increasing rate of resistivity, were further characterized in detail to shed light on the possible mechanisms explaining the improved stability through crystallinity, surface morphology and elemental state of the thin film.

  9. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN

    SciTech Connect

    Gunning, BP; Fabien, CAM; Merola, JJ; Clinton, EA; Doolittle, WA; Wang, S; Fischer, AM; Ponce, FA

    2015-01-28

    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 x 10(19) cm(-3) with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 x 10(20) cm(-3) show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 x 10(19) cm(-3). The p-GaN and p-Al0.11Ga0.89N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3-3.5V and series resistances of 6-10 Omega without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K. (C) 2015 AIP Publishing LLC.

  10. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN

    SciTech Connect

    Gunning, Brendan P.; Fabien, Chloe A. M.; Merola, Joseph J.; Clinton, Evan A.; Doolittle, W. Alan; Wang, Shuo; Fischer, Alec M.; Ponce, Fernando A.

    2015-01-28

    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 × 10{sup 19} cm{sup −3} with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 × 10{sup 20} cm{sup −3} show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 × 10{sup 19} cm{sup −3}. The p-GaN and p-Al{sub 0.11}Ga{sub 0.89}N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3–3.5 V and series resistances of 6–10 Ω without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K.

  11. The effect of sulfur and zirconium Co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1987-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys, the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S sup 0.2 (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggests that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  12. The effect of sulfur and zirconium co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1988-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys (less than 500 ppma), the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S(0.2) (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggest that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  13. Controlled direct growth of Al2O3-doped HfO2 films on graphene by H2O-based atomic layer deposition.

    PubMed

    Zheng, Li; Cheng, Xinhong; Yu, Yuehui; Xie, Yahong; Li, Xiaolong; Wang, Zhongjian

    2015-02-01

    Graphene has been drawing worldwide attention since its discovery in 2004. In order to realize graphene-based devices, thin, uniform-coverage and pinhole-free dielectric films with high permittivity on top of graphene are required. Here we report the direct growth of Al2O3-doped HfO2 films onto graphene by H2O-based atom layer deposition (ALD). Al2O3-onto-HfO2 stacks benefited the doping of Al2O3 into HfO2 matrices more than HfO2-onto-Al2O3 stacks did due to the micro-molecular property of Al2O3 and the high chemical activity of trimethylaluminum (TMA). Al2O3 acted as a network modifier, maintained the amorphous structure of the film even to 800 °C, and made the film smooth with a root mean square (RMS) roughness of 0.8 nm, comparable to the surface of pristine graphene. The capacitance and the relative permittivity of Al2O3-onto-HfO2 stacks were up to 1.18 μF cm(-2) and 12, respectively, indicating the high quality of Al2O3-doped HfO2 films on graphene. Moreover, the growth process of Al2O3-doped HfO2 films introduced no detective defects into graphene confirmed by Raman measurements. PMID:25519447

  14. Effects of drain doping concentration on switching characteristics of tunnel field-effect transistor inverters

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Woong; Kim, Jang Hyun; Park, Byung-Gook

    2016-11-01

    In order to investigate the effects of the modulation of drain doping concentration (N drain) on alternating current (AC) switching characteristics of a tunnel filed-effect transistor (TFET) inverter, the characteristics of TFETs with various N drains are analyzed rigorously through mixed-mode device and circuit TCAD simulations. As the N drain gets decreased, the drain current (I D) becomes reduced and the gate-to-drain capacitance (C GD) reflects the entire gate capacitance (C GG) at a lower gate voltage (V G), which leads to the degradation of falling/rising delay in TFET inverters. These phenomena are explained successfully by the change of quasi-Fermi energy in the drain (E F_drain) as a function of V G. The E F_drain rises dramatically from when tunneling current starts to flow from the source in the n-type TFET with low N drain. As a result, drain-side channel inversion occurs at a lower V G due to the reduction of the energy barrier between the E F_drain and the conduction band edge of the channel.

  15. Effect of Cobalt Concentration and Oxygen Vacancy on Magnetism of Co Doped ZnO Nanorods.

    PubMed

    Li, Congli; Che, Ping; Sun, Changyan; Li, Wenjun

    2016-03-01

    Zn(1-x)Co(x)O (x = 0-0.07) single-crystalline nanorods were prepared by a modified microemulsion route. The crystalline structure, morphology, optical, and hysteresis loop at low and room temperature of as-prepared materials were characterized by XRD, TEM, PL spectra, and magnetic measurement respectively. The nanorods are 80-250 nm in diameter and about 3 μm in length. X-ray diffraction data, TEM images confirm that the materials synthesized in optimal conditions are ZnO:Co single crystalline solid solution without any impurities related to Co. The PL spectra show that the ferromagnetic samples exhibit strong Zn interstitials and oxygen vacancy emission indicating defects may stabilize ferromagnetic order in the obtained diluted magnetic semiconductors. Magnetic measurements show that the Zn(1-x)Co(x)O nanorods exist obvious ferromagnetic characteristics with T(c) above 300 K. M(s) and coercivities first increase and then decrease with dopant concentration increasing, reaching the highest for 3% doping level. The structural and magnetic properties of these samples support the hypothesis that the FM of DMS nanorods is due to a defect mediated mechanism instead of cobalt nanoclusters and carrier mediated. PMID:27455697

  16. Effect of Cobalt Concentration and Oxygen Vacancy on Magnetism of Co Doped ZnO Nanorods.

    PubMed

    Li, Congli; Che, Ping; Sun, Changyan; Li, Wenjun

    2016-03-01

    Zn(1-x)Co(x)O (x = 0-0.07) single-crystalline nanorods were prepared by a modified microemulsion route. The crystalline structure, morphology, optical, and hysteresis loop at low and room temperature of as-prepared materials were characterized by XRD, TEM, PL spectra, and magnetic measurement respectively. The nanorods are 80-250 nm in diameter and about 3 μm in length. X-ray diffraction data, TEM images confirm that the materials synthesized in optimal conditions are ZnO:Co single crystalline solid solution without any impurities related to Co. The PL spectra show that the ferromagnetic samples exhibit strong Zn interstitials and oxygen vacancy emission indicating defects may stabilize ferromagnetic order in the obtained diluted magnetic semiconductors. Magnetic measurements show that the Zn(1-x)Co(x)O nanorods exist obvious ferromagnetic characteristics with T(c) above 300 K. M(s) and coercivities first increase and then decrease with dopant concentration increasing, reaching the highest for 3% doping level. The structural and magnetic properties of these samples support the hypothesis that the FM of DMS nanorods is due to a defect mediated mechanism instead of cobalt nanoclusters and carrier mediated.

  17. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    SciTech Connect

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2015-08-07

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  18. Influence of Postdeposition Cooling Atmosphere on Thermoelectric Properties of 2% Al-Doped ZnO Thin Films Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Saini, S.; Mele, P.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Luna, L. Molina; Hopkins, P. E.

    2015-06-01

    We have investigated the thermoelectric properties of 2% Al-doped ZnO (AZO) thin films depending on the postdeposition cooling atmosphere [in oxygen pressure (AZO-O) or vacuum (AZO-V)]. Thin films were grown by pulsed laser deposition on sapphire () substrates at various deposition temperatures ( to ). All films were c-axis oriented. The electrical conductivity of AZO-V thin films was higher than that of AZO-O thin films across the whole temperature range from 300 K to 600 K, due to the optimal carrier concentration () of AZO-V samples. Furthermore, the thermoelectric performance of AZO-V films increased with the deposition temperature; for instance, the highest power factor of and dimensionless figure of merit of 0.07 at 600 K were found for AZO-V thin film deposited at.

  19. Photocatalysis of low-concentration gaseous organic pollutants over electrospun iron-doped titanium dioxide nanofibers

    NASA Astrophysics Data System (ADS)

    Chun, Ho-Hwan; Lee, Joon Yeob; Jo, Wan-Kuen

    2013-11-01

    In this study, iron-doped titania (Fe-TiO2) nanoparticles were prepared and then coupled to a polymer material as a support to synthesize Fe-TiO2 nanofibers for photocatalytic degradation of gaseous pollutants (benzene, toluene, ethyl benzene, and o-xylene (BTEX)) at environmental sub-ppm levels. The characteristics of as-prepared photocatalysts were determined by SEM, XRD, and FTIR analyses. Spectral analysis of the as-prepared photocatalysts revealed that they were closely associated with the characteristics of Fe ions for Fe-TiO2 nanofibers. The photocatalytic degradation efficiencies (PDEs) of BTEX determined via Fe-TiO2 nanofibers varied with the ratios of Fe to Ti, suggesting the presence of an optimal Fe-to-Ti ratio. In addition, the PDEs of BTEX determined via two Fe-TiO2 nanofibers with low Fe-to-Ti ratios (0.001 and 0.004) were higher than those obtained from the undoped Fe-TiO2 nanofibers, whereas those of the other two Fe-TiO2 nanofibers with high Fe-to-Ti ratios (0.008 and 0.012) were lower. The average PDEs of BTEX decreased from 34 to 9%, 68 to 28%, 83 to 45%, and 90 to 55%, respectively, as the stream flow rates increased from 1 to 4 L min-1. These values also decreased with increasing initial concentration (IC). Specifically, at the lowest IC of 0.1 ppm, the average PDEs of BTEX were 33, 68, 83, and 91%, respectively, while they were 5, 8, 12, and 23%, respectively, at the highest IC of 2.0 ppm. Similarly, the PDEs of BTEX decreased significantly as the RH increased. Overall, the electrospun Fe-TiO2 nanofibers could be used to effectively decompose low-concentration gaseous organic pollutants when operational conditions were optimized.

  20. Effects of Eu concentration control on crystal growth and scintillation properties for Eu:LiSrAlF6 crystals

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Yokota, Y.; Yamaji, A.; Kurosawa, S.; Kamada, K.; Yoshikawa, A.

    2014-10-01

    Eu doped LiSrAlF6 (Eu:LiSAF) crystals with various Eu concentrations were grown by a micro-pulling-down (μ-PD) method and the effects of Eu concentration control on crystal growth and scintillation properties for Eu:LiSAF crystals were investigated as a neutron scintillator. As-grown Eu0.3%:LiSAF crystal had no visible inclusion while milky parts were observed in the crystals with higher Eu contents. The secondary phases with the chemical composition of EuF2 or EuF3 in the Eu:LiSAF matrix were observed for the crystals with high Eu contents while the secondary phase couldn’t be observed in the powder XRD patterns. In the radioluminescence spectra of Eu:LiSAF crystals under α-ray irradiation, emission peaks around 375 nm originated from 5d-4f transition of Eu2+ ion were observed. The light yields systematically increased with an increase of actual Eu contents in the crystals and the decay times were 1490-1620 ns.

  1. Studies on the Controlling of the Microstructural and Morphological Properties of Al Doped ZnO Thin Films Prepared by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Gil Gang, Myeng; Shin, Seung Wook; Gurav, K. V.; Wang, YinBo; Agawane, G. L.; Lee, Jeong Yong; Moon, Jong-Ha; Hyeok Kim, Jin

    2013-10-01

    Al doped ZnO (AZO) thin films were prepared on ZnO coated glass substrates by hydrothermal synthesis technique using aqueous solutions containing zinc nitrate hexahydrate, ammonium hydroxide, and different sodium citrate concentrations at 60 °C for 6 h. The effects of different trisodium citrate concentrations on the microstructural, crystallinity, morphological, optical, and chemical properties of thin films were investigated. X-ray diffraction studies showed that the AZO thin films were grown as a polycrystalline wurtzite hexagonal phase with a c-axis preferred orientation and without an unwanted second phase regardless of trisodium citrate concentrations. The thickness and grain sizes of AZO thin films decreased with increasing trisodium citrate concentration. The microstructure of AZO thin films was changed from flat to needle shaped and the morphology was smoother with increasing trisodium citrate concentrations. The AZO thin films have a high transmittance in the visible region ranging from 75 to 85% and a sharp edge from 366 to 374 nm.

  2. Band alignment at the interface between Ni-doped Cr2O3 and Al-doped ZnO: implications for transparent p-n junctions

    NASA Astrophysics Data System (ADS)

    Arca, Elisabetta; McInerney, Michael A.; Shvets, Igor V.

    2016-06-01

    The realization of transparent electronic and optoelectronic devices requires the use of transparent p-n junctions. In this context, understanding the band alignment at the interface between the p- and n-components represents a fundamental step towards the realization of high performance devices. In this work, the band alignment at the interface between Al-doped ZnO (AZO) and Ni-doped Cr2O3 has been analysed. The formation and evolution of the core levels as the interface progressively forms have been followed by means of x-ray Photoelectron Spectroscopy, x-ray diffraction and x-ray reflectivity. A type two (staggered) band alignment was identified, with the valence band offset and conduction band offset found to be 2.6 eV and 2.5 eV, respectively. The electrical behaviour will be discussed in terms of the position of the bands, the presence of band bending and the expected built-in potential and how these can be engineered in order to achieve the maximum performance for this hetero-structure.

  3. Half-metallic ferromagnetism in Mn-doped zigzag AlN nanoribbon from first-principles

    NASA Astrophysics Data System (ADS)

    Aghili, S.; Beiranvand, R.; Elahi, S. M.; Abolhasani, M. R.

    2016-12-01

    Based on first-principles calculations, we investigate the effect of Mn impurity on the electronic and magnetic properties of H-terminated zigzag AlN nanoribbons (ZAlNNRs), using the band structure results obtained through the full potential linearized augmented plane wave method within the density functional theory. The calculated results show that the H-terminated ZAlNNR is semiconducting and non magnetic material with a direct band gap of about 2.78 eV. Density of state analyses shows that the top of the valence band is mainly contributed by N atoms, while just beside the conduction band the whole DOS is mainly contributed by Al atoms. The main result is a transition from non-magnetic semiconducting character to half-metallic features upon doping. The Mn-doped ZAlNNR shows complete (100%) spin polarization at the Fermi level and the charge transport is totally originated from Manganese spin up electrons in the nanoribbon. These results propose potential application for the development of AlN nanoribbon-based in magneto-electronic devices.

  4. Cage structure formation of singly doped aluminum cluster cations Al(n)TM+ (TM = Ti, V, Cr).

    PubMed

    Lang, Sandra M; Claes, Pieterjan; Neukermans, Sven; Janssens, Ewald

    2011-09-01

    Structural information on free transition metal doped aluminum clusters, Al(n)TM(+) (TM = Ti, V, Cr), was obtained by studying their ability for argon physisorption. Systematic size (n = 5-35) and temperature (T = 145-300 K) dependent investigations reveal that bare Al(n)(+) clusters are inert toward argon, while Al(n)TM(+) clusters attach one argon atom up to a critical cluster size. This size is interpreted as the geometrical transition from surface-located dopant atoms to endohedrally doped aluminum clusters with the transition metal atom residing in an aluminum cage. The critical size, n(crit), is found to be surprisingly large, namely n(crit) = 16 and n(crit) = 19-21 for TM = V, Cr, and TM = Ti, respectively. Experimental cluster-argon bond dissociation energies have been derived as function of cluster size from equilibrium mass spectra and are in the 0.1-0.3 eV range.

  5. High-performance modulation-doped AlGaAs/InGaAs thermopiles for uncooled infrared FPA application

    NASA Astrophysics Data System (ADS)

    Abe, M.; Abe, Y.; Kogushi, N.; Ang, K. S.; Hofstetter, R.; Wang, H.; Ng, G. I.

    2013-07-01

    Novel thermopile based on modulation doped AlGaAs/InGaAs heterostructures is proposed and developed for the first time, for uncooled infrared FPA (Focal Plane Array) image sensor application. The high responsivity with the high speed response time are designed to be 4900 V/W with 110 μs under the 2 μm design rule. Based on integrated HEMT-MEMS technology, the 32 × 32 matrix FPA is fabricated to demonstrate its enhanced performances by black body measurement. The technology presented here demonstrates the potential of this approach for low-cost uncooled infrared FPA image sensor application.

  6. Influence of a doping by Al stainless steel on kinetics and character of interaction with the metallic nuclear fuel

    NASA Astrophysics Data System (ADS)

    Nikitin, S. N.; Shornikov, D. P.; Tarasov, B. A.; Baranov, V. G.

    2016-04-01

    Metallic nuclear fuel is a perspective kind of fuel for fast reactors. In this paper we conducted a study of the interaction between uranium-molybdenum alloy and ferritic- martensitic steels with additions of aluminum at a temperature of 700 ° C for 25 hours. The rate constants of the interaction layer growth at 700 °C is about 2.8.10-14 m2/s. It is established that doping Al stainless steel leads to decrease in interaction with uranium-molybdenum alloys. The phase composition of the interaction layer is determined.

  7. Transparent Conductive Al-Doped ZnO/Cu Bilayer Films Grown on Polymer Substrates at Room Temperature

    NASA Astrophysics Data System (ADS)

    Huang, Ji-Jie; Wang, Yu-Ping; Lu, Jian-Guo; Gong, Li; Ye, Zhi-Zhen

    2011-12-01

    Al-doped ZnO (AZO)/Cu bi-layer films are deposited by dc magnetron sputtering on polycarbonate substrates at room temperature. The structural, electrical and optical properties of the films are investigated at various sputtering powers of the Cu layer. The AZO/Cu bi-layer film deposited at a moderate sputtering power of 180 W for the Cu layer displayed the highest figure of merit of 3.47 × 10-3Ω-1, with a low sheet resistance of 12.38 Ω/sq, an acceptable visible transmittance of 73%, and a high near-infrared reflectance of about 50%.

  8. Studies of defects in combustion synthesized europium-doped LiAl{sub 5}O{sub 8} red phosphor

    SciTech Connect

    Singh, Vijay Gundu Rao, T.K.

    2008-06-15

    Europium-doped LiAl{sub 5}O{sub 8} red phosphor was prepared using a self-propagating (combustion) synthesis. The formation of crystalline LiAl{sub 5}O{sub 8} was confirmed by X-ray diffraction. The morphological aspect of the resulting powders was examined by scanning electron microscopy. Electron spin resonance studies have been carried out in order to study the characteristics of the defect centres and the thermoluminescence (TL) peaks observed in this phosphor. Two types of centres (centre I and centre II) have been identified in LiAl{sub 5}O{sub 8}:Eu. Centre I is characteristic of a species exhibiting an isotropic g-value 2.0089 with a line width of 70 G and is assigned to a V-centre. Centre II is also characterized by an isotropic g-value 2.0059 with a line width of about 10 G. Centre II is ascribed to a F{sup +}-centre. A room temperature photoluminescence study shows a strong emission line at 613 nm corresponding to the {sup 5}D{sub 0}{yields}{sup 7}F{sub 2} transition of Eu{sup 3+} ions. - Graphical abstract: LiAl{sub 5}O{sub 8}:Eu{sup 3+} phosphors have been synthesized in a very short time (lt;5 min) by combustion process and are well characterized by XRD and SEM. TL glow peak was observed in gamma-irradiated Eu ion-doped LiAl{sub 5}O{sub 8} at around 180 deg. C. Electron spin resonance studies have been carried out in order to study the characteristics of the defect centres. Photoluminescence studies showed red emission located at about 613 nm and is ascribed to {sup 5}D{sub 0}-{sup 7}F{sub 2} transition of Eu{sup 3+} ions.

  9. Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide

    SciTech Connect

    Russo, V.; Ghidelli, M.; Gondoni, P.

    2014-02-21

    In this work we present a detailed Raman scattering investigation of zinc oxide and aluminum-doped zinc oxide (AZO) films characterized by a variety of nanoscale structures and morphologies and synthesized by pulsed laser deposition under different oxygen pressure conditions. The comparison of Raman spectra for pure ZnO and AZO films with similar morphology at the nano/mesoscale allows to investigate the relation between Raman features (peak or band positions, width, relative intensity) and material properties such as local structural order, stoichiometry, and doping. Moreover Raman measurements with three different excitation lines (532, 457, and 325 nm) point out a strong correlation between vibrational and electronic properties. This observation confirms the relevance of a multi-wavelength Raman investigation to obtain a complete structural characterization of advanced doped oxide materials.

  10. High-Hall-Mobility Al-Doped ZnO Films Having Textured Polycrystalline Structure with a Well-Defined (0001) Orientation

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2016-06-01

    Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility ( μ H) of 50.1 cm2/Vs with a carrier concentration ( N) of 2.55 × 1020 cm-3. Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm2/Vs with an N of 2.22 × 1020 cm-3.

  11. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application

    NASA Astrophysics Data System (ADS)

    Li, Xifei; Liu, Jian; Zhang, Yong; Li, Yongliang; Liu, Hao; Meng, Xiangbo; Yang, Jinli; Geng, Dongsheng; Wang, Dongniu; Li, Ruying; Sun, Xueliang

    2012-01-01

    A floating catalyst chemical vapor deposition method has been developed to synthesize carbon nanotubes doped with a high concentration of nitrogen. Their electrochemical performance as anodes for lithium ion batteries (LIBs) in comparison to pristine carbon nanotubes (CNTs) has been investigated. X-ray photoelectron spectroscopy results indicated that the nitrogen content reaches as high as 16.4 at.%. Bamboo-like compartments were fabricated as shown by high resolution transmission electron microscopy. High concentration nitrogen doped carbon nanotubes (HN-CNTs) show approximately double reversible capacity of CNTs: 494 mAh g-1 vs. 260 mAh g-1, and present a much better rate capability than CNTs. The significantly superior electrochemical performance could be related to the high electrical conductivity and the larger number of defect sites in HN-CNTs for anodes of LIBs.

  12. Simulation of the effective concentration profiles in InGaAs/GaAs heterostructures containing δ-doped layers

    SciTech Connect

    Khazanova, S. V. Degtyarev, V. E.; Tikhov, S. V.; Baidus, N. V.

    2015-01-15

    InGaAs/GaAs heterostructures containing quantum wells and δ-doped layers are studied theoretically and experimentally. On the basis of the procedure of self-consistently solving the Schrödinger equation and Poisson equation, the differential capacitance and the apparent electron concentration profiles are numerically calculated for structures with different mutual arrangements of the quantum well and the δ layer. The results of the calculations are compared with the result of analyzing the experimental capacitance-voltage characteristics of the structures. The systematic features of the behavior of the apparent concentration profiles and capacitance-voltage characteristics in relation to the geometric properties of the structure, the temperature, and the doping level are established.

  13. Efficiency droop enhancement in AlGaN deep ultraviolet light-emitting diodes by making whole barriers but the bottom Mg doped

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Sun, Huiqing; Yi, Xinyan; Yang, Xian; Fan, Xuancong; Zhang, Cheng; Zhang, Zhuding; Guo, Zhiyou

    2016-09-01

    Ultra violet light-emitting diodes (UVLEDs) with different types of Mg-doped barriers have been studied. The energy band diagrams, internal quantum efficiency, total output power and radiative recombination rate are investigated by APSYS software. The simulation results show that the UVLED with only a p-doped top barrier get little enhancement comparing to the conventional one, on the contrary the structure with p-doping in all but the bottom barriers has a much better optical and electrical properties due to enhancement of the holes' injection and the electrons' confinement. The efficiency droop is significantly alleviated and the light output power is greatly enhanced. To avoid forming a PN junction by the bottom barrier and the n-AlGaN in the proposed structure, therefore, the bottom barrier isn't p-doped. Then structures with different hole densities in the Mg-doped barriers have been studied numerically and that confirmed the best.

  14. Optical bistability and multistability in a defect slab doped by GaAs/AlGaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin

    2016-05-01

    We proposed a new model for controlling the optical bistability (OB) and optical multistability (OM) in a defect slab doped with four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al0.3 Ga0.7As barriers. The effects of biexciton energy renormalization, exciton spin relaxation, and thickness of the slab on the OB and OM properties of the defect slab were theoretically investigated. We found that the transition from OB to OM or vice versa is possible by adjusting the controllable parameters in a lab. Moreover, the transmission, reflection, and absorption properties of the weak probe light through the slab were also discussed in detail.

  15. Al2O3 influence on structural, elastic, thermal properties of Yb(3+) doped Ba-La-tellurite glass: evidence of reduction in self-radiation trapping at 1μm emission.

    PubMed

    Balaji, S; Biswas, K; Sontakke, A D; Gupta, G; Ghosh, D; Annapurna, K

    2014-12-10

    Ba-La-tellurite glasses doped with Yb(3+) ions have been prepared through melt quenching technique by modifying their composition with the inclusion of varied concentration of Al2O3 to elucidate its effects on glass structural, elastic, thermal properties and Yb(3+) ion NIR luminescence performance. The FTIR spectral analysis indicates Al2O3 addition is promoting the conversion of BOs from NBOs which have been generated during the process of depolymerisation of main glass forming TeO4 units. The elastic properties of the glass revealed an improved rigidity of the glass network on addition of Al2O3. In concurrence to this, differential thermal analysis showed an increase in glass transition temperature with improved thermal stability factor. Also, Yb(3+) fluorescence dynamics demonstrated that, Al2O3 inclusion helps in restraining the detrimental radiation trapping of ∼1μm emission.

  16. Doping the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage.

    PubMed

    Niu, Min; Yu, Guangtao; Yang, Guanghui; Chen, Wei; Zhao, Xingang; Huang, Xuri

    2014-01-01

    Under ab initio computations, several new inorganic electride compounds with high stability, M@x-Al12N12 (M = Li, Na, and K; x = b66, b64, and r6), were achieved for the first time by doping the alkali metal atom M on the fullerene-like Al12N12 nanocage, where the alkali atom is located over the Al-N bond (b66/b64 site) or six-membered ring (r6 site). It is revealed that independent of the doping position and atomic number, doping the alkali atom can significantly narrow the wide gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) (EH-L = 6.12 eV) of the pure Al12N12 nanocage in the range of 0.49-0.71 eV, and these doped AlN nanocages can exhibit the intriguing n-type characteristic, where a high energy level containing the excess electron is introduced as the new HOMO orbital in the original gap of pure Al12N12. Further, the diffuse excess electron also brings these doped AlN nanostructures the considerable first hyperpolarizabilities (β0), which are 1.09 × 10(4) au for Li@b66-Al12N12, 1.10 × 10(4), 1.62 × 10(4), 7.58 × 10(4) au for M@b64-Al12N12 (M = Li, Na, and K), and 8.89 × 10(5), 1.36 × 10(5), 5.48 × 10(4) au for M@r6-Al12N12 (M = Li, Na, and K), respectively. Clearly, doping the heavier Na/K atom over the Al-N bond can get the larger β0 value, while the reverse trend can be observed for the series with the alkali atom over the six-membered ring, where doping the lighter Li atom can achieve the larger β0 value. These fascinating findings will be advantageous for promoting the potential applications of the inorganic AlN-based nanosystems in the new type of electronic nanodevices and high-performance nonlinear optical (NLO) materials.

  17. Fine Structure in the Electron Emission Process for Two DX-Like Centers in Sn-Doped AlGaAs

    NASA Astrophysics Data System (ADS)

    Zhan, Hua-han; Kang, Jun-yong; Huang, Qi-sheng

    1998-01-01

    Fine structure in the electron emission process for DX(Sn) centers in AlGaAs has been studied with high resolution Laplace defect spectroscopy. The influence of the different local configuration of Al and Ga atoms around the centers on the electron thermal emissions was observed. An experimental evidence for the microscopic structure of two DX-like centers in Sn-doped AlGaAs is provided.

  18. Thermoluminescence of Ge- and Al-Doped SiO2 Optical Fibers Subjected to 0.2-4.0 Gy External Photon Radiotherapeutic Dose

    NASA Astrophysics Data System (ADS)

    Hossain, I.; Wagiran, H.; Yaakob, N. H.

    2013-09-01

    In this work, we studied the thermoluminescence response of Ge- and Al-doped optical fibers, its linearity, energy dependence, and sensitivity. The Ge-doped optical fibers demonstrate useful TL properties and represent an excellent candidate for use in TL dosimetry of ionizing radiation. The TL response increases monotonically over a wide photon dose range, from 0.2 Gy to 4.0 Gy. The TL results for these fibers have been compared with similar TL data for phosphor TLD-100. Commercially available Al- and Ge-doped optical fibers have both been found to yield a linear dose-TL signal relationship, although the Al-doped fiber provides only 5 % of the sensitivity of the Ge-doped fibers. The TL characteristics of Ge-doped optical fiber, plus its small size (125 μm diameter), high flexibility, ease of handling, and low cost compared with other TL materials, make this commercial optical fiber a very promising TL material for use in medicine, industry, reactor operation, and a variety of other areas.

  19. Pressure-induced phase transition and electrical properties of thermoelectric Al-doped Mg{sub 2}Si

    SciTech Connect

    Zhao, Jianbao; Tse, John S.; Liu, Zhenxian; Gordon, Robert A.; Takarabe, Kenichi; Reid, Joel

    2015-10-14

    A recent study has shown the thermoelectric performance of Al-doped Mg{sub 2}Si materials can be significantly enhanced at moderate pressure. To understand the cause of this phenomenon, we have performed in situ angle dispersive X-ray diffraction and infrared reflectivity measurements up to 17 GPa at room temperature. Contrary to previous experiment, using helium as a pressure transmission medium, no structural transformation was observed in pure Mg{sub 2}Si. In contrast, a phase transition from cubic anti-fluorite (Fm-3m) to orthorhombic anti-cotunnite (Pnma) was observed in the Al-doped sample at 10 GPa. Infrared reflectivity measurements show the electrical conductivity increases with pressure and is further enhanced after the phase transition. The electron density of states at the Fermi level computed form density functional calculations predict a maximum thermoelectric power factor at 1.9 GPa, which is in good agreement with the experimental observation.

  20. First-principles study on the electronic and optical properties of Si and Al co-doped zinc oxide for solar cell devices

    NASA Astrophysics Data System (ADS)

    Abbassi, A.; El Amrani, A.; Ez-Zahraouy, H.; Benyoussef, A.; El Amraoui, Y.

    2016-06-01

    Electronic and optical properties of co-doped zinc oxide ZnO with silicon (Si) and aluminum (Al), in Zn1-2 x Si x Al x O (0 ≤ x ≤ 0.0625) original structure forms, are investigated by the first-principles calculations based on the density functional theory (DFT). The optical constants and dielectric functions are investigated with the full-potential linearized augmented plane wave (FP-LAPW) method and the generalized gradient approximation (GGA) by WIEN2k package. The complex dielectric functions, refractive index and band gap of the pure as well as doped and co-doped ZnO were investigated, which are in good agreement with the available experimental results for the undoped ZnO. Thus, the maximum optical transmittance of the co-doped ZnO of about 95 % was achieved; it is higher than that of pure ZnO. Thus, we showed for the Si-Al co-doped ZnO with x = 0.0315 that the optical transmittance can cover a larger range in the visible light region. In addition, an occurrence of important energy levels around Fermi levels was showed, which is mainly due to doping atoms that lead to an overlap between valence and conduction bands, and consequently to the significant conductor behavior of the Si-Al co-doped ZnO. The original Zn1-2 x Si x Al x O structure reveals promising optical and electronic properties, and it can be investigated as good candidates for practical uses as transparent and conducting electrodes in solar cell devices.

  1. Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: Effect of molar concentrations

    SciTech Connect

    Mene, Ravindra U.; Mahabole, Megha P.; Mohite, K.C.; Khairnar, Rajendra S.

    2014-02-01

    Highlights: • We report improved gas sensing and dielectric characteristics of Fe ion exchanged HAp films. • Fe doped HAp film shows maximum gas response at relatively lower temperature. • Response and gas uptake capacity of sensors is improved for appropriate amount of Fe ions in HAp matrix. • Fe-HAp films exhibit remarkable improvement in dielectric properties compared to pure HAp. • Fe doped HAp films show significant improvement in gas sensing as well as in dielectric properties. - Abstract: In the present work Fe doped hydroxyapatite (Fe-HAp) thick films has been successfully utilized to improve the gas sensing as well as its dielectric properties. Initially, HAp nano powder is synthesized by chemical precipitation process and later on Fe ions are doped in HAp by ion exchange process. Structural and morphological modifications are observed by means of X-ray diffraction and scanning electron microscopy analysis. The sensing parameters such as operating temperature, response/recovery time and gas uptake capacity are experimentally determined. The Fe-HAp (0.05 M) film shows improved CO and CO{sub 2} gas sensing capacity at lower operating temperature compared to pure HAp. Moreover, variation of dielectric constant and dielectric loss for pure and Fe-HAp thick films are studied as a function of frequency in the range of 10 Hz–1 MHz. The study reveals that Fe doped HAp thick films improve the sensing and dielectric characteristics as compared to pure HAp.

  2. Superconductivity in carrier-doped silicon carbide

    NASA Astrophysics Data System (ADS)

    Muranaka, Takahiro; Kikuchi, Yoshitake; Yoshizawa, Taku; Shirakawa, Naoki; Akimitsu, Jun

    2008-12-01

    We report growth and characterization of heavily boron-doped 3C-SiC and 6H-SiC and Al-doped 3C-SiC. Both 3C-SiC:B and 6H-SiC:B reveal type-I superconductivity with a critical temperature Tc=1.5 K. On the other hand, Al-doped 3C-SiC (3C-SiC:Al) shows type-II superconductivity with Tc=1.4 K. Both SiC:Al and SiC:B exhibit zero resistivity and diamagnetic susceptibility below Tc with effective hole-carrier concentration n higher than 1020 cm-3. We interpret the different superconducting behavior in carrier-doped p-type semiconductors SiC:Al, SiC:B, Si:B and C:B in terms of the different ionization energies of their acceptors.

  3. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water.

    PubMed

    Chai, Liyuan; Wang, Yunyan; Zhao, Na; Yang, Weichun; You, Xiangyu

    2013-08-01

    A novel adsorbent of sulfate-doped Fe3O4/Al2O3 nanoparticles with magnetic separability was developed for fluoride removal from drinking water. The nanosized adsorbent was characterized and its performance in fluoride removal was evaluated. Kinetic data reveal that the fluoride adsorption was rapid in the beginning followed by a slower adsorption process, nearly 90% adsorption can be achieved within 20 min and only 10-15% additional removal occurred in the following 8 h. The fluoride adsorption isotherm was well described by Elovich model. The calculated adsorption capacity of this nanoadsorbent for fluoride by two-site Langmuir model was 70.4 mg/g at pH 7.0. Moreover, this nanoadsorbent performed well over a considerable wide pH range of 4-10, and the fluoride removal efficiencies reached up to 90% and 70% throughout the pH range of 4-10 with initial fluoride concentrations of 10 mg/L and 50 mg/L, respectively. The observed sulfate-fluoride displacement and decreased sulfur content on the adsorbent surface reveal that anion exchange process was an important mechanism for fluoride adsorption by the sulfate-doped Fe3O4/Al2O3 nanoparticles. Moreover, a shift of the pH of zero point charge (pHPZC) of the nanoparticles and surface analysis based on X-ray photoelectron spectroscopy (XPS) suggest the formation of inner-sphere fluoride complex at the aluminum center as another adsorption mechanism. With the exception of PO4(3-), other co-existing anions (NO3(-), Cl(-) and SO4(2-)) did not evidently inhibit fluoride removal by the nanoparticles. Findings of this study demonstrate the potential utility of the nanoparticles as an effective adsorbent for fluoride removal from drinking water. PMID:23602616

  4. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water.

    PubMed

    Chai, Liyuan; Wang, Yunyan; Zhao, Na; Yang, Weichun; You, Xiangyu

    2013-08-01

    A novel adsorbent of sulfate-doped Fe3O4/Al2O3 nanoparticles with magnetic separability was developed for fluoride removal from drinking water. The nanosized adsorbent was characterized and its performance in fluoride removal was evaluated. Kinetic data reveal that the fluoride adsorption was rapid in the beginning followed by a slower adsorption process, nearly 90% adsorption can be achieved within 20 min and only 10-15% additional removal occurred in the following 8 h. The fluoride adsorption isotherm was well described by Elovich model. The calculated adsorption capacity of this nanoadsorbent for fluoride by two-site Langmuir model was 70.4 mg/g at pH 7.0. Moreover, this nanoadsorbent performed well over a considerable wide pH range of 4-10, and the fluoride removal efficiencies reached up to 90% and 70% throughout the pH range of 4-10 with initial fluoride concentrations of 10 mg/L and 50 mg/L, respectively. The observed sulfate-fluoride displacement and decreased sulfur content on the adsorbent surface reveal that anion exchange process was an important mechanism for fluoride adsorption by the sulfate-doped Fe3O4/Al2O3 nanoparticles. Moreover, a shift of the pH of zero point charge (pHPZC) of the nanoparticles and surface analysis based on X-ray photoelectron spectroscopy (XPS) suggest the formation of inner-sphere fluoride complex at the aluminum center as another adsorption mechanism. With the exception of PO4(3-), other co-existing anions (NO3(-), Cl(-) and SO4(2-)) did not evidently inhibit fluoride removal by the nanoparticles. Findings of this study demonstrate the potential utility of the nanoparticles as an effective adsorbent for fluoride removal from drinking water.

  5. Speciation of aqueous mononuclear Al(III)-hydroxo and other Al(III) complexes at concentrations of geochemical relevance by aluminum-27 nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Faust, Bruce C.; Labiosa, William B.; Dai, K'o. H.; MacFall, Janet S.; Browne, Bryant A.; Ribeiro, Anthony A.; Richter, Daniel D.

    1995-07-01

    Aluminum-27 (27Al) nuclear magnetic resonance (NMR) spectroscopy was used to characterize Al(III)-hydroxo complexes, in aqueous solutions with total Al(III) concentrations of 1.0-10 μM, using a custom-built NMR probe, coil, and sample bottle with low background aluminum impurities. Published 27Al NMR spectroscopy studies have traditionally used total Al(III) concentrations that are generally outside the range of geochemical interest (total [ Al(III) l ≥ 1000 μM). In this study, lower Al(III) concentrations (≤ 10 μM) were used to more closely approximate natural conditions, while allowing the measurement of mononuclear Al(III) species by 27Al NMR spectroscopy. The sensitivity of the 27Al NMR spectroscopy system, as measured by the signal-to-noise ratio (S/N), is S/N= 5 for 1.0 μM Al(III) at pH 2.00 and S/N= 3 for 10 μM Al(III) at pH 5.20. This level of sensitivity is within the range of geochemically relevant Al(III) concentrations found in slightly acidic natural waters. Quantitative models are developed which link observations of NMR chemical shifts and linewidth ratios to the calculated equilibrium speciation of mononuclear Al(III) for 10 μM Al(III) solutions at pH values 2.00 to 5.20 (prepared by titrating acidic AI(III) solutions with pyridine). Linear-regression best fits of the models to the NMR data are used to determine the intrinsic chemical shifts and linewidths of individual mononuclear Al(III) species. The intrinsic chemical shift of each Al(III) species "i", δi (ppm), is (1) δAl3+ ≡ 0 for Al3+ (defined by convention), (2) δAl(OH)2+ = 3.5 (SE= 1.3, N = 10) for Al(OH)2+, (3) δAl(OH)2+ ≅ 3.7 (SE= 1.4, N = 10) for Al(OH)2+ , and (4) δAl(OH)4- = 79.9 (SE= 0.03, N = 4) for Al(OH)4-; where positive chemical shifts are "downfield," SE = standard error, and N =number of samples. A convention is delineated in which the linewidth of the Al(III) species/peak of interest is normalized with respect to that of a reference species (Al3+) under the

  6. Growth and characterisation of NiAl and N-doped NiAl films deposited by closed field unbalanced magnetron sputtering ion plating using elemental ni and Al targets.

    PubMed

    Said, R; Ahmed, W; Abuain, T; Abuazza, A; Gracio, J

    2010-04-01

    Closed Field Unbalanced Magnetron Sputtering Ion Plating (CFUBMSIP) has been used to deposit undoped and nitrogen doped NiAI thin films onto glass and stainless steel 316 substrates. These films have potential applications in tribological, electronic media and thermal barrier coatings. The surface characteristics, composition, mechanical and structural properties have been investigated using stylus profilometry, X-ray diffraction (XRD), Energy dispersive spectroscopy (EDAX), Atomic force microscopy (AFM) and nanoindentation. The average thickness of the films was approximately 1 microm. The X-ray diffraction spectra revealed the presence of the beta NiAl phase. The EDAX results revealed that all of the undoped and nitrogen doped NiAl thin films exhibited the near equiatomic NiAl composition with the best results being achieved using 300 Watts DC power for Ni and 400 Watts DC power for Al targets respectively. AFM results of both types of films deposited on glass samples exhibited a surface roughness of less than 100 nm. The nanoindenter results for coatings on glass substrates displayed hardness and elastic modulus of 7.7 GPa and 100 GPa respectively. The hardest coatings obtained were obtained at 10% of nitrogen.

  7. Atomic layer deposition of Al-doped ZnO/Al2O3 double layers on vertically aligned carbon nanofiber arrays.

    PubMed

    Malek, Gary A; Brown, Emery; Klankowski, Steven A; Liu, Jianwei; Elliot, Alan J; Lu, Rongtao; Li, Jun; Wu, Judy

    2014-05-14

    High-aspect-ratio, vertically aligned carbon nanofibers (VACNFs) were conformally coated with aluminum oxide (Al2O3) and aluminum-doped zinc oxide (AZO) using atomic layer deposition (ALD) in order to produce a three-dimensional array of metal-insulator-metal core-shell nanostructures. Prefunctionalization before ALD, as required for initiating covalent bonding on a carbon nanotube surface, was eliminated on VACNFs due to the graphitic edges along the surface of each CNF. The graphitic edges provided ideal nucleation sites under sequential exposures of H2O and trimethylaluminum to form an Al2O3 coating up to 20 nm in thickness. High-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy images confirmed the conformal core-shell AZO/Al2O3/CNF structures while energy-dispersive X-ray spectroscopy verified the elemental composition of the different layers. HRTEM selected area electron diffraction revealed that the as-made Al2O3 by ALD at 200 °C was amorphous, and then, after annealing in air at 450 °C for 30 min, was converted to polycrystalline form. Nevertheless, comparable dielectric constants of 9.3 were obtained in both cases by cyclic voltammetry at a scan rate of 1000 V/s. The conformal core-shell AZO/Al2O3/VACNF array structure demonstrated in this work provides a promising three-dimensional architecture toward applications of solid-state capacitors with large surface area having a thin, leak-free dielectric.

  8. Atomic layer deposition of Al-doped ZnO/Al2O3 double layers on vertically aligned carbon nanofiber arrays.

    PubMed

    Malek, Gary A; Brown, Emery; Klankowski, Steven A; Liu, Jianwei; Elliot, Alan J; Lu, Rongtao; Li, Jun; Wu, Judy

    2014-05-14

    High-aspect-ratio, vertically aligned carbon nanofibers (VACNFs) were conformally coated with aluminum oxide (Al2O3) and aluminum-doped zinc oxide (AZO) using atomic layer deposition (ALD) in order to produce a three-dimensional array of metal-insulator-metal core-shell nanostructures. Prefunctionalization before ALD, as required for initiating covalent bonding on a carbon nanotube surface, was eliminated on VACNFs due to the graphitic edges along the surface of each CNF. The graphitic edges provided ideal nucleation sites under sequential exposures of H2O and trimethylaluminum to form an Al2O3 coating up to 20 nm in thickness. High-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy images confirmed the conformal core-shell AZO/Al2O3/CNF structures while energy-dispersive X-ray spectroscopy verified the elemental composition of the different layers. HRTEM selected area electron diffraction revealed that the as-made Al2O3 by ALD at 200 °C was amorphous, and then, after annealing in air at 450 °C for 30 min, was converted to polycrystalline form. Nevertheless, comparable dielectric constants of 9.3 were obtained in both cases by cyclic voltammetry at a scan rate of 1000 V/s. The conformal core-shell AZO/Al2O3/VACNF array structure demonstrated in this work provides a promising three-dimensional architecture toward applications of solid-state capacitors with large surface area having a thin, leak-free dielectric. PMID:24689702

  9. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Liu, Jingmao; Geng, Dongsen; Guo, Peng; Zheng, Jun; Wang, Qimin

    2016-12-01

    DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C2H2 and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C2H2 fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C2H2 fraction. The results show that the Al and Cr contents in the films increased continuously as the C2H2 fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would cause abrasive wear and thus deteriorate the wear performance of the films.

  10. Room temperature synthesis of Mn{sup 2+} doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination

    SciTech Connect

    Kole, A. K.; Kumbhakar, P.; Tiwary, C. S.

    2013-03-21

    Mn{sup 2+} doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn{sup 2+} doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be {approx}1.10 (at. %) corresponding to 40.0 (molar %) of Mn{sup 2+} doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn{sup 2+} doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn{sup 2+} doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn{sup 2+} doped sample shows an enhancement of 33% in PL emission intensity.

  11. Microstructure evolution of Al-doped zinc oxide and Sn-doped indium oxide deposited by radio-frequency magnetron sputtering: A comparison

    SciTech Connect

    Nie, Man; Bikowski, Andre; Ellmer, Klaus

    2015-04-21

    The microstructure and morphology evolution of Al-doped zinc oxide (AZO) and Sn-doped indium oxide (ITO) thin films on borosilicate glass substrates deposited by radio-frequency magnetron sputtering at room temperature (RT) and 300 °C were investigated by X-ray diffraction and atomic force microscopy (AFM). One-dimensional power spectral density (1DPSD) functions derived from the AFM profiles, which can be used to distinguish different growth mechanisms, were used to compare the microstructure scaling behavior of the thin films. The rms roughness R{sub q} evolves with film thickness as a power law, R{sub q} ∼ d{sub f}{sup β}, and different growth exponents β were found for AZO and ITO films. For AZO films, β of 1.47 and 0.56 are obtained for RT and 300 °C depositions, respectively, which are caused by the high compressive stress in the film at RT and relaxation of the stress at 300 °C. While for ITO films, β{sub 1} = 0.14 and β{sub 2} = 0.64 for RT, and β{sub 1} = 0.89 and β{sub 2} = 0.3 for 300 °C deposition are obtained, respectively, which is related to the strong competition between the surface diffusion and shadowing effect and/or grain growth. Electrical properties of both materials as a function of film thickness were also compared. By the modified Fuchs-Sondheimer model fitting of the electrical transport in both materials, different nucleation states are pointed out for both types of films.

  12. Low temperature fabrication and doping concentration analysis of Au/Sb ohmic contacts to n-type Si

    SciTech Connect

    Liu, J. Q.; Wang, C.; Zhu, T.; Wu, W. J.; Fan, J.; Tu, L. C.

    2015-11-15

    This paper investigates low temperature ohmic contact formation of Au/Sb to n-type Si substrates through AuSb/NiCr/Au metal stacks. Liquid epitaxy growth is utilized to incorporate Sb dopants into Si substrate in AuSi melt. The best specific contact resistivity achieved is 0.003 Ω ⋅ cm{sup 2} at 425 {sup o}C. Scanning electron microscopy (SEM) reveals inverted pyramidal crater regions at the metal/semiconductor interface, indicating that AuSi alloying efficiently occurs at such sites. Secondary ion mass spectroscopy (SIMS) shows that Sb atoms are successfully incorporated into Si as doping impurities during the anneal process, and the Sb doping concentration at the contact interface is found to be higher than the solid solubility limit in a Si crystal. This ohmic contacts formation method is suitable for semiconductor fabrication processes with limited thermal budget, such as post CMOS integration of MEMS.

  13. Thermal lens study of thermo-optical properties and concentration quenching of Er3+-doped lead pyrophosphate based glasses

    SciTech Connect

    Santos, C. C.; Rocha, U.; Guedes, Ilde; Vermelho, M. V. D.; Boatner, Lynn A; Jacinto, C.

    2012-01-01

    In this work, we have used the thermal lens technique combined with conventional spectroscopy to characterize the thermo-optical properties of Er3+-doped lead pyrophosphate-based glasses. More precisely, we have investigated and quantified experimentally the fluorescence quantum efficiencies of the Er3+ levels, and we describe the role of concentration quenching effects. The fluorescence quantum efficiency of the 4I13/2 level is very high when compared to other phosphate glasses, while that of the green-coupled levels is very small. Other important photonic materials parameters, such as the thermal diffusivity and temperature coefficient of the optical path length change, were obtained and compared with those of other glass systems. The cumulative results obtained here for the Er-doped lead pyrophosphate glass show that this material is a good candidate for photonic applications with a characteristic Er3+ infrared emission around 1550 nm.

  14. Oxidative Recession, Sulfur Release, and Al203 Spallation for Y-Doped Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2001-01-01

    Second-order spallation phenomena have been noted for Y-doped Rene'N5 after long term oxidation at 1150 degrees C. The reason for this behavior has not been conclusively identified. A mass equivalence analysis has shown that the surface recession resulting from oxidation has the potential of releasing about 0.15 monolayer of sulfur for every 1 mg/sq cm of oxygen reacted for an alloy containing 5 ppmw of sulfur. This amount is significant in comparison to levels that have been shown to result in first-order spallation behavior for undoped alloys. Oxidative recession is therefore speculated to be a contributing source of sulfur and second-order spallation for Y-doped alloys.

  15. Study of Mössbauer and magnetic properties of Al{sup 3+} ions doped superparamagnetic nano ferrites

    SciTech Connect

    Verma, Satish Chand, Jagdish; Sarveena,; Singh, M.

    2015-06-24

    Nanocrystalline Al{sup 3+} ions doped Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2-y}O{sub 4} compositions, where y=0.0 and 0.10 have been synthesized by citrate precursor method. Crystal structure and magnetic properties have been investigated at room temperature by means of X-ray diffraction, TEM, LCR meter, VSM and Mössbauer spectroscopy. Particle size and lattice parameter has been found to decrease as non-magnetic Al content increased. Relative loss factor has very low value in range of 10{sup −6}–10{sup −5} which is three orders of magnitude less than samples prepared by conventional method. The Mössbauer spectroscopy results shows superparamagnetism. The isomer shift corresponding to Fe{sup 3+} ions do not show any significant variation which indicates that replacement of Fe{sup 3+} ions do not affect significantly the d-electrons density which in turn affects the s-electrons density around Fe{sup 3+} nuclei. The nuclear hyperfine magnetic fields have been found to decrease at A-site and B-site with increasing substitution of Al{sup 3+} ions in Mg-Mn-Ni ferrite.

  16. Changes of microstructure and magnetic properties of Nd-Fe-B sintered magnets by doping Al-Cu

    NASA Astrophysics Data System (ADS)

    Ni, Junjie; Ma, Tianyu; Yan, Mi

    2011-11-01

    The microstructural and magnetic properties of Al 100- xCu x (15at%≤ x≤45 at%) doped Nd-Fe-B magnets were studied. The distribution and alloying effects of Cu or Al on the intergranular microstructure were investigated by thermodynamic analysis, differential scanning calorimetery and microscopy techniques. It was observed that when the Cu content of Al 100 xCu x exceeds to 25 at%, the (Pr, Nd)Cu and CuAl 2 phases form in these magnets. The formation of (Pr, Nd)Cu phase depends on the negative formation enthalpy of (Pr, Nd)Cu and the exclusive distribution of Cu in the intergranular regions. The eutectic reaction between (Pr, Nd)Cu phase and (Pr, Nd) occurs at 480 °C, which forms the liquid phase that dissolves the (Pr, Nd) 2Fe 14B surface irregularities and thus increases the quantities of (Pr, Nd)-rich phase at the grain boundaries. These changes benefit the grain boundary microstructure, especially the distribution of (Pr, Nd)-rich phase, which effectively improves the intrinsic coercivity iHc due to the decreases of exchange coupling between the (Pr, Nd) 2Fe 14B grains.

  17. Molecular aluminum hydrides identified by inelastic neutron scattering during H2 regeneration of catalyst-doped NaAlH4.

    PubMed

    Fu, Qi Jia; Ramirez-Cuesta, A J; Tsang, Shik Chi

    2006-01-19

    Catalyst-doped sodium aluminum hydrides have been intensively studied as solid hydrogen carriers for onboard proton-exchange membrane (PEM) fuel cells. Although the importance of catalyst choice in enhancing kinetics for both hydrogen uptake and release of this hydride material has long been recognized, the nature of the active species and the mechanism of catalytic action are unclear. We have shown by inelastic neutron scattering (INS) spectroscopy that a volatile molecular aluminum hydride is formed during the early stage of H2 regeneration of a depleted, catalyst-doped sodium aluminum hydride. Computational modeling of the INS spectra suggested the formation of AlH3 and oligomers (AlH3)n (Al2H6, Al3H9, and Al4H12 clusters), which are pertinent to the mechanism of hydrogen storage. This paper demonstrates, for the first time, the existence of these volatile species.

  18. Effects of doping concentration ratio on electrical characterization in pseudomorphic HEMT-based MMIC switches for ICT system

    NASA Astrophysics Data System (ADS)

    Mun, Jae-Kyoung; Oh, Jung-Hun; Sung, Ho-Kun; Wang, Cong

    2015-12-01

    The effects of the doping concentration ratios between upper and lower silicon planar-doping layers on the DC and RF characteristics of the double planar doped pseudomorphic high electron mobility transistors (pHEMTs) are investigated. From the device simulation, an increase of maximum extrinsic transconductance and a decrease of total on- and off-state capacitances are observed, as well as an increase of the upper to lower planar-doping concentration ratios (UTLPDR), which give rise to an enhancement of the switching speed and isolation characteristics. On the basis of simulation results, two types of pHEMTs are fabricated with two different UTLPDRs of 4:1 and 1:2. After applying these two types' pHEMTs, single-pole-double-throw (SPDT) transmitter/receiver monolithic microwave integrated circuit (MMIC) switches are also designed and fabricated. The SPDT MMIC switch with a 4:1 UTLPDR shows an insertion loss of 0.58 dB, isolation of 40.2 dB, and switching speed of 100 ns, respectively, which correspondingly indicate a 0.23 dB lower insertion loss, 2.90 dB higher isolation and 2.5 times faster switching speed than those of 1:2 UTLPDR at frequency range of 2-6 GHz. From the simulation results and comparative studies, we propose that the UTLPDR must be greater than 4:1 for the best switching performance. With the abovementioned excellent performances, the proposed switch would be quite promising in the application of information and communications technology system.

  19. Effects of Mn, Cu doping concentration to the properties of magnetic nanoparticles and arsenic adsorption capacity in wastewater

    NASA Astrophysics Data System (ADS)

    Thi, Tran Minh; Trang, Nguyen Thi Huyen; Van Anh, Nguyen Thi

    2015-06-01

    The research results of Fe3O4 and Mn, Cu doped Fe3O4 nanomaterials synthesized by a chemical method for As(III) wastewater treatment are presented in this paper. The X-ray diffraction patterns and transmission electron microscopy images showed that samples had the cubic spinel structure with the grain sizes were varied from 9.4 nm to 18.1 nm. The results of vibrating sample magnetometer measurements at room temperature showed that saturation magnetic moments of Fe1-xCuxFe2O4 and Fe1-xMnxFe2O4 samples decreased from 65.9 emu/g to 53.2 emu/g and 65.9 emu/g to 61.5 emu/g, respectively, with the increase of Cu, Mn concentrations from 0.0 to 0.15. The nitrogen adsorption-desorption isotherm of a typical Fe3O4 sample at 77 K was studied in order to investigate the surface and porous structure of nanoparticles by BET method. The specific surface area of Fe3O4 magnetic nanoparticles was calculated about of 100.2 m2/g. The pore size distribution of about 15-20 nm calculated by the BJH (Barrett, Joyner, and Halendar) method at a relative pressure P/P0 of about 1. Although the saturation magnetic moments of samples decreased when the increase of doping concentration, but the arsenic adsorption capacity of Cu doped Fe3O4 nanoparticles is better than that of Fe3O4 and Mn doped Fe3O4 nanoparticles in a solution with pH = 7. In the solution with a pH > 14, the arsenic adsorption of magnetic nanoparticles is insignificant.

  20. AlO x /LiF composite protection layer for Cr-doped (Bi,Sb)2Te3 quantum anomalous Hall films

    NASA Astrophysics Data System (ADS)

    Ou, Yunbo; Feng, Yang; Feng, Xiao; Hao, Zhenqi; Zhang, Liguo; Liu, Chang; Wang, Yayu; He, Ke; Ma, Xucun; Xue, Qikun

    2016-08-01

    We have realized robust quantum anomalous Hall samples by protecting Cr-doped (Bi,Sb)2Te3 topological insulator films with a combination of LiF and AlO x capping layers. The AlO x /LiF composite capping layer well keeps the quantum anomalous Hall states of Cr-doped (Bi,Sb)2Te3 films and effectively prevent them from degradation induced by ambient conditions. The progress is a key step towards the realization of the quantum phenomena in heterostructures and devices based on quantum anomalous Hall system. Project supported by the National Natural Science Foundation of China (Grant No. 11325421).

  1. Ferromagnetic ordering in Mn-doped quantum wells GaAs-AlGaAs resulting from the virtual Anderson transition

    SciTech Connect

    Agrinskaya, N. V.; Berezovets, V. A.; Bouravlev, A.; Kozub, V. I.

    2014-08-20

    We present our results obtained for Mn-doped GaAs quantum wells where the evidences of the ferromagnetic transition at relatively high temperatures were found at unusually small Mn concentrations. The observed values of hopping resistance at small temperatures evidenced that the samples are deep in the insulating regime. Thus the corresponding estimates of the overlapping integrals can hardly explain the large values of Curie temperatures T{sub c} ≃ 100 K. We develop a theoretical model qualitatively explaining the experimental results basing on the concept of virtual Anderson transition.

  2. Computational discovery of lanthanide doped and Co-doped Y{sub 3}Al{sub 5}O{sub 12} for optoelectronic applications

    SciTech Connect

    Choudhary, Kamal; Chernatynskiy, Aleksandr; Phillpot, Simon R.; Sinnott, Susan B.; Mathew, Kiran; Bucholz, Eric W.; Hennig, Richard G.

    2015-09-14

    We systematically elucidate the optoelectronic properties of rare-earth doped and Ce co-doped yttrium aluminum garnet (YAG) using hybrid exchange-correlation functional based density functional theory. The predicted optical transitions agree with the experimental observations for single doped Ce:YAG, Pr:YAG, and co-doped Er,Ce:YAG. We find that co-doping of Ce-doped YAG with any lanthanide except Eu and Lu lowers the transition energies; we attribute this behavior to the lanthanide-induced change in bonding environment of the dopant atoms. Furthermore, we find infrared transitions only in case of the Er, Tb, and Tm co-doped Ce:YAG and suggest Tm,Ce:YAG and Tb,Ce:YAG as possible functional materials for efficient spectral up-conversion devices.

  3. Deposition of aluminium in tissues of rabbits exposed to inhalation of low concentrations of Al2O3 dust.

    PubMed Central

    Röllin, H B; Theodorou, P; Kilroe-Smith, T A

    1991-01-01

    With strong evidence coming to light for the toxicity of aluminium (Al), especially to the brain, investigation into the effects of inhalation of low concentrations of Al dust in animal models has become important. This study follows up previous observations on the effects of Al on the concentrations of essential metals in serum of workers exposed to inhalation of low concentrations of Al dust, with a study of the concentrations of Al in tissues of rabbits exposed to Al dust at one twentieth of the threshold limit value (TLV). Even at this low concentration, the amount of Al in the brains of these animals was nearly two and a half times as high as that of the control animals. The concentrations in other tissues were similar to normal. At the same time, the concentrations of Al in the serum was only slightly raised, indicating that this variable is a poor marker for the effects of Al on the body. It is suggested that an extensive study is needed to determine a more correct TLV and health based permissible concentration for occupational exposure to Al. PMID:2064977

  4. [Study on self-propagating synthesis of the doped SrAl2O4 rare earth long afterglow phosphors].

    PubMed

    Li, Yuan; Zhao, Yong-Liang; Liu, Yong-Gang; Wei, Xiao-Yan; Ren, Yue

    2011-06-01

    Twenty one doped SrAl2O4 long after-glowed phosphors with 4 series were synthesized by self-propagating high-temperature synthesis method (SHS) with urea-nitrate solution which served as media at 600 degrees C. They are SrAl2O4: Eu(2+)0.012 5, RE(3+)0.012 5 (RE(3+) = Ce(3+), Pr(3+), Nd(3+), Tb(3+), Dy(3+)), SrAl2O4 : Eu(2+)0.012 5, M0.012 5 (M = Li(+), Be(2+), Cd(2+), Mn(2+), Cu(2+), Ag(+), Zn(2+), Pb(2+)), SrAl2O4 : Eu(2+)0.012 5, Dy(3+)0.012 5, M0.012 5 (M = Mn(2+), Cu(2+), Ag(+), Zn(2+)), and SrAlO4 = Eu(2+)0.012 5, Dy(3+)0.012 5, RE(3+)0.012 5 (RE(3+) = Ce(3+), Pr(3+), Nd(3+), Tb(3+)), of which luminescence and after-glowing features were tested. The morphology of all these samples presents a state of porosity and laxity. The samples show an intense emission peak at 514 nm and broad peaks of the excitation spectra at 290-360 nm, Tb(3+) and Dy(3+) had most effects on luminance and after-glowed time respectively. The SrAl2O4 : Eu(2+)0.012 5, Dy(3+)0.012 5 had good luminance and proper after-glowed time as well.

  5. Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field.

    PubMed

    Lv, Yong-an; Zhuang, Gui-lin; Wang, Jian-guo; Jia, Ya-bo; Xie, Qin

    2011-07-21

    To find an effective strategy for the capture and decomposition of nitrous oxide (N(2)O) is very important in order to protect the ozone layer and control the effects of global warming. Based on first-principles calculations, such a strategy is proposed by the systemic study of N(2)O interaction with pristine and Al (or Ga)-doped graphene, and N(2)O dissociation on the surface of Al (or Ga)-doped graphene in an applied electric field. The calculated adsorption energy value shows the N(2)O molecule more firmly adsorbs on the surface of Al (or Ga)-doped graphene than that of pristine graphene, deriving from a stronger covalent bond between the N(2)O molecule and the Al (or Ga) atom. Furthermore, our study suggests that N(2)O molecules can be easily decomposed to N(2) and O(2) with the appropriate electric field, which reveals that Al-doped graphene may be a new candidate for control of N(2)O.

  6. Interfacial trap states and improvement of low-temperature mobility by doping in InSb/AlInSb quantum wells

    SciTech Connect

    Manago, Takashi; Ishida, Shuichi; Geka, Hirotaka; Shibasaki, Ichiro

    2015-02-14

    The effect of doping on InSb/Al{sub 0.1}In{sub 0.9}Sb quantum wells (QWs) was investigated, and it was found that doping improves the electron mobility at low temperatures and leads to a weaker dependence of the resistivity with temperature. The dependence of the carrier density on the well width revealed trap states at the interfaces of the QW whose sheet density per interface was estimated to be about 4 × 10{sup 10 }cm{sup −2}. The low mobility of undoped InSb QWs, in particular, at low temperature seems to have been caused by positively ionized impurity scattering at the interfacial trap states. Doping compensates for the trap states and enhances mobility by suppressing ionized impurity scattering. Thus, intentional doping is necessary for developing high-mobility InSb QW devices. The origin of the trap states is qualitatively discussed.

  7. Electron and hole gas in modulation-doped GaAs/Al{sub 1-x}Ga{sub x}As radial heterojunctions

    SciTech Connect

    Bertoni, Andrea; Royo, Miquel; Mahawish, Farah; Goldoni, Guido

    2011-11-15

    We perform self-consistent Schroedinger-Poisson calculations with exchange and correlation corrections to determine the electron and hole gas in a radial heterojunction formed in a GaAs/AlGaAs core-multi-shell nanowire, which is either n- or p-doped. We show that the electron and hole gases can be tuned to different localizations and symmetries inside the core as a function of the doping density/gate potential. Contrary to planar heterojunctions, conduction electrons do not form a uniform 2D electron gas (2DEG) localized at the GaAs/AlGaAs interface, but rather show a transition between an isotropic, cylindrical distribution deep in the GaAs core (low doping) and a set of six tunnel-coupled quasi-1D channels at the edges of the interface (high doping). Holes, on the other hand, are much more localized at the GaAs/AlGaAs interface. At low doping, they present an additional localization pattern with six separated 2DEGs strips. The field generated by a back-gate may easily deform the electron or hole gas, breaking the sixfold symmetry. Single 2DEGs at one interface or multiple quasi-1D channels are shown to form as a function of voltage intensity, polarity, and carrier type.

  8. Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration

    SciTech Connect

    Hamida, B A; Cheng, X S; Harun, S W; Naji, A W; Arof, H; Al-Khateeb, W; Khan, S; Ahmad, H

    2012-03-31

    A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achieved with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.

  9. Effect of doping of trivalent cations Ga3+, Sc3+, Y3+ in Li1.3Al0.3Ti1.7 (PO4)3 (LATP) system on Li+ ion conductivity

    NASA Astrophysics Data System (ADS)

    Kothari, Dharmesh H.; Kanchan, D. K.

    2016-11-01

    We report the effect of trivalent cations dopants in the Li1.3Al0.3-xRxTi1.7(PO4)3 (R=Ga3+, Sc3+, Y3+) NASICON ceramic system in the concentration range x=0.01,0.03,0.05,0.07, on the Li+ ion conducting properties using impedance spectroscopy. The samples were prepared by solid state reaction method and characterized by X-Ray Diffraction and density measurements. The electrical properties were studied using impedance spectroscopy in frequency range 10 Hz to 20 MHz and temperature range 303 K to 423 K. Although the porosity of the material decreased with doping, the overall Li+ ion conductivity of the system did not improve with doping. Ionic radii of the dopant cations was found to be an important factor in formation of impurity phases and low Li+ ion conductivity. Gallium doped samples exhibited a higher Li+ ion conductivity compared to its scandium and yttrium doped counterparts.

  10. Tunnel spin polarization versus energy for clean and doped Al2O3 barriers.

    PubMed

    Park, B G; Banerjee, T; Lodder, J C; Jansen, R

    2007-11-23

    The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the same device. The intrinsic TSP is reduced below the Fermi level, and more strongly so for tunneling into empty states above the Fermi level. For artificially doped barriers, the low bias TMR decreases due to defect-assisted tunneling. Yet, this mechanism becomes ineffective at large bias, where instead inelastic spin scattering causes a strong TMR decay.

  11. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing.

    PubMed

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-05-16

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10(-2) Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. PMID:24763438

  12. Enhanced Ultraviolet Stability of Air-Processed Polymer Solar Cells by Al Doping of the ZnO Interlayer.

    PubMed

    Prosa, Mario; Tessarolo, Marta; Bolognesi, Margherita; Margeat, Olivier; Gedefaw, Desta; Gaceur, Meriem; Videlot-Ackermann, Christine; Andersson, Mats R; Muccini, Michele; Seri, Mirko; Ackermann, Jörg

    2016-01-27

    Photostability of organic photovoltaic devices represents a key requirement for the commercialization of this technology. In this field, ZnO is one of the most attractive materials employed as an electron transport layer, and the investigation of its photostability is of particular interest. Indeed, oxygen is known to chemisorb on ZnO and can be released upon UV illumination. Therefore, a deep analysis of the UV/oxygen effects on working devices is relevant for the industrial production where the coating processes take place in air and oxygen/ZnO contact cannot be avoided. Here we investigate the light-soaking stability of inverted organic solar cells in which four different solution-processed ZnO-based nanoparticles were used as electron transport layers: (i) pristine ZnO, (ii) 0.03 at %, (iii) 0.37 at %, and (iv) 0.8 at % aluminum-doped AZO nanoparticles. The degradation of solar cells under prolonged illumination (40 h under 1 sun), in which the ZnO/AZO layers were processed in air or inert atmosphere, is studied. We demonstrate that the presence of oxygen during the ZnO/AZO processing is crucial for the photostability of the resulting solar cell. While devices based on undoped ZnO were particularly affected by degradation, we found that using AZO nanoparticles the losses in performance, due to the presence of oxygen, were partially or totally prevented depending on the Al doping level.

  13. n-type silicon photocathodes with Al-doped rear p+ emitter and Al2O3-coated front surface for efficient and stable H2 production

    NASA Astrophysics Data System (ADS)

    Fan, Ronglei; Min, Jiawei; Li, Yian; Su, Xiaodong; Zou, Shuai; Wang, Xusheng; Shen, Mingrong

    2015-05-01

    Currently, p-type silicon has been studied as a photocathode in a photoelectrochemical cell for water splitting where an n+ thin layer is usually fabricated on electrode surface in order to increase band bending at the n+p interface relative to the aqueous solution/p-Si interface. However, this leads to high Auger recombination on the reaction interface. We report herein an efficient and stable photocathode based on single-crystal n-type Si with a rear np+ junction, different from the conventional one on p-type Si with a front n+p junction. Using a thin Al2O3 surface protecting layer, it shows no loss in photoelectrochemical performance after 138 h of continuous operation, and the energy conversion efficiency can be nearly doubled to 8.68%, compared with 4.51% for the corresponding normal n+p electrode under 100 mW/cm2 simulated solar illumination and Pt catalyzing. Our np+ Si photocathodes improve the H2 production by providing: (1) high on-set potential due to the rear junction; (2) high carrier life time on the electrode surface due to the low doping level of n-type Si; and (3) excellent passivating effect of Al2O3 on the surface of n-type Si.

  14. Tb3+ ion doping into Al2O3: Solubility limit and luminescence properties

    NASA Astrophysics Data System (ADS)

    Onishi, Yuya; Nakamura, Toshihiro; Adachi, Sadao

    2016-11-01

    Tb3+-activated Al2O3 phosphors with a molar ratio of \\text{Al}:\\text{Tb} = (1 - x):x are synthesized by metal organic decomposition (x = 0–0.15) and subsequent calcination at T c = 200–1200 °C for 1 h in air. The material properties of the synthesized phosphors are investigated by X-ray diffraction (XRD), photoluminescence (PL) analyses, PL excitation spectroscopy, and luminescence lifetime measurements. At x = 0.015, the metastable phase of γ-Al2O3 is obtained by calcination at T c ∼ 300–1050 °C and a mixture of γ, θ, and α phases at T c ∼ 1050–1150 °C. The high-temperature stable phase of α-Al2O3 is obtained only at T c ≥ 1150 °C. Below T c ∼ 300 °C, the XRD data suggest the formation of boehmite (AlOOH). The solubility limit of Tb3+ in α-Al2O3 is also clearly determined to be x ∼ 0.015 (1.5%). The PL decay time of the Tb3+ green emission in α-Al2O3 is ∼1.1 ms for x < 0.015 and slowly decreases with further increase in x (Tb3+). The schematic energy-level diagram of Tb3+ in α-Al2O3 is proposed for a better understanding of the present phosphor system. Finally, the temperature dependence of the PL intensity is examined between T = 20 and 450 K, yielding quenching energies of E q ∼ 0.28 eV (α-Al2O3 and γ-Al2O3).

  15. Enhanced photocatalytic activity of Ce-doped Zn-Al multi-metal oxide composites derived from layered double hydroxide precursors.

    PubMed

    Zhu, Jianyao; Zhu, Zhiliang; Zhang, Hua; Lu, Hongtao; Qiu, Yanling; Zhu, Linyan; Küppers, Stephan

    2016-11-01

    In this work, a series of novel Zn-Al-Ce multi-metal oxide (Zn-Al-Ce-MMO) photocatalysts with different Ce doping contents were prepared by calcination of Ce-doped Zn-Al layered double hydroxide (Zn-Al-Ce-LDH) precursors at various temperatures in air atmosphere. The synthesized Zn-Al-Ce-MMO materials were characterized by XRD, FTIR, TGA, BET, SEM, TEM, XPS and UV-vis DRS. The photocatalytic activities of the Zn-Al-Ce-MMO materials were evaluated by the photodegradation of rhodamine B (RhB) dye and paracetamol in aqueous solution under simulated solar light irradiation. The result of photodegradation of RhB showed that the Zn-Al-Ce-MMO samples exhibit much higher photocatalytic activity than that of Zn-Al-MMO, and the optimal Ce doping content is 5% of mole ratio (nCe/n(Zn+Al+Ce)). The enhanced photocatalytic activity of the Zn-Al-Ce-MMO was mainly attributed to the increasing in the separation efficiency of electrons and holes. The effect of calcination temperature was also studied. The photocatalytic activity of Zn-Al-Ce-MMO increased with increasing calcination temperature up to 750°C, which can be ascribed to the formation of well-crystallized metal oxides during calcination. Under experimental conditions, 97.8% degradation efficiency of RhB and 98.9% degradation efficiency of paracetamol were achieved after 240min. Active species trapping and EPR experiments suggested that hole (h(+)), superoxide radical (O2(-)) and hydroxyl radical (OH) played important roles during the RhB photocatalytic process. Moreover, the results indicated that the synthesized Zn-Al-Ce-MMO materials had good stability and reusability.

  16. Enhanced photocatalytic activity of Ce-doped Zn-Al multi-metal oxide composites derived from layered double hydroxide precursors.

    PubMed

    Zhu, Jianyao; Zhu, Zhiliang; Zhang, Hua; Lu, Hongtao; Qiu, Yanling; Zhu, Linyan; Küppers, Stephan

    2016-11-01

    In this work, a series of novel Zn-Al-Ce multi-metal oxide (Zn-Al-Ce-MMO) photocatalysts with different Ce doping contents were prepared by calcination of Ce-doped Zn-Al layered double hydroxide (Zn-Al-Ce-LDH) precursors at various temperatures in air atmosphere. The synthesized Zn-Al-Ce-MMO materials were characterized by XRD, FTIR, TGA, BET, SEM, TEM, XPS and UV-vis DRS. The photocatalytic activities of the Zn-Al-Ce-MMO materials were evaluated by the photodegradation of rhodamine B (RhB) dye and paracetamol in aqueous solution under simulated solar light irradiation. The result of photodegradation of RhB showed that the Zn-Al-Ce-MMO samples exhibit much higher photocatalytic activity than that of Zn-Al-MMO, and the optimal Ce doping content is 5% of mole ratio (nCe/n(Zn+Al+Ce)). The enhanced photocatalytic activity of the Zn-Al-Ce-MMO was mainly attributed to the increasing in the separation efficiency of electrons and holes. The effect of calcination temperature was also studied. The photocatalytic activity of Zn-Al-Ce-MMO increased with increasing calcination temperature up to 750°C, which can be ascribed to the formation of well-crystallized metal oxides during calcination. Under experimental conditions, 97.8% degradation efficiency of RhB and 98.9% degradation efficiency of paracetamol were achieved after 240min. Active species trapping and EPR experiments suggested that hole (h(+)), superoxide radical (O2(-)) and hydroxyl radical (OH) played important roles during the RhB photocatalytic process. Moreover, the results indicated that the synthesized Zn-Al-Ce-MMO materials had good stability and reusability. PMID:27474815

  17. The role of Mn oxide doping in phosphate removal by Al-based bimetal oxides: adsorption behaviors and mechanisms.

    PubMed

    Wu, Kun; Liu, Ting; Ma, Chao; Chang, Bing; Chen, Rong; Wang, Xiaochang

    2014-01-01

    This study investigated the behaviors and mechanisms of phosphate adsorbed onto manganese (Mn) oxide-doped aluminum (Al) oxide (MODAO). The isotherm results demonstrated that the maximum amount of phosphorus (P) adsorbed onto MODAO was 59.8 mg/g at T = 298 K (pH 6.0). This value was nearly twice the amount of singular AlOOH and could increase with rising temperatures. The kinetic results illustrated that most of the P was adsorbed onto MODAO within 5 h, which was shorter than the equilibrium time of phosphate adsorption onto AlOOH. The Elovich model effectively described the adsorption kinetic data of MODAO because of its heterogeneous surface. The optimal solution pH for phosphate removal was approximately 5.0 because of electrostatic interaction effects. Meanwhile, the decrease in P uptake with increasing ion strength suggested that phosphate adsorption occurred through an outer-sphere complex. Phosphates would compete for adsorption sites on the surface of MODAO in the presence of fluoride ion or sulfate. In addition, the spectroscopic analysis results of Fourier transform infrared spectroscopy and X-ray photoemission spectroscopy indicated that removal mechanisms of phosphate primarily include adhesion to surface hydroxyl groups and ligand exchange.

  18. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    SciTech Connect

    He, Y.R.; Zheng, M.H.; Rapp, R.A.

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  19. Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure

    SciTech Connect

    Khmissi, H.; Baira, M.; Bouzaieene, L.; Saidi, F.; Maaref, H.; Sfaxi, L.; Bru-Chevallier, C.

    2011-03-01

    Optical properties of InAs quantum dots (QDs) inserted in AlGaAs/GaAs modulation doped heterostructure are investigated. To study the effect of carrier transfer behavior on the luminescence of self-assembled quantum dots, a series of sample has been prepared using molecular beam epitaxy (Riber 32 system) in which we have varied the thickness separating the delta dopage and the InAs quantum dots layer. Photoluminescence spectra show the existence of two peaks that can be attributed to transition energies from the ground state (E{sub 1}-HH{sub 1}) and the first excited state (E{sub 2}-HH{sub 2}). Two antagonist effects have been observed, a blue shift of the emission energies result from electron transferred from the AlGaAs/GaAs heterojunction to the InAs quantum dots and a red shift caused by the quantum confined Stark effect due to the internal electric field existing In the AlGaAs/GaAs heterojunction.

  20. Environmental stability of solution processed Al-doped ZnO naoparticulate thin films using surface modification technique

    NASA Astrophysics Data System (ADS)

    Vunnam, Swathi; Ankireddy, Krishnamraju; Kellar, Jon; Cross, William

    2014-12-01

    The environmental stability of solution processed Al-doped ZnO (AZO) thin films was enhanced by functionalizing the film surface with a thin self-assembled molecular layer. Functionalization of AZO films was performed using two types of molecules having identical 12-carbon alkyl chain termination but different functional groups: dodecanethiol (DDT) and dodecanoic acid (DDA). Surface modified AZO films were examined using electrical resistivity measurements, contact angle measurements and quantitative nanomechanical property mapping atomic force microscopy. The hydrophobic layer inhibits the penetration of oxygen and water into the AZO's grain boundaries thus significantly increasing the environmental stability over unmodified AZO. Surface modified AZO films using DDT exhibited lower electrical resistivity compared to DDA functionalized AZO films. Our study demonstrates a new approach for improving the physical properties of oxide based nanoparticulate films for device applications.

  1. Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl2O4 phosphor.

    PubMed

    Rezende, Marcos V Dos S; Montes, Paulo J R; Andrade, Adriano B; Macedo, Zelia S; Valerio, Mário E G

    2016-06-29

    This paper reports a luminescence mechanism in Eu-doped BaAl2O4 excited with monochromatic X-rays (also known as X-ray excited optical luminescence - XEOL) from synchrotron radiation. The material was prepared via a proteic sol-gel methodology. The X-ray absorption near edge structures (XANES) at the Ba LIII- and Eu LIII-edges exhibit typical absorption spectra. XEOL spectra recorded in energy ranges, either around the Ba LIII- or Eu LIII-edges, showed important differences concerning the intensity of the Eu(2+) or Eu(3+) emission bands. Nevertheless, the total area under the XEOL spectra increases as the energy of the X-ray photons increases in both ranges (Ba LIII- and Eu LIII-edges). PMID:27306425

  2. Effects of NIR annealing on the characteristics of al-doped ZnO thin films prepared by RF sputtering

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed. In this paper, the effects of near infrared ray (NIR) annealing technique on the structural, optical, and electrical properties of the AZO thin films have been researched. Experimental results showed that NIR annealing affected the microstructure, electrical resistance, and optical transmittance of the AZO thin films. X-ray diffraction analysis revealed that all films have a hexagonal wurtzite crystal structure with the preferentially c-axis oriented normal to the substrate surface. Optical transmittance spectra of the AZO thin films exhibited transmittance higher than about 80% within the visible wavelength region, and the optical direct bandgap (Eg) of the AZO films was increased with increasing the NIR energy efficiency. PMID:22673232

  3. Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism.

    PubMed

    Tuček, Jiří; Błoński, Piotr; Sofer, Zdeněk; Šimek, Petr; Petr, Martin; Pumera, Martin; Otyepka, Michal; Zbořil, Radek

    2016-07-01

    Imprinting ferromagnetism to a graphene structure by substitution of carbon atoms with sulfur is reported. S-doped graphene (4.2 at%) shows strong ferromagnetic properties with saturation magnetization exceeding 5.5 emu g(-1) at 2 K, which is among the highest values reported for any sp-based system. The remarkable magnetic response is attributed to delocalization of electrons from sulfur injected into the graphene conduction band. PMID:27135692

  4. Doping dependent blue shift and linewidth broadening of intersubband absorption in non-polar m-plane AlGaN/GaN multiple quantum wells

    SciTech Connect

    Kotani, Teruhisa; Arita, Munetaka; Arakawa, Yasuhiko

    2015-09-14

    Blue shift and broadening of the absorption spectra of mid-infrared intersubband transition in non-polar m-plane AlGaN/GaN 10 quantum wells were observed with increasing doping density. As the doping density was increased from 6.6 × 10{sup 11} to 6.0 × 10{sup 12 }cm{sup −2} per a quantum well, the intersubband absorption peak energy shifted from 274.0 meV to 302.9 meV, and the full width at half maximum increased from 56.4 meV to 112.4 meV. Theoretical calculations reveal that the blue shift is due to many body effects, and the intersubband linewidth in doped AlGaN/GaN QW is mainly determined by scattering due to interface roughness, LO phonons, and ionized impurities.

  5. Electronic structure and magnetic properties of doped Al1- x Ti x N ( x = 0.03, 0.25) compositions based on cubic aluminum nitride from ab initio simulation data

    NASA Astrophysics Data System (ADS)

    Bannikov, V. V.; Beketov, A. R.; Baranov, M. V.; Elagin, A. A.; Kudyakova, V. S.; Shishkin, R. A.

    2016-05-01

    The phase stability, electronic structure, and magnetic properties of Al1- x Ti x N compositions based on the metastable aluminum nitride modification with the rock-salt structure at low ( x = 0.03) and high ( x = 0.25) concentrations of titanium in the system have been investigated using the results of ab initio band calculations. It has been shown that, at low values of x, the partial substitution is characterized by a positive enthalpy, which, however, changes sign with an increase in the titanium concentration. According to the results of the band structure calculations, the doped compositions have electronic conductivity. For x = 0.03, titanium impurity atoms have local magnetic moments (˜0.6 μB), and the electronic spectrum is characterized by a 100% spin polarization of near-Fermi states. Some of the specific features of the chemical bonding in Al1- x Ti x N cubic phases have been considered.

  6. Effect of annealing atmosphere on photoluminescence and gas sensing of solution-combustion-synthesized Al, Pd co-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Min; Lv, Tan; Wang, Qiong; Zou, Yun-ling; Lian, Xiao-xue; Liu, Hong-peng

    2015-11-01

    Al, Pd co-doped ZnO nanoparticles (NPs) synthesized using a solution combustion method and subsequent annealing process under various atmospheres, including air, nitrogen, and hydrogen, were characterized using x-ray diffraction, energy-dispersive x-ray spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The gas-sensing properties of the sensors based on the NPs were also examined. The results indicated that the Al, Pd co-doped ZnO NPs, with an average crystallite size of 10 nm, exhibited enhanced gas-sensing performance compared with that of pure ZnO and Al-doped ZnO. The response of the Al, Pd co-doped ZnO NPs annealed in N2 to ethanol (49.22) was nearly 5.7 times higher than that to acetone (8.61) and approximately 20 - 27 times higher than that to benzene (2.38), carbon monoxide (2.23), and methane (1.78), which demonstrates their excellent selectivity to ethanol versus other gases. This high ethanol response can be attributed to the combined effects of the small size, Schottky barrier, lattice defects, and catalysis. [Figure not available: see fulltext.

  7. Catalyst-free growth of Al-doped SnO2 zigzag-nanobelts for low ppm detection of organic vapours

    NASA Astrophysics Data System (ADS)

    Sinha, Sudip Kumar; Ghosh, Saptarshi

    2016-10-01

    In this effort, we report on development of specific sensors dedicated for detection of two of these volatiles, namely ethanol and acetone, below the prescribed statutory limits. Single crystalline Al-doped SnO2 zigzag nanobelt structures were deposited on Si substrate by a catalyst-free thermal evaporation method. The Al-doped SnO2 zigzag nanostructures exhibit high sensitivity and repeatability together with coveted features like fast response and excellent stability. Structural attributes involving the crystal quality and morphology of Al-doped SnO2 zigzag nanobelts were analyzed using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy and transmission electron microscopy. The microscopic images revealed formation of randomly oriented 'zigzag-like' nanobelts with characteristic width between 60 nm and 200 nm and length of 50-300 μm. The Al-doping was observed to have a discerning effect in enhancing the sensitivity in comparison to the pristine nanowires by creating excess oxygen vacancies in the crystal lattice, confirmed through XPS and PL spectra.

  8. Electroluminescence at a wavelength of 1.5 {mu}m in Si:Er/Si diode structures doped with Al, Ga, and B acceptors

    SciTech Connect

    Kuznetsov, V. P.; Shmagin, V. B.; Marychev, M. O.; Kudryavtsev, K. E.; Kuznetsov, M. V.; Andreev, B. A.; Kornaukhov, A. V.; Gorshkov, O. N.; Krasilnik, Z. F.

    2010-12-15

    Si:Er layers in diode structures were doped with Al, Ga, or B during growth by sublimation molecular-beam epitaxy. As a result, a sharp increase in the electroluminescence intensity at a wavelength of 1.5 {mu}m was observed in diodes with thick bases (as large as 0.8 {mu}m).

  9. Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping

    NASA Astrophysics Data System (ADS)

    Duan, Jianguo; Hu, Guorong; Cao, Yanbing; Tan, Chaopu; Wu, Ceng; Du, Ke; Peng, Zhongdong

    2016-09-01

    LiNi1-x-yCoxAlyO2 is a commonly used Ni-rich cathode material because of its relatively low cost, excellent rate capability and high gravimetric energy density. Surface modification is an efficient way to overcome the shortcomings of Ni-rich cathodes such as poor cycling stability and poor thermal stability. A high-powered concentration-gradient cathode material with an average composition of LiNi0.815Co0.15Al0.035O2 (LGNCAO) has been successfully synthesized by using spherical concentration-gradient Ni0.815Co0.15Al0.035(OH)2 (GNCA)as the starting material. An efficient design of the Al3+ precipitation method is developed, which enables obtaining spherical GNCA with ∼10 μm particle size and high tap density. In LGNCAO, the nickel and cobalt concentration decreases gradually whereas the aluminum concentration increases from the centre to the outer layer of each particle. Electrochemical performance and storage properties of LGNCAO have been investigated comparatively. The LGNCAO displays better electrochemical performance and improved storage stability than LNCAO.

  10. Rare-earth-ion-doped Al IIO 3 waveguides for active integrated optical devices

    NASA Astrophysics Data System (ADS)

    Bradley, Jonathan D. B.; Ay, Feridun; Blauwendraat, Tom; Wörhoff, Kerstin; Pollnau, Markus

    2007-06-01

    Reactively co-sputtered amorphous Al IIO 3 waveguide layers with low propagation losses have been deposited. In order to define channel waveguides in such Al IIO 3 films, the etching behaviour of Al IIO 3 has been investigated using an inductively coupled reactive ion etch system. The etch rate of Al IIO 3 and possible mask materials was studied by applying various common process gases and combinations of these gases, including CF 4/O II, BCl 3, BCl 3/HBr and Cl II. Based on a comparison of the etch rates and patterning feasibility of the different mask materials, a BCl 3/HBr plasma and and standard resist mask were used to fabricate channel waveguide structures. The etched structures exhibit straight sidewalls with minimal roughness and etch depths of up to 530 nm, sufficient for defining waveguides with strong optical confinement and low bending losses. Low additional propagation losses were measured in single-mode Al IIO 3 ridge waveguides defined using the developed etch process. In initial investigations, Al IIO 3:Er layers fabricated using the same deposition method applied for the undoped layers show typical emission cross-sections, low green upconversion luminescence and lifetimes up to 7 ms.

  11. Gain properties of doped GaAs/AlGaAs multiple quantum well avalanche photodiode structures

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1995-01-01

    A comprehensive characterization has been made of the static and dynamical response of conventional and multiple quantum well (MQW) avalanche photodiodes (APDs). Comparison of the gain characteristics at low voltages between the MQW and conventional APDs show a direct experimental confirmation of a structure-induced carrier multiplication due to interband impact ionization. Similar studies of the bias dependence of the excess noise characteristics show that the low-voltage gain is primarily due to electron ionization in the MQW-APDS, and to both electron and hole ionization in the conventional APDS. For the doped MQW APDS, the average gain per stage was calculated by comparing gain data with carrier profile measurements, and was found to vary from 1.03 at low bias to 1.09 near avalanche breakdown.

  12. Fabrication of Ag nanowire and Al-doped ZnO hybrid transparent electrodes

    NASA Astrophysics Data System (ADS)

    You, Sslimsearom; Park, Yong Seo; Choi, Hyung Wook; Kim, Kyung Hwan

    2016-01-01

    Among the materials used as transparent electrodes, silver nanowires (AgNWs) have attracted attention because of their high transmittance and excellent conductivity. However, AgNWs have shortcomings, including their poor adhesion, oxidation by atmospheric oxygen, and unstable characteristics at high temperature. To overcome these shortcomings, multi-layer thin films with an aluminum-doped zinc oxide (AZO)/AgNW/AZO structure were fabricated using facing targets sputtering. The samples heated to 350 °C exhibited stable electrical characteristics. In addition, the adhesion to the substrate was improved compared with AgNWs layer. The AZO/AgNW/AZO thin films with multilayer structure overcame the shortcomings of AgNWs, and we propose their use as transparent electrodes with excellent properties for optoelectronic applications.

  13. Structural, electrical, and dielectric properties of Cr doped ZnO thin films: Role of Cr concentration

    NASA Astrophysics Data System (ADS)

    Gürbüz, Osman; Okutan, Mustafa

    2016-11-01

    An undoped zinc oxide (ZnO) and different concentrations of chromium (Cr) doped ZnO CrxZnO1-x (x = 3.74, 5.67, 8.10, 11.88, and 15.96) thin films were prepared using a magnetron sputtering technique at room temperature. These films were characterized by X-ray diffraction (XRD), High resolution scanning electron microscope (HR-SEM), and Energy dispersive X-ray spectrometry (EDS). XRD patterns of all the films showed that the films possess crystalline structure with preferred orientation along the (100) crystal plane. The average crystallite size obtained was found to be between 95 and 83 nm which was beneficial in high intensity recording peak. Both crystal quality and crystallite sizes decrease with increasing Cr concentration. The crystal and grain sizes of the all film were investigated using SEM analysis. The surface morphology that is grain size changes with increase Cr concentration and small grains coalesce together to form larger grains for the Cr11.88ZnO and Cr15.96ZnO samples. Impedance spectroscopy studies were carried out in the frequencies ranging from 5 Hz to 13 MHz at room temperature. The undoped ZnO film had the highest dielectric value, while dielectric values of other films decreased as doping concentrations increased. Besides, the dielectric constants decreased whereas the loss tangents increased with increasing Cr content. This was considered to be related to the reduction of grain size as Cr content in ZnO host material increased. Furthermore, by increasing the Cr concentration, the improved electrical performance was observed. The electrical resistivity of samples decreased from 3.98 × 10-2 Ω cm to 4.03 × 10-4 Ω cm with the increase in Cr content. For these reasons, Cr doped ZnO (Cr:ZnO) thin films may be used in microwave devices as the electrical conductivity increases while dielectric constant decreases with the Cr content.

  14. Electrochemical destruction of N-nitrosodimethylamine in reverse osmosis concentrates using Boron-doped diamond film electrodes.

    PubMed

    Chaplin, Brian P; Schrader, Glenn; Farrell, James

    2010-06-01

    Boron-doped diamond (BDD) film electrodes were use to electrochemically destroy N-nitrosodimethylamine (NDMA) in reverse osmosis (RO) concentrates. Batch experiments were conducted ito investigate the effects of dissolved organic carbon (DOC), chloride (Cl(-)), bicarbonate (HCO(3-) and hardness on rates of NDMA destruction via both oxidation and reduction. Experimental results showed that NDMA oxidation rates were not affected by DOC, Cl(-), or HCO(3-) at concentrations present in RO concentrates. However, hydroxyl radical scavenging at 100 mM concentrations of HCO(3-) and Cl(-) shifted the reaction mechanism of NDMA oxidation from hydroxyl radical mediated to direct electron transfer oxidation. In the 100 mM Cl(-) electrolyte experimental evidence suggests that the in situ production of ClO(3)(.)also contributes to NDMA oxidation. Density functional theory calculations support a reaction mechanism between ClO(3)(.) and NDMA, with an activation barrier of 7.2 kJ/mol. Flow-through experiments with RO concentrate yielded surface area normalized first-order rate constants for NDMA (40.6 +/- 3.7 L/m(2) h) and DOC (as C) (38.3 +/- 2.2 L/m(2) h) removal that were mass transfer limited at a 2 mA/cm(2) current density. This research shows that electrochemical oxidation using BDD electrodes has an advantage over other advanced oxidation processes, as organics were readily oxidized in the presence of high HCO(3-) concentrations.

  15. Effect of variation in indium concentration on the photosensitivity of chlorine doped In{sub 2}S{sub 3} thin films

    SciTech Connect

    Cherian, Angel Susan; Kartha, C. Sudha; Vijayakumar, K. P.

    2014-01-28

    Consequence of variation in Indium concentration in chlorine doped In2S{sub 3} thin films deposited by spray pyrolysis technique was studied. Chlorine was incorporated in the spray solution, using HCl and Indium concentration was varied by adjusting In/S ratio Interestingly, the photo response of all chlorine doped samples augmented compared to pristine samples; but the highest photosensitivity value of ∼2300 was obtained only when 36ml 0.5M HCl was added to the solution of In{sub 2}S{sub 3} having In/S=2/8. It was also observed that samples with high photosensitivity possess higher band gap and variation in sub band gap absoption levels were observed with increase in Indium concentration. The present study proved that concentration of Indium plays an important role in controlling the crystallinity and photosensitivity of chlorine doped samples.

  16. Temperature and doping dependent changes in surface recombination during UV illumination of (Al)GaN bulk layers

    NASA Astrophysics Data System (ADS)

    Netzel, Carsten; Jeschke, Jörg; Brunner, Frank; Knauer, Arne; Weyers, Markus

    2016-09-01

    We have studied the effect of continuous illumination with above band gap energy on the emission intensity of polar (Al)GaN bulk layers during the photoluminescence experiments. A temporal change in emission intensity on time scales from seconds to hours is based on the modification of the semiconductor surface states and the surface recombination by the incident light. The temporal behavior of the photoluminescence intensity varies with the parameters such as ambient atmosphere, pretreatment of the surface, doping density, threading dislocation density, excitation power density, and sample temperature. By means of temperature-dependent photoluminescence measurements, we observed that at least two different processes at the semiconductor surface affect the non-radiative surface recombination during illumination. The first process leads to an irreversible decrease in photoluminescence intensity and is dominant around room temperature, and the second process leads to a delayed increase in intensity and becomes dominant around T = 150-200 K. Both processes become slower when the sample temperature decreases from room temperature. They cease for T < 150 K. Stable photoluminescence intensity at arbitrary sample temperature was obtained by passivating the analyzed layer with an epitaxially grown AlN cap layer.

  17. Crystal characterization and optical spectroscopy of Ti{sup 3+}-doped CaGdAlO{sub 4} crystals

    SciTech Connect

    Kodama, N.; Yamaga, M.

    1998-01-01

    CaGdAlO{sub 4} crystals doped with Ti ions were grown using the Czochralski technique in a reducing atmosphere in order to convert the valence of Ti to trivalence. The fluorescence of the {sup 2}E{r_arrow}{sup 2}T{sub 2} transition of Ti{sup 3+} in the crystals shows a broad band with a peak at 535 nm excited with the light of 410 nm in the optical absorption band at room temperature because of a strong electron-phonon coupling of the {sup 2}E excited state. The Ti{sup 3+} fluorescence is influenced in intensity by O{sup 2{minus}} vacancies at the ligands of the Ti{sup 3+} octahedra along the c axis, which are easily produced in a reducing atmosphere. The x-ray crystal analyses and the polarization of the optical absorption and fluorescence spectra deduce the energy levels and wave functions of the ground and excited states of Ti{sup 3+} in CaGdAlO{sub 4}. The peak energy of the fluorescence band shifts to higher energy as increasing excitation energy in the absorption band. The linear dependence of the fluorescence-peak energy on the excitation energy shows that the fluorescence is inhomogeneously broadened by a random distribution of Ca{sup 2+} and Gd{sup 3+} ions in the disordered lattice.

  18. 27Al fourier-transform electron-spin-echo modulation of Cu 2+-doped zeolites A and X

    NASA Astrophysics Data System (ADS)

    Goldfarb, Daniella; Kevan, Larry

    Cu 2+-doped NaA, CaA, and NaX zeolites were studied using the electron-spin-echo modulation (ESEM) method. In both hydrated and dehydrated samples 27Al modulation has been observed. The time-domain ESEM traces were Fourier transformed and analyzed in the frequency domain. All FT-ESEM spectra of the hydrated samples showed a single peak at the Larmor frequency of 27Ai, indicating that the zeeman interaction is dominant and that the 27Al quadrupole and hyperfine interactions are relatively small. Considerable changes in the spectrum appear upon dehydration. Several frequencies significantly different from the Larmor frequency appear and the spectrum depends on the major cocation present. The major features of the spectra of the dehydrated zeolites could be theoretically reproduced, using exact diagonalization of the nuclear Hamiltonian, with relatively large isotropic hyperfine and quadrupole coupling constants. For example, in CuCaA and CuNaA zeolites the isotropic hyperfine constant is in the range of 0.2-0.5 and 0.8-1.0 MHz, respectively, with the quadrupole coupling constant in the range of 6-10 MHz for both.

  19. Search for magnetic interaction in In doped AlN using perturbed angular correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Agarwal, Ishita; Kessler, Patrick; Vianden, Reiner

    2013-05-01

    The possible presence of a large magnetic field due to spin polarization of a Cd nucleus (decay product of 111In) at an Al substitutional site in AlN is investigated with perturbed angular correlation (PAC) spectroscopy. The PAC spectra of 111In/111Cd in AlN show two probe environments: a weak quadrupole interaction (quadrupole interaction constant, ν _Q^{ lattice} = 30 MHz) due to 111In probes at a defect free Al substitutional site and an unknown large interaction (ν _Q^{ complex} = 300 MHz) tentatively attributed to a nearest neighbour pair between 111In and a nitrogen vacancy (VN) aligned along the c-axis. Surprisingly, in density functional theory (DFT) calculations, such a large electric field gradient (EFG) could not be reproduced. However, an inclusion of spin polarization in the calculations indicates a strong magnetic field at 50 % of the 111In/111Cd site. An attempt to verify the presence of the strong magnetic field and to explain the origin of the strong interaction is made. Orientation measurements show, the large interaction is not characterised by a magnetic interaction and is predominantly due to the EFG. However, in the presence of an external magnetic field, the strong interaction probe environment becomes more uniform and the EFG increases by 10 %. This definitely hints towards some sort of magnetic interaction at the strong interaction probe site.

  20. Tri-Lateral Noor al Salaam High Concentration Solar Central Receiver Program

    SciTech Connect

    Blackmon, James B

    2008-03-31

    This report documents the efforts conducted primarily under the Noor al Salaam (“Light of Peace”) program under DOE GRANT NUMBER DE-FC36-02GO12030, together with relevant technical results from a closely related technology development effort, the U.S./Israel Science and Technology Foundation (USISTF) High Concentration Solar Central Receiver program. These efforts involved preliminary design, development, and test of selected prototype power production subsystems and documentation of an initial version of the system definition for a high concentration solar hybrid/gas electrical power plant to be built in Zaafarana, Egypt as a first step in planned commercialization. A major part of the planned work was halted in 2007 with an amendment in October 2007 requiring that we complete the technical effort by December 31, 2007 and provide a final report to DOE within the following 90 days. This document summarizes the work conducted. The USISTF program was a 50/50 cost-shared program supported by the Department of Commerce through the U.S./Israel Science and Technology Commission (USISTC). The USISTC was cooperatively developed by President Clinton and the late Prime Minister Rabin of Israel "to encourage technological collaboration" and "support peace in the Middle East through economic development". The program was conducted as a follow-on effort to Israel's Magnet/CONSOLAR Program, which was an advanced development effort to design, fabricate, and test a solar central receiver and secondary optics for a "beam down" central receiver concept. The status of these hardware development programs is reviewed, since they form the basis for the Noor al Salaam program. Descriptions are provided of the integrated system and the major subsystems, including the heliostat, the high temperature air receiver, the power conversion unit, tower and tower reflector, compound parabolic concentrator, and the master control system. One objective of the USISTF program was to conduct

  1. Enhanced 1.53 μm photoluminescence from Er-doped AlGaAs wet thermal native oxides by postoxidation implantation

    NASA Astrophysics Data System (ADS)

    Huang, M.; Hall, D. C.

    2007-10-01

    A significant enhancement in the 300K, cw photoluminescence (PL) from Er-doped Al0.3Ga0.7As native oxide films is achieved by incorporating the Er after (relative to before) wet thermal oxidation of the AlGaAs. Postoxidation Er ion implantation (1015cm-2 and 300keV) prevents the formation of nonradiative ErAs complexes, leading to a relatively long 1.53μm fluorescence lifetime τ =6.1ms (an approximately seven times improvement) with approximately three times enhancement in the PL intensity. The data suggest that Er-doped AlGaAs native oxides formed using postoxidation implantation may be a viable active media for monolithic optoelectronic integration of waveguide amplifiers on GaAs substrates.

  2. Multiple doping structures of the rare-earth atoms in β-SiAlON:Ce phosphors and their effects on luminescence properties.

    PubMed

    Gan, Lin; Xu, Fang-Fang; Zeng, Xiong-Hui; Li, Zuo-Sheng; Mao, Zhi-Yong; Lu, Ping; Zhu, Ying-Chun; Liu, Xue-Jian; Zhang, Lin-Lin

    2015-07-14

    The critical doping structures of rare-earth atoms in the promising β-SiAlON phosphors have long been argued owing to the lack of direct evidence. Here, the exact locations and coordination of the Ce rare-earth atoms in the β-SiAlON structure have been examined using an atom-resolved Cs-corrected scanning transmission electron microscope. Three different occupation sites for the Ce atoms have been directly observed: two of them are in the structural channel coordinated with six and nine N(O) atoms, respectively; the other one is the unexpected substitution site for Si(Al). The chemical valences and stabilities of the doping Ce ions at the different occupation sites have been evaluated using density functional calculations. Correlation of the different doping structures with the luminescence properties has been investigated by the aid of cathodoluminescence (CL) microanalysis, which verifies the different contribution of the interstitial trivalent Ce ions to the light emission while no luminescence is observed for the substitutional doping of quadrivalent Ce.

  3. Bolometric detection of magnetoplasma resonances in microwave absorption by two-dimensional electron systems based on doping layer conductivity measurements in GaAs/AlGaAs heterostructures

    SciTech Connect

    Dorozhkin, S. I. Sychev, D. V.; Kapustin, A. A.

    2014-11-28

    We have implemented a new bolometric method to detect resonances in magneto-absorption of microwave radiation by two-dimensional electron systems (2DES) in selectively doped GaAs/AlGaAs heterostructures. Radiation is absorbed by the 2DES and the thermally activated conductivity of the doping layer supplying electrons to the 2DES serves as a thermometer. The resonant absorption brought about by excitation of the confined magnetoplasma modes appears as peaks in the magnetic field dependence of the low-frequency impedance measured between the Schottky gate and 2DES.

  4. 266  nm ultraviolet light generation in Ga-doped BaAlBO3F2 crystals.

    PubMed

    Yang, Lei; Yue, Yinchao; Yang, Feng; Hu, Zhanggui; Xu, Zuyan

    2016-04-01

    BaAlBO3F2 (BABF) crystals are a recently developed and promising nonlinear optical material, notably for the third harmonic generation of ultraviolet (UV) light at 355 nm. However, the fourth harmonic generation of UV light at 266 nm has never been obtained by using a BABF crystal due to its relatively small birefringence. We demonstrate that the birefringence of BABF can be effectively increased by doping it with Ga3+. The fourth harmonic generation of UV light at 266 nm was achieved for the first time in a Ga-doped BABF crystal. PMID:27192296

  5. Capacitance behavior of InAlN Schottky diodes in presence of large concentrations of shallow and deep states related to oxygen

    NASA Astrophysics Data System (ADS)

    Py, M. A.; Lugani, L.; Taniyasu, Y.; Carlin, J.-F.; Grandjean, N.

    2015-05-01

    The capacitance-voltage-temperature characteristics of nonintentionally doped In0.16Al0.84N/n+-GaN Schottky diodes were measured at 1 MHz and in the 90-400 K range. They are discussed in the framework of existing theories, which properly treat the Poisson's equation, especially near the edge of the space-charge region, the so-called transition region. The concentration of a shallow donor and of a deep DX-like center, previously reported, is properly determined. The key parameter to discuss the temperature dependence of the capacitance is the ratio between the frequency of the small ac modulating signal and the temperature-dependent emission rate associated to each level. The capacitance-voltage C-Va curves were successfully fitted using a three parameters expression over the full range of temperatures. The concentration of both shallow and deep levels exceeds a few 1018 cm-3. Based on secondary ion mass spectrometry profiling, we assign both levels to the dominant oxygen impurity. This result supports our previous assignment of the shallow donor to a substitutional oxygen atom on a nitrogen site and the deep state to an O-related DX center, naturally explaining its high concentration. The sluggish kinetics at low temperatures, associated to the large concentration of deep levels located near the transition region, is illustrated by hysteresis loops in the C-Va curves below 270 K. Furthermore, the contribution of free carriers to the capacitance is revealed below 150 K, when both shallow and deep donors cannot respond anymore due to an emission rate lower than the 1 MHz modulating frequency. Finally, the presence of a highly doped thin surface barrier, as already reported in other III-nitrides, finds further support.

  6. Capacitance behavior of InAlN Schottky diodes in presence of large concentrations of shallow and deep states related to oxygen

    SciTech Connect

    Py, M. A. Lugani, L.; Taniyasu, Y.; Carlin, J.-F.; Grandjean, N.

    2015-05-14

    The capacitance-voltage-temperature characteristics of nonintentionally doped In{sub 0.16}Al{sub 0.84 }N/n{sup +}-GaN Schottky diodes were measured at 1 MHz and in the 90–400 K range. They are discussed in the framework of existing theories, which properly treat the Poisson's equation, especially near the edge of the space-charge region, the so-called transition region. The concentration of a shallow donor and of a deep DX-like center, previously reported, is properly determined. The key parameter to discuss the temperature dependence of the capacitance is the ratio between the frequency of the small ac modulating signal and the temperature-dependent emission rate associated to each level. The capacitance-voltage C-V{sub a} curves were successfully fitted using a three parameters expression over the full range of temperatures. The concentration of both shallow and deep levels exceeds a few 10{sup 18} cm{sup −3}. Based on secondary ion mass spectrometry profiling, we assign both levels to the dominant oxygen impurity. This result supports our previous assignment of the shallow donor to a substitutional oxygen atom on a nitrogen site and the deep state to an O-related DX center, naturally explaining its high concentration. The sluggish kinetics at low temperatures, associated to the large concentration of deep levels located near the transition region, is illustrated by hysteresis loops in the C-V{sub a} curves below 270 K. Furthermore, the contribution of free carriers to the capacitance is revealed below 150 K, when both shallow and deep donors cannot respond anymore due to an emission rate lower than the 1 MHz modulating frequency. Finally, the presence of a highly doped thin surface barrier, as already reported in other III-nitrides, finds further support.

  7. Photocatalytic characteristics for the nanocrystalline TiO2 on the Ag-doped CaAl2O4:(Eu,Nd) phosphor

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Sik; Sung, Hyun-Je; Kim, Bum-Joon

    2015-04-01

    This study investigated the photocatalytic behavior of nanocrystalline TiO2 deposited on Ag-doped long-lasting phosphor (CaAl2O4:Eu2+,Nd3+). The CaAl2O4:Eu2+,Nd3+ phosphor powders were prepared via conventional sintering using CaCO3, Al2O3, Eu2O3, and Nd2O3 as raw materials according to the appropriate molar ratios. Silver nanoparticles were loaded on the phosphor by mixing with an aqueous Ag-dispersion solution. Nanocrystalline TiO2 was deposited on Ag-doped CaAl2O4:Eu2+,Nd3+ powders via low-pressure chemical vapor deposition (LPCVD). The TiO2 coated on the phosphor was actively photo-reactive under irradiation with visible light and showed much faster benzene degradation than pure TiO2, which is almost non-reactive. The coupling of TiO2 with phosphor may result in an energy band bending in the junction region, which then induces the TiO2 crystal at the interface to be photo-reactive under irradiation with visible light. In addition, the intermetallic compound of CaTiO3 that formed at the interface between TiO2 and the CaAl2O4:(Eu2+,Nd3+) phosphor results in the formation of oxygen vacancies and additional electrons that promote the photodecomposition of benzene gas. The addition of Ag nanoparticles enhanced the photocatalytic reactivity of the TiO2/CaAl2O4:Eu2+,Nd3+ phosphor. TiO2 on the Ag-doped phosphor presented a higher benzene gas decomposition rate than the TiO2 did on the phosphor without Ag-doping under both irradiation with ultraviolet and visible light.

  8. Direct Observation of Lattice Aluminum Environments in Li Ion Cathodes LiNi1-y-zCoyAlzO2 and Al-Doped LiNixMnyCozO2 via (27)Al MAS NMR Spectroscopy.

    PubMed

    Dogan, Fulya; Vaughey, John T; Iddir, Hakim; Key, Baris

    2016-07-01

    Direct observations of local lattice aluminum environments have been a major challenge for aluminum-bearing Li ion battery materials, such as LiNi1-y-zCoyAlzO2 (NCA) and aluminum-doped LiNixMnyCozO2 (NMC). (27)Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can qualitatively and quantitatively characterize lattice and nonlattice (i.e., surface, coatings, segregation, secondary phase etc.) aluminum coordination and provide information that helps discern its effect in the lattice. In the present study, we use NMR to gain new insights into transition metal (TM)-O-Al coordination and evolution of lattice aluminum sites upon cycling. With the aid of first-principles DFT calculations, we show direct evidence of lattice Al sites, nonpreferential Ni/Co-O-Al ordering in NCA, and the lack of bulk lattice aluminum in aluminum-"doped" NMC. Aluminum coordination of the paramagnetic (lattice) and diamagnetic (nonlattice) nature is investigated for Al-doped NMC and NCA. For the latter, the evolution of the lattice site(s) upon cycling is also studied. A clear reordering of lattice aluminum environments due to nickel migration is observed in NCA upon extended cycling.

  9. Effects of Mg-doped AlN/AlGaN superlattices on properties of p-GaN contact layer and performance of deep ultraviolet light emitting diodes

    SciTech Connect

    Al tahtamouni, T. M.; Lin, J. Y.; Jiang, H. X.

    2014-04-15

    Mg-doped AlN/AlGaN superlattice (Mg-SL) and Mg-doped AlGaN epilayers have been investigated in the 284 nm deep ultraviolet (DUV) light emitting diodes (LEDs) as electron blocking layers. It was found that the use of Mg-SL improved the material quality of the p-GaN contact layer, as evidenced in the decreased density of surface pits and improved surface morphology and crystalline quality. The performance of the DUV LEDs fabricated using Mg-SL was significantly improved, as manifested by enhanced light intensity and output power, and reduced turn-on voltage. The improved performance is attributed to the enhanced blocking of electron overflow, and enhanced hole injection.

  10. Influence of c-axis orientation and scandium concentration on infrared active modes of magnetron sputtered Sc{sub x}Al{sub 1−x}N thin films

    SciTech Connect

    Mayrhofer, P. M.; Bittner, A.; Schmid, U.; Eisenmenger-Sittner, C.; Euchner, H.

    2013-12-16

    Doping of wurtzite aluminium nitride (AlN) with scandium (Sc) significantly enhances the piezoelectric properties of AlN. Sc{sub x}Al{sub 1−x}N thin films with different Sc concentrations (x = 0 to 0.15) were deposited by DC reactive magnetron sputtering. Infrared (IR) absorbance spectroscopy was applied to investigate the Sc concentration dependent shift of the IR active modes E{sub 1}(TO) and A{sub 1}(TO). These results are compared to ab initio simulations, being in excellent agreement with the experimental findings. In addition, IR spectroscopy is established as an economical and fast method to distinguish between thin films with a high degree of c-axis orientation and those exhibiting mixed orientations.

  11. Characterization of ti Catalyst in NaAlH4 Doped with TiF3

    NASA Astrophysics Data System (ADS)

    Rijssenbeek, Job T.; Gao, Yan; Srinivasan, Sesha S.; Jensen, Craig M.; Hanson, Jonathan; Wang, Xianqin

    2004-03-01

    The discovery that the dehydrogenation and rehydrogenation of NaAlH4 can be catalyzed by addition of titanium-based compounds has catapulted complex hydrides such as NaAlH4 to the forefront of hydride research. However, the nature of the titanium catalyst has remained controversial as only circumstantial evidence of its oxidation state, bonding environment and catalytic mechanism have been reported thus far. Results of detailed in-situ powder x-ray diffraction experiments on both the dehydrogenation and the rehydrogenation reactions of NaAlH4 will be presented. These novel data prove that both reactions occur in a stepwise fashion and agree well with pressure-composition isotherms of the same material. Furthermore, peak width analysis yields information about some surprising changes in the particle size of the constituent phases during the reaction and with cycling. X-ray absorption fine structure analysis (XANES/EXAFS) at the temperatures of interest reveals the oxidation state of the titanium species after synthesis and upon cycling. The local coordination environment of the titanium yields clues regarding possible catalytic mechanisms.

  12. Concentration dependent spectroscopic properties of Dy3+ ions doped boro-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Mariyappan, M.; Marimuthu, K.

    2016-05-01

    Dy3+ ions doped boro-phosphate glasses have been synthesized by melt quenching method and characterized through FTIR, absorption and luminescence spectral measurements. The presence of various stretching and bending vibrations of different borate and phosphate groups were identified from the FTIR spectra. In order to examine the electronic band structure of the studied glasses, Optical energy gap (Eopt) and Urbach energy (ΔE) values were estimated from the absorption spectra. The Judd-Ofelt (JO) intensity parameters were calculated to examine the symmetry of the ligand environment around the Dy3+ ions site. The emission spectra exhibit two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions respectively. The emission spectra were characterized through Commission International d'Eclairage (CIE) 1931 chromaticity diagram to explore its suitability for WLED applications.

  13. Growth Temperature Dependence of Si Doping Efficiency and Compensating Deep Level Defect Incorporation in Al0.7Ga0.3N

    SciTech Connect

    Armstrong, Andrew; Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan

    2015-05-11

    The growth temperature dependence of Si doping efficiency and deep level defect formation was investigated for n-type Al0.7Ga0.3N. It was observed that dopant compensation was greatly reduced with reduced growth temperature. Furthermore, deep level optical spectroscopy and lighted capacitance-voltage were used to understand the role of acceptor-like deep level defects on doping efficiency. Deep level defects were observed at 2.34 eV, 3.56 eV, and 4.74 eV below the conduction band minimum. The latter two deep levels were identified as the major compensators because the reduction in their concentrations at reduced growth temperature correlated closely with the concomitant increase in free electron concentration. Possible mechanisms for the strong growth temperature dependence of deep level formation are considered, which includes thermodynamically driven compensating defect formation that can arise for a semiconductor with very large band gap energy, such as Al0.7Ga0.3N.

  14. High-rate oxygen evolution reaction on Al-doped LiNiO2.

    PubMed

    Gupta, Asha; Chemelewski, William D; Buddie Mullins, C; Goodenough, John B

    2015-10-21

    LiNi0.8 Al0.2 O2 with a higher Ni(3+) /Li(+) ordering, synthesized by the solution-combustion method, gives oxygen-evolution-reaction (OER) activity in alkaline solution that is comparable to that of IrO2 . This confirms that the octahedral-site Ni(IV) /Ni(III) couple in an oxide is an active redox center for the OER with -redox energy pinned at the top of the O-2p bands.

  15. Colossal dielectric permittivity in (Al + Nb) co-doped rutile SnO2 ceramics with low loss at room temperature

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Wang, Xianjie; Zhang, Xingquan; Qi, Xudong; Liu, Zhiguo; Zhang, Lingli; Zhang, Yu; Wang, Yang; Sui, Yu; Song, Bo

    2016-10-01

    The exploration of colossal dielectric permittivity (CP) materials with low dielectric loss in a wide range of frequencies/temperatures continues to attract considerable interest. In this paper, we report CP in (Al + Nb) co-doped rutile SnO2 ceramics with a low dielectric loss at room temperature. Al0.02Nb0.05Sn0.93O2 and Al0.03Nb0.05Sn0.92O2 ceramics exhibit high relative dielectric permittivities (above 103) and low dielectric losses (0.015 < tan δ < 0.1) in a wide range of frequencies and at temperatures from 140 to 400 K. Al doping can effectively modulate the dielectric behavior by increasing the grain and grain boundary resistances. The large differences in the resistance and conductive activation energy of the grains and grain boundaries suggest that the CP in co-doped SnO2 ceramics can be attributed to the internal barrier layer capacitor effect.

  16. Colony structure in Ce-doped Al2O3/YAG eutectic systems grown by vertical Bridgman technique

    NASA Astrophysics Data System (ADS)

    Yamada, Seiya; Yoshimura, Masafumi; Sakata, Shin-ichi; Taishi, Toshinori; Hoshikawa, Keigo

    2016-08-01

    We investigated the influence of growth rate and Ce concentration on colony structure variation in Al2O3/YAG:Ce eutectic systems. The distance between boundary zones in the colony structure decreased with increases in either growth rate or Ce concentration. The eutectic spacing in the coarse microstructure in the boundary zone decreased with increasing growth rate but increased with increasing Ce concentration. We conclude that the colony structure is formed by cellular growth driven by constitutional supercooling with an interface instability due to Ce atom accumulation, so that the distance between boundary zones depends on both the growth rate and Ce concentration, and the coarse microstructure in the boundary zone depends on the solidification rate perpendicular to the growth interface at the cell bottom of the microscopic growth interface shape in the cellular growth.

  17. Impurity concentrations and surface charge densities on the heavily doped face of a silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Hsu, L. C.

    1977-01-01

    Increased solar cell efficiencies are attained by reduction of surface recombination and variation of impurity concentration profiles at the n(+) surface of silicon solar cells. Diagnostic techniques are employed to evaluate the effects of specific materials preparation methodologies on surface and near surface concentrations. It is demonstrated that the MOS C-V method, when combined with a bulk measurement technique, yields more complete concentration data than are obtainable by either method alone. Specifically, new solar cell MOS C-V measurements are combined with bulk concentrations obtained by a successive layer removal technique utilizing measurements of sheet resistivity and Hall coefficient.

  18. Influence of P{sub 2}O{sub 5} and Al{sub 2}O{sub 3} content on the structure of erbium-doped borosilicate glasses and on their physical, thermal, optical and luminescence properties

    SciTech Connect

    Bourhis, Kevin; Massera, Jonathan; Petit, Laeticia; Ihalainen, Heikki; Fargues, Alexandre; Cardinal, Thierry; Hupa, Leena; Hupa, Mikko; Dussauze, Marc; Rodriguez, Vincent; Boussard-Plédel, Catherine; Bureau, Bruno; Roiland, Claire; Ferraris, Monica

    2015-03-15

    Highlights: • Reorganization of the glass structure induced by the addition of P{sub 2}O{sub 5} or Al{sub 2}O{sub 3}. • Emission properties related to the presence of P or Al in the Er{sup 3+} coordination shell. • Declustering observed upon addition of P{sub 2}O{sub 5}. • No declustering upon addition of Al{sub 2}O{sub 3}. - Abstract: The effect of P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3} addition in Er-doped borosilicate glasses on the physical, thermal, optical, and luminescence properties is investigated. The changes in these glass properties are related to the glass structure modifications induced by the addition of P{sub 2}O{sub 5} and/or Al{sub 2}O{sub 3}, which were probed by FTIR, {sup 11}B MAS NMR and X-ray photoelectron spectroscopies. Variations of the polymerization degree of the silicate tetrahedra and modifications in the {sup [3]}B/{sup [4]}B ratio are explained by a charge compensation mechanism due to the formation of AlO{sub 4}, PO{sub 4} groups and the formation of Al-O-P linkages in the glass network. From the absorption and luminescence properties of the Er{sup 3+} ions at 980 nm and 1530 nm, declustering is suspected for the highest P{sub 2}O{sub 5} concentrations while for the highest Al{sub 2}O{sub 3} concentrations no declustering is observed.

  19. GaAs nanowires grown on Al-doped ZnO buffer layer

    NASA Astrophysics Data System (ADS)

    Haggren, Tuomas; Perros, Alexander; Dhaka, Veer; Huhtio, Teppo; Jussila, Henri; Jiang, Hua; Ruoho, Mikko; Kakko, Joona-Pekko; Kauppinen, Esko; Lipsanen, Harri

    2013-08-01

    We report a pathway to grow GaAs nanowires on a variety of substrates using a combination of atomic layer deposition and metallo-organic vapor phase epitaxy (MOVPE). GaAs nanowires were grown via MOVPE at 430-540 °C on an atomic-layer-deposited Al:ZnO buffer layer. The resulting nanowires were affected only by the properties of the buffer layer, allowing nanowire growth on a number of substrates that withstand ˜400 °C. The growth occurred in two phases: initial in-plane growth and subsequent out-plane growth. The nanowires grown exhibited a strong photoluminescence signal both at room temperature and at 12 K. The 12 K photoluminescence peak was at 1.47 eV, which was attributed to Zn autodoping from the buffer layer. The crystal structure was zincblende plagued with either twin planes or diagonal defect planes, which were related to perturbations in the seed particle during the growth. The used method combines substrates with variable properties to nanowire growth on a transparent and conductive Al:ZnO buffer layer.

  20. Room-temperature ferromagnetism in Cr-doped Si achieved by controlling atomic structure, Cr concentration, and carrier densities: A first-principles study

    SciTech Connect

    Wei, Xin-Yuan; Yang, Zhong-Qin; Zhu, Yan; Li, Yun

    2015-04-28

    By using first-principles calculations, we investigated how to achieve a strong ferromagnetism in Cr-doped Si by controlling the atomic structure and Cr concentration as well as carrier densities. We found that the configuration in which the Cr atom occupies the tetrahedral interstitial site can exist stably and the Cr atom has a large magnetic moment. Using this doping configuration, room-temperature ferromagnetism can be achieved in both n-type and p-type Si by tuning Cr concentration and carrier densities. The results indicate that the carrier density plays a crucial role in realizing strong ferromagnetism in diluted magnetic semiconductors.

  1. Room-temperature ferromagnetism in Cr-doped Si achieved by controlling atomic structure, Cr concentration, and carrier densities: A first-principles study

    NASA Astrophysics Data System (ADS)

    Wei, Xin-Yuan; Zhu, Yan; Yang, Zhong-Qin; Li, Yun

    2015-04-01

    By using first-principles calculations, we investigated how to achieve a strong ferromagnetism in Cr-doped Si by controlling the atomic structure and Cr concentration as well as carrier densities. We found that the configuration in which the Cr atom occupies the tetrahedral interstitial site can exist stably and the Cr atom has a large magnetic moment. Using this doping configuration, room-temperature ferromagnetism can be achieved in both n-type and p-type Si by tuning Cr concentration and carrier densities. The results indicate that the carrier density plays a crucial role in realizing strong ferromagnetism in diluted magnetic semiconductors.

  2. Boron concentration profiling by high angle annular dark field-scanning transmission electron microscopy in homoepitaxial δ-doped diamond layers

    SciTech Connect

    Araújo, D.; Alegre, M. P.; Piñero, J. C.; Fiori, A.; Bustarret, E.; Jomard, F.

    2013-07-22

    To develop further diamond related devices, the concentration and spatial location of dopants should be controlled down to the nanometer scale. Scanning transmission electron microscopy using the high angle annular dark field mode is shown to be sensitive to boron doping in diamond epilayers. An analytical procedure is described, whereby local boron concentrations above 10{sup 20} cm{sup −3} were quantitatively derived down to nanometer resolution from the signal dependence on thickness and boron content. Experimental boron local doping profiles measured on diamond p{sup −}/p{sup ++}/p{sup −} multilayers are compared to macroscopic profiles obtained by secondary ion mass spectrometry, avoiding reported artefacts.

  3. Exploration of metaphosphate glasses dispersed with Eu-doped SiAlON for white LED applications

    NASA Astrophysics Data System (ADS)

    Segawa, Hiroyo; Hirosaki, Naoto; Ohki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2015-04-01

    Ca-α-SiAlON:Eu2+ oxynitride phosphors are typical luminescent materials with a high thermal tolerance. A series of metaphosphate glass samples (50MO-50P2O5; mol%, M = Zn, Ca, and Ba) were prepared in order to investigate their ability to disperse Ca-α-SiAlON:Eu2+ phosphor powders. The glass structures of all of the samples were formed using Q2 species and composed in long chain networks by investigation of the NMR and Raman spectra. In the glass samples, SiAlON was dispersed until reaching 5 or 6 mass%. The color due to irradiation by a blue LED (wavelength of 450 nm) depended on the glass composition, concentration of SiAlON, and thickness of the composite. Regarding the glass formation and quantum efficiency, the BaP glass with between 3 and 4 mass% SiAlON composite was determined to be the most suitable for use as a host material for white LEDs.

  4. Estimation of Soil Radon Concentration in Al-Qateef's Date Palm Farms, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Baig, M. R.; Al-Sameen, M.

    2011-10-01

    This study involves the measurement of radon concentrations in agricultural soil from two date Palm farms in Al-Qateef province using CR-39 detector. In each farm the palm trees are arranged in rows separated by the irrigation reservoirs. The first farm is about 10000 m2 and has 350 palm trees and the second farm is about 7000 m2 and has 320 palm trees. The average distance between trees is about 5.5 m. The rows are separated by an irrigation reservoir where fertilizers are added. Sixty soil samples were collected from each farm and classified in paperboard boxes. These samples were taken from different depths and positions between the trees and from the irrigation reservoir. A newly designed tag type dosimeter is used in which the alpha tracks are registered on both sides of the CR-39 detector. The tag dosimeter was calibrated against a cup type dosimeter which was calibrated at the National Radiological Protection Board (NRPB) at the U.K. The detectors were left to count for five months and then chemically treated in the standard way. Finally an optical microscope is used to count alpha tracks and the data are treated statistically. The study is set to test for significant differences in radon concentrations at different positions and depths in the barren and fertilized soils in the two farms. Measured radon concentrations ranged between 42 and 344Bq/m3. No significant difference between the mean concentration values in soil samples taken between the trees and that taken at the depth of 50 cm from the irrigation reservoir. Significant difference was however found between radon concentrations in samples collected directly from the surface of the irrigation reservoir where fertilizers are introduced and those taken from the other two positions. The used fertilizers are found to have higher contents of uranium which is limited to the surface soil of the irrigation reservoir.

  5. Estimation of Soil Radon Concentration in Al-Qateef's Date Palm Farms, Saudi Arabia

    SciTech Connect

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Baig, M. R.; Al-Sameen, M.

    2011-10-27

    This study involves the measurement of radon concentrations in agricultural soil from two date Palm farms in Al-Qateef province using CR-39 detector. In each farm the palm trees are arranged in rows separated by the irrigation reservoirs. The first farm is about 10000 m{sup 2} and has 350 palm trees and the second farm is about 7000 m{sup 2} and has 320 palm trees. The average distance between trees is about 5.5 m. The rows are separated by an irrigation reservoir where fertilizers are added. Sixty soil samples were collected from each farm and classified in paperboard boxes. These samples were taken from different depths and positions between the trees and from the irrigation reservoir.A newly designed tag type dosimeter is used in which the alpha tracks are registered on both sides of the CR-39 detector. The tag dosimeter was calibrated against a cup type dosimeter which was calibrated at the National Radiological Protection Board (NRPB) at the U.K.The detectors were left to count for five months and then chemically treated in the standard way. Finally an optical microscope is used to count alpha tracks and the data are treated statistically.The study is set to test for significant differences in radon concentrations at different positions and depths in the barren and fertilized soils in the two farms. Measured radon concentrations ranged between 42 and 344Bq/m{sup 3}. No significant difference between the mean concentration values in soil samples taken between the trees and that taken at the depth of 50 cm from the irrigation reservoir. Significant difference was however found between radon concentrations in samples collected directly from the surface of the irrigation reservoir where fertilizers are introduced and those taken from the other two positions. The used fertilizers are found to have higher contents of uranium which is limited to the surface soil of the irrigation reservoir.

  6. Effect of doping on the far-infrared intersubband transitions in nonpolar m-plane GaN/AlGaN heterostructures

    NASA Astrophysics Data System (ADS)

    Lim, C. B.; Ajay, A.; Bougerol, C.; Lähnemann, J.; Donatini, F.; Schörmann, J.; Bellet-Amalric, E.; Browne, D. A.; Jiménez-Rodríguez, M.; Monroy, E.

    2016-04-01

    This paper assesses the effects of Si doping on the properties of nonpolar m-plane GaN/AlGaN quantum wells (QWs) designed for intersubband (ISB) absorption in the far-infrared spectral range. For doping levels up to 3 × 1012 cm-2, structural analysis reveals uniform QWs with abrupt interfaces and no epitaxially induced defects. Cathodoluminescence spectroscopy confirms the homogeneity of the multiple QWs along the growth direction. Increasing the doping density in the QWs from 1 × 1011 cm-2 to 3 × 1012 cm-2 induces a broadening of the photoluminescence as well as a reduction of the exciton localization energy in the alloy. Also, enhancement of the ISB absorption is observed, along with a blue shift and widening of the absorption peak. The magnitude of the ISB absorption saturates for doping levels around 1 × 1012 cm-2, and the blue shift and broadening increase less than theoretically predicted for the samples with higher doping levels. This is explained by the presence of free carriers in the excited electron level due to the increase of the Fermi level energy.

  7. Influence of Al-, Co-, Cu-, and In-doped ZnO buffer layers on the structural and the optical properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kim, Younggyu; Choe, Jongyun; Nam, Giwoong; Kim, Ikhyun; Leem, Jae-Young; Lee, Sang-heon; Kim, Soaram; Kim, Do Yeob; Kim, Sung-O.

    2015-01-01

    Zinc oxide (ZnO) thin films without a buffer layer and with Al-, Co-, Cu-, and In-doped ZnO buffer layers were prepared by using the sol-gel spin-coating method. For the first time, the effects of the ZnO buffer layers doped with different metal materials on the structural and the optical properties of the ZnO thin films are investigated. The surface morphologies of the ZnO thin films having wrinkle structures significantly depended on the type of buffer layer. The largest crystallite size and the highest c-axis orientation were observed for the ZnO thin film with a Co-doped ZnO buffer layer. However, the transmittance for the ZnO thin films with metal-doped buffer layers was slightly decreased compared to that without the buffer layer, and metal-doped ZnO buffer layers hardly affected the optical band gap of the ZnO thin films.

  8. Solution processed Al-doped ZnO nanoparticles/TiOx composite for highly efficient inverted organic solar cells.

    PubMed

    Gadisa, Abay; Hairfield, Travis; Alibabaei, Leila; Donley, Carrie L; Samulski, Edward T; Lopez, Rene

    2013-09-11

    We investigated the electrical properties of solution processed Al-doped ZnO (AZO) nanoparticles, stabilized by mixing with a TiOx complex. Thin solid films cast from the solution of AZO-TiOx (AZOTi) (Ti/Zn ∼0.4 in the bulk and ∼0.8 on its surface) is processable in inert environment, without a need for either ambient air exposure for hydrolysis or high temperature thermal annealing commonly applied to buffer layers of most metal-oxides. It was found that the electronic structure of AZOTi matches the electronic structure of several electron acceptor and donor materials used in organic electronic devices, such as solar cells. Inverted solar cells employing a bulk heterojunction film of poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester, cast on an indium-tin-oxide/AZOTi electrode, and capped with a tungsten oxide/aluminum back electrode, give rise to a nearly 70% fill factor and an optimized open-circuit voltage as a result of efficient hole blocking behavior of AZOTi. The resulting electron collecting/blocking capability of this material solves crucial interfacial recombination issues commonly observed at the organic/metal-oxide interface in most inverted organic bulk heterojunction solar cells. PMID:23980825

  9. Al-doped ZnO contact to CdZnTe for x- and gamma-ray detector applications

    NASA Astrophysics Data System (ADS)

    Roy, U. N.; Camarda, G. S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Mundle, R. M.; Pradhan, A. K.; James, R. B.

    2016-06-01

    The poor adhesion of common metals to CdZnTe (CZT)/CdTe surfaces has been a long-standing challenge for radiation detector applications. In this present work, we explored the use of an alternative electrode, viz., Al-doped ZnO (AZO) as a replacement to common metallic contacts. ZnO offers several advantages over the latter, such as having a higher hardness, a close match of the coefficients of thermal expansion for CZT and ZnO, and better adhesion to the surface of CZT due to the contact layer being an oxide. The AZO/CZT contact was investigated via high spatial-resolution X-ray response mapping for a planar detector at the micron level. The durability of the device was investigated by acquiring I-V measurements over an 18-month period, and good long-term stability was observed. We have demonstrated that the AZO/CZT/AZO virtual-Frisch-grid device performs fairly well, with comparable or better characteristics than that for the same detector fabricated with gold contacts.

  10. The influence of Sb doping on the growth and electronic properties of GaAs(100) and AlGaAs(100)

    NASA Technical Reports Server (NTRS)

    Jamison, K. D.; Chen, H. C.; Bensaoula, A.; Lim, W.; Trombetta, L.

    1989-01-01

    Isoelectronic doping using antimony has been shown to reduce traps and improve material properties during epitaxial growth of Si doped GaAs(100) and AlGaAs(100). In this study, the effect of the antimony dopant on the optimal growth temperature is examined with the aim of producing high-quality heterostructures at lower temperatues. High-quality films of GaAs and AlGaAs have been grown by molecular-beam epitaxy at the normal growth temperatures of 610 and 700 C, respectively, and 50-100 C below this temperature using varying small amounts of Sb as a dopant. Electrical properties of the films were then examined using Hall mobility measurements and deep-level transient spectroscopy.

  11. Synthesis and characterization of Tb{sup 3+} doped MgSrAl{sub 10}O{sub 17} green emitting phosphor

    SciTech Connect

    Panse, V. R.; Dhoble, S. J.; Kokode, N. S.

    2013-12-16

    There is a growing demand for economically viable phosphors for newly emerging display devices with on-going technological advancements. Various aluminates are used as hosts for doping rare earth ions in luminescent applications. Green emitting terbium-ion-doped MgSrAl{sub 10}O{sub 17} phosphor prepared using the combustion method. An efficient phosphor can be prepared by this method at around 550°C in a very short time of few minutes. Further phosphor was analyzed by XRD for the confirmation of desired phase and purity. The morphology and structure of the phosphor were characterized by Scanning electron microscopy. The vibrational properties of MgSrAl{sub 10}O{sub 17} phosphor was studied by FTIR.

  12. Time-dependent stress concentration and microcrack nucleation in TiAl

    SciTech Connect

    Yoo, M.H.

    1995-07-01

    Localized stress evolution associated with the interaction of slip or twinning with an interface is treated by means of a superposition of the {open_quotes}internal loading{close_quotes} of a crystalline subsystem by dynamic dislocation pile-up and the stress relaxation by climb of interfacial dislocations. The peak value of a stress concentration factor depends on both the angular function that includes the effect of mode mixity and the ratio of characteristic times for stress relaxation and internal loading. The available experimental data on orientation and strain-rate dependences of interfacial fracture mode in polysynthetically twinned TiAl crystals are discussed in view of the theoretical concepts presented in this paper.

  13. Ionized dopant concentrations at the heavily doped surface of a silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Broder, J. D.; Mazaris, G. A., Jr.; Hsu, L.

    1978-01-01

    Data are combined with concentrations obtained by a bulk measurement method using successive layer removal with measurements of Hall effect and resistivity. From the MOS (metal-oxide-semiconductor) measurements it is found that the ionized dopant concentration N has the value (1.4 + or - 0.1) x 10 to the 20th power/cu cm at distances between 100 and 220 nm from the n(+) surface. The bulk measurement technique yields average values of N over layers whose thickness is 2000 nm. Results show that, at the higher concentrations encountered at the n(+) surface, the MOS C-V technique, when combined with a bulk measurement method, can be used to evaluate the effects of materials preparation methodologies on the surface and near surface concentrations of silicon cells.

  14. Electrochemical treatment of reverse osmosis concentrate on boron-doped electrodes in undivided and divided cell configurations.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Escher, Beate I; Joll, Cynthia; Radjenovic, Jelena

    2014-08-30

    An undivided electrolytic cell may offer lower electrochlorination through reduction of chlorine/hypochlorite at the cathode. This study investigated the performance of electrooxidation of reverse osmosis concentrate using boron-doped diamond electrodes in membrane-divided and undivided cells. In both cell configurations, similar extents of chemical oxygen demand and dissolved organic carbon removal were obtained. Continuous formation of chlorinated organic compounds was observed regardless of the membrane presence. However, halogenation of the organic matter did not result in a corresponding increase in toxicity (Vibrio fischeri bioassay performed on extracted samples), with toxicity decreasing slightly until 10AhL(-1), and generally remaining near the initial baseline-toxicity equivalent concentration (TEQ) of the raw concentrate (i.e., ∼2mgL(-1)). The exception was a high range toxicity measure in the undivided cell (i.e., TEQ=11mgL(-1) at 2.4AhL(-1)), which rapidly decreased to 4mgL(-1). The discrepancy between the halogenated organic matter and toxicity patterns may be a consequence of volatile and/or polar halogenated by-products formed in oxidation by OH electrogenerated at the anode. The undivided cell exhibited lower energy compared to the divided cell, 0.25kWhgCOD(-1) and 0.34kWhgCOD(-1), respectively, yet it did not demonstrate any improvement regarding by-products formation.

  15. Electrochemical oxidation of tramadol in low-salinity reverse osmosis concentrates using boron-doped diamond anodes.

    PubMed

    Lütke Eversloh, Christian; Schulz, Manoj; Wagner, Manfred; Ternes, Thomas A

    2015-04-01

    The electrochemical treatment of low-salinity reverse osmosis (RO) concentrates was investigated using tramadol (100 μM) as a model substance for persistent organic contaminants. Galvanostatic degradation experiments using boron-doped diamond electrodes at different applied currents were conducted in RO concentrates as well as in ultra-pure water containing either sodium chloride or sodium sulfate. Kinetic investigations revealed a significant influence of in-situ generated active chlorine besides direct anodic oxidation. Therefore, tramadol concentrations decreased more rapidly at elevated chloride content. Nevertheless, reduction of total organic carbon (TOC) was found to be comparatively low, demonstrating that transformation rather than mineralization was taking place. Early stage product formation could be attributed to both direct and indirect processes, including demethylation, hydroxylation, dehydration, oxidative aromatic ring cleavage and halogenation reactions. The latter led to various halogenated derivatives and resulted in AOX (adsorbable organic halogens) formation in the lower mg/L-range depending on the treatment conditions. Characterisation of transformation products (TPs) was achieved via MS(n) experiments and additional NMR measurements. Based on identification and quantification of the main TPs in different matrices and on additional potentiostatic electrolysis, a transformation pathway was proposed.

  16. Electrochemical treatment of reverse osmosis concentrate on boron-doped electrodes in undivided and divided cell configurations.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Escher, Beate I; Joll, Cynthia; Radjenovic, Jelena

    2014-08-30

    An undivided electrolytic cell may offer lower electrochlorination through reduction of chlorine/hypochlorite at the cathode. This study investigated the performance of electrooxidation of reverse osmosis concentrate using boron-doped diamond electrodes in membrane-divided and undivided cells. In both cell configurations, similar extents of chemical oxygen demand and dissolved organic carbon removal were obtained. Continuous formation of chlorinated organic compounds was observed regardless of the membrane presence. However, halogenation of the organic matter did not result in a corresponding increase in toxicity (Vibrio fischeri bioassay performed on extracted samples), with toxicity decreasing slightly until 10AhL(-1), and generally remaining near the initial baseline-toxicity equivalent concentration (TEQ) of the raw concentrate (i.e., ∼2mgL(-1)). The exception was a high range toxicity measure in the undivided cell (i.e., TEQ=11mgL(-1) at 2.4AhL(-1)), which rapidly decreased to 4mgL(-1). The discrepancy between the halogenated organic matter and toxicity patterns may be a consequence of volatile and/or polar halogenated by-products formed in oxidation by OH electrogenerated at the anode. The undivided cell exhibited lower energy compared to the divided cell, 0.25kWhgCOD(-1) and 0.34kWhgCOD(-1), respectively, yet it did not demonstrate any improvement regarding by-products formation. PMID:25048621

  17. A Systematic Approach for Multidimensional, Closed-Form Analytic Modeling: Effective Intrinsic Carrier Concentrations in Ga 1-x Al x As Heterostructures.

    PubMed

    Bennett, Herbert S; Filliben, James J

    2002-01-01

    A critical issue identified in both the technology roadmap from the Optoelectronics Industry Development Association and the roadmaps from the National Electronics Manufacturing Initiative, Inc. is the need for predictive computer simulations of processes, devices, and circuits. The goal of this paper is to respond to this need by representing the extensive amounts of theoretical data for transport properties in the multi-dimensional space of mole fractions of AlAs in Ga1- x Al x As, dopant densities, and carrier densities in terms of closed form analytic expressions. Representing such data in terms of closed-form analytic expressions is a significant challenge that arises in developing computationally efficient simulations of microelectronic and optoelectronic devices. In this paper, we present a methodology to achieve the above goal for a class of numerical data in the bounded two-dimensional space of mole fraction of AlAs and dopant density. We then apply this methodology to obtain closed-form analytic expressions for the effective intrinsic carrier concentrations at 300 K in n-type and p-type Ga1- x Al x As as functions of the mole fraction x of AlAs between 0.0 and 0.3. In these calculations, the donor density N D for n-type material varies between 10(16) cm(-3) and 10(19) cm(-3) and the acceptor density N A for p-type materials varies between 10(16) cm(-3) and 10(20) cm(-3). We find that p-type Ga1- x Al x As presents much greater challenges for obtaining acceptable analytic fits whenever acceptor densities are sufficiently near the Mott transition because of increased scatter in the numerical computer results for solutions to the theoretical equations. The Mott transition region in p-type Ga1- x Al x As is of technological significance for mobile wireless communications systems. This methodology and its associated principles, strategies, regression analyses, and graphics are expected to be applicable to other problems beyond the specific case of effective

  18. Hole doping in Al-containing nickel oxide materials to improve electrochromic performance.

    PubMed

    Lin, Feng; Nordlund, Dennis; Weng, Tsu-Chien; Moore, Rob G; Gillaspie, Dane T; Dillon, Anne C; Richards, Ryan M; Engtrakul, Chaiwat

    2013-01-23

    Electrochromic materials exhibit switchable optical properties that can find applications in various fields, including smart windows, nonemissive displays, and semiconductors. High-performing nickel oxide electrochromic materials have been realized by controlling the material composition and tuning the nanostructural morphology. Post-treatment techniques could represent efficient and cost-effective approaches for performance enhancement. Herein, we report on a post-processing ozone technique that improves the electrochromic performance of an aluminum-containing nickel oxide material in lithium-ion electrolytes. The resulting materials were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, and X-ray absorption spectroscopy (XAS). It was observed that ozone exposure increased the Ni oxidation state by introducing hole states in the NiO(6) octahedral unit. In addition, ozone exposure gives rise to higher-performing aluminum-containing nickel oxide films, relative to nickel oxide containing both Al and Li, in terms of switching kinetics, bleached-state transparency, and optical modulation. The improved performance is attributed to the decreased crystallinity and increased nickel oxidation state in aluminum-containing nickel oxide electrochromic films. The present study provides an alternative route to improve electrochromic performance for nickel oxide materials. PMID:23249159

  19. Na(+) doping induced changes in the reduction and charge transport characteristics of Al2O3-stabilized, CuO-based materials for CO2 capture.

    PubMed

    Imtiaz, Q; Abdala, P M; Kierzkowska, A M; van Beek, W; Schweiger, S; Rupp, J L M; Müller, C R

    2016-04-28

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging CO2 capture technologies that could reduce appreciably the costs associated with the capture of CO2. In CLC and CLOU, the oxygen required to combust a hydrocarbon is provided by a solid oxygen carrier. Among the transition metal oxides typically considered for CLC and CLOU, copper oxide (CuO) stands out owing to its high oxygen carrying capacity, exothermic reduction reactions and fast reduction kinetics. However, the low Tammann (sintering) temperature of CuO is a serious drawback. In this context, it has been proposed to support CuO on high Tammann temperature and low cost alumina (Al2O3), thus, reducing the morphological changes occurring over multiple CLC or CLOU redox cycles and stabilizing, in turn, the high activity of CuO. However, in CuO-Al2O3 systems, phase stabilization and avoiding the formation of the CuAl2O4 spinel is key to obtaining a material with a high redox stability and activity. Here, we report a Na(+) doping strategy to phase stabilize Al2O3-supported CuO, yielding in turn an inexpensive material with a high redox stability and CO2 capture efficiency. We also demonstrate that doping CuO-Al2O3 with Na(+) improves the oxygen uncoupling characteristics and coke resistance of the oxygen carriers. Utilizing in situ and ex situ X-ray absorption spectroscopy (XAS), the local structure of Cu and the reduction pathways of CuO were determined as a function of the Na(+) content and cycle number. Finally, using 4-point conductivity measurements, we confirm that doping of Al2O3-supported CuO with Na(+) lowers the activation energy for charge transport explaining conclusively the improved redox characteristics of the new oxygen carriers developed. PMID:27080470

  20. Na(+) doping induced changes in the reduction and charge transport characteristics of Al2O3-stabilized, CuO-based materials for CO2 capture.

    PubMed

    Imtiaz, Q; Abdala, P M; Kierzkowska, A M; van Beek, W; Schweiger, S; Rupp, J L M; Müller, C R

    2016-04-28

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging CO2 capture technologies that could reduce appreciably the costs associated with the capture of CO2. In CLC and CLOU, the oxygen required to combust a hydrocarbon is provided by a solid oxygen carrier. Among the transition metal oxides typically considered for CLC and CLOU, copper oxide (CuO) stands out owing to its high oxygen carrying capacity, exothermic reduction reactions and fast reduction kinetics. However, the low Tammann (sintering) temperature of CuO is a serious drawback. In this context, it has been proposed to support CuO on high Tammann temperature and low cost alumina (Al2O3), thus, reducing the morphological changes occurring over multiple CLC or CLOU redox cycles and stabilizing, in turn, the high activity of CuO. However, in CuO-Al2O3 systems, phase stabilization and avoiding the formation of the CuAl2O4 spinel is key to obtaining a material with a high redox stability and activity. Here, we report a Na(+) doping strategy to phase stabilize Al2O3-supported CuO, yielding in turn an inexpensive material with a high redox stability and CO2 capture efficiency. We also demonstrate that doping CuO-Al2O3 with Na(+) improves the oxygen uncoupling characteristics and coke resistance of the oxygen carriers. Utilizing in situ and ex situ X-ray absorption spectroscopy (XAS), the local structure of Cu and the reduction pathways of CuO were determined as a function of the Na(+) content and cycle number. Finally, using 4-point conductivity measurements, we confirm that doping of Al2O3-supported CuO with Na(+) lowers the activation energy for charge transport explaining conclusively the improved redox characteristics of the new oxygen carriers developed.

  1. Effects of Si-doping on structural, electrical, and optical properties of polar and non-polar AlGaN epi-layers

    NASA Astrophysics Data System (ADS)

    Yang, Hongquan; Zhang, Xiong; Wang, Shuchang; Wang, Yi; Luan, Huakai; Dai, Qian; Wu, Zili; Zhao, Jianguo; Cui, Yiping

    2016-08-01

    The polar (0001)-oriented c-plane and non-polar (11 2 bar 0) -oriented a-plane wurtzite AlGaN epi-layers were successfully grown on polar (0001)-oriented c-plane and semi-polar (1 1 bar 02) -oriented r-plane sapphire substrates, respectively with various Si-doping levels in a low pressure metal organic chemical vapor deposition (MOCVD) system. The morphological, structural, electrical, and optical properties of the polar and non-polar AlGaN epi-layers were studied with scanning electron microscopy (SEM), X-ray diffraction (XRD), Hall effect, and Raman spectroscopy. The characterization results show that Si dopants incorporated into the polar and non-polar AlGaN films induced a relaxation of compressive residual strain and a generation of biaxial tensile strain on the surface in consequence of the dislocation climbing. In particular, it was found that the Si-induced compressive strain relaxation in the non-polar AlGaN samples can be promoted by the structural anisotropy as compared with the polar counterparts. The gradually increased relaxation of compressive residual strain in both polar and non-polar AlGaN samples with increasing Si-doping level was attributed to the Si-induced enhancement in the opportunity for the dislocations to interact and annihilate. This implies that the crystal quality for both polar and non-polar AlGaN epi-layers can be remarkably improved by Si-doping.

  2. Defects and stresses in MBE-grown GaN and Al{sub 0.3}Ga{sub 0.7}N layers doped by silicon using silane

    SciTech Connect

    Ratnikov, V. V. Kyutt, R. N.; Smirnov, A. N.; Davydov, V. Yu.; Shcheglov, M. P.; Malin, T. V.; Zhuravlev, K. S.

    2013-12-15

    The electric and structural characteristics of silicon-doped GaN and Al{sub 0.3}Ga{sub 0.7}N layers grown by molecular beam epitaxy (MBE) using silane have been analyzed by the Hall effect, Raman spectroscopy, and high-resolution X-ray diffractometry. It is established that the electron concentration linearly increases up to n = 4 × 10{sup 20} cm{sup −3} with an increase in the silane flow rate for GaN:Si, whereas the corresponding dependence for Al{sub 0.3}Ga{sub 0.7}N:Si is sublinear and the maximum electron concentration is found to be n = 4 × 10{sup 19} cm{sup −3}. X-ray measurements of sample macrobending indicate a decrease in biaxial compressive stress with an increase in the electron concentration in both GaN:Si and Al{sub 0.3}Ga{sub 0.7}N:Si layers. The parameters of the dislocation structure, estimated from the measured broadenings of X-ray reflections, are analyzed.

  3. Bias-tunable IR photodetector based on asymmetrically doped GaAs/AlGaAs double-quantum-well nanomaterial for remote temperature sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Mitin, Vladimir; Choi, Jae Kyu; Sablon, Kimberly; Sergeev, Andrei

    2016-05-01

    We designed, fabricated, and characterized multi-color IR photodetectors with asymmetrical doping of GaAs/AlGaAs double quantum wells (DQW). We measured and analyzed spectral and noise characteristics to evaluate feasibility of these photodetectors for remote temperature sensing at liquid nitrogen temperatures. The bias voltage controls the charge distribution between the two wells in a DQW unit and provides effective tuning of IR induced electron transitions. We have found that the responsivity of our devices is symmetrical and weakly dependent on the bias voltage because the doping asymmetry compensates the effect of dopant migration in the growth direction. At the same time, the asymmetrical doping strongly enhances the selectivity and tunability of spectral characteristics by bias voltage. Multicolor detection of our QWIP is realized by varying the bias voltage. Maximum detection wavelength moves from 7.5 μm to 11.1 μm by switching applied bias from -5 V to 4 V. Modeling shows significant dependence of the photocurrent ratio on the object temperature regardless of its emissivity and geometrical factors. We also experimentally investigated the feasibility of our devices for remote temperature sensing by measuring the photocurrent as a response to blackbody radiation with the temperature from 300°C to 1000°C in the range of bias voltages from -5 V to 5 V. The agreement between modelling and experimental results demonstrates that our QWIP based on asymmetrically doped GaAs/AlGaAs DQW nanomaterial is capable of remote temperature sensing. By optimizing the physical design and varying the doping level of quantum wells, we can generalize this approach to higher temperature measurements. In addition, continuous variation of bias voltage provides fast collection of large amounts of photocurrent data at various biases and improves the accuracy of remote temperature measurements via appropriate algorithm of signal processing.

  4. Dehydrogenation kinetics and reversibility of LiAlH4-LiBH4 doped with Ti-based additives and MWCNT

    NASA Astrophysics Data System (ADS)

    Thaweelap, Natthaporn; Utke, Rapee

    2016-11-01

    Dehydrogenation kinetics and reversibility of LiAlH4-LiBH4 doped with Ti-based additives (TiCl3 and Ti-isopropoxide), multiwall carbon nanotubes (MWCNT), and MWCNT impregnated with Ti-based additives are proposed. Reduction of dehydrogenation temperature as well as improvements of kinetics and reversibility, especially decomposition of thermodynamically stable hydride (LiBH4) is obtained from the samples doped with Ti-isopropoxide and MWCNT. This can be due to the fact that the formations of LixAl(1-x)B2 and LiH-Al containing phase during dehydrogenation favor decomposition of LiH, leading to increment of hydrogen capacity, and stabilization of boron in solid state, resulting in improvement of reversibility. Besides, the curvatures and thermal conductivity of MWCNT benefit hydrogen diffusion and heat transfer during de/rehydrogenation. Nevertheless, deficient hydrogen content reversible is observed in all samples due to the irreversible of LiAlH4 and/or Li3AlH6 as well as the formation of stable phase (Li2B12H12) during de/rehydrogenation.

  5. Influence of transparent conductive oxides on passivation of a-Si:H/c-Si heterojunctions as studied by atomic layer deposited Al-doped ZnO

    NASA Astrophysics Data System (ADS)

    Macco, B.; Deligiannis, D.; Smit, S.; van Swaaij, R. A. C. M. M.; Zeman, M.; Kessels, W. M. M.

    2014-12-01

    In silicon heterojunction solar cells, the main opportunities for efficiency gain lie in improvements of the front-contact layers. Therefore, the effect of transparent conductive oxides (TCOs) on the a-Si:H passivation performance has been investigated for Al-doped zinc oxide (ZnO:Al) layers made by atomic layer deposition (ALD). It is shown that the ALD process, as opposed to sputtering, does not impair the chemical passivation. However, the field-effect passivation is reduced by the ZnO:Al. The resulting decrease in low injection-level lifetime can be tuned by changing the ZnO:Al doping level (carrier density = 7 × 1019-7 × 1020 cm-3), which is explained by a change in the TCO workfunction. Additionally, it is shown that a ˜10-15 nm ALD ZnO:Al layer is sufficient to mitigate damage to the a-Si:H by subsequent sputtering, which is correlated to ALD film closure at this thickness.

  6. A first-principles study on the adsorption behavior of amphetamine on pristine, P- and Al-doped B12N12 nano-cages

    NASA Astrophysics Data System (ADS)

    Bahrami, Aidin; Seidi, Shahram; Baheri, Tahmineh; Aghamohammadi, Mohammad

    2013-12-01

    The first-principles computations using density functional theory (DFT) calculations at the M062X/6-311++G** level have been applied to scrutinize the adsorption behavior of amphetamine (AMP) molecule on the external surface of pristine, P- and Al-doped B12N12 nano-cages. In order to gain insight into the binding features of pristine and doped B12N12 complexes as adsorbent with AMP, the structural and electronic parameters as well as the Atoms in Molecules (AIM) properties were examined. The results showed that AMP prefers to adsorb via its nitrogen atom on the Lewis acid sites of B and Al atoms of the nano-cages. On the basis of calculated density of states, the interaction of AMP with the external wall of B12N12 leads to the remarkable differences in their conductivities. Presence of polar solvent increases the AMP adsorption on the nano-cage. In addition, AIM based analyses indicated an electrostatic nature for N-B interaction in Amph-B12N12 and partial covalent for N-Al in AMP-B11AlN12. Based on calculated results, the B12N12 and B11AlN12 nano-cages are expected to be a potential efficient adsorbent as well as sensors for adsorption of AMP in environmental systems.

  7. Effects of the ratio of O2/Ar pressure on wettability and optical properties of HfO2 films before and after doping with Al

    NASA Astrophysics Data System (ADS)

    Lin, Su-Shia; Liao, Chung-Sheng

    2016-09-01

    HfO2 films were doped with Al (HfO2:Al) by simultaneous RF magnetron sputtering of HfO2 and DC magnetron sputtering of Al. This method is characterized by its ability to independently control the Al content. According to XRD and XPS analyses, the HfO2:Al film had a structure similar to that of HfO2 film, and most of the Al atoms were not in the HfO2 crystalline. A small amount of Al3+ dopant could transform the hydrophobicity of HfO2 films into hydrophilicity. Moreover, the hydrophilicity of the HfO2:Al films improved as the ratio of O2/Ar pressure increased. The nonlinear refractive indices of HfO2 and HfO2:Al films deposited in a pure Ar or a mixed Ar-O2 atmosphere were measured by Moiré deflectometry, and were of the order of 10-8 cm2 W-1. A lower surface roughness, higher optical transmission in the UV-vis-NIR region, and higher linear refractive index were obtained at a higher ratio of O2/Ar pressure.

  8. Doping effect on the structural properties of Cu1-x(Ni, Zn, Al and Fe)xO samples (0

    NASA Astrophysics Data System (ADS)

    Amaral, J. B.; Araujo, R. M.; Pedra, P. P.; Meneses, C. T.; Duque, J. G. S.; dos S. Rezende, M. V.

    2016-09-01

    In this work, the effect of insertion of transition metal, TM (=Ni, Zn, Al and Fe), ions in Cu1-xTMxO samples (0doping, Ni and Zn-doped samples show a small amount of spurious phases for concentrations above x=0.05. Based on these results, a defect disorder study for using atomistic computational simulations which is based on the lattice energy minimization technique is employed to predict the location of the dopant ions in the structure. In agreement with XRD data, our computational results indicate that the trivalent (Al and Fe ions) are more favorable to be incorporated into CuO matrix than the divalent (Ni and Zn ions).

  9. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Gernjak, Wolfgang; Joll, Cynthia; Radjenovic, Jelena

    2012-11-15

    Electrochemical processes have been widely investigated for degrading organic contaminants present in wastewater. This study evaluated the performance of electrochemical oxidation using boron-doped diamond (BDD) electrodes by forming OH() for the treatment of reverse osmosis concentrate (ROC) from secondary-treated wastewater effluents. Since oxidation by OH() and active chlorine species (HClO/ClO(-)) is influenced by pH, the electrochemical oxidation of ROC was evaluated at controlled pH 6-7 and at pH 1-2 (no pH adjustment). A high concentration of chloride ions in the ROC enhanced the oxidation, and 7-11% of Coulombic efficiency for chemical oxygen demand (COD) removal was achieved with 5.2 Ah L(-1) of specific electrical charge. Complete COD removal was observed after 5.2 and 6.6 Ah L(-1), yet the corresponding dissolved organic carbon (DOC) removal was only 48% (at acidic pH) and 59% (at circumneutral pH). Although a higher operating pH seemed to enhance the participation of OH() in oxidation mechanisms, high concentrations of chloride resulted in the formation of significant concentrations of adsorbable organic chlorine (AOCl) after electrochemical oxidation at both pH. While adsorbable organic bromine (AOBr) was degraded at a higher applied electrical charge, a continuous increase in AOCl concentration (up to 0.88 mM) was observed until the end of the experiments (i.e. 10.9 Ah L(-1)). In addition, total trihalomethanes (tTHMs) and total haloacetic acids (tHAAs) were further degraded with an increase in electrical charge under both pH conditions, to final total concentrations of 1 and 4 μM (tTHMs), and 12 and 22 μM (tHAAs), at acidic and circumneutral pH, respectively. In particular, tHAAs were still an order of magnitude above their initial concentration in ROC after further electrooxidation. Where high chloride concentrations are present, it was found to be necessary to separate chloride from ROC prior to electrochemical oxidation in order to

  10. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Gernjak, Wolfgang; Joll, Cynthia; Radjenovic, Jelena

    2012-11-15

    Electrochemical processes have been widely investigated for degrading organic contaminants present in wastewater. This study evaluated the performance of electrochemical oxidation using boron-doped diamond (BDD) electrodes by forming OH() for the treatment of reverse osmosis concentrate (ROC) from secondary-treated wastewater effluents. Since oxidation by OH() and active chlorine species (HClO/ClO(-)) is influenced by pH, the electrochemical oxidation of ROC was evaluated at controlled pH 6-7 and at pH 1-2 (no pH adjustment). A high concentration of chloride ions in the ROC enhanced the oxidation, and 7-11% of Coulombic efficiency for chemical oxygen demand (COD) removal was achieved with 5.2 Ah L(-1) of specific electrical charge. Complete COD removal was observed after 5.2 and 6.6 Ah L(-1), yet the corresponding dissolved organic carbon (DOC) removal was only 48% (at acidic pH) and 59% (at circumneutral pH). Although a higher operating pH seemed to enhance the participation of OH() in oxidation mechanisms, high concentrations of chloride resulted in the formation of significant concentrations of adsorbable organic chlorine (AOCl) after electrochemical oxidation at both pH. While adsorbable organic bromine (AOBr) was degraded at a higher applied electrical charge, a continuous increase in AOCl concentration (up to 0.88 mM) was observed until the end of the experiments (i.e. 10.9 Ah L(-1)). In addition, total trihalomethanes (tTHMs) and total haloacetic acids (tHAAs) were further degraded with an increase in electrical charge under both pH conditions, to final total concentrations of 1 and 4 μM (tTHMs), and 12 and 22 μM (tHAAs), at acidic and circumneutral pH, respectively. In particular, tHAAs were still an order of magnitude above their initial concentration in ROC after further electrooxidation. Where high chloride concentrations are present, it was found to be necessary to separate chloride from ROC prior to electrochemical oxidation in order to

  11. Dopant concentration dependent optical and X-Ray induced photoluminescence in Eu3+ doped La2Zr2O7

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Brik, Mikhail; Mao, Yuanbing

    2015-03-01

    Herein, we will be presenting the dopant (Eu) concentration dependent high density La2Zr2O7 nanoparticles for optical and X-ray scintillation applications by use of X - ray diffraction, Raman, FTIR, scanning electron microscope (SEM), transmission electron microscopy (TEM), optically and X-ray excited photoluminescence (PL). Several theoretical methods have been used in order to investigate the structural, electronic, optical, elastic, dynamic properties of Eu doped La2Zr2O7. It is observed that Eu: La2Zr2O7 shows an intense red luminescence under 258, 322, 394 and 465 nm excitation. The optical intensity of Eu: La2Zr2O7 depends on the dopant concentration of Eu3+. Following high energy excitation with X-rays, Eu: La2Zr2O7 shows an atypical Eu PL response (scintillation) with a red emission. The intense color emission of Eu obtained under 258 nm excitation, the X-ray induced luminescence property along with reportedly high density of La2Zr2O7, makes these nanomaterials attractive for optical and X-ray applications. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  12. Ferromagnetism: Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism (Adv. Mater. 25/2016).

    PubMed

    Tuček, Jiří; Błoński, Piotr; Sofer, Zdeněk; Šimek, Petr; Petr, Martin; Pumera, Martin; Otyepka, Michal; Zbořil, Radek

    2016-07-01

    R. Zbořil and co-workers show that doping a graphene lattice with sulfur induces magnetic centers which display ferromagnetic order below ≈62 K. As described on page 5045, sulfur doping promotes magnetically active configurations resembling the gamma-thiothiapyrone motif. Enhanced magnetic properties of sulfur-doped graphene are attributed to two unpaired electrons from each sulfur atom injected into the graphene conducting band where they are delocalized between the S and C atoms. PMID:27372723

  13. Influence of low sputtering pressure on structural, electrical and optical properties of Al-doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Zengguang; Tang, Yang; Chen, Jingyun; Chen, Jie

    2016-08-01

    Aluminum-doped zinc oxide thin films were deposited without intentional heating by radio-frequency magnetron sputtering. The sputtering pressure varied from 0.02 Pa to 0.32 Pa while the deposition power was kept at 240 W for all depositions. The structural properties of as-deposited films were analyzed by X-ray diffraction and scanning electron microscopy, indicating that the deposited films have a strong preferred c-axis (002) orientation perpendicular to the substrate regardless of sputtering pressure. The minimum resistivity of 6.4×10-4 Ω cm is obtained at 0.05 Pa, which is mainly influenced by the hall mobility, rather than carrier concentration. The highest transmittance could be ~80% on average in the visible range under various working pressures, and the largest bandgap achieved is about 3.82 eV. The ultraviolet emission peaks in photoluminescence spectra are centered at about 360 nm. A new mechanism is proposed to explain the dependence of the electrical and optical properties on structural evolution of deposited films.

  14. Optical and scintillation properties of ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y)3(Ga,Al)5O12 scintillators using a combination strategy of pre-screening and scale-up. Ce-doped GdxY1-xGayAl5-yO12 (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd2Y1Ga2.7Al2.3O12:Ce powders. A (Gd2Y1)Ga2.7Al2.3O12 doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a <111> oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d-4f emission of Ce3+ is at 530 nm. The light yield of a Ce1%: Gd2Y1Ga2.7Al2.3O12 single crystal slab at a size of 5×5×1 mm3 can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under 137Cs source irradiation.

  15. Thermo-optical characteristics and concentration quenching effects in Nd3+ doped yttrium calcium borate glasses.

    PubMed

    Santos, D R S; Santos, C N; de Camargo, A S S; Silva, W F; Santos, W Q; Vermelho, M V D; Astrath, N G C; Malacarne, L C; Li, M S; Hernandes, A C; Ibanez, A; Jacinto, C

    2011-03-28

    In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd(2)O(3)-(5-x)Y(2)O(3-)40CaO-55B(2)O(3) (0 ≤ x ≤ 1.0 mol%). Their fluorescence quantum efficiency (η) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Förster-Dexter model of multipolar ion-ion interactions. A maximum η = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd(3+) content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of η on the Nd(3+) concentration with a high optimum Nd(3+) concentration put this system as a strong candidate for photonics applications. PMID:21456672

  16. Thermo-optical characteristics and concentration quenching effects in Nd3+ doped yttrium calcium borate glasses.

    PubMed

    Santos, D R S; Santos, C N; de Camargo, A S S; Silva, W F; Santos, W Q; Vermelho, M V D; Astrath, N G C; Malacarne, L C; Li, M S; Hernandes, A C; Ibanez, A; Jacinto, C

    2011-03-28

    In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd(2)O(3)-(5-x)Y(2)O(3-)40CaO-55B(2)O(3) (0 ≤ x ≤ 1.0 mol%). Their fluorescence quantum efficiency (η) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Förster-Dexter model of multipolar ion-ion interactions. A maximum η = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd(3+) content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of η on the Nd(3+) concentration with a high optimum Nd(3+) concentration put this system as a strong candidate for photonics applications.

  17. Thermo-optical characteristics and concentration quenching effects in Nd3+doped yttrium calcium borate glasses

    NASA Astrophysics Data System (ADS)

    Santos, D. R. S.; Santos, C. N.; de Camargo, A. S. S.; Silva, W. F.; Santos, W. Q.; Vermelho, M. V. D.; Astrath, N. G. C.; Malacarne, L. C.; Li, M. S.; Hernandes, A. C.; Ibanez, A.; Jacinto, C.

    2011-03-01

    In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd2O3-(5-x)Y2O3-40CaO-55B2O3 (0 ≤ x ≤ 1.0 mol%). Their fluorescence quantum efficiency (η) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Förster-Dexter model of multipolar ion-ion interactions. A maximum η = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd3+ content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of η on the Nd3+ concentration with a high optimum Nd3+ concentration put this system as a strong candidate for photonics applications.

  18. Growth and doping of Al{sub x}Ga{sub 1{minus}x}N deposited directly on {alpha}(6H)-SiC(0001) substrates via organometallic vapor phase epitaxy

    SciTech Connect

    Bremser, M.D.; Perry, W.G.; Edwards, N.V.; Zheleva, T.; Aspnes, D.E.; Davis, R.F.; Parikh, N.

    1996-11-01

    Monocrystalline Al{sub x}Ga{sub 1{minus}x}N(0001) (0.05 {le} x {le} 0.70) thin films, void of oriented domain structures and associated low-angle grain boundaries, have been grown at high temperatures via OMVPE directly on vicinal and on-axis {alpha}(6H)-SiC(0001) wafers using TEG, TEA and ammonia in a cold-wall, vertical, pancake-style reactor. The surface morphologies were smooth and the densities and distributions of dislocations were comparable to that observed in GaN(0001) films grown on high temperature AlN buffer layers. Double-crystal XRC measurements showed a FWHM value as low as 186 arc sec for the (0002) reflection. Spectra obtained via CL showed strong near band-edge emissions with FWHM values as low as 31 meV. The compositions of the Al{sub x}Ga{sub 1{minus}x}N films were determined using EDX, AES and RBS and compared to the values of the bandgap as measured by spectral ellipsometry and Cl emissions. A negative bowing parameter was found. Controlled n-type, Si-doping of Al{sub x}Ga{sub 1{minus}x}N for x {le} 0.4 has been achieved with net carrier concentrations ranging from {approx} 2 {times} 10{sup 17} cm{sup {minus}3} to 2 {times} 10{sup 19} cm{sup {minus}3}. Acceptor doping with Mg for x , 0.13 was also successful.

  19. N-doped carbon@Ni-Al2O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Qiu, Tian; Chen, Xu; Lu, Yanluo; Yang, Wensheng

    2015-10-01

    An NiAl-layered double-hydroxide (NiAl-LDH) nanosheet array is grown on a graphene oxide (GO) substrate (NiAl-LDH@GO) by the hydrothermal method. The NiAl-LDH@GO is used as the precursor to synthetize an N-doped carbon@Ni-Al2O3 nanosheet array@GO composite (N-C@Ni-Al2O3@GO) by coating with dopamine followed by calcination. The N-C@Ni-Al2O3@GO is used as a non-noble metal electrocatalyst for hydrogen evolution reaction in alkaline medium, and exhibits high electrocatalytic activity with low onset overpotential (-75 mV). The improved electrocatalytic performance of N-C@Ni-Al2O3@GO arises from its intrinsic features. First, it has a high specific surface area with the Ni nanoparticles in the composite dispersed well and the sizes of Ni nanoparticles are small, which lead to the exposure of more active sites for electrocatalysis. Second, there is a synergistic effect between the Ni nanoparticles and the N-C coating layer, which is beneficial to reduce the activation energy of the Volmer step and improve the electrocatalytic activity. Third, the N-C coating layer and the XC-72 additive can form an electrically conductive network, which serves as a bridge for the transfer of electrons from the electrode to the Ni nanoparticles.

  20. Erbium-doped aluminophosphosilicate optical fibres

    SciTech Connect

    Likhachev, M E; Bubnov, M M; Zotov, K V; Medvedkov, O I; Lipatov, D S; Yashkov, M V; Gur'yanov, Aleksei N

    2010-09-10

    We have studied the active properties of erbium-doped aluminophosphosilicate (APS) core fibres in wide ranges of erbia, alumina and phosphorus pentoxide concentrations. The absorption and luminescence spectra of the P{sub 2}O{sub 5}- or Al{sub 2}O{sub 3}-enriched erbium-doped APS fibres are shown to be similar to those of the erbium-doped fibres singly doped with phosphorus pentoxide or alumina, respectively. The formation of AlPO{sub 4} in APS fibres leads not only to a reduction in the refractive index of the glass but also to a marked increase in Er{sub 2}O{sub 3} solubility in silica. (optical fibres)

  1. Effect of internal stress on the electro-optical behaviour of Al-doped ZnO transparent conductive thin films

    NASA Astrophysics Data System (ADS)

    Proost, J.; Henry, F.; Tuyaerts, R.; Michotte, S.

    2016-08-01

    In this work, we will report on scientific efforts aimed at unraveling the quantitative effect of elastic strain on the electro-optical behaviour of Al-doped zinc oxide (AZO). AZO thin films have been deposited by reactive magnetron sputtering to thicknesses from 300 to 500 nm, both on extra-clear glass substrates as well as on oxidised Si wafers. This resulted in both cases in polycrystalline, strongly textured (002) films. During deposition, the internal stress evolution in the growing film was monitored in-situ using high resolution curvature measurements. The resulting growth-induced elastic strain, which was found to depend heavily on the oxygen partial pressure, could further be modulated by appropriately choosing the deposition temperature. The latter also induces an additional extrinsic thermal stress component, whose sign depends on the substrate used. As such, a wide range of biaxial internal stresses could be achieved, from -600 MPa in compression up to 800 MPa in tension. The resulting charge carrier mobilities, obtained independently from room temperature Hall measurements, were found to range between 5 and 25 cm2/V s. Interestingly, the maximum mobility occurred at the zero-stress condition, and together with a charge carrier concentration of about 8 × 1020 cm-3, this gave rise to a resistivity of only 300 μΩ cm. From the stress-dependent optical transmission spectra in the range of 200-1000 nm, the pressure coefficient of the optical bandgap was estimated from the corresponding Tauc plots to be 31 meV/GPa, indicating a very high strain-sensitivity as well.

  2. Plasma versus thermal annealing for the Au-catalyst growth of ZnO nanocones and nanowires on Al-doped ZnO buffer layers

    NASA Astrophysics Data System (ADS)

    Güell, Frank; Martínez-Alanis, Paulina R.; Roso, Sergio; Salas-Pérez, Carlos I.; García-Sánchez, Mario F.; Santana, Guillermo; Marel Monroy, B.

    2016-06-01

    We successfully synthesized ZnO nanocones and nanowires over polycrystalline Al-doped ZnO (AZO) buffer layers on fused silica substrates by a vapor-transport process using Au-catalyst thin films. Different Au film thicknesses were thermal or plasma annealed in order to analyze their influence on the ZnO nanostructure growth morphology. Striking differences have been observed. Thermal annealing generates a distribution of Au nanoclusters and plasma annealing induces a fragmentation of the Au thin films. While ZnO nanowires are found in the thermal-annealed samples, ZnO nanocones and nanowires have been obtained on the plasma-annealed samples. Enhancement of the preferred c-axis (0001) growth orientation was demonstrated by x-ray diffraction when the ZnO nanocones and nanowires have been grown over the AZO buffer layer. The transmittance spectra of the ZnO nanocones and nanowires show a gradual increase from 375 to 900 nm, and photoluminescence characterization pointed out high concentration of defects leading to observation of a broad emission band in the visible range from 420 to 800 nm. The maximum emission intensity peak position of the broad visible band is related to the thickness of the Au-catalyst for the thermal-annealed samples and to the plasma power for the plasma-annealed samples. Finally, we proposed a model for the plasma versus thermal annealing of the Au-catalyst for the growth of the ZnO nanocones and nanowires. These results are promising for renewable energy applications, in particular for its potential application in solar cells.

  3. Blue, yellow and orange color emitting rare earth doped BaCa2Al8O15 phosphors prepared by combustion method

    NASA Astrophysics Data System (ADS)

    Yerpude, A. N.; Dhoble, S. J.; Reddy, B. Sudhakar

    2014-12-01

    Eu2+, Dy3+, Sm3+ activated BaCa2Al8O15 phosphors were prepared by the combustion method. The phosphor powders were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and photoluminescence (PL) spectrophotometer. Photoluminescence spectra of BaCa2Al8O15:Eu2+ phosphors show emission wavelength at 435 nm that corresponds to 4f65d1→4f7 transition of Eu2+ ion by keeping excitation wavelength extending broad-band from 270 to 400 nm centered at 334 nm. The Dy3+ doped BaCa2Al8O15 phosphors shows blue emission (485 nm) and yellow emission (566 nm) under the excitation of 347 nm, corresponding to the 4F9/2→6H15/2 transition and 4F9/2→6H13/2 transition of Dy3+ ions, respectively. The Sm3+ doped BaCa2Al8O15 phosphors have shown strong orange emission at 604 nm corresponding to the 4G5/2→6H7/2 transition of Sm3+ with intense excitation wavelength at 406 nm. Scanning electron microscopy has been used for exploring the size and morphological properties of the prepared phosphors. The obtained results show that the phosphors have potential application in the field of solid state lighting.

  4. Stress Concentration and Fracture at Inter-variant Boundaries in an Al-Li Alloy

    NASA Technical Reports Server (NTRS)

    Crooks, Roy; Tayon, Wes; Domack, Marcia; Wagner, John; Beaudoin, Armand

    2009-01-01

    Delamination fracture has limited the use of lightweight Al-Li alloys. Studies of secondary, delamination cracks in alloy 2090, L-T fracture toughness samples showed grain boundary failure between variants of the brass texture component. Although the adjacent texture variants, designated B(sub s1) and B(sub s2), behave similarly during rolling, their plastic responses to mechanical tests can be quite different. EBSD data from through-thickness scans were used to generate Taylor factor maps. When a combined boundary normal and shear tensor was used in the calculation, the delaminating grains showed the greatest Taylor Factor differences of any grain pairs. Kernel Average Misorientation (KAM) maps also showed damage accumulation on one side of the interface. Both of these are consistent with poor slip accommodation from a crystallographically softer grain to a harder one. Transmission electron microscopy was used to confirm the EBSD observations and to show the role of slip bands in the development of large, interfacial stress concentrations. A viewgraph presentation accompanies the provided abstract.

  5. High pressure and time resolved studies of optical properties of n-type doped GaN/AlN multi-quantum wells: Experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Kaminska, A.; Jankowski, D.; Strak, P.; Korona, K. P.; Beeler, M.; Sakowski, K.; Grzanka, E.; Borysiuk, J.; Sobczak, K.; Monroy, E.; Krukowski, S.

    2016-09-01

    High-pressure and time-resolved studies of the optical emission from n-type doped GaN/AlN multi-quantum-wells (MQWs) with various well thicknesses are analysed in comparison with ab initio calculations of the electronic (band structure, density of states) and optical (emission energies and their pressure derivatives, oscillator strength) properties. The optical properties of GaN/AlN MQWs are strongly affected by quantum confinement and polarization-induced electric fields. Thus, the photoluminescence (PL) peak energy decreases by over 1 eV with quantum well (QW) thicknesses increasing from 1 to 6 nm. Furthermore, the respective PL decay times increased from about 1 ns up to 10 μs, due to the strong built-in electric field. It was also shown that the band gap pressure coefficients are significantly reduced in MQWs as compared to bulk AlN and GaN crystals. Such coefficients are strongly dependent on the geometric factors such as the thickness of the wells and barriers. The transition energies, their oscillator strength, and pressure dependence are modeled for tetragonally strained structures of the same geometry using a full tensorial representation of the strain in the MQWs under external pressure. These MQWs were simulated directly using density functional theory calculations, taking into account two different systems: the semi-insulating QWs and the n-doped QWs with the same charge density as in the experimental samples. Such an approach allowed an assessment of the impact of n-type doping on optical properties of GaN/AlN MQWs. We find a good agreement between these two approaches and between theory and experimental results. We can therefore confirm that the nonlinear effects induced by the tetragonal strain related to the lattice mismatch between the substrates and the polar MQWs are responsible for the drastic decrease of the pressure coefficients observed experimentally.

  6. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    NASA Astrophysics Data System (ADS)

    Hong, Seung Sae; Cha, Judy J.; Kong, Desheng; Cui, Yi

    2012-03-01

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×1011 cm-2. The zinc oxide-capped, antimony-doped Bi2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications.

  7. Crystal growth and VUV luminescence properties of Er 3+- and Tm 3+-doped LiCaAlF 6 for detectors

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Yanagida, Takayuki; Yokota, Yuui; Yamaji, Akihiro; Fujimoto, Yutaka; Pejchal, Jan; Chani, Valery I.; Kawaguchi, Noriaki; Ishizu, Sumito; Fukuda, Kentaro; Suyama, Toshihisa; Nikl, Martin

    2010-07-01

    Er- and Tm-doped LiCaAlF 6 (LiCAF) single crystals were grown by the micro-pulling-down (μ-PD) method. The crystals were transparent, 2.0 mm in diameter and 30-40 mm in length. Neither visible inclusions nor cracks were observed. Photoluminescence spectra of Er- and Tm-doped LiCAF were measured. Broad band emission due to the Tm 3+ and Er 3+ 5d-4f transitions dominated the spectrum at 163.5 and 165 nm respectively. These emissions had shortest wavelength among the fluoride crystal hosts ever reported at room temperature experiments. The vacuum ultraviolet (VUV) luminescent crystals are attractive as scintillators for radiation detectors, which employ photosensitive gases (such as TMAE or TEA) or photocathodes (such as CsI) sensitive mostly to VUV photons.

  8. Enhancement of optical properties of hydrothermally synthesized TiO{sub 2}/ZrO{sub 2} nanoparticles by Al, Ce Co-doping

    SciTech Connect

    Tomar, Laxmi J.; Bhatt, Piyush J. Desai, Rahul K.; Chakrabarty, Bishwajit S.

    2015-06-24

    Al, Ce co-doped TiO{sub 2}/ZrO{sub 2} (TZ) nano composites have been prepared by hydrothermal method. The structural and optical properties of the obtained samples were investigated by X –ray diffraction (XRD) and UV-Visible spectroscopy respectively. It has been found that the crystallite size of all the samples was distributed in the range 9.19 to 17.41 nm. The content of anatase phase varied in the range 48.71 to 100% depending on doping. The dopant produced lattice strain in material and it was found between 0.027 - 0.069. A clear shift of absorption edge for different dopant has been observed from UV-Visible absorption spectra. The change in optical bandgap, refractive index, absorption co efficient and optical conductivity was also evaluated from absorption spectra.

  9. Effects of ICG concentration and particle diameter on photophysical properties of ICG-doped nanoparticles

    NASA Astrophysics Data System (ADS)

    Crovisier, Jason; Bahmani, Baharak; Saleh, Reema; Vullev, Valentine; Anvari, Bahman

    2014-03-01

    The variety of nanoparticles developed by numerous investigators has presented a diverse platform for various optical imaging applications in biomedicine. We have previously reported that the FDA-approved chromophore Indocyanine Green (ICG) can be successfully encapsulated by cross-linked poly-allylamine hydrochloride (PAH)-Disodium Monophosphate (Na2HPO4) to form a nanoparticle for near-infrared imaging applications. The diameter of the constructs is dependent on the charge ratio between the polymer and salt used to encapsulate the chromophore. Modifications of the synthesis methods can alter the photophysical properties of the capsules, either through the adjustment of the charge ratio between PAH and Na2HPO4 or concentration of ICG successfully impregnated into the capsule. Through understanding the effects of tuning the nanoparticle properties, the photophysical characteristics of the constructs can be optimized. Here we present the results of adjusting the diameter of the nanoparticle and amount of ICG on the hydrodynamic diameters, absorption and fluorescence characteristics, and the relative fluorescence quantum yield. Optimizing the photophysical properties of the constructs can lead to increased imaging sensitivity and contrast for potential translational applications, including tumor imaging, which may utilize these nanoconstructs.

  10. Hall Effect Studies of AlGaAs Grown by Liquid-Phase Epitaxy for Tandem Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Montgomery, Kyle H.; Woodall, Jerry M.

    2014-11-01

    We report results from Hall effect studies on Al x Ga1- x As ( x = 0.23-0.24) with bandgap energies of 1.76 ± 0.01 eV grown by liquid-phase epitaxy (LPE). Room-temperature Hall measurements on unintentionally doped AlGaAs revealed p-type background doping for concentrations in the range 3.7-5.2 × 1016 cm-3. Sn, Te, Ge, and Zn-doped AlGaAs were also characterized to study the relationship between doping concentrations and the atomic fractions of the dopants in the melt. Temperature-dependent Hall measurements were performed to determine the activation energies of the four dopants. Deep donor levels (DX centers) were dominant for Sn-doped Al0.24Ga0.76As, but not for Te-doped Al0.24Ga0.76As. Comparison of the temperature-dependent Hall effect results for unintentionally and intentionally doped Al0.24Ga0.76As indicated that the impurity contributing to the p-type background doping had the same activation energy as Mg. We thus suggest a Te-doped emitter and an undoped or Ge-doped base to maximize the efficiency of Al x Ga1- x As ( x ˜ 0.23) solar cells grown by LPE.

  11. Luminescence, lifetime, and quantum yield studies of redispersible Eu3+-doped GdPO4 crystalline nanoneedles: Core-shell and concentration effects

    NASA Astrophysics Data System (ADS)

    Yaiphaba, N.; Ningthoujam, R. S.; Singh, N. Shanta; Vatsa, R. K.; Singh, N. Rajmuhon; Dhara, Sangita; Misra, N. L.; Tewari, R.

    2010-02-01

    Crystalline nanoneedles of Eu3+-doped GdPO4 and Eu3+-doped GdPO4 covered with GdPO4 shell (core shell) have been prepared at relatively low temperature of 150 °C in ethylene glycol medium. From luminescence study, asymmetric ratio of Eu3+ emission at 612 nm (electric dipole transition) to 592 nm (magnetic dipole transition) is found to be less than one. Maximum luminescence was observed from the nanoparticles with Eu3+ concentration of 5 at. %. For a fixed concentration of Eu3+ doping, there is an improvement in emission intensity for core-shell nanoparticles compared to that for core. This has been attributed to effective removal of surface inhomogeneities around Eu3+ ions present on the surface of core as well as the passivation of inevitable surface states, defects or capping ligand (ethylene glycol) of core nanoparticles by bonding to the shell. Lifetime for D50 level of Eu3+ was found to increase three times for core-shell nanoparticles compared to that for core confirming the more Eu3+ ions with symmetry environment in core shell. For 5 at. % Eu3+-doped GdPO4, quantum yield of 19% is obtained. These nanoparticles are redispersible in water, ethanol, or chloroform and thus will be useful in biological labeling. The dispersed particles are incorporated in polymer-based films that will be useful in display devices.

  12. Gating versus doping: Quality parameters of two-dimensional electron systems in undoped and doped GaAs/AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Peters, S.; Tiemann, L.; Reichl, C.; Wegscheider, W.

    2016-07-01

    We present an experimental study of the scattering mechanisms in a two-dimensional electron system which is either fully induced by the field effect or resulting from remote doping. The quality criteria—the electron mobility, the quantum scattering time, and the number and development of certain fractional quantum Hall states—are analyzed and compared. By eliminating the scattering off remote ionized impurities (RI) in undoped systems, we can identify the density regimes most susceptible to RI scattering and their impact on the formation of fractional quantum Hall states.

  13. Design and operation of an aluminium alloy tank using doped Na3AlH6 in kg scale for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Urbanczyk, R.; Peinecke, K.; Meggouh, M.; Minne, P.; Peil, S.; Bathen, D.; Felderhoff, M.

    2016-08-01

    In this publication the authors present an aluminium alloy tank for hydrogen storage using 1921 g of Na3AlH6 doped with 4 mol% of TiCl3 and 8 mol% of activated carbon. The tank and the heat exchangers are manufactured by extrusion moulding of Al-Mg-Si based alloys. EN AW 6082 T6 alloy is used for the tank and a specifically developed alloy with a composition similar to EN AW 6060 T6 is used for the heat exchangers. The three heat exchangers have a corrugated profile to enhance the surface area for heat transfer. The doped complex hydride Na3AlH6 is densified to a powder density of 0.62 g cm-3. The hydrogenation experiments are carried out at 2.5 MPa. During one of the dehydrogenation experiments approximately 38 g of hydrogen is released, accounting for gravimetric hydrogen density of 2.0 mass-%. With this tank 15 hydrogenation and 16 dehydrogenation tests are carried out.

  14. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    SciTech Connect

    Zheng, M.; He, Y.R.; Rapp, R.A.

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  15. Effects of gamma-irradiation and air annealing on Yb-doped Y3Al5O12 single crystal.

    PubMed

    Zeng, Xionghui; Xu, Xiaodong; Wang, Xiaodan; Zhao, Zhiwei; Zhao, Guangjun; Xu, Jun

    2008-03-01

    The effects of gamma-irradiation on the air-annealed 10at.% Yb:Y(3)Al(5)O(12) (YAG) and air annealing on the gamma-irradiated 10at.% Yb:YAG have been studied by the difference absorption spectra before and after treatment. The gamma-irradiation and air annealing led to opposite changes of the absorption properties of the Yb:YAG crystal. After air annealing, the gamma-irradiation induced centers were totally removed and the concentration of Fe(3+) and Yb(3+) were lightly increased. For the first time, the gamma-irradiation induced valence changes between Yb(3+) and Yb(2+) ions in Yb:YAG crystals have been observed.

  16. High hole concentration Li-doped NiZnO thin films grown by photo-assisted metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Y. D.; Dong, X.; Ma, Z. Z.; Zhang, Y. T.; Wu, B.; Zhuang, S. W.; Zhang, B. L.; Li, W. C.; Du, G. T.

    2016-11-01

    High hole concentration Li-doped NiZnO thin films were grown by metal-organic chemical vapor deposition (MOCVD). The crystalline, optical, electrical, and morphological characteristics of the NiZnO films were studied as a function of lithium content. The resistance of the films decreased and the hole concentration greatly increased with increasing lithium content. However, the crystalline and optical properties were observed to degrade as the lithium content was increased. To relieve the degradation, a photo-assisted MOCVD method was used in order to restrict this degradation and this represents a new way to obtain stable high hole concentration NiZnO films.

  17. Enhanced separation efficiency of photoinduced charges for antimony-doped tin oxide (Sb-SnO{sub 2})/TiO{sub 2} heterojunction semiconductors with varied Sb doping concentration

    SciTech Connect

    Zhang, Zhen-Long; Ma, Wen-Hai; Mao, Yan-Li

    2014-09-07

    In this paper, antimony-doped tin oxide (Sb-SnO{sub 2}) nanoparticles were synthesized with varied Sb doping concentration, and the Sb-SnO{sub 2}/TiO{sub 2} heterojunction semiconductors were prepared with Sb-SnO{sub 2} and TiO{sub 2}. The separation efficiency of photoinduced charges was characterized with surface photovoltage (SPV) technique. Compared with Sb-SnO{sub 2} and TiO{sub 2}, Sb-SnO{sub 2}/TiO{sub 2} presents an enhanced separation efficiency of photoinduced charges, and the SPV enhancements were estimated to be 1.40, 1.43, and 1.99 for Sb-SnO{sub 2}/TiO{sub 2} composed of Sb-SnO{sub 2} with the Sb doping concentration of 5%, 10%, and 15%, respectively. To understand the enhancement, the band structure of Sb-SnO{sub 2} and TiO{sub 2} in the heterojunction semiconductor was determined, and the conduction band offsets (CBO) between Sb-SnO{sub 2} and TiO{sub 2} were estimated to be 0.56, 0.64, and 0.98 eV for Sb-SnO{sub 2}/TiO{sub 2} composed of Sb-SnO{sub 2} with the Sb doping concentration of 5%, 10%, and 15%, respectively. These results indicate that the separation efficiency enhancement is resulting from the energy level matching, and the increase of enhancement is due to the rising of CBO.

  18. Growth and Magneto-transport Characterization of Double-doped InGaAs/InAlAs Heterostructures with High Indium Compositions

    SciTech Connect

    Akabori, M.; Morimoto, K.; Wei, W.; Iwase, H.; Yamada, S.

    2011-12-23

    We investigated double-doped InGaAs/InAlAs heterostructures with high indium compositions. The heterostructures were grown by molecular beam epitaxy on GaAs(001) with metamorphic step-graded buffer layers. The magneto-transport characterization was performed by using Hall-bar devices. We observed non-monotonic magneto-resistance oscillations, which indicate a single two-dimensional electron gas (2DEG) with multiple-subband occupation or a 2DEG bilayer. We also observed weak-antilocalization in all samples, which is an evidence of spin-orbit coupling.

  19. Internal energy transfer phenomenon and light-emission properties of γ-LiAlO2 phosphor doped with Mn2+

    NASA Astrophysics Data System (ADS)

    Wang, Bai-Bin; Chang, Chi-Fen; Yang, Wein-Duo

    2013-07-01

    γ-LiAlO2:Mn2+ phosphor was synthesized using the cellulose-citric acid sol-gel method, and its light emission and energy transfer properties were investigated. Excitation and emission spectrum analysis revealed a decrease in intensity of the spectrum as the amount of Mn2+ doping increased. Blasse's equation determined the maximum distance for energy transfer between Mn2+ ions as 4.3142 nm. Dexter's theory verifies that the mechanism of energy transfer between Mn2+ ions conforms to an electric dipole and electric quadrupole interaction.

  20. Scattering analysis of 2DEG mobility in undoped and doped AlGaN/AlN/GaN heterostructures with an in situ Si3N4 passivation layer

    NASA Astrophysics Data System (ADS)

    Atmaca, G.; Ardali, S.; Tiras, E.; Malin, T.; Mansurov, V. G.; Zhuravlev, K. S.; Lisesivdin, S. B.

    2016-04-01

    The scattering mechanisms limiting mobility for low-dimensional charge carriers in a two-dimensional electron gas (2DEG) in undoped and doped AlGaN/AlN/GaN heterostructures with and without Si3N4 passivation are investigated. Hall effect measurements were carried out at temperatures from 1.8 K to 262 K and at a fixed magnetic field of 1 T. A good consistency was found between the calculated and the experimental results. The effects of in situ Si3N4 passivation on the 2DEG mobility are also discussed with majority scattering mechanisms. Interface-related parameters including quantum well width, deformation potential constant and correlation length of interface roughness were obtained from the fits of the analytical expressions of scattering mechanisms and compared for each heterostructure. After in situ Si3N4 passivation, we found that the effect of the interface roughness scattering, which was the dominant scattering mechanism at low temperatures, on the 2DEG mobility was more effective in undoped and doped AlGaN/GaN heterostructures.