Sample records for al earth planet

  1. An Earth-sized planet with an Earth-like density.

    PubMed

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  2. How Do Earth-Sized, Short-Period Planets Form?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    Matching theory to observation often requires creative detective work. In a new study, scientists have used a clever test to reveal clues about the birth of speedy, Earth-sized planets.Former Hot Jupiters?Artists impression of a hot Jupiter with an evaporating atmosphere. [NASA/Ames/JPL-Caltech]Among the many different types of exoplanets weve observed, one unusual category is that of ultra-short-period planets. These roughly Earth-sized planets speed around their host stars at incredible rates, with periods of less than a day.How do planets in this odd category form? One popular theory is that they were previously hot Jupiters, especially massive gas giants orbiting very close to their host stars. The close orbit caused the planets atmospheres to be stripped away, leaving behind only their dense cores.In a new study, a team of astronomers led by Joshua Winn (Princeton University) has found a clever way to test this theory.Planetary radius vs. orbital period for the authors three statistical samples (colored markers) and the broader sample of stars in the California Kepler Survey. [Winn et al. 2017]Testing MetallicitiesStars hosting hot Jupiters have an interesting quirk: they typically have metallicities that are significantly higher than an average planet-hosting star. It is speculated that this is because planets are born from the same materials as their host stars, and hot Jupiters require the presence of more metals to be able to form.Regardless of the cause of this trend, if ultra-short-period planets are in fact the solid cores of former hot Jupiters, then the two categories of planets should have hosts with the same metallicity distributions. The ultra-short-period-planet hosts should therefore also be weighted to higher metallicities than average planet-hosting stars.To test this, the authors make spectroscopic measurements and gather data for a sample of stellar hosts split into three categories:64 ultra-short-period planets (orbital period shorter than a

  3. Earth-class Planets Line Up

    NASA Image and Video Library

    2011-12-20

    This chart compares the first Earth-size planets found around a sun-like star to planets in our own solar system, Earth and Venus. NASA Kepler mission discovered the newfound planets, called Kepler-20e and Kepler-20f.

  4. Selections from 2017: Atmosphere Around an Earth-Like Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Detection of the Atmosphere of the 1.6 M Exoplanet GJ 1132 bPublished March2017Main takeaway:An atmosphere was detected around the roughly Earth-size exoplanet GJ 1132 b using a telescope at the European Southern Observatory in Chile. A team of scientists led byJohn Southworth (Keele University) found features indicating the presence of an atmosphere in theobservationsof this 1.6-Earth-mass planet as it transits an M-dwarf host star. This is the lowest-mass planet with a detected atmosphere thus far.Why its interesting:M dwarfs are among the most common stars in our galaxy, and weve found manyEarth-sizeexoplanets in or near the habitable zones around M-dwarf hosts. But M dwarfs are also more magnetically active than stars like our Sun, suggesting that the planets in M-dwarfhabitable zones may not be able to support life due to stellar activity eroding their atmospheres. The detection of an atmosphere around GJ 1132 b suggests that some planets orbiting M dwarfsare able to retain their atmospheres which meansthat these planetsmay be an interesting place to search for life after all.How the atmosphere was detected:The measured planetary radius for GJ 1132 b as a function of the wavelength used to observe it. [Southworth et al. 2017]When measuring the radius of GJ 1132 b based on its transits, the authors noticed that the planet appeared to be largerwhen observed in some wavelengths than in others. This can beexplained if the planet has asurface radius of 1.4 Earth radii, overlaid by an atmosphere that extends out another few tenths of an Earth radius. The atmosphere, which may consist of water vapor or methane, is transparent to some wavelengths and absorbs others which is why the apparent size of the planet changes

  5. Microlensing Discovery of an Earth-Mass Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    . The peak in the curve in (a) shows the main microlensing by the lens star. An additional blip just after the peak, shown in detail in inset (b), shows the additional lensing by the planet. [Shvartzvald et al. 2017]A team of scientists led by Yossi Shvartzvald (NASA Postdoctoral Fellow at the Jet Propulsion Laboratory) have now presented the discovery of planet OGLE-2016-BLG-1195Lb, which was made using both ground-based (the Korea Microlensing Telescope Network) and space-based (Spitzer) observations of a microlensing event. The combination of these observations allowed the team to determine a number of properties of the system.The teams models indicate that the host is a 0.072 solar-mass ( 74 Jupiter-mass) star, which if it has the same metallicity as the Sun likely lies just below the hydrogen-burning mass limit. A 1.3 Earth-mass planet is orbiting it at a projected separation of 1.11 AU. The system lies in the galactic disk, roughly 13,700 light-years away.Looking to the FutureThis discovery confirms that the protoplanetary disks of ultracool dwarfs do, in fact, contain enough mass to form terrestrial planets. In addition, the find represents a remarkable technical achievement. OGLE-2016-BLG-1195Lb is the lowest-mass planet ever detected using gravitational microlensing, which bodeswell for continued and future microlensing campaigns with high cadences and high detection sensitivity. With luck well soon be able to expand our sample of planets discovered around these unusual hosts, allowing us to build statistics and better understand how and where these planets form.CitationY. Shvartzvald et al 2017 ApJL 840 L3. doi:10.3847/2041-8213/aa6d09

  6. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Jacobsen, S. B.; Sasselov, D. D.

    2015-12-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called "late veneer". The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars' elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  7. Remote Sensing Data Analytics for Planetary Science with PlanetServer/EarthServer

    NASA Astrophysics Data System (ADS)

    Rossi, Angelo Pio; Figuera, Ramiro Marco; Flahaut, Jessica; Martinot, Melissa; Misev, Dimitar; Baumann, Peter; Pham Huu, Bang; Besse, Sebastien

    2016-04-01

    Planetary Science datasets, beyond the change in the last two decades from physical volumes to internet-accessible archives, still face the problem of large-scale processing and analytics (e.g. Rossi et al., 2014, Gaddis and Hare, 2015). PlanetServer, the Planetary Science Data Service of the EC-funded EarthServer-2 project (#654367) tackles the planetary Big Data analytics problem with an array database approach (Baumann et al., 2014). It is developed to serve a large amount of calibrated, map-projected planetary data online, mainly through Open Geospatial Consortium (OGC) Web Coverage Processing Service (WCPS) (e.g. Rossi et al., 2014; Oosthoek et al., 2013; Cantini et al., 2014). The focus of the H2020 evolution of PlanetServer is still on complex multidimensional data, particularly hyperspectral imaging and topographic cubes and imagery. In addition to hyperspectral and topographic from Mars (Rossi et al., 2014), the use of WCPS is applied to diverse datasets on the Moon, as well as Mercury. Other Solar System Bodies are going to be progressively available. Derived parameters such as summary products and indices can be produced through WCPS queries, as well as derived imagery colour combination products, dynamically generated and accessed also through OGC Web Coverage Service (WCS). Scientific questions translated into queries can be posed to a large number of individual coverages (data products), locally, regionally or globally. The new PlanetServer system uses the the Open Source Nasa WorldWind (e.g. Hogan, 2011) virtual globe as visualisation engine, and the array database Rasdaman Community Edition as core server component. Analytical tools and client components of relevance for multiple communities and disciplines are shared across service such as the Earth Observation and Marine Data Services of EarthServer. The Planetary Science Data Service of EarthServer is accessible on http://planetserver.eu. All its code base is going to be available on GitHub, on

  8. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Jacobsen, Stein; Sasselov, Dimitar D.

    2015-01-01

    We propose to use evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called 'late veneer'. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. We plan to build an integrative model of Earth-like planets from the bottom up. We would like to infer their chemical compositions from their mass-radius relations and their host stars' elemental abundances, and understand the origins of volatile contents (especially water) on their surfaces, and thereby shed light on the origins of life on them.

  9. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-08

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  10. PlanetServer/EarthServer: Big Data analytics in Planetary Science

    NASA Astrophysics Data System (ADS)

    Pio Rossi, Angelo; Oosthoek, Jelmer; Baumann, Peter; Beccati, Alan; Cantini, Federico; Misev, Dimitar; Orosei, Roberto; Flahaut, Jessica; Campalani, Piero; Unnithan, Vikram

    2014-05-01

    Planetary data are freely available on PDS/PSA archives and alike (e.g. Heather et al., 2013). Their exploitation by the community is somewhat limited by the variable availability of calibrated/higher level datasets. An additional complexity of these multi-experiment, multi-mission datasets is related to the heterogeneity of data themselves, rather than their volume. Orbital - so far - data are best suited for an inclusion in array databases (Baumann et al., 1994). Most lander- or rover-based remote sensing experiment (and possibly, in-situ as well) are suitable for similar approaches, although the complexity of coordinate reference systems (CRS) is higher in the latter case. PlanetServer, the Planetary Service of the EC FP7 e-infrastructure project EarthServer (http://earthserver.eu) is a state-of-art online data exploration and analysis system based on the Open Geospatial Consortium (OGC) standards for Mars orbital data. It provides access to topographic, panchromatic, multispectral and hyperspectral calibrated data. While its core focus has been on hyperspectral data analysis through the OGC Web Coverage Processing Service (Oosthoek et al., 2013; Rossi et al., 2013), the Service progressively expanded to host also sounding radar data (Cantini et al., this volume). Additionally, both single swath and mosaicked imagery and topographic data are being added to the Service, deriving from the HRSC experiment (e.g. Jaumann et al., 2007; Gwinner et al., 2009) The current Mars-centric focus can be extended to other planetary bodies and most components are general purpose ones, making possible its application to the Moon, Mercury or alike. The Planetary Service of EarthServer is accessible on http://www.planetserver.eu References: Baumann, P. (1994) VLDB J. 4 (3), 401-444, Special Issue on Spatial Database Systems. Cantini, F. et al. (2014) Geophys. Res. Abs., Vol. 16, #EGU2014-3784, this volume Heather, D., et al.(2013) EuroPlanet Sci. Congr. #EPSC2013-626 Gwinner, K

  11. Prevalence of Earth-size planets orbiting Sun-like stars.

    PubMed

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.

  12. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Sasselov, Dimitar; Jacobsen, Stein

    2015-08-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet’s rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called “late veneer”. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet’s surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars’ elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  13. Prevalence of Earth-size planets orbiting Sun-like stars

    PubMed Central

    Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.

    2013-01-01

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration’s Kepler mission. We found 603 planets, including 10 that are Earth size () and receive comparable levels of stellar energy to that of Earth (). We account for Kepler’s imperfect detectability of such planets by injecting synthetic planet–caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ∼200 d. Extrapolating, one finds % of Sun-like stars harbor an Earth-size planet with orbital periods of 200–400 d. PMID:24191033

  14. The Earth: A Changing Planet

    NASA Astrophysics Data System (ADS)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    text: We describe a didactic unit that rises from our own living impression about our experience on the planet. Most of us feel the Earth to be a very static place. Rocks don't easily move and most landscapes always look the same over time. Anyone would say (the same way most scientists believed until the beginning of the last century) that our planet has always remained unchanged, never transformed. But then, all of a sudden, as a misfortune for so many humans, natural hazards appear on the scene: an earthquake causing so many disasters, a tsunami carrying away everything in its path, an eruption that can destroy huge surrounding areas but also bring new geographical relief. Science cannot remain oblivious to these events, we must wonder beyond. What does an earthquake mean? Why does it happen? What about an eruption? If it comes from the inside, what can we guess from it? Researching about all of these events, scientists have been able to arrive to some important knowledge of the planet itself: It has been possible to theorize about Earth's interior. It has also been confirmed that the planet has not always been the quiet and stable place we once thought. Continents, as Wegener supposed, do move about and the Tectonic Plates Theory, thanks to the information obtained through earthquakes and eruption, can provide some interesting explanations. But how do we know about our planet's past? How can we prove that the Earth has always been moving and that its surface changes? The Earth's rocks yield the answer. Rocks have been the only witnesses throughout millions of years, since the planet first came to existence. Let's learn how to read them… Shouldn't we realize that rocks are to Geology what books are to History? This discursive process has been distributed in four learning sequences: 1. Land is not as solid nor firm as it would seem, 2. The Earth planet: a puzzle, 3. The rocks also recycle , 4. Field trip to "Sant Miquel del Fai". The subjects take about 30

  15. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2003-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  16. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2002-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  17. Two Earth-sized planets orbiting Kepler-20.

    PubMed

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  18. K2 Finds Earth-Sized Planets Artist Concept

    NASA Image and Video Library

    2016-07-18

    This artist's concept shows NASA's Kepler Space Telescope on its K2 mission. In July 2016, an international team of astronomers announced they had discovered more than 100 new planets using this telescope. The batch includes four planets in the size range of Earth that are orbiting a single dwarf star, depicted in this illustration. Two of these planets are too hot to support life as we know it, but two are in the star's "habitable" zone, where liquid water could exist on the surface. These small, rocky worlds are far closer to their star than Mercury is to our sun. But because the star is smaller and cooler than ours, its habitable zone is much closer. One of the two planets in the habitable zone, K2-72c, has a "year" about 15 Earth-days long -- the time it takes to complete one orbit. This closer planet is likely about 10 percent warmer than Earth. The slightly more distant planet in the habitable zone, K2-72e, has a year lasting 24 Earth days, and would be about 6 percent colder than Earth. http://photojournal.jpl.nasa.gov/catalog/PIA20698

  19. A septet of Earth-sized planets

    NASA Astrophysics Data System (ADS)

    Triaud, Amaury; SPECULOOS Team; TRAPPIST-1 Team

    2017-10-01

    Understanding the astronomical requirements for life to emerge, and to persist, on a planet is one of the most important and exciting scientific endeavours, yet without empirical answers. To resolve this, multiple planets whose sizes and surface temperatures are similar to the Earth, need to be discovered. Those planets also need to possess properties enabling detailed atmospheric characterisation with forthcoming facilities, from which chemical traces produced by biological activity can in principle be identified.I will describe a dedicated search for such planets called SPECULOOS. Our first detection is the TRAPPIST-1 system. Intensive ground-based and space-based observations have revealed that at least seven planets populate this system. We measured their radii and obtained first estimates of their masses thanks to transit-timing variations. I will describe our on-going observational efforts aiming to reduce our uncertainties on the planet properties. The incident flux on the planets ranges from Mercury to Ceres, comprising the Earth, and permitting climatic comparisons between each of those worlds such as is not possible within our Solar system. All seven planets have the potential to harbour liquid water on at least a fraction of their surfaces, given some atmospheric and geological conditions.

  20. Climate stability of habitable Earth-like planets

    NASA Astrophysics Data System (ADS)

    Menou, Kristen

    2015-11-01

    The carbon-silicate cycle regulates the atmospheric CO2 content of terrestrial planets on geological timescales through a balance between the rates of CO2 volcanic outgassing and planetary intake from rock weathering. It is thought to act as an efficient climatic thermostat on Earth and, by extension, on other habitable planets. If, however, the weathering rate increases with the atmospheric CO2 content, as expected on planets lacking land vascular plants, the carbon-silicate cycle feedback can become severely limited. Here we show that Earth-like planets receiving less sunlight than current Earth may no longer possess a stable warm climate but instead repeatedly cycle between unstable glaciated and deglaciated climatic states. This has implications for the search for life on exoplanets in the habitable zone of nearby stars.

  1. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Huntress, Wesley T.

    1990-01-01

    The rationale behind Mission to Planet Earth is presented, and the program plan is described in detail. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to collect muultidisciplinary data. A sophisticated data system will process and archive an unprecedented large amount of information about the earth and how it functions as a system. Attention is given to the space observatories, the data and information systems, and the interdisciplinary research.

  2. An Earth-mass planet orbiting α Centauri B.

    PubMed

    Dumusque, Xavier; Pepe, Francesco; Lovis, Christophe; Ségransan, Damien; Sahlmann, Johannes; Benz, Willy; Bouchy, François; Mayor, Michel; Queloz, Didier; Santos, Nuno; Udry, Stéphane

    2012-11-08

    Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance).

  3. Terrestrial planet formation in the presence of migrating super-Earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izidoro, André; Morbidelli, Alessandro; Raymond, Sean N., E-mail: izidoro.costa@gmail.com, E-mail: morbidelli@oca.eu, E-mail: rayray.sean@gmail.com

    Super-Earths with orbital periods less than 100 days are extremely abundant around Sun-like stars. It is unlikely that these planets formed at their current locations. Rather, they likely formed at large distances from the star and subsequently migrated inward. Here we use N-body simulations to study the effect of super-Earths on the accretion of rocky planets. In our simulations, one or more super-Earths migrate inward through a disk of planetary embryos and planetesimals embedded in a gaseous disk. We tested a wide range of migration speeds and configurations. Fast-migrating super-Earths (τ{sub mig} ∼ 0.01-0.1 Myr) only have a modest effectmore » on the protoplanetary embryos and planetesimals. Sufficient material survives to form rocky, Earth-like planets on orbits exterior to the super-Earths'. In contrast, slowly migrating super-Earths shepherd rocky material interior to their orbits and strongly deplete the terrestrial planet-forming zone. In this situation any Earth-sized planets in the habitable zone are extremely volatile-rich and are therefore probably not Earth-like.« less

  4. Biosignatures from Earth-like planets around M dwarfs.

    PubMed

    Segura, Antígona; Kasting, James F; Meadows, Victoria; Cohen, Martin; Scalo, John; Crisp, David; Butler, Rebecca A H; Tinetti, Giovanna

    2005-12-01

    Coupled one-dimensional photochemical-climate calculations have been performed for hypothetical Earth-like planets around M dwarfs. Visible/near-infrared and thermal-infrared synthetic spectra of these planets were generated to determine which biosignature gases might be observed by a future, space-based telescope. Our star sample included two observed active M dwarfs-AD Leo and GJ 643-and three quiescent model stars. The spectral distribution of these stars in the ultraviolet generates a different photochemistry on these planets. As a result, the biogenic gases CH4, N2O, and CH3Cl have substantially longer lifetimes and higher mixing ratios than on Earth, making them potentially observable by space-based telescopes. On the active M-star planets, an ozone layer similar to Earth's was developed that resulted in a spectroscopic signature comparable to the terrestrial one. The simultaneous detection of O2 (or O3) and a reduced gas in a planet's atmosphere has been suggested as strong evidence for life. Planets circling M stars may be good locations to search for such evidence.

  5. From Extrasolar Planets to Exo-Earths

    NASA Astrophysics Data System (ADS)

    Fischer, Debra

    2018-06-01

    The ancient Greeks debated whether the Earth was unique, or innumerable worlds existed around other Suns. Twenty five years ago, technology and human ingenuity enabled the discovery of the first extrasolar planet candidates. The architectures of these first systems, with gas giant planets in star-skirting orbits, were unexpected and again raised an echo of that ancient question: is the Earth typical or unique? We are interested in this seemingly anthropocentric question because with all of our searching and discoveries, Earth is the only place where life has been found. It is the question of whether life exists elsewhere that energizes the search for exoplanets. The trajectory of this field has been stunning. After a steady stream of detections with the radial velocity method, a burst of discovery was made possible with the NASA Kepler mission. While thousands of smaller planets have now been found, true Earth analogs have eluded robust detection. However, we are sharpening the knives of our technology and without a doubt we now stand at the threshold of detecting hundreds of Earth analogs. Using Gaia, TESS, WFIRST, JWST and new ground-based spectrographs, we will learn the names and addresses of the worlds that orbit nearby stars and we will be ready to probe their atmospheres. We will finally resolve the ancient question of whether life is unique or common.

  6. Early Hydrodynamic Escape Limits Rocky Planets to Less Than or Equal to 1.6 Earth Radii

    NASA Technical Reports Server (NTRS)

    Lehmer, O. R.; Catling, D. C.

    2017-01-01

    In the past decade thousands of exoplanet candidates and hundreds of confirmed exoplanets have been found. For sub-Neptune-sized planets, those less than approx. 10 Earth masses, we can separate planets into two broad categories: predominantly rocky planets, and gaseous planets with thick volatile sheaths. Observations and subsequent analysis of these planets show that rocky planets are only found with radii less than approx. 1.6 Earth radii. No rocky planet has yet been found that violates this limit. We propose that hydrodynamic escape of hydrogen rich protoatmospheres, accreted by forming planets, explains the limit in rocky planet size. Following the hydrodynamic escape model employed by Luger et al. (2015), we modelled the XUV driven escape from young planets (less than approx.100 Myr in age) around a Sun-like star. With a simple, first-order model we found that the rocky planet radii limit occurs consistently at approx. 1.6 Earth radii across a wide range of plausible parameter spaces. Our model shows that hydrodynamic escape can explain the observed cutoff between rocky and gaseous planets. Fig. 1 shows the results of our model for rocky planets between 0.5 and 10 Earth masses that accrete 3 wt. % H2/He during formation. The simulation was run for 100 Myr, after that time the XUV flux drops off exponentially and hydrodynamic escape drops with it. A cutoff between rocky planets and gaseous ones is clearly seen at approx. 1.5-1.6 Earth radii. We are only interested in the upper size limit for rocky planets. As such, we assumed pure hydrogen atmospheres and the highest possible isothermal atmospheric temperatures, which will produce an upper limit on the hydrodynamic loss rate. Previous work shows that a reasonable approximation for an upper temperature limit in a hydrogen rich protoatmosphere is 2000-3000 K, consistent with our assumptions. From these results, we propose that the observed dichotomy between mini-Neptunes and rocky worlds is simply explained by

  7. Climate variations on Earth-like circumbinary planets

    PubMed Central

    Popp, Max; Eggl, Siegfried

    2017-01-01

    The discovery of planets orbiting double stars at close distances has sparked increasing scientific interest in determining whether Earth-analogues can remain habitable in such environments and how their atmospheric dynamics is influenced by the rapidly changing insolation. In this work we present results of the first three-dimensional numerical experiments of a water-rich planet orbiting a double star. We find that the periodic forcing of the atmosphere has a noticeable impact on the planet's climate. Signatures of the forcing frequencies related to the planet's as well as to the binary's orbital periods are present in a variety of climate indicators such as temperature and precipitation, making the interpretation of potential observables challenging. However, for Earth-like greenhouse gas concentrations, the variable forcing does not change the range of insolation values allowing for habitable climates substantially. PMID:28382929

  8. Development of a Model of Geophysical and Geochemical Controls on Abiotic Carbon Cycling on Earth-Like Planets

    NASA Astrophysics Data System (ADS)

    Neveu, M.; Felton, R.; Domagal-Goldman, S. D.; Desch, S. J.; Arney, G. N.

    2017-12-01

    About 20 Earth-sized planets (0.6-1.6 Earth masses and radii) have now been discovered beyond our solar system [1]. Although such planets are prime targets in the upcoming search for atmospheric biosignatures, their composition, geology, and climate are essentially unconstrained. Yet, developing an understanding of how these factors influence planetary evolution through time and space is essential to establishing abiotic backgrounds against which any deviations can provide evidence for biological activity. To this end, we are building coupled geophysical-geochemical models of abiotic carbon cycling on such planets. Our models are controlled by atmospheric factors such as temperature and composition, and compute interior inputs to atmospheric species. They account for crustal weathering, ocean-atmosphere equilibria, and exchange with the deep interior as a function of planet composition and size (and, eventually, age).Planets in other solar systems differ from the Earth not only in their bulk physical properties, but also likely in their bulk chemical composition [2], which influences key parameters such as the vigor of mantle convection and the near-surface redox state. Therefore, simulating how variations in such parameters affect carbon cycling requires us to simulate the above processes from first principles, rather than by using arbitrary parameterizations derived from observations as is often done with models of carbon cycling on Earth [3] or extrapolations thereof [4]. As a first step, we have developed a kinetic model of crustal weathering using the PHREEQC code [5] and kinetic data from [6]. We will present the ability of such a model to replicate Earth's carbon cycle using, for the time being, parameterizations for surface-interior-atmosphere exchange processes such as volcanism (e.g., [7]).[1] exoplanet.eu, 7/28/2017.[2] Young et al. (2014) Astrobiology 14, 603-626.[3] Lerman & Wu (2008) Kinetics of Global Geochemical Cycles. In Kinetics of Water

  9. New worlds on the horizon: Earth-sized planets close to other stars.

    PubMed

    Gaidos, Eric; Haghighipour, Nader; Agol, Eric; Latham, David; Raymond, Sean; Rayner, John

    2007-10-12

    The search for habitable planets like Earth around other stars fulfills an ancient imperative to understand our origins and place in the cosmos. The past decade has seen the discovery of hundreds of planets, but nearly all are gas giants like Jupiter and Saturn. Recent advances in instrumentation and new missions are extending searches to planets the size of Earth but closer to their host stars. There are several possible ways such planets could form, and future observations will soon test those theories. Many of these planets we discover may be quite unlike Earth in their surface temperature and composition, but their study will nonetheless inform us about the process of planet formation and the frequency of Earth-like planets around other stars.

  10. Terraforming the Planets and Climate Change Mitigation on Earth

    NASA Astrophysics Data System (ADS)

    Toon, O. B.

    2008-12-01

    Hopefully, purposeful geo-engineering of the Earth will remain a theoretical concept. Of course, we have already inadvertently changed the Earth, and over geologic history life has left an indelible imprint on our planet. We can learn about geo-engineering schemes by reference to Earth history, for example climate changes after volcanic eruptions provide important clues to using sulfates to modify the climate. The terrestrial planets and Titan offer additional insights. For instance, Mars and Venus both have carbon dioxide dominated greenhouses. Both have more than 10 times as much carbon dioxide in their atmospheres as Earth, and both absorb less sunlight than Earth, yet one is much colder than Earth and one is much hotter. These facts provide important insights into carbon dioxide greenhouses that I will review. Mars cools dramatically following planet wide dust storms, and Titan has what is referred to as an anti- greenhouse climate driven by aerosols. These data can be used to reassure us that we can model aerosol caused changes to the climate of a planet, and also provide examples of aerosols offsetting a gas-driven greenhouse effect. People have long considered whether we might make the other planets habitable. While most of the schemes considered belong in the realm of science fiction, it is possible that some schemes might be practical. Terraforming brings to mind a number of issues that are thought provoking, but not so politically charged as geo-engineering. For example: What criteria define habitability, is it enough for people to live in isolated glass enclosures, or do we need to walk freely on the planet? Different creatures have different needs. Is a planet habitable if plants can thrive in the open, or do animals also need to be free? Are the raw materials present on any planet to make it habitable? If not, can we make the materials, or do we have to import them? Is it ethical to change a planetary climate? What if there are already primitive

  11. The Stability of Hydrogen-Rich Atmospheres of Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    2016-01-01

    Understanding hydrogen escape is essential to understanding the limits to habitability, both for liquid water where the Sun is bright, but also to assess the true potential of H2 as a greenhouse gas where the Sun is faint. Hydrogen-rich primary atmospheres of Earth-like planets can result either from gravitational capture of solar nebular gases (with helium), or from impact shock processing of a wide variety of volatile-rich planetesimals (typically accompanied by H2O, CO2, and under the right circumstances, CH4). Most studies of hydrogen escape from planets focus on determining how fast the hydrogen escapes. In general this requires solving hydro- dynamic equations that take into account the acceleration of hydrogen through a critical transonic point and an energy budget that should include radiative heating and cooling, thermal conduction, the work done in lifting the hydrogen against gravity, and the residual heat carried by the hydrogen as it leaves. But for planets from which hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which is much simpler, and for which a relatively full-featured treatment of radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ is straightforward. Previous work has overlooked the fact that the H2 molecule is extremely efficient at exciting non-LTE CO2 15 micron emission, and thus that radiative cooling can be markedly more efficient when H2 is abundant. We map out the region of phase space in which terrestrial planets keep hydrogen-rich atmospheres, which is what we actually want to know for habitability. We will use this framework to reassess Tian et al's hypothesis that H2-rich atmospheres may have been rather long-lived on Earth itself. Finally, we will address the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than 1.6 Earth radii.

  12. The Prevalence of Earth-size Planets Orbiting Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew

    2015-01-01

    In less than two decades since the discovery of the first planet orbiting another Sun-like star, the study of extrasolar planets has matured beyond individual discoveries to detailed characterization of the planet population as a whole. No mission has played more of a role in this paradigm shift than NASA's Kepler mission. Kepler photometry has shown that planets like Earth are common throughout the Milky Way Galaxy. Our group performed an independent search of Kepler photometry using our custom transit-finding pipeline, TERRA, and produced our own catalog of planet candidates. We conducted spectroscopic follow-up of their host stars in order to rule out false positive scenarios and to better constrain host star properties. We measured TERRA's sensitivity to planets of different sizes and orbital periods by injecting synthetic planets into raw Kepler photometry and measuring the recovery rate. Correcting for orbital tilt and survey completeness, we found that ~80% of GK stars harbor one or more planets within 1 AU and that ~22% of Sun-like stars harbor an Earth-size planet that receives similar levels of stellar radiation as Earth. I will present the latest results from our efforts to characterize the demographics of small planets revealed by Kepler.

  13. Un-Earth-like interiors of the Earth-like planets

    NASA Astrophysics Data System (ADS)

    Shim, S. H. D.; Nisr, C.; Pagano, M.; Chen, H.; Ko, B.; Noble, S.; Leinenweber, K. D.; Young, P.; Desch, S. J.

    2015-12-01

    A number of exoplanets have been described as "Earth-like" planets (or even exo-earths) based on the mass-radius relations. Yet, significant variations have been documented in elemental abundances of planet-hosting stars, which will result in very different structures and processes in the interiors of rocky exoplanets. Recent data suggest that the Mg/Si ratio can be as small as less than 1 and as large as more than 2, opening the possibilities for the upper mantles to be dominated by pyroxene and olivine, respectively, and the lower mantles to be dominated by bridgmanite and ferropericlase, respectively. The changes in mineralogy will alter key properties, such as discontinuity structures (and therefore scale of mantle mixing), viscosity, and volatiles storage, of the mantle. Partial melting of such mantles would result in different compositions of the crusts, affecting the tectonics. However, the prediction should be made carefully because oxygen fugacity and contents of volatiles can change the mineralogy even for the same bulk composition. In extremely reducing proto-planetary disks, carbides will form instead of oxides and silicates, and become main constituents of planets in the system. Because carbides have high thermal conductivity and low thermal expansivity, internal heat transport of such planets may be dominated by conduction and mantle mixing would be much more limited than that of the Earth. However, the behaviors and properties of carbides need to be understood better at high pressure and high temperature. Some rocky exoplanets may have very thick layers of water and other icy materials. Interactions between ice (or fluid) and rock at extreme conditions would be the key to understand dynamics and habitability of such exoplanets.

  14. Planet logy : Towards Comparative Planet logy beyond the Solar Earth System

    NASA Astrophysics Data System (ADS)

    Khan, A. H.

    2011-10-01

    Today Scenario planet logy is a very important concept because now days the scientific research finding new and new planets and our work's range becoming too long. In the previous study shows about 10-12 years the research of planet logy now has changed . Few years ago we was talking about Sun planet, Earth planet , Moon ,Mars Jupiter & Venus etc. included but now the time has totally changed the recent studies showed that mono lakes California find the arsenic food use by micro organism that show that our study is very tiny as compare to planet long areas .We have very well known that arsenic is the toxic agent's and the toxic agent's present in the lakes and micro organism developing and life going on it's a unbelievable point for us but nature always play a magical games. In few years ago Aliens was the story no one believe the Aliens origin but now the aliens showed catch by our space craft and shuttle and every one believe that Aliens origin but at the moment's I would like to mention one point's that we have too more work required because our planet logy has a vast field. Most of the time our scientific mission shows that this planet found liquid oxygen ,this planet found hydrogen .I would like to clear that point's that all planet logy depend in to the chemical and these chemical gave the indication of the life but we are not abele to developed the adaptation according to the micro organism . Planet logy compare before study shows that Sun it's a combination of the various gases combination surrounded in a round form and now the central Sun Planets ,moons ,comets and asteroids In other word we can say that Or Sun has a wide range of the physical and Chemical properties in the after the development we can say that all chemical and physical property engaged with a certain environment and form a various contains like asteroids, moon, Comets etc. Few studies shows that other planet life affected to the out living planet .We can assure with the example the life

  15. The sun,the planets and life on Earth

    NASA Astrophysics Data System (ADS)

    Claudia, Tacu Cristina

    2017-04-01

    We all knowthat Earth,our planet,it's not alone in the Universe.We will discover together a few of its secrets: 0 The influence of the sun on our planet is very important.It provides us thelight ,the warnith and the enery without whice life on Earth wouldn't be possible. 0 Thank to the Sun and the endless spinning of our planet around its own axe and, at the same time around this star,we receive as a gift the day,the night,the seasons. 0In our Solar System there are other spheres appart from the Sun and planets -the asteroids ,wandering pieces of stone.It is said that many milions of years ago it they made a lot of plants and animals disappear. If I have arisen your curiosity,let's go!

  16. Planet Earth: Can Other Planets Tell Us Where We Are Going?

    ERIC Educational Resources Information Center

    Cherif, Abour H.; Adams, Gerald E.

    1994-01-01

    Makes comparisons between the Earth and other planets to suggest a possible vehicle for predicting the effects of human-made or natural disasters on our Earth. Also included are brief discussions of the following topics: (1) the atmosphere and greenhouse effect; (2) alterations of the biosphere; (3) climate and climatic change; (4) the water…

  17. Factors Affecting the Habitability of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; NAI-Virtual Planetary Laboratory Team

    2014-03-01

    Habitability is a measure of an environment's potential to support life. For exoplanets, the concept of habitability can be used broadly - to inform our calculations of the possibility and distribution of life elsewhere - or as a practical tool to inform mission designs and to prioritize specific targets in the search for extrasolar life. Although a planet's habitability does depend critically on the effect of stellar type and planetary semi-major axis on climate balance, work in the interdisciplinary field of astrobiology has identified many additional factors that can affect a planet's environment and its potential ability to support life. Life requires material for metabolism and structures, a liquid medium for chemical transport, and an energy source to drive metabolism and other life processes. Whether a planet's surface or sub-surface can provide these requirements is the result of numerous planetary and astrophysical processes that affect the planet's formation and evolution. Many of these factors are interdependent, and fall into three main categories: stellar effects, planetary effects and planetary system effects. Key abiotic processes affecting the resultant planetary environment include photochemistry (e.g. Segura et al., 2003; 2005), stellar effects on climate balance (e.g. Joshii et al., 2012; Shields et al., 2013), atmospheric loss (e.g. Lopez and Fortney, 2013), and gravitational interactions with the star (e.g. Barnes et al., 2013). In many cases, the effect of these processes is strongly dependent on a specific planet's existing environmental properties. Examples include the resultant UV flux at a planetary surface as a product of stellar activity and the strength of a planet's atmospheric UV shield (Segura et al., 2010); and the amount of tidal energy available to a planet to drive plate tectonics and heat the surface (Barnes et al., 2009), which is in turn due to a combination of stellar mass, planetary mass and composition, planetary orbital

  18. An Earth-sized planet in the habitable zone of a cool star.

    PubMed

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.

  19. HABITABILITY OF EARTH-MASS PLANETS AND MOONS IN THE KEPLER-16 SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quarles, B.; Musielak, Z. E.; Cuntz, M., E-mail: billyq@uta.edu, E-mail: zmusielak@uta.edu, E-mail: cuntz@uta.edu

    2012-05-01

    We demonstrate that habitable Earth-mass planets and moons can exist in the Kepler-16 system, known to host a Saturn-mass planet around a stellar binary, by investigating their orbital stability in the standard and extended habitable zone (HZ). We find that Earth-mass planets in satellite-like (S-type) orbits are possible within the standard HZ in direct vicinity of Kepler-16b, thus constituting habitable exomoons. However, Earth-mass planets cannot exist in planetary-like (P-type) orbits around the two stellar components within the standard HZ. Yet, P-type Earth-mass planets can exist superior to the Saturnian planet in the extended HZ pertaining to considerably enhanced back-warming inmore » the planetary atmosphere if facilitated. We briefly discuss the potential detectability of such habitable Earth-mass moons and planets positioned in satellite and planetary orbits, respectively. The range of inferior and superior P-type orbits in the HZ is between 0.657-0.71 AU and 0.95-1.02 AU, respectively.« less

  20. Two drastically different climate states on an Earth-like land planet with overland water recycling

    NASA Astrophysics Data System (ADS)

    Kalidindi, S.; Reick, C. H.; Raddatz, T.; Claussen, M.

    2017-12-01

    Prior studies have demonstrated that habitable areas on low-obliquity land planets are confined to the edges of frozen ice caps. Whether such dry planets can maintain long-lived liquid water is unclear. Leconte et al. 2013 argue that on such planets mechanisms like gravity driven ice flows and geothermal flux can maintain liquid water at the edges of thick ice caps and this water may flow back to the lower latitudes through rivers. However, there exists no modelling study which investigates the climate of an Earth-like land planet with an overland recycling mechanism bringing fresh water back from higher to lower latitudes. In our study, by using a comprehensive climate model ICON, we find that an Earth-like land planet with an overland recycling mechanism can exist in two drastically different climate states for the same set of boundary conditions and parameter values: A Cold and Wet (CW) state with dominant low-latitude precipitation and, a Hot and Dry (HD) state with only high-latitude precipitation. For perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo (α) while above that only the CW state is stable. Starting from the HD state and increasing α above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35°C globally which is of the order of the temperature difference between the present-day and the Snowball Earth state. In contrast to the Snowball Earth instability, we find that the sudden cooling in our study is driven by the cloud albedo feedback rather than the snow-albedo feedback. Also, when α in the CW state is reduced back to zero the land planet does not display a closed hysteresis. Our study also has implications for the habitability of Earth-like land planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer

  1. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  2. Tidal effects on Earth, Planets, Sun by far visiting moons

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The Earth has been formed by a huge mini-planet collision forming our Earth surface and our Moon today. Such a central collision hit was statistically rare. A much probable skimming or nearby encounter by other moons or planets had to occur. Indeed Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past in the geological records. For instance a ten times a terrestrial radius nearby impact scattering by a peripherical encounter by a small moon-like object will force huge tidal waves (hundred meter height), able to lead to huge tsunami and Earth-quake. Moreover the historical cumulative planet hits in larger and wider planets as Juppiter, Saturn, Uranus will leave a trace, as observed, in their tilted spin axis. Finally a large fraction of counter rotating moons in our solar system probe and test such a visiting mini-planet captur origination. In addition the Earth day duration variability in the early past did show a rare discountinuity, very probably indebt to such a visiting planet crossing event. These far planets in rare trajectory to our Sun may, in thousands event capture, also explain sudden historical and recent temperature changes.

  3. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    NASA Astrophysics Data System (ADS)

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J.; Triaud, Amaury H. M. J.; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K.; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-01

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as ‘ultracool dwarfs’. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them—ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.

  4. Temperate Earth-sized planets transiting a nearby ultracool dwarf star.

    PubMed

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J; Triaud, Amaury H M J; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-12

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as 'ultracool dwarfs'. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them--ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.

  5. On the possibility of Earth-type habitable planets in the 55 Cancri system.

    PubMed

    von Bloh, W; Cuntz, M; Franck, S; Bounama, C

    2003-01-01

    We discuss the possibility of Earth-type planets in the planetary system of 55 Cancri, a nearby G8 V star, which is host to two, possibly three, giant planets. We argue that Earth-type planets around 55 Cancri are in principle possible. Several conditions are necessary. First, Earth-type planets must have formed despite the existence of the close-in giant planet(s). In addition, they must be orbitally stable in the region of habitability considering that the stellar habitable zone is relatively close to the star compared to the Sun because of 55 Cancri's low luminosity and may therefore be affected by the close-in giant planet(s). We estimate the likelihood of Earth-type planets around 55 Cancri based on the integrated system approach previously considered, which provides a way of assessing the long-term possibility of photosynthetic biomass production under geodynamic conditions.

  6. Birth of an Earth-like Planet (Artist concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's conception shows a binary-star, or two-star, system, called HD 113766, where astronomers suspect a rocky Earth-like planet is forming around one of the stars. At approximately 10 to 16 million years old, astronomers suspect this star is at just the right age for forming rocky planets. The system is located approximately 424 light-years away from Earth.

    The two yellow spots in the image represent the system's two stars. The brown ring of material circling closest to the central star depicts a huge belt of dusty material, more than 100 times as much as in our asteroid belt, or enough to build a Mars-size planet or larger. The rocky material in the belt represents the early stages of planet formation, when dust grains clump together to form rocks, and rocks collide to form even more massive rocky bodies called planetesimals. The belt is located in the middle of the system's terrestrial habitable zone, or the region around a star where liquid water could exist on any rocky planets that might form. Earth is located in the middle of our sun's terrestrial habitable zone.

    Using NASA's Spitzer Space Telescope, astronomers learned that the belt material in HD 113866 is more processed than the snowball-like stuff that makes up infant solar systems and comets, which contain pristine ingredients from the early solar system. However, it is not as processed as the stuff found in mature planets and asteroids. This means that the dust belt is made out of just the right mix of materials to be forming an Earth-like planet. It is composed mainly of rocky silicates and metal sulfides (like fool's gold), similar to the material found in lava flows.

    The white outer ring shows a concentration of icy dust also detected in the system. This material is at the equivalent position of the asteroid belt in our solar system, but only contains about one-sixth as much material as the inner ring. Astronomers say it is not clear from the Spitzer observations if

  7. The search for life on Earth and other planets.

    PubMed

    Gross, Michael

    2012-04-10

    As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored.

  8. Development of educational programs using Dagik Earth, a four dimensional display of the Earth and planets

    NASA Astrophysics Data System (ADS)

    Saito, A.; Akiya, Y.; Yoshida, D.; Odagi, Y.; Yoshikawa, M.; Tsugawa, T.; Takahashi, M.; Kumano, Y.; Iwasaki, S.

    2010-12-01

    We have developed a four-dimensional display system of the Earth and planets to use in schools, science centers, and research institutes. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. The system is named Dagik Earth, and educational programs using Dagik Earth have been developed for schools and science centers. Three dimensional displays can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. There are several systems for the three-dimensional presentation of the Earth, such as Science on a sphere by NOAA, and Geocosmos by Miraikan, Japan. Comparing these systems, the advantage of Dagik Earth is portability and affordability. The system uses ordinary PC and PC projector. Only a spherical screen is the special equipment of Dagik Earth. Therefore Dagik Earth is easy to use in classrooms. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in an attractive way of presentation. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented. Its future plan will also be discussed.

  9. The Formation of the Earth-Moon System and the Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  10. Selections from 2015: Earth-Sized Planet Found in Star's Habitable Zone

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-03-01

    Editors Note:In these last two weeks of 2015, well be looking at a few selections from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.Discovery and Validation of Kepler-452b: a 1.6 R Super Earth Exoplanet in the Habitable Zone of a G2 StarPublished July2015Main takeaway:A phase-folded light curve showing the transit of Kepler-452b. Its transit lasts 10.5 hours, and its period is 385 days. [Jenkins et al. 2015]A team led by Jon Jenkins (NASA Ames Research Center) announced the discovery and confirmation of Kepler-452b, an exoplanet only 60% larger than Earth and located in the habitable zone of its G2 star. This planet orbits its star at a distance of just over 1 AU, taking 385 days to complete an orbit. Kepler-452b also stands a good chance of being rocky, according to estimates.Why its interesting:Kepler-452b is the first near-Earth-sized planet to be found in the habitable zone of a Sun-like star making this the closest analog to the Earth-Sun system found in the Kepler dataset so far.About the history of the system (and the future of ours?):The authors estimate that the system is ~6 billion years old, and that Kepler-452b has been in the habitable zone of its star throughout its lifetime a substantially longer time than Earth has been around and habitable! Kepler-452bs host star, in addition to being 1.5 billion years older than the Sun, is roughly 10% larger. This system might therefore provide a glimpse of what Earths environment may be like in the future, as the Sun slowly expands on its way to becoming a red giant.CitationJon M. Jenkins et al 2015 AJ 150 56. doi:10.1088/0004-6256/150/2/56

  11. Hot super-Earths and giant planet cores from different migration histories

    NASA Astrophysics Data System (ADS)

    Cossou, Christophe; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud

    2014-09-01

    Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several M⊕ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones, which move inward and eventually disappear as the disk disperses. Giant planet cores migrate inward with these zones and are stranded at ~1-5 AU. Our model reproduces several properties of the observed extra-solar planet populations. The frequency of giant planet cores increases strongly when the mass in solids is increased, consistent with the observed giant exoplanet - stellar metallicity correlation. The frequency of hot super-Earths is not a function of stellar metallicity, also in agreement with observations. Our simulations can reproduce the broad characteristics of the observed super-Earth population.

  12. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    PubMed Central

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam; Triaud, Amaury H. M. J.; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K.; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2017-01-01

    Stellar-like objects with effective temperatures of 2700K and below are referred to as “ultracool dwarfs”1. This heterogeneous group includes both extremely low-mass stars and brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15% of the stellar-like objects in the vicinity of the Sun2. Based on the small masses and sizes of their protoplanetary disks3,4, core-accretion theory for ultracool dwarfs predicts a large, but heretofore undetected population of close-in terrestrial planets5, ranging from metal-rich Mercury-sized planets6 to more hospitable volatile-rich Earth-sized planets7. Here we report the discovery of three short-period Earth-sized planets transiting an ultracool dwarf star 12 parsecs away using data collected by the TRAPPIST8 telescope as part of an ongoing prototype transit survey9. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star10. Eleven orbits remain possible for the third planet based on our data, the most likely resulting in an irradiation significantly smaller than Earth's. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system. PMID:27135924

  13. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  14. Modeling the Earth system in the Mission to Planet Earth era

    NASA Technical Reports Server (NTRS)

    Unninayar, Sushel; Bergman, Kenneth H.

    1993-01-01

    A broad overview is made of global earth system modeling in the Mission to Planet Earth (MTPE) era for the multidisciplinary audience encompassed by the Global Change Research Program (GCRP). Time scales of global system fluctuation and change are described in Section 2. Section 3 provides a rubric for modeling the global earth system, as presently understood. The ability of models to predict the future state of the global earth system and the extent to which their predictions are reliable are covered in Sections 4 and 5. The 'engineering' use of global system models (and predictions) is covered in Section 6. Section 7 covers aspects of an increasing need for improved transform algorithms and better methods to assimilate this information into global models. Future monitoring and data requirements are detailed in Section 8. Section 9 covers the NASA-initiated concept 'Mission to Planet Earth,' which employs space and ground based measurement systems to provide the scientific basis for understanding global change. Section 10 concludes this review with general remarks concerning the state of global system modeling and observing technology and the need for future research.

  15. Zodiacal Exoplanets in Time (ZEIT). VI. A Three-planet System in the Hyades Cluster Including an Earth-sized Planet

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Vanderburg, Andrew; Rizzuto, Aaron C.; Kraus, Adam L.; Berlind, Perry; Bieryla, Allyson; Calkins, Michael L.; Esquerdo, Gilbert A.; Latham, David W.; Mace, Gregory N.; Morris, Nathan R.; Quinn, Samuel N.; Sokal, Kimberly R.; Stefanik, Robert P.

    2018-01-01

    Planets in young clusters are powerful probes of the evolution of planetary systems. Here we report the discovery of three planets transiting EPIC 247589423, a late-K dwarf in the Hyades (≃800 Myr) cluster, and robust detection limits for additional planets in the system. The planets were identified from their K2 light curves as part of our survey of young clusters and star-forming regions. The smallest planet has a radius comparable to Earth ({0.99}-0.04+0.06{R}\\oplus ), making it one of the few Earth-sized planets with a known, young age. The two larger planets are likely a mini-Neptune and a super-Earth, with radii of {2.91}-0.10+0.11{R}\\oplus and {1.45}-0.08+0.11{R}\\oplus , respectively. The predicted radial velocity signals from these planets are between 0.4 and 2 m s-1, achievable with modern precision RV spectrographs. Because the target star is bright (V = 11.2) and has relatively low-amplitude stellar variability for a young star (2-6 mmag), EPIC 247589423 hosts the best known planets in a young open cluster for precise radial velocity follow-up, enabling a robust test of earlier claims that young planets are less dense than their older counterparts.

  16. Searching for and characterising extrasolar Earth-like planets and moons

    NASA Astrophysics Data System (ADS)

    Schneider, Jean

    2002-10-01

    The physical bases of the detection and characterisation of extrasolar Earth-like planets and moons in the reflected light and thermal emission regimes are reviewed. They both have their advantages and disadvantages, including artefacts, in the determination of planet physical parameters (mass, size, albedo, surface and atmospheric conditions etc.). After a short panorama of detection methods and the first findings, new perspectives for these different aspects are also presented. Finally brief account of the ground based programmes and space-based projects and their potentialities for Earth-like planets is made and discussed.

  17. Earth-based planet finders power up

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2018-01-01

    NASA's Kepler spacecraft has racked up thousands of exoplanet discoveries since its launch in 2009, but before Kepler, the workhorses of exoplanet identification were ground-based instruments that measure tiny stellar wobbles caused by the gravity of an orbiting planet. They are now undergoing a quiet renaissance. The new generation of these devices may be precise enough to find a true Earth twin: a planet with the same mass as ours, orbiting a sunlike star once a year. That's something Kepler—sensitive to planet size, but not mass—can't do. Over the past few months, two new third-generation instruments have opened their eyes to the sky and nearly two dozen others are either under construction or have recently begun service.

  18. Our Mission to Planet Earth: A guide to teaching Earth system science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  19. Spectral fingerprints of Earth-like planets around FGK stars.

    PubMed

    Rugheimer, Sarah; Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2013-03-01

    We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions.

  20. Astronomy: A small star with an Earth-like planet

    NASA Astrophysics Data System (ADS)

    Deming, Drake

    2015-11-01

    A rocky planet close in size to Earth has been discovered in the cosmic vicinity of our Sun. The small size and proximity of the associated star bode well for studies of the planet's atmosphere. See Letter p.204

  1. Evolution of Earth Like Planets

    NASA Astrophysics Data System (ADS)

    Monroy-Rodríguez, M. A.; Vega, K. M.

    2017-07-01

    In order to study and explain the evolution of our own planet we have done a review of works related to the evolution of Earth-like planets. From the stage of proto-planet to the loss of its atmosphere. The planetary formation from the gas and dust of the proto-planetary disk, considering the accretion by the process of migration, implies that the material on the proto-planet is very mixed. The newborn planet is hot and compact, it begins its process of stratification by gravity separation forming a super dense nucleus, an intermediate layer of convective mantle and an upper mantle that is less dense, with material that emerges from zones at very high pressure The surface with low pressure, in this process the planet expands and cools. This process also releases gas to the surface, forming the atmosphere, with the gas gravitationally bounded. The most important thing for the life of the planet is the layer of convective mantle, which produces the magnetic field, when it stops the magnetic field disappears, as well as the rings of van allen and the solar wind evaporates the atmosphere, accelerating the evolution and cooling of the planet. In a natural cycle of cataclysms and mass extinctions, the solar system crosses the galactic disk every 30 million years or so, the increase in the meteorite fall triggers the volcanic activity and the increase in the release of CO2 into the atmosphere reaching critical levels (4000 billion tons) leads us to an extinction by overheating that last 100 000 years, the time it takes CO2 to sediment to the ocean floor. Human activity will lead us to reach critical levels of CO2 in approximately 300 years.

  2. Migration & Extra-solar Terrestrial Planets: Watering the Planets

    NASA Astrophysics Data System (ADS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2014-04-01

    A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.

  3. Life, hierarchy, and the thermodynamic machinery of planet Earth.

    PubMed

    Kleidon, Axel

    2010-12-01

    Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates

  4. A statistical look at the retrieval of exoplanetary atmospheres of super Earths and giant planets

    NASA Astrophysics Data System (ADS)

    Rocchetto, Marco; Waldmann, Ingo Peter; Tinetti, Giovanna; Yurchenko, Sergey; Tennyson, Jonathan

    2015-08-01

    Over the past decades transit spectroscopy has become one of the pioneering methods to characterise exoplanetary atmospheres. With the increasing number of observations, and the advent of new ground and spaced based instruments, it is now crucial to find the most optimal and objective methodologies to interpret these data, and understand the information content they convey. This is particularly true for smaller and fainter super Earth type planets.In this conference we will present a new take on the spectral retrieval of transiting planets, with particular focus on super Earth atmospheres. TauREx (Waldmann et al. 2015a,b.) is a new line-by-line radiative transfer atmospheric retrieval framework for transmission and emission spectroscopy of exoplanetary atmospheres, optimised for hot Jupiters and super Earths. The code has been built from scratch with the ideas of scalability, flexibility and automation. This allows to run retrievals with minimum user input that can be scaled to large cluster computing. Priors on the number and types of molecules considered are automatically determined using a custom built pattern recognition algorithm able to identify the most likely absorbers/emitters in the exoplanetary spectra, minimising the human bias in selecting the major atmospheric constituents.Using these tools, we investigate the impact of signal to noise, spectral resolution and wavelength coverage on the retrievability of individual model parameters from transit spectra of super Earths, and put our models to test (Rocchetto et al. 2015). Characterisation of the atmospheres of super Earths through transit spectroscopy is paramount, as it can provide an indirect - and so far unique - way to probe the nature of these planets. For the first time we analyse in a systematic way large grids of spectra generated for different observing scenarios. We perform thousands of retrievals aimed to fully map the degeneracies and understand the statistics of current exoplanetary

  5. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    NASA Technical Reports Server (NTRS)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  6. The Earth is a Planet Too!

    NASA Technical Reports Server (NTRS)

    Cairns, Brian

    2014-01-01

    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  7. Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.

    PubMed

    Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N

    2013-05-03

    We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.

  8. Earth-type planets (Mercury, Venus, and Mars)

    NASA Technical Reports Server (NTRS)

    Marov, M. Y.; Davydov, V. D.

    1975-01-01

    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  9. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    NASA Astrophysics Data System (ADS)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  10. Spectral Fingerprints of Earth-like Planets Around FGK Stars

    PubMed Central

    Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2013-01-01

    Abstract We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions. Key Words: Habitability—Planetary atmospheres—Extrasolar terrestrial planets—Spectroscopic biosignatures. Astrobiology 13, 251–269. PMID:23537136

  11. Kepler Confirms First Earth-Sized Planet Outside Our Solar System (Kepler-20) (Reporter Package)

    NASA Image and Video Library

    2011-12-19

    NASA's Kepler mission has confirmed the discovery of the first Earth-size planets outside our solar system orbiting a sun-like star. Located about 1,000 light years from Earth, the Kepler-20 solar system has five planets orbiting a star similar to the Sun. Kepler-20f, the 4th planet in the system, is about 90 percent the size of Earth. Kepler-20f is slightly larger than Earth,with a radius that is 3 percent larger.

  12. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  13. Pantheon of Planets Similar to Earth Artist Concept

    NASA Image and Video Library

    2015-07-23

    A newly discovered exoplanet, Kepler-452b, comes the closest of any found so far to matching our Earth-sun system. This artist's conception of a planetary lineup shows habitable-zone planets with similarities to Earth: from left, Kepler-22b, Kepler-69c, the just announced Kepler-452b, Kepler-62f and Kepler-186f. Last in line is Earth itself. http://photojournal.jpl.nasa.gov/catalog/PIA19830

  14. Tectonic asymmetry of the earth and other planets

    NASA Technical Reports Server (NTRS)

    Pushcharovskiy, Y. M.; Kozlov, V. V.; Sulidi-Kondratyev, Y. D.

    1978-01-01

    The structures of Earth, Mars, Venus, and the Moon are examined and compared. Global tectonic characteristics are presented for each. A comparison of the tectonics reveals the structural asymetry of these planets and the moon. Tectonic asymmetry information for the group is used to interpret certain aspects of the earth's geological past.

  15. Eyes on Planet Earth! Exploring Your Local Watershed

    ERIC Educational Resources Information Center

    Smith, Michael J.; Southard, John B.

    2003-01-01

    The American Geological Institute is helping teachers and geoscientists to emphasize the importance of inquiry and active investigation of the world around by selecting "Eyes on Planet Earth: Monitoring Our Changing World" as the theme of this year's Earth Science Week. The activity on the back of this month's poster insert, "Monitoring the…

  16. The earth as a planet - Paradigms and paradoxes

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1984-01-01

    The independent growth of the various branches of the earth sciences in the past two decades has led to a divergence of geophysical, geochemical, geological, and planetological models for the composition and evolution of a terrestrial planet. Evidence for differentiation and volcanism on small planets and a magma ocean on the moon contrasts with hypotheses for a mostly primitive, still undifferentiated, and homogeneous terrestrial mantle. In comparison with the moon, the earth has an extraordinarily thin crust. The geoid, which should reflect convection in the mantle, is apparently unrelated to the current distribution of continents and oceanic ridges. If the earth is deformable, the whole mantle should wander relative to the axis of rotation, but the implications of this are seldom discussed. The proposal of a mantle rich in olivine violates expectations based on evidence from extraterrestrial sources. These and other paradoxes force a reexamination of some long-held assumptions.

  17. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model

    NASA Astrophysics Data System (ADS)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.

    2011-12-01

    Red Sea indicates that a shallow magma-chamber causes a sufficiently high heat-flow to drive a convection cell of seawater. The model shows that salt precipitates along the flow lines within the SCRIW-region (Hovland et al., 2006). During the various stages of planet Mars' development, it must be inferred that zones with very high heat-flow also existed there. This meant that water (brine) confined in the crust of Mars was mobilized in a convective manner and would pass into the SCRIW-zone during the down-going leg (the recharge leg) of the convective cell. The zones with SCRIW out-salting would require accommodation space for large masses of solid salt, as modeled in the Red Sea analogy. However, as the accommodation space for the solid salt fills up, it will pile up and force its way upwards to form large, perhaps layered anticlines, as seen in the Hebes Mensa area of Mars and at numerous locations on Earth, including the Red Sea. Thus, we offer a universal 'hydrothermal salt model', which would be viable on all planets with free water in their interiors or on their surfaces, including Mars and Earth.

  18. The mass of the super-Earth orbiting the brightest Kepler planet hosting star

    NASA Astrophysics Data System (ADS)

    Lopez-Morales, Mercedes; HARPS-N Team

    2016-01-01

    HD 179070, aka Kepler-21, is a V = 8.25 oscillating F6IV star and the brightest exoplanet host discovered by Kepler. An early analysis of the Q0 - Q5 Kepler light curves by Howell et al. (2012) revealed transits of a planetary companion, Kepler-21b, with a radius of 1.6 R_Earth and an orbital period of 2.7857 days. However, they could not determine the mass of the planet from the initial radial velocity observations with Keck-HIRES, and were only able to impose a 2s upper limit of about 10 M_Earth. Here we present 82 new radial velocity observations of this system obtained with the HARPS-N spectrograph. We detect the Doppler shift signal of Kepler-21b at the 3.6s level, and measure a planetary mass of 5.9 ± 1.6 M_Earth. We also update the radius of the planet to 1.65 ± 0.08 R_Earth, using the now available Kepler Q0 - Q17 photometry for this target. The mass of Kepler-21b appears to fall on the apparent dividing line between super-Earths that have lost all the material in their outer layers and those that have retained a significant amount of volatiles. Based on our results Kepler-21b belongs to the first group. Acknowledgement: This work was supported by funding from the NASA XRP Program and the John Templeton Foundation.

  19. Spectra of Earth-like Planets through Geological Evolution around FGKM Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, S.; Kaltenegger, L.

    2018-02-01

    Future observations of terrestrial exoplanet atmospheres will occur for planets at different stages of geological evolution. We expect to observe a wide variety of atmospheres and planets with alternative evolutionary paths, with some planets resembling Earth at different epochs. For an Earth-like atmospheric time trajectory, we simulate planets from the prebiotic to the current atmosphere based on geological data. We use a stellar grid F0V to M8V ({T}{eff}=7000–2400 K) to model four geological epochs of Earth's history corresponding to a prebiotic world (3.9 Ga), the rise of oxygen at 2.0 Ga and at 0.8 Ga, and the modern Earth. We show the VIS–IR spectral features, with a focus on biosignatures through geological time for this grid of Sun-like host stars and the effect of clouds on their spectra. We find that the observability of biosignature gases reduces with increasing cloud cover and increases with planetary age. The observability of the visible O2 feature for lower concentrations will partly depend on clouds, which, while slightly reducing the feature, increase the overall reflectivity, and thus the detectable flux of a planet. The depth of the IR ozone feature contributes substantially to the opacity at lower oxygen concentrations, especially for the high near-UV stellar environments around F stars. Our results are a grid of model spectra for atmospheres representative of Earth's geological history to inform future observations and instrument design and are available online at http://carlsaganinstitute.org/data/.

  20. Two drastically different climate states on an Earth-like terra-planet

    NASA Astrophysics Data System (ADS)

    Kalidindi, Sirisha; Reick, Christian H.; Raddatz, Thomas; Claussen, Martin

    2018-06-01

    We study an Earth-like terra-planet (water-limited terrestrial planet) with an overland recycling mechanism bringing fresh water back from the high latitudes to the low latitudes. By performing model simulations for such a planet we find two drastically different climate states for the same set of boundary conditions and parameter values: a cold and wet (CW) state with dominant low-latitude precipitation and a hot and dry (HD) state with only high-latitude precipitation. We notice that for perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo while above the threshold only the CW state is stable. Starting from the HD state and increasing background soil albedo above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35 °C globally, which is of the order of the temperature difference between present day and the Snowball Earth state. When albedo starting from the CW state is reduced down to zero the terra-planet does not shift back to the HD state (no closed hysteresis). This is due to the high cloud cover in the CW state hiding the surface from solar irradiation so that surface albedo has only a minor effect on the top of the atmosphere radiation balance. Additional simulations with present-day Earth's obliquity all lead to the CW state, suggesting a similar abrupt transition from the HD state to the CW state when increasing obliquity from zero. Our study also has implications for the habitability of Earth-like terra-planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer edge, the resupply of water at low latitudes stabilizes the greenhouse effect and keeps the planet in the HD state and may prevent water from getting trapped at high latitudes in frozen form. Overall, the existence of bistability in the presence of an

  1. An international approach to Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Lawrence, Robert M.; Sadeh, Willy Z.; Tsygichko, Viktor N.

    1992-01-01

    The new international political constellation resulting from the disintegration of the Soviet Union opens up unique opportunities for cooperation in the space arena. Precedents since 1955 indicate a pervasive interest in mutual cooperation to use military reconnaissance and surveillance satellites for space observations to enforce treaty verification and compliance. One of the avenues that offer immediate prospects for fruitful cooperation is the incorporation of the military reconnaissance and surveillance satellite capabilities of both U.S. and Russia into the Mission to Planet Earth. Formation of a United Nations Satellite (UNSAT) fleet drawn from the American and Russian space assets is proposed. The role of UNSAT is to provide world wide monitoring of both military and enviromental activities under the umbrella of the Mission to Planet Earth.

  2. Observing the Spectra of MEarth and TRAPPIST Planets with JWST

    NASA Astrophysics Data System (ADS)

    Morley, Caroline; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler D.; Fortney, Jonathan J.

    2017-10-01

    During the past two years, nine planets close to Earth in radius have been discovered around nearby M dwarfs cooler than 3300 K. These planets include the 7 planets in the TRAPPIST-1 system and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b (Dittmann et al. 2017; Berta-Thompson et al. 2015; Gillon et al. 2017). These planets are the smallest planets discovered to date that will be amenable to atmospheric characterization with JWST. They span equilibrium temperatures from ˜130 K to >500 K, and radii from 0.7 to 1.43 Earth radii. Some of these planets orbit as distances potentially amenable to surface liquid water, though the actual surface temperatures will depend strongly on the albedo of the planet and the thickness and composition of its atmosphere. The stars they orbit also vary in activity levels, from the quiet LHS 1140b host star to the more active TRAPPIST-1 host star. This set of planets will form the testbed for our first chance to study the diversity of atmospheres around Earth-sized planets. Here, we will present model spectra of these 9 planets, varying the composition and the surface pressure of the atmosphere. We base our elemental compositions on three outcomes of planetary atmosphere evolution in our own solar system: Earth, Titan, and Venus. We calculate the molecular compositions in chemical equilibrium. We present both thermal emission spectra and transmission spectra for each of these objects, and make predictions for the observability of these spectra with different instrument modes with JWST.

  3. AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campante, T. L.; Davies, G. R.; Chaplin, W. J.

    The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planetmore » system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.« less

  4. The runaway Greenhouse revisited: it's "theoretically possible for an Earth-like planet at 1 AU", plus implications for more diverse planets

    NASA Astrophysics Data System (ADS)

    Goldblatt, C.; Zahnle, K. J.; Crisp, D.; Robinson, T. D.

    2013-12-01

    For water-vapour rich atmospheres, there is an asymptotic limit on thermal emission to space. If more sunlight is absorbed than this limit, energy balance is no longer possible and runaway heating occurs, evaporating the ocean and sterilizing the planet en route. Here, we present recently published work (Goldblatt et al., 2013) which was the first full re-evaluation of the problem since classic 1980's era work (e.g. Watson et al., 1984; Abe & Matsui, 1988; Kasting, 1988). With modern molecular absorption databases and a line-by-line resolution model, we find that the thermal limit is lower than previous estimates (282Wm-2, down from 310Wm-2) and that much more sunlight is absorbed by a steam atmosphere (294Wm-2, up from 222Wm-2). The immediate implication is that a cloud-free moist atmosphere on Earth would cause a runaway greenhouse. Triggering it would simply be a matter of sufficient heating, with around 30,000ppmv being sufficient in our most Earth-like model. This is substantially different than previous calculations, where weak solar absorption meant that a higher solar flux was required. Our published calculations are for the limit of clear-skies; any clouds would reduce both the thermal radiation emitted and the solar radiation absorbed, so clouds could make the runaway greenhouse either more or less likely. It can be shown that and excess of cloud reflection over cloud greenhouse is required to maintain temperate climate on Earth today - but how clouds will change in a warming atmosphere is far from clear. Work in progress (and hopefully ready by December!) on cloudy runaway greenhouse models will hopefully constrain this better. Wider implications for planetary stability will also be discussed. For example, water-world planets, with minimal background gas in the atmosphere may be highly susceptible to runaway greenhouses (heating Europa might take it directly from a snowball to a runaway). High CO2 levels after previous Snowball Earth events did not

  5. A Google Earth Grand Tour of the Terrestrial Planets

    ERIC Educational Resources Information Center

    De Paor, Declan; Coba, Filis; Burgin, Stephen

    2016-01-01

    Google Earth is a powerful instructional resource for geoscience education. We have extended the virtual globe to include all terrestrial planets. Downloadable Keyhole Markup Language (KML) files (Google Earth's scripting language) associated with this paper include lessons about Mercury, Venus, the Moon, and Mars. We created "grand…

  6. A CONTINUUM OF PLANET FORMATION BETWEEN 1 AND 4 EARTH RADII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaufman, Kevin C., E-mail: kschlauf@mit.edu

    2015-02-01

    It has long been known that stars with high metallicity are more likely to host giant planets than stars with low metallicity. Yet the connection between host star metallicity and the properties of small planets is only just beginning to be investigated. It has recently been argued that the metallicity distribution of stars with exoplanet candidates identified by Kepler provides evidence for three distinct clusters of exoplanets, distinguished by planet radius boundaries at 1.7 R{sub ⨁} and 3.9 R{sub ⨁}. This would suggest that there are three distinct planet formation pathways for super-Earths, mini-Neptunes, and giant planets. However, as Imore » show through three independent analyses, there is actually no evidence for the proposed radius boundary at 1.7 R{sub ⨁}. On the other hand, a more rigorous calculation demonstrates that a single, continuous relationship between planet radius and metallicity is a better fit to the data. The planet radius and metallicity data therefore provides no evidence for distinct categories of small planets. This suggests that the planet formation process in a typical protoplanetary disk produces a continuum of planet sizes between 1 R{sub ⨁} and 4 R{sub ⨁}. As a result, the currently available planet radius and metallicity data for solar-metallicity F and G stars give no reason to expect that the amount of solid material in a protoplanetary disk determines whether super-Earths or mini-Neptunes are formed.« less

  7. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    PubMed

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases

  8. The Leonard Award Address: On the Difficulties of Making Earth-Like Planets

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart Ross

    1999-05-01

    Here I discuss the series of events that led to the formation and evolution of our planet to examine why the Earth is unique in the solar system. A multitude of factors are involved. These begin with the initial size and angular momentum of the fragment that separated from a molecular cloud. These are crucial in determining whether a planetary system or a double star develops from the resulting nebula. Another requirement is that there must be an adequate concentration of heavy elements to provide the two percent 'rock' and 'ice' components of the original nebula. An essential step in forming rocky planets in the inner nebula is loss of gas and depletion of volatile elements due to early solar activity, that is linked to the mass of the central star. The lifetime of the gaseous nebula controls the formation of gas giants. In our system, fine timing was needed to form the gas giant, Jupiter before the gas in the nebula was depleted. Although Uranus and Neptune eventually formed cores large enough to capture gas, they missed out and ended as ice giants The early formation of Jupiter is responsible for the existence of the asteroid belt (and our supply of meteorites) and the small size of Mars while the gas giant now acts as a gravitational shield for the terrestrial planets. The Earth and the other inner planets accreted long after the giant planets in a gas-free inner nebula from volatile-depleted planetesimals that were probably already differentiated into metallic cores and silicate mantles. The accumulation of the Earth from such planetesimals was essentially a stochastic process, accounting for the differences among the four rocky inner planets including the startling contrast between those two apparent twins, Earth and Venus. Impact history and accretion of a few more or less planetesimals were apparently crucial. The origin of the Moon by a single massive impact with a body larger than Mars accounts for the obliquity (and its stability) and spin of the Earth

  9. Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.

    PubMed

    Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K

    2005-10-01

    Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.

  10. The Runaway Greenhouse Effect on Earth and other Planets

    NASA Technical Reports Server (NTRS)

    Rabbette, Maura; Pilewskie, Peter; McKay, Christopher; Young, Robert

    2001-01-01

    Water vapor is an efficient absorber of outgoing longwave infrared radiation on Earth and is the primary greenhouse gas. Since evaporation increases with increasing sea surface temperature, and the increase in water vapor further increases greenhouse warming, there is a positive feedback. The runaway greenhouse effect occurs if this feedback continues unchecked until all the water has left the surface and enters the atmosphere. For Mars and the Earth the runaway greenhouse was halted when water vapor became saturated with respect to ice or liquid water respectively. However, Venus is considered to be an example of a planet where the runaway greenhouse effect did occur, and it has been speculated that if the solar luminosity were to increase above a certain limit, it would also occur on the Earth. Satellite data acquired during the Earth Radiation Budget Experiment (ERBE) under clear sky conditions shows that as the sea surface temperature (SST) increases, the rate of outgoing infrared radiation at the top of the atmosphere also increases, as expected. Over the pacific warm pool where the SST exceeds 300 K the outgoing radiation emitted to space actually decreases with increasing SST, leading to a potentially unstable system. This behavior is a signature of the runaway greenhouse effect on Earth. However, the SST never exceeds 303K, thus the system has a natural cap which stops the runaway. According to Stefan-Boltzmann's law the amount of heat energy radiated by the Earth's surface is proportional to (T(sup 4)). However, if the planet has a substantial atmosphere, it can absorb all infrared radiation from the lower surface before the radiation penetrates into outer space. Thus, an instrument in space looking at the planet does not detect radiation from the surface. The radiation it sees comes from some level higher up. For the earth#s atmosphere the effective temperature (T(sub e)) has a value of 255 K corresponding to the middle troposphere, above most of the

  11. Discovery of Temperate Earth-Sized Planets Transiting a Nearby Ultracool Dwarf Star

    NASA Technical Reports Server (NTRS)

    Jehin, Emmanuel; Gillon, Michael; Lederer, Susan M.; Delrez, Laetitia; De Wit, Julien; Burdanov, Artem; Van Grootel, Valerie; Burgasser, Adam; Triaud, Amaury; Demory, Brice-Olivier; hide

    2016-01-01

    We report the discovery of three short-period Earth-sized planets transiting a nearby ultracool dwarf star using data collected by the Liège TRAPPIST telescope, located in la Silla (Chile). TRAPPIST-1 is an isolated M8.0+/-0.5-type dwarf star at a distance of 12.0+/-0.4 parsecs as measured by its trigonometric parallax, with an age constrained to be > 500 Myr, and with a luminosity, mass, and radius of 0.05%, 8% and 11.5% those of the Sun, respectively. The small size of the host star, only slightly larger than Jupiter, translates into Earth-like radii for the three discovered planets, as deduced from their transit depths. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Several orbits remain possible for the third planet based on our current data. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system.

  12. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugheimer, S.; Sasselov, D.; Segura, A.

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UVmore » flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.« less

  13. Plate Tectonics on Earth-like Planets: Implications for Habitability

    NASA Astrophysics Data System (ADS)

    Noack, L.; Breuer, D.

    2011-12-01

    Plate tectonics has been suggested to be essential for life (see e.g. [1]) due to the replenishment of nutrients and its role in the stabilization of the atmosphere temperature through the carbon-silicate cycle. Whether plate tectonics can prevail on a planet should depend on several factors, e.g. planetary mass, age of the planet, water content (at the surface and in the interior), surface temperature, mantle rheology, density variations in the mantle due to partial melting, and life itself by promoting erosion processes and perhaps even the production of continental rock [2]. In the present study, we have investigated how planetary mass, internal heating, surface temperature and water content in the mantle would factor for the probability of plate tectonics to occur on a planet. We allow the viscosity to be a function of pressure [3], an effect mostly neglected in previous discussions of plate tectonics on exoplanets [4, 5]. With the pressure-dependence of viscosity allowed for, the lower mantle may become too viscous in massive planets for convection to occur. When varying the planetary mass between 0.1 and 10 Earth masses, we find a maximum for the likelihood of plate tectonics to occur for planetary masses around a few Earth masses. For these masses the convective stresses acting at the base of the lithosphere are strongest and may become larger than the lithosphere yield strength. The optimum planetary mass varies slightly depending on the parameter values used (e.g. wet or dry rheology; initial mantle temperature). However, the peak in likelihood of plate tectonics remains roughly in the range of one to five Earth masses for reasonable parameter choices. Internal heating has a similar effect on the occurrence of plate tectonics as the planetary mass, i.e. there is a peak in the probability of plate tectonics depending on the internal heating rate. This result suggests that a planet may evolve as a consequence of radioactive decay into and out of the plate

  14. NASA’s Spitzer Reveals Largest Batch of Earth-Size, Habitable-Zone Planets Around a Single Star

    NASA Image and Video Library

    2017-02-22

    NASA held a news conference Feb. 22 at the agency’s headquarters to discuss the finding by the Spitzer Space Telescope of seven Earth-sized planets around a tiny, nearby, ultra-cool dwarf star. Three of these planets are in the habitable zone, the region around the star in which liquid water is most likely to thrive on a rocky planet. This is the first time so many planets have been found in a single star's habitable zone, and the first time so many Earth-sized planets have been found around the same star. The finding of this planetary system, called TRAPPIST-1, is the best target yet for studying the atmospheres of potentially habitable, Earth-sized worlds

  15. Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-07-01

    The dancing glow of the aurorae, the long tendrils of light that seem to reach up into space, has mesmerized scientists for centuries. More than a beautiful display, the aurorae tell us about the Earth—about its atmosphere, its magnetic field, and its relationship with the Sun. As technology developed, researchers looking beyond Earth's borders discovered an array of auroral processes on planets throughout the solar system. In the AGU monograph Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, editors Andreas Keiling, Eric Donovan, Fran Bagenal, and Tomas Karlsson explore the many open questions that permeate the science of auroral physics and the relatively recent field of extraterrestrial aurorae. In this interview, Eos talks to Karlsson about extraterrestrial aurorae, Alfvén waves, and the sounds of the northern lights.

  16. Imaging plasmas at the Earth and other planets

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.

    2006-05-01

    The field of space physics, both at Earth and at other planets, was for decades a science based on local observations. By stitching together measurements of plasmas and fields from multiple locations either simultaneously or for similar conditions over time, and by comparing those measurements against models of the physical systems, great progress was made in understanding the physics of Earth and planetary magnetospheres, ionospheres, and their interactions with the solar wind. However, the pictures of the magnetospheres were typically statistical, and the large-scale global models were poorly constrained by observation. This situation changed dramatically with global auroral imaging, which provided snapshots and movies of the effects of field aligned currents and particle precipitation over the entire auroral oval during quiet and disturbed times. And with the advent of global energetic neutral atom (ENA) and extreme ultraviolet (EUV) imaging, global constraints have similarly been added to ring current and plasmaspheric models, respectively. Such global constraints on global models are very useful for validating the physics represented in those models, physics of energy and momentum transport, electric and magnetic field distribution, and magnetosphere-ionosphere coupling. These techniques are also proving valuable at other planets. For example with Hubble Space Telescope imaging of Jupiter and Saturn auroras, and ENA imaging at Jupiter and Saturn, we are gaining new insights into the magnetic fields, gas-plasma interactions, magnetospheric dynamics, and magnetosphere-ionosphere coupling at the giant planets. These techniques, especially ENA and EUV imaging, rely on very recent and evolving technological capabilities. And because ENA and EUV techniques apply to optically thin media, interpretation of their measurements require sophisticated inversion procedures, which are still under development. We will discuss the directions new developments in imaging are

  17. Star Masses and Star-Planet Distances for Earth-like Habitability.

    PubMed

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M ⊙ < M < 1.04 M ⊙ , and the range for planets with at least simple life is 0.57 M ⊙  < M < 1.64 M ⊙ . Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  18. Star Masses and Star-Planet Distances for Earth-like Habitability

    PubMed Central

    2017-01-01

    Abstract This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ < M < 1.04 M⊙, and the range for planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙. Key Words: Habitability—Habitable zone—Anthropic—Red dwarfs—Initial mass function. Astrobiology 17, 61–77. PMID:28103107

  19. Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST

    NASA Astrophysics Data System (ADS)

    Morley, Caroline V.; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler; Fortney, Jonathan J.

    2017-12-01

    Nine transiting Earth-sized planets have recently been discovered around nearby late-M dwarfs, including the TRAPPIST-1 planets and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b. These planets are the smallest known planets that may have atmospheres amenable to detection with the James Webb Space Telescope (JWST). We present model thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere. We base elemental compositions on those of Earth, Titan, and Venus and calculate the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature. Both thermal emission and transmission spectra are sensitive to the atmospheric composition; thermal emission spectra are sensitive to surface pressure and temperature. We predict the observability of each planet’s atmosphere with JWST. GJ 1132b and TRAPPIST-1b are excellent targets for emission spectroscopy with JWST/MIRI, requiring fewer than 10 eclipse observations. Emission photometry for TRAPPIST-1c requires 5-15 eclipses; LHS 1140b and TRAPPIST-1d, TRAPPIST-1e, and TRAPPIST-1f, which could possibly have surface liquid water, may be accessible with photometry. Seven of the nine planets are strong candidates for transmission spectroscopy measurements with JWST, although the number of transits required depends strongly on the planets’ actual masses. Using the measured masses, fewer than 20 transits are required for a 5σ detection of spectral features for GJ 1132b and six of the TRAPPIST-1 planets. Dedicated campaigns to measure the atmospheres of these nine planets will allow us, for the first time, to probe formation and evolution processes of terrestrial planetary atmospheres beyond our solar system.

  20. Maximum number of habitable planets at the time of Earth's origin: new hints for panspermia?

    PubMed

    von Bloh, Werner; Franck, Siegfried; Bounama, Christine; Schellnhuber, Hans-Joachim

    2003-04-01

    New discoveries have fuelled the ongoing discussion of panspermia, i.e. the transport of life from one planet to another within the solar system (interplanetary panspermia) or even between different planetary systems (interstellar panspermia). The main factor for the probability of interstellar panspermia is the average density of stellar systems containing habitable planets. The combination of recent results for the formation rate of Earth-like planets with our estimations of extrasolar habitable zones allows us to determine the number of habitable planets in the Milky Way over cosmological time scales. We find that there was a maximum number of habitable planets around the time of Earth's origin. If at all, interstellar panspermia was most probable at that time and may have kick-started life on our planet.

  1. The Thermal States of Accreting Planets: From Mars-like Embryos to a MAD Earth

    NASA Astrophysics Data System (ADS)

    Stewart, S. T.; Lock, S. J.

    2015-12-01

    The thermal states of rocky planets can vary widely during the process of accretion. The thermal structure affects several major processes on the growing planet, including the mechanics of core formation, pressure-temperature conditions for metal-silicate equilibration, mixing, and atmospheric erosion. Because impact energy is distributed heterogeneously, accretional energy is preferentially deposited in the gravitationally re-equilibrated outer layers of the planet for both small and giant impacts. The resulting stably stratified structure inhibits complete mixing within the mantle. Initially, the specific energy of giant impacts between Mars-mass embryos leads to melting of the mantle. However, as planet formation progresses, the specific energies of giant impacts increase and can drive the mantle into a transient supercritical state. In the hottest regions of the planet, metal and silicates are miscible, and metal exsolution occurs as the structure cools. The cooling time of the supercritical structure is typically longer than the timescale for metal segregation to the core. Thus, these high temperature excursions during planet formation are significant for understanding metal-silicate equilibration. Furthermore, when a supercritical planet is also rapidly rotating, the mantle, atmosphere and disk (MAD) form a continuous dynamic and thermodynamic structure. Lunar origin by condensation from a MAD Earth can explain the major characteristics of the Moon (Lock et al., this meeting). One of the greatest uncertainties in understanding the thermal states of planets during accretion is the changing composition and mass of the atmosphere. After the dispersal of the solar nebula, the thermal boundary condition imposed by the atmosphere can vary between silicate vapor and condensed ices. The coupled problem of atmospheric origin and planetary accretion can be used to constrain the many uncertainties in the growth and divergence of the terrestrial planets in our solar

  2. A STATISTICAL RECONSTRUCTION OF THE PLANET POPULATION AROUND KEPLER SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silburt, Ari; Wu, Yanqin; Gaidos, Eric

    2015-02-01

    Using the cumulative catalog of planets detected by the NASA Kepler mission, we reconstruct the intrinsic occurrence of Earth- to Neptune-size (1-4 R {sub ⊕}) planets and their distributions with radius and orbital period. We analyze 76,711 solar-type (0.8 < R {sub *}/R {sub ☉} < 1.2) stars with 430 planets on 20-200 day orbits, excluding close-in planets that may have been affected by the proximity to the host star. Our analysis considers errors in planet radii and includes an ''iterative simulation'' technique that does not bin the data. We find a radius distribution that peaks at 2-2.8 Earth radii, with lowermore » numbers of smaller and larger planets. These planets are uniformly distributed with logarithmic period, and the mean number of such planets per star is 0.46 ± 0.03. The occurrence is ∼0.66 if planets interior to 20 days are included. We estimate the occurrence of Earth-size planets in the ''habitable zone'' (defined as 1-2 R {sub ⊕}, 0.99-1.7 AU for solar-twin stars) as 6.4{sub −1.1}{sup +3.4}%. Our results largely agree with those of Petigura et al., although we find a higher occurrence of 2.8-4 Earth-radii planets. The reasons for this excess are the inclusion of errors in planet radius, updated Huber et al. stellar parameters, and also the exclusion of planets that may have been affected by proximity to the host star.« less

  3. Understanding the Role of Biology in the Global Environment: NASA'S Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Townsend, William F.

    1996-01-01

    NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.

  4. An independent planet search in the Kepler dataset. II. An extremely low-density super-Earth mass planet around Kepler-87

    NASA Astrophysics Data System (ADS)

    Ofir, Aviv; Dreizler, Stefan; Zechmeister, Mathias; Husser, Tim-Oliver

    2014-01-01

    Context. The primary goal of the Kepler mission is the measurement of the frequency of Earth-like planets around Sun-like stars. However, the confirmation of the smallest of Kepler's candidates in long periods around FGK dwarfs is extremely difficult or even beyond the limit of current radial velocity technology. Transit timing variations (TTVs) may offer the possibility for these confirmations of near-resonant multiple systems by the mutual gravitational interaction of the planets. Aims: We previously detected the second planet candidate in the KOI 1574 system. The two candidates have relatively long periods (about 114 d and 191 d) and are in 5:3 resonance. We therefore searched for TTVs in this particularly promising system. Methods: The full Kepler data was detrended with the proven SARS pipeline. The entire data allowed one to search for TTVs of the above signals, and to search for additional transit-like signals. Results: We detected strong anti-correlated TTVs of the 114 d and 191 d signals, dynamically confirming them as members of the same system. Dynamical simulations reproducing the observed TTVs allowed us to also determine the masses of the planets. We found KOI 1574.01 (hereafter Kepler-87 b) to have a radius of 13.49 ± 0.55 R⊕ and a mass of 324.2 ± 8.8 M⊕, and KOI 1574.02 (Kepler-87 c) to have a radius of 6.14 ± 0.29 R⊕ and a mass of 6.4 ± 0.8 M⊕. Both planets have low densities of 0.729 and 0.152 g cm-3, respectively, which is non-trivial for such cold and old (7-8 Gyr) planets. Specifically, Kepler-87 c is the lowest-density planet in the super-Earth mass range. Both planets are thus particularly amenable to modeling and planetary structure studies, and also present an interesting case where ground-based photometric follow-up of Kepler planets is very desirable. Finally, we also detected two more short-period super-Earth sized (<2 R⊕) planetary candidates in the system, making the relatively high multiplicity of this system notable

  5. Occurrence and core-envelope structure of 1-4× Earth-size planets around Sun-like stars.

    PubMed

    Marcy, Geoffrey W; Weiss, Lauren M; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A

    2014-09-02

    Small planets, 1-4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R⊕ planets with orbital periods under 100 d, and 11% have 1-2 R⊕ planets that receive 1-4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth-Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ = 2:32 + 3:19 R=R ⊕ [g cm(-3)]. Larger planets, in the radius range 1.5-4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ''mini-Neptunes.'' The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life's biochemical origins.

  6. NASA's Kepler Mission Discovers First Earth-size Planet in Habitable Zone of Another Star (Reporter Package)

    NASA Image and Video Library

    2014-04-17

    NASA's Kepler mission has discovered the first Earth-size planet orbiting in the habitable zone of a star outside our solar system. The newly discovered planet is called Kepler-186f and is about 10 percent larger than Earth.

  7. Gravitational mechanism of active life of the Earth, planets and satellites

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    From positions of geodynamic model of the forced gravitational swing, wobble and displacements of shells of a planet are studied and fundamental problems of geodynamics, geology, geophysics, planetary sciences are solved etc.: 1) The mechanism of cyclic variations of activity of natural processes in various time scales. 2) The power of endogenous activity of planetary natural processes on planets and satellites. 3) The phenomenon of polar inversion of natural processes on planets and satellites. 4) Spasmodic and catastrophic changes of activity of natural processes. 5) The phenomenon of twisting of hemispheres (latitude zones or belts) of celestial bodies. 6) Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 7) The ordered planetary structures of geological formations. 8) The phenomena of bipolarity of celestial bodies and antipodality of geology formations. Mechanism. The fundamental feature of a structure of celestial bodies is their shell structure. The most investigated is the internal structure of the Earth. For the Moon and wide set of other bodies of solar system models of an internal structure have been constructed on the basis of the data of observations obtained at studying of their gravitational fields as a result of realization of the appropriate space missions. The basic components for the majority of celestial bodies are the core, the mantle and the crust. To other shells we concern atmospheres (for example, at Venus, Mars, the Titan etc.) and oceanic shells (the Titan, the Earth, Enceladus etc.). Shells are the complex (composite) formations. Planets and satellites are not spherical celestial bodies. The centers of mass of shells of the given planet (or the satellite) and their appropriate principal axes of inertia do not coincide. Accordingly, all their shells are characterized by the certain dynamic oblatenesses. Differences of dynamical oblatenesses results in various forced influences of external celestial

  8. Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars.

    PubMed

    Segura, Antígona; Krelove, Kara; Kasting, James F; Sommerlatt, Darrell; Meadows, Victoria; Crisp, David; Cohen, Martin; Mlawer, Eli

    2003-01-01

    Coupled radiative-convective/photochemical modeling was performed for Earth-like planets orbiting different types of stars (the Sun as a G2V, an F2V, and a K2V star). O(2) concentrations between 1 and 10(-5) times the present atmospheric level (PAL) were simulated. The results were used to calculate visible/near-IR and thermal-IR spectra, along with surface UV fluxes and relative dose rates for erythema and DNA damage. For the spectral resolution and sensitivity currently planned for the first generation of terrestrial planet detection and characterization missions, we find that O(2) should be observable remotely in the visible for atmospheres containing at least 10(-2) PAL of O(2). O(3) should be visible in the thermal-IR for atmospheres containing at least 10(-3) PAL of O(2). CH(4) is not expected to be observable in 1 PAL O(2) atmospheres like that of modern Earth, but it might be observable at thermal-IR wavelengths in "mid-Proterozoic-type" atmospheres containing approximately 10(-1) PAL of O(2). Thus, the simultaneous detection of both O(3) and CH(4) - considered to be a reliable indication of life - is within the realm of possibility. High-O(2) planets orbiting K2V and F2V stars are both better protected from surface UV radiation than is modern Earth. For the F2V case the high intrinsic UV luminosity of the star is more than offset by the much thicker ozone layer. At O(2) levels below approximately 10(-2) PAL, planets around all three types of stars are subject to high surface UV fluxes, with the F2V planet exhibiting the most biologically dangerous radiation environment. Thus, while advanced life is theoretically possible on high-O(2) planets around F stars, it is not obvious that it would evolve as it did on Earth.

  9. 10 years with Planet Earth essence in the primary school children drawings

    NASA Astrophysics Data System (ADS)

    D'Addezio, Giuliana

    2016-04-01

    "10 years with Planet Earth" is the title of the 2016 INGV calendar for primary schools representing the review of a project conceived as support and complement of 15 years long INGV dissemination activities with schools. We realized 10 calendars together with and for primary schools, every year with a subject related to a World in constant evolution. Earthquakes, volcanic eruptions, tsunami waves, magnetic storms and other phenomena are manifestations of the complexity and dynamicity, which began more than four billion years ago and never halted. Since the Earth originated to the first presence of water, life and oxygen, the Cambrian explosion of species, the domain of dinosaurs, the great extinctions and glaciations, the surface of our planet experiences continents collisions, mountains and oceans formation and life forms emerging and disappearing. Every year we have launched a competition asking children to send drawings on themes chosen to stimulate learning about Earth Sciences and Planet Earth dynamics. We intended to raise awareness on issues as water resources availability, protection against natural disasters and control of environmental degradation. For each competition, we chose the most significant drawings to be included in the yearly calendar about the Earth. The authors of drawings were awarded by scientists, journalists, artists and science communicators and even by a minister. Besides the competitions, these drawings depict their own impressions and reflections, providing an opportunity to illustrate the children's point of view. From drawings and texts arise a great consideration and respect for the Planet, raising hopes that similar initiatives can contribute to increase the knowledge of the Earth and of the fragile human ecosystem in the hearts and minds of future active citizens. The project was made possible thanks to the teachers and to the wonderful students of more than 200 schools that sent about 10,000 drawings that have intrigued

  10. Kepler Mission: Detecting Earth-sized Planets in Habitable Zones

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Kepler Mission, which is presently in Phase A, is being proposed for launch in 5 years for a 4-year mission to determine the frequency of Earth-sized or larger planets in habitable zones in our galaxy. Kepler will be placed in an Earth-trailing orbit to provide stable physical environments for the sensitive scientific instruments. The satellite is equipped with a photometric system with the precision of 10E-5, which should be sufficient for detecting the transits of Earth-sized or larger planets in front of dwarf stars similar to the Sun. Approximately 100,000 or more sun-like stars brighter than the 14th apparently magnitude will be monitored continuously for 4 years in a preselected region of the sky, which is about 100 square degrees in size. In addition, Kepler will have a participating scientist program that will enable research in intrinsic variable stars, interacting binaries including cataclysmic stars and X-ray binaries, and a large number of solar analogs in our galaxy. Several ten thousand additional stars may be investigated in the guest observer program open to the whole world.

  11. The most conserved genome segments for life detection on Earth and other planets.

    PubMed

    Isenbarger, Thomas A; Carr, Christopher E; Johnson, Sarah Stewart; Finney, Michael; Church, George M; Gilbert, Walter; Zuber, Maria T; Ruvkun, Gary

    2008-12-01

    On Earth, very simple but powerful methods to detect and classify broad taxa of life by the polymerase chain reaction (PCR) are now standard practice. Using DNA primers corresponding to the 16S ribosomal RNA gene, one can survey a sample from any environment for its microbial inhabitants. Due to massive meteoritic exchange between Earth and Mars (as well as other planets), a reasonable case can be made for life on Mars or other planets to be related to life on Earth. In this case, the supremely sensitive technologies used to study life on Earth, including in extreme environments, can be applied to the search for life on other planets. Though the 16S gene has become the standard for life detection on Earth, no genome comparisons have established that the ribosomal genes are, in fact, the most conserved DNA segments across the kingdoms of life. We present here a computational comparison of full genomes from 13 diverse organisms from the Archaea, Bacteria, and Eucarya to identify genetic sequences conserved across the widest divisions of life. Our results identify the 16S and 23S ribosomal RNA genes as well as other universally conserved nucleotide sequences in genes encoding particular classes of transfer RNAs and within the nucleotide binding domains of ABC transporters as the most conserved DNA sequence segments across phylogeny. This set of sequences defines a core set of DNA regions that have changed the least over billions of years of evolution and provides a means to identify and classify divergent life, including ancestrally related life on other planets.

  12. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS

    NASA Astrophysics Data System (ADS)

    Dehant, Véronique; Breuer, Doris; Claeys, Philippe; Debaille, Vinciane; de Keyser, Johan; Javaux, Emmanuelle; Goderis, Steven; Karatekin, Ozgur; Matielli, Nadine; Noack, Lena; Spohn, Tilman; Carine Vandaele, Ann; Vanhaecke, Frank; van Hoolst, Tim; Wilquet, Valérie; The PLANET Topers Team

    2015-04-01

    The PLANET TOPERS (Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS) group is an Inter-university attraction pole (IAP) addressing the question of habitability in our Solar System. Based on the only known example of Earth, the concept refers to whether environmental conditions are available that could eventually support life, even if life does not currently exist. Life is believed to require liquid water, but important geodynamic processes affect the habitability conditions of a planet. The PLANET TOPERS group develops and closely integrates the geophysical, geological, and biological aspects of habitability with a particular focus on Earth neighboring planets, Mars and Venus. Habitability is commonly understood as "the potential of an environment (past or present) to support life of any kind" (Steele et al., 2005). Based on the only known example of Earth, the concept refers to whether environmental conditions are available that could eventually support life, even if life does not currently exist (Javaux and Dehant, 2010). Life includes properties such as consuming nutrients and producing waste, the ability to reproduce and grow, pass on genetic information, evolve, and adapt to the varying conditions on a planet (Sagan, 1970). Terrestrial life requires liquid water. The common view, however, is that extraterrestrial life would probably be based on organic chemistry in a water solvent (Pace, 2001) although alternative biochemistries have been hypothesized. The stability of liquid water at the surface of a planet defines a habitable zone (HZ) around a star. In the Solar System, it stretches between Venus and Mars, but excludes these two planets. If the greenhouse effect is taken into account, the habitable zone may have included early Mars while the case for Venus is still debated. The dynamic processes, e.g. internal dynamo, magnetic field, atmosphere, plate tectonics, mantle convection, volcanism, thermo-tectonic evolution

  13. A Planet for Goldilocks: The Search for Evidence of Life Beyond Earth

    NASA Technical Reports Server (NTRS)

    Batalha, Natalie M.

    2018-01-01

    A Planet for Goldilocks: The Search for Evidence of Life Beyond Earth "Not too hot, not too cold" begins the prescription for a world that's just right for life as we know it. Finding evidence of life beyond Earth is one of the primary goals of science agencies around the world thanks in large part to NASA's Kepler Mission which launched in 2009 with the objective of finding Goldilocks planets orbiting other stars like our Sun. Indeed, the space telescope opened our eyes to the terrestrial-sized planets that populate the galaxy as well as exotic worlds unlike anything that exists in the solar system. The mission ignited the search for life beyond earth via remote detection of atmospheric biosignatures on exoplanets. Most recently, our collective imagination was awakened by the discovery of Goldilocks worlds orbiting some of the nearest neighbors to the Sun, turning abstractions into destinations. Dr. Batalha will give an overview of the science legacy of the Kepler Mission and other key discoveries. She'll give a preview of what's to come by highlighting the missions soon to launch and those that are concepts taking shape on the drawing board.

  14. Kepler-186f, the First Earth-size Planet in the Habitable Zone Artist Concept

    NASA Image and Video Library

    2014-04-17

    This artist concept depicts Kepler-186f, the first validated Earth-size planet to orbit a distant star in the habitable zone, a range of distance from a star where liquid water might pool on the planet surface.

  15. Discovery and Mass Measurements of a Cold, 10-Earth Mass Planet and Its Host Star

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.; Muraki, Y.; Han, C.; Bennett, D. P.; Gaudi, B. S.

    2011-01-01

    We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, made with the gravitational microlensing method. This planet has a mass of mp = 10.4 +/- M(Earth) and orbits a star of Mstar = 0.56 +/- 0.09 M(Sun) at a semi-major axis of a = 3.2 + 1.9/-0.5 AU, and an orbital period of 7.6 +7.7/-1.5 yrs. The planet and host star mass measurements are due to the measurement of the microlensing parallax effect. This measurement was primarily due to the orbital motion of the Earth, but the analysis also demonstrates the capability measure micro lensing parallax with the Deep Impact (or EPOXI) spacecraft in a Heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a failed gas giant. This and future microlensing detections will test planet formation theory predictions regarding the prevalence and masses of such planets

  16. Rotational Variability of Earth's Polar Regions: Implications for Detecting Snowball Planets

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas B.; Robinson, Tyler; Livengood, Timothy A.; Deming, Drake; Agol, Eric; A'Hearn, Michael F.; Charbonneau, David; Lisse, Carey M.; Meadows, Victoria S.; Seager, Sara; Shields, Aomawa L.; Wellnitz, Dennis D.

    2011-04-01

    We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.

  17. Understanding Divergent Evolution Among Earth-like Planets, the Case for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    2001-11-01

    Venus was once considered to be Earth's twin because of its similar size, mass, and solar distance. Prevailing theories early in the 20th century alternately characterized it as a hot, lifeless desert or a cool, habitable swamp. Venus was therefore the target of intense scrutiny during the first three decades of the space age. Those studies found that although Venus and Earth apparently formed in similar parts of the solar nebula, sharing common inventories of refractory and volatile constituents, these two planets followed dramatically different evolutionary paths. While the Earth evolved into the only known oasis for life, Venus developed an almost unimaginably inhospitable environment for such an Earth-like planet. Some features of Venus can be understood as products of its location in the solar system, but other properties and processes governing the evolution and present state of its interior, surface, and climate remain mysterious or even contradictory. A more comprehensive understanding of these factors is clearly essential as NASA embarks on efforts to detect and then characterize Earth-like planets in other solar systems. As part of the National Research Council's effort to identify themes and priorities for solar system exploration over the next decade, an open community panel was formed to provide input on future Venus exploration. A comprehensive investigation of the processes driving the divergent evolution of Venus is emerging as the primary focus. In other words, why is Venus a failed Earth? From this theme, we will define specific measurement objectives, instrument requirements, and mission requirements. Priorities will then be based on a number of factors including the needs for simultaneous or correlative measurements, technology readiness, and available opportunities.

  18. Kepler: NASA's First Mission Capable of Finding Earth-Size Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William J.

    2009-01-01

    Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning

  19. Searching for New Earths: Teaching Children How We Seek Distant Planets

    NASA Astrophysics Data System (ADS)

    Pulliam, C.

    2008-06-01

    Teaching science to children ages 8-13 can be a great challenge, especially if you lack the resources for a full-blown audio/visual presentation. How do you hold their attention and get them involved? One method is to teach a topic no one else covers at this educational level: something exciting and up-to-the-minute, at the cutting edge of science. We developed an interactive 45-minute presentation to convey the two basic techniques used to locate planets orbiting other stars. Activities allowed children to hunt for their own planets in simulated data sets. We also stimulated their imagination by giving each child a take-home, multicolored marble ``planet'' and asking them to discuss their planet's characteristics. The resulting presentation ``Searching for New Earths'' could be adapted to a variety of educational settings.

  20. THE NASA-UC ETA-EARTH PROGRAM. II. A PLANET ORBITING HD 156668 WITH A MINIMUM MASS OF FOUR EARTH MASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard

    2011-01-10

    We report the discovery of HD 156668 b, an extrasolar planet with a minimum mass of M{sub P} sin i = 4.15 M{sub +}. This planet was discovered through Keplerian modeling of precise radial velocities from Keck-HIRES and is the second super-Earth to emerge from the NASA-UC Eta-Earth Survey. The best-fit orbit is consistent with circular and has a period of P = 4.6455 days. The Doppler semi-amplitude of this planet, K = 1.89 m s{sup -1}, is among the lowest ever detected, on par with the detection of GJ 581 e using HARPS. A longer period (P {approx} 2.3more » years), low-amplitude signal of unknown origin was also detected in the radial velocities and was filtered out of the data while fitting the short-period planet. Additional data are required to determine if the long-period signal is due to a second planet, stellar activity, or another source. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 156668 (an old, quiet K3 dwarf) is photometrically constant over the radial velocity period to 0.1 mmag, supporting the existence of the planet. No transits were detected down to a photometric limit of {approx}3 mmag, ruling out transiting planets dominated by extremely bloated atmospheres, but not precluding a transiting solid/liquid planet with a modest atmosphere.« less

  1. Dynamics of the Final Stages of Terrestrial Planet Growth and the Formation of the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  2. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery ofmore » {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.« less

  3. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS

    NASA Astrophysics Data System (ADS)

    Dehant, Veronique; Breuer, Doris; Claeys, Philippe; Debaille, Vinciane; De Keyser, Johan; Javaux, Emmanuelle; Goderis, Steven; Karatekin, Ozgur; Mattielli, Nadine; Noack, Lena; Spohn, Tilman; Carine Vandaele, Ann; Vanhaecke, Frank; Van Hoolst, Tim; Wilquet, Valerie

    2013-04-01

    The PLANET TOPERS (Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS) group is an Inter-university attraction pole (IAP) addressing the question of habitability in our Solar System. Habitability is commonly understood as "the potential of an environment (past or present) to support life of any kind" (Steele et al., 2005, http://mepag.jpl.nasa.gov/reports/archive.html). Based on the only known example of Earth, the concept refers to whether environmental conditions are available that could eventually support life, even if life does not currently exist (Javaux and Dehant, 2010, Astron. Astrophys. Rev., 18, 383-416, DOI: 10.1007/s00159-010-0030-4). Life includes properties such as consuming nutrients and producing waste, the ability to reproduce and grow, pass on genetic information, evolve, and adapt to the varying conditions on a planet (Sagan, 1970, Encyclopedia Britannica, 22, 964-981). Terrestrial life requires liquid water. The stability of liquid water at the surface of a planet defines a habitable zone (HZ) around a star. In the Solar System, it stretches between Venus and Mars, but excludes these two planets. If the greenhouse effect is taken into account, the habitable zone may have included early Mars while the case for Venus is still debated. Important geodynamic processes affect the habitability conditions of a planet. As envisaged by the group, this IAP develops and closely integrates the geophysical, geological, and biological aspects of habitability with a particular focus on Earth neighboring planets, Mars and Venus. It works in an interdisciplinary approach to understand habitability and in close collaboration with another group, the Helmholtz Alliance "Life and Planet Evolution", which has similar objectives. The dynamic processes, e.g. internal dynamo, magnetic field, atmosphere, plate tectonics, mantle convection, volcanism, thermo-tectonic evolution, meteorite impacts, and erosion, modify the planetary surface

  4. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  5. Water-rich planets: How habitable is a water layer deeper than on Earth?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Höning, D.; Rivoldini, A.; Heistracher, C.; Zimov, N.; Journaux, B.; Lammer, H.; Van Hoolst, T.; Bredehöft, J. H.

    2016-10-01

    Water is necessary for the origin and survival of life as we know it. In the search for life-friendly worlds, water-rich planets therefore are obvious candidates and have attracted increasing attention in recent years. The surface H2O layer on such planets (containing a liquid water ocean and possibly high-pressure ice below a specific depth) could potentially be hundreds of kilometres deep depending on the water content and the evolution of the proto-atmosphere. We study possible constraints for the habitability of deep water layers and introduce a new habitability classification relevant for water-rich planets (from Mars-size to super-Earth-size planets). A new ocean model has been developed that is coupled to a thermal evolution model of the mantle and core. Our interior structure model takes into account depth-dependent thermodynamic properties and the possible formation of high-pressure ice. We find that heat flowing out of the silicate mantle can melt an ice layer from below (in some cases episodically), depending mainly on the thickness of the ocean-ice shell, the mass of the planet, the surface temperature and the interior parameters (e.g. radioactive mantle heat sources). The high pressure at the bottom of deep water-ice layers could also impede volcanism at the water-mantle boundary for both stagnant lid and plate tectonics silicate shells. We conclude that water-rich planets with a deep ocean, a large planet mass, a high average density or a low surface temperature are likely less habitable than planets with an Earth-like ocean.

  6. Jupiter and Planet Earth. [planetary and biological evolution and natural satellites

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included.

  7. K2's First Five-Planet System

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Whats the latest from the Kepler K2 mission? K2 has found its first planetary system containing more than three planets an exciting five-planet system located ~380 light-years from Earth!Opportunities From K2Raw K2 light curve (blue, top) and systematic corrected light curve (orange, bottom) for HIP 41378. The three deepest transits are single transits from the three outermost planet candidates. [Vanderburg et al. 2016]The original Kepler mission was enormously successful, discovering thousands of planet candidates. But one side effect of Keplers original observing technique, in which it studied the same field for four years, is that it was very good at detecting extremely faint systems systems that were often too faint to be followed up with other techniques.After Keplers mechanical failure in 2013, the K2 mission was launched, in which the spacecraft uses solar pressure to stabilize it long enough to perform an 80-day searches of each region it examines. Over the course of the K2 mission, Kepler could potentially survey up to 20 times the sky area of the original mission, providing ample opportunity to find planetary systems around bright stars. These stars may be bright enough to be followed up with other techniques.Multi-Planet SystemsTheres a catch to the 80-day observing program: the K2 mission is less likely to detect multiple planets orbiting the same star, due to the short time spent observing the system. While the original Kepler mission detected systems with up to seven planets, K2 had yet to detect systems with more than three candidates until now.Led by Andrew Vanderburg (NSF Graduate Research Fellow at the Harvard-Smithsonian Center for Astrophysics), a team of scientists recentlyanalyzed K2 observations ofthe bright star HIP 41378. Theteamfound that this F-type star hosts five potential planetary candidates!Phase-folded light curve for each of the five transiting planets in the HIP 41378 system. The outermost planet (bottom panel) may provide an

  8. Extending Whole-earth Tectonics To The Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  9. Mission to Planet Earth: A program to understand global environmental change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A description of Mission to Planet Earth, a program to understand global environmental change, is presented. Topics discussed include: changes in the environment; global warming; ozone depletion; deforestation; and NASA's role in global change research.

  10. More Planets in the Hyades Cluster

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    through the K2 light curves of young stars as part of the ZEIT (Zodiacal Exoplanets in Time) Survey. Using these data, they identified the presence of three planets in the EPIC 247589423 system:a roughly Earth-sized planet ( 1.0 Earth radii) with a period of 8.0 days,the mini-Neptune identified in the other study, with a size of 2.9 Earth radii and period of 17 days, anda super-Earth, with a size of 1.5 Earth radii and period of 26 days.Light curve of EPIC 247589423 from K2, with the lower panels showing the transits of the three discovered planets. [Mann et al. 2018]The smallest planet is among the youngest Earth-sized planets ever discovered, allowing us a rare glimpse into the history and evolution of planets similar to our own.But these planetary discoveries are additionally exciting because theyre orbiting a bright star thats relatively quiet for its age making the system an excellent target for dedicated radial-velocity observations to determine the planet masses.Since most young star clusters are much further away, they lie out of range of radial-velocity follow-up, rendering EPIC 247589423 a unique opportunity to explore the properties of young planets in detail. With more discoveries like these from Keplers data, we can hope to soon learn more about planets in all their stages of evolution.CitationAndrew W. Mann et al 2018 AJ 155 4. doi:10.3847/1538-3881/aa9791

  11. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO{sub 2} degassing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@astrobio.k.u-tokyo.ac.jp

    2014-08-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO{sub 2} degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO{sub 2} degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowballmore » climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO{sub 2} degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.« less

  12. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  13. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  14. From Hot Jupiters to Super-Earths: Characterizing the Atmospheres of Extrasolar Planets with the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Knutson, Heather

    2009-05-01

    The Spitzer Space Telescope has been a remarkably successful platform for studies of exoplanet atmospheres, with notable results including the first detection of the light emitted by an extrasolar planet (Deming et al. 2005, Charbonneau et al. 2005), the first spectrum of an extrasolar planet (Richardson et al. 2007, Grillmair et al. 2007), and the first map of the flux distribution across the surface of an extrasolar planet (Knutson et al. 2007). These observations have allowed us to characterize the pressure-temperature profiles, chemistry, clouds, and circulation patterns of a select subset of the massive, close-in planets known as hot Jupiters, along with the hot Saturn HD 149026b and the cooler Neptune-mass planet GJ 436b. In my talk I will review the current status of Spitzer observations of transiting planets at the end of the cryogenic mission and look ahead to the observations planned for the two-year warm mission, which will begin this summer after the last of Spitzer's cryogen is exhausted.

  15. Three-dimensional presentation of the earth and planets in classrooms and science centers with a spherical screen

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.; Odagi, Y.; Nishi, N.; Miyazaki, S.; Ichikawa, H.

    2012-12-01

    Educational programs have been developed for the earth and planetary science using a three-dimensional presentation system of the Earth and planets with a spherical screen. They have been used in classrooms of universities, high schools, elementary schools, and science centers. Two-dimensional map is a standard tool to present the data of the Earth and planets. However the distortion of the shape is inevitable especially for the map of wide areas. Three-dimensional presentation of the Earth, such as globes, is an only way to avoid this distortion. There are several projects to present the earth and planetary science results in three-dimension digitally, such as Science on a sphere (SOS) by NOAA, and Geo-cosmos by the National Museum of Emerging Science and Innovation (Miraikan), Japan. These projects are relatively large-scale in instruments and cost, and difficult to use in classrooms and small-scale science centers. Therefore we developed a portable, scalable and affordable system of the three-dimensional presentation of the Earth and planets, Dagik Earth. This system uses a spherical screen and a PC projector. Several educational programs have been developed using Dagik Earth under collaboration of the researchers of the earth and planetary science and science education, school teachers, and curators of science centers, and used in schools and museums in Japan, Taiwan and other countries. It helps learners to achieve the proper cognition of the shape and size of the phenomena on the Earth and planets. Current status and future development of the project will be introduced in the presentation.

  16. Detection of Extrasolar Planets by Transit Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Webster, Larry; Dunham, Edward; Witteborn, Fred; Jenkins, Jon; Caldwell, Douglas; Showen, Robert; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A knowledge of other planetary systems that includes information on the number, size, mass, and spacing of the planets around a variety of star types is needed to deepen our understanding of planetary system formation and processes that give rise to their final configurations. Recent discoveries show that many planetary systems are quite different from the solar system in that they often possess giant planets in short period orbits. The inferred evolution of these planets and their orbital characteristics imply the absence of Earth-like planets near the habitable zone. Information on the properties of the giant-inner planets is now being obtained by both the Doppler velocity and the transit photometry techniques. The combination of the two techniques provides the mass, size, and density of the planets. For the planet orbiting star HD209458, transit photometry provided the first independent confirmation and measurement of the diameter of an extrasolar planet. The observations indicate a planet 1.27 the diameter of Jupiter with 0.63 of its mass (Charbonneau et al. 1999). The results are in excellent agreement with the theory of planetary atmospheres for a planet of the indicated mass and distance from a solar-like star. The observation of the November 23, 1999 transit of that planet made by the Ames Vulcan photometer at Lick Observatory is presented. In the future, the combination of the two techniques will greatly increase the number of discoveries and the richness of the science yield. Small rocky planets at orbital distances from 0.9 to 1.2 AU are more likely to harbor life than the gas giant planets that are now being discovered. However, new technology is needed to find smaller, Earth-like planets, which are about three hundred times less massive than Jupiter-like planets. The Kepler project is a space craft mission designed to discover hundreds of Earth-size planets in and near the habitable zone around a wide variety of stars. To demonstrate that the

  17. A Population of planetary systems characterized by short-period, Earth-sized planets.

    PubMed

    Steffen, Jason H; Coughlin, Jeffrey L

    2016-10-25

    We analyze data from the Quarter 1-17 Data Release 24 (Q1-Q17 DR24) planet candidate catalog from NASA's Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined ([Formula: see text]17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters.

  18. A Population of planetary systems characterized by short-period, Earth-sized planets

    PubMed Central

    Steffen, Jason H.; Coughlin, Jeffrey L.

    2016-01-01

    We analyze data from the Quarter 1–17 Data Release 24 (Q1–Q17 DR24) planet candidate catalog from NASA’s Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined (≳17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters. PMID:27790984

  19. Abiotic production of nitrous oxide by lightning. Implications for a false positive identification of life on Earth-Like Planets around quiescent M Dwarfs

    NASA Astrophysics Data System (ADS)

    Navarro, Karina F.; Navarro-Gonzalez, Rafael; McKay, Christopher P.

    Nitrous oxide (N _{2}O) is uniformly mixed in the troposphere with a concentration of about 310 ppb but disappears in the stratosphere (Prinn et al., 1990); N _{2}O is mostly emitted at a rate of 1x10 (13) g yr (-1) as a byproduct of microbial activity in soils and in the ocean by two processes: a) denitrification (reduction of nitrate and nitrite), and b) nitrification (oxidation of ammonia) (Maag and Vinther, 1996). The abiotic emission of N _{2}O in the contemporaneous Earth is small, mostly arising from lightning activity (2x10 (9) g yr (-1) , Hill et al., 1984) and by reduction of nitrite by Fe(II)-minerals in soils in Antarctica (Samarkin et al., 2010). Since N _{2}O has absorption bands in the mid-IR (7.8, 8.5, and 17 mumm) that makes it detectable by remote sensing (Topfer et al., 1997; Des Marais et al., 2002), it has been suggested as a potential biosignature in the search for life in extrasolar planets (Churchill and Kasting, 2000). However, the minimum required concentration for positive identification is 10,000 ppb with missions like Terrestrial Planet Finder and Darwin (Churchill and Kasting, 2000). Therefore, it is not a suitable biomarker for extrasolar Earth-like planets orbiting stars similar to the Sun. Because N _{2}O is protected in the troposphere from UV photolysis by the stratospheric ozone layer, its concentration would decrease with decreasing oxygen (O _{2}) concentrations, if the biological source strength remains constant (Kasting and Donahue, 1980). For a primitive Earth-like (Hadean) atmosphere dominated by CO _{2}, and no free O _{2}, the expected N _{2}O concentration would be about 3 ppb with the current microbial N _{2}O flux (Churchill and Kasting, 2000). The resulting N _{2}O spectral signature of this atmosphere would be undetectable unless the N _{2}O microbial flux would be 10 (4) greater than its present value (Churchill and Kasting, 2000). Since this flux is unlikely, it is impossible to use it as a biomarker in anoxic CO

  20. Effect of UV Radiation on the Spectral Fingerprints of Earth-like Planets Orbiting M Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, S.; Kaltenegger, L.; Segura, A.; Linsky, J.; Mohanty, S.

    2015-08-01

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with Teff = 2300 K to Teff = 3800 K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1 AU equivalent distance and show spectra from the visible to IR (0.4-20 μm) to compare detectability of features in different wavelength ranges with the James Webb Space Telescope and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. To observe signatures of life—O2/O3 in combination with reducing species like CH4—we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O2 spectral feature at 0.76 μm is increasingly difficult to detect in reflected light of later M dwarfs owing to low stellar flux in that wavelength region. N2O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH3Cl could become detectable, depending on the depth of the overlapping N2O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future light curves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the habitable zone to design and assess future telescope capabilities.

  1. Detection of Terrestrial Planets Using Transit Photometry

    NASA Astrophysics Data System (ADS)

    Koch, D.; Witteborn, F.; Jenkins, J.; Dunham, E.; Borucki, W.

    2000-12-01

    Transit photometry detection of planets offers many advantages: an ability to detect terrestrial-size planets, direct determination of the planet's size, applicability to all main-sequence stars, and a periodic signature (differential brightness change) being independent of stellar distance or planetary orbital semi-major axis. Ground and space based photometry have already been successful in detecting transits of the giant planet HD209458b (Charbonneau, et al. 2000, Castellano et al. 2000 and references therein). However, photometry 100 times better is required to detect terrestrial planets. We present results of measurements of an end-to-end photometric system incorporating all of the important confounding noise features of both the sky and a spacebased photometer including spacecraft jitter. In addition to demonstrating an instrumental noise of less than 10 ppm per transit (an Earth transit of a solar-like star is 80 ppm), the brightnesses of individual stars were dimmed to simulate Earth-size transit signals. These "transits" were reliably detected as part of the tests. Funding for this work was provided by NASA's Discovery and Origins programs and by NASA Ames. Charbonneau, D.; Brown, T.M.; Latham, D.W.; Mayor, M., ApJ, 529, L45, 2000. Castellano, T., Jenkins, J., Trilling, D. E., Doyle, L., and Koch, D., ApJ Let. 532, L51-L53 (2000)

  2. Hydrodynamics of embedded planets' first atmospheres - III. The role of radiation transport for super-Earth planets

    NASA Astrophysics Data System (ADS)

    Cimerman, Nicolas P.; Kuiper, Rolf; Ormel, Chris W.

    2017-11-01

    The population of close-in super-Earths, with gas mass fractions of up to 10 per cent represents a challenge for planet formation theory: how did they avoid runaway gas accretion and collapsing to hot Jupiters despite their core masses being in the critical range of Mc ≃ 10 M⊕? Previous three-dimensional (3D) hydrodynamical simulations indicate that atmospheres of low-mass planets cannot be considered isolated from the protoplanetary disc, contrary to what is assumed in 1D-evolutionary calculations. This finding is referred to as the recycling hypothesis. In this paper, we investigate the recycling hypothesis for super-Earth planets, accounting for realistic 3D radiation hydrodynamics. Also, we conduct a direct comparison in terms of the evolution of the entropy between 1D and 3D geometries. We clearly see that 3D atmospheres maintain higher entropy: although gas in the atmosphere loses entropy through radiative cooling, the advection of high-entropy gas from the disc into the Bondi/Hill sphere slows down Kelvin-Helmholtz contraction, potentially arresting envelope growth at a sub-critical gas mass fraction. Recycling, therefore, operates vigorously, in line with results by previous studies. However, we also identify an `inner core' - in size ≈25 per cent of the Bondi radius - where streamlines are more circular and entropies are much lower than in the outer atmosphere. Future studies at higher resolutions are needed to assess whether this region can become hydrodynamically isolated on long time-scales.

  3. Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars

    PubMed Central

    Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.

    2014-01-01

    Small planets, 1–4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth–Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1–4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ=2.32+3.19R/R⊕ [g cm−3]. Larger planets, in the radius range 1.5–4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ‘‘mini-Neptunes.’’ The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life’s biochemical origins. PMID:24912169

  4. Astrometric Planet Searches with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.

    2007-01-01

    SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

  5. Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.

  6. A scientometric prediction of the discovery of the first potentially habitable planet with a mass similar to Earth.

    PubMed

    Arbesman, Samuel; Laughlin, Gregory

    2010-10-04

    The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields.

  7. FRESIP: A Discovery Mission Concept To Find Earth-Sized Planets Around Solar Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, D.; Dunham, E.; Cullers, D.; Webster, L.; Granados, A.; Ford, C.; Reitsema, H.; Cochran, W.; Bell, J.; hide

    1994-01-01

    The current nebular theory postulates that planets are. a consequence of the formation of stars from viscous accretion disks. Condensation from the accretion disk favors the formation of small rocky planets in the hot inner region, and the formation of gas giants in the cool outer region. Consequently, terrestrial-type planet in inner orbits should be commonplace. From geometrical considerations , Borucki and Summers have shown that 1% of planetary systems resembling our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large detector array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To differentiate regularly recurring transits from statistical fluctuations of the stellar flux, one must observe over several orbital periods so that the false positive rate can be reduced to one event or less. A one-meter aperture telescope placed in a halo orbit about either the L1 or L2 Lagrange points and viewing perpendicular to both the orbital and ecliptic planes can view continuously for the required period because neither the Sun, Earth, or Moon would enter the field of view. Model calculations show that the observations should provide statistically significant estimates of the distributions of planetary size, orbital radius, coplanarity, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbiting either one or both of the stars can also be determined.

  8. Pioneering Mars: Turning the Red Planet Green with Earth's Smallest Settlers

    ERIC Educational Resources Information Center

    Cwikla, Julie; Milroy, Scott; Reider, David; Skelton, Tara

    2014-01-01

    Pioneering Mars: Turning the Red Planet Green with the Earth's Smallest Settlers (http://pioneeringmars.org) provides a partnership model for STEM (science, technology, engineering, and mathematics) learning that brings university scientists together with high school students to investigate whether cyanobacteria from Antarctica could survive on…

  9. Planet Earth: Its Past, Our Present, A Future (?)

    NASA Astrophysics Data System (ADS)

    Kieffer, S. W.

    2012-04-01

    We who have lived through the second half of the 20th century into the 21st century have witnessed a profound transition in the biological and physical relationship between humans and the rest of the planet. In the middle of the last century, our planet still had undeveloped islands: there were frontiers that held new lands, mysteries, adventures, cultures, and resources. However, these islands have merged into a relatively seamless planet by a mobile and expanding population, science and technology, and global communication. We are subject to stealth as well as natural disasters. Natural disasters result from the ongoing geological and meteorological processes on our planet, increasingly exacerbated by human presence and behavior. Stealth disasters, on the other hand, are caused by humans, but involve the natural systems that support us. Examples of stealth disasters are climate change, loss of soils, acidification of the oceans, desertification, and loss of groundwater resources. Civilization is a complex system. It has emergent properties, and a tuning parameter--a parameter that is "tuned" until the unexpected happens. The tuning parameter for populations is the number of members relative to the capacities that support them. Because of our sheer numbers, we are driving the stealth disasters, and we will be affected more severely by natural disasters than we have been in the past on a less densely populated planet. To guide our thinking about geoethical issues, we propose a (hypothetical) world organization modeled after the Centers for Disease Control (CDC) in the U.S., and call it the Center for Disaster Control for Planet Earth (CDCPE). This center would have a scientific body to provide impartial facts and uncertainties, an engineering body to propose and implement technical solutions, a negotiating body to balance the realities of political, economic, religious and cultural values, and an enforcement body that is responsive to all of the inputs. How shall

  10. A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.

    We present the discovery of a super-Earth-sized planet in or near the habitable zone of a Sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the 3-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.3%. The inner planet, Kepler-69b, has a radius of 2.24{sup +0.44}{sub -0.29} R{sub Circled-Plus} and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-sized object with a radiusmore » of 1.7{sup +0.34}{sub -0.23} R{sub Circled-Plus} and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 {+-} 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near the habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.« less

  11. Habitable Planetary Systems (un)like our own: Which of the Known Extra-Solar Systems Could Harbor Earth-like Planets?

    NASA Astrophysics Data System (ADS)

    Raymond, Sean; Mandell, A.; Sigurdsson, S.

    2006-12-01

    Gas giant planets are far easier than terrestrial planets to detect around other stars, and are thought to form much more quickly than terrestrial planets. Thus, in systems with giant planets, the final stages of terrestrial planet formation are strongly affected by the giant planets' dynamical presence. Observations of giant planet orbits may therefore constrain the systems that can harbor potentially habitable, Earth-like planets. We combine two recent studies (1,2) and establish rough inner and outer limits for the giant planet orbits that allow terrestrial planets of at least 0.3 Earth masses to form in the habitable zone (HZ). For a star like the Sun, potentially habitable planets can form in systems with relatively low-eccentricity giant planets inside 0.5 Astronomical Units (AU) or outside 2.5 AU. More than one third of the currently known giant planet systems could have formed and now harbor a habitable planet. We thank NASA Astrobiology Institute for funding, through the Penn State, NASA Goddard, Virtual Planetary Laboratory, and University of Colorado lead teams. (1. Raymond, S.N., 2006, ApJ, 643, L131.; 2. Raymond, S.N., Mandell, A.M., Sigurdsson, S. 2006, Science, 313, 1413).

  12. Cosmogonic curve and positions on it of Earth, asteroids, and the outer planets

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2013-09-01

    The main point of the comparative wave planetology [1 & others] is the statement: "Orbits make structures". All so different celestial bodies (various sizes, masses, densities, chemichal compositions, physical states, positions in the Universe and so on) have two fundamental properties: movement and rotation. Movements in non-circular (keplerian elliptical, parabolic) orbits with changing accelerations induce in bodies wave warpings (standing waves) which in rotating bodies have 4 orthogonal and diagonal directions. An interference of these directions produces uprising, subsiding and neutral tectonic blocks size of which depends on warping wavelengths. The fundamental wave1 long 2πR (R - a body radius) gives ubiquitous tectonic dichotomy (two hemispheres - segments), the first overtone wave2 long πR produces sectoring. Along with these warpings (wave1 with harmonics) exist tectonic granulations. Granule size depends on orbital frequency: higher frequency - smaller granule, lower frequency - larger granule. Terrestrial planets have the following individual granule sizes (a half of a wavelength): Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (Fig. 1, bottom). These granule producing warpings tend to bring planetary spheres to polyhedrons which, for simplicity, are represented by the following figures inscribed in the planetary circles: Mercury- 16-gon, Venus- hexagon, Earth- square, Mars- rectangle, asteroids - line (Fig. 2). Obviously, nearer a figure to circle more it is stable, and this is expressed by the ratio of a figure area to the circle area. Mercury has 0.973, Venus 0.830, Earth 0.637, Mars 0.420, asteroids 0. The line for asteroids means the zero ratio, thus zero stability and no planet in the asteroid zone. Earth is unique by its near to the "golden section" value. In Fig. 1 both axes are logarithmic: the abscissa - solar distances of the planets, the ordinate - relative granule sizes (ratio of an individual wave to the

  13. A Scientometric Prediction of the Discovery of the First Potentially Habitable Planet with a Mass Similar to Earth

    PubMed Central

    Arbesman, Samuel; Laughlin, Gregory

    2010-01-01

    Background The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. Methodology/Principal Findings Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. Conclusions/Significance Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields. PMID:20957226

  14. A laboratory demonstration of the capability to image an Earth-like extrasolar planet.

    PubMed

    Trauger, John T; Traub, Wesley A

    2007-04-12

    The detection and characterization of an Earth-like planet orbiting a nearby star requires a telescope with an extraordinarily large contrast at small angular separations. At visible wavelengths, an Earth-like planet would be 1 x 10(-10) times fainter than the star at angular separations of typically 0.1 arcsecond or less. There are several proposed space telescope systems that could, in principle, achieve this. Here we report a laboratory experiment that reaches these limits. We have suppressed the diffracted and scattered light near a star-like source to a level of 6 x 10(-10) times the peak intensity in individual coronagraph images. In a series of such images, together with simple image processing, we have effectively reduced this to a residual noise level of about 0.1 x 10(-10). This demonstrates that a coronagraphic telescope in space could detect and spectroscopically characterize nearby exoplanetary systems, with the sensitivity to image an 'Earth-twin' orbiting a nearby star.

  15. The Now Frontier. Pioneer to Jupiter. Man Links Earth and Planets. Issue No. 1-5.

    ERIC Educational Resources Information Center

    1973

    This packet of space science instructional materials includes five issues related to the planet Jupiter. Each issue presents factual material about the planet, diagramatic representations of its movements and positions relative to bright stars or the earth, actual photographs and/or tables of data collected relevant to Pioneer 10, the spacecraft…

  16. Scientific coordination of activities for university participation in mission to planet Earth

    NASA Technical Reports Server (NTRS)

    Kalb, Michael W.

    1994-01-01

    This report describes Universities Space Research Association (USRA) activities in support of the University Participation in Mission to Planet Earth. Specifically it addresses the following areas: personnel assigned to the effort, travel, consultant participants, technical progress, and contract spending.

  17. Two planetary systems with transiting Earth-size and super-Earth planets orbiting late-type dwarf stars

    NASA Astrophysics Data System (ADS)

    Alonso, E. Díez; Hernández, J. I. González; Suárez Gómez, S. L.; Aguado, D. S.; González Gutiérrez, C.; Suárez Mascareño, A.; Cabrera-Lavers, A.; González-Nuevo, J.; Toledo-Padrón, B.; Gracia, J.; de Cos Juez, F. J.; Rebolo, R.

    2018-06-01

    We present two new planetary systems found around cool dwarf stars with data from the K2 mission. The first system was found in K2-XX1 (EPIC 248545986), characterized in this work as M3.0V and observed in the 14th campaign of K2. It consists of three Earth-size transiting planets with radii of 1.1, 1.0 and 1.1 R⊕, showing a compact configuration with orbital periods of 5.24, 7.78 and 10.1 days, close to 2:3:4 resonance. The second was found in K2-XX2 (EPIC 249801827), characterized in this work as M0.5V and observed in the 15th campaign. It consists of two transiting super-Earths with radii 2.0 and 1.8 R⊕ and orbital periods of 6.03 and 20.5 days. The equilibrium temperatures of the atmospheres of these planets are estimated to be in the range of 380-600 K and the amplitudes of signals in transmission spectroscopy are estimated at ˜ 10 ppm.

  18. Coagulation calculations of icy planet formation around 0.1-0.5 M {sub ☉} stars: Super-Earths from large planetesimals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenyon, Scott J.; Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu

    2014-01-01

    We investigate formation mechanisms for icy super-Earth-mass planets orbiting at 2-20 AU around 0.1-0.5 M {sub ☉} stars. A large ensemble of coagulation calculations demonstrates a new formation channel: disks composed of large planetesimals with radii of 30-300 km form super-Earths on timescales of ∼1 Gyr. In other gas-poor disks, a collisional cascade grinds planetesimals to dust before the largest planets reach super-Earth masses. Once icy Earth-mass planets form, they migrate through the leftover swarm of planetesimals at rates of 0.01-1 AU Myr{sup –1}. On timescales of 10 Myr to 1 Gyr, many of these planets migrate through the diskmore » of leftover planetesimals from semimajor axes of 5-10 AU to 1-2 AU. A few percent of super-Earths might migrate to semimajor axes of 0.1-0.2 AU. When the disk has an initial mass comparable with the minimum-mass solar nebula, scaled to the mass of the central star, the predicted frequency of super-Earths matches the observed frequency.« less

  19. The Carbonate-Silicate Cycle on Earth-like Planets Near The End Of Their Habitable Lifetimes

    NASA Astrophysics Data System (ADS)

    Rushby, A. J.; Mills, B.; Johnson, M.; Claire, M.

    2016-12-01

    The terrestrial cycle of silicate weathering and metamorphic outgassing buffers atmospheric CO2 and global climate over geological time on Earth. To first order, the operation of this cycle is assumed to occur on Earth-like planets in the orbit of other main-sequence stars in the galaxy that exhibit similar continent/ocean configurations. This has important implications for studies of planetary habitability, atmospheric and climatic evolution, and our understanding of the potential distribution of life in the Universe. We present results from a simple biogeochemical carbon cycle model developed to investigate the operation of the carbonate-silicate cycle under conditions of differing planet mass and position within the radiative habitable zone. An active carbonate-silicate cycle does extend the length of a planet's habitable period through the regulation of the CO2 greenhouse. However, the breakdown of the negative feedback between temperature, pCO2, and weathering rates towards the end of a planet's habitable lifespan results in a transitory regime of `carbon starvation' that would inhibit the ability of oxygenic photoautotrophs to metabolize, and result in the collapse of any putative biosphere supported by these organisms, suggesting an earlier limit for the initiation of inhabitable conditions than when considering temperature alone. This conclusion stresses the importance of considering the full suite of planetary properties when determining potential habitability. A small sample of exoplanets was tested using this model, and the length of their habitable periods were found to be significantly longer than that of the Earth, primarily as a function of the differential rates of stellar evolution expected from their host stars. Furthermore, we carried out statistical analysis of a series of model input parameters, determining that both the mass of the planet and the sensitivity of seafloor weathering processes to dissolved CO2 exhibit significant controls on the

  20. Modeling the Surface Temperature of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Vladilo, Giovanni; Silva, Laura; Murante, Giuseppe; Filippi, Luca; Provenzale, Antonello

    2015-05-01

    We introduce a novel Earth-like planet surface temperature model (ESTM) for habitability studies based on the spatial-temporal distribution of planetary surface temperatures. The ESTM adopts a surface energy balance model (EBM) complemented by: radiative-convective atmospheric column calculations, a set of physically based parameterizations of meridional transport, and descriptions of surface and cloud properties more refined than in standard EBMs. The parameterization is valid for rotating terrestrial planets with shallow atmospheres and moderate values of axis obliquity (ɛ ≲ 45{}^\\circ ). Comparison with a 3D model of atmospheric dynamics from the literature shows that the equator-to-pole temperature differences predicted by the two models agree within ≈ 5 K when the rotation rate, insolation, surface pressure and planet radius are varied in the intervals 0.5≲ {Ω }/{{{Ω }}\\oplus }≲ 2, 0.75≲ S/{{S}\\circ }≲ 1.25, 0.3≲ p/(1 bar)≲ 10, and 0.5≲ R/{{R}\\oplus }≲ 2, respectively. The ESTM has an extremely low computational cost and can be used when the planetary parameters are scarcely known (as for most exoplanets) and/or whenever many runs for different parameter configurations are needed. Model simulations of a test-case exoplanet (Kepler-62e) indicate that an uncertainty in surface pressure within the range expected for terrestrial planets may impact the mean temperature by ˜ 60 K. Within the limits of validity of the ESTM, the impact of surface pressure is larger than that predicted by uncertainties in rotation rate, axis obliquity, and ocean fractions. We discuss the possibility of performing a statistical ranking of planetary habitability taking advantage of the flexibility of the ESTM.

  1. False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth

    NASA Astrophysics Data System (ADS)

    Reinhard, Christopher T.; Olson, Stephanie L.; Schwieterman, Edward W.; Lyons, Timothy W.

    2017-04-01

    Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth - oxygen (O2), ozone (O3), and methane (CH4). We suggest that the canonical O2-CH4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ˜4.5-billion-year history and that in general atmospheric O2/O3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ˜500 million years. We further suggest that detecting atmospheric CH4 would have been problematic for most of the last ˜2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures.

  2. The Potential for Volcanism and Tectonics on Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Quick, Lynnae C.; Roberge, Aki

    2018-01-01

    JWST and other next-generation space telescopes (e.g., LUVOIR, HabEx, & OST) will usher in a new era of exoplanet characterization that may lead to the identification of habitable, Earth-like worlds. Like the planets and moons in our solar system, the surfaces and interiors of terrestrial exoplanets may be shaped by volcanism and tectonics (Fu et al., 2010; van Summeren et al., 2011; Henning and Hurford, 2014). The magnitude and rate of occurrence of these dynamic processes can either facilitate or preclude the existence of habitable environments. Likewise, it has been suggested that detections of cryovolcanism on icy exoplanets, in the form of geyser-like plumes, could indicate the presence of subsurface oceans (Quick et al., 2017).The presence of volcanic and tectonic activity on solid exoplanets will be intimately linked to planet size and heat output in the form of radiogenic and/or tidal heating. In order to place bounds on the potential for such activity, we estimated the heat output of a variety of exoplanets observed by Kepler. We considered planets whose masses and radii range from 0.067 ME (super-Ganymede) to 8 ME (super-Earth), and 0.5 to 1.8 RE, respectively. These heat output estimates were then compared to those of planets, moons, and dwarf planets in our solar system for which we have direct evidence for the presence/absence of volcanic and tectonic activity. After exoplanet heating rates were estimated, depths to putative molten layers in their interiors were also calculated. For planets such as TRAPPIST-1h, whose densities, orbital parameters, and effective temperatures are consistent with the presence of significant amounts of H2O (Luger et al., 2017), these calculations reveal the depths to internal oceans which may serve as habitable niches beneath surface ice layers.

  3. International Year of Planet Earth Cooperating with Other Years in 2007-2009

    NASA Astrophysics Data System (ADS)

    de Mulder, E. F.

    2006-05-01

    After its inception in 2001, the International Year of Planet Earth was proclaimed for 2008 by the UN General Assembly in December 2005. The UN Year will be in the core of a triennium, starting in January 2007 and closing by the end of 2009. Through UN proclamation, it has gained the political support by 191 UN nations. The International Year of Planet Earth was initiated by the International Union of Geological Sciences (IUGS) finding UNESCO's Earth Sciences Division ready as co-initiator. It enjoys the backing of all relevant IUGS's sister unions in ICSU, including IUGG, IGU, IUSS, ISPRS and INQUA among its 12 Founding Partners and AGI, AAPG and AIPG as major USA based international geoscientific organizations. Moreover, the initiative is supported by 26 more geoscientific and other relevant bodies. The aim of the Year, encapsulated in its subtitle Earth sciences for Society, is to build awareness of the relationship between humankind and Planet Earth, and to demonstrate that geoscientists are key players in creating a balanced, sustainable future for both. In this respect it aims to convince politicians to apply the wealth of geodata and information in day-to-day policy making. The International Year includes a Science and an Outreach Programme, both of equal financial size. The ten Science Themes (Groundwater, Hazards, Health, Climate, Resources, Deep Earth, Ocean, Megacities, Soils, and Life) in the Science Programme were selected for their societal impact, their potential for outreach, as well as their multidisciplinary nature and high scientific potential. Brochures with key questions and invitations for scientists to submit project proposals have been printed for each Theme and can be downloaded from www.yearofplanetearth.org. The same bottom-up mode is applied for the Outreach Programme which will operate as a funding body, receiving bids for financial support - for anything from web-based educational resources to commissioning works of art that will help

  4. Behaviour of Rare Earth Elements during the Earth's core formation

    NASA Astrophysics Data System (ADS)

    Faure, Pierre; Bouhifd, Mohamed Ali; Boyet, Maud; Hammouda, Tahar; Manthilake, Geeth

    2017-04-01

    presence of water during the formation of metallic core of terrestrial planets is very plausible [e.g. 6-8]. References [1] Pack et al. (2004) Science 303, 997-1000. [2] Crozaz and Lundberg (1995) Geochim. Cosmochim. Acta 59, 3817-3831. [3] Gannoun et al. (2011) Geochim. Cosmochim. Acta 75, 3269-3289. [4] Bouhifd et al. (2015) Earth Planet. Sci. Lett. 413, 158-166. [5] Wohlers and Wood (2015) Nature 520, 337-340. [6] Marty (2012) Earth Planet. Sci. Lett. 313-314, 56-66. [7] Morbidelli et al. (2000) Meteor. Planet. Sci. 1320, 1309-1320. [8] Sarafian et al. (2014 Science 346, 623-626.

  5. Then Why Do They Call Earth the Blue Planet?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    While the most common photographs of Earth taken from space show the planet covered in blue water, NASA has managed to produce detailed color images, using satellite imagery, that show the remarkable variation of colors that actually make up the oceanic surface. An ocean s color is determined by the interaction of surface waters with sunlight, and surface waters can contain any number of different particles and dissolved substances, which could then change the color. Then Why Do They Call Earth the Blue Planet? The particles are mostly phytoplankton, the microscopic, single-celled ocean plants that are the primary food source for much marine life. Remote detection of phytoplankton provides information about the uptake and cycling of carbon by the ocean through photosynthesis, as well as the overall health of the water. Inorganic particles and substances dissolved in the water also affect its color, particularly in coastal regions. Satellite images can be used to calculate the concentrations of these materials in surface waters, as well as the levels of biological activity. The satellites allow a global view that is not available from ship or shore. NASA s orbiting satellites offer a unique vantage point for studying the oceans. By resolving the biological, chemical, and physical conditions in surface waters, they have allowed the oceanographic community to make huge leaps in its understanding of oceanographic processes on regional and global fronts. The study of ocean color, in particular, has been integral in helping researchers understand the natural and human-induced changes in the global environment and establishing the role of the oceans in the biochemical cycles of elements that influence the climate and the distribution of life on Earth.

  6. International Geo-Years: Cooperation Between Planet Earth and Electronic Years

    NASA Astrophysics Data System (ADS)

    de Mulder, E.

    2005-05-01

    Momentum is growing behind an ambitious international multidisciplinary Earth science initiative. The International Year of Planet Earth project was conceived by the International Union of Geological Sciences (IUGS) finding UNESCO's Earth Sciences Division ready as co-initiator. It now enjoys the backing of all relevant IUGS's sister unions in ICSU, including IUGG, and through a Declaration adopted at the International Geological Congress (2004) of the global geoscience community. It has now won the full political backing of 14 nations, together representing half of the world population. The aim of the Year, encapsulated in its subtitle Earth sciences for Society, is to build awareness of the relationship between humankind and Planet Earth, and to demonstrate that geoscientists are key players in creating a balanced, sustainable future for both. 2007 or 2008 is aimed for the officially endorsed UN-year, but the whole project will begin one year ahead and run through to at least one year after the UN-year. The International Year includes a Science and an Outreach Programme, both of equal financial size. The eight Themes (Groundwater, Hazards, Health, Climate, Resources, Deep Earth, Ocean, and Megacities) in the Science Programme were selected for their societal impact, their potential for outreach, as well as their multidisciplinary nature and high scientific potential. Applications for more Themes (on `Soil' and on `Life') are being considered. Brochures with key questions and invitations for scientists to submit project proposals are being printed for each Theme and can be downloaded from www.esfs.org. The same bottom-up mode is applied for the Outreach Programme which will operate as a funding body, receiving bids for financial support - for anything from web-based educational resources to commissioning works of art that will help reinforce to the general public the central message of the Year. There are many potential interfaces and links between this initiative

  7. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    PubMed

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  8. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  9. Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1

    NASA Astrophysics Data System (ADS)

    de Wit, Julien; Wakeford, Hannah R.; Lewis, Nikole K.; Delrez, Laetitia; Gillon, Michaël; Selsis, Frank; Leconte, Jérémy; Demory, Brice-Olivier; Bolmont, Emeline; Bourrier, Vincent; Burgasser, Adam J.; Grimm, Simon; Jehin, Emmanuël; Lederer, Susan M.; Owen, James E.; Stamenković, Vlada; Triaud, Amaury H. M. J.

    2018-03-01

    Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted atmospheres3-6. Hydrogen in particular is a powerful greenhouse gas that may prevent the habitability of inner planets while enabling the habitability of outer ones6-8. An atmosphere largely dominated by hydrogen, if cloud-free, should yield prominent spectroscopic signatures in the near-infrared detectable during transits. Observations of the innermost planets have ruled out such signatures9. However, the outermost planets are more likely to have sustained such a Neptune-like atmosphere10, 11. Here, we report observations for the four planets within or near the system's habitable zone, the circumstellar region where liquid water could exist on a planetary surface12-14. These planets do not exhibit prominent spectroscopic signatures at near-infrared wavelengths either, which rules out cloud-free hydrogen-dominated atmospheres for TRAPPIST-1 d, e and f, with significance of 8σ, 6σ and 4σ, respectively. Such an atmosphere is instead not excluded for planet g. As high-altitude clouds and hazes are not expected in hydrogen-dominated atmospheres around planets with such insolation15, 16, these observations further support their terrestrial and potentially habitable nature.

  10. Melting-induced crustal production helps plate tectonics on Earth-like planets

    NASA Astrophysics Data System (ADS)

    Lourenço, Diogo L.; Rozel, Antoine; Tackley, Paul J.

    2016-04-01

    Within our Solar System, Earth is the only planet to be in a mobile-lid regime. It is generally accepted that the other terrestrial planets are currently in a stagnant-lid regime, with the possible exception of Venus that may be in an episodic-lid regime (Armann and Tackley, JGR 2012). Using plastic yielding to self-consistently generate plate tectonics on an Earth-like planet with strongly temperature-dependent viscosity is now well-established, but such models typically focus on purely thermal convection, whereas compositional variations in the lithosphere can alter the stress state and greatly influence the likelihood of plate tectonics. For example, Rolf and Tackley (GRL, 2011) showed that the addition of a continent can reduce the critical yield stress for mobile-lid behaviour by a factor of around two. Moreover, it has been shown that the final tectonic state of the system can depend on the initial condition (Tackley, G3 2000 - part 2). Weller and Lenardic (GRL, 2012) found that the parameter range in which two solutions are obtained increases with viscosity contrast. We can also say that partial melting has a major role in the long-term evolution of rocky planets: (1) partial melting causes differentiation in both major elements and trace elements, which are generally incompatible (Hofmann, Nature 1997). Trace elements may contain heat-producing isotopes, which contribute to the heat loss from the interior; (2) melting and volcanism are an important heat loss mechanism at early times that act as a strong thermostat, buffering mantle temperatures and preventing it from getting too hot (Xie and Tackley, JGR 2004b); (3) mantle melting dehydrates and hardens the shallow part of the mantle (Hirth and Kohlstedt, EPSL 1996) and introduces viscosity and compositional stratifications in the shallow mantle due to viscosity variations with the loss of hydrogen upon melting (Faul and Jackson, JGR 2007; Korenaga and Karato, JGR 2008). We present a set of 2D spherical

  11. Development and Application of the Transit Timing Planet Detection Technique

    NASA Astrophysics Data System (ADS)

    Steffen, J. H.; Agol, E.

    2005-12-01

    We present the development and application of a new planet detection technique that uses the transit timing of a known, transiting planet. The transits of a solitary planet orbiting a star occur at equally spaced intervals in time. If a second planet is present, then dynamical interactions within the system will cause the time interval between transits to vary. These transit time variations (TTV) can be used to infer the orbital elements and mass of the unseen, perturbing planet. In some cases, particularly near mean-motion resonances, this technique could detect planets with masses less than the mass of the Earth---a capability not yet achieved by other planet detection schemes. We present an analysis of the set of transit times of the TrES-1 system given by Charbonneau et al. (2005). While no convincing evidence for a second planet in the TrES-1 system was found from that data, we constrain the mass that a perturbing planet could have as a function of the semi-major axis ratio of the two planets and the eccentricity of the perturbing planet. Near low-order, mean-motion resonances (within about 1% fractional deviation), we find that a secondary planet must generally have a mass comparable to or less than the mass of the Earth--showing that this data is the first to have sensitivity to sub Earth-mass planets. We present results from our studies that use simulated data and from an ongoing analysis of the HD209458 system. These results show that TTV will be an important tool in the detection and characterization of extrasolar planetary systems.

  12. Theory for the Origin and Evolution of Stars and Planets, Including Earth

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2001-05-01

    In this paper we present a novel hypothesis for the formation and evolution of galaxies, stars (including black holes (BHs), giant, mid-size, dwarf, dying and dead stars), planets (including earth), and moons. Present day phenomenon will be used to substantiate the validity of this hypothesis. Every `body' is a multiple type of star, generated from pieces called particle proliferators, of a dislodged/expanded BH which explodes due to a collision with another expanded BH. This includes the sun, and the planet earth, which is a type of dead star. Such that, if we remove layers of the earth, starting with the crust, we will find evidence of each preceding star formation, such as a brown star, a red star, a white star, a blue star, and the remains of the particle proliferator as the innermost core is reached. We intend to show that the hypothesis is consistent with both the available astronomical data regarding stellar evolution and planetary formation; as well as the evolution of the earth itself, by considerations of the available geophysical data. Where data is not available, reasonably simple experiments will be suggested to demonstrate further the consistency and viability of the hypothesis. Theories are presented to help define and explain phenomenon such as how two (or more) BHs expand and collide to form a small `big bang' (it is postulated that there was a small big bang to form each galaxy). This in turn afforded the material/matter to form all the galactic bodies, including the dark matter. The start and development of the planet earth, initially as an emergent piece from the colliding BHs, is given special attention to explain the continuing expansion/growth that takes place in all stars and planets. Also, to explain the formation of the land, the growing/expanding earth (proportional to the ocean bed growth), the division of the continents, and the formation of the ocean beds (possibly long before the oceans existed). Attempts will be made to explain the

  13. The harmonic development of the Earth tide generating potential due to the direct effect of the planets

    NASA Astrophysics Data System (ADS)

    Hartmann, Torsten; Wenzel, Hans-Georg

    1994-09-01

    The time-harmonic development of the Earth tide generating potential due to the direct effect of the planets Venus, Jupiter, Mars, Mercury and Saturn has been computed. The catalog of the fully normalized potential coefficients contains 1483 waves. It is based on the DE102 numerical ephemeris of the planets between years 1900 and 2200. Gravity tides due to the planets computed from the catalog at the surface of the Earth have an accuracy of about 0.027 pm/sq s (1 pm/sq s = 10(exp -12) m/sq s = 0.1 ngal) rms and 0.160 / 0.008 pm/sq s at maximum in time / frequency domain using the new benchmark tidal gravity series (Wenzel 1994).

  14. Dependence of the Onset of the Runaway Greenhouse Effect on the Latitudinal Surface Water Distribution of Earth-Like Planets

    NASA Astrophysics Data System (ADS)

    Kodama, T.; Nitta, A.; Genda, H.; Takao, Y.; O'ishi, R.; Abe-Ouchi, A.; Abe, Y.

    2018-02-01

    Liquid water is one of the most important materials affecting the climate and habitability of a terrestrial planet. Liquid water vaporizes entirely when planets receive insolation above a certain critical value, which is called the runaway greenhouse threshold. This threshold forms the inner most limit of the habitable zone. Here we investigate the effects of the distribution of surface water on the runaway greenhouse threshold for Earth-sized planets using a three-dimensional dynamic atmosphere model. We considered a 1 bar atmosphere whose composition is similar to the current Earth's atmosphere with a zonally uniform distribution of surface water. As previous studies have already showed, we also recognized two climate regimes: the land planet regime, which has dry low-latitude and wet high-latitude regions, and the aqua planet regime, which is globally wet. We showed that each regime is controlled by the width of the Hadley circulation, the amount of surface water, and the planetary topography. We found that the runaway greenhouse threshold varies continuously with the surface water distribution from about 130% (an aqua planet) to 180% (the extreme case of a land planet) of the present insolation at Earth's orbit. Our results indicate that the inner edge of the habitable zone is not a single sharp boundary, but a border whose location varies depending on planetary surface condition, such as the amount of surface water. Since land planets have wider habitable zones and less cloud cover, land planets would be good targets for future observations investigating planetary habitability.

  15. Optical Images of an Exosolar Planet 25 Light-Years from Earth

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2008-01-01

    Fomalhaut is a bright star 7.7 parsec (25 light year) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate. Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star, and within 18 All of the dust belt. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 micron flux is also consistent with that of a planet with mass a few limes that of Jupiter. The brightness at 0.6 microns and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 microns.

  16. Optical Images of an Exosolar Planet 25 Light Years from Earth

    NASA Technical Reports Server (NTRS)

    Kalas, Paul; Graham, James R.; Chiang, Eugene; Fitzgerald, Michael P.; Clampin, Mark; Kite, Edwin S.; Stapelfeldt, Karl; Marois, Christian; Krist, John

    2008-01-01

    Fomalhaut is a bright star 7.7 parsecs (25 light years) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star and 18 AU from the dust belt, matching predictions. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 m is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 micron and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 micron.

  17. Optical images of an exosolar planet 25 light-years from Earth.

    PubMed

    Kalas, Paul; Graham, James R; Chiang, Eugene; Fitzgerald, Michael P; Clampin, Mark; Kite, Edwin S; Stapelfeldt, Karl; Marois, Christian; Krist, John

    2008-11-28

    Fomalhaut, a bright star 7.7 parsecs (25 light-years) from Earth, harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. Fomalhaut b lies about 119 astronomical units (AU) from the star and 18 AU of the dust belt, matching predictions of its location. Hubble Space Telescope observations separated by 1.73 years reveal counterclockwise orbital motion. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter; a higher mass would lead to gravitational disruption of the belt, matching predictions of its location. The flux detected at 0.8 mum is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 mum and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observe variability of unknown origin at 0.6 mum.

  18. False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth.

    PubMed

    Reinhard, Christopher T; Olson, Stephanie L; Schwieterman, Edward W; Lyons, Timothy W

    2017-04-01

    Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth-oxygen (O 2 ), ozone (O 3 ), and methane (CH 4 ). We suggest that the canonical O 2 -CH 4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ∼4.5-billion-year history and that in general atmospheric O 2 /O 3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ∼500 million years. We further suggest that detecting atmospheric CH 4 would have been problematic for most of the last ∼2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures. Key Words: Biosignatures-Oxygen-Methane-Ozone-Exoplanets-Planetary habitability. Astrobiology 17, 287-297.

  19. International Year of Planet Earth - Activities and Plans in Mexico

    NASA Astrophysics Data System (ADS)

    Alaniz-Alvarez, S.; Urrutia-Fucugauchi, J.

    2007-12-01

    IYPE started as a joint initiative by UNESCO and IUGS with participation of several geosciences organizations, and has developed into a major program in geosciences with inclusion of national committees. In this presentation we focus on current activities and plans in our country, and in the international activities. IYPE activities have concentrated in publications and organization of conferences and meetings. A book series on Earth Science Experiments for Children has been defined, with the first books published on "Atmospheric Pressure and Free Fall of Objects" and "Light and Colors". Following books are on "Standing on Archimedes" and "Foucault and the Climate". Books are distributed free to school children, with more than 10,000 copies given of first volume. Other publications include the special issues of El Faro science magazine edited by the National University, with last issue published and distributed electronically and in hard copies this August. Special events include Conference of IYPE Executive Director presented during the International Day of Science Museums in late May in Science Museum Universum. This was followed by a Planet Earth Week in the University. Current plans include an electronic open-access publication, additional publications of the Planet Earth series, articles and special issues in journals and magazines, and events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Life. The metropolitan area of Mexico City, with around 20 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management. Involvement in international activities includes translation into Spanish of IYPE publications and the participation in programs and activities. In addition to activities in the different countries, we consider that IYPE should result in initiatives for

  20. Making an Iron Planet: The Case for Repeated Hit and Run Collisions

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Reufer, A.

    2014-12-01

    Earth, Venus, Mars and some of the largest asteroids have massive silicate mantles surrounding iron cores, and chondritic compositions. Against this backdrop are anomalies like the iron planet Mercury, and the Moon with almost no core, and metallic asteroids like Psyche. The Moon can be explained by giant impact, but for Mercury a giant impact (Benz et al., Icarus 1988) is problematic. Mercury must retain substantial volatiles after its obliteration (e.g. Peplowski et al., Science 2011), and must somehow avoid accreting its ejected silicates (Gladman and Coffey, MAPS 2009). SPH simulations have shown (Asphaug and Reufer, Nature Geosciences 2014; Sarid et al., LPSC 2014) that a differentiated chondritic proto-Mercury about 3 times its present mass can be stripped of its mantle in one energetic hit and run collision with a larger planet (proto-Venus or proto-Earth). To preserve Mercury's volatiles we also consider the scenario of lower energy hit and runs, in succession. We show that if 20 Mars-like planets accreted stochastically to form Venus and the Earth, then the statistics of attrition is likely to lead to one planet (Mercury) expressing repeated mantle stripping, and another planet (Mars) relatively undisturbed. For iron asteroids the "missing mantle paradox" likewise looms prominent. Where does it go, and how do we strip away so much mantle rock (in some cases down to a bare iron core; Yang et al., Nature 2007, Moskovitz et al., EPSL 2011) while leaving asteroids like Vesta presumably intact? According to the hit and run hypothesis, the sink for all this missing silicate is the larger accreted bodies at the top of the feeding chain, as they win the pairwise dynamical competition for stripped materials. This exotic origin of relics is only relevant to those few pairwise encounters that do not accrete both bodies. So the small survivors are lucky, and how they are lucky -- their attrition bias -- is manifested as compositional diversity and a preponderance of

  1. Habitable Zone Planets: PLATO, and the search for Earth 2.0

    NASA Astrophysics Data System (ADS)

    Brown, D. J. A.

    2015-10-01

    The PLATO mission, part of ESA's Cosmic Vision program, will launch in 2024 and will revolutionize the field of transiting exoplanets. By observing a large sample of bright stars, PLATO will discover thousands of terrestrial planets, including hundreds in the habitable zones of their host stars. The brightness of PLATO targets allows full characterization of both the planets and their host stars, including asteroseismic analysis to precisely determine masses, radii, and ages. Moreover, PLATO host stars will be bright enough to allow atmospheric spectroscopy. Confirmation and characterization of PLATO planets will require a coordinated, ground-based follow-up program to both eliminate false-positives, and derive planetary masses. I will present an introduction to PLATO, discussing the scientific motivation behind the mission, its aims and goals, and the significant contribution that PLATO will make to the search for a second Earth. I will also talk about the requirements and formulation of the follow-up program, showing that the demands are not as onerous as might be feared.

  2. Giant Impacts on Earth-Like Worlds

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to

  3. Observed properties of extrasolar planets.

    PubMed

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  4. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    PubMed

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  5. Plans for living on a restless planet sets NASA's solid Earth agenda

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Baker, V. R.; Bloxham, J.; Booth, J.; Donnellan, A.; Elachi, C.; Evans, D.; Rignot, E.; Burbank, D.; Chao, B. F.; hide

    2003-01-01

    What are the most important challenges facing solid Earth science today and over the next two decades? And what is the best approach for NASA, in partnership with other agencies, to address these challenges? A new report, living on a restless planet, provides a blueprint for answering these questions. The top priority for a new spacecraft mission in the area of solid earth science over the next 5 years, according to this report, is a satellite dedicated to interferometric synthetic aperture radar(inSAR).

  6. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability.

    PubMed

    Raymond, Sean N; Quinn, Thomas; Lunine, Jonathan I

    2007-02-01

    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.

  7. A Revised Estimate of the Occurrence Rate of Terrestrial Planets in the Habitable Zones around Kepler M-dwarfs

    NASA Astrophysics Data System (ADS)

    Kopparapu, Ravi Kumar

    2013-04-01

    Because of their large numbers, low-mass stars may be the most abundant planet hosts in our Galaxy. Furthermore, terrestrial planets in the habitable zones (HZs) around M-dwarfs can potentially be characterized in the near future and hence may be the first such planets to be studied. Recently, Dressing & Charbonneau used Kepler data and calculated the frequency of terrestrial planets in the HZ of cool stars to be 0.15^{+0.13}_{-0.06} per star for Earth-size planets (0.5-1.4 R ⊕). However, this estimate was derived using the Kasting et al. HZ limits, which were not valid for stars with effective temperatures lower than 3700 K. Here we update their result using new HZ limits from Kopparapu et al. for stars with effective temperatures between 2600 K and 7200 K, which includes the cool M stars in the Kepler target list. The new HZ boundaries increase the number of planet candidates in the HZ. Assuming Earth-size planets as 0.5-1.4 R ⊕, when we reanalyze their results, we obtain a terrestrial planet frequency of 0.48^{+0.12}_{-0.24} and 0.53^{+0.08}_{-0.17} planets per M-dwarf star for conservative and optimistic limits of the HZ boundaries, respectively. Assuming Earth-size planets as 0.5-2 R ⊕, the frequency increases to 0.51^{+0.10}_{-0.20} per star for the conservative estimate and to 0.61^{+0.07}_{-0.15} per star for the optimistic estimate. Within uncertainties, our optimistic estimates are in agreement with a similar optimistic estimate from the radial velocity survey of M-dwarfs (0.41^{+0.54}_{-0.13}). So, the potential for finding Earth-like planets around M stars may be higher than previously reported.

  8. On the Effects of the Evolution of Microbial Mats and Land Plants on the Earth as a Planet. Photometric and Spectroscopic Light Curves of Paleo-Earths

    NASA Astrophysics Data System (ADS)

    Sanromá, E.; Pallé, E.; García Munõz, A.

    2013-04-01

    Understanding the spectral and photometric variability of the Earth and the rest of the solar system planets has become of utmost importance for the future characterization of rocky exoplanets. As this is not only interesting at present times but also along the planetary evolution, we studied the effect that the evolution of microbial mats and plants over land has had on the way our planet looks from afar. As life evolved, continental surfaces changed gradually and non-uniformly from deserts through microbial mats to land plants, modifying the reflective properties of the ground and most likely the distribution of moisture and cloudiness. Here, we used a radiative transfer model of the Earth, together with geological paleo-records of the continental distribution and a reconstructed cloud distribution, to simulate the visible and near-IR radiation reflected by our planet as a function of Earth's rotation. We found that the evolution from deserts to microbial mats and to land plants produces detectable changes in the globally averaged Earth's reflectance. The variability of each surface type is located in different bands and can induce reflectance changes of up to 40% in period of hours. We conclude that by using photometric observations of an Earth-like planet at different photometric bands it would be possible to discriminate between different surface types. While recent literature proposes the red-edge feature of vegetation near 0.7 μm as a signature for land plants, observations in near-IR bands can be equally or even better suited for this purpose.

  9. Headlines: Planet Earth: Improving Climate Literacy with Short Format News Videos

    NASA Astrophysics Data System (ADS)

    Tenenbaum, L. F.; Kulikov, A.; Jackson, R.

    2012-12-01

    One of the challenges of communicating climate science is the sense that climate change is remote and unconnected to daily life--something that's happening to someone else or in the future. To help face this challenge, NASA's Global Climate Change website http://climate.nasa.gov has launched a new video series, "Headlines: Planet Earth," which focuses on current climate news events. This rapid-response video series uses 3D video visualization technology combined with real-time satellite data and images, to throw a spotlight on real-world events.. The "Headlines: Planet Earth" news video products will be deployed frequently, ensuring timeliness. NASA's Global Climate Change Website makes extensive use of interactive media, immersive visualizations, ground-based and remote images, narrated and time-lapse videos, time-series animations, and real-time scientific data, plus maps and user-friendly graphics that make the scientific content both accessible and engaging to the public. The site has also won two consecutive Webby Awards for Best Science Website. Connecting climate science to current real-world events will contribute to improving climate literacy by making climate science relevant to everyday life.

  10. Planet Earth, Humans, Gravity and Their Connection to Natural Medicine-Essence from a 5000 Yrs Old Ancient Pedagogy

    NASA Astrophysics Data System (ADS)

    Lakshmanan, S.; Monsanto, C.; Radjendirane, B.

    2015-12-01

    According to the Ancient Indian Science, the fundamental constituents of planet earth are the five elements (Solid, Liquid, Heat, Air and Akash (subtlest energy field)). The same five elements constitute the human body. The Chinese and many other native traditions have used their deep understanding of these elements to live in balance with the planet. David Suzuki has elaborated on this key issue in his classic book, The Legacy: "Today we are in a state of crisis, and we must join together to respond to that crisis. If we do so, Suzuki envisions a future in which we understand that we are the Earth and live accordingly. All it takes is imagination and a determination to live within our, and the planet's, means". Gravity, the common force that connects both the body and earth plays a major role in the metabolism as well as the autonomous function of different organs in the body. Gravity has a direct influence on the fruits and vegetables that are grown on the planet as well. As a result, there is a direct relationship among gravity, food and human health. My talk will cover the missing link between the Earth's Gravity and the human health. A new set of ancient axioms will be used to address this and many other issues that are remain as "major unsolved problems" linking modern Geophysical and Health sciences.

  11. False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth

    PubMed Central

    Olson, Stephanie L.; Schwieterman, Edward W.; Lyons, Timothy W.

    2017-01-01

    Abstract Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth—oxygen (O2), ozone (O3), and methane (CH4). We suggest that the canonical O2-CH4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ∼4.5-billion-year history and that in general atmospheric O2/O3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ∼500 million years. We further suggest that detecting atmospheric CH4 would have been problematic for most of the last ∼2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures. Key Words: Biosignatures—Oxygen—Methane—Ozone—Exoplanets—Planetary habitability. Astrobiology 17, 287–297. PMID:28418704

  12. Kepler False Positive Rate & Occurrence of Earth-size and Larger Planets

    NASA Astrophysics Data System (ADS)

    Fressin, Francois; Torres, G.; Charbonneau, D.; Kepler Team

    2013-01-01

    We model the Kepler exoplanet survey targets and their background stars to estimate the occurrence of astrophysical configurations which could mimic an exoplanetary transit. Using real noise level estimates, we compute the number and the characteristics of detectable eclipsing pairs involving stars or planets. We select the fraction of those that would pass the Kepler candidate vetting procedure, including the modeling of the centroid shift of their position on the Kepler camera. By comparing their distribution with that of the Kepler Object Interests from the first 6 quarters of Kepler data, we quantify the false positive rate of Kepler, as a function of candidate planet size and period. Most importantly, this approach allows quantifying and characterizing the distribution of planets, with no assumption of any prior, as the remaining population of the Kepler candidate list minus the simulated population of alternate astrophysical causes. We study the actual detection recovery rate for Kepler that allows reproducing both the KOI size and period distribution as well as their SNR distribution. We estimate the occurrence of planets down to Earth-size, and study if their frequency is correlated with their host star spectral type. This work is supported by the Spitzer General Observer Proposal #80117 - Validating the First Habitable-Zone Planet Candidates Identified by the NASA Kepler Mission, and by the Kepler Participating Scientist Contract led by David Charbonneau, to confirm the planetary nature of candidates identified by the Kepler mission

  13. Habitable zone limits for dry planets.

    PubMed

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.

  14. Plutonic-squishy lid and beyond: implications of intrusive magmatism and characterization of a new global-tectonic regime on Earth-like planets

    NASA Astrophysics Data System (ADS)

    Louro Lourenço, Diogo; Rozel, Antoine; Ballmer, Maxim; Tackley, Paul

    2017-04-01

    It is now well established that compositional variations in the lithosphere can alter the stress state and greatly influence the likelihood of plate tectonics. Mechanisms that have been found to facilitate plate tectonics include: water circulation [Regenauer-Lieb et al., Science 2001; Dymkova and Gerya, GRL 2013], presence of continents [Rolf and Tackley, GRL 2011], and melting [Korenaga, GJI 2009; Armann and Tackley, JGR 2012]. In a recent work by Lourenço et al. [EPSL 2016], it has been shown that Earth-like plate tectonics is more likely to occur in planets that can produce a crust of variable thickness and density through melt extraction from the mantle. The authors employed a first-order approximation by assuming that all magmatism was extrusive. However, volumes of intruded magmas are observed to be around 4- 9 times more present on Earth than erupted magmas [Crisp, J. Volcanol. Geotherm. Res. 1984]. Therefore, intrusive magmatism is thought to play a role in the dynamics of the lithosphere on Earth [Cawood et al., Geol. Soc. Am. Bull. 2013] and other Earth-like planets. We extend the work of Lourenço et al. [2016] by taking into account intrusive magmatism, and systematically investigate the effect of plutonism, in conjugation with eruptive volcanism. We present a set of 2D spherical annulus simulations of thermo-compositional global mantle convection using StagYY [Tackley, PEPI 2008], which uses a finite-volume discretization of the governing compressible anelastic Stokes equations. Tracers are used to track composition and to allow for the treatment of partial melting and crustal formation. A direct solver is employed to obtain a solution of the Stokes and continuity equations, using the PETSc toolkit. The heat equation is solved in two steps: advection is performed using the MPDATA scheme and diffusion is then solved implicitly using a PETSc solver. Results show that three common convection regimes are usually reached in simulations when using a visco

  15. US National Committee for the International Year of the Planet Earth: Plans and Activities

    NASA Astrophysics Data System (ADS)

    Hess, J. W.

    2007-12-01

    The International Year of the Planet Earth, as proclaimed by Resolution 60/192 of the United Nations General Assembly at its 60th Session, is a 3-year event (2007-2009) aimed at promoting the contribution to sustainable development of society by using geoscience knowledge and information. It is a joint initiative by the International Union of Geological Sciences (IUGS and UNESCO. The US National Committee (USNC) for the International Year of the Planet Earth is responsible for developing national science and outreach activities that contribute to the success of the global awareness on the use of geosociety for society. The USNC plans for a launch activity early in 2008 and a national outreach activity in the fall. Various US based geoscience societies and federal agencies will be conducting IYPE branded activities in support of the year.

  16. Hazy Archean Earth as an Analog for Hazy Earthlike Exoplanets

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Meadows, Victoria; Domagal-Goldman, Shawn; Claire, Mark; Schwieterman, Edward

    2015-01-01

    Hazy exoplanets may be common (Bean et al. 2010, Sing et al. 2011, Kreidberg et al 2014), and in our solar system, Venus and Titan have photochemically-produced hazes. There is evidence that Earth itself had a hydrocarbon haze in the Archean (Zerkle et al. 2012, Domagal-Goldman et al. 2008) with important climatic effects (Pavlov et al. 2001, Trainer et al. 2006, Haqq-Misra et al. 2008, Wolf and Toon 2012). We use a 1D coupled photochemical-climate model and a line-by-line radiative transfer model to investigate the climactic and spectral impacts of a fractal hydrocarbon haze on Archean Earth. The haze absorbs significantly at shorter wavelengths and can strongly suppress the Rayleigh scattering tail, a broadband effect that would be remotely detectable at low spectral resolution at wavelengths less than 0.5 μm. Hazes may have a more significant impact on transit transmission spectra. Using the transit transmission radiative transfer model developed by Misra et al. (2014) to generate hazy Archean spectra, we find that even a thin hydrocarbon haze masks the lower atmosphere from the visible into the near infrared where the haze optical depth exceeds unity. The transit transmission spectra we generate for hazy Archean Earth are steeply sloped like the Titan solar occultation spectrum observed by Robinson et al. (2014). Thick hazes can also cool the planet significantly: for example, the thick fractal haze generated around Archean Earth with 0.3% CH4, 1% CO2 and 1 ppm C2H6 cools the planet from roughly 290 K without the haze to below freezing with the haze. Finally, we investigate the impact of host star spectral type on haze formation, comparing the hazes generated around a solar-type star to those generated at an Earth analog planet around the M dwarf AD Leo. Our results indicate hazes around M dwarfs for the same initial atmospheric composition may be thinner due to decreased UV photolysis of methane and other hydrocarbons needed for haze formation. Earthlike

  17. Earth observations during Space Shuttle mission STS-45 Mission to Planet Earth - March 24-April 2, 1992

    NASA Technical Reports Server (NTRS)

    Pitts, David E.; Helfert, Michael R.; Lulla, Kamlesh P.; Mckay, Mary F.; Whitehead, Victor S.; Amsbury, David L.; Bremer, Jeffrey; Ackleson, Steven G.; Evans, Cynthia A.; Wilkinson, M. J.

    1992-01-01

    A description is presented of the activities and results of the Space Shuttle mission STS-45, known as the Mission to Planet Earth. Observations of Mount St. Helens, Manila Bay and Mt. Pinatubo, the Great Salt Lake, the Aral Sea, and the Siberian cities of Troitsk and Kuybyshev are examined. The geological features and effects of human activity seen in photographs of these areas are pointed out.

  18. Sources of Water for Oceans on Planets

    NASA Astrophysics Data System (ADS)

    Owen, T. C.

    2001-12-01

    Studies of D/H in the H2O carried by three Oort cloud comets have shown that such comets could not have contributed all of the water in the Earth's oceans. The extent of the cometary contribution depends on the value of D/H in water brought directly to the planet as hydrous minerals or adsorbed solar nebula H2O. That some cometary water was in fact delivered to the inner planets is strongly suggested by the value of D/H in Shergottite minerals when viewed in the context of other isotope geochemistry on Mars (Owen and Bar-Nun, FARADAY DISCUSSIONS 109, 453-462 (1998)). This scenario is also consistent with noble gas and siderophile element abundances on Earth. The identification of comet-produced water vapor around the aging carbon star IRC +10216 (Melnick et al., NATURE 412, 160-163 (2001)) provides concrete support for the widely held assumption that a cometary reservoir for the irrigation of inner planets should be a common feature of planetary systems throughout the galaxy.

  19. Making Nature's Wisdom Public: The Affirmation of Planet Earth as a Living Organism.

    ERIC Educational Resources Information Center

    Cohen, Michael J.

    Planet Earth is a living organism that preserves and regenerates itself and shares information with humans through sensations, feelings, and actions. After early humans migrated from their tropical origins to colder climates, they developed technologies to impose their tropical memories on their new surroundings and lost touch with their ancient…

  20. On evolutionary climate tracks in deep mantle volatile cycle computed from numerical mantle convection simulations and its impact on the habitability of the Earth-like planets

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.; Tajika, E.; Kadoya, S.

    2017-12-01

    Discussing an impact of evolution and dynamics in the Earth's deep interior on the surface climate change for the last few decades (see review by Ehlmann et al., 2016), the mantle volatile (particularly carbon) degassing in the mid-oceanic ridges seems to play a key role in understanding the evolutionary climate track for Earth-like planets (e.g. Kadoya and Tajika, 2015). However, since the mantle degassing occurs not only in the mid-oceanic ridges but also in the wedge mantle (island arc volcanism) and hotspots, to incorporate more accurate estimate of mantle degassing flux into the climate evolution framework, we developed a coupled model of surface climate-deep Earth evolution in numerical mantle convection simulations, including more accurate deep water and carbon cycle (e.g. Nakagawa and Spiegelman, 2017) with an energy balance theory of climate change. Modeling results suggest that the evolution of planetary climate computed from a developed model is basically consistent with an evolutionary climate track in simplified mantle degassing model (Kadoya and Tajika, 2015), but an occurrence timing of global (snowball) glaciation is strongly dependent on mantle degassing rate occurred with activities of surface plate motions. With this implication, the surface plate motion driven by deep mantle dynamics would play an important role in the planetary habitability of such as the Earth and Earth-like planets over geologic time-scale.

  1. Plan for Living on a Restless Planet Sets NASA's Solid Earth Agenda

    NASA Astrophysics Data System (ADS)

    Solomon, Sean C.; Baker, Victor R.; Bloxham, Jeremy; Booth, Jeffrey; Donnellan, Andrea; Elachi, Charles; Evans, Diane; Rignot, Eric; Burbank, Douglas; Chao, Benjamin F.; Chave, Alan; Gillespie, Alan; Herring, Thomas; Jeanloz, Raymond; LaBrecque, John; Minster, Bernard; Pittman, Walter C., III; Simons, Mark; Turcotte, Donald L.; Zoback, Mary Lou C.

    What are the most important challenges facing solid Earth science today and over the next two decades? And what is the best approach for NASA, in partnership with other agencies, to address those challenges? A new report, Living on a Restless Planet, provides a blueprint for answering these questions. The top priority for a new spacecraft mission in the area of solid Earth science over the next 5 years, according to this report, is a satellite dedicated to Interferometric Synthetic Aperture Radar (InSAR). At the request of NASA, the Solid Earth Science Working Group (SESWG) developed a strategy for the highest priority objectives in solid Earth science for the space agency over the next 25 years. The strategy addresses six challenges that are of fundamental scientific importance, have strong implications for society, and are amenable to substantial progress through a concerted series of scientific observations from space.

  2. Two cultures are better than one: Earth sciences and Art for a better planet sustainability

    NASA Astrophysics Data System (ADS)

    Lanza, Tiziana; Rubbia, Giuliana; Negrete, Aquiles

    2015-04-01

    Climate change, pollution, desertification, natural hazard, animals' extinction are some of the problems we face every day. Very often Science and Technology are charged of the solutions while Art is intended mainly for entertainment. Are we sure this is the right attitude? "Technology is a queer thing. It brings you gifts with one hand, and stabs you in the back with the other", says C.P.Snow, author of a milestone book on the Two Cultures, namely Sciences and Humanities. If Science can drive to a rigorous knowledge of the Earth speaking to people's mind, Technology is Science in action. When individuals act very often the reasons behind their actions are linked to their education, values, sense of beauty, presence or absence of feelings, all things pertaining to the emotional sphere of humans usually addressed by humanistic culture. But if in one hand, Science and Technology cannot be left alone to solve the impelling problems that are deteriorating not only our planet resources but also our quality of life, on the other hand the humanistic culture can find a powerful ally in scientific culture for re-awakening in everybody the sense of beauty, values and respect for the planet. To know Earth is to love Earth, since nature is in itself a work of Art. Earth sciences dig out all the secrets that make our planet a unique place in the Universe we know. Every single phenomena can be seen then in a double face value. An Aurora, for instance, can inspire poetry for its beauty and colors but always remains the result of the interaction between the solar wind and the Earth magnetic field. And, most important, an Aurora will never inspire negative feelings. To make our part in creating a common field between Art and Earth sciences, we have created a blog and a related FaceBook page to collect, browsing the web, all the experiences in this trend, to find out that many scientists and artists are already working in this direction as a final and enjoyable surprise.

  3. The Most Earth Size, Habitable Zone Planets around a Single Star on This Week @NASA – 02/24/2017

    NASA Image and Video Library

    2017-02-24

    NASA held a news conference Feb. 22 at the agency’s headquarters to discuss the finding by the agency’s Spitzer Space Telescope of seven Earth-sized planets around a tiny, relatively nearby, ultra-cool dwarf star. Three of the planets in this system, known as TRAPPIST-1, are in the habitable zone – the region around the star in which liquid water is most likely to thrive on a rocky planet. This is the first time so many planets have been found in a single star's habitable zone outside our solar system, and is the best target yet for studying the atmospheres of potentially habitable, Earth-sized worlds. Also, Kennedy’s Pad 39A, Back in Business, Russian Cargo Ship Arrives at Space Station, RS-25 Engine Tests Resume at Stennis, Structural Testing Begins on SLS Hardware, and 55th Anniversary of Friendship 7 Flight!

  4. CO2 condensation is a serious limit to the deglaciation of Earth-like planets

    NASA Astrophysics Data System (ADS)

    Turbet, Martin; Forget, Francois; Leconte, Jeremy; Charnay, Benjamin; Tobie, Gabriel

    2017-10-01

    It is widely believed that the carbonate-silicate cycle is the main agent, through volcanism, to trigger deglaciations by CO2 greenhouse warming on Earth and on Earth-like planets when they get in a frozen state. Here we use a 3D Global Climate Model to simulate the ability of planets initially completely frozen to escape from glaciation episodes by accumulating enough gaseous CO2. The model includes CO2 condensation and sublimation processes and the water cycle. We find that planets with Earth-like characteristics (size, mass, obliquity, rotation rate, etc.) orbiting a Sun-like star may never be able to escape from a glaciation era, if their orbital distance is greater than ∼1.27 Astronomical Units (Flux < 847 Wm-2 or 62% of the Solar constant), because CO2 would condense at the poles - here the cold traps - forming permanent CO2 ice caps. This limits the amount of CO2 in the atmosphere and thus its greenhouse effect. Furthermore, our results indicate that for (1) high rotation rates (Prot < 24 h), (2) low obliquity (obliquity <23.5°), (3) low background gas partial pressures (<1 bar), and (4) high water ice albedo (H2O albedo > 0.6), this critical limit could occur at a significantly lower equivalent distance (or higher insolation). For each possible configuration, we show that the amount of CO2 that can be trapped in the polar caps depends on the efficiency of CO2 ice to flow laterally as well as its gravitational stability relative to subsurface water ice. We find that a frozen Earth-like planet located at 1.30 AU of a Sun-like star could store as much as 1.5, 4.5 and 15 bars of dry ice at the poles, for internal heat fluxes of 100, 30 and 10 mW m-2, respectively. But these amounts are in fact lower limits. For planets with a significant water ice cover, we show that CO2 ice deposits should be gravitationally unstable. They get buried beneath the water ice cover in geologically short timescales of ∼104 yrs, mainly controlled by the viscosity of water ice

  5. A REVISED ESTIMATE OF THE OCCURRENCE RATE OF TERRESTRIAL PLANETS IN THE HABITABLE ZONES AROUND KEPLER M-DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopparapu, Ravi Kumar

    Because of their large numbers, low-mass stars may be the most abundant planet hosts in our Galaxy. Furthermore, terrestrial planets in the habitable zones (HZs) around M-dwarfs can potentially be characterized in the near future and hence may be the first such planets to be studied. Recently, Dressing and Charbonneau used Kepler data and calculated the frequency of terrestrial planets in the HZ of cool stars to be 0.15{sup +0.13}{sub -0.06} per star for Earth-size planets (0.5-1.4 R{sub Circled-Plus }). However, this estimate was derived using the Kasting et al. HZ limits, which were not valid for stars with effectivemore » temperatures lower than 3700 K. Here we update their result using new HZ limits from Kopparapu et al. for stars with effective temperatures between 2600 K and 7200 K, which includes the cool M stars in the Kepler target list. The new HZ boundaries increase the number of planet candidates in the HZ. Assuming Earth-size planets as 0.5-1.4 R{sub Circled-Plus }, when we reanalyze their results, we obtain a terrestrial planet frequency of 0.48{sup +0.12}{sub -0.24} and 0.53{sup +0.08}{sub -0.17} planets per M-dwarf star for conservative and optimistic limits of the HZ boundaries, respectively. Assuming Earth-size planets as 0.5-2 R{sub Circled-Plus }, the frequency increases to 0.51{sup +0.10}{sub -0.20} per star for the conservative estimate and to 0.61{sup +0.07}{sub -0.15} per star for the optimistic estimate. Within uncertainties, our optimistic estimates are in agreement with a similar optimistic estimate from the radial velocity survey of M-dwarfs (0.41{sup +0.54}{sub -0.13}). So, the potential for finding Earth-like planets around M stars may be higher than previously reported.« less

  6. IMPACT OF η{sub Earth} ON THE CAPABILITIES OF AFFORDABLE SPACE MISSIONS TO DETECT BIOSIGNATURES ON EXTRASOLAR PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Léger, Alain; Defrère, Denis; Malbet, Fabien

    2015-08-01

    We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars. Relations between performance and mission parameters, such as mirror diameter, distance to targets, and radius of planets, are obtained. Two types of instruments are considered: coronagraphs observing in the visible, and nulling interferometers in the thermal infrared. Missions considered are: single-pupil coronagraphs with a 2.4 m primary mirror, and formation-flying interferometers with 4 × 0.75 m collecting mirrors. The numbers of accessible planets are calculated as a functionmore » of η{sub Earth}. When Kepler gives its final estimation for η{sub Earth}, the model will permit a precise assessment of the potential of each instrument. Based on current estimations, η{sub Earth} = 10% around FGK stars and 50% around M stars, the coronagraph could study in spectroscopy only ∼1.5 relevant planets, and the interferometer ∼14.0. These numbers are obtained under the major hypothesis that the exozodiacal light around the target stars is low enough for each instrument. In both cases, a prior detection of planets is assumed and a target list established. For the long-term future, building both types of spectroscopic instruments, and using them on the same targets, will be the optimal solution because they provide complementary information. But as a first affordable space mission, the interferometer looks the more promising in terms of biosignature harvest.« less

  7. Homes for extraterrestrial life: extrasolar planets.

    PubMed

    Latham, D W

    2001-12-01

    Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.

  8. Planet Hunters, Undergraduate Research, and Detection of Extrasolar Planet Kepler-818 b

    NASA Astrophysics Data System (ADS)

    Baker, David; Crannell, Graham; Duncan, James; Hays, Aryn; Hendrix, Landon

    2017-01-01

    Detection of extrasolar planets provides an excellent research opportunity for undergraduate students. In Spring 2012, we searched for transiting extrasolar planets using Kepler spacecraft data in our Research Experience in Physics course at Austin College. Offered during the regular academic year, these Research Experience courses engage students in the scientific process, including proposal writing, paper submission, peer review, and oral presentations. Since 2004, over 190 undergraduate students have conducted authentic scientific research through Research Experience courses at Austin College.Zooniverse’s citizen science Planet Hunters web site offered an efficient method for rapid analysis of Kepler data. Light curves from over 5000 stars were analyzed, of which 2.3% showed planetary candidates already tagged by the Kepler team. Another 1.5% of the light curves suggested eclipsing binary stars, and 1.6% of the light curves had simulated planets for training purposes.One of the stars with possible planetary transits had not yet been listed as a planetary candidate. We reported possible transits for Kepler ID 4282872, which later was promoted to planetary candidate KOI-1325 in 2012 and confirmed to host extrasolar planet Kepler-818 b in 2016 (Morton et al. 2016). Kepler-818 b is a “hot Neptune” with period 10.04 days, flux decrease during transit ~0.4%, planetary radius 4.69 Earth radii, and semi-major axis 0.089 au.

  9. Assessing the Chemistry of Tidally Locked Earth-like Planets around M-type Stars Using a 3D Coupled Chemistry-Climate Model (CESM/WACCM)

    NASA Astrophysics Data System (ADS)

    Lanzano, Alexander

    2016-10-01

    Given recent discoveries there is a very real potential for tidally-locked Earth-like planets to exist orbiting M stars. To determine whether these planets may be habitable it is necessary to understand the nature of their atmospheres. In our investigation we simulate the evolution of present-day Earth while placed in tidally-locked orbit (meaning the same side of the planet always faces the star) around an M dwarf star. We are particularly interested in the evolution of the planet's ozone layer and whether it will shield the planet, and therefore life, from harmful radiation.To accomplish the above objectives we use a state-of-the-art 3-D terrestrial model, the Whole Atmosphere Community Climate Model (WACCM), which fully couples chemistry and climate, and therefore allows self-consistent simulations of atmospheric constituents and their effects on a planet's climate, surface radiation and thus habitability. Preliminary results show that this model is stable and that a tidally-locked Earth is protected from harmful UV radiation produced by G stars. The next step shall be to adapt this model for an M star by including its UV and visible spectrum.This investigation will both provide an insight into the potential for habitable exoplanets and further define the nature of the habitable zones for M class stars. We will also be able to narrow the definition of the habitable zones around distant stars, which will help us identify these planets in the future. Furthermore, this project will allow for a more thorough analysis of data from past and future exoplanet observing missions by defining the atmospheric composition of Earth-like planets around a variety of types of stars.

  10. Asteroid impacts on terrestrial planets: the effects of super-Earths and the role of the ν6 resonance

    NASA Astrophysics Data System (ADS)

    Smallwood, Jeremy L.; Martin, Rebecca G.; Lepp, Stephen; Livio, Mario

    2018-01-01

    With N-body simulations of a planetary system with an asteroid belt, we investigate how the asteroid impact rate on the Earth is affected by the architecture of the planetary system. We find that the ν6 secular resonance plays an important role in the asteroid collision rate with the Earth. Compared to exoplanetary systems, the Solar system is somewhat special in its lack of a super-Earth mass planet in the inner Solar system. We therefore first consider the effects of the presence of a super-Earth in the terrestrial planet region. We find a significant effect for super-Earths with a mass of around 10 M⊕ and a separation greater than about 0.7 au. For a super-Earth which is interior to the Earth's orbit, the number of asteroids colliding with Earth increases the closer the super-Earth is to the Earth's orbit. This is the result of multiple secular resonance locations causing more asteroids to be perturbed on to Earth-crossing orbits. When the super-Earth is placed exterior to Earth's orbit, the collision rate decreases substantially because the ν6 resonance no longer exists in the asteroid belt region. We also find that changing the semimajor axis of Saturn leads to a significant decrease in the asteroid collision rate, though increasing its mass increases the collision rate. These results may have implications for the habitability of exoplanetary systems.

  11. Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257 + 12.

    PubMed

    Wolszczan, A

    1994-04-22

    The discovery of two Earth-mass planets orbiting an old ( approximately 10(9) years), rapidly spinning neutron star, the 6.2-millisecond radio pulsar PSR B1257+12, was announced in early 1992. It was soon pointed out that the approximately 3:2 ratio of the planets' orbital periods should lead to accurately predictable and possibly measurable gravitational perturbations of their orbits. The unambiguous detection of this effect, after 3 years of systematic timing observations of PSR B1257+12 with the 305-meter Arecibo radiotelescope, as well as the discovery of another, moon-mass object in orbit around the pulsar, constitutes irrefutable evidence that the first planetary system around a star other than the sun has been identified.

  12. Check-Up of Planet Earth at the Turn of the Millennium: Anticipated New Phase in Earth Sciences

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Ramanathan, V.

    1998-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-AM) will repeat Langley's experiment, but for the entire planet, thus pioneering calibrated spectral observations from space. Conceived in response to real environmental problems, EOS-AM, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-AM can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment.

  13. The problem of iron partition between Earth and Moon during simultaneous formation as a double planet system

    NASA Technical Reports Server (NTRS)

    Cassidy, W. A.

    1984-01-01

    A planetary model is described which requires fractional vapor/liquid condensation, planet accumulation during condensation, a late start for accumulation of the Moon, and volatile accretion to the surfaces of each planet only near the end of the accumulation process. In the model, initial accumulation of small objects is helped if the agglomerating particles are somewhat sticky. Assuming that growth proceeds through this range, agglomeration continues. If the reservoir of vapor is being preferentially depleted in iron by fractional condensation, an iron-rich planetary core forms. As the temperature decreases, condensing material becomes progressively richer in silicates and poorer in iron, forming the silicate-rich mantle of an already differentiated Earth. A second center of agglomeration successfully forms near the growing Earth after most of the iron in the reservoir has been used up. The bulk composition of the Moon then is similar to the outer mantle of the accumulating Earth.

  14. Equilibrium Temperatures and Albedos of Habitable Earth-Like Planets in a Coupled Atmosphere-Ocean GCM

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony; Way, Michael; Amundsen, David; Sohl, Linda; Fujii, Yuka; Ebihara, Yuka; Kiang, Nancy; Chandler, Mark; Aleinov, Igor; Kelley, Maxwell

    2017-01-01

    The potential habitability of detected exoplanets is typically assessed using the concept of equilibrium temperature (T[subscript] e) based on cloud-free 1-D models with assumed albedo equal to Earth's (0.3) to determine whether a planet lies in the habitable zone. Incident stellar flux appears to be a better metric for stars unlike the Sun. These estimates, however, ignore the effect of clouds on planetary albedo and the fact that the climates of synchronously rotating planets are not well predicted by 1-D models. Given that most planet candidates that will be detected in the next few years will be tidally locked and orbiting M stars, how might the habitable zone e tailored to better in-form characterization with scarce observing resources?

  15. NASA's terrestial planet finder: the search for (habitable) planets

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.

    2000-01-01

    One of the primary goals of NASA's Origins program is the search for hospitable planets. I will describe how the Terrestrial Planet Finder (TPF) will revolutionize our understanding of the origin and evolution of planetary systems, and possibly even find signs of life beyond Earth.

  16. On the history and future of cosmic planet formation

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Peeples, Molly S.

    2015-12-01

    We combine constraints on galaxy formation histories with planet formation models, yielding the Earth-like and giant planet formation histories of the Milky Way and the Universe as a whole. In the Hubble volume (1013 Mpc3), we expect there to be ˜1020 Earth-like and ˜1020 giant planets; our own galaxy is expected to host ˜109 and ˜1010 Earth-like and giant planets, respectively. Proposed metallicity thresholds for planet formation do not significantly affect these numbers. However, the metallicity dependence for giant planets results in later typical formation times and larger host galaxies than for Earth-like planets. The Solar system formed at the median age for existing giant planets in the Milky Way, and consistent with past estimates, formed after 80 per cent of Earth-like planets. However, if existing gas within virialized dark matter haloes continues to collapse and form stars and planets, the Universe will form over 10 times more planets than currently exist. We show that this would imply at least a 92 per cent chance that we are not the only civilization the Universe will ever have, independent of arguments involving the Drake equation.

  17. On The History and Future of Cosmic Planet Formation

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter

    2016-03-01

    We combine constraints on galaxy formation histories with planet formation models, yielding the Earth-like and giant planet formation histories of the Milky Way and the Universe as a whole. In the Hubble Volume (1013 Mpc3), we expect there to be ~1020 Earth-like and ~1020 giant planets; our own galaxy is expected to host ~109 and ~1010 Earth-like and giant planets, respectively. Proposed metallicity thresholds for planet formation do not significantly affect these numbers. However, the metallicity dependence for giant planets results in later typical formation times and larger host galaxies than for Earth-like planets. The Solar System formed at the median age for existing giant planets in the Milky Way, and consistent with past estimates, formed after 80% of Earth-like planets. However, if existing gas within virialised dark matter haloes continues to collapse and form stars and planets, the Universe will form over 10 times more planets than currently exist. We show that this would imply at least a 92% chance that we are not the only civilisation the Universe will ever have, independent of arguments involving the Drake Equation.

  18. Mission to Planet Earth. Strategic enterprise plan, 1995-2000

    NASA Astrophysics Data System (ADS)

    1995-05-01

    Mission to Planet Earth (MTPE) provides long-term understanding of the earth system needed to protect and improve our environment, now and for future generations. This MTPE Strategic Enterprise Plan states how NASA intends to meet its responsibility to the Nation for developing a long-term, integrated program of environmental observation in support of informed decision-making. This plan implements the NASA Strategic Plan for the MTPE Enterprise; it is the first version of a rolling 5-year plan that will be updated annually. It is consistent with the interagency program developed by the Committee on Environment and Natural Resources of the National Science and Technology Council and implemented in large part through the U.S. Global Change Research Program. This report consists of the following sections: (1) introduction; (2) scientific foundation; (3) mission (destination and purposes); (4) principle of operation (ethical and quality assurance standards); (5) customer base (to ensure that the right products and services are delivered); (6) internal and external assessments; (7) assumptions; (8) goals, objectives, and strategies; (9) linkages to other strategic enterprises; and (10) summary.

  19. Mission to Planet Earth. Strategic enterprise plan, 1995-2000

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Mission to Planet Earth (MTPE) provides long-term understanding of the earth system needed to protect and improve our environment, now and for future generations. This MTPE Strategic Enterprise Plan states how NASA intends to meet its responsibility to the Nation for developing a long-term, integrated program of environmental observation in support of informed decision-making. This plan implements the NASA Strategic Plan for the MTPE Enterprise; it is the first version of a rolling 5-year plan that will be updated annually. It is consistent with the interagency program developed by the Committee on Environment and Natural Resources of the National Science and Technology Council and implemented in large part through the U.S. Global Change Research Program. This report consists of the following sections: (1) introduction; (2) scientific foundation; (3) mission (destination and purposes); (4) principle of operation (ethical and quality assurance standards); (5) customer base (to ensure that the right products and services are delivered); (6) internal and external assessments; (7) assumptions; (8) goals, objectives, and strategies; (9) linkages to other strategic enterprises; and (10) summary.

  20. Mission to Planet Earth Strategic Enterprise Plan 1996-2002

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Mission to Planet Earth's (MTPE's) first Strategic Enterprise Plan, issued in May 1995, defined the Agency's major goals and objectives as well as constraints. This update of the Strategic Enterprise Plan identifies the following major changes: a focused Science Research Plan that integrates space-based and in situ observational critical science to address critical science uncertainties; a technology infusion plan to reduce the cost of future missions; a series of flight opportunities to infuse new science into the overall program; and a tighter coupling between NASA and NOAA to reduce costs and to improve the overall program. Three important new initiatives are also under development and are described briefly in this plan: MTPE Education Strategy, MTPE Commercial Strategy, and an emerging concept for an Integrated Global Observing Strategy. This first update to the MTPE Strategic Enterprise Plan captures these new developments, and takes a significant step forward in planning this complex Earth system science endeavor. The plan and other information on MTPE may be viewed via the Internet at http://www.hq.nasa.gov/office/mtpe/.

  1. The Near-Earth Object Camera: A Next-Generation Minor Planet Survey

    NASA Astrophysics Data System (ADS)

    Mainzer, Amy K.; Wright, Edward L.; Bauer, James; Grav, Tommy; Cutri, Roc M.; Masiero, Joseph; Nugent, Carolyn R.

    2015-11-01

    The Near-Earth Object Camera (NEOCam) is a next-generation asteroid and comet survey designed to discover, characterize, and track large numbers of minor planets using a 50 cm infrared telescope located at the Sun-Earth L1 Lagrange point. Proposed to NASA's Discovery program, NEOCam is designed to carry out a comprehensive inventory of the small bodies in the inner regions of our solar system. It address three themes: 1) quantify the potential hazard that near-Earth objects may pose to Earth; 2) study the origins and evolution of our solar system as revealed by its small body populations; and 3) identify the best destinations for future robotic and human exploration. With a dual channel infrared imager that observes at 4-5 and 6-10 micron bands simultaneously through the use of a beamsplitter, NEOCam enables measurements of asteroid diameters and thermal inertia. NEOCam complements existing and planned visible light surveys in terms of orbital element phase space and wavelengths, since albedos can be determined for objects with both visible and infrared flux measurements. NEOCam was awarded technology development funding in 2011 to mature the necessary megapixel infrared detectors.

  2. NASA's Terrestrial Planet Finder: The Search for (Habitable) Planets

    NASA Technical Reports Server (NTRS)

    Beichman, C.

    1999-01-01

    One of the primary goals of NASA's Origins program is the search for habitable planets. I will describe how the Terrestrial Planet Finder (TPF) will revolutionize our understanding of the origin and evolution of planetary systems, and possibly even find signs of life beyond the Earth.

  3. Celestial Exoplanet Survey Occulter: A Concept for Direct Imaging of Extrasolar Earth-like Planets from the Ground

    NASA Astrophysics Data System (ADS)

    Janson, M.

    2007-02-01

    We present a new concept for detecting and characterizing extrasolar planets down to Earth size or smaller through direct imaging. The New Worlds Observer (NWO) occulter developed by Cash and coworkers is placed in a particular geometrical setup in which fuel requirements are small and the occulter is used in combination with ground-based telescopes, presumably leading to an extreme cost efficiency compared to other concepts with similar science goals. We investigate the various aspects of the given geometry, such as the dynamics and radiation environment of the occulter, and construct a detailed example target list to ensure that an excellent science case can be maintained despite the limited sky coverage. It is found that more than 200 systems can be observed with two to three visits per system, using only a few tons of fuel. For each system, an Earth-sized planet with an Earth-like albedo can be found in the habitable zone in less than 2 hr.

  4. Characterization of extrasolar terrestrial planets from diurnal photometric variability.

    PubMed

    Ford, E B; Seager, S; Turner, E L

    2001-08-30

    The detection of massive planets orbiting nearby stars has become almost routine, but current techniques are as yet unable to detect terrestrial planets with masses comparable to the Earth's. Future space-based observatories to detect Earth-like planets are being planned. Terrestrial planets orbiting in the habitable zones of stars-where planetary surface conditions are compatible with the presence of liquid water-are of enormous interest because they might have global environments similar to Earth's and even harbour life. The light scattered by such a planet will vary in intensity and colour as the planet rotates; the resulting light curve will contain information about the planet's surface and atmospheric properties. Here we report a model that predicts features that should be discernible in the light curve obtained by low-precision photometry. For extrasolar planets similar to Earth, we expect daily flux variations of up to hundreds of per cent, depending sensitively on ice and cloud cover as well as seasonal variations. This suggests that the meteorological variability, composition of the surface (for example, ocean versus land fraction) and rotation period of an Earth-like planet could be derived from photometric observations. Even signatures of Earth-like plant life could be constrained or possibly, with further study, even uniquely determined.

  5. Habitable planets with high obliquities

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  6. THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressing, Courtney D.; Charbonneau, David, E-mail: cdressing@cfa.harvard.edu

    We use the optical and near-infrared photometry from the Kepler Input Catalog to provide improved estimates of the stellar characteristics of the smallest stars in the Kepler target list. We find 3897 dwarfs with temperatures below 4000 K, including 64 planet candidate host stars orbited by 95 transiting planet candidates. We refit the transit events in the Kepler light curves for these planet candidates and combine the revised planet/star radius ratios with our improved stellar radii to revise the radii of the planet candidates orbiting the cool target stars. We then compare the number of observed planet candidates to themore » number of stars around which such planets could have been detected in order to estimate the planet occurrence rate around cool stars. We find that the occurrence rate of 0.5-4 R{sub Circled-Plus} planets with orbital periods shorter than 50 days is 0.90{sup +0.04}{sub -0.03} planets per star. The occurrence rate of Earth-size (0.5-1.4 R{sub Circled-Plus }) planets is constant across the temperature range of our sample at 0.51{sub -0.05}{sup +0.06} Earth-size planets per star, but the occurrence of 1.4-4 R{sub Circled-Plus} planets decreases significantly at cooler temperatures. Our sample includes two Earth-size planet candidates in the habitable zone, allowing us to estimate that the mean number of Earth-size planets in the habitable zone is 0.15{sup +0.13}{sub -0.06} planets per cool star. Our 95% confidence lower limit on the occurrence rate of Earth-size planets in the habitable zones of cool stars is 0.04 planets per star. With 95% confidence, the nearest transiting Earth-size planet in the habitable zone of a cool star is within 21 pc. Moreover, the nearest non-transiting planet in the habitable zone is within 5 pc with 95% confidence.« less

  7. A Novel Theory For The Origin And Evolution Of Stars And Planets, Including Earth, Which Asks, 'Was The Earth Once A Small Bright Star?'

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2001-12-01

    Improved prediction methods for earthquakes and volcanic activity will naturally follow from our theory, based on new concepts of the earth's interior composition, state and activity. In this paper we present a novel hypothesis for the formation and evolution of galaxies, stars (including black holes (BHs), neutron stars, giant, mid-size, dwarf, dying and dead stars), planets (including earth), and moons. Present day phenomenon will be used to substantiate the validity of this hypothesis. Every `body' is a multiple type of star, generated from modified pieces called particle proliferators, of a dislodged/expanded BH (of category 2 (c-2)) which explodes due to a collision with another expanded BH (or explodes on its own). This includes the sun, and the planet earth, which is a type of dead star. Such that, if we remove layers of the earth, starting with the crust, we will find evidence of each preceding star formation, from brown to blue, and the remains of the particle proliferator as the innermost core is reached. We show that the hypothesis is consistent with both the available astronomical data regarding stellar evolution and planetary formation; as well as the evolution of the earth itself, by considerations of the available geophysical data. Where data is not available, reasonably simple experiments are suggested to demonstrate further the consistency and viability of the hypothesis. Theories are presented to help define and explain phenomenon such as how two (or more) c-2 BHs expand and collide to form a small `big bang' (It is postulated that there was a small big bang to form each galaxy, similar to the big bang from a category 1 BH(s) that may have formed our universe. The Great Attractors would be massive c-2 BHs and act on galaxy clusters similar to the massive c-3 BHs at the center of Galaxies acting on stars.). This in turn afforded the material/matter to form all the galactic bodies, including the dark matter inside the galaxies that we catalogue as

  8. Exoplanet dynamics. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars.

    PubMed

    Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman

    2015-02-06

    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere. Copyright © 2015, American Association for the Advancement of Science.

  9. Gas Planet Orbits

    NASA Image and Video Library

    2008-08-19

    Jupiter, Saturn, Uranus, and Neptune are known as the jovian Jupiter-like planets because they are all gigantic compared with Earth, and they have a gaseous nature. This diagram shows the approximate distance of the jovian planets from the Sun.

  10. OGLE-2017-BLG-1434Lb: Eighth q<1×10-4 Mass-Ratio Microlens Planet Confirms Turnover in Planet Mass-Ratio Function

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Ryu, Y.-H.; Sajadian, S.; Gould, A.; Mrǎłz, P.; Poleski, R.; Szymański, M. K.; Skowron, J.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; Albrow, M. D.; Chung, S.-J.; Han, C.; Hwang, K.-H.; Jung, Y., K.; Shin, I.-G.; Shvartzvald, Y.; Yee, J. C.; Zang, W.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; Bozza, V.; Dominik, M.; Helling, C.; Hundertmark, M.; Jørgensen, U. G.; Longa-Peña, P.; Lowry, S.; Burgdorf, M.; Campbell-White, J.; Ciceri, S.; Evans, D.; Figuera Jaimes, R.; Fujii, Y. I.; Haikala, L. K.; Henning, T.; Hinse, T. C.; Mancini, L.; Peixinho, N.; Rahvar, S.; Rabus, M.; Skottfelt, J.; Snodgrass, C.; Southworth, J.; von Essen, C.

    2018-03-01

    We report the discovery of a cold Super-Earth planet (mp=4.4±0.5 M⊙) orbiting a low-mass (M=0.23±0.03) M⊙ dwarf at projected separation a⊥=1.18±0.10 a.u., i.e., about 1.9 times the distance the snow line. The system is quite nearby for a microlensing planet, DL=0.86±0.09 kpc. Indeed, it was the large lens-source relative parallax πrel=1.0 mas (combined with the low mass M) that gave rise to the large, and thus well-measured, "microlens parallax" πE∝(πrel/M)1/2 that enabled these precise measurements. OGLE-2017-BLG-1434Lb is the eighth microlensing planet with planet-host mass ratio q<1×10-4. We apply a new planet-detection sensitivity method, which is a variant of "V/Vmax", to seven of these eight planets to derive the mass-ratio function in this regime. We find dN/d lnq ∝ qp, with p=1.05+0.78-0.68, which confirms the "turnover" in the mass function found by Suzuki et al. relative to the power law of opposite sign n=-0.93±0.13 at higher mass ratios q≳2×10-4. We combine our result with that of Suzuki et al. to obtain p=0.73+0.42-0.34.

  11. Obtaining coincident image observations for Mission to Planet Earth science data return

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.; Farrell, James P.

    1994-01-01

    One objective of the Mission to Planet Earth (MTPE) program involves comparing data from various instruments on multiple spacecraft to obtain a total picture of the Earth's systems. To correlate image data from instruments on different spacecraft, these spacecraft must be able to image the same location on the Earth at approximately the same time. Depending on the orbits of the spacecraft involved, complicated operational details must be considered to obtain such observations. If the spacecraft are in similar orbits, close formation flying or synchronization techniques may be used to assure coincident observations. If the orbits are dissimilar, the launch time of the second satellite may need to be restricted in order to align its orbit with that of the first satellite launched. This paper examines strategies for obtaining coincident observations for spacecraft in both similar and dissimilar orbits. Although these calculations may be performed easily for coplanar spacecraft, the non-coplanar case involves additional considerations which are incorporated into the algorithms presented herein.

  12. New Constraints on the False Positive Rate for Short-Period Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.; Morehead, Robert C.; Ford, Eric B.

    2015-01-01

    The Kepler space mission has discovered thousands of potential planets orbiting other stars, thereby setting the stage for in-depth studies of different populations of planets. We present new multi-wavelength transit photometry of small (Rp < 6 Earth radii), short-period (P < 6 days) Kepler planet candidates acquired with the Gran Telescopio Canarias. Multi-wavelength transit photometry allows us to search for wavelength-dependent transit depths and subsequently identify eclipsing binary false positives (which are especially prevalent at the shortest orbital periods). We combine these new observations of three candidates with previous results for five other candidates (Colón & Ford 2011 and Colón, Ford, & Morehead 2012) to provide new constraints on the false positive rate for small, close-in candidates. In our full sample, we identify four candidates as viable planets and four as eclipsing binary false positives. We therefore find a higher false positive rate for small, close-in candidates compared to the lower false positive rate of ~10% determined by other studies for the full sample of Kepler planet candidates (e.g. Fressin et al. 2013). We also discuss the dearth of known planets with periods less than ~2.5 days and radii between ~3 and 11 Earth radii (the so-called 'sub-Jovian desert'), since the majority of the candidates in our study are located in or around this 'desert.' The lack of planets with these orbital and physical properties is not expected to be due to observational bias, as short-period planets are generally easier to detect (especially if they are larger or more massive than Earth). We consider the implications of our results for the other ~20 Kepler planet candidates located in this desert. Characterizing these candidates will allow us to better understand the formation processes of this apparently rare class of planets.

  13. Learning to Map the Earth and Planets using a Google Earth - based Multi-student Game

    NASA Astrophysics Data System (ADS)

    De Paor, D. G.; Wild, S. C.; Dordevic, M.

    2011-12-01

    We report on progress in developing an interactive geological and geophysical mapping game employing the Google Earth, Google Moon, and Goole Mars virtual globes. Working in groups of four, students represent themselves on the Google Earth surface by selecting an avatar. One of the group drives to each field stop in a model vehicle using game-like controls. When they arrive at a field stop and get out of their field vehicle, students can control their own avatars' movements independently and can communicate with one another by text message. They are geo-fenced and receive automatic messages if they wander off target. Individual movements are logged and stored in a MySQL database for later analysis. Students collaborate on mapping decisions and submit a report to their instructor through a Javascript interface to the Google Earth API. Unlike real mapping, students are not restricted by geographic access and can engage in comparative mapping on different planets. Using newly developed techniques, they can also explore and map the sub-surface down to the core-mantle boundary. Virtual specimens created with a 3D scanner, Gigapan images of outcrops, and COLLADA models of mantle structures such as subducted lithospheric slabs all contribute to an engaging learning experience.

  14. Kepler Mission: a Discovery-Class Mission Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  15. Stable habitable zones of single Jovian planet systems

    NASA Astrophysics Data System (ADS)

    Agnew, Matthew T.; Maddison, Sarah T.; Thilliez, Elodie; Horner, Jonathan

    2017-11-01

    With continued improvement in telescope sensitivity and observational techniques, the search for rocky planets in stellar habitable zones is entering an exciting era. With so many exoplanetary systems available for follow-up observations to find potentially habitable planets, one needs to prioritize the ever-growing list of candidates. We aim to determine which of the known planetary systems are dynamically capable of hosting rocky planets in their habitable zones, with the goal of helping to focus future planet search programmes. We perform an extensive suite of numerical simulations to identify regions in the habitable zones of single Jovian planet systems where Earth-mass planets could maintain stable orbits, specifically focusing on the systems in the Catalog of Earth-like Exoplanet Survey Targets (CELESTA). We find that small, Earth-mass planets can maintain stable orbits in cases where the habitable zone is largely, or partially, unperturbed by a nearby Jovian, and that mutual gravitational interactions and resonant mechanisms are capable of producing stable orbits even in habitable zones that are significantly or completely disrupted by a Jovian. Our results yield a list of 13 single Jovian planet systems in CELESTA that are not only capable of supporting an Earth-mass planet on stable orbits in their habitable zone, but for which we are also able to constrain the orbits of the Earth-mass planet such that the induced radial velocity signals would be detectable with next generation instruments.

  16. The elemental abundances (with uncertainties) of the most Earth-like planet

    NASA Astrophysics Data System (ADS)

    Wang, Haiyang S.; Lineweaver, Charles H.; Ireland, Trevor R.

    2018-01-01

    To first order, the Earth as well as other rocky planets in the Solar System and rocky exoplanets orbiting other stars, are refractory pieces of the stellar nebula out of which they formed. To estimate the chemical composition of rocky exoplanets based on their stellar hosts' elemental abundances, we need a better understanding of the devolatilization that produced the Earth. To quantify the chemical relationships between the Earth, the Sun and other bodies in the Solar System, the elemental abundances of the bulk Earth are required. The key to comparing Earth's composition with those of other objects is to have a determination of the bulk composition with an appropriate estimate of uncertainties. Here we present concordance estimates (with uncertainties) of the elemental abundances of the bulk Earth, which can be used in such studies. First we compile, combine and renormalize a large set of heterogeneous literature values of the primitive mantle (PM) and of the core. We then integrate standard radial density profiles of the Earth and renormalize them to the current best estimate for the mass of the Earth. Using estimates of the uncertainties in i) the density profiles, ii) the core-mantle boundary and iii) the inner core boundary, we employ standard error propagation to obtain a core mass fraction of 32.5 ± 0.3 wt%. Our bulk Earth abundances are the weighted sum of our concordance core abundances and concordance PM abundances. Unlike previous efforts, the uncertainty on the core mass fraction is propagated to the uncertainties on the bulk Earth elemental abundances. Our concordance estimates for the abundances of Mg, Sn, Br, B, Cd and Be are significantly lower than previous estimates of the bulk Earth. Our concordance estimates for the abundances of Na, K, Cl, Zn, Sr, F, Ga, Rb, Nb, Gd, Ta, He, Ar, and Kr are significantly higher. The uncertainties on our elemental abundances usefully calibrate the unresolved discrepancies between standard Earth models under

  17. Climate of Earth-Like Planets With and Without Ocean Heat Transport Orbiting a Range of M and K Stars

    NASA Technical Reports Server (NTRS)

    Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki

    2015-01-01

    The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).

  18. Migrating Jupiter up to the habitable zone: Earth-like planet formation and water delivery

    NASA Astrophysics Data System (ADS)

    Darriba, L. A.; de Elía, G. C.; Guilera, O. M.; Brunini, A.

    2017-11-01

    Context. Several observational works have shown the existence of Jupiter-mass planets covering a wide range of semi-major axes around Sun-like stars. Aims: We aim to analyse the planetary formation processes around Sun-like stars that host a Jupiter-mass planet at intermediate distances ranging from 1 au to 2 au. Our study focusses on the formation and evolution of terrestrial-like planets and water delivery in the habitable zone (HZ) of the system. Our goal is also to analyse the long-term dynamical stability of the resulting systems. Methods: A semi-analytic model was used to define the properties of a protoplanetary disk that produces a Jupiter-mass planet around the snow line, which is located at 2.7 au for a solar-mass star. Then, it was used to describe the evolution of embryos and planetesimals during the gaseous phase up to the formation of the Jupiter-mass planet, and we used the results as the initial conditions to carry out N-body simulations of planetary accretion. We developed sixty N-body simulations to describe the dynamical processes involved during and after the migration of the gas giant. Results: Our simulations produce three different classes of planets in the HZ: "water worlds", with masses between 2.75 M⊕ and 3.57 M⊕ and water contents of 58% and 75% by mass, terrestrial-like planets, with masses ranging from 0.58 M⊕ to 3.8 M⊕ and water contents less than 1.2% by mass, and "dry worlds", simulations of which show no water. A relevant result suggests the efficient coexistence in the HZ of a Jupiter-mass planet and a terrestrial-like planet with a percentage of water by mass comparable to the Earth. Moreover, our study indicates that these planetary systems are dynamically stable for at least 1 Gyr. Conclusions: Systems with a Jupiter-mass planet located at 1.5-2 au around solar-type stars are of astrobiological interest. These systems are likely to harbour terrestrial-like planets in the HZ with a wide diversity of water contents.

  19. Lunar Science from and for Planet Earth

    NASA Astrophysics Data System (ADS)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th

  20. Planet Formation and the Characteristics of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  1. ISY Mission to Planet Earth Conference: A planning meeting for the International Space Year

    NASA Technical Reports Server (NTRS)

    Meyerson, Harvey

    1991-01-01

    A major theme was the opportunity offered by the International Space Year (ISY) to initiate a long-term program of Earth observation mission coordination and worldwide data standardization. The challenge is immense and extremely time critical. A recommendation was made to inventory the capabilities of Earth observing spacecraft scheduled during the next decade. The ISY effort to strengthen coordination and standardization should emphasize global issues, and also regional initiatives of particular relevance to developing nations. The concepts of a Global Information System Test (GIST) was accepted and applied to specific issues of immediate concern. The importance of ISY Earth observation initiatives extending beyond research to include immediate and direct applications for social and economic development was stressed. Several specific Mission to Planet Earth proposals were developed during the Conference. A mechanism was set up for coordinating participation of the national space agencies or equivalent bodies.

  2. TRAPPIST-1 Planet Animations

    NASA Image and Video Library

    2018-02-05

    This still from a video shows illustrations of the seven Earth-size planets of TRAPPIST-1, an exoplanet system about 40 light-years away, based on data current as of February 2018. Each planet is shown in sequence, starting with the innermost TRAPPIST-1b and ending with the outermost TRAPPIST-1h. The video presents the planets' relative sizes as well as the relative scale of the central star as seen from each planet. The art highlights possibilities for how the surfaces of these intriguing worlds might look based on their newly calculated properties. The seven planets of TRAPPIST-1 are all Earth-sized and terrestrial. TRAPPIST-1 is an ultra-cool dwarf star in the constellation Aquarius, and its planets orbit very close to it. In the background, slightly distorted versions our familiar constellations, including Orion and Taurus, are shown as they would appear from the location of TRAPPIST-1 (backdrop image courtesy California Academy of Sciences/Dan Tell). An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22098

  3. Does the Galactic Bulge Have Fewer Planets?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    The Milky Ways dense central bulge is a very different environment than the surrounding galactic disk in which we live. Do the differences affect the ability of planets to form in the bulge?Exploring Galactic PlanetsSchematic illustrating how gravitational microlensing by an extrasolar planet works. [NASA]Planet formation is a complex process with many aspects that we dont yet understand. Do environmental properties like host star metallicity, the density of nearby stars, or the intensity of the ambient radiation field affect the ability of planets to form? To answer these questions, we will ultimately need to search for planets around stars in a large variety of different environments in our galaxy.One way to detect recently formed, distant planets is by gravitational microlensing. In this process, light from a distant source star is bent by a lens star that is briefly located between us and the source. As the Earth moves, this momentary alignment causes a blip in the sources light curve that we can detect and planets hosted by the lens star can cause an additional observable bump.Artists impression of the Milky Way galaxy. The central bulge is much denserthan the surroundingdisk. [ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt]Relative AbundancesMost source stars reside in the galactic bulge, so microlensing events can probe planetary systems at any distance between the Earth and the galactic bulge. This means that planet detections from microlensing could potentially be used to measure the relative abundances of exoplanets in different parts of our galaxy.A team of scientists led by Matthew Penny, a Sagan postdoctoral fellow at Ohio State University, set out to do just that. The group considered a sample of 31 exoplanetary systems detected by microlensing and asked the following question: are the planet abundances in the galactic bulge and the galactic disk the same?A Paucity of PlanetsTo answer this question, Penny and collaborators derived the expected

  4. Studying planet populations with Einstein's blip.

    PubMed

    Dominik, Martin

    2010-08-13

    Although Einstein originally judged that 'there is no great chance of observing this phenomenon', the 'most curious effect' of the bending of starlight by the gravity of intervening foreground stars--now commonly referred to as 'gravitational microlensing'--has become one of the successfully applied techniques to detect planets orbiting stars other than the Sun, while being quite unlike any other. With more than 400 extra-solar planets known altogether, the discovery of a true sibling of our home planet seems to have become simply a question of time. However, in order to properly understand the origin of Earth, carrying all its various life forms, models of planet formation and orbital evolution need to be brought into agreement with the statistics of the full variety of planets like Earth and unlike Earth. Given the complementarity of the currently applied planet detection techniques, a comprehensive picture will only arise from a combination of their respective findings. Gravitational microlensing favours a range of orbital separations that covers planets whose orbital periods are too long to allow detection by other indirect techniques, but which are still too close to their host star to be detected by means of their emitted or reflected light. Rather than being limited to the Solar neighbourhood, a unique opportunity is provided for inferring a census of planets orbiting stars belonging to two distinct populations within the Milky Way, with a sensitivity not only reaching down to Earth mass, but even below, with ground-based observations. The capabilities of gravitational microlensing extend even to obtaining evidence of a planet orbiting a star in another galaxy.

  5. Are Stellar Storms Bad News for M-Dwarf Planets?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Coronal mass ejections (CMEs), enormous releases of energy from the Sun, can have significant space-weather implications for Earth. Do similar storms from smaller stars M dwarfs like V374 Peg, or the nearby Proxima Centauri mean bad news for the planets that these stars host?Volatile StarsDifference in habitable-zone sizes for different stellar types. [NASA]When plasma is released from the Sun in the form of a CME traveling toward Earth, these storms can be powerful enough to disrupt communications and navigational equipment, damage satellites, and cause blackouts even with our planetary magnetic field to protect us! How might planets in the habitable zone of M-dwarf stars fare against similar storms?The first danger for an M dwarfs planets is that the habitable zone lies much closer to the star: it can range from 0.03 to 0.4 AU (i.e., within Mercurys orbit). Being so close to the star definitely makes a planet in an M dwarfs habitable zone vulnerable to storms.Colors indicate the probability of CME impact, for different different stellar latitudes where the CME originated vs. orbital inclination of the planet, (a) without any deflection, and (b) taking into account the CME deflection by the stars magnetic field. Hanging out in an orbit aligned with the current sheet turns out to be a bad idea. [Adapted from Kay et al. 2016]What about the storms themselves? You might think that because M dwarfs are cooler stars, they would be quieter, releasing fewer CMEs with less energy. Surprisingly, the opposite is true: M dwarfs are significantly more active than solar-type stars, and the CMEs are typically ten times more massive than those released from the Sun. Impacts from these powerful outbursts could easily strip any existing planet atmosphere, making a planet much less likely to be habitable. To make matters worse, M dwarfs can remain magnetically active for billions of years: even a star like Proxima Centauri, which is nearly 5 billion years old, isstill relatively

  6. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    PubMed

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  7. The HARPS search for southern extra-solar planets. XLII. A system of Earth-mass planets around the nearby M dwarf YZ Ceti

    NASA Astrophysics Data System (ADS)

    Astudillo-Defru, N.; Díaz, R. F.; Bonfils, X.; Almenara, J. M.; Delisle, J.-B.; Bouchy, F.; Delfosse, X.; Forveille, T.; Lovis, C.; Mayor, M.; Murgas, F.; Pepe, F.; Santos, N. C.; Ségransan, D.; Udry, S.; Wünsche, A.

    2017-09-01

    Exoplanet surveys have shown that systems with multiple low-mass planets on compact orbits are common. Except for a few cases, however, the masses of these planets are generally unknown. At the very end of the main sequence, host stars have the lowest mass and hence offer the largest reflect motion for a given planet. In this context, we monitored the low-mass (0.13 M⊙) M dwarf YZ Cet (GJ 54.1, HIP 5643) intensively and obtained radial velocities and stellar-activity indicators derived from spectroscopy and photometry, respectively. We find strong evidence that it is orbited by at least three planets in compact orbits (POrb = 1.97, 3.06, 4.66 days), with the inner two near a 2:3 mean-motion resonance. The minimum masses are comparable to the mass of Earth (M sin I = 0.75 ± 0.13, 0.98 ± 0.14, and 1.14 ± 0.17 M⊕), and they are also the lowest masses measured by radial velocity so far. We note the possibility for a fourth planet with an even lower mass of M sin I = 0.472 ± 0.096 M⊕ at POrb = 1.04 days. An n-body dynamical model is used to place further constraints on the system parameters. At 3.6 parsecs, YZ Cet is the nearest multi-planet system detected to date. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope under the program IDs 180.C-0886(A), 183.C-0437(A), and 191.C-0873(A) at Cerro La Silla (Chile).Radial velocity data (Table B.4) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/L11

  8. Earth Stewardship: An initiative by the Ecological Society of America to foster engagement to sustain Planet Earth

    USGS Publications Warehouse

    Chapin, F. Stuart; Pickett, S.T.A.; Power, Mary E.; Collins, Scott L.; Baron, Jill S.; Inouye, David W.; Turner, Monica G.

    2017-01-01

    The Ecological Society of America (ESA) has responded to the growing commitment among ecologists to make their science relevant to society through a series of concerted efforts, including the Sustainable Biosphere Initiative (1991), scientific assessment of ecosystem management (1996), ESA’s vision for the future (2003), Rapid Response Teams that respond to environmental crises (2005), and the Earth Stewardship Initiative (2009). During the past 25 years, ESA launched five new journals, largely reflecting the expansion of scholarship linking ecology with broader societal issues. The goal of the Earth Stewardship Initiative is to raise awareness and to explore ways for ecologists and other scientists to contribute more effectively to the sustainability of our planet. This has occurred through four approaches: (1) articulation of the stewardship concept in ESA publications and Website, (2) selection of meeting themes and symposia, (3) engagement of ESA sections in implementing the initiative, and (4) outreach beyond ecology through collaborations and demonstration projects. Collaborations include societies and groups of Earth and social scientists, practitioners and policy makers, religious and business leaders, federal agencies, and artists and writers. The Earth Stewardship Initiative is a work in progress, so next steps likely include continued nurturing of these emerging collaborations, advancing the development of sustainability and stewardship theory, improving communication of stewardship science, and identifying opportunities for scientists and civil society to take actions that move the Earth toward a more sustainable trajectory.

  9. A Direct Path to Finding Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Linder, Don J.

    2009-01-01

    As envisaged by the 2000 astrophysics decadal survey panel: The main goal of Terrestrial Planet Finder (TPF) is nothing less than to search for evidence of life on terrestrial planets around nearby stars . Here, we consider how an optical telescope paired with a free-flying occulter blocking light from the star can reach this goal directly, without knowledge of results from prior astrometric, doppler, or transit exoplanet observations. Using design reference missions and other simulations, we explore the potential of TPF-O to find planets in the habitable zone around their central stars, to spectrally characterize the atmospheres of detected planets, and to obtain rudimentary information about their orbits. We emphasize the importance of ozone absorption in the UV spectrum of a planet as a marker of photosynthesis by plants, algae, and cyanobacteria.

  10. Carbon trading, climate change, environmental sustainability and saving planet Earth

    NASA Astrophysics Data System (ADS)

    Yim, W. W.

    2009-12-01

    Carbon trading namely the reduction of future carbon dioxide levels has been widely touted as a solution needed to counter the problem of climate change. However, there are enormous risks involved as the measure tackles only one of the causes of climate change and may prove to be ineffective. This presentation highlights ten points relevant to the discussion on carbon trading, climate change, environmental sustainability and saving planet Earth for increasing public awareness. They include: (1) Climate has changed throughout Earth’s history. (2) The present level of about 388 parts per million level of carbon dioxide in the atmosphere has already exceeded the maximum level of the past 800,000 years. This value is obtained from air bubbles trapped within the ice in Antarctica but the consequence of further increases remains uncertain. (3) Earth scientists do not have an overwhelming consensus on whether carbon trading alone is an effective measure in mitigating climate change. (4) The present state of the Earth’s demise is largely the result of human actions including population growth and the mismanagement of the Earth. (5) The latest evidence on sea-level changes in the South China Sea a far-field region unaffected by glacial isostatic readjustment is not in support of a ‘rapid’ rate of future sea-level rise through global warming. (6) Volcanic eruptions have an important role in driving the Earth’s climate. Examples of temperature lowering as well as abnormally wet and dry years can both be found in the instrumental record. (7) Humans have drastically modified the ‘natural’ water cycle. This is however not a well recognized cause of climate change compared to the emission of greenhouse gases through fossil fuel consumption. (8) The bulk (~75%) of the rise in mean annual temperature of about 1oC observed at the Hong Kong Observatory Station since record began in 1884 is best explained by the thermal heat island effect. (9) No evidence has been found

  11. The Kepler Mission: A Photometric Search for Earthlike Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Borucki, William; Koch, David; Young, Richard E. (Technical Monitor)

    1998-01-01

    If Earth lies in or near the orbital plane of an extrasolar planet, that planet passes in front of the disk of its star once each orbit as viewed from Earth. Precise photometry can reveal such transits, which can be distinguished from rotationally-modulated starspots and intrinsic stellar variability by their periodicity, square-well shapes and relative spectral neutrality. Transit observations would provide the size and orbital period of the detected planet. Although geometrical considerations limit the fraction of planets detectable by this technique, many stars can be surveyed within the field of view of one telescope, so transit photometry is quite efficient. Scintillation in and variability of Earth's atmosphere limit photometric precision to roughly one-thousandth of a magnitude, allowing detection of transits by Jupiter-sized planets but not by Earth-sized planets from the ground. The COROT spacecraft will be able to detect Uranus-sized planets orbiting near stars. The Kepler Mission, which is being proposed to NASA's Discovery Program this year, will have a photometer with a larger aperture (1 meter) than will COROT, so it will be able to detect transits by planets as small as Earth. Moreover, the Kepler mission will examine the same star field for four years, allowing confirmation of planets with orbital periods of a year. If the Sun's planetary system is typical for single stars, Kepler should detect approximately 480 terrestrial planets. Assuming the statistics from radial velocity surveys are typical, Kepler should also detect transits of 150 inner giant planets and reflected light variations of 1400 giant planets with orbital periods of less than one week.

  12. Long Term Planetary Habitability and the Carbonate-Silicate Cycle: The Effect of Planet Size

    NASA Astrophysics Data System (ADS)

    Rushby, A. J.; Johnson, M.; Mills, B.; Watson, A. J.; Claire, M.

    2017-12-01

    The potential habitability of exoplanets is traditionally assessed by determining whether or not its orbit falls within the circumstellar `habitable zone' of its star [1]. However, this metric does not readily account readily for changes in the abundance of greenhouse gases and their associated radiative forcing as a result of the action of the carbonate-silicate cycle. We develop a model of the carbon cycle on Earth, coupled with a stellar evolution model and a 1-D radiative-convective climate model with an Earth-like atmospheric water vapour profile [1], to explore the potential changes in the CO2 greenhouse under conditions of varying planet size (0.5 - 2 R⊕) and stellar flux (0.75 to 1.25 S⊕).We find that likely changes in global topography, tectonic outgassing and uplift, and the hydrological cycle on larger planets results in proportionally greater surface temperatures and pCO2 for a given incident flux. For planets between 0.5 and 2 R⊕ the effect of these changes results in average global surface temperature deviations of up to 15 K, which suggests that these relationships be considered in future studies of planetary habitability.Furthermore, by coupling this model with the stellar evolution scheme presented in [2] and setting an upper temperature limit of 343 K, the habitable period of the Earth-sized world around the Sun can be quantified. For a 1 R⊕ planet, this limit is approximately 6.35 Gyr after planet formation, or 1.81 Gyr from present day. Additionally, atmospheric CO2 falls below the limit at which C3 and C4 plants can effectively photosynthesize after 5.38 Gyr and 6.1 Gyr respectively, which may initiate a significant reorganization of the biosphere of the planet well before average surface temperatures render it uninhabitable.References: [1] Kopparapu et al. (2013) The Astrophysical Journal 765(2) [2] Rushby et al. (2013) Astrobiology, 13(9), 833-849.

  13. The fate of scattered planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets atmore » least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.« less

  14. Migration of icy planetesimals to forming terrestrial planets

    NASA Astrophysics Data System (ADS)

    Ipatov, Sergei I.; Marov, Mikhail

    2016-07-01

    Our studies of migration of planetesimals from the feeding zone of Jupiter and Saturn to forming terrestrial planets were based on computer simulations of the orbital evolution of 10^4 planetesimals under the gravitational influence of planets. In series JN, all planets were considered in present orbits with present masses, and in series JS, Uranus and Neptune were excluded. Initial eccentricities and inclinations of planetesimals were 0.3 and 0.15 rad, respectively. Their initial semi-major axes were between 4.5 and 12 AU. Masses of planets moving in the orbits of the terrestrial planets were equal to present masses of the planets in series JS and JN, and were smaller by a factor of 10 in series JS_{01} and JN_{01}. The obtained results show that the ratio of the fraction of the planetesimals collided with an embryo of the Earth's embryo was about 2\\cdot10^{-6} and 4\\cdot10^{-7} for the mass of the embryo equal to the Earth mass and to 10% of the Earth mass, respectively. We concluded that during the growth of the mass of the Earth's embryo up to a half of the present mass of the Earth, the amount of water delivered to the embryo could be about 30% of all water delivered to the Earth from the feeding zone of Jupiter and Saturn. The total mass of water delivered to the Earth from the feeding zones of the giant planets and beyond these zones could be comparable with the mass of the Earth's oceans. A half of this water could come from the feeding zone of Jupiter and Saturn, and another half from more distant regions. Most of the water that was delivered from the distant regions to the Earth's embryo came when its mass was not small (e.g., was mainly greater than a half of the Earth mass). In series JS, the ratio of the mass of water delivered to a planet to the mass of the planet for the Earth was smaller by a factor of 2, 1.25, and 1.3 than for Mars, Venus and Mercury, respectively. For series JN, the above values of the factor were equal to 3.4, 0.7 i 0.8. For

  15. Characterising the Atmospheres of Transiting Planets with a Dedicated Space Telescope

    NASA Astrophysics Data System (ADS)

    Tessenyi, M.; Ollivier, M.; Tinetti, G.; Beaulieu, J. P.; Coudé du Foresto, V.; Encrenaz, T.; Micela, G.; Swinyard, B.; Ribas, I.; Aylward, A.; Tennyson, J.; Swain, M. R.; Sozzetti, A.; Vasisht, G.; Deroo, P.

    2011-10-01

    Transiting super-Earths orbiting M dwarfs are excellent targets for the prospect of studying potentially habitable extrasolar planets. While most of the currently known Exoplanets are of the Hot Jupiter and Neptune type, attention is now turning to these super- Earths. Two recent examples are GJ 1214b, found by Charbonneau et al. in 2009, and Cancri 55 e, found by Winn et al. in 2011. These candidates offer the opportunity of obtaining spectral signatures of their atmospheres in transiting scenarios, via data obtained by ground based and space observatories, compared to simulated climate scenarios. With the recent selection of the Exoplanet Characterisation Observatory (EChO) mission by ESA for further studies, I present observational strategies and time requirements for a range of targets characterisable by EChO, with a view to super-Earths orbiting M dwarfs.

  16. A synthetic high fidelity, high cadence spectral Earth database

    NASA Astrophysics Data System (ADS)

    Schwieterman, Edward; Meadows, Victoria; Robinson, Tyler D.; Lustig-Yaeger, Jacob; Sparks, William B.; Cracraft, Misty

    2016-10-01

    Earth is currently our only, and will always be our best, example of a living planet. While Earth data model comparisons have been effectively used in recent years to validate spectral models, observations by interplanetary spacecraft are limited to "snapshots" in terms of viewing geometry and Earth's dynamic surface and atmosphere state. We use the well-validated Virtual Planetary Laboratory 3D spectral Earth model to generate both simulated disk-averaged spectra and high resolution, spatially resolved spectral data cubes of Earth at a viewing geometry consistent with Lunar viewing angles at wavelengths from the far UV (0.1 μm) the to the far IR (200 μm). The database includes disk-averaged spectra from dates 03/19/2008 to 04/23/2008 at one-hour cadence and fully spectral data cubes for a subset of those times. These spectral products have a wide range of applications including calibration of spacecraft instrumentation (Robinson et al. 2014), modeling the radiation environment of permanently shadowed Lunar craters due to Earthshine (Glenar et al., in prep), and testing the detectability of atmospheric and surface features of an Earth-like planet orbiting a distant star with a large space-based telescope mission concepts such as LUVOIR. These data include the phase and time-dependent changes in spectral biosignatures (O2, O3, CH4, VRE) and habitability markers (N2, H2O, CO2, ocean glint). The advantages of the VPL Earth model data products over 1D spectra traditionally used for testing instrument architectures include accurate modeling of Earth's surface inhomogeneity (continental distribution and ice caps), cloud cover and variability, pole to equator temperature gradients, obliquity, phase-dependent scattering effects, and rotation. We present a subset of this spectral data including anticipated signal-to-noise calculations of an exoEarth twin at different phases using a coronagraph instrument model (Robinson et al. 2015). We also calculate time

  17. International Year of Planet Earth - Accomplishments, Activities, Challenges and Plans in Mexico

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Alaniz-Alvarez, S.

    2009-12-01

    The International Year of Planet Earth started as a joint initiative by UNESCO and IUGS with the participation of several geosciences organizations, and developed into a major international geosciences program for the triennium 2007-2009, with the inclusion and participation of national and regional committees. In this presentation we focus on current activities and plans in our country and the participation in international activities. Mexican community has been part of international programs since the International Geophysical Year, continuing through its participation in other programs, e.g., Upper Mantle, Geodynamics, Lithosphere, IHY, IPY and eGY. IYPE activities have concentrated in publications, OneGeology, radio/TV programs, organization of conferences, meetings and outreach events. A book series on Earth Science Experiments for Children has been edited, with first books published on “Atmospheric Pressure and Free Fall of Objects”, “Light and Colors”, “Standing on Archimedes”, “Foucault and Climate” and “Earth and its Waves “. Books are distributed to schools, with tens of thousand copies distributed nationwide and new editions underway. Other publications include leaflets, books and special El Faro issues (edited by the National University) and articles in other journals. In 2007 the AGU Joint Assembly with international participation from US, Canada, Europe and Latin America was held in Acapulco. Current plans include an electronic open-access journal, additional publications of the Planet Earth series, articles and special issues in journals and magazines, plus events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Biodiversity. Mexico City metropolitan area, with > 22 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management

  18. Data and Information in the International Year of Planet Earth (2007-2009)

    NASA Astrophysics Data System (ADS)

    de Mulder, E.; Jackson, I.

    2007-05-01

    After its inception in 2001, the International Year of Planet Earth was proclaimed for 2008 by the UN General Assembly in December 2005. The UN Year is in the core of a triennium that started in January 2007 and will be closing by the end of 2009. Through UN proclamation, it has gained the political support by 191 UN nations. The International Year of Planet Earth (IYPE) was initiated by the International Union of Geological Sciences (IUGS) and UNESCO and was actively supported by all Earth science Unions in ICSU and by almost all major Earth Scientific bodies in the world. In this presentation special emphasis will be given to the OneGeology/Transparent Earth project, whose goal is to deliver interoperable digital geological map data for the world at a target scale of 1:1 M. The OneGeology project is an initiative being undertaken by more than 50 Geological Surveys (the numbers continue to grow weekly) and is being backed by six global geoscience bodies (ICOGS, IUGS, IYPE, CGMW, UNESCO and ISCGM). The project will be inclusive and is ensuring all countries may participate - thus depending on their capability and capacity nations will provide access to the geological map data they hold in different ways. For some coverage will at first be raster images; others with more developed systems will dynamically 'serve' geological map data for their territories as a WMS, WFS. For the more sophisticated attributed vector data the project will work in tandem with the IUGS Commission for the Management and Application of Geoscience Information (CGI) and use the global geoscience data model and exchange language (GeoSciML) which a CGI Working Group has been developing. The partnership is a powerful one: in effect the OneGeology Project is providing the wheels and GeoSciML the engine for the roll-out and take-up of a global geoscience standard through the vehicle of a geological map - something all geologists understand. But the OneGeology project has other goals too - by

  19. Mission to Planet Earth: Who provides, controls, and owns the data?

    NASA Astrophysics Data System (ADS)

    Holland, Don; Brannon, David

    1997-01-01

    Some of the crucial issues associated with national and international partnerships that Mission to Planet Earth (MTPE) must face in the coming years are in the areas of data policy, data rights, and international agreements. Even with strictly domestic programs, questions inevitably arise concerning who provides, controls, and owns the data and who can sell, resell, or distribute the data. With the international flavor of MTPE, the complexity of the questions will be compounded. NASA's Commercial Remote Sensing Program at Stennis Space Center is analyzing these questions to identify regulatory frameworks, issues, opportunities, and barriers associated with partnerships and other cooperative efforts between MTPE scientists and the rest of the world.

  20. New Extra-Solar Planet - thermal state and structure

    NASA Astrophysics Data System (ADS)

    Valencia, D.; O'Connell, R. J.; Sasselov, D.

    2005-12-01

    For the last decade astronomers have found more than 160 planets orbiting stars other than our sun. All but three of them are gaseous planets. The variety of characteristics of these newly discovered planets opens a new field with questions about planetary formation, structure and evolution, as well as the possibility of existence of life beyond our solar system. Planetary formation models suggested the existence of terrestrial extra-solar planets with masses up to 10 times the mass of the Earth. In June of 2005 the first Super-Earth was discovered orbiting a star 15 light years away with a mass that is about 7.5 times the mass of the Earth and a period of 1.94 days. The composition of this planet is unknown but probably has an Earth-like composition. Astronomers believe the surface temperature ranges between ~500 K and ~700 K. Liquid water can exist at temperatures above T=400K at high pressures (above 10 MPa) allowing for the possibility of a water layer on top of a rocky core. Our work focuses on determining scaling relationships with mass, internal structure parameters and thermal state. We explore the effects of a water/icy layer above a rocky core as well as other types of compositions in determining the internal structure. This water layer may convect causing the planet to have two layer convection. We explore the effects of a layer convection mode versus whole mantle convection for a Super-Earth. Due to the closeness of this planet to its parent star we can expect substantial tidal heating that can affect the thermal state of this planet. We explore the effects of tidal heating in the internal structure of a planet. Differences in composition have much larger effects in the mass-radius relationship than the uncertainties in thermodynamic parameters of the minerals composing the planet.

  1. A 1.9 Earth Radius Rocky Planet and the Discovery of a Non-transiting Planet in the Kepler-20 System

    NASA Astrophysics Data System (ADS)

    Buchhave, Lars A.; Dressing, Courtney D.; Dumusque, Xavier; Rice, Ken; Vanderburg, Andrew; Mortier, Annelies; Lopez-Morales, Mercedes; Lopez, Eric; Lundkvist, Mia S.; Kjeldsen, Hans; Affer, Laura; Bonomo, Aldo S.; Charbonneau, David; Collier Cameron, Andrew; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaëlle D.; Johnson, John Asher; Latham, David W.; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Nascimbeni, Valerio; Pepe, Francesco; Phillips, David F.; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, Chris

    2016-12-01

    Kepler-20 is a solar-type star (V = 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own solar system. A transition from rocky to gaseous planets with a planetary transition radius of ˜1.6 {R}\\oplus has recently been proposed by several articles in the literature. Kepler-20b ({R}p ˜ 1.9 {R}\\oplus ) has a size beyond this transition radius; however, previous mass measurements were not sufficiently precise to allow definite conclusions to be drawn regarding its composition. We present new mass measurements of three of the planets in the Kepler-20 system that are facilitated by 104 radial velocity measurements from the HARPS-N spectrograph and 30 archival Keck/HIRES observations, as well as an updated photometric analysis of the Kepler data and an asteroseismic analysis of the host star ({M}\\star = 0.948+/- 0.051 {M}⊙ and {R}\\star = 0.964+/- 0.018 {R}⊙ ). Kepler-20b is a {1.868}-0.034+0.066 {R}\\oplus planet in a 3.7 day period with a mass of {9.70}-1.44+1.41 {M}\\oplus , resulting in a mean density of {8.2}-1.3+1.5 {{g}} {{cm}}-3, indicating a rocky composition with an iron-to-silicate ratio consistent with that of the Earth. This makes Kepler-20b the most massive planet with a rocky composition found to date. Furthermore, we report the discovery of an additional non-transiting planet with a minimum mass of {19.96}-3.61+3.08 {M}\\oplus and an orbital period of ˜34 days in the gap between Kepler-20f (P ˜ 11 days) and Kepler-20d (P ˜ 78 days). Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofísica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  2. On the radius of habitable planets

    NASA Astrophysics Data System (ADS)

    Alibert, Y.

    2014-01-01

    Context. The conditions that a planet must fulfill to be habitable are not precisely known. However, it is comparatively easier to define conditions under which a planet is very likely not habitable. Finding such conditions is important as it can help select, in an ensemble of potentially observable planets, which ones should be observed in greater detail for characterization studies. Aims: Assuming, as in the Earth, that the presence of a C-cycle is a necessary condition for long-term habitability, we derive, as a function of the planetary mass, a radius above which a planet is likely not habitable. We compute the maximum radius a planet can have to fulfill two constraints: surface conditions compatible with the existence of liquid water, and no ice layer at the bottom of a putative global ocean. We demonstrate that, above a given radius, these two constraints cannot be met. Methods: We compute internal structure models of planets, using a five-layer model (core, inner mantle, outer mantle, ocean, and atmosphere), for different masses and composition of the planets (in particular, the Fe/Si ratio of the planet). Results: Our results show that for planets in the super-Earth mass range (1-12 M⊕), the maximum that a planet, with a composition similar to that of the Earth, can have varies between 1.7 and 2.2 R⊕. This radius is reduced when considering planets with higher Fe/Si ratios and taking radiation into account when computing the gas envelope structure. Conclusions: These results can be used to infer, from radius and mass determinations using high-precision transit observations like those that will soon be performed by the CHaracterizing ExOPlanet Satellite (CHEOPS), which planets are very likely not habitable, and therefore which ones should be considered as best targets for further habitability studies.

  3. Stable Hydrogen-rich Atmospheres of Young Rocky Planets

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.; Catling, D. C.; Gacesa, M.

    2016-12-01

    SourceURL:file://localhost/Volumes/Lexar/Zahnle_AGU_2016.docx Understanding hydrogen escape is essential to understanding the limits to habitability, both for liquid water where the Sun is bright, but also to assess the true potential of H2 as a greenhouse gas where the Sun is faint. Hydrogen-rich primary atmospheres of Earth-like planets can result either from gravitational capture of solar nebular gases (with helium), or from impact shock processing of a wide variety of volatile-rich planetesimals (typically accompanied by H2O, CO2, and under the right circumstances, CH4). Most studies of hydrogen escape from planets focus on determining how fast the hydrogen escapes. In general this requires solving hydrodynamic equations that take into account the acceleration of hydrogen through a critical transonic point and an energy budget that should include radiative heating and cooling, thermal conduction, the work done in lifting the hydrogen against gravity, and the residual heat carried by the hydrogen as it leaves. But for planets from which hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which is much simpler, and for which a relatively full-featured treatment of radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ is straightforward. Previous work has overlooked the fact that the H2 molecule is extremely efficient at exciting non-LTE CO2 15 micron emission, and thus that radiative cooling can be markedly more efficient when H2 is abundant. We map out the region of phase space in which terrestrial planets keep hydrogen-rich atmospheres, which is what we actually want to know for habitability. We will use this framework to reassess Tian et al's (Science 308, pp. 1014-1017, 2005) hypothesis that H2-rich atmospheres may have been rather long-lived on Earth itself. Finally, we will address the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than

  4. Possible Outcomes of Coplanar High-eccentricity Migration: Hot Jupiters, Close-in Super-Earths, and Counter-orbiting Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yuxin; Masuda, Kento; Suto, Yasushi, E-mail: yuxin@utap.phys.s.u-tokyo.ac.jp

    We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m {sub 1}≪m {sub 0} and m {sub 1} ≪ m {sub 2}. In addition to the gravity for point masses, we examine the importance of the short-range forces,more » and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.« less

  5. First Results of Exoplanet Observations with the Gran Telescopio Canarias: Narrow-Band Transit Photometry Capable of Detecting Super-Earth-size Planets

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.; Colon, K. D.; Blake, C.; Lee, B.; Mahadevan, S.

    2010-01-01

    We present the first exoplanet observations from the Gran Telescopio Canarias (GTC) using the OSIRIS tunable filter imager. Our narrow-band transit follow-up observations set a new record for ground-based, narrow-band photometric precision of an exoplanet transit. The demonstrated precision would allow the detection of a transiting super-Earth-sized planet at near-infrared wavelengths. Such high-precision follow-up observations could significantly improve measurements of the size and orbit of transiting super-Earth and Earth-like planets to be discovered by the CoRoT and Kepler space missions (Colon & Ford 2009). OSIRIS is one of two first light instruments for the GTC and features a tunable filter imaging mode. We observed the planet's host star along with several nearby reference stars during each transit, rapidly alternating observations between multiple narrow band-passes. The GTC's large aperture results in small photon noise and minimal scintillation noise, so care must be taken to minimize other potential systematic noise sources. The use of a narrow bandpass (2nm) reduces the effects of differential extinction, and we chose bandpasses that minimize atmospheric absorption and variability. We measure the flux of the target star relative to an ensemble of reference stars, using an aperture photometry algorithm adapted to allow for: 1) the center of the band-pass varying across the field and resulting in sky rings, and 2) a significant defocus to reduce flat fielding uncertainties and increase observing efficiency. We present results from the first tunable filter observations of an exoplanet transit and outline the exciting prospects for future GTC/OSIRIS observations to study super-Earth planets and the atmospheres of giant planets via occultation photometry. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.

  6. Measuring the Masses of K2 Planets with HARPS-N to Determine the Conditions Under Which Planets Retain, or Lose, their Primordial Envelopes

    NASA Astrophysics Data System (ADS)

    Lopez-Morales, Mercedes

    One of the main findings of NASA's Kepler Mission has been an abundance of planets with radii between that of Neptune and Earth around solar type stars, the so-called miniNeptunes and super-Earths. There is no equivalent of those planets in our Solar System, but about 80 percent of the candidates in the Kepler catalog are in this size range. Therefore, they appear to be the most common type of planets around solar type stars. In spite of their large numbers, we still know very little about the masses of mini-Neptunes and super-Earths, and their densities. There has been some recent progress on this topic, for e.g. as part of an ongoing XRP proposal (14-XRP14_20071; P.I. Charbonneau), our team has measured precise masses for 8 planets with radii between 1 and 2.5 Earths with HARPS-N, and found that all planets smaller than 1.6 Earth radii have core masses consistent with Earth's, while all planets larger than 1.6 Earth radii have H/He envelopes. The current hypothesis is that this is an insolation effect, since all the rocky planets with precise mass measurements are in very short orbits. However, that hypothesis has not been fully tested, and many other questions about the formation and evolution of these small planets remain unsolved, i.e. what is the rocky/non-rocky ratio of these planets? Are the observed rocky planets evaporated cores of sub-Neptunes, or did they form as bare cores? Can very short period planets retain a significant envelope? Is the currently hypothesized non-rocky/rocky transition at 1.5-1.7 Earth radii real? Precision radial velocity mass measurements so far suffer from an observational bias, in which larger radius planets with small radial velocity signals have been overlooked. These cases would form a population of very low-mass, gaseous planets, which 1) disagree with the current conclusion that all low mass planets below 6 Earth masses are rocky, 2) serve to test current formation/gas accretion and evaporation models, and 3) have large

  7. Kepler Mission: A Search for Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Koch, D.; Borucki, W.; Jenkens, J.; Dunham, E.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The Kepler Mission is a search for terrestrial planets by monitoring a large ensemble of stars for the periodic transits of planets. The mission consists of a 95-cm aperture photometer with 105 square deg field of view that monitors 100,000 dwarf stars for four years. The mission is unique in its ability to detect Earth-size planets in the habitable zone of other stars in the extended solar neighborhood. An Earth-size transit of a solar-like star causes a change in brightness of about 100 ppm. Laboratory testing has demonstrated that a total system noise level of 20 ppm is readily achievable on the timescale of transits. Earth-like transits have been created and reliably measured in an end-to-end system test that has all known sources of noise including, spacecraft jitter. To detect Earth-size planets, the photometer must be spaceborne; this also eliminates the day-night and seasonal cycle interruptions of ground-based observing. The photometer will stare at a single field of stars for four years, with an option to continue for two more years. This allows for detection of four transits of planets in Mars-like orbits and detection of planets even smaller than Earth especially for short period orbits, since the signal to noise improves as the square root of the number of transits observed. In addition to detection of planets, Kepler data are also useful for understanding the activity cycles and rotation rates of the stars observed. For the 3,000 stars brighter than mv= 11.4 p-mode oscillations are measured. The mission has been selected as one of three candidates for NASA's next Discovery mission.

  8. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan

    2015-01-01

    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen

  9. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  10. Limits On Undetected Planets in the Six Transiting Planets Kepler-11 System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2017-01-01

    The Kepler-11 has five inner planets ranging from approx. 2 - 1 times as massive Earth in a tightly-packed configuration, with orbital periods between 10 and 47 days. A sixth planet, Kepler-11 g, with a period of118 days, is also observed. The spacing between planets Kepler-11 f and Kepler-11 g is wide enough to allow room for a planet to orbit stably between them. We compare six and seven planet fits to measured transit timing variations (TTVs) of the six known planets. We find that in most cases an additional planet between Kepler-11 f and Kepler-11 g degrades rather than enhances the fit to the TTV data, and where the fit is improved, the improvement provides no significant evidence of a planet between Kepler-11 f and Kepler-11 g. This implies that any planet in this region must be low in mass. We also provide constraints on undiscovered planets orbiting exterior to Kepler-11 g. representations will be described.

  11. Journey to a Star Rich with Planets

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Journey to a Star Rich with Planets

    This artist's animation takes us on a journey to 55 Cancri, a star with a family of five known planets - the most planets discovered so far around a star besides our own.

    The animation begins on Earth, with a view of the night sky and 55 Cancri (flashing dot), located 41 light-years away in the constellation Cancer. It then zooms through our solar system, passing our asteroids and planets, until finally arriving at the outskirts of 55 Cancri.

    The first planet to appear is the farthest out from the star -- a giant planet, probably made of gas, with a mass four times that of Jupiter. This planet orbits its star every 14 years, similar to Jupiter's 11.9-year orbit.

    As the movie continues, the three inner planets are shown, the closest of which is about 10 to 13 times the mass of Earth with an orbital period of less than three days.

    Zooming out, the animation highlights the newest member of the 55 Cancri family - a massive planet, likely made of gas, water and rock, about 45 times the mass of Earth and orbiting the star every 260 days. This planet is the fourth out from the star, and lies in the system's habitable zone (green). A habitable zone is the place around a star where liquid water would persist. Though the newest planet probably has a thick gaseous envelope, astronomers speculate that it could have one or more moons. In our own solar system, moons are common, so it seems likely that they also orbit planets in other solar systems. If such moons do exist, and if they are as large as Mars or Earth, astronomers speculate that they would retain atmospheres and surface liquid water that might make interesting environments for the development of life.

    The animation ends with a comparison between 55 Cancri and our solar system.

    The colors of the illustrated planets were chosen to resemble those of our own solar

  12. Nebula-based Primordial Atmospheres of Planets Around Solar-Like Stars Revised

    NASA Astrophysics Data System (ADS)

    Scherf, Manuel; Lammer, H.; Leitzinger, M.; Odert, P.; Güdel, M.; Hanslmeier, A.

    2012-05-01

    At the beginning of a planetary system, in the stage of the stellar nebula and the growing-phase of the planets, planetesimals and Earth-like proto-planets accumulate a remarkable amount of gas, mainly consisting of hydrogen and helium. The mass of such a primordial atmosphere was first estimated for the proto-Earth by Hayashi et al. (1979), with up to 1026 g accumulated within 106 years. Furthermore it is commonly expected that these primordial atmospheres will be completely dissipated due to irradiation of the stellar EUV-flux during the first 108 years. Recent observations of young solar-like stars indicate that the efficiency and effect of the EUV-flux after the nebula disappeared, was highly overestimated by previous studies. We show that parts of these dense hydrogen/helium-gas envelopes may sustain this early active stage of a young star. Implications on the habitability are also discussed.

  13. Planet Formation - Overview

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2005-01-01

    Modern theories of star and planet formation are based upon observations of planets and smaller bodies within our own Solar System, exoplanets &round normal stars and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path.

  14. The Atmospheres of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  15. Planets in Motion

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    All the planets in the solar system revolve around the Sun in the same direction, clockwise when viewed from above the North Pole. This is referred to as direct motion. From the perspective on the Earth's surface, the planets travel east across the sky in relation to the background of stars. The Sun also moves eastward daily, but this is an…

  16. The Fate of Exomoons when Planets Scatter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-03-01

    orbits similar to Jupiters Galilean satellites (i.e., orbiting at a distance of less than 4% of their host planets Hill radius) have a 2040% chance of survival.Moon initial semimajor axis vs. moon survival rate. Three of Jupiters Galilean moons are shown for reference. [Hong et al. 2018]Free-Floating MoonsAn intriguing consequence of Hong and collaborators results is the prediction of a population of free-floating exomoons that were ejected from solar systems during planetplanet scattering and now wander through the universe alone. According to the authors models, there may be as many of these free-floating exomoons as there are stars in the universe!Future surveys that search for objects using gravitational microlensing like that planned with the Wide-Field Infrared Survey Telescope (WFIRST) may be able to detect such objects down to masses of a tenth of an Earth mass. In the meantime, were a little closer to understanding the complex dynamics of early solar systems.CitationYu-Cian Hong et al 2018 ApJ 852 85. doi:10.3847/1538-4357/aaa0db

  17. The NASA-UC-UH Eta-Earth program. IV. A low-mass planet orbiting an M dwarf 3.6 PC from Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard

    We report the discovery of a low-mass planet orbiting Gl 15 A based on radial velocities from the Eta-Earth Survey using HIRES at Keck Observatory. Gl 15 Ab is a planet with minimum mass Msin i = 5.35 ± 0.75 M {sub ⊕}, orbital period P = 11.4433 ± 0.0016 days, and an orbit that is consistent with circular. We characterize the host star using a variety of techniques. Photometric observations at Fairborn Observatory show no evidence for rotational modulation of spots at the orbital period to a limit of ∼0.1 mmag, thus supporting the existence of the planet. Wemore » detect a second RV signal with a period of 44 days that we attribute to rotational modulation of stellar surface features, as confirmed by optical photometry and the Ca II H and K activity indicator. Using infrared spectroscopy from Palomar-TripleSpec, we measure an M2 V spectral type and a sub-solar metallicity ([M/H] = –0.22, [Fe/H] = –0.32). We measure a stellar radius of 0.3863 ± 0.0021 R {sub ☉} based on interferometry from CHARA.« less

  18. Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  19. A comprehensive mission to planet Earth: Woods Hole Space Science and Applications Advisory Committee Planning Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA program Mission to Planet Earth (MTPE) is described in this set of visuals presented in Massachusetts on July 29, 1991. The problem presented in this document is that the earth system is changing and that human activity accelerates the rate of change resulting in increased greenhouse gases, decreasing levels of stratospheric ozone, acid rain, deforestation, decreasing biodiversity, and overpopulation. Various national and international organizations are coordinating global change research. The complementary space observations for this activity are sun-synchronous polar orbits, low-inclination, low altitude orbits, geostationary orbits, and ground measurements. The Geostationary Earth Observatory is the major proposed mission of MTPE. Other proposed missions are EOS Synthetic Aperture Radar, ARISTOTELES Magnetic Field Experiment, and the Global Topography Mission. Use of the NASA DC-8 aircraft is outlined as carrying out the Airborne Science and Applications Program. Approved Earth Probes Program include the Total Ozone Mapping Spectrometer (TOMS). Other packages for earth observation are described.

  20. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  1. Taxonomy of the extrasolar planet.

    PubMed

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.

  2. Geologic evolution of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Mutch, T. A.; Wood, C. A.

    1977-01-01

    The paper presents a geologic comparison of the terrestrial planets Mercury, Venus, Earth, the Moon and Mars, in the light of the recent photogeologic and other evidence gathered by satellites, and discusses the relationships between their regional terrain types, ages, and planetary evolution. The importance of the two fundamental processes, impact cratering and volcanism, which had formed these planets are stressed and the factors making the earth unique, such as high planetary evolution index (PEI), dynamic geological agents and the plate tectonics, are pointed out. The igneous processes which dominate earth and once existed on the others are outlined together with the planetary elevations of the earth which has a bimodal distribution, the moon which has a unimodal Gaussian distribution and Mars with a distribution intermediate between the earth and moon. Questions are raised concerning the existence of a minimum planetary mass below which mantle convection will not cause lithospheric rifting, and as to whether each planet follows a separate path of evolution depending on its physical properties and position within the solar system.

  3. Highlights and impacts of the International Year of Planet Earth in Hungary

    NASA Astrophysics Data System (ADS)

    Szarka, László; Ádám, József; Brezsnyánszky, Károly; Haas, János; Kakas, Kristóf; Koppán, András.

    2010-05-01

    IYPE activities of various geo-science associations, universities, research institutes and private companies in Hungary (www.foldev.hu) have been successfully coordinated by the Hungarian National Committee, which was established by the Hungarian Academy of Sciences, the UNESCO- and the IUGS National Committees. The National Launch Event (April 17, 2008) was followed with a four-days long "Earth Science Fair" at the Hungarian Natural History Museum in Budapest. The IYPE was even briefly reviewed in the Hungarian Parliament. The Science Festival, organized annually by the Hungarian Academy of Sciences, in 2008 had a special IYPE-inspired slogan: "Science for the Habitable Earth", where lectures were held about the modern content of the Greek Classical Elements ("earth", "water", "air" and "fire", that is energy) and about the Humanity. In 2008/2009 numerous publications (including the Hungarian version of the IYPE booklet series, under the title GEO-FIFIKA, the Természet Világa special issue in February 2009, the IYPE number of Földrajzi Közlemények (Geographical Communications), and the "Geological Map of Hungary for Tourists" were produced. Throughout the country, symposia (e.g. HUNGEO 2008, ELGI 100, MÁFI 140, Geotourism Symposium in October 2009), several contests (Hungarian Television "Delta", Élet és Tudomány on the occasion of the UN year, and the annual contests starting in 2007 at Miskolc University), film shows (e.g., the movie "Another Planet") and other performances (e.g. End of the Ice Age in Hungarian Natural History Museum) were organized, with modest but increasing media coverage. The worldwide premier of the Planet Earth TV took place in Hungary, on the occasion of the IAGA 11th Scientific Assembly (August 23-30, 2009, www.iaga2009sopron.hu). One of our conferences ("Earth and Heaven - Geology and Theology") pointed out that there should be no conflict between science and religion, either in the fields of Earth's history or evolution

  4. Extrusive and Intrusive Magmatism Greatly Influence the Tectonic Mode of Earth-Like Planets

    NASA Astrophysics Data System (ADS)

    Lourenco, D.; Tackley, P. J.; Rozel, A.; Ballmer, M.

    2017-09-01

    Plate tectonics on Earth-like planets is typically modelling using a strongly temperature-dependent visco-plastic rheology. Previous analyses have generally focussed on purely thermal convection. However, we have shown that the influence of compositional heterogeneity in the form of continental or oceanic crust can greatly influence plate tectonics by making it easier (i.e. it occurs at a lower yield stress or friction coefficient). Here we present detailed results on this topic, in particular focussing on the influence of intrusive vs. extrusive magmatism on the tectonic mode.

  5. Topics in Extrasolar Planet Characterization

    NASA Astrophysics Data System (ADS)

    Howe, Alex Ryan

    I present four papers exploring different topics in the area of characterizing the atmospheric and bulk properties of extrasolar planets. In these papers, I present two new codes, in various forms, for modeling these objects. A code to generate theoretical models of transit spectra of exoplanets is featured in the first paper and is refined and expanded into the APOLLO code for spectral modeling and parameter retrieval in the fourth paper. Another code to model the internal structure and evolution of planets is featured in the second and third papers. The first paper presents transit spectra models of GJ 1214b and other super-Earth and mini-Neptune type planets--planets with a "solid", terrestrial composition and relatively small planets with a thick hydrogen-helium atmosphere, respectively--and fit them to observational data to estimate the atmospheric compositions and cloud properties of these planets. The second paper presents structural models of super-Earth and mini-Neptune type planets and estimates their bulk compositions from mass and radius estimates. The third paper refines these models with evolutionary calculations of thermal contraction and ultraviolet-driven mass loss. Here, we estimate the boundaries of the parameter space in which planets lose their initial hydrogen-helium atmospheres completely, and we also present formation and evolution scenarios for the planets in the Kepler-11 system. The fourth paper uses more refined transit spectra models, this time for hot jupiter type planets, to explore the methods to design optimal observing programs for the James Webb Space Telescope to quantitatively measure the atmospheric compositions and other properties of these planets.

  6. Check-Up of Planet Earth at the Turn of the Millennium Anticipated New Phase in Earth Sciences

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Langley's remarkable solar and lunar spectra collected from mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite named recently "Terra" (by Ms. Sasha Jones, a 17 year old student in St. Louis, MO) will repeat Langley's experiment, but for the entire planet, thus pioneering calibrated spectral observations from space. Conceived in response to real environmental problems, EOS-AM, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-AM can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In this talk I shall a give a historical perspective for the need for this expensive mission, give examples of the science that we anticipate to achieve using Terra measurements and describe this exciting mission.

  7. Controls on the Climates of Tidally Locked Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Yang, J.; Cowan, N. B.; Abbot, D. S.

    2013-12-01

    Earth-size planets in the habitable zone of M-dwarf stars may be very common. Due to strong tidal forces, these planets in circulate orbits are expected to be tidally locked, with one hemisphere experiencing perpetual day and the other permanent night. Previous studies on the climates of tidally locked planets were primarily based on complex 3D general circulation models (GCMs). The central question to be answered in this work is: what is the minimum necessary physics needed to understand the climates simulated by GCMs? A two-column model, primarily based on the weak temperature gradient (WTG) approximation (Sobel et al. 2001) and the fixed anvil temperature (FAT) hypothesis (Hartmann and Larson 2002) for the tropical climate of Earth, is developed for understanding the climates of tidally locked planets. This highly idealized model well reproduces fundamental features of the climates obtained in complicated GCMs (Yang et al. 2013), including planetary albedo, longwave cloud forcing, outgoing longwave radiation (OLR), and atmospheric energy transport. This suggests that the WTG approximation and the FAT hypothesis may be good approximations for tidally locked habitable planets, which provides strong constraints on the large-scale circulations, diabatic processes, and cloud behaviour on these planets. Both the simple model and the GCMs predict that (i) convection and planetary albedo on the dayside increase as stellar flux is increased; (ii) longwave cloud radiative forcing increases as stellar flux is increased, due to the cloud top temperature remains nearly constant as the climate changes (FAT hypothesis); (iii) for planets at the inner regions of the habitable zone, the dayside--nightside OLR contrast becomes very weak or even reverses, due to the strong longwave absorption by water vapor and clouds on the dayside; (iv) the dayside--to--nightside atmospheric energy transport (AET) increases as stellar flux is increased, and decreases as oceanic energy transport

  8. Q & A with Kathleen M. Reilly, Author of "Planet Earth: 25 Environmental Projects You Can Build Yourself"

    ERIC Educational Resources Information Center

    Curriculum Review, 2008

    2008-01-01

    This article presents an interview with Kathleen M. Reilly, author of "Planet Earth: 25 Environmental Projects You Can Build Yourself." Environmental awareness needs to begin in childhood, and, through this book, Kathleen M. Reilly encourages children to learn about ecology and ecosystems to begin conservation early in their lives. Children ages 9…

  9. Provenance of the terrestrial planets.

    PubMed

    Wetherill, G W

    1994-01-01

    Earlier work on the simultaneous accumulation of the asteroid belt and the terrestrial planets is extended to investigate the relative contribution to the final planets made by material from different heliocentric distances. As before, stochastic variations intrinsic to the accumulation processes lead to a variety of final planetary configurations, but include systems having a number of features similar to our solar system. Fifty-nine new simulations are presented, from which thirteen are selected as more similar to our solar system than the others. It is found that the concept of "local feeding zones" for each final terrestrial planet has no validity for this model. Instead, the final terrestrial planets receive major contributions from bodies ranging from 0.5 to at least 2.5 AU, and often to greater distances. Nevertheless, there is a correlation between the final heliocentric distance of a planet and its average provenance. Together with the effect of stochastic fluctuations, this permits variation in the composition of the terrestrial planets, such as the difference in the decompressed density of Earth and Mars. Biologically important light elements, derived from the asteroidal region, are likely to have been significant constituents of the Earth during its formation.

  10. The "Planet Earth Week": a National Scientific Festival helping Italy Discover Geosciences.

    NASA Astrophysics Data System (ADS)

    Seno, S.; Coccioni, R.

    2017-12-01

    The "Planet Earth Week- Italy Discovering Geosciences: a More Informed Society is a More Engaged Society" (www.settimanaterra.org) is a science festival that involves the whole of the Italian Regions: founded in 2012, it has become the largest event of Italian Geosciences and one of the biggest European science festivals. During a week in October several locations distributed throughout the Country (see map) are animated by events, called "Geoeventi", to disseminate geosciences to the masses and deliver science education by means of a wide range of activities: hiking, walking in city and town centers, open-door at museums and research centers, guided tours, exhibitions, educational and experimental workshops for children and young people, music and art performances, food and wine events, lectures, conferences, round tables. Universities and colleges, research centers, local Authorities, cultural and scientific associations, parks and museums, professionals organize the Geoeventi. The festival aims at bringing adults and young people to Geosciences, conveying enthusiasm for scientific research and discoveries, promoting sustainable cultural tourism, aware of environmental values and distributed all over Italy. The Geoeventi shed light both on the most spectacular and on the less known geological sites, which are often a stone's throw from home. The Planet Earth Week is growing year after year: the 2016 edition proposed 310 Geoeventi, 70 more than in 2015. The number of places involved in the project also increased and rose from 180 in 2015 to 230 in 2016. This initiative, that is also becoming a significant economic driver for many small companies active in the field of science divulgation, is analyzed, evaluated and put in a transnational network perspective.

  11. Planetary Formation: From The Earth And Moon To Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of planetary growth, emphasizing the formation of habitable planets, is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost - to orbital decay within the protoplanetary disk. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. Specific issues to be discussed include: (1) how do giant planets influence the formation and habitability of terrestrial planets? (2) could a giant impact leading to lunar formation have occurred - 100 million years after the condensation of the oldest meteorites?

  12. A Census of Habitable Planets around Nearby stars?

    NASA Astrophysics Data System (ADS)

    Leger, Alain M.

    2015-12-01

    One day or another, a spectroscopic mission will be launched searching for biosignatures in the atmospheres of Earth-like planets, i.e. planets located in the Habitable Zone (HZ) of their stars and hopefully rocky. This could be done blindly, the expensive spectroscopic mission searching for the candidates before performing their spectroscopy. According to a clear tendency in the Kepler data, the mean number of Earth-like planets, ηEarth, around the Kepler stars is rather low (10% - 20%). It makes this approach pretty inefficient, most of the stars studied (90% - 80%) having no such planets, and the corresponding mission time being essentially lost. This is more severe when the random position of planets on their orbits is taken into account. An exhaustive census of these planets around the nearby stars, the only ones accessible to the mission, appears desirable priorly to its launch.Up to now, the detection of low mas planets in the HZ of their stars by the Radial Velocity technique is limited to stars with very low activity (~ 2% of F,G,K stars). The detection by transits is limited by the low probability the randomly oriented orbits, few of them leading to a transit (0.5% for solar-type stars). On the other hand, ultra accurate astrometry is less sensitive to stellar activity and could detect Earth-like planets around most of the nearby solar-type stars.We present the project of a space mission, Theia+, that could do the job and measure the masses and orbits of these planets, a key piece of information to derive a possible statement about the likelihood of the actual presence of life on a planet. Other capabilities of the mission regarding Dark Matter, Very Compact Object, Cosmology, and Stellar Formation is also rapidly mentioned.

  13. An extrasolar planetary system with three Neptune-mass planets.

    PubMed

    Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre

    2006-05-18

    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

  14. HIGHLIGHTS AND IMPACTS OF THE INTERNATIONAL YEAR OF PLANET EARTH IN HUNGARY

    NASA Astrophysics Data System (ADS)

    Szarka, L.; Adam, J.; Brezsnyanszky, K.

    2009-12-01

    International Year of Planet Earth (IYPE) activities of various geo-science associations, universities, research institutes and private companies in Hungary have been successfully coordinated by the Hungarian National Committee, which was established by the Hungarian Academy of Sciences, the UNESCO- and the IUGS National Committees. The National Launch Event (April 17, 2008) was followed with a four-days long “Earth Science Fair” at the Hungarian Natural History Museum in Budapest. The IYPE was even briefly reviewed in the Hungarian Parliament. The Science Festival, organized annually by the Hungarian Academy of Sciences, in 2008 had a special IYPE-inspired slogan: “Science for the Habitable Earth”, where lectures were held about the modern content of the Greek Classical Elements (“earth”, “water”, “air” and “fire”, that is energy) and about the Humanity. In 2008/2009 numerous publications (including the Hungarian version of the IYPE booklet series, under the title GEO-FIFIKA, and the “Geological Map of Hungary for tourists” were produced. Throughout the country, symposia, contests, film shows (e.g., the movie “Another Planet”) and other performances were organized, with increasing media coverage. The worldwide premier of the Planet Earth TV took place in Hungary, on the occasion of the IAGA 11th Scientific Assembly (August 23-30, 2009). One of our conferences (“Earth and Heaven - Geology and Theology”) pointed out that there should be no conflict between science and religion, either in the fields of Earth’s history or evolution. Science (and only science) is able to give reliable knowledge how Nature works, and the investigation of the “ultimate Why” (i.e. the “Primordial Cause”) should be left to religions. At the same time, there are antagonistic conflicts between science and pseudo-science, and also between religions and pseudo-religions. Among the scientific programmes the activity of Geological Institute of

  15. Mission to Planet Earth. The living ocean: Observing ocean color from space

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Measurements of ocean color are part of NASA's Mission to Planet Earth, which will assess how the global environment is changing. Using the unique perspective available from space, NASA will observe, monitor, and study large-scale environmental processes, focusing on quantifying climate change. NASA will distribute the results of these studies to researchers worldwide to furnish a basis for informed decisions on environmental protection and economic policy. This information packet includes discussion on the reasons for measuring ocean color, the carbon cycle and ocean color, priorities for global climate research, and SeWiFS (sea-viewing wide field-of-view sensor) global ocean color measurements.

  16. Modeling the Entry of Micrometeoroids into the Atmospheres of Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Pevyhouse, A. R.; Kress, M. E.

    2011-01-01

    The temperature profiles of micrometeors entering the atmospheres of Earth-like planets are calculated to determine the altitude at which exogenous organic compounds may be released. Previous experiments have shown that flash-heated micrometeorite analogs release organic compounds at temperatures from roughly 500 to 1000 K [1]. The altitude of release is of great importance because it determines the fate of the compound. Organic compounds that are released deeper in the atmosphere are more likely to rapidly mix to lower altitudes where they can accumulate to higher abundances or form more complex molecules and/or aerosols. Variables that are explored here are particle size, entry angle, atmospheric density profiles, spectral type of the parent star, and planet mass. The problem reduces to these questions: (1) How much atmosphere does the particle pass through by the time it is heated to 500 K? (2) Is the atmosphere above sufficient to attenuate stellar UV such that the mixing timescale is shorter than the photochemical timescale for a particular compound? We present preliminary results that the effect of the planetary and particle parameters have on the altitude of organic release.

  17. Size of Kepler Planet Candidates

    NASA Image and Video Library

    2013-01-07

    Kepler data has increased by 20 percent and now totals 2,740 potential planets orbiting 2,036 stars; dramatic increases are seen in the number of Earth-size and super Earth-size candidates discovered.

  18. The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf.

    PubMed

    Segura, Antígona; Walkowicz, Lucianne M; Meadows, Victoria; Kasting, James; Hawley, Suzanne

    2010-09-01

    Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high-energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect, we estimated a proton flux associated with the flare of 5.9 × 10⁸ protons cm⁻² sr⁻¹ s⁻¹ for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the Carrington event. The simulations were performed with a 1-D photochemical model coupled to a 1-D radiative/convective model. Our results indicate that the UV radiation emitted during the flare does not produce a significant change in the ozone column depth of the planet. When the action of protons is included, the ozone depletion reaches a maximum of 94% two years after the flare for a planet with no magnetic field. At the peak of the flare, the calculated UV fluxes that reach the surface, in the wavelength ranges that are damaging for life, exceed those received on Earth during less than 100 s. Therefore, flares may not present a direct hazard for life on the surface of an orbiting habitable planet. Given that AD Leo is one of the most magnetically active M dwarfs known, this conclusion should apply to planets around other M dwarfs with lower levels of chromospheric activity.

  19. Interannual variability of planet-encircling dust storms on Mars

    NASA Technical Reports Server (NTRS)

    Zurek, Richard W.; Martin, Leonard J.

    1993-01-01

    A recent review of earth-based telescopic observations of Mars together with Viking orbiter and lander data are employed to estimate the frequency of occurrence of planet-encircling dust storms over the past century and to test whether the period spanned by the Mariner 9 and Viking missions to Mars is representative of the decades prior to 1950. Both spacecraft and earth-based observations suggest that planet-encircling dust storms on Mars occur during a 'dust storm season' in southern spring and summer. Viking data show that planet-encircling dust storms could have occurred in the past on Mars without being detected from earth during years in which Mars was far from earth during the dust storm season. Planet-encircling storms were absent during the dust storm seasons monitored during several favorable oppositions prior to 1956 and after 1986. The change of a planet-encircling dust storm occurring in any arbitrary Mars year is estimated to be approximately one in three, if this occurrence is random from year to year and yet restricted seasonally to southern spring and summer.

  20. Position of planet X obtained from motion of near-parabolic comets

    NASA Astrophysics Data System (ADS)

    Medvedev, Yurii; Vavilov, Dmitrii

    2016-10-01

    The authors of paper (Batygin and Brown, 2016) proposed that a planet with 10 earth's mass and an orbit of 700 AU semi major axis and 0.6 eccentricity can explain the observed distribution of Kuiper Belt objects around Sedna. Then Fienga et al.(2016) used the INPOP planetary ephemerides model as a sensor for testing for an additional body in the solar system. They defined the planet position on the orbit using the most sensitive data set, the Cassini radio ranging data.Here we use near-parabolic comets for determination of the planet's position on the orbit. Assuming that some comets approached the planet in the past, we made a search for the comets with low Minimum Orbit Intersection Distance (MOID) with the planet's orbit. From the list of 768 near-parabolic comets five "new" comets with hyperbolic orbits were chosen. We considered two cases of the planet's motion: the direct and the inverse ones. In case of the direct motion the true anomaly of the planet lies in interval [1760, 1840] and, thus, the right ascension, the declination and geocentric distance of the planet are in intervals [830, 900], [80,100], and [1110, 1120] AU, correspondingly. In case of the inverse motion the true anomaly is in [2120, 2230] and the other values are in intervals [480, 580], [-120,-60] and [790, 910] AU. For comparison with the direct motion the true anomaly for the inverse motion, v, should be transformed by 3600-v. That gives us the interval [1370, 1480] that belongs to the intervals of the true anomaly of possible planet's position given by Fienga et al.(2016).ReferencesBatygin, K. & Brown, M. E., 2016, Evidence for a distant giant planet in the Solar system, Astronomical Journal, v. 151, 22Fienga A. A. Fienga1,J. Laskar, H. Manche, and M. Gastineau, 2016, Constraints on the location of a possible 9th planet derived from the Cassini data , Astronomy & Astrophysics, v. 587, L8

  1. A rocky composition for an Earth-sized exoplanet.

    PubMed

    Howard, Andrew W; Sanchis-Ojeda, Roberto; Marcy, Geoffrey W; Johnson, John Asher; Winn, Joshua N; Isaacson, Howard; Fischer, Debra A; Fulton, Benjamin J; Sinukoff, Evan; Fortney, Jonathan J

    2013-11-21

    Planets with sizes between that of Earth (with radius R Earth symbol) and Neptune (about 4R Earth symbol) are now known to be common around Sun-like stars. Most such planets have been discovered through the transit technique, by which the planet's size can be determined from the fraction of starlight blocked by the planet as it passes in front of its star. Measuring the planet's mass--and hence its density, which is a clue to its composition--is more difficult. Planets of size 2-4R Earth symbol have proved to have a wide range of densities, implying a diversity of compositions, but these measurements did not extend to planets as small as Earth. Here we report Doppler spectroscopic measurements of the mass of the Earth-sized planet Kepler-78b, which orbits its host star every 8.5 hours (ref. 6). Given a radius of 1.20 ± 0.09 R Earth symbol and a mass of 1.69 ± 0.41 R Earth symbol, the planet's mean density of 5.3 ± 1.8 g cm(-3) is similar to Earth's, suggesting a composition of rock and iron.

  2. THE GJ1214 SUPER-EARTH SYSTEM: STELLAR VARIABILITY, NEW TRANSITS, AND A SEARCH FOR ADDITIONAL PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berta, Zachory K.; Charbonneau, David; Bean, Jacob

    2011-07-20

    The super-Earth GJ1214b transits a nearby M dwarf that exhibits a 1% intrinsic variability in the near-infrared. Here, we analyze new observations to refine the physical properties of both the star and planet. We present three years of out-of-transit photometric monitoring of the stellar host GJ1214 from the MEarth Observatory and find the rotation period to be long, most likely an integer multiple of 53 days, suggesting low levels of magnetic activity and an old age for the system. We show that such variability will not pose significant problems to ongoing studies of the planet's atmosphere with transmission spectroscopy. Wemore » analyze two high-precision transit light curves from ESO's Very Large Telescope (VLT) along with seven others from the MEarth and Fred Lawrence Whipple Observatory 1.2 m telescopes, finding physical parameters for the planet that are consistent with previous work. The VLT light curves show tentative evidence for spot occultations during transit. Using two years of MEarth light curves, we place limits on additional transiting planets around GJ1214 with periods out to the habitable zone of the system. We also improve upon the previous photographic V-band estimate for the star, finding V = 14.71 {+-} 0.03.« less

  3. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  4. How, when and where Life will begin on another planet after Earth by Duky’s Theory

    NASA Astrophysics Data System (ADS)

    Deol, Satveer; Singh Nafria, Amritpal

    2017-01-01

    Our Sun is a Red Giant Star and in distant future it will engulf Mercury, Venus and probably Earth and Mars. This paper shows that in distant future due to increasing size & luminosity of the Sun life will begin on one of the planet after 1 duky’s Unit. 1 duky's Unit is the time from now to the time when Mercury would get merged in Sun. At that time Venus would be first planet & due to closeness to Sun, its upper atmosphere would get heated up by solar wind. In a continuous process the clouds of sulfuric acid would escape its gravity. Eventually it would get drifted off into space and it become Mercury twin. On Earth after few million years moisture in air would become very good to trap infra red radiation. As it will warms up, oceans would evaporate even more & in few million years it would get covered with blanket of water vapours. Due to increasing temperature & pressure, volcanoes on Earth would become active then volcanic eruption would blast billions of tons of sulfur high into atmosphere there sulfur would mix with water vapors & form conc. Sulfuric acids. In a continuous process of few more million years whole Earth would get covered with sulphuric acids cloud. As Earth’s moon is receding away from Earth, so before 1 DU, Moon will have been gone away from Earth. As a result it would get started slow down one spin about 1 million year. These would lead to massive outpouring of CO2 & other greenhouse gasses. At that Earth would become Venus Twin. Now it's Mars turn, according to scientists after 50 millions years from now phobo will crash onto the surface of Mars. When that would happen, Mars would have one moon like Earth. This collision would be so hard & strong that phobo would get totally immersed in the surface of Mars as a results it's possible that Mars would get tilted at about 23.5 degree. Due to collision molten lava would come out. When temperature & pressure would rise then water ice would become water. When water would get enriched with

  5. MOA-2012-BLG-505Lb: A Super-Earth-mass Planet That Probably Resides in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Nagakane, M.; Sumi, T.; Koshimoto, N.; Bennett, D. P.; Bond, I. A.; Rattenbury, N.; Suzuki, D.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Matsuo, T.; Muraki, Y.; Ohnishi, K.; Ranc, C.; Saito, To.; Sharan, A.; Shibai, H.; Sullivan, D. J.; Tristram, P. J.; Yamada, T.; Yonehara, A.; MOA Collaboration

    2017-07-01

    We report the discovery of a super-Earth-mass planet in the microlensing event MOA-2012-BLG-505. This event has the second shortest event timescale of t E = 10 ± 1 days where the observed data show evidence of a planetary companion. Our 15 minute high cadence survey observation schedule revealed the short subtle planetary signature. The system shows the well known close/wide degeneracy. The planet/host-star mass ratio is q = 2.1 × 10-4 and the projected separation normalized by the Einstein radius is s = 1.1 or 0.9 for the wide and close solutions, respectively. We estimate the physical parameters of the system by using a Bayesian analysis and find that the lens consists of a super-Earth with a mass of {6.7}-3.6+10.7 {M}\\oplus orbiting around a brown dwarf or late-M-dwarf host with a mass of {0.10}-0.05+0.16 {M}⊙ with a projected star-planet separation of {0.9}-0.2+0.3 {au}. The system is at a distance of 7.2 ± 1.1 kpc, I.e., it is likely to be in the Galactic bulge. The small angular Einstein radius (θ E = 0.12 ± 0.02 mas) and short event timescale are typical for a low-mass lens in the Galactic bulge. Such low-mass planetary systems in the Bulge are rare because the detection efficiency of planets in short microlensing events is relatively low. This discovery may suggest that such low-mass planetary systems are abundant in the Bulge and currently on-going high cadence survey programs will detect more such events and may reveal an abundance of such planetary systems.

  6. Shock Temperatures of Major Silicates in Rocky Planets

    NASA Astrophysics Data System (ADS)

    Davies, E.; Root, S.; Spaulding, D.; Kraus, R. G.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.

    2016-12-01

    Rocky extra-solar planets have been discovered with very high masses that challenge our theoretical understanding of planetary structures and notions of planet formation. In order to constrain models and understand mechanisms of both the formation and subsequent evolution of these planets, it is imperative to determine the properties of materials within the interiors of large Earth-like planets. The major minerals olivine [(Mg,Fe)2SiO4] and enstatite [(Mg,Fe)SiO3], along with Fe-rich metal (with 5% Ni), are the most abundant solids from which Earth-like planets accrete. These materials are subject to ultra-high pressures and temperatures (approaching 10TPa and 10,000 K) during planetary formation and in the present day interiors of large rocky planets. Here, we present results of shock compression experiments on the Sandia Z machine. Shock compression experiments with the Sandia Z machine use large current and field densities that generate magnetic pressures up to 650 GPa that can accelerate flyer plates up to 40 km/s. We report shock temperatures for pressures greater than 270 GPa for forsterite (Mg2SiO4) and enstatite. Our results, together with prior data, demonstrate discrepancies in shock temperatures on forsterite in the region of possible incongruent melting on the Hugoniot. Key gaps in the Hugoniot contribute to this uncertainty. EOS formalisms such as M-ANEOS, which are commonly used in planetary impact simulations, over predict temperatures above 200 GPa with significant disagreement above 500 GPa. As a result, the amount of material subject to shock-induced vaporization during giant impacts is larger than currently estimated. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was performed under the auspices of the U

  7. Rotation of a Moonless Earth

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  8. What Every 17-Year Old Should Know about Planet Earth: The Report of a Conference of Educators and Geoscientists.

    ERIC Educational Resources Information Center

    Mayer, Victor J.; Armstrong, Ronald E.

    1990-01-01

    Presented are the background, conference charge, organization, and results from the "Planet Earth" conference. Discussed were the goals and concepts that every high school senior should know when completing a pre-college education. The issues, goals, and concepts of a curriculum are suggested. (KR)

  9. Optimal Planet Properties For Plate Tectonics Through Time And Space

    NASA Astrophysics Data System (ADS)

    Stamenkovic, Vlada; Seager, Sara

    2014-11-01

    Both the time and the location of planet formation shape a rocky planet’s mass, interior composition and structure, and hence also its tectonic mode. The tectonic mode of a planet can vary between two end-member solutions, plate tectonics and stagnant lid convection, and does significantly impact outgassing and biogeochemical cycles on any rocky planet. Therefore, estimating how the tectonic mode of a planet is affected by a planet’s age, mass, structure, and composition is a major step towards understanding habitability of exoplanets and geophysical false positives to biosignature gases. We connect geophysics to astronomy in order to understand how we could identify and where we could find planet candidates with optimal conditions for plate tectonics. To achieve this goal, we use thermal evolution models, account for the current wide range of uncertainties, and simulate various alien planets. Based on our best model estimates, we predict that the ideal targets for plate tectonics are oxygen-dominated (C/O<1) (solar system like) rocky planets of ~1 Earth mass with surface oceans, large metallic cores super-Mercury, rocky body densities of ~7000kgm-3), and with small mantle concentrations of iron 0%), water 0%), and radiogenic isotopes 10 times less than Earth). Super-Earths, undifferentiated planets, and especially hypothetical carbon planets, speculated to consist of SiC and C, are not optimal for the occurrence of plate tectonics. These results put Earth close to an ideal compositional and structural configuration for plate tectonics. Moreover, the results indicate that plate tectonics might have never existed on planets formed soon after the Big Bang—but instead is favored on planets formed from an evolved interstellar medium enriched in iron but depleted in silicon, oxygen, and especially in Th, K, and U relative to iron. This possibly sets a belated Galactic start for complex Earth-like surface life if plate tectonics significantly impacts the build up

  10. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    PubMed

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

  11. Check-Up of Planet Earth at the Turn of the Millennium: Contribution of EOS-Terra to a New Phase in Earth Sciences

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical developments that brought to the Terra mission, its objectives and example of application to biomass burning.

  12. Earthshine and Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Traub, W. A.; Kaltenegger, L.; Turnbull, M. C.; Jucks, K. W.

    2006-05-01

    The search for life on extrasolar planets requires first that we find terrestrial-mass planets around nearby stars, and second that we determine habitability and search for signs of life. The Terrestrial Planet Finder missions, a Coronagraph (TPF-C) and an Interferometer (TPF-I in the US, also Darwin in Europe) are designed to carry out these tasks. This talk will focus on how we could determine habitability and search for signs of life with these missions. In the visible and near-infrared, TPF-C could measure O2, H2O, O3, Rayleigh scattering, and the red-edge reflection of land planet leaves; on an early-Earth twin it also could measure CO2 and CH4. In the mid-infrared, TPF-I/Darwin could measure CO2, O3, H2O, and temperature. To validate some of these expectations, we observed Earthshine spectra in the visible and near-infrared, and modeled these spectra with our line-by-line radiative transfer code. We find that the major gas and reflection components are present in the data, and that a simple model of the Earth is adequate to represent the data, within the observational uncertainties. We determined that the Earth appears to be habitable, and also shows signs of life. However to validate the time variable features, including the continent-ocean differences, the presence of weather patterns, the large-scale variability of cloud types and altitude, and the rotation period of the planet, we need to obtain a continuous time-series of observations covering multiple rotations; these observations could be carried out in the coming years, using, for example, a site at the South Pole.

  13. PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome

    NASA Astrophysics Data System (ADS)

    Ballmer, Maxim; Wiethoff, Tobias

    2016-04-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show "inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on the flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the

  14. PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Wiethoff, T.

    2014-12-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show „inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's inner core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on a flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the

  15. ATLAS 1: Encountering Planet Earth

    NASA Technical Reports Server (NTRS)

    Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Tygielski, Michele; Mikatarian, Jeff; Wiginton, Margaret (Editor)

    1984-01-01

    Several NASA science programs examine the dynamic balance of sunlight, atmosphere, water, land, and life that governs Earth's environment. Among these is a series of Space Shuttle-Spacelab missions, named the Atmospheric Laboratory for Applications and Science (ATLAS). During the ATLAS missions, international teams of scientists representing many disciplines combine their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigates how Earth's middle atmosphere and upper atmospheres and climate are affected by both the Sun and by products of industrial and agricultural activities on Earth.

  16. Late accretion to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Brasser, Ramon; Mojzsis, Stephen; Werner, Stephanie; Matsumura, Soko; Ida, Shigeru

    2017-10-01

    IntroductionIt is generally accepted that silicate-metal (`rocky') planet formation relies on coagulation from a mixture of sub-Mars sized planetary embryos and (smaller) planetesimals that dynamically emerge from the evolving circum-solar disc in the first few million years of our Solar System. Once the planets have, for the most part, assembled after a giant impact phase, they continue to be bombarded by a multitude of planetesimals left over from accretion. Here we place limits on the mass and evolution of these planetesimals based on constraints from the highly siderophile element (HSE) budget of the Moon. The terrestrial and lunar HSE budgets indicate that Earth’s and Moon’s additions through late accretion were 0.7 wt% and 0.02 wt% respectively. The disproportionate high accretion between the Earth and Moon could be explained by stochastic accretion of a few remaining Ceres-sized bodies that preferentially targeted the Earth.ResultsFrom a combination of N-body and Monte Carlo simulations of planet formation we conclude:1) matching the terrestrial to lunar HSE ratio requires that late accretion on Earth mostly consisted of a single lunar-size impactor striking the Earth before 4.45 Ga2) the flux of terrestrial impactors must have been low avoid wholesale melting of Earth's crust after 4.4 Ga[6], and to simultaneously match the number of observed lunar basins3) after the terrestrial planets have fully formed, the mass in remnant planetesimals was ~0.001 Earth mass, lower than most previous models suggest.4) Mars' HSE budget also requires a colossal impact with a Ceres-sized object before 4.43 Ga, whose visible remnant could be the hemispherical dichotomy.These conclusions lead to an Hadean eon which is more clement than assumed previously. In addition, our dynamically and geochemically self-consistent scenario requires that future N-body simulations of rocky planet formation either directly incorporate collisional grinding or rely on pebble accretion.

  17. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2011-02-01

    1. Historical notes on planet formation Bodenheimer; 2. The formation and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal formation Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet formation: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.

  18. Giant Impacts and Earth's Primordial Atmosphere

    NASA Astrophysics Data System (ADS)

    Agnor, C.; Asphaug, E.

    2002-09-01

    Estimates of Earth's accretion timescale based on modeling (e.g. Wetherill 1990) and isotopic evidence (Halliday and Porcelli 2000) indicate that the Earth formed in 25-100 Myr. At least a portion of this accretion took place in the presence of the solar nebula. While the problem of nailing down the nebular lifetime remains open, observations of dust disks surrounding young stars and meteoritic evidence suggest that the gas disk existed and was involved in making planetary material for 10 Myr (e.g. Podosek & Cassen 1994, Trilling et al. 2001). The persistence of a remnant of the nebula's original gas disk during terrestrial planet accretion is certainly plausible. The existence of this remnant nebula has dynamical (Agnor & Ward 2002, Kominami & Ida 2002) and geochemical (Porcelli & Pepin 2000) implications for terrestrial planet formation. Nakazawa et al. (1985) explored the structure of Earth's primordial atmosphere as the solar nebula was dissipating. They found that even for low surface densities of nebular gas ( σ gas ~ 1 g cm-2 or ~0.1% of the minimum mass nebula), Earth can capture a significant primordial atmosphere directly from the nebula (i.e. total mass up to a few lunar masses, or ~ 105 times the current atmosphere). Such a massive primordial atmosphere may have played a dynamical role in the formation of the Moon (e.g. models of lunar capture have employed aerodynamic drag in Earth's atmosphere as the primary mechanism for reducing the Moon's orbital energy, Nakazawa et al. 1983). Conversely, the formation of the Moon may have played a role in removing Earth's primordial atmosphere. Giant impacts have been suggested as one possible mechanism that could accomplish global atmospheric removal (Ahrens 1993). We are using smooth particle hydrodynamics (SPH) to model the removal of Earth's primordial atmosphere via giant impact. We employ initial conditions similar to recent works on lunar formation (e.g. Canup & Asphaug 2001) but also include ideal gas

  19. The planets and life.

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1971-01-01

    It is pointed out that planetary exploration is not simply a program designed to detect life on another planet. A planet similar to earth, such as Mars, when studied for evidence as to why life did not arise, may turn out to be scientifically more important than a planet which has already produced a living system. Of particular interest after Mars are Venus and Jupiter. Jupiter has a primitive atmosphere which may well be synthesizing organic molecules today. Speculations have been made concerning the possibility of a bio-zone in the upper atmosphere of Venus.

  20. A spectrum of an extrasolar planet.

    PubMed

    Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph

    2007-02-22

    Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.

  1. Climate evolution on the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Toon, O. B.

    1989-01-01

    The present comparative evaluation of the long-term evolution of the Venus, earth, and Mars climates suggests that the earth's climate has remained temperate over most of its history despite a secular solar luminosity increase in virtue of a negative-feedback cycle based on atmospheric CO2 levels and climate. The examination of planetary climate histories suggests that an earth-sized planet should be able to maintain liquid water on its surface at orbital distances in the 0.9-1.5 AU range, comparable to the orbit of Mars; this, in turn, implies that there may be many other habitable planets within the Galaxy.

  2. A rocky planet transiting a nearby low-mass star.

    PubMed

    Berta-Thompson, Zachory K; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R; Dittmann, Jason A; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C; Udry, Stéphane; Wünsche, Anaël

    2015-11-12

    M-dwarf stars--hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun--are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.

  3. Modeling Earth's Disk-Integrated, Time-Dependent Spectrum: Applications to Directly Imaged Habitable Planets

    NASA Astrophysics Data System (ADS)

    Lustig-Yaeger, Jacob; Schwieterman, Edward; Meadows, Victoria; Fujii, Yuka; NAI Virtual Planetary Laboratory, ISSI 'The Exo-Cartography Inverse Problem'

    2016-10-01

    Earth is our only example of a habitable world and is a critical reference point for potentially habitable exoplanets. While disk-averaged views of Earth that mimic exoplanet data can be obtained by interplanetary spacecraft, these datasets are often restricted in wavelength range, and are limited to the Earth phases and viewing geometries that the spacecraft can feasibly access. We can overcome these observational limitations using a sophisticated UV-MIR spectral model of Earth that has been validated against spacecraft observations in wavelength-dependent brightness and phase (Robinson et al., 2011; 2014). This model can be used to understand the information content - and the optimal means for extraction of that information - for multi-wavelength, time-dependent, disk-averaged observations of the Earth. In this work, we explore key telescope parameters and observing strategies that offer the greatest insight into the wavelength-, phase-, and rotationally-dependent variability of Earth as if it were an exoplanet. Using a generalized coronagraph instrument simulator (Robinson et al., 2016), we synthesize multi-band, time-series observations of the Earth that are consistent with large space-based telescope mission concepts, such as the Large UV/Optical/IR (LUVOIR) Surveyor. We present fits to this dataset that leverage the rotationally-induced variability to infer the number of large-scale planetary surface types, as well as their respective longitudinal distributions and broadband albedo spectra. Finally, we discuss the feasibility of using such methods to identify and map terrestrial exoplanets surfaces with the next generation of space-based telescopes.

  4. Direct Imaging of Warm Extrasolar Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different frommore » our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that

  5. Iceball Planet Artist's Concept

    NASA Image and Video Library

    2017-04-26

    This artist's concept shows OGLE-2016-BLG-1195Lb, a planet discovered through a technique called microlensing. The planet was reported in a 2017 study in the Astrophysical Journal Letters. Study authors used the Korea Microlensing Telescope Network (KMTNet), operated by the Korea Astronomy and Space Science Institute, and NASA's Spitzer Space Telescope, to track the microlensing event and find the planet. Although OGLE-2016-BLG-1195Lb is about the same mass as Earth, and the same distance from its host star as our planet is from our sun, the similarities may end there. This planet is nearly 13,000 light-years away and orbits a star so small, scientists aren't sure if it's a star at all. https://photojournal.jpl.nasa.gov/catalog/PIA21430

  6. Formation of terrestrial planets in eccentric and inclined giant planet systems

    NASA Astrophysics Data System (ADS)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean N.

    2018-06-01

    Aims: Evidence of mutually inclined planetary orbits has been reported for giant planets in recent years. Here we aim to study the impact of eccentric and inclined massive giant planets on the terrestrial planet formation process, and investigate whether it can possibly lead to the formation of inclined terrestrial planets. Methods: We performed 126 simulations of the late-stage planetary accretion in eccentric and inclined giant planet systems. The physical and orbital parameters of the giant planet systems result from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. Fourteen two- and three-planet configurations were selected, with diversified masses, semi-major axes (resonant configurations or not), eccentricities, and inclinations (including coplanar systems) at the dispersal of the gas disc. We then followed the gravitational interactions of these systems with an inner disc of planetesimals and embryos (nine runs per system), studying in detail the final configurations of the formed terrestrial planets. Results: In addition to the well-known secular and resonant interactions between the giant planets and the outer part of the disc, giant planets on inclined orbits also strongly excite the planetesimals and embryos in the inner part of the disc through the combined action of nodal resonance and the Lidov-Kozai mechanism. This has deep consequences on the formation of terrestrial planets. While coplanar giant systems harbour several terrestrial planets, generally as massive as the Earth and mainly on low-eccentric and low-inclined orbits, terrestrial planets formed in systems with mutually inclined giant planets are usually fewer, less massive (<0.5 M⊕), and with higher eccentricities and inclinations. This work shows that terrestrial planets can form on stable inclined orbits through the classical accretion theory, even in coplanar giant planet systems

  7. A review of the US Global Change Research Program and NASA's Mission to Planet Earth/Earth Observing System

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Anderson, James G.; Costanza, Robert; Gates, W. Lawrence; Grew, Priscilla C.; Leinen, Margaret S.; Mayewski, Paul A.; McCarthy, James J.; Sellers, Piers J.

    1995-01-01

    This report reflects the results of a ten-day workshop convened at the Scripps Institution of Oceanography July 19-28, 1995. The workshop was convened as the first phase of a two part review of the U.S. Global Change Research Program (USGCRP). The workshop was organized to provide a review of the scientific foundations and progress to date in the USGCRP and an assessment of the implications of new scientific insights for future USGCRP and Mission to Planet Earth/Earth Observing System (MTPE/EOS) activities; a review of the role of NASA's MTPE/EOS program in the USGCRP observational strategy; a review of the EOS Data and Information System (EOSDIS) as a component of USGCRP data management activities; and an assessment of whether recent developments in the following areas lead to a need to readjust MTPE/EOS plans. Specific consideration was given to: proposed convergence of U.S. environmental satellite systems and programs, evolving international plans for Earth observation systems, advances in technology, and potential expansion of the role of the private sector. The present report summarizes the findings and recommendations developed by the Committee on Global Change Research on the basis of the presentations, background materials, working group deliberations, and plenary discussions of the workshop. In addition, the appendices include summaries prepared by the six working groups convened in the course of the workshop.

  8. Era-Planet the European Network for Observing Our Changing Planet

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Cinnirella, S.; Nativi, S.; Sprovieri, F.; Hedgecock, I. M.

    2016-06-01

    In the last decade a significant number of projects and programmes in different domains of Earth Observation and environmental monitoring have generated a substantial amount of data and knowledge on different aspects related to environmental quality and sustainability. Big data generated by in-situ or satellite platforms are being collected and archived with a plethora of systems and instruments making difficult the sharing of data and transfer of knowledge to stakeholders and policy makers to support key economic and societal sectors. The overarching goal of ERAPLANET is to strengthen the European Research Area in the domain of Earth Observation in coherence with the European participation in the Group on Earth Observation (GEO) and Copernicus. The expected impact is to strengthen European leadership within the forthcoming GEO 2015-2025 Work Plan. ERA-PLANET is designed to reinforce the interface with user communities, whose needs the Global Earth Observation System of Systems (GEOSS) intends to address. It will provide more accurate, comprehensive and authoritative information to policy and decision-makers in key societal benefit areas, such as Smart Cities and Resilient Societies; Resource efficiency and Environmental management; Global changes and Environmental treaties; Polar areas and Natural resources. ERA-PLANET will provide advanced decision-support tools and technologies aimed to better monitor our global environment and share the information and knowledge available in the different domains of Earth Observation.

  9. Origin of asteroids and the missing planet

    NASA Technical Reports Server (NTRS)

    Opik, E. J.

    1977-01-01

    Consideration is given to Ovenden's (1972) theory concerning the existence of a planet of 90 earth masses which existed from the beginning of the solar system and then disappeared 16 million years ago, leaving only asteroids. His model for secular perturbations is reviewed along with the principle of least interaction action (1972, 1973, 1975) on which the model is based. It is suggested that the structure of the asteroid belt and the origin of meteorites are associated with the vanished planet. A figure of 0.001 earth masses is proposed as a close estimate of the mass of the asteroidal belt. The hypothesis that the planet was removed through an explosion is discussed, noting the possible origin of asteroids in such a manner. Various effects of the explosion are postulated, including the direct impact of fragments on the earth, their impact on the sun and its decreased radiation, and the direct radiation of the explosion. A model for the disappearance of the planet by ejection in a gravitational encounter with a passing mass is also described.

  10. Tracing the ingredients for a habitable earth from interstellar space through planet formation

    PubMed Central

    Bergin, Edwin A.; Blake, Geoffrey A.; Ciesla, Fred; Hirschmann, Marc M.; Li, Jie

    2015-01-01

    We use the C/N ratio as a monitor of the delivery of key ingredients of life to nascent terrestrial worlds. Total elemental C and N contents, and their ratio, are examined for the interstellar medium, comets, chondritic meteorites, and terrestrial planets; we include an updated estimate for the bulk silicate Earth (C/N = 49.0 ± 9.3). Using a kinetic model of disk chemistry, and the sublimation/condensation temperatures of primitive molecules, we suggest that organic ices and macromolecular (refractory or carbonaceous dust) organic material are the likely initial C and N carriers. Chemical reactions in the disk can produce nebular C/N ratios of ∼1–12, comparable to those of comets and the low end estimated for planetesimals. An increase of the C/N ratio is traced between volatile-rich pristine bodies and larger volatile-depleted objects subjected to thermal/accretional metamorphism. The C/N ratios of the dominant materials accreted to terrestrial planets should therefore be higher than those seen in carbonaceous chondrites or comets. During planetary formation, we explore scenarios leading to further volatile loss and associated C/N variations owing to core formation and atmospheric escape. Key processes include relative enrichment of nitrogen in the atmosphere and preferential sequestration of carbon by the core. The high C/N bulk silicate Earth ratio therefore is best satisfied by accretion of thermally processed objects followed by large-scale atmospheric loss. These two effects must be more profound if volatile sequestration in the core is effective. The stochastic nature of these processes hints that the surface/atmospheric abundances of biosphere-essential materials will likely be variable. PMID:26150527

  11. Tracing the ingredients for a habitable earth from interstellar space through planet formation.

    PubMed

    Bergin, Edwin A; Blake, Geoffrey A; Ciesla, Fred; Hirschmann, Marc M; Li, Jie

    2015-07-21

    We use the C/N ratio as a monitor of the delivery of key ingredients of life to nascent terrestrial worlds. Total elemental C and N contents, and their ratio, are examined for the interstellar medium, comets, chondritic meteorites, and terrestrial planets; we include an updated estimate for the bulk silicate Earth (C/N = 49.0 ± 9.3). Using a kinetic model of disk chemistry, and the sublimation/condensation temperatures of primitive molecules, we suggest that organic ices and macromolecular (refractory or carbonaceous dust) organic material are the likely initial C and N carriers. Chemical reactions in the disk can produce nebular C/N ratios of ∼1-12, comparable to those of comets and the low end estimated for planetesimals. An increase of the C/N ratio is traced between volatile-rich pristine bodies and larger volatile-depleted objects subjected to thermal/accretional metamorphism. The C/N ratios of the dominant materials accreted to terrestrial planets should therefore be higher than those seen in carbonaceous chondrites or comets. During planetary formation, we explore scenarios leading to further volatile loss and associated C/N variations owing to core formation and atmospheric escape. Key processes include relative enrichment of nitrogen in the atmosphere and preferential sequestration of carbon by the core. The high C/N bulk silicate Earth ratio therefore is best satisfied by accretion of thermally processed objects followed by large-scale atmospheric loss. These two effects must be more profound if volatile sequestration in the core is effective. The stochastic nature of these processes hints that the surface/atmospheric abundances of biosphere-essential materials will likely be variable.

  12. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  13. The Late-Time Formation and Dynamical Signatures of Small Planets

    NASA Astrophysics Data System (ADS)

    Lee, Eve Jihyun

    The riddle posed by super-Earths is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. In this thesis, I demonstrate that this puzzle is solved if super-Earths formed late, in the inner cavities of transitional disks. Super-puffs present the inverse problem of being too voluminous for their small masses. I show that super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside 1 AU, and then migrate in just after super-Earths appear. Super-Earths and Earth-sized planets around FGKM dwarfs are evenly distributed in log orbital period down to 10 days, but dwindle in number at shorter periods. I demonstrate that both the break at 10 days and the slope of the occurrence rate down to 1 day can be reproduced if planets form in disks that are truncated by their host star magnetospheres at co-rotation. Planets can be brought from disk edges to ultra-short (<1 day) periods by asynchronous equilibrium tides raised on their stars. Small planets may remain ubiquitous out to large orbital distances. I demonstrate that the variety of debris disk morphologies revealed by scattered light images can be explained by viewing an eccentric disk, secularly forced by a planet of just a few Earth masses, from different observing angles. The farthest reaches of planetary systems may be perturbed by eccentric super-Earths.

  14. Seismic generated infrasounds on Telluric Planets: Modeling and comparisons between Earth, Venus and Mars

    NASA Astrophysics Data System (ADS)

    Lognonne, P. H.; Rolland, L.; Karakostas, F. G.; Garcia, R.; Mimoun, D.; Banerdt, W. B.; Smrekar, S. E.

    2015-12-01

    Earth, Venus and Mars are all planets in which infrasounds can propagate and interact with the solid surface. This leads to infrasound generation for internal sources (e.g. quakes) and to seismic waves generations for atmospheric sources (e.g. meteor, impactor explosions, boundary layer turbulences). Both the atmospheric profile, surface density, atmospheric wind and viscous/attenuation processes are however greatly different, including major differences between Mars/Venus and Earth due to the CO2 molecular relaxation. We present modeling results and compare the seismic/acoustic coupling strength for Earth, Mars and Venus. This modeling is made through normal modes modelling for models integrating the interior, atmosphere, both with realistic attenuation (intrinsic Q for solid part, viscosity and molecular relaxation for the atmosphere). We complete these modeling, made for spherical structure, by integration of wind, assuming the later to be homogeneous at the scale of the infrasound wavelength. This allows us to compute either the Seismic normal modes (e.g. Rayleigh surface waves), or the acoustic or the atmospheric gravity modes. Comparisons are done, for either a seismic source or an atmospheric source, on the amplitude of expected signals as a function of distance and frequency. Effects of local time are integrated in the modeling. We illustrate the Rayleigh waves modelling by Earth data (for large quakes and volcanoes eruptions). For Venus, very large coupling can occur at resonance frequencies between the solid part and atmospheric part of the planet through infrasounds/Rayleigh waves coupling. If the atmosphere reduced the Q (quality coefficient) of Rayleigh waves in general, the atmosphere at these resonance soffers better propagation than Venus crust and increases their Q. For Mars, Rayleigh waves excitations by atmospheric burst is shown and discussed for the typical yield of impacts. The new data of the Nasa INSIGHT mission which carry both seismic and

  15. Reinflating Giant Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full

  16. Hydrothermal systems in small ocean planets.

    PubMed

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  17. Human impact on the planet: an earth system science perspective and ethical considerations

    USGS Publications Warehouse

    Williams, Richard S.

    2002-01-01

    natural and human history to stop further degradation of Earth?s ecosystems and extinction of its biota? The fate of the biosphere, including humanity, depends on a reaffirmation by all humans of all cultures and religions of the global importance of a planet-wide conservation of the Earth?s biotic heritage. For the world?s religions it means elevation of stewardship of the Earth to a moral imperative and a goal of complete preservation of the Earth?s biotic inheritance, one which is based on a Do No Harm ethic.

  18. Searching for the light-element candidate of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Li, Y.; Vocadlo, L.; Brodholt, J. P.; Wood, I. G.

    2016-12-01

    The mismatch between the seismic observations of the Earth's inner core and observations from mineral physics (Vočadlo, 2007; Vočadlo et al., 2009; Belonoshko et al., 2007; Martorell et al., 2013) questions the basic structure of the core and also makes it more difficult to understand its other complex characteristics. The premelting elastic softening predicted in hcp Fe under inner core conditions gives a match with seismic wave velocities, but clearly the density is too high (Martorell et al., 2013); in addition, the origin of such premelting softening is not clear. Using ab-initio based simulation techniques, we have studied the structures and elastic properties of Fe alloys and compounds with C and Si that are strongly relevant to the inner core. The densities and elastic constants were obtained up to melting under inner core pressures. The premelting elastic softening observed in hcp Fe was also observed in materials like Fe7C3, and was found to be correlated with the partial weakening of the bonding network, but the density of Fe7C3 is too low to match that of the inner core. However, the density and elastic properties from calculations on the Fe-Si-C ternary alloy were found to be very close to the seismic observations of the core, suggesting that it may, finally, be possible to report a core composition which is fully matched with seismology. Belonoshko, A. B., Skorodumova, N. V., Davis, S., Osiptsov, A. N., Rosengren, A., Johansson, B., (2007). Science 316 (5831), 1603-1605. Vočadlo, L., (2007). Earth. Planet. Sci. Lett., 254 (1), 227-232. Vočadlo, L., Brodholt, J., Dobson, D.P., Knight, K., Marshall, W., Price, G.D., Wood, I.G. (2002). Earth. Planet. Sci. Lett., 203 (1) 567-575. Vočadlo, L., Dobson, D. P., Wood, I. G., (2009). Earth. Planet. Sci. Lett., 288 (3), 534-538. Martorell, B., Vočadlo, L., Brodholt, J., Wood, I. G., (2013b). Science 342 (6157), 466-468.

  19. Project Planet Earth: A Joint Project Between the NASA/Goddard Space Flight Center and the Girl Scouts of Central Maryland

    NASA Technical Reports Server (NTRS)

    Mattoo, Shana; Remer, Lorraine; Anderson, Terry; Johnson, Courtrina; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Scientists of the NASA/GSFC and the staff of the Girl Scouts of Central Maryland (GSCM) have teamed up to introduce more girls and young women to earth system science. The girls now have the opportunity to earn the specially designed Planet Earth Council Patch. The Patch program includes a set of requirements tailored to the specific age level of the girl and the resource material to help the girl complete the requirements. At completion of the requirements the girl is awarded a patch to sew onto the back of her sash or vest. Girls do hands-on physical experiments, practice taking data, visit science centers and perform skits in order to complete the requirements. In addition to the Patch program, Project Planet Earth continues to encourage strong collaboration between the Girl Scouts of Maryland and NASA/GSFC. Girls volunteer at the GSFC visitor center during community events and in turn scientists are called on as keynote speakers and consultants for the Council. A special science interest group is forming for the teenage Girl Scouts of the Council that will network with scientists and help these young women pursue their interests, find internships and make career decisions.

  20. Detection of Terrestrial Planets Using Transit Photometry

    NASA Technical Reports Server (NTRS)

    Koch, David; Witteborn, Fred; Jenkins, Jon; Dunham, Edward; Boruci, William; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Transit photometry detection of planets offers many advantages: an ability to detect terrestrial size planets, direct determination of the planet's size, applicability to all main-sequence stars, and a differential brightness change of the periodic signature being independent of stellar distance or planetary orbital semi-major axis. Ground and space based photometry have already been successful in detecting transits of the giant planet HD209458b. However, photometry 100 times better is required to detect terrestrial planets. We present results of laboratory measurements of an end-to-end photometric system incorporating all of the important confounding noise features of both the sky and a space based photometer including spacecraft jitter. In addition to demonstrating an instrumental noise of less than 10 ppm (an Earth transit of a solar-like star is 80 ppm), the brightnesses of individual stars were dimmed to simulate Earth-size transit signals. These 'transits' were reliably detected as part of the tests.

  1. Convection and plate tectonics on extrasolar planets

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Grasset, O.; Schubert, G.

    2012-04-01

    The number of potential Earth-like exoplanets is still very limited compared to the overall number of detected exoplanets. But the different methods keep improving, giving hope for this number to increase significantly in the coming years. Based on the relationship between mass and radius, two of the easiest parameters that can be known for exoplanets, four categories of planets have been identified: (i) the gas giants including hot Jupiters, (ii) the icy giants that can be like their solar system cousins Uranus and Neptune or that can have lost their H2-He atmosphere and have become the so-called ocean planets, (iii) the Earth-like planets with a fraction of silicates and iron similar to that of the Earth, and (iv) the Mercury like planet that have a much larger fraction of iron. The hunt for exoplanets is very much focused on Earth-like planets because of the desire to find alien forms of life and the science goal to understand how life started and developed on Earth. One science question is whether heat transfer by subsolidus convection can lead to plate tectonics, a process that allows material to be recycled in the interior on timescales of hundreds of millions of years. Earth-like exoplanets may have conditions quite different from Earth. For example, COROT-7b is so close to its star that it is likely locked in synchronous orbit with one very hot hemisphere and one very cold hemisphere. It is also worth noting that among the three Earth-like planets of the solar system (Earth, Venus and Mars), only Earth is subject to plate tectonics at present time. Venus may have experienced plate tectonics before the resurfacing event that erased any clue that such a process existed. This study investigates some of the parameters that can influence the transition from stagnant-lid convection to mobile-lid convection. Numerical simulations of convective heat transfer have been performed in 3D spherical geometry in order to determine the stress field generated by convection

  2. The Effect of a Strong Stellar Flare on the Atmospheric Chemistry of an Earth-like Planet Orbiting an M Dwarf

    PubMed Central

    Walkowicz, Lucianne M.; Meadows, Victoria; Kasting, James; Hawley, Suzanne

    2010-01-01

    Abstract Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high-energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect, we estimated a proton flux associated with the flare of 5.9 × 108 protons cm−2 sr−1 s−1 for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the Carrington event. The simulations were performed with a 1-D photochemical model coupled to a 1-D radiative/convective model. Our results indicate that the UV radiation emitted during the flare does not produce a significant change in the ozone column depth of the planet. When the action of protons is included, the ozone depletion reaches a maximum of 94% two years after the flare for a planet with no magnetic field. At the peak of the flare, the calculated UV fluxes that reach the surface, in the wavelength ranges that are damaging for life, exceed those received on Earth during less than 100 s. Therefore, flares may not present a direct hazard for life on the surface of an orbiting habitable planet. Given that AD Leo is one of the most magnetically active M dwarfs known, this conclusion should apply to planets around other M dwarfs with lower levels of chromospheric activity. Key Words: M dwarf—Flare—Habitable zone—Planetary atmospheres. Astrobiology 10, 751–771. PMID:20879863

  3. Three regimes of extrasolar planet radius inferred from host star metallicities.

    PubMed

    Buchhave, Lars A; Bizzarro, Martin; Latham, David W; Sasselov, Dimitar; Cochran, William D; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W

    2014-05-29

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (∼4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems.

  4. Three regimes of extrasolar planet radius inferred from host star metallicities

    PubMed Central

    Buchhave, Lars A.; Bizzarro, Martin; Latham, David W.; Sasselov, Dimitar; Cochran, William D.; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W.

    2014-01-01

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods1. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (~4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates2,3, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems. PMID:24870544

  5. The C(4) plant lineages of planet Earth.

    PubMed

    Sage, Rowan F; Christin, Pascal-Antoine; Edwards, Erika J

    2011-05-01

    Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C(4) photosynthetic pathway. Here, 62 recognizable lineages of C(4) photosynthesis are listed. Thirty-six lineages (60%) occur in the eudicots. Monocots account for 26 lineages, with a minimum of 18 lineages being present in the grass family and six in the sedge family. Species exhibiting the C(3)-C(4) intermediate type of photosynthesis correspond to 21 lineages. Of these, 9 are not immediately associated with any C(4) lineage, indicating that they did not share common C(3)-C(4) ancestors with C(4) species and are instead an independent line. The geographic centre of origin for 47 of the lineages could be estimated. These centres tend to cluster in areas corresponding to what are now arid to semi-arid regions of southwestern North America, south-central South America, central Asia, northeastern and southern Africa, and inland Australia. With 62 independent lineages, C(4) photosynthesis has to be considered one of the most convergent of the complex evolutionary phenomena on planet Earth, and is thus an outstanding system to study the mechanisms of evolutionary adaptation.

  6. TRAPPIST-1 Planet Lineup

    NASA Image and Video Library

    2017-02-22

    This artist's concept shows what the TRAPPIST-1 planetary system may look like, based on available data about the planets' diameters, masses and distances from the host star. The system has been revealed through observations from NASA's Spitzer Space Telescope and the ground-based TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) telescope, as well as other ground-based observatories. The system was named for the TRAPPIST telescope. The seven planets of TRAPPIST-1 are all Earth-sized and terrestrial, according to research published in 2017 in the journal Nature. TRAPPIST-1 is an ultra-cool dwarf star in the constellation Aquarius, and its planets orbit very close to it. They are likely all tidally locked, meaning the same face of the planet is always pointed at the star, as the same side of our moon is always pointed at Earth. This creates a perpetual night side and perpetual day side on each planet. TRAPPIST-1b and c receive the most light from the star and would be the warmest. TRAPPIST-1e, f and g all orbit in the habitable zone, the area where liquid water is most likely to be detected. But any of the planets could potentially harbor liquid water, depending on their compositions. In the imagined planets shown here, TRAPPIST-1b is shown as a larger analogue to Jupiter's moon Io. TRAPPIST-1d is depicted with a narrow band of water near the terminator, the divide between a hot, dry day and an ice-covered night side. TRAPPIST-1e and TRAPPIST-1f are both shown covered in water, but with progressively larger ice caps on the night side. TRAPPIST-1g is portrayed with an atmosphere like Neptune's, although it is still a rocky world. TRAPPIST-1h, the farthest from the star, would be the coldest. It is portrayed here as an icy world, similar to Jupiter's moon Europa, but the least is known about it. http://photojournal.jpl.nasa.gov/catalog/PIA21422

  7. The Effect of Varying Atmospheric Pressure upon Habitability and Biosignatures of Earth-like Planets.

    PubMed

    Keles, Engin; Grenfell, John Lee; Godolt, Mareike; Stracke, Barbara; Rauer, Heike

    2018-02-01

    Understanding the possible climatic conditions on rocky extrasolar planets, and thereby their potential habitability, is one of the major subjects of exoplanet research. Determining how the climate, as well as potential atmospheric biosignatures, changes under different conditions is a key aspect when studying Earth-like exoplanets. One important property is the atmospheric mass, hence pressure and its influence on the climatic conditions. Therefore, the aim of the present study is to understand the influence of atmospheric mass on climate, hence habitability, and the spectral appearance of planets with Earth-like, that is, N 2 -O 2 dominated, atmospheres orbiting the Sun at 1 AU. This work utilizes a 1D coupled, cloud-free, climate-photochemical atmospheric column model; varies atmospheric surface pressure from 0.5 to 30 bar; and investigates temperature and key species profiles, as well as emission and brightness temperature spectra in a range between 2 and 20 μm. Increasing the surface pressure up to 4 bar leads to an increase in the surface temperature due to increased greenhouse warming. Above this point, Rayleigh scattering dominates, and the surface temperature decreases, reaching surface temperatures below 273 K (approximately at ∼34 bar surface pressure). For ozone, nitrous oxide, water, methane, and carbon dioxide, the spectral response either increases with surface temperature or pressure depending on the species. Masking effects occur, for example, for the bands of the biosignatures ozone and nitrous oxide by carbon dioxide, which could be visible in low carbon dioxide atmospheres. Key Words: Planetary habitability and biosignatures-Atmospheres-Radiative transfer. Astrobiology 18, 116-132.

  8. Characterization of Extrasolar Planets Using SOFIA

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    2010-01-01

    Topics include: the landscape of extrasolar planets, why focus on transiting planets, some history and Spitzer results, problems in atmospheric structure or hot Jupiters and hot super Earths, what observations are needed to make progress, and what SOFIA can currently do and comments on optimized instruments.

  9. Eutectic melting temperature of the lowermost Earth's mantle

    NASA Astrophysics Data System (ADS)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.

    2009-12-01

    , and changes in the relation between sample-temperature and laser-power. In this work, we show that temperatures higher than 4000 K are necessary for melting mean mantle at the 135 GPa pressure found at the core mantle boundary (CMB). Such temperature is much higher than that from estimated actual geotherms. Therefore, melting at the CMB can only occur if (i) pyrolitic mantle resides for a very long time in contact with the outer core, (ii) the mantle composition is severely affected by additional elements depressing the solidus such as water or (iii) the temperature gradient in the D" region is amazingly steep. Other implications for the temperature state and the lower mantle properties will be presented. References (1) Ito et al., Phys. Earth Planet. Int., 143-144, 397-406, 2004 (2) Ohtani et al., Phys. Earth Planet. Int., 100, 97-114, 1997 (3) Zerr et al., Science, 281, 243-246, 1998 (4) Holland and Ahrens, Science, 275, 1623-1625, 1997 (5) Schultz et al., High Press. Res., 25, 1, 71-83, 2005.

  10. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approximately 100 million years after the condensation of the oldest meteorites?

  11. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases-such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approx. 100 million years after the condensation of the oldest meteorites?

  12. Optimization of Planet Finder Observing Strategy

    NASA Astrophysics Data System (ADS)

    Sinukoff, E.

    2014-03-01

    We evaluate radial velocity observing strategies to be considered for future planethunting surveys with the Automated Planet Finder, a new 2.4-m telescope at Lick Observatory. Observing strategies can be optimized to mitigate stellar noise, which can mask and imitate the weak Doppler signals of low-mass planets. We estimate and compare sensitivities of 5 different observing strategies to planets around G2-M2 dwarfs, constructing RV noise models for each stellar spectral type, accounting for acoustic, granulation, and magnetic activity modes. The strategies differ in exposure time, nightly and monthly cadence, and number of years. Synthetic RV time-series are produced by injecting a planet signal onto the stellar noise, sampled according to each observing strategy. For each star and each observing strategy, thousands of planet injection recovery trials are conducted to determine the detection efficiency as a function of orbital period, minimum mass, and eccentricity. We find that 4-year observing strategies of 10 nights per month are sensitive to planets ~25-40% lower in mass than the corresponding 1 year strategies of 30 nights per month. Three 5-minute exposures spaced evenly throughout each night provide a 10% gain in sensitivity over the corresponding single 15-minute exposure strategies. All strategies are sensitive to planets of lowest mass around the modeled K7 dwarf. This study indicates that APF surveys adopting the 4-year strategies should detect Earth-mass planets on < 10-day orbits around quiet late-K dwarfs as well as > 1.6 Earth-mass planets in their habitable zones.

  13. Forced-folding by laccolith and saucer-shaped sill intrusions on the Earth, planets and icy satellites

    NASA Astrophysics Data System (ADS)

    Michaut, Chloé

    2017-04-01

    Horizontal intrusions probably initially start as cracks, with negligible surface deformation. Once their horizontal extents become large enough compared to their depths, they make room for themselves by lifting up their overlying roofs, creating characteristic surface deformations that can be observed at the surface of planets. We present a model where magma flows below a thin elastic overlying layer characterized by a flexural wavelength Λ and study the dynamics and morphology of such a magmatic intrusion. Our results show that, depending on its size, the intrusion present different shapes and thickness-to-radius relationships. During a first phase, elastic bending of the overlying layer is the main source of driving pressure in the flow; the pressure decreases as the flow radius increases, the intrusion is bell-shaped and its thickness is close to being proportional to its radius. When the intrusion radius becomes larger than 4 times Λ, the flow enters a gravity current regime and progressively develops a pancake shape with a flat top. We study the effect of topography on flow spreading in particular in the case where the flow is constrained by a lithostatic barrier within a depression, such as an impact crater on planets or a caldera on Earth. We show that the resulting shape for the flow depends on the ratio between the flexural wavelength of the layer overlying the intrusion and the depression radius. The model is tested against terrestrial data and is shown to well explain the size and morphology of laccoliths and saucer-shaped sills on Earth. We use our results to detect and characterize shallow solidified magma reservoirs in the crust of terrestrial planets and potential shallow water reservoirs in the ice shell of icy satellites.

  14. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  15. Alpha Centauri's siren call has frustrated planet hunters

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2018-04-01

    Alpha Centauri, a three-star system just 4 light-years away that is the sun's nearest neighbor, ought to be a great place to look for Earth-like planets. But last week, at a meeting of the European Astronomical Society here, astronomers lamented that the system has so far thwarted discovery efforts—and announced new schemes to probe it. The two sunlike stars, Alpha Centauri A and B, orbit each other closely while Proxima Centauri, a tempestuous red dwarf, hangs onto the system tenuously in a much more distant orbit. In 2016, astronomers discovered an Earth-mass planet around Proxima Centauri, but few think the planet, blasted by radiation and fierce stellar winds, is habitable. Astrobiologists believe the other two stars are more likely to host temperate, Earth-like worlds.

  16. Characterizing the Purple Earth: Modeling the globally integrated spectral variability of the Archean Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanromá, E.; Pallé, E.; López, R.

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At thatmore » time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.« less

  17. A possible mechanism for the capture of microparticles by the earth and other planets of the solar system. [planetary gravitation effects on cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Dibenedetto, F.

    1973-01-01

    By application of Lyttleton's theory for the formation of comets, it is shown that a possible mechanism for the origin and formation of a concentration of cosmic particles around the earth and the other planets of the solar system exists. In the vicinity of the neutral point, where the velocity of colliding particles is not greater than 6 km/s, it is found that if the solid particles after collision must remain in a solid state, there can be no possibility of accretion for Mercury, Mars, and the Moon, where the maximum value of the distance of the center of the planet to the asymptotic trajectory is less than the radius of the planet. On the other hand, the capture radii of microparticles in solid form varies from a minimum of 2.95 planetary radii for Venus and 3.47 for the Earth, to about 986 for Jupiter.

  18. Kepler Mission: A Wide-FOV Photometer Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-like stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 m aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  19. Possible Role of Hydrogen in the Earth Core

    NASA Astrophysics Data System (ADS)

    Takahashi, E.; Imai, T.

    2011-12-01

    Possible role of hydrogen in the Earth core has been discussed by Stevenson (1977) and demonstrated experimentally by Fukai (1984), Okuchi (1997) and others. Planetary theory proposes a possibility of hydrogen incorporation in Earth's magma ocean from ambient solar nebula gas (Ikoma & Genda 2005, Genda & Ikoma 2008). More recently, migration of snow line during planet formation was examined (Min et al., 2010; Oka et al, 2011) and it was proposed that the Earth building material originally contained abundant water as ice and hydrous minerals. Therefore, it is very important to investigate the fate of water in the planet building process and clarify the role of hydrogen in the planetary core. Using SPring-8 synchrotron (NaCl capsule, LiAlH4 as hydrogen source), we determined the melting curve of FeH up to 20 GPa under hydrogen saturated conditions (Sakamaki, Takahashi et al, 2009). Observed melting point is below 1300C and has a very small dT/dP slope. By extrapolating the melting curve using Lindeman's law, we proposed that hydrogen could lower the melting temperature of the Earth core by more than 1500K than current estimate. Here we report our new experiments using SPring-8 synchrotron (single crystal diamond capsule, water as hydrogen source). Hydrogen concentration and melting temperature of FeHx that coexists with hydrous mantle minerals were determined at 15-20GPa and 1000-1600C. We show that 1) hydrogen concentration in FeHx at 1000C, coexisting with hydrous-B and ringwoodite is approximately X=0.6. 2) Upon heating, hydrous-B decomposes and hydrogen strongly partitions into FeHx (X=0.8~1.0) than ringwoodite. 3) FeHx that coexists with ringwoodite melts between ~1300C (solidus) and ~1600C (liquidus). Combined our new experiments with those by Sakamaki et al (2009) and Shibazaki et al (2009), partitioning of hydrogen between proto-core and primitive mantle is discussed. We propose that >90% of water in the source material may have entered the Earth core. Given

  20. The hottest planet.

    PubMed

    Harrington, Joseph; Luszcz, Statia; Seager, Sara; Deming, Drake; Richardson, L Jeremy

    2007-06-07

    Of the over 200 known extrasolar planets, just 14 pass in front of and behind their parent stars as seen from Earth. This fortuitous geometry allows direct determination of many planetary properties. Previous reports of planetary thermal emission give fluxes that are roughly consistent with predictions based on thermal equilibrium with the planets' received radiation, assuming a Bond albedo of approximately 0.3. Here we report direct detection of thermal emission from the smallest known transiting planet, HD 149026b, that indicates a brightness temperature (an expression of flux) of 2,300 +/- 200 K at 8 microm. The planet's predicted temperature for uniform, spherical, blackbody emission and zero albedo (unprecedented for planets) is 1,741 K. As models with non-zero albedo are cooler, this essentially eliminates uniform blackbody models, and may also require an albedo lower than any measured for a planet, very strong 8 microm emission, strong temporal variability, or a heat source other than stellar radiation. On the other hand, an instantaneous re-emission blackbody model, in which each patch of surface area instantly re-emits all received light, matches the data. This planet is known to be enriched in heavy elements, which may give rise to novel atmospheric properties yet to be investigated.

  1. Kepler Planets Tend to Have Siblings of the Same Size

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-11-01

    After 8.5 years of observations with the Kepler space observatory, weve discovered a large number of close-in, tightly-spaced, multiple-planet systems orbiting distant stars. In the process, weve learned a lot about the properties about these systems and discovered some unexpected behavior. A new study explores one of the properties that has surprised us: planets of the same size tend to live together.Orbital architectures for 25 of the authors multiplanet systems. The dots are sized according to the planets relative radii and colored according to mass. Planets of similar sizes and masses tend to live together in the same system. [Millholland et al. 2017]Ordering of SystemsFrom Keplers observations of extrasolar multiplanet systems, we have seen that the sizes of planets in a given system arent completely random. Systems that contain a large planet, for example, are more likely to contain additional large planets rather than additional planets of random size. So though there is a large spread in the radii weve observed for transiting exoplanets, the spread within any given multiplanet system tends to be much smaller.This odd behavior has led us to ask whether this clustering occurs not just for radius, but also for mass. Since the multiplanet systems discovered by Kepler most often contain super-Earths and mini-Neptunes, which have an extremely large spread in densities, the fact that two such planets have similar radii does not guarantee that they have similar masses.If planets dont cluster in mass within a system, this would raise the question of why planets coordinate only their radii within a given system. If they do cluster in mass, it implies that planets within the same system tend to have similar densities, potentially allowing us to predict the sizes and masses of planets we might find in a given system.Insight into MassesLed by NSF graduate research fellow Sarah Millholland, a team of scientists at Yale University used recently determined masses for

  2. Biosignatures of early earths

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  3. Biosignatures of early earths.

    PubMed

    Pilcher, Carl B

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  4. The Power of the Crowd: An Up Close and Personal Perspective on Planet Earth.

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2015-12-01

    The space-based view of Earth has changed the way we look at our home planet, providing a perspective on the Earth as a system that can only be realized when viewed from a distance. Throughout my career as a researcher, including 2 years as NASA Chief Scientist, this "power of perspective" has been a tool through which I have engaged both colleagues and the public. These capabilities have transformed our understanding of climate and weather phenomena, ecosystem dynamics, changes in the cryosphere, and much more, through their macro-scale look at the various, highly complex components of the Earth system. But within these domains, there is a tremendous amount of small-scale variability that, if appropriately observed, can reveal new information about how elements within the Earth system work in ways that can directly impact people's lives. Consequently, there is a different power in this additional local perspective: it is one fueled by up-close and personal data collection. Through their engagement and commitment, citizen scientists are providing valuable data as well as personalized experience in the collection of those data. This presentation will include video clips that show a diverse set of citizen science projects in North America and worldwide, illustrating this scientifically useful combination of local and global. Such projects engage citizens and scientists alike in efforts to understand the world in which we live.

  5. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars.

    PubMed

    Kasting, James F; Kopparapu, Ravikumar; Ramirez, Ramses M; Harman, Chester E

    2014-09-02

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, "Dune" planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, S(eff), the recently recalculated HZ boundaries are: recent Venus--1.78; runaway greenhouse--1.04; moist greenhouse--1.01; maximum greenhouse--0.35; and early Mars--0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4-0.5.

  6. The HARPS search for southern extra-solar planets . XXXII. New multi-planet systems in the HARPS volume limited sample: a super-Earth and a Neptune in the habitable zone

    NASA Astrophysics Data System (ADS)

    Lo Curto, G.; Mayor, M.; Benz, W.; Bouchy, F.; Hébrard, G.; Lovis, C.; Moutou, C.; Naef, D.; Pepe, F.; Queloz, D.; Santos, N. C.; Segransan, D.; Udry, S.

    2013-03-01

    The vast diversity of planetary systems detected to date is defying our capability of understanding their formation and evolution. Well-defined volume-limited surveys are the best tool at our disposal to tackle the problem, via the acquisition of robust statistics of the orbital elements. We are using the HARPS spectrograph to conduct our survey of ≈850 nearby solar-type stars, and in the course of the past nine years we have monitored the radial velocity of HD 103774, HD 109271, and BD-061339. In this work we present the detection of five planets orbiting these stars, with msin (i) between 0.6 and 7 Neptune masses, four of which are in two multiple systems, comprising one super-Earth and one planet within the habitable zone of a late-type dwarf. Although for strategic reasons we chose efficiency over precision in this survey, we have the capability to detect planets down to the Neptune and super-Earth mass range as well as multiple systems, provided that enough data points are made available. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope at La Silla (Chile), under the GTO program ID 072.C-0488 and the regular programs: 085.C-0019, 087.C-0831 and 089.C-0732. RV data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A59

  7. Accretion of the Earth.

    PubMed

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  8. Planetary atmosphere evolution: do other habitable planets exist and can we detect them?

    PubMed

    Kasting, J F

    1996-01-01

    The goal of this conference is to consider whether it is possible within the next few decades to detect Earth-like planets around other stars using telescopes or interferometers on the ground or in space. Implicit in the term "Earth-like" is the idea that such planets might be habitable by Earth-like organisms, or that they might actually be inhabited. Here, I shall address two questions from the standpoint of planetary atmosphere evolution. First, what are the chances that habitable planets exist around other stars? And, second, if inhabited planets exist, what would be the best way to detect them?

  9. Planetary atmosphere evolution: do other habitable planets exist and can we detect them?

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1996-01-01

    The goal of this conference is to consider whether it is possible within the next few decades to detect Earth-like planets around other stars using telescopes or interferometers on the ground or in space. Implicit in the term "Earth-like" is the idea that such planets might be habitable by Earth-like organisms, or that they might actually be inhabited. Here, I shall address two questions from the standpoint of planetary atmosphere evolution. First, what are the chances that habitable planets exist around other stars? And, second, if inhabited planets exist, what would be the best way to detect them?.

  10. Modeling Kepler Transit Light Curves as False Positives: Rejection of Blend Scenarios for Kepler-9, and Validation of Kepler-9 d, a Super-Earth-Size Planet in a Multiple System

    DTIC Science & Technology

    2011-01-20

    of 2009, was de- signed to address the important question of the frequency of Earth -size planets around Sun -like stars, and to characterize ex...physically associated with the candidate (hierarchical triple systems) and in a long-period orbit around their common center of mass would often be spatially...positive scenar- ios that is complementary to other diagnostics, and should play an important role in the discovery of Earth -size planets around other

  11. Increased insolation threshold for runaway greenhouse processes on Earth-like planets

    NASA Astrophysics Data System (ADS)

    Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée

    2013-12-01

    The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can `run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m-2, which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.

  12. Increased insolation threshold for runaway greenhouse processes on Earth-like planets.

    PubMed

    Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée

    2013-12-12

    The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can 'run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m(-2), which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.

  13. The Relationship Between the Origins of Life on Earth and the Possibility of Life on Other Planets: A Nineteenth-Century Perspective

    NASA Astrophysics Data System (ADS)

    Tirard, Stéphane

    In this chapter we examine how, during the second part of the nineteenth century and the beginning of the twentieth century, assumptions about the origins of life were specifically linked to the development of theories of evolution and how these conceptions influenced assumptions about the possibility of life on other planets. First we present the theories of the origins of life of Charles Darwin (1809-1882) and Herbert Spencer (1820-1903) and underline how they were linked to the knowledge of physical and chemical conditions of environments. These two examples lead us to think about the relationship between the origin of life, evolutionary biology, and geology, particularly the uniformitarian principle. An important point is the extension of the comprehension of terrestrial conditions of emergence and evolution of life to other planets. We claim that there was a sort of extended uniformitarian principle, based not only on time, but also on space. Second, after a brief look at panspermia theory, we compare two examples of assumptions about life on other planets. The French astronomer Camille Flammarion (1842-1925) and the French biologist Edmond Perrier (1844-1921) presented views that consisted in complex analogies between life on Earth and life on other planets. We analyze how they used neo-Lamarckian biological concepts to imagine living beings in other worlds. Each planet is characterized by a particular stage of biological evolution that they deduce from the state of living beings on Earth. The two scientists explained these different states with neo-Lamarckian principles, which were based on environmental constraints on organisms. Therefore these descriptions presented a sort of history of life, including the past and the future. We claim that their assumptions could be some intellectual exercises testing neo-Lamarckian theories. Moreover the description of human beings on other planets, and particularly the Martian epianthropus presented by Perrier, were

  14. The Star–Planet Connection. I. Using Stellar Composition to Observationally Constrain Planetary Mineralogy for the 10 Closest Stars

    NASA Astrophysics Data System (ADS)

    Hinkel, Natalie R.; Unterborn, Cayman T.

    2018-01-01

    The compositions of stars and planets are connected, but the definition of “habitability” and the “habitable zone” only take into account the physical relationship between the star and planet. Planets, however, are made truly habitable by both chemical and physical processes that regulate climatic and geochemical cycling between atmosphere, surface, and interior reservoirs. Despite this, an “Earth-like” planet is often defined as a planet made of a mixture of rock and Fe that is roughly 1 Earth-density. To understand the interior of a terrestrial planet, the stellar abundances of planet-building elements (e.g., Mg, Si, and Fe) can be used as a proxy for the planet’s composition. We explore the planetary mineralogy and structure for fictive planets around the 10 stars closest to the Sun using stellar abundances from the Hypatia Catalog. Although our sample contains stars that are both sub- and super-solar in their abundances, we find that the mineralogies are very similar for all 10 planets—since the error or spread in the stellar abundances create significant degeneracy in the models. We show that abundance uncertainties need to be on the order of [Fe/H] < 0.02 dex, [Si/H] < 0.01 dex, [Al/H] < 0.002 dex, while [Mg/H] and [Ca/H] < 0.001 dex in order to distinguish two unique planetary populations in our sample of 10 stars. While these precisions are high, we believe that they are possible given certain abundance techniques, in addition to methodological transparency, that have recently been demonstrated in the literature. However, without these precisions, the uncertainty in planetary structures will be so high that we will be unable to confidently state that a planet is like the Earth, or unlike anything we have ever seen. We made some cuts and ruled out a number of stars, but these 10 are still rather nearby.

  15. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  16. Which Type of Planets do We Expect to Observe in the Habitable Zone?

    PubMed

    Adibekyan, Vardan; Figueira, Pedro; Santos, Nuno C

    2016-11-01

    We used a sample of super-Earth-like planets detected by the Doppler spectroscopy and transit techniques to explore the dependence of orbital parameters of the planets on the metallicity of their host stars. We confirm the previous results (although still based on small samples of planets) that super-Earths orbiting around metal-rich stars are not observed to be as distant from their host stars as we observe their metal-poor counterparts to be. The orbits of these super-Earths with metal-rich hosts usually do not reach into the Habitable Zone (HZ), keeping them very hot and inhabitable. We found that most of the known planets in the HZ are orbiting their GK-type hosts which are metal-poor. The metal-poor nature of planets in the HZ suggests a high Mg abundance relative to Si and high Si abundance relative to Fe. These results lead us to speculate that HZ planets might be more frequent in the ancient Galaxy and had compositions different from that of our Earth.

  17. Beyond the principle of plentitude: a review of terrestrial planet habitability.

    PubMed

    Gaidos, E; Deschenes, B; Dundon, L; Fagan, K; Menviel-Hessler, L; Moskovitz, N; Workman, M

    2005-04-01

    We review recent work that directly or indirectly addresses the habitability of terrestrial (rocky) planets like the Earth. Habitability has been traditionally defined in terms of an orbital semimajor axis within a range known as the habitable zone, but it is also well known that the habitability of Earth is due to many other astrophysical, geological, and geochemical factors. We focus this review on (1) recent refinements to habitable zone calculations; (2) the formation and orbital stability of terrestrial planets; (3) the tempo and mode of geologic activity (e.g., plate tectonics) on terrestrial planets; (4) the delivery of water to terrestrial planets in the habitable zone; and (5) the acquisition and loss of terrestrial planet carbon and nitrogen, elements that constitute important atmospheric gases responsible for habitable conditions on Earth's surface as well as being the building blocks of the biosphere itself. Finally, we consider recent work on evidence for the earliest habitable environments and the appearance of life itself on our planet. Such evidence provides us with an important, if nominal, calibration point for our search for other habitable worlds.

  18. Characterizing extrasolar terrestrial planets with reflected, emitted and transmitted spectra.

    PubMed

    Tinetti, Giovanna

    2006-12-01

    NASA and ESA are planning missions to directly detect and characterize terrestrial planets outside our solar system (nominally NASA-Terrestrial Planet Finder and ESA-DARWIN missions). These missions will provide our first opportunity to spectroscopically study the global characteristics of those planets, and search for signs of habitability and life. We have used spatially and spectrally-resolved models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of surface biosignatures, in the globally averaged spectra and light-curves of the Earth. Atmospheric signatures of Earth-size exoplanets might be detected, in a near future, by stellar occultation as well. Detectability depends on planet's size, atmospheric composition, cloud cover and stellar type. According to our simulations, Earth's land vegetation signature (red-edge) is potentially visible in the disk-averaged spectra, even with cloud cover, and when the signal is averaged over the daily time scale. Marine vegetation is far more difficult to detect. We explored also the detectability of an exo-vegetation responsible for producing a signature that is red-shifted with respect to the Earth vegetation's one.

  19. Characterising Super Earths With The EChO Spacemission Concept

    NASA Astrophysics Data System (ADS)

    Tessenyi, Marcell; Ollivier, M.; Tinetti, G.; Beaulieu, J. P.; Coudé du Foresto, V.; Encrenaz, T.; Micela, G.; Swinyard, B.; Ribas, I.; Aylward, A.; Tennyson, J.; Swain, M. R.; Sozzetti, A.; Vasisht, G.; Deroo, P.

    2011-09-01

    Transiting Super Earths orbiting M dwarfs are excellent targets for the prospect of studying potentially habitable extrasolar planets. While most of the currently known Exoplanets are of the Hot Jupiter and Neptune type, attention is now turning to these Super Earths. Two recent examples are GJ 1214b, found by Charbonneau et al. in 2009, and Cancri 55 e, found by Winn et al. in 2011. These candidates offer the opportunity of obtaining spectral signatures of their atmospheres in transiting scenarios, via data obtained by ground based and space observatories, compared to simulated climate scenarios. With the recent selection of the Exoplanet Characterisation Observatory (EChO) mission by ESA for further studies, I present observational strategies and time requirements for a range of targets characterisable by EChO, with a view to Super Earths orbiting M dwarfs.

  20. Success of the International Year of the Planet Earth through Targeted High-impact Programs at the American Geological Institute

    NASA Astrophysics Data System (ADS)

    Leahy, P.

    2007-12-01

    The American Geological Institute (AGI) is one of the 12 founding partners of the International Year of the Planet Earth (IYPE) and as such AGI serves on its governing board. AGI is a nonprofit federation of 44 geoscientific and professional associations that represents more than 120,000 geologists, geophysicists, and other earth scientists. AGI provides information services to geoscientists, serves as a voice of shared interests in our profession, plays a major role in strengthening geoscience education, and strives to increase public awareness of the vital role the geosciences play in society's use of resources, resilience to natural hazards, and the health of the environment. The outreach and educational opportunities afforded by IYPE provide AGI with an international venue to promote the role of the geosciences in the daily life of society. AGI's successful release of the 4-part television series entitled Faces of Earth done in partnership with the Discovery Communications is a hallmark example of an outreach product that is technically accurate but designed to engage the non-scientific audience in the wonderment of our science. The series focuses on building the planet, shaping the planet, assembling America, and the human world. Custom short cuts have been produced for special purposes and one of these may be used as part of an IYPE-launch event in Europe. AGI's news magazine, Geotimes will highlight appropriate IYPE events to increase the awareness of the American geoscience community. In addition, Geotimes will promote IYPE by using its logo routinely and through publishing advertisements reminding its professional and public readership of the importance of the IYPE triennium. Similarly, as part of AGI's K-12 educational efforts and teacher training and through its development of Earth Science Week materials, the goals, accomplishments, and importance of IYPE will be incorporated into the targeted educational audiences. IYPE activities will be highlighted

  1. How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?

    PubMed Central

    Kleidon, Axel

    2012-01-01

    The Earth's chemical composition far from chemical equilibrium is unique in our Solar System, and this uniqueness has been attributed to the presence of widespread life on the planet. Here, I show how this notion can be quantified using non-equilibrium thermodynamics. Generating and maintaining disequilibrium in a thermodynamic variable requires the extraction of power from another thermodynamic gradient, and the second law of thermodynamics imposes fundamental limits on how much power can be extracted. With this approach and associated limits, I show that the ability of abiotic processes to generate geochemical free energy that can be used to transform the surface–atmosphere environment is strongly limited to less than 1 TW. Photosynthetic life generates more than 200 TW by performing photochemistry, thereby substantiating the notion that a geochemical composition far from equilibrium can be a sign for strong biotic activity. Present-day free energy consumption by human activity in the form of industrial activity and human appropriated net primary productivity is of the order of 50 TW and therefore constitutes a considerable term in the free energy budget of the planet. When aiming to predict the future of the planet, we first note that since global changes are closely related to this consumption of free energy, and the demands for free energy by human activity are anticipated to increase substantially in the future, the central question in the context of predicting future global change is then how human free energy demands can increase sustainably without negatively impacting the ability of the Earth system to generate free energy. This question could be evaluated with climate models, and the potential deficiencies in these models to adequately represent the thermodynamics of the Earth system are discussed. Then, I illustrate the implications of this thermodynamic perspective by discussing the forms of renewable energy and planetary engineering that would

  2. How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?

    PubMed

    Kleidon, Axel

    2012-03-13

    The Earth's chemical composition far from chemical equilibrium is unique in our Solar System, and this uniqueness has been attributed to the presence of widespread life on the planet. Here, I show how this notion can be quantified using non-equilibrium thermodynamics. Generating and maintaining disequilibrium in a thermodynamic variable requires the extraction of power from another thermodynamic gradient, and the second law of thermodynamics imposes fundamental limits on how much power can be extracted. With this approach and associated limits, I show that the ability of abiotic processes to generate geochemical free energy that can be used to transform the surface-atmosphere environment is strongly limited to less than 1 TW. Photosynthetic life generates more than 200 TW by performing photochemistry, thereby substantiating the notion that a geochemical composition far from equilibrium can be a sign for strong biotic activity. Present-day free energy consumption by human activity in the form of industrial activity and human appropriated net primary productivity is of the order of 50 TW and therefore constitutes a considerable term in the free energy budget of the planet. When aiming to predict the future of the planet, we first note that since global changes are closely related to this consumption of free energy, and the demands for free energy by human activity are anticipated to increase substantially in the future, the central question in the context of predicting future global change is then how human free energy demands can increase sustainably without negatively impacting the ability of the Earth system to generate free energy. This question could be evaluated with climate models, and the potential deficiencies in these models to adequately represent the thermodynamics of the Earth system are discussed. Then, I illustrate the implications of this thermodynamic perspective by discussing the forms of renewable energy and planetary engineering that would

  3. Transit visibility zones of the Solar system planets

    NASA Astrophysics Data System (ADS)

    Wells, R.; Poppenhaeger, K.; Watson, C. A.; Heller, R.

    2018-01-01

    The detection of thousands of extrasolar planets by the transit method naturally raises the question of whether potential extrasolar observers could detect the transits of the Solar system planets. We present a comprehensive analysis of the regions in the sky from where transit events of the Solar system planets can be detected. We specify how many different Solar system planets can be observed from any given point in the sky, and find the maximum number to be three. We report the probabilities of a randomly positioned external observer to be able to observe single and multiple Solar system planet transits; specifically, we find a probability of 2.518 per cent to be able to observe at least one transiting planet, 0.229 per cent for at least two transiting planets, and 0.027 per cent for three transiting planets. We identify 68 known exoplanets that have a favourable geometric perspective to allow transit detections in the Solar system and we show how the ongoing K2 mission will extend this list. We use occurrence rates of exoplanets to estimate that there are 3.2 ± 1.2 and 6.6^{+1.3}_{-0.8} temperate Earth-sized planets orbiting GK and M dwarf stars brighter than V = 13 and 16, respectively, that are located in the Earth's transit zone.

  4. News and Views: Keep it down! AU becomes au, and is defined in metres; Kepler survey announces two planets in a binary star system; Is there plate tectonics on Mars? Vaporizing Earth - for research!

    NASA Astrophysics Data System (ADS)

    2012-10-01

    Division 1 of the IAU recommended that the astronomical unit - originally the length of the semi-major axis of the Earth's orbit - be redefined as a fixed number of kilometres. A team of observers using data from NASA's Kepler space observatory announced at the IAU General Assembly that they had discovered two planets orbiting a pair of binary stars, and that such planets could exist in the habitable zone of their system. The Red Planet has long been considered something of a dead planet as far as tectonic movements of its crust, but careful analysis of thermal and topographic images of the surface suggest the existence of major faults with horizontal slip along the Valles Marineris. The question of what would happen if Earth were to approach the Sun and start vaporizing has been modelled in order to help to model the composition of super-Earths.

  5. One or more bound planets per Milky Way star from microlensing observations.

    PubMed

    Cassan, A; Kubas, D; Beaulieu, J-P; Dominik, M; Horne, K; Greenhill, J; Wambsganss, J; Menzies, J; Williams, A; Jørgensen, U G; Udalski, A; Bennett, D P; Albrow, M D; Batista, V; Brillant, S; Caldwell, J A R; Cole, A; Coutures, Ch; Cook, K H; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouqué, P; Hill, K; Kains, N; Kane, S; Marquette, J-B; Martin, R; Pollard, K R; Sahu, K C; Vinter, C; Warren, D; Watson, B; Zub, M; Sumi, T; Szymański, M K; Kubiak, M; Poleski, R; Soszynski, I; Ulaczyk, K; Pietrzyński, G; Wyrzykowski, L

    2012-01-11

    Most known extrasolar planets (exoplanets) have been discovered using the radial velocity or transit methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17-30% (refs 4, 5) of solar-like stars host a planet. Gravitational microlensing, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing. These planets are at least as numerous as the stars in the Milky Way. Here we report a statistical analysis of microlensing data (gathered in 2002-07) that reveals the fraction of bound planets 0.5-10 AU (Sun-Earth distance) from their stars. We find that 17(+6)(-9)% of stars host Jupiter-mass planets (0.3-10 M(J), where M(J) = 318 M(⊕) and M(⊕) is Earth's mass). Cool Neptunes (10-30 M(⊕)) and super-Earths (5-10 M(⊕)) are even more common: their respective abundances per star are 52(+22)(-29)% and 62(+35)(-37)%. We conclude that stars are orbited by planets as a rule, rather than the exception.

  6. Basaltic volcanism - The importance of planet size

    NASA Technical Reports Server (NTRS)

    Walker, D.; Stolper, E. M.; Hays, J. F.

    1979-01-01

    The volumetrically abundant basalts on the earth, its moon, and the eucrite parent planet all have chemical compositions that are controlled to a large extent by dry, low-pressure, crystal-liquid equilibria. Since this generalization is valid for these three planetary bodies, we infer that it may also apply to the other unsampled terrestrial planets. Other characteristics of basaltic volcanism show variations which appear to be related to planet size: the eruption temperatures, degrees of fractionation, and chemical variety of basalts and the endurance of basaltic volcanism all increase with planet size. Although the processes responsible for chemical differences between basalt suites are known, no simple systematization of the chemical differences between basalts from planet to planet has emerged.

  7. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars

    PubMed Central

    Kasting, James F.; Kopparapu, Ravikumar; Ramirez, Ramses M.; Harman, Chester E.

    2014-01-01

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet’s atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, “Dune” planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, Seff, the recently recalculated HZ boundaries are: recent Venus—1.78; runaway greenhouse—1.04; moist greenhouse—1.01; maximum greenhouse—0.35; and early Mars—0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4–0.5. PMID:24277805

  8. DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David, E-mail: robinson@astro.washington.ed

    2010-09-20

    Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability ofmore » glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter.« less

  9. Detecting Oceans on Extrasolar Planets Using the Glint Effect

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David

    2010-09-01

    Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability of glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter.

  10. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  11. Magellan/PFS Radial Velocities of GJ 9827, a Late K dwarf at 30 pc with Three Transiting Super-Earths

    NASA Astrophysics Data System (ADS)

    Teske, Johanna K.; Wang, Sharon; Wolfgang, Angie; Dai, Fei; Shectman, Stephen A.; Butler, R. Paul; Crane, Jeffrey D.; Thompson, Ian B.

    2018-04-01

    The Kepler mission showed us that planets with sizes between that of Earth and Neptune appear to be the most common type in our Galaxy. These “super-Earths” continue to be of great interest for exoplanet formation, evolution, and composition studies. However, the number of super-Earths with well-constrained mass and radius measurements remains small (40 planets with σ mass < 25%), due in part to the faintness of their host stars causing ground-based mass measurements to be challenging. Recently, three transiting super-Earth planets were detected by the K2 mission around the nearby star GJ 9827/HIP 115752, at only 30 pc away. The radii of the planets span the “radius gap” detected by Fulton et al. (2017), and all orbit within ∼6.5 days, easing follow-up observations. Here, we report radial velocity (RV) observations of GJ 9827, taken between 2010 and 2016 with the Planet Finder Spectrograph on the Magellan II Telescope. We employ two different RV analysis packages, SYSTEMIC and RADVEL, to derive masses and thus densities of the GJ 9827 planets. We also test a Gaussian Process regression analysis but find the correlated stellar noise is not well constrained by the PFS data and that the GP tends to over-fit the RV semi-amplitudes resulting in a lower K value. Our RV observations are not able to place strong mass constraints on the two outer planets (c and d) but do indicate that planet b, at 1.64 R ⊕ and ∼8 M ⊕, is one of the most massive (and dense) super-Earth planets detected to date.

  12. Observations of Planet Crossing Asteroids

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    1999-01-01

    This grant funds the investigation of the Solar System's planet crossing asteroid population, principally the near Earth and trans-Neptunian objects, but also the Centaurs. Investigations include colorimetry at both visible and near infrared wavelengths, light curve photometry, astrometry, and a pilot project to find near Earth objects with small aphelion distances, which requires observations at small solar elongations.

  13. The Earth Microbiome Project and modeling the planets microbial potential (Invited)

    NASA Astrophysics Data System (ADS)

    Gilbert, J. A.

    2013-12-01

    The understanding of Earth's climate and ecology requires multiscale observations of the biosphere, of which microbial life are a major component. However, to acquire and process physical samples of soil, water and air that comprise the appropriate spatial and temporal resolution to capture the immense variation in microbial dynamics, would require a herculean effort and immense financial resources dwarfing even the most ambitious projects to date. To overcome this hurdle we created the Earth Microbiome Project, a crowd-sourced effort to acquire physical samples from researchers around the world that are, importantly, contextualized with physical, chemical and biological data detailing the environmental properties of that sample in the location and time it was acquired. The EMP leverages these existing efforts to target a systematic analysis of microbial taxonomic and functional dynamics across a vast array of environmental parameter gradients. The EMP captures the environmental gradients, location, time and sampling protocol information about every sample donated by our valued collaborators. Physical samples are then processed using a standardized DNA extraction, PCR, and shotgun sequencing protocol to generate comparable data regarding the microbial community structure and function in each sample. To date we have processed >17,000 samples from 40 different biomes. One of the key goals of the EMP is to map the spatiotemporal variability of microbial communities to capture the changes in important functional processes that need to be appropriately expressed in models to provide reliable forecasts of ecosystem phenotype across our changing planet. This is essential if we are to develop economically sound strategies to be good stewards of our Earth. The EMP recognizes that environments are comprised of complex sets of interdependent parameters and that the development of useful predictive computational models of both terrestrial and atmospheric systems requires

  14. Variation in 142Nd/144Nd of Archean rocks from southwest Greenland : Implications for early Earth mantle dynamics

    NASA Astrophysics Data System (ADS)

    Rizo, H.; Boyet, M.; Blichert-Toft, J.; Rosing, M.; Paquette, J. L.

    2012-04-01

    ) Earth Planet. Sci. Lett. [2] Bennett et al., (2007b) Science. [3] Boyet et al., (2003) Earth Planet. Sci. Lett. [4] Boyet and Carlson (2006) Earth Planet. Sci. Lett. [5] Caro et al., (2003) Nature. [6] Caro et al., (2006) Geochim. Cosmochim. Acta. [7] Harper and Jacobsen (1992) Nature. [8] Bennett et al., (2010) Goldschmidt 2010. [9] Nutman and Friend (2009) Precamb. Res. [10] Nielsen et al., (2002) Precamb. Res. [11] Nutman et al., (2004) J. Geol. Soc. Lond.

  15. Asteroids and Meteorites from Venus? Only the Earth Goddess Knows

    NASA Astrophysics Data System (ADS)

    Dones, Henry; Zahnle, Kevin J.; Alvarellos, José L.

    2018-04-01

    No meteorites from Venus have been found; indeed, some find theirexistence unlikely because of the perceived difficulty of launchingrocks at speeds above 10 km/s and traversing the planet's 93 baratmosphere. [1] Nonetheless, we keep hope alive, since cosmochemistssay they can identify Cytherean meteorites, should candidates be found[2]. Gladman et al. [3] modeled the exchange of impact ejecta betweenthe terrestrial planets, but did not consider meteorites launched fromVenus in any detail. At the time of Gladman's work, no asteroids thatremained entirely within Earth's orbit were known. 14 suchEarth-interior objects with good orbits have now been discovered, andare known as Atiras, for the Pawnee goddess of the Earth. The largestknown member of the class is 163693 Atira, a binary whose componentshave diameters of approximately 4.8 and 1 km. Discovery of Atiras isvery incomplete because they can only be seen at small solarelongations [4]. Greenstreet et al. [5] modeled the orbitaldistribution of Atiras from main-belt asteroidal and cometary sourceregions, while Ribeiro et al. [6] mapped the stability region ofhypothetical Atiras and integrated the orbits of clones of 12 realAtiras for 1 million years. 97% of the clones survived for 1 Myrimpact with Venus was the most common fate of those that met theirends. We have performed orbital integrations of 1000 clones of each ofthe known Atiras, and of hypothetical ejecta that escape Venus afterasteroid impacts, for 10-100 Myr. The latter calculations usetechniques like those of Alvarellos et al. [7] and Zahnle et al. [8]for transfer amongst Jupiter's galilean satellites. Our goals are toestimate the fraction of Atiras that are ejecta launched from Venus,the time spent in space by hypothetical meteorites from Venus, and therate at which such meteorites strike the Earth.[1] Gilmore M., et al (2017). Space Sci. Rev. 212, 1511. [2] JourdanF., Eroglu E. (2017). MAPS 52, 884. [3] Gladman B.J., etal. (1996). Science 271, 1387. [4

  16. Rainbows, polarization, and the search for habitable planets.

    PubMed

    Bailey, Jeremy

    2007-04-01

    Current proposals for the characterization of extrasolar terrestrial planets rest primarily on the use of spectroscopic techniques. While spectroscopy is effective in detecting the gaseous components of a planet's atmosphere, it provides no way of detecting the presence of liquid water, the defining characteristic of a habitable planet. In this paper, I investigate the potential of an alternative technique for characterizing the atmosphere of a planet using polarization. By looking for a polarization peak at the "primary rainbow" scattering angle, it is possible to detect the presence of liquid droplets in a planet's atmosphere and constrain the nature of the liquid through its refractive index. Single scattering calculations are presented to show that a well-defined rainbow scattering peak is present over the full range of likely cloud droplet sizes and clearly distinguishes the presence of liquid droplets from solid particles such as ice or dust. Rainbow scattering has been used in the past to determine the nature of the cloud droplets in the Venus atmosphere and by the POLarization and Directionality of Earth Reflectances (POLDER) instrument to distinguish between liquid and ice clouds in the Earth atmosphere. While the presence of liquid water clouds does not guarantee the presence of water at the surface, this technique could complement spectroscopic techniques for characterizing the atmospheres of potential habitable planets. The disk-integrated rainbow peak for Earth is estimated to be at a degree of polarization of 12.7% or 15.5% for two different cloud cover scenarios. The observation of this rainbow peak is shown to be feasible with the proposed Terrestrial Planet Finder Coronograph mission in similar total integration times to those required for spectroscopic characterization.

  17. On the Nature and Timing of Giant Planet Migration in the Solar System

    NASA Astrophysics Data System (ADS)

    Agnor, Craig B.

    2016-05-01

    Giant planet migration is a natural outcome of gravitational scattering and planet formation processes (Fernandez & Ip 1984). There is compelling evidence that the solar system's giant planets experienced large-scale migration involving close approaches between planets as well as smooth radial migration via planetesimal scattering. Aspects of giant planet migration have been invoked to explain many features of the outer solar system including the resonant structure of the Kuiper Belt (e.g., Malhotra 1993, Levison et al. 2008), the eccentricities of Jupiter and Saturn (Tsiganis et al. 2005, Morbidelli et al. 2009), the capture of Jupiter's Trojan companions (Morbidelli et al. 2005) and the capture of irregular planetary satellites (e.g., Nesvorny et al. 2007) to name a few. If this migration epoch occurred after the formation of the inner planets, then it may also explain the so-called lunar Late Heavy Bombardment (Gomes et al. 2005). This scenario necessarily requires coeval terrestrial and migrating giant planets. Recent N-body integrations exploring this issue have shown that giant planet migration may excite the terrestrial system via nodal and apsidal secular resonances (e.g., Brasser et al. 2013), may drive the terrestrial planets to crossing orbits (Kaib & Chambers 2016) or alternatively leave the inner solar system in a state closely resembling the observed one (Roig et al. 2016). The factors accounting for the large range of outcomes remain unclear. Using linear secular models and N-body simulations I am identifying and characterising the principal aspects of giant planet migration that excite the terrestrial planets' orbits. I will present these results and discuss how they inform the nature and timing of giant planet migration in the solar system.

  18. From Planet Earth to Society: a new dynamics in Portugal about Geosciences Education and Outreach

    NASA Astrophysics Data System (ADS)

    Silva, Elizabeth; Abreu Sá, Artur; José Roxo, Maria

    2013-04-01

    Since the United Nations General Assembly declared the year 2008 as the International Year of Planet Earth (IYPE), during the triennium 2007-2009, under the motto Earth Sciences for Society, many impacts and changes were generated among the Portuguese society. Today is possible to say that those were due to the work of the Portuguese National Committee for the IYPE. After 2009, the Portuguese National Commission for UNESCO created the Portuguese National Committee for the International Programme of Geosciences (IGCP) with the main goal to continue the work done during the IYPE. Among those activities, a Workshop entitled "InFormation in Context" was organized by the UNESCO NatCom - Portugal, in collaboration with the IGCP National Committee and the National Public Television (RTP). This activity was created to reach specially journalists, aiming to give them more information in context, related to Earth matters, mainly related to natural hazards and Climate Change. It is essential that society knows its degree of vulnerability to the occurrence of extreme natural phenomena, which are the basis of natural catastrophes, with serious social and economic consequences. Thus, it is crucial the development of a culture of prevention and precaution, which hinges on a correct information, based in scientific knowledge on causes and consequences of extreme natural phenomena. At the same time, it is necessary the implementation of mitigation and adaptation measures, based on the analysis and cartography of risks, and in an effective monitoring process. During these workshops particular emphasis was given to the need to inform and educate the society in general, and students in particular, to the reality of living in a dynamic planet. Particular importance was given to natural hazards, such as those resulting from earthquakes landslides, floods, droughts, heat and cold waves and storms, which are those with the greatest potential danger in Portugal. An informed society is a

  19. The Delivery of Water During Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    O'Brien, David P.; Izidoro, Andre; Jacobson, Seth A.; Raymond, Sean N.; Rubie, David C.

    2018-02-01

    The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. Here we review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.

  20. Planet Ocean

    NASA Astrophysics Data System (ADS)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  1. Exploring an Earth-sized neighbor: ground-based transmission spectroscopy of GJ1132b, a rocky planet transiting a small nearby M-dwarf

    NASA Astrophysics Data System (ADS)

    Diamond-Lowe, Hannah; Berta-Thompson, Zachory K.; Charbonneau, David; Irwin, Jonathan; Newton, Elisabeth R.; Dittmann, Jason

    2017-01-01

    The terrestrial planets of the Solar System are rocky worlds that did not accrete envelopes of hydrogen and helium, but instead possess thin secondary atmospheres, or no atmosphere at all. Until recently, most exoplanet atmospheric studies have centered around hot Jupiters, for which high planet-to-star radius ratios and short orbital periods allowed for observable transmission spectra. Now we have the opportunity to probe the atmosphere of a small, rocky exoplanet. GJ1132b has a radius of 1.2 Earth radii and a mass of 1.6 Earth masses, and orbits an M-dwarf 12 parsecs away. Determining the composition of GJ1132b's atmosphere is essential to understanding the nature of atmospheric evolution on terrestrial planets. We observed five transits of GJ1132b using the Magellan Clay telescope with the LDSS3C multi-object spectrograph. We compare the transit depth of GJ1132b in wavelength bins ranging from 0.65 -- 1.04 microns to infer whether or not GJ1132b has maintained its primordial hydrogen-dominated atmosphere. Should we find evidence of a hydrogen-dominated atmosphere, this would imply that a terrestrial planet is able to accrete and retain a low mean-molecular weight atmosphere from the planetary nebula. Coupled with recent UV spectra of the host star, our results can clarify the process of atmospheric escape on terrestrial worlds, with implications for formation histories of M-dwarf planets and the potential for habitability in these systems. If instead GJ1132b possesses a low mean-molecular weight atmosphere, we look to future observations with JWST and the ground-based extremely large telescopes to characterize its atmosphere.This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program. This work was made possible by a grant from the John Templeton Foundation.

  2. NASA's Kepler Mission Discovers Its Smallest Habitable Zone Planets (Reporter Pkg)

    NASA Image and Video Library

    2013-04-18

    NASA's Kepler mission has discovered two new planetary systems that include three super-Earth-size planets in the 'habitable zone,' the range of distance from a star where the surface temperature of an orbiting planet might be suitable for liquid water. Scientists do not know whether life could exist on the newfound planets, but their discovery signals we are another step closer to finding a world similar to Earth around a star like our sun. Kepler-62 and -69 systems

  3. Planet traps and first planets: The critical metallicity for gas giant formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki, E-mail: yasu@asiaa.sinica.edu.tw, E-mail: hirashita@asiaa.sinica.edu.tw

    2014-06-10

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R{sub rapid}〉) within which gas accretion becomes efficient enough to form Jovian planets, as a functionmore » of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R{sub rapid}〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.« less

  4. SOLAR OBLIQUITY INDUCED BY PLANET NINE: SIMPLE CALCULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Dong

    2016-12-01

    Bailey et al. and Gomes et al. recently suggested that the 6° misalignment between the Sun’s rotational equator and the orbital plane of the major planets may be produced by forcing from the hypothetical Planet Nine on an inclined orbit. Here, we present a simple yet accurate calculation of the effect, which provides a clear description of how the Sun’s spin orientation depends on the property of Planet Nine in this scenario.

  5. Precisely measuring the density of small transiting exoplanets with particular emphasis on longer period planet using the HARPS-N spectrograph

    NASA Astrophysics Data System (ADS)

    Buchhave, Lars A.

    2015-08-01

    The majority of exoplanets discovered by the Kepler Mission have sizes that range between 1-4 Earth radii, populating a regime of planets with no Solar System analogues. This regime is critical for understanding the frequency of potentially habitable worlds and to help inform planet formation theories, because it contains the transition from lower-density planets with extended H/He envelopes to higher-density rocky planets with compact atmospheres. HARPS-N is an ultra-stable high-resolution spectrograph optimized for the measurement of precise radial velocities, yielding precise planetary masses and thus densities of small transiting exoplanets. In this talk, I will review the progress to populate the mass-radius parameter space with precisely measured densities of small planets. I will in particular focus on the latest HARPS-N results and their implication for our understanding of these super-Earth and small Neptune type planets.Additionally, I will discuss our progress to measure the masses of longer period sub-Neptune sized planets. In Buchhave el al. 2014, we found suggestive observational evidence that the transition from rocky to gaseous planets might depend on the orbital period, such that larger planets further away from their host star could be massive planets without a large gaseous envelope. To test this hypothesis, we have used HARPS-N to observe longer period planet candidates to determine whether they are in fact massive rocky planets or if they have extended H/He envelopes and thus lower bulk densities.HARPS-N at the Telescopio Nazionale Galileo, La Palma is an international collaboration and was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, and the Italian National Astrophysical Institute, University of St. Andrews, Queens University Belfast, and University of Edinburgh.

  6. Illustration of TRAPPIST-1 Planets as of Feb. 2018

    NASA Image and Video Library

    2018-02-05

    This illustration shows the seven Earth-size planets of TRAPPIST-1, an exoplanet system about 40 light-years away, based on data current as of February 2018. The image shows the planets' relative sizes but does not represent their orbits to scale. The art highlights possibilities for how the surfaces of these intriguing worlds might look based on their newly calculated properties. The seven planets of TRAPPIST-1 are all Earth-sized and terrestrial. TRAPPIST-1 is an ultra-cool dwarf star in the constellation Aquarius, and its planets orbit very close to it. In the background, slightly distorted versions the familiar constellations of Orion and Taurus are shown as they would appear from the location of TRAPPIST-1 (courtesy of California Academy of Sciences/Dan Tell). https://photojournal.jpl.nasa.gov/catalog/PIA22097

  7. Whole Planet Coupling from Climate to Core: Implications for the Evolution of Rocky Planets and their Prospects for Habitability

    NASA Astrophysics Data System (ADS)

    Foley, B. J.; Driscoll, P. E.

    2015-12-01

    Many factors have conspired to make Earth a home to complex life. Earth has abundant water due to a combination of factors, including orbital distance and the climate regulating feedbacks of the long-term carbon cycle. Earth has plate tectonics, which is crucial for maintaining long-term carbon cycling and may have been an important energy source for the origin of life in seafloor hydrothermal systems. Earth also has a strong magnetic field that shields the atmosphere from the solar wind and the surface from high-energy particles. Synthesizing recent work on these topics shows that water, a temperate climate, plate tectonics, and a strong magnetic field are linked together through a series of negative feedbacks that stabilize the system over geologic timescales. Although the physical mechanism behind plate tectonics on Earth is still poorly understood, climate is thought to be important. In particular, temperate surface temperatures are likely necessary for plate tectonics because they allow for liquid water that may be capable of significantly lowering lithospheric strength, increase convective stresses in the lithosphere, and enhance the effectiveness of "damage" processes such as grainsize reduction. Likewise, plate tectonics is probably crucial for maintaining a temperate climate on Earth through its role in facilitating the long-term carbon cycle, which regulates atmospheric CO2 levels. Therefore, the coupling between plate tectonics and climate is a feedback that is likely of first order importance for the evolution of rocky planets. Finally, plate tectonics is thought to be important for driving the geodynamo. Plate tectonics efficiently cools the mantle, leading to vigorous thermo-chemical convection in the outer core and dynamo action; without plate tectonics inefficient mantle cooling beneath a stagnant lid may prevent a long-lived magnetic field. As the magnetic field shields a planet's atmosphere from the solar wind, the magnetic field may be important

  8. Uderstanding Snowball Earth Deglaciation

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2012-12-01

    Earth, a normally clement planet comfortably in its star's habitable zone, suffered global or nearly global glaciation at least twice during the Neoproterozoic era (at about 635 and 710 million years ago). Viewed in the context of planetary evolution, these pan-global glaciations (Snowball Earth events) were extremely rapid, lasting only a few million years. The dramatic effect of the Snowball Earth events on the development of the planet can be seen through their link to rises in atmospheric oxygen and evolutionary innovations. These potential catastrophes on an otherwise clement planet can be used to gain insight into planetary habitability more generally. Since Earth is not currently a Snowball, a sound deglaciation mechanism is crucial for the viability of the Snowball Earth hypothesis. The traditional deglaciation mechanism is a massive build up of CO2 due to reduced weathering during Snowball Earth events until tropical surface temperatures reach the melting point. Once initiated, such a deglaciation might happen on a timescale of only dozens of thousands of years and would thrust Earth from the coldest climate in its history to the warmest. Therefore embedded in Snowball Earth events is an even more rapid and dramatic environmental change. Early global climate model simulations raised doubt about whether Snowball Earth deglaciation could be achieved at a CO2 concentration low enough to be consistent with geochemical data, which represented a potential challenge to the Snowball Earth hypothesis. Over the past few years dust and clouds have emerged as the essential missing additional processes that would allow Snowball Earth deglaciation at a low enough CO2 concentration. I will discuss the dust and cloud mechanisms and the modeling behind these ideas. This effort is critical for the broader implications of Snowball Earth events because understanding the specific deglaciation mechanism determines whether similar processes could happen on other planets.

  9. Mid-Infrared Imaging of Exo-Earths: Impact of Exozodiacal Disk Structures

    NASA Technical Reports Server (NTRS)

    Defrere, Denis; Absil, O.; Stark, C.; den Hartog, R.; Danchi, W.

    2011-01-01

    The characterization of Earth-like extrasolar planets in the mid-infrared is a significant observational challenge that could be tackled by future space-based interferometers. The presence of large amounts of exozodiacal dust around nearby main sequence stars represents however a potential hurdle to obtain mid-infrared spectra of Earth-like planets. Whereas the disk brightness only affects the integration time, the emission of resonant dust structures mixes with the planet signal at the output of the interferometer and could jeopardize the spectroscopic analysis of an Earth-like planet. Fortunately, the high angular resolution provided by space-based interferometry is sufficient to spatially distinguish most of the extended exozodiacal emission from the planetary signal and only the dust located near the planet significantly contributes to the noise level. Considering modeled resonant structures created by Earth-like planets, we address in this talk the role of exozodiacal dust in two different cases: the characterization of Super-Earth planets with single space-based Bracewell interferometers (e.g., the FKSI mission) and the characterization of Earth-like planets with 4-telescope space-based nulling interferometers (e.g., the TPF-I and Darwin projects). In each case, we derive constraints on the disk parameters that can be tolerated without jeopardizing the detection of Earth-like planets

  10. Early Earth(s) Across Time and Space

    NASA Astrophysics Data System (ADS)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  11. Kepler Small Habitable Zone Planets

    NASA Image and Video Library

    2015-07-23

    Of the 1,030 confirmed planets from Kepler, a dozen are less than twice the size of Earth and reside in the habitable zone of their host stars. In this diagram, the sizes of the exoplanets are represented by the size of each sphere. These are arranged by size from left to right, and by the type of star they orbit, from the M stars that are significantly cooler and smaller than the sun, to the K stars that are somewhat cooler and smaller than the sun, to the G stars that include the sun. The sizes of the planets are enlarged by 25 times compared to the stars. The Earth is shown for reference. http://photojournal.jpl.nasa.gov/catalog/PIA19827

  12. Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution

    NASA Astrophysics Data System (ADS)

    Foley, Bradford J.; Driscoll, Peter E.

    2016-05-01

    Earth's climate, mantle, and core interact over geologic time scales. Climate influences whether plate tectonics can take place on a planet, with cool climates being favorable for plate tectonics because they enhance stresses in the lithosphere, suppress plate boundary annealing, and promote hydration and weakening of the lithosphere. Plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate. Plate tectonics provides long-term cooling of the core, which is vital for generating a magnetic field, and the magnetic field is capable of shielding atmospheric volatiles from the solar wind. Coupling between climate, mantle, and core can potentially explain the divergent evolution of Earth and Venus. As Venus lies too close to the sun for liquid water to exist, there is no long-term carbon cycle and thus an extremely hot climate. Therefore, plate tectonics cannot operate and a long-lived core dynamo cannot be sustained due to insufficient core cooling. On planets within the habitable zone where liquid water is possible, a wide range of evolutionary scenarios can take place depending on initial atmospheric composition, bulk volatile content, or the timing of when plate tectonics initiates, among other factors. Many of these evolutionary trajectories would render the planet uninhabitable. However, there is still significant uncertainty over the nature of the coupling between climate, mantle, and core. Future work is needed to constrain potential evolutionary scenarios and the likelihood of an Earth-like evolution.

  13. Emergence of two types of terrestrial planet on solidification of magma ocean.

    PubMed

    Hamano, Keiko; Abe, Yutaka; Genda, Hidenori

    2013-05-30

    Understanding the origins of the diversity in terrestrial planets is a fundamental goal in Earth and planetary sciences. In the Solar System, Venus has a similar size and bulk composition to those of Earth, but it lacks water. Because a richer variety of exoplanets is expected to be discovered, prediction of their atmospheres and surface environments requires a general framework for planetary evolution. Here we show that terrestrial planets can be divided into two distinct types on the basis of their evolutionary history during solidification from the initially hot molten state expected from the standard formation model. Even if, apart from their orbits, they were identical just after formation, the solidified planets can have different characteristics. A type I planet, which is formed beyond a certain critical distance from the host star, solidifies within several million years. If the planet acquires water during formation, most of this water is retained and forms the earliest oceans. In contrast, on a type II planet, which is formed inside the critical distance, a magma ocean can be sustained for longer, even with a larger initial amount of water. Its duration could be as long as 100 million years if the planet is formed together with a mass of water comparable to the total inventory of the modern Earth. Hydrodynamic escape desiccates type II planets during the slow solidification process. Although Earth is categorized as type I, it is not clear which type Venus is because its orbital distance is close to the critical distance. However, because the dryness of the surface and mantle predicted for type II planets is consistent with the characteristics of Venus, it may be representative of type II planets. Also, future observations may have a chance to detect not only terrestrial exoplanets covered with water ocean but also those covered with magma ocean around a young star.

  14. A Preliminary Study on the Circulation of an ocean covering a Synchronously Rotating Planet

    NASA Astrophysics Data System (ADS)

    Matsuo, H.; Ishiwatari, M.; Takehiro, S.; Hayashi, Y.; Nakajima, K.

    2012-12-01

    Recently, nearly 800 extrasolar planets have been detected. It seems that some of them present into habitable zone, in which planets can have ocean, and such planets rotate synchronously with their central stars. Ocean is necessary for life, and the circulation makes climate mild by heat transport on the earth. The earth is the only planet that has ocean in the solar system so that it has not been understood what oceanic circulation is like in another planets. The purpose of this study is prediction of oceanic circulation on extrasolar planets by using numerical simulation. As a first step, elementary consideration is made. The planet is almost entirely covered with ocean and whose rotation period corresponds with its orbital period. On synchronously rotating planets, the thermal contrast between day-hemisphere and night-hemisphere would be extreme. However, it may be lessend if there is significant zonal heat transport. The circulation in such conditions has not been known well. We performed a numerical experiment based on the linear shallow water equation, assuming that both the evaporation and the precipitation occur only on day-hemisphere (Noda et al., 2011). With these distributions of the evaporation and the precipitation, one may anticipate the circulation occurs in only day-hemisphere. However, the resulting calculation is characterized with zonally uniform zonal flow, which also covers night hemisphere. In addition, the intensity of the flow increases with time. That behavior can be understood by constructing asymptotic solution which is first degree in time. The importance of Coriolis force, which bends meridional flow to zonal flow, is identified. It is implied that, even when only day-hemisphere has the evaporation and precipitation, there may be significant amount of heat can be transported from the day-hemisphere to the night-hemisphere by the strong zonal flow. The growth of zonal flow would be stopped when the evaporation and the precipitation are

  15. Primitive Earth: So Near to Hell

    ERIC Educational Resources Information Center

    Jastrow, Robert

    1973-01-01

    Discusses the atmospheric characteristics of the earth and their implications for the development of life on earth-like planets. Indicates that the chance of life developing on other planets is not as great as men might have thought. (CC)

  16. Evolution and dynamics of Earth from a molten initial stage

    NASA Astrophysics Data System (ADS)

    Louro Lourenço, D. J.; Tackley, P.

    2016-12-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007; Labrosse et al., The Early Earth 2015). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the

  17. Do Other Planets Have Summer?

    ERIC Educational Resources Information Center

    Nelson, George

    2005-01-01

    It's important to keep two things in mind when thinking about the cause of the seasons: (1) Earth and all the other planets except Pluto and Mercury move around the Sun in almost perfect circles, getting neither closer nor farther away from the Sun during the year; and (2) Earth's rotation axis is tilted with respect to the plane of its orbit…

  18. Sequential planet formation in transition disks: The case of HD 100546

    NASA Astrophysics Data System (ADS)

    Pinilla, Paola; Birnsitel, Til; Walsh, Catherine; van Dishoeck, Ewine

    2015-08-01

    Transition disks are circumstellar disks with dust inner cavities and may reveal an intermediate step of the ongoing disk dispersal process, where planet formation might happen. The recent gas and dust observations of transition disks have given major support to the presence of massive planets in transition disks. The analysis of such observations help to constrain the properties of the potential unseen planets. An excellent candidate to analyse the dust evolution when planets are embedded in disks is the transition disk around the Herbig Ae star HD 100546. Near-infrared observations of HD 100546 suggested the presence on an inner planet at 10 AU distance from the star (e.g. Mulders et al. 2013), while an outer planet has been directly imaged at 70 AU distance, which may be in the act of formation (Quant et al. 2013, 2015; Currie et al. 2014). The two embedded planets can lead to remarkable dust structures due to the particle trapping at the edges of the gaps caved by such planets (e.g. Pinilla et al. 2012, 2015). Recent ALMA Cycle 0 observations of this disk reveal a two-ring like structure consistent with particle trapping induced by the two companions (Walsh et al. 2014). The comparison of these observations with dust evolution models, that include the coagulation and fragmentation of dust grains, suggest that the outer companion must be at least two million of years younger than the inner companion, revealing sequential planet formation in this disk (Pinilla et al. 2015, under revision).

  19. Discovery of a bright microlensing event with planetary features towards the Taurus region: a super-Earth planet

    NASA Astrophysics Data System (ADS)

    Nucita, A. A.; Licchelli, D.; De Paolis, F.; Ingrosso, G.; Strafella, F.; Katysheva, N.; Shugarov, S.

    2018-05-01

    The transient event labelled as TCP J05074264+2447555 recently discovered towards the Taurus region was quickly recognized to be an ongoing microlensing event on a source located at distance of only 700-800 pc from Earth. Here, we show that observations with high sampling rate close to the time of maximum magnification revealed features that imply the presence of a binary lens system with very low-mass ratio components. We present a complete description of the binary lens system, which host an Earth-like planet with most likely mass of 9.2 ± 6.6 M⊕. Furthermore, the source estimated location and detailed Monte Carlo simulations allowed us to classify the event as due to the closest lens system, being at a distance of ≃380 pc and mass ≃0.25 M⊙.

  20. Evolution of ore deposits on terrestrial planets

    NASA Astrophysics Data System (ADS)

    Burns, R. G.

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  1. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  2. Prevalence and Properties of Planets from Kepler and K2

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew; Crossfield, Ian; Beichman, Charles; Sinukoff, Evan

    2015-12-01

    Discoveries from the prime Kepler mission demonstrated that small planets (< 3 Earth-radii) are common outcomes of planet formation around G, K, and M stars. While Kepler detected many such planets, all but a handful orbit faint, distant stars, which are not amenable to precise follow up measurements. NASA's K2 mission has the potential to increase the number of known small, transiting planets around bright stars by an order of magnitude. I will present the latest results from my team's efforts to detect, confirm, and characterize planets using the K2 mission. I will highlight some of the progress and remaining challenges involved with generating denoised K2 photometry and with detecting planets in the presence of severe instrument systematics. Among our recent discoveries are the K2-3 and K2-21 planetary systems: M dwarfs hosting multiple transiting Earth-size planets with low equilibrium temperatures. These systems offer a convenient laboratory for studying the bulk composition and atmospheric properties of small planets receiving low levels of stellar irradiation, where processes such as mass loss by photo-evaporation could play a weaker role.

  3. Characterization of Earth as an exoplanet on the basis of VIRTIS-Venus Express data analysis.

    NASA Astrophysics Data System (ADS)

    Oliva, Fabrizio; Piccioni, Giuseppe; D'Aversa, Emiliano; Bellucci, Giancarlo; Sindoni, Giuseppe; Grassi, Davide; Filacchione, Gianrico; Tosi, Federico; Capaccioni, Fabrizio

    2017-04-01

    The Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS, Piccioni et al., 2007) on board the Venus Express spacecraft observed the planet Earth several times in the course of the mission. In particular, a subset of 48 observations has been taken from a distance at which our planet is imaged at sub-pixel size, as exoplanets are observed using current technologies. We studied this full subset to understand which spectral signatures, related to different surface and cloud types, can be identified from the integrated planet spectrum. As expected, we found that the cloud coverage has a key role in the identification of surface features and that vegetation is very difficult to be detected. To validate our results we built a simple tool capable to simulate observations of an Earth-like planet as seen from a VIRTIS-like spectrometer in the 0.3 - 5.0 μm range. The illumination and viewing geometries, along with the spectrometer instantaneous field of view and spectral grid and sampling, can be defined by the user. The spectral endmembers used to generate the planet have been selected from an observation of Earth registered from the instrument VIRTIS on board the ESA mission Rosetta, with similar characteristics, during the third flyby of the spacecraft around our planet, occurred in November 2009. Hence, we simulated planets made of: vegetation, desert, ocean, water ice clouds and liquid water clouds. Using different amounts for each spectral class we inferred the percentages that are required to identify each class when all the spectral information is integrated into a single pixel. The outcome of this analysis confirms that clouds are not a negligible issue in the research for spectral signatures, in particular those related to the habitability of a planet and its climate conditions, even when the cloud coverage is not so high. Acknowledgements: This study has been performed within the WOW project financed by INAF and thanks to the support from the Italian Space

  4. Detailed Abundances of Planet-hosting Wide Binaries. I. Did Planet Formation Imprint Chemical Signatures in the Atmospheres of HD 20782/81?

    NASA Astrophysics Data System (ADS)

    Mack, Claude E., III; Schuler, Simon C.; Stassun, Keivan G.; Norris, John

    2014-06-01

    Using high-resolution, high signal-to-noise echelle spectra obtained with Magellan/MIKE, we present a detailed chemical abundance analysis of both stars in the planet-hosting wide binary system HD 20782 + HD 20781. Both stars are G dwarfs, and presumably coeval, forming in the same molecular cloud. Therefore we expect that they should possess the same bulk metallicities. Furthermore, both stars also host giant planets on eccentric orbits with pericenters lsim0.2 AU. Here, we investigate if planets with such orbits could lead to the host stars ingesting material, which in turn may leave similar chemical imprints in their atmospheric abundances. We derived abundances of 15 elements spanning a range of condensation temperature, T C ≈ 40-1660 K. The two stars are found to have a mean element-to-element abundance difference of 0.04 ± 0.07 dex, which is consistent with both stars having identical bulk metallicities. In addition, for both stars, the refractory elements (T C >900 K) exhibit a positive correlation between abundance (relative to solar) and T C, with similar slopes of ≈1×10-4 dex K-1. The measured positive correlations are not perfect; both stars exhibit a scatter of ≈5×10-5 dex K-1 about the mean trend, and certain elements (Na, Al, Sc) are similarly deviant in both stars. These findings are discussed in the context of models for giant planet migration that predict the accretion of H-depleted rocky material by the host star. We show that a simple simulation of a solar-type star accreting material with Earth-like composition predicts a positive—but imperfect—correlation between refractory elemental abundances and T C. Our measured slopes are consistent with what is predicted for the ingestion of 10-20 Earths by each star in the system. In addition, the specific element-by-element scatter might be used to distinguish between planetary accretion and Galactic chemical evolution scenarios. The data presented herein were obtained at the Las Campanas

  5. Habitable moons around extrasolar giant planets

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.; Wade, R. A.

    1997-01-01

    Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere.

  6. Habitable moons around extrasolar giant planets.

    PubMed

    Williams, D M; Kasting, J F; Wade, R A

    1997-01-16

    Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere.

  7. Water loss from terrestrial planets orbiting ultracool dwarfs: Implications for the planets of TRAPPIST-1

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Selsis, Franck; Owen, James E.; Ribas, Ignasi; Raymond, Sean N.; Leconte, Jérémy; Gillon, Michael

    2016-10-01

    Ultracool dwarfs (UCDs) encompass the population of extremely low mass stars (later than M6-type) and brown dwarfs.Because UCDs cool monotonically, their habitable zone (HZ) sweeps inward in time.Assuming they possess water, planets found in the HZ of UCDs have experienced a runaway greenhouse phase too hot for liquid water prior to entering the HZ.It has been proposed that such planets are desiccated by this hot early phase and enter the HZ as dry, inhospitable worlds.Here we model the water loss during this pre-HZ hot phase taking into account recent upper limits on the XUV emission of UCDs and using 1D radiation-hydrodynamic simulations.We address the whole range of UCDs but also focus on the planets b, c and d recently found around the 0.08 M⊙ dwarf TRAPPIST-1.Despite assumptions maximizing the FUV-photolysis of water and the XUV-driven escape of hydrogen, we find that planets can retain significant amounts of water in the HZ of UCDs, with a sweet spot in the 0.04-0.06 M⊙ range.We also studied the TRAPPIST-1 system using observed constraints on the XUV-flux.We found that TRAPPIST-1b and c can lose as much as 15 Earth Ocean and planet d -- which may be inside the HZ depending on its actual period -- may have lost less than 1 Earth Ocean.Depending on its initial content, they could have enough water to remain habitable.TRAPPIST-1 planets are key targets for atmospheric characterization and could provide strong constraints on the water erosion around UCDs.

  8. Planets and Life

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III; Baross, John

    2007-09-01

    Foreword; Preface; Contributors; Prologue; Part I. History: 1. History of astrobiological ideas W. T. Sullivan and D. Carney; 2. From exobiology to astrobiology S. J. Dick; Part II. The Physical Stage: 3. Formation of Earth-like habitable planets D. E. Brownlee and M. Kress; 4. Planetary atmospheres and life D. Catling and J. F. Kasting; Part III. The Origin of Life on Earth: 5. Does 'life' have a definition? C.E. Cleland and C. F. Chyba; 6. Origin of life: crucial issues R. Shapiro; 7. Origin of proteins and nucleic acids A. Ricardo and S. A. Benner; 8. The roots of metabolism G.D. Cody and J. H. Scott; 9. Origin of cellular life D. W. Deamer; Part IV. Life on Earth: 10. Evolution: a defining feature of life J. A. Baross; 11. Evolution of metabolism and early microbial communities J. A. Leigh, D. A. Stahl and J. T. Staley; 12. The earliest records of life on Earth R. Buick; 13. The origin and diversification of eukaryotes M. L. Sogin, D. J. Patterson and A. McArthur; 14. Limits of carbon life on Earth and elsewhere J. A. Baross, J. Huber and M. Schrenk; 15. Life in ice J. W. Deming and H. Eicken; 16. The evolution and diversification of life S. Awramik and K. J. McNamara; 17. Mass extinctions P. D. Ward; Part V. Potentially Habitable Worlds: 18. Mars B. M. Jakosky, F. Westall and A. Brack; 19. Europa C. F. Chyba and C. B. Phillips; 20. Titan J. I. Lunine and B. Rizk; 21. Extrasolar planets P. Butler; Part VI. Searching for Extraterrestrial Life: 22. How to search for life on other worlds C. P. McKay; 23. Instruments and strategies for detecting extraterrestrial life P. G. Conrad; 24. Societial and ethical concerns M. S. Race; 25. Planetary protection J. D. Rummel; 26. Searching for extraterrestrial intelligence J. C. Tarter; 27. Alien biochemistries P. D. Ward and S. A. Benner; Part VII. Future of the Field: 28. Disciplinary and educational opportunities L. Wells, J. Armstrong and J. Huber; Epilogue C. F. Chyba; Appendixes: A. Units and usages; B. Planetary

  9. A detailed view of Earth across space and time: our changing planet through a 32-year global Landsat and Sentinel-2 timelapse video

    NASA Astrophysics Data System (ADS)

    Herwig, C.

    2017-12-01

    The Landsat program offers an unparalleled record of our changing planet, with satellites that have been observing the Earth since 1972 to the present day. However, clouds, seasonal variation, and technical challenges around access to large volumes of data make it difficult for researchers and the public to understand global and regional scale changes across time through the planetary dataset. Earth Timelapse is a global, zoomable video that has helped revolutionize how users - millions of which have never been capable of utilizing Landsat data before - monitor and understand a changing planet. It is made from 33 cloud-free annual mosaics, one for each year from 1984 to 2016, which are made interactively explorable by Carnegie Mellon University CREATE Lab's Time Machine library, a technology for creating and viewing zoomable and pannable timelapses over space and time. Using Earth Engine, we combined over 5 million satellite images acquired over the past three decades by 5 different satellites. The majority of the images come from Landsat, a joint USGS/NASA Earth observation program that has observed the Earth since the 1970s. For 2015 and 2016, we combined Landsat 8 imagery with imagery from Sentinel-2A, part of the European Commission and European Space Agency's Copernicus Earth observation program. Along with the interactive desktop Timelapse application, we created a 200-video YouTube playlist highlighting areas across the world exhibiting change in the dataset.Earth Timelapse is an example that illustrates the power of Google Earth Engine's cloud-computing platform, which enables users such as scientists, researchers, and journalists to detect changes, map trends, and quantify differences on the Earth's surface using Google's computational infrastructure and the multi-petabyte Earth Engine data catalog. Earth Timelapse also highlights the value of data visualization to communicate with non-scientific audiences with varied technical and internet connectivity

  10. Grain size evolution and convection regimes of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Rozel, A.; Golabek, G. J.; Boutonnet, E.

    2011-12-01

    A new model of grain size evolution has recently been proposed in Rozel et al. 2010. This new approach stipulates that the grain size dynamics is governed by two additive and simultaneous processes: grain growth and dynamic recrystallization. We use the usual normal grain growth laws for the growth part. For dynamic recrystallization, reducing the mean grain size increases the total area of grain boundaries. Grain boundaries carry some surface tension, so some energy is required to decrease the mean grain size. We consider that this energy is available during mechanical work. It is usually considered to produce some heat via viscous dissipation. A partitioning parameter f is then required to know what amount of energy is dissipated and what part is converted in surface tension. This study gives a new calibration of the partitioning parameter on major Earth materials involved in the dynamic of the terrestrial planets. Our calibration is in adequation with the published piezometric relations available in the literature (equilibrium grain size versus shear stress). We test this new model of grain size evolution in a set of numerical computations of the dynamics of the Earth using stagYY. We show that the grain size evolution has a major effect on the convection regimes of terrestrial planets.

  11. A Treasure Trove of Planets Found

    NASA Image and Video Library

    2017-02-28

    Announcement of the discovery of seven rocky planets orbiting TRAPPIST-1, a star 40 light years from Earth. Three of the planets are in the habitable zone, though all seven could have liquid water. Animation with interviews featuring Sean Carey, Manager, Spitzer Science Center, Caltech/IPAC; Nikole Lewis, James Webb Telescope Project Scientist, Space Telescope Science Institute; and MIchael Gillon, Principal Investigator, TRAPPIST, University of Liege, Belgium.

  12. Mapping the Region in the Nearest Star System to Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quarles, B.

    2015-01-01

    Circumstellar planets within the alpha Centauri AB star system have been suggested through formation models and recent observations, and ACESat (Belikov et al. AAS Meeting #225, #311.01, 2015) is a proposed space mission designed to directly image Earth-sized planets in the habitable zones of both of these stars. The alpha Centauri system is billions of years old, so planets are only expected to be found in regions where their orbits are long-lived. We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales and we map the positions in the sky plane where planets on stable orbits about either stellar component may appear. We confirm the qualitative results of Wiegert & Holman (Astron. J. 113, 1445, 1997) regarding the approximate size of the regions of stable orbits, which are larger for retrograde orbits relative to the binary than for prograde orbits. Additionally, we find that mean motion resonances with the binary orbit leave an imprint on the limits of orbital stability, and the effects of the Lidov-Kozai mechanism are also readily apparent. Overall, orbits in the habitable zones near the plane of the binary are stable, whereas high-inclination orbits are short-lived.

  13. The Water Content of Exo-earths in the Habitable Zone around Low-mass Stars

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs Dirk; Ciesla, Fred; Pascucci, Ilaria; apai, Daniel

    2015-08-01

    Terrestrial planets in the habitable zones of low-mass M dwarf stars have become the focus of many astronomical studies: they are more easily accessible to detection and characterization than their counterparts around sunlike stars. The habitability of these planets, however, faces a number of challenges, including inefficient or negligible water delivery during accretion. To understand the water content of planets in and around the habitable zone, simulations of the final stages of planet formation are necessary.We present detailed accretion simulations of wet and dry planetary embryos around a range of stellar masses. We focus on different pathways of delivering water from beyond the snow line to terrestrial planets in the habitable zone. We explore the impact of using either asteroid-like or comet-like bodies, and the effects of a dispersion in snow line locations. We derive the probability distribution of water abundances for terrestrial sized planets in the habitable zone.While these models predict that the bulk of terrestrial planets in the habitable zones of M stars will be dry, a small fraction receives earth-like amounts of water. Given their larger numbers and higher planet occurrence rates, this population of water-enriched worlds in the habitable zone of M stars may equal that around sun-like stars in numbers.References:Ciesla, Mulders et al. 2015Mulders et al. ApJ subm.

  14. The International Year of Planet Earth: Lessons learned.

    NASA Astrophysics Data System (ADS)

    de Mulder, E. F.; Janoschek, W. R.

    2007-12-01

    In 2001, the International Union of Geological Sciences (IUGS) developed an initiative to launch an International Year of Planet Earth (IYPE). This was followed up directly by UNESCO's Earth Science Division. As politicians, decision makers, the media and the public at large were chosen as the main targets, obtaining a proclamation by the General Assembly of the United Nations was crucial. Not only did the beauty and usefulness of Geosciences have to be demonstrated, but also the potential of the timely use of Geoscientific knowledge to minimise loss of life and property, e.g. during the Tsunami and Katrina disasters, had to be made crystal clear. Some of the lessons learned during the preparation for the IYPE (2007-2009) may be summarized as follows. - Support from scientific organisations: from the onset very positive, many joining as Founding or Associate Partners. - Individual geoscientists: some were sceptical, many (very) positive. - UN diplomats: the major natural disasters in 2004-2005 helped trigger their support throughout the UN proclamation process; so-called small countries proved to be more open-minded in lodging this initiative in the UN Agenda. - Politicians: Support for UN proclamations must be decided at the Ministerial level. This procedure may consume considerable time and cannot be influenced from outside. - National Committees: UN proclamation strongly stimulated the creation of National Committees for the IYPE; on August 31st they number 48 with a potential to reach 60 or more. Most of the actions planned at national level comprise outreach activities. - Fundraising: Significant funds have already been raised by National IYPE Committees. Fundraising for international events and to bolster the infrastructure of the International Year have proved to be more difficult. - Patrons, Goodwill Ambassadors, and Senior Advisors have proved to be essential in promoting the ambitions of the IYPE and in the vital process of fundraising. - Good examples

  15. HUBBLE OBSERVES THE PLANET URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole. Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible. Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope. Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on. Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes. One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should be unusual given

  16. Hubble Observes the Planet Uranus

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole.

    Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible.

    Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope.

    Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on.

    Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes.

    One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should

  17. VizieR Online Data Catalog: Final Kepler transiting planet search (DR25) (Twicken+, 2016)

    NASA Astrophysics Data System (ADS)

    Twicken, J. D.; Jenkins, J. M.; Seader, S. E.; Tenenbaum, P.; Smith, J. C.; Brownston, L. S.; Burke, C. J.; Catanzarite, J. H.; Clarke, B. D.; Cote, M. T.; Girouard, F. R.; Klaus, T. C.; Li, J.; McCauliff, S. D.; Morris, R. L.; Wohler, B.; Campbell, J. R.; Uddin, A. K.; Zamudio, K. A.; Sabale, A.; Bryson, S. T.; Caldwell, D. A.; Christiansen, J. L.; Coughlin, J. L.; Haas, M. R.; Henze, C. E.; Sanderfer, D. T.; Thompson, S. E.

    2017-01-01

    The Kepler spacecraft is in an Earth-trailing heliocentric orbit and maintained a boresight pointing centered on α=19h22m40s, δ=+44.5° during the primary mission. The Kepler photometer acquired data on a 115-square-degree region of the sky. The data were acquired on 29.4-minute intervals, colloquially known as "long cadences". Long-cadence pixel values were obtained by accumulating 270 consecutive 6.02s exposures. Science acquisition of Q1 data began at 2009-05-13 00:01:07Z, and acquisition of Q17 data concluded at 2013-05-11 12:16:22Z. This time period contains 71427 long-cadence intervals. A total of 198709 targets observed by Kepler were searched for evidence of transiting planets in the final Q1-Q17 pipeline run (see Table1). The results of past Kepler Mission transiting planet searches have been presented in Tenenbaum et al. 2012 (Cat. J/ApJS/199/24) for Quarter 1 through Quarter 3 (i.e., Q1-Q3), Tenenbaum et al. 2013ApJS..206....5T for Q1-Q12, Tenenbaum et al. 2014ApJS..211....6T for Q1-Q16, and Seader et al. 2015 (Cat. J/ApJS/217/18) for Q1-Q17. We now present results of the final Kepler transiting planet search encompassing the complete 17-quarter primary mission. The data release for the final Q1-Q17 pipeline processing is referred to as Data Release 25 (DR25). (3 data files).

  18. In search of future earths: assessing the possibility of finding Earth analogues in the later stages of their habitable lifetimes.

    PubMed

    O'Malley-James, Jack T; Greaves, Jane S; Raven, John A; Cockell, Charles S

    2015-05-01

    Earth will become uninhabitable within 2-3 Gyr as a result of the increasing luminosity of the Sun changing the boundaries of the habitable zone (HZ). Predictions about the future of habitable conditions on Earth include declining species diversity and habitat extent, ocean loss, and changes to geochemical cycles. Testing these predictions is difficult, but the discovery of a planet that is an analogue to future Earth could provide the means to test them. This planet would need to have an Earth-like biosphere history and to be approaching the inner edge of the HZ at present. Here, we assess the possibility of finding such a planet and discuss the benefits of analyzing older Earths. Finding an old-Earth analogue in nearby star systems would be ideal, because this would allow for atmospheric characterization. Hence, as an illustrative example, G stars within 10 pc of the Sun are assessed as potential old-Earth-analog hosts. Six of these represent good potential hosts. For each system, a hypothetical Earth analogue is placed at locations within the continuously habitable zone (CHZ) that would allow enough time for Earth-like biosphere development. Surface temperature evolution over the host star's main sequence lifetime (assessed by using a simple climate model) is used to determine whether the planet would be in the right stage of its late-habitable lifetime to exhibit detectable biosignatures. The best candidate, in terms of the chances of planet formation in the CHZ and of biosignature detection, is 61 Virginis. However, planet formation studies suggest that only a small fraction (0.36%) of G stars in the solar neighborhood could host an old-Earth analogue. If the development of Earth-like biospheres is rare, requiring a sequence of low-probability events to occur, biosphere evolution models suggest they are rarer still, with only thousands being present in the Galaxy as a whole.

  19. Direct IR Interferometric Detection of Extra Solar Planets

    NASA Technical Reports Server (NTRS)

    Shao, Michael

    1989-01-01

    This paper describes a concept for the direct detection of extra solar planets. The concept is based on a decade old idea from Bracewell but expanded. A long baseline interferometer is examined with two three meter telescopes, cooled to 70K and a baseline of 30-50 meters. In space, this instrument would be able to detect an Earth sized planet around a solar like star at 10 parsec in approximately 1 hour of integration (5 sigma). The total number of candidate stars with detectable "Earths" number in the thousands.

  20. Light from Red-Hot Planet

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This figure charts 30 hours of observations taken by NASA's Spitzer Space Telescope of a strongly irradiated exoplanet (an planet orbiting a star beyond our own). Spitzer measured changes in the planet's heat, or infrared light.

    The lower graph shows precise measurements of infrared light with a wavelength of 8 microns coming from the HD 80606 stellar system. The system consists of a sun-like star and a planetary companion on an extremely eccentric, comet-like orbit. The geometry of the planet-star encounter is shown in the upper part of the figure.

    As the planet swung through its closest approach to the star, the Spitzer observations indicated that it experienced very rapid heating (as shown by the red curve). Just before close approach, the planet was eclipsed by the star as seen from Earth, allowing astronomers to determine the amount of energy coming from the planet in comparison to the amount coming from the star.

    The observations were made in Nov. of 2007, using Spitzer's infrared array camera. They represent a significant first for astronomers, opening the door to studying changes in atmospheric conditions of planets far beyond our own solar system.

  1. Digital Earth reloaded - Beyond the next generation

    NASA Astrophysics Data System (ADS)

    Ehlers, M.; Woodgate, P.; Annoni, A.; Schade, S.

    2014-02-01

    Digital replicas (or 'mirror worlds') of complex entities and systems are now routine in many fields such as aerospace engineering; archaeology; medicine; or even fashion design. The Digital Earth (DE) concept as a digital replica of the entire planet occurs in Al Gore's 1992 book Earth in the Balance and was popularized in his speech at the California Science Center in January 1998. It played a pivotal role in stimulating the development of a first generation of virtual globes, typified by Google Earth that achieved many elements of this vision. Almost 15 years after Al Gore's speech, the concept of DE needs to be re-evaluated in the light of the many scientific and technical developments in the fields of information technology, data infrastructures, citizen?s participation, and earth observation that have taken place since. This paper intends to look beyond the next generation predominantly based on the developments of fields outside the spatial sciences, where concepts, software, and hardware with strong relationships to DE are being developed without referring to this term. It also presents a number of guiding criteria for future DE developments.

  2. The Terrestrial Planet Finder coronagraph dynamics error budget

    NASA Technical Reports Server (NTRS)

    Shaklan, Stuart B.; Marchen, Luis; Green, Joseph J.; Lay, Oliver P.

    2005-01-01

    The Terrestrial Planet Finder Coronagraph (TPF-C) demands extreme wave front control and stability to achieve its goal of detecting earth-like planets around nearby stars. We describe the performance models and error budget used to evaluate image plane contrast and derive engineering requirements for this challenging optical system.

  3. Space Science in the Twenty-First Century: Imperatives for the Decades 1995 to 2015. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A unified program is outlined for studying the Earth, from its deep interior to its fluid envelopes. A system is proposed for measuring devices involving both space-based and in-situ observations that can accommodate simultaneously a large range of scientific needs. The scientific objectices served by this integrated infrastructure are cased into a framework of four grand themes. In summary these are: to determine the composition, structure, dynamics, and evolution of the Earth's crust and deeper interior; to establish and understand the structure, dynamics, and chemistry of the oceans, atmosphere, and cryosphere, and their interaction with the solid Earth; to characterize the history and dynamics of living organisms and their interaction with the environment; and to monitor and understand the interaction of human activities with the natural environment. A focus on these grand themes will help to understand the origin and fate of the planet, and to place it in the context of the solar system.

  4. Migration of accreting giant planets

    NASA Astrophysics Data System (ADS)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  5. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1.

    PubMed

    Gillon, Michaël; Triaud, Amaury H M J; Demory, Brice-Olivier; Jehin, Emmanuël; Agol, Eric; Deck, Katherine M; Lederer, Susan M; de Wit, Julien; Burdanov, Artem; Ingalls, James G; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean N; Selsis, Franck; Turbet, Martin; Barkaoui, Khalid; Burgasser, Adam; Burleigh, Matthew R; Carey, Sean J; Chaushev, Aleksander; Copperwheat, Chris M; Delrez, Laetitia; Fernandes, Catarina S; Holdsworth, Daniel L; Kotze, Enrico J; Van Grootel, Valérie; Almleaky, Yaseen; Benkhaldoun, Zouhair; Magain, Pierre; Queloz, Didier

    2017-02-22

    One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star-named TRAPPIST-1-makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces.

  6. Giant planets: Clues on current and past organic chemistry in the outer solar system

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Atreya, Sushil K.

    1992-01-01

    The giant planets of the outer solar system - Jupiter, Saturn, Uranus, and Neptune - were formed in the same flattened disk of gas and dust, the solar nebula, as the terrestrial planets were. Yet, the giant planets differ in some very fundamental ways from the terrestrial planets. Despite enormous differences, the giant planets are relevant to exobiology in general and the origin of life on the Earth in particular. The giant planets are described as they are today. Their basic properties and the chemistry occurring in their atmospheres is discussed. Theories of their origin are explored and aspects of these theories that may have relevance to exobiology and the origin of life on Earth are stressed.

  7. Using a generalized version of the Titius-Bode relation to extrapolate the patterns seen in Kepler multi-exoplanet systems, and estimate the average number of planets in circumstellar habitable zones

    NASA Astrophysics Data System (ADS)

    Lineweaver, Charles H.

    2015-08-01

    The Titius-Bode (TB) relation’s successful prediction of the period of Uranus was the main motivation that led to the search for another planet between Mars and Jupiter. This search led to the discovery of the asteroid Ceres and the rest of the asteroid belt. The TB relation can also provide useful hints about the periods of as-yet-undetected planets around other stars. In Bovaird & Lineweaver (2013) [1], we used a generalized TB relation to analyze 68 multi-planet systems with four or more detected exoplanets. We found that the majority of exoplanet systems in our sample adhered to the TB relation to a greater extent than the Solar System does. Thus, the TB relation can make useful predictions about the existence of as-yet-undetected planets in Kepler multi-planet systems. These predictions are one way to correct for the main obstacle preventing us from estimating the number of Earth-like planets in the universe. That obstacle is the incomplete sampling of planets of Earth-mass and smaller [2-5]. In [6], we use a generalized Titius-Bode relation to predict the periods of 228 additional planets in 151 of these Kepler multiples. These Titius-Bode-based predictions suggest that there are, on average, 2±1 planets in the habitable zone of each star. We also estimate the inclination of the invariable plane for each system and prioritize our planet predictions by their geometric probability to transit. We highlight a short list of 77 predicted planets in 40 systems with a high geometric probability to transit, resulting in an expected detection rate of ~15 per cent, ~3 times higher than the detection rate of our previous Titius-Bode-based predictions.References: [1] Bovaird, T. & Lineweaver, C.H (2013) MNRAS, 435, 1126-1138. [2] Dong S. & Zhu Z. (2013) ApJ, 778, 53 [3] Fressin F. et al. (2013) ApJ, 766, 81 [4] Petigura E. A. et al. (2013) PNAS, 110, 19273 [5] Silburt A. et al. (2014), ApJ (arXiv:1406.6048v2) [6] Bovaird, T., Lineweaver, C.H. & Jacobsen, S.K. (2015, in

  8. Constraining the Properties of Small Stars and Small Planets Observed by K2

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Newton, Elisabeth R.; Charbonneau, David; Schlieder, Josh; Hawaii/California/Arizona/Indiana K2 Follow-up Consortium, HARPS-N Consortium

    2016-01-01

    We are using the results of the NASA K2 mission (the second career of the Kepler spacecraft) to study how the frequency and architectures of planetary systems orbiting M dwarfs throughout the ecliptic plane compare to those of the early M dwarf planetary systems observed by Kepler. In a previous analysis of the Kepler data set, we found that planets orbiting early M dwarfs are common: we measured a cumulative planet occurrence rate of 2.45 +/- 0.22 planets per M dwarf with periods of 0.5-200 days and planet radii of 1-4 Earth radii. Within a conservative habitable zone based on the moist greenhouse inner limit and maximum greenhouse outer limit, we estimated an occurrence rate of 0.15 (+0.18/-0.06) Earth-size planets and 0.09 (+0.10/-0.04) super-Earths per M dwarf HZ. Applying these occurrence rates to the population of nearby stars and assuming that mid- and late-M dwarfs host planets at the same rate as early M dwarfs, we predicted that the nearest potentially habitable Earth-size planet likely orbits an M dwarf a mere 2.6 ± 0.4 pc away. We are now testing the assumption of equal planet occurrence rates for M dwarfs of all types by inspecting the population of planets detected by K2 and conducting follow-up observations of planet candidate host stars to identify false positives and better constrain system parameters. I will present the results of recent observing runs with SpeX on the IRTF to obtain near-infrared spectra of low-mass stars targeted by K2 and determine the radii, temperatures, and metallicities of our target stars using empirical relations. We gratefully acknowledge funding from the NASA XRP Program, the John Templeton Foundation, and the NASA Sagan Fellowship Program.

  9. Atmospheric Escape from the Closest Super-Earth

    NASA Astrophysics Data System (ADS)

    Ehrenreich, David

    2015-10-01

    In July 2015, we announced the discovery of the super-Earth HD 219134b, orbiting a V = 5.57 star 6.5-pc away from us (Motalebi et al. 2015). This is the brightest and closest transiting system known so far. With Spitzer and HARPS-N, we measured the density of HD 219134b, which is compatible with a rocky planet, possibly containing a large amount of volatile species. The planet receives high stellar irradiation, which could significantly erode its atmosphere. Preliminary estimates indicate that this 4.5 Earth-mass object should nonetheless retain a substantial atmosphere. HD 219134b lies sufficiently far from its star to allow the formation of a hydrogen cloud with a detectable coma. HST is the only telescope able to detect, for the first time, atmospheric escape from a super-Earth, by observing a Lyman-alpha transit. The detection of escaping hydrogen will represent a smoking gun for the presence of water vapor in the lower atmosphere. Constraining the mass-loss rate will allow us to probe the evolution of super-Earths and assess whether hotter super-Earths can be evaporation remnants. Resolving the Lyman-alpha absorption signal will also bring new insights on the dynamics in the exospheric clouds, revealing interaction between the host star and its super-Earth through radiation pressure and stellar wind. A non-detection could hint at a CO/CO2-rich 'super-Venus' and will prepare for adapted follow-up observations. Both outcomes will thus motivate new proposals in Cycle 24.

  10. About the Influence of the initial Atmosphere on the Earth's Temperature Distribution during it's Accumulation

    NASA Astrophysics Data System (ADS)

    Khachay, Y.; Anfilogov, V.; Antipin, A.

    2012-04-01

    We suggested a new model for accumulation of planets of the Earth's group [1], which is based on the contemporary results of geochemical analyses, which allow to obtain the concentrations of short living radioactive isotopes of 26Al in the matter of the pre planet cloud [2]. With use of that data new estimations of temperature distribution into the growing planetary pre planetary bodies into the Earth's nebular zone had been obtained. For the further Earth's temperature evolution, as it had been showed by the results of numerical modeling, the main role belongs to the temperature distribution in the forming Earth's core and the existence of a dense and transparent atmosphere. The shadow influence of the initial atmosphere had been researched in the paper [3]. We shall give the main consideration to these problems in that paper. It had been shown in [1], that on the earliest accumulation stage the heat release by the decay of 26Al it is sufficient for forming a central melted area and solid relatively thin mainly silicate upper envelope in the pre planetary body, with dimensions, larger than (50-100) km. The impact velocities on that stage are yet not large, therefore by the bodies impact with these or near dimensions liquid and mainly iron their parts merge, but the masses of the pre planetary bodies are not sufficient to gravitational keeping of silicate parts of the cold solid envelope. On that stage they remain into the nebular zone of the proto planet and the mechanism of matter differentiation for the future core and mantle reservoirs realizes. The process takes place yet in small bodies and is in time to finish during less than 10 million years. The next forming of the core and mantle structure continues according to all known estimations about 100 million years. Because of the merging of inner liquid parts of impacting bodies occur due to inelastic impact, the main part of potential energy transforms into heat. That continues up to that time when the iron

  11. Dynamics of a Probable Earth-mass Planet in the GJ 832 System

    NASA Astrophysics Data System (ADS)

    Satyal, S.; Griffith, J.; Musielak, Z. E.

    2017-08-01

    The stability of planetary orbits around the GJ 832 star system, which contains inner (GJ 832c) and outer (GJ 832b) planets, is investigated numerically and a detailed phase-space analysis is performed. Special attention is given to the existence of stable orbits for a planet less than 15 M ⊕ that is injected between the inner and outer planets. Thus, numerical simulations are performed for three and four bodies in elliptical orbits (or circular for special cases) by using a large number of initial conditions that cover the selected phase-spaces of the planet’s orbital parameters. The results presented in the phase-space maps for GJ 832c indicate the least deviation of eccentricity from its nominal value, which is then used to determine its inclination regime relative to the star-outer planet plane. Also, the injected planet is found to display stable orbital configurations for at least one billion years. Then, the radial velocity curves based on the signature from the Keplerian motion are generated for the injected planets with masses 1 M ⊕ to 15 M ⊕ in order to estimate their semimajor axes and mass limits. The synthetic RV signal suggests that an additional planet of mass ≤15 M ⊕ with a dynamically stable configuration may be residing between 0.25 and 2.0 au from the star. We have provided an estimated number of RV observations for the additional planet that is required for further observational verification.

  12. Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers using ESO's world-leading HARPS instrument have discovered a planetary system containing at least five planets, orbiting the Sun-like star HD 10180. The researchers also have tantalising evidence that two other planets may be present, one of which would have the lowest mass ever found. This would make the system similar to our Solar System in terms of the number of planets (seven as compared to the Solar System's eight planets). Furthermore, the team also found evidence that the distances of the planets from their star follow a regular pattern, as also seen in our Solar System. "We have found what is most likely the system with the most planets yet discovered," says Christophe Lovis, lead author of the paper reporting the result. "This remarkable discovery also highlights the fact that we are now entering a new era in exoplanet research: the study of complex planetary systems and not just of individual planets. Studies of planetary motions in the new system reveal complex gravitational interactions between the planets and give us insights into the long-term evolution of the system." The team of astronomers used the HARPS spectrograph, attached to ESO's 3.6-metre telescope at La Silla, Chile, for a six-year-long study of the Sun-like star HD 10180, located 127 light-years away in the southern constellation of Hydrus (the Male Water Snake). HARPS is an instrument with unrivalled measurement stability and great precision and is the world's most successful exoplanet hunter. Thanks to the 190 individual HARPS measurements, the astronomers detected the tiny back and forth motions of the star caused by the complex gravitational attractions from five or more planets. The five strongest signals correspond to planets with Neptune-like masses - between 13 and 25 Earth masses [1] - which orbit the star with periods ranging from about 6 to 600 days. These planets are located between 0.06 and 1.4 times the Earth-Sun distance from their central star. "We also have

  13. Super-Earths: Atmospheric Accretion, Thermal Evolution and Envelope Loss

    NASA Astrophysics Data System (ADS)

    Ginzburg, Sivan; Inamdar, Niraj K.; Schlichting, Hilke E.

    Combined mass and radius observations have recently revealed many short-period planets a few times the size of Earth but with significantly lower densities. A natural explanation for the low density of these super Earths super-Earth is a voluminous gas atmosphere that engulfs more compact rocky cores. Planets with such substantial gas atmospheres may be a missing link between smaller planets, that did not manage to obtain or keep an atmosphere, and larger planets, that accreted gas too quickly and became gas giants gas- . In this chapter we review recent advancements in the understanding of low-density low- super-Earth formation and evolution. Specifically, we present a consistent picture of the various stages in the lives of these planets: gas accretion from the protoplanetary disk, possible atmosphere heating and evaporation mechanisms, collisions between planets, and finally, evolution up to the age at which the planets are observed.

  14. Terrestrial Planet Finder Coronagraph overview of technology development & system design

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjuthapatham; Ford, Virginia; Mouroulis, Pantazis; Hoppe, Daniel; Shaklan, Stuart

    2004-01-01

    Astronomers have discovered over 150 planets orbiting other stars. NASA mission; Find and characterize terrestrial (or rocky) exo-planets that might harbor life (like Earth)liquid water on the planet (habitable zone). An atmosphere that indicates the presence of life water, oxygen, ozone, carbon dioxide, chlorophyll, and methane. Two missions under development: A coronagraph and an interferometer.

  15. Habitability of planets around red dwarf stars.

    PubMed

    Heath, M J; Doyle, L R; Joshi, M M; Haberle, R M

    1999-08-01

    Recent models indicate that relatively moderate climates could exist on Earth-sized planets in synchronous rotation around red dwarf stars. Investigation of the global water cycle, availability of photosynthetically active radiation in red dwarf sunlight, and the biological implications of stellar flares, which can be frequent for red dwarfs, suggests that higher plant habitability of red dwarf planets may be possible.

  16. Hypothetical Rejuvenated Planets Artist Concept

    NASA Image and Video Library

    2015-06-25

    This artist's concept shows a hypothetical "rejuvenated" planet -- a gas giant that has reclaimed its youthful infrared glow. NASA's Spitzer Space Telescope found tentative evidence for one such planet around a dead star, or white dwarf, called PG 0010+280 (depicted as white dot in illustration). When planets are young, they are warm and toasty due to internal heat left over from their formation. Planets cool over time -- until they are possibly rejuvenated. The theory goes that this Jupiter-like planet, which orbits far from its star, would accumulate some of the material sloughed off by its star as the star was dying. The material would cause the planet to swell in mass. As the material fell onto the planet, it would heat up due to friction and glow with infrared light. The final result would be an old planet, billions of years in age, radiating infrared light as it did in its youth. Spitzer detected an excess infrared light around the white dwarf PG 0010+280. Astronomers aren't sure where the light is coming from, but one possibility is a rejuvenated planet. Future observations may help solve the mystery. A Jupiter-like planet is about ten times the size of a white dwarf. White dwarfs are about the size of Earth, so one white dwarf would easily fit into the Great Red Spot on Jupiter! http://photojournal.jpl.nasa.gov/catalog/PIA19346

  17. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists pose for a group photo at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  18. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  19. Can Increased CO2 Levels Trigger a Runaway Greenhouse on the Earth?

    NASA Astrophysics Data System (ADS)

    Ramirez, R.

    2014-04-01

    Recent one-dimensional (globally averaged) climate model calculations suggest that increased atmospheric CO2 could conceivably trigger a runaway greenhouse if CO2 concentrations were approximately 100 times higher than today. The new prediction runs contrary to previous calculations, which indicated that CO2 increases could not trigger a runaway, even at Venus-like CO2 concentrations. Goldblatt et al. argue that this different behavior is a consequence of updated absorption coefficients for H2O that make a runaway more likely. Here, we use a 1-D cloud-free climate model with similar, up-to-date absorption coefficients, but with a self-consistent methodology, to demonstrate that CO2 increases cannot induce a runaway greenhouse on the modern Earth. However, these initial calculations do not include cloud feedback, which may be positive at higher temperatures, destabilizing Earth's climate. We then show new calculations demonstrating that cirrus clouds cannot trigger a runaway, even in the complete absence of low clouds. Thus, the habitability of an Earth-like planet at Earth's distance appears to be ensured, irrespective of the sign of cloud feedback. Our results are of importance to Earth-like planets that receive similar insolation levels as does the Earth and to the ongoing question about cloud response at higher temperatures.

  20. Primary school children and teachers discover the nature and science of planet Earth and Mars

    NASA Astrophysics Data System (ADS)

    Kleinhans, Maarten; Verkade, Alex; Bastings, Mirjam; Reichwein, Maarten

    2016-04-01

    For various reasons primary schools emphasise language and calculus rather than natural sciences. When science is taught at all, examination systems often favour technological tricks and knowledge of the 'right' answer over the process of investigation and logical reasoning towards that answer. Over the long term, this is not conducive to curiosity and scientific attitude in large parts of the population. Since the problem is more serious in primary than in secondary education, and as children start their school career with a natural curiosity and great energy to explore their world, we focus our efforts on primary school teachers in close collaboration with teachers and researchers. Our objective was to spark children's curiosity and their motivation to learn and discover, as well as to help teachers develop self-afficacy in science education. To this end we developed a three-step program with a classroom game and sand-box experiments related to planet Earth and Mars. The classroom game Expedition Mundus simulates science in its focus on asking questions, reasoning towards answers on the basis of multiple sources and collaboration as well as growth of knowledge. Planet Mundus is entirely fictitional to avoid differences in foreknowledge between pupils. The game was tested in hundreds of classes in primary schools and the first years of secondary education and was printed (in Dutch) and distributed over thousands of schools as part of teacher education through university science hubs. Expedition Mundus was developed by the Young Academy of the Royal Netherlands Academy of Arts and Sciences and De Praktijk. The tested translations in English and German are available on http://www.expeditionmundus.org. Following the classroom game, we conducted simple landscape experiments in sand boxes supported by google earth imagery of real rivers, fans and deltas on Earth and Mars. This was loosely based on our fluvial morphodynamics research. This, in the presence of a

  1. Constraining Initiation and Onset Time of Plate Tectonics on Earth

    NASA Astrophysics Data System (ADS)

    Roller, G.

    2014-12-01

    The onset time for modern-style plate tectonics is still heavily debated among geoscientists. Proposed timings range from the Phanerozoic to the Hadean. Here I present a new theoretical approach to tackle this question. I combine ideas of nuclear astrophysics and geochronology and apply the concept of sudden nucleosynthesis to calculate so-called nucleogeochronometric Rhenium-Osmium model ages. Sudden nucleosynthesis has been suggested by nuclear theory [1-2] as a possible mechanism for the creation of the heavy isotopes. Hence, this concept may generally be used to identify rapid (r-) neutron-capture process events. For Earth, nucleogeochronometric model age calculations based upon published pyroxenite and komatiite data [3-5] point to an r-process event around 3 Ga. Since the r-process requires high neutron densities and temperatures within seconds, a gravitational core collapse forming at least a part of the inner core is discussed as a possible cause, thus initiating modern-style plate tectonics at that time. This age is in line with an earlier proposed value of 2.7 Ga for an inner core forming event [6], pronounced changes in the magnitude of the geomagnetic field and geological evidence like the onset of extensive plutonism and crust formation starting around the Archean-Proterozoic transition. Besides, results from nucleogeochronometric age calculations for published peridotitic pentlandites [7] lead to corrections as to their previously inconsistent model ages: These are now in good agreement with their Proterozoic 1.43 Ga isochronous regression line, supporting the model. [1] Burbidge et al. (1957) Revs. Mod. Phys. 29, 547 - 650. [2] Hoyle et al. (1960) ApJ 132, 565 - 590. [3] Reisberg et al. (1991) Earth Planet. Sci. Lett. 105, 196 - 213. [4] Roy-Barman et al. (1996) Chem. Geol. 130, 55 - 64. [5] Luck et al. (1984) Earth Planet Sci. Lett. 68, 205 - 208. [6] Hale (1987) Nature 329, 233 -237. [7] Smit et al. (2010) Geochim. Cosmochim. Acta 74, 3292 - 3306.

  2. Volatiles Inventory to the Inner Planets Due to Small Bodies Migration

    NASA Technical Reports Server (NTRS)

    Marov, M. Y.; Ipatov, S. I.

    2003-01-01

    The concurrent processes of endogeneous and exogeneous origin are assumed to be responsible for the volatile reserves in the terrestrial planets. Volatiles inventory through collisions is rooted in orbital dynamics of small bodies including near-Earth objects (NEOs), short and long-period comets, and trans-Neptunian objects (TNOs), the latter probably supplying a large amount of Jupiter crossing objects (JCOs). Our model testifies that even a relatively small portion (approx. 0.001) of JCOs which transit to orbits with aphelia inside Jupiter's orbit (Q<4.7 AU) and reside such orbits during more than 1 Myr may contribute significantly in collisions with the terrestrial planets. The total mass of volatiles delivered to the Earth from the feeding zone of the giant planets could be greater than the mass of the Earth's oceans.

  3. On the existence of another source of heat production for the earth and planets, and its connection with gravitomagnetism.

    PubMed

    Elbeze, Alexandre Chaloum

    2013-01-01

    Recent revised estimates of the Earth's surface heat flux are in the order of 47 TW. Given that its internal radiogenic (mantle and crust) heat production is estimated to be around 20 TW, the Earth has a thermal deficit of around 27 TW. This article will try to show that the action of the gravitational field of the Sun on the rotating masses of the Earth is probably the source of another heat production in order of 54TW, which would satisfy the thermal balance of our celestial body and probably explain the reduced heat flow Qo. We reach this conclusion within the framework of gravitation implied by Einstein's special and general relativity theory (SR, GR). Our results show that it might possible, in principle, to calculate the heat generated by the action of the gravitational field of celestial bodies on the Earth and planets of the Solar System (a phenomenon that is different to that of the gravitational tidal effect from the Sun and the Moon). This result should help physicists to improve and develop new models of the Earth's heat balance, and suggests that contrary to cooling, the Earth is in a phase of thermal balance, or even reheating.

  4. ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wordsworth, Robin; Pierrehumbert, Raymond

    2014-04-20

    Detection of life on other planets requires identification of biosignatures, i.e., observable planetary properties that robustly indicate the presence of a biosphere. One of the most widely accepted biosignatures for an Earth-like planet is an atmosphere where oxygen is a major constituent. Here we show that lifeless habitable zone terrestrial planets around any star type may develop oxygen-dominated atmospheres as a result of water photolysis, because the cold trap mechanism that protects H{sub 2}O on Earth is ineffective when the atmospheric inventory of non-condensing gases (e.g., N{sub 2}, Ar) is low. Hence the spectral features of O{sub 2} and O{submore » 3} alone cannot be regarded as robust signs of extraterrestrial life.« less

  5. Swapping Rocks: Ejection and Exchange of Surface Material Among the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.; Tonks, W. B.

    1993-07-01

    The discovery of meteorites originating from both the Moon and Mars has led to the realization that major impacts can eject material from planetary-sized objects. Although there is not yet any direct proof, there appears to be no reason why such impacts cannot eject material from the surfaces of Earth and Venus as well. Because of this possibility, and in view of the implications of such exchange for biological evolution, we examined the orbital evolution and ultimate fate of ejecta from each of the terrestrial planets. This work employed an Opik-type orbital evolution model in which both planets and ejected particles follow elliptical orbits about the Sun, with uniformly precessing arguments of perihelion and ascending nodes. An encounter takes place when the particle passes within the sphere of influence of the planet. When this occurs, the encounter is treated as a two-body scattering event, with a randomly chosen impact parameter within the sphere of influence. If the impact parameter is less than the planet's radius, an impact is scored. Otherwise, the scattered particle either takes up a new Keplerian orbit or is ejected from the solar system. We incorporated several different space erosion models and examined the full matrix of possible outcomes of ejection from each planet in random directions with velocities at great distance from the planet of 0.5, 2.5, and 5.0 km/s. Each run analyzed the evolution of 5000 particles to achieve sufficient statistical resolution. Both the ultimate fate and median transit times of particles was recorded. The results show very little dependence on velocity of ejection. Mercury ejecta is nearly all reaccreted by Mercury or eroded in space--very little ever evolves to cross the orbits of the other planets (a few percent impact Venus). The median time between ejection and reimpact is about 30 m.y. for all erosion models. Venus ejecta is mostly reaccreted by Venus, but a significant fraction (about 30%) falls on the Earth with a

  6. Status of the Terrestrial Planet Finder Interferometer (TPF-I)

    NASA Technical Reports Server (NTRS)

    Beichman, Charles; Lawson, Peter; Lay, Oliver; Ahmed, Asif; Unwin, Steve; Johnston, K.

    2006-01-01

    The interferometric version of the Terrestrial Planet Finder (TPF-I) has the potential to find and characterize earth-sized planets in the habitable zones of over 250 nearby stars and to search for life using biomarkers in the atmospheres of any planets found. The scientific case for such a mission continues to be strengthened by on-going progress in the detection of planets via indirect means. This paper summarizes the status of TPF-I, illustrative scientific requirements for the mission, and its enabling technologies.

  7. TRAPPIST-1 Planet Lineup - Updated Feb. 2018

    NASA Image and Video Library

    2018-02-05

    This chart shows, on the top row, artist concepts of the seven planets of TRAPPIST-1 with their orbital periods, distances from their star, radii, masses, densities and surface gravity as compared to those of Earth. These numbers are current as of February 2018. On the bottom row, the same numbers are displayed for the bodies of our inner solar system: Mercury, Venus, Earth and Mars. The TRAPPIST-1 planets orbit their star extremely closely, with periods ranging from 1.5 to only about 20 days. This is much shorter than the period of Mercury, which orbits our sun in about 88 days. The masses and densities of the TRAPPIST-1 planets were determined by careful measurements of slight variations in the timings of their orbits using extensive observations made by NASA's Spitzer and Kepler space telescopes, in combination with data from Hubble and a number of ground-based telescopes. These measurements are the most precise to date for any system of exoplanets. In this illustration, the relative sizes of the planets are all shown to scale. https://photojournal.jpl.nasa.gov/catalog/PIA22094

  8. Tidally-induced thermal runaway on extrasolar Earth: Impact on habitability

    NASA Astrophysics Data System (ADS)

    Behounkova, M.; Tobie, G.; Choblet, G.; Cadek, O.

    2010-12-01

    Low mass extrasolar bodies start to be discovered owing to the increased precision of detection surveys. As the detection probability decreases with the star-body distance, these planets (and the numerous candidates already announced for the coming years) are likely to orbit their parent stars in a close distance. These short-period planets undergo a strong tidal forcing and their orbits are tidally locked. The associated heat production may influence the internal thermal evolution of these bodies: it has even been suggested that the habitable zone could be influenced by tidal heating (Barnes et al. 2008; Henning et al. 2009). In this study, we further investigate the effect of tidal heating on thermal evolution of tidally locked Earth-like planets. Owing to the strong temperature dependence of the mechanical properties of both the long-term evolution and the tidal deformations, the two processes are coupled. Nevertheless, the tidal deformation has no direct effect on the convective flow and only the dissipative part is included as a heat source for mantle dynamics since the time scales of the two processes strongly differs. For significant tidal dissipation rates, the strong positive feedback leads, in some cases, to thermal runaways. We focus here on the susceptibility of Earth-like planets to tidal dissipation for fixed orbital parameters (eccentricity, orbital period and the spin-orbit resonance type) and on the associated timescales for runaway (if any). In order to describe this behavior and the three dimensional nature of both the tidal forcing and the temperature anomalies, a fully three-dimensional approach solving the two processes simultaneously is employed (Běhounková et al., JGR, in press). We consider an extrasolar planet having the internal properties similar to the Earth. Two modes for heat transfer are modeled through the choice of convective parameters (Rayleigh number and temperature dependence of viscosity, amount of radiogenic heating): a

  9. Tectonic evolution of the terrestrial planets.

    PubMed

    Head, J W; Solomon, S C

    1981-07-03

    The style and evolution of tectonics on the terrestrial planets differ substantially. The style is related to the thickness of the lithosphere and to whether the lithosphere is divided into distinct, mobile plates that can be recycled into the mantle, as on Earth, or is a single spherical shell, as on the moon, Mars, and Mercury. The evolution of a planetary lithosphere and the development of plate tectonics appear to be influenced by several factors, including planetary size, chemistry, and external and internal heat sources. Vertical tectonic movement due to lithospheric loading or uplift is similar on all of the terrestrial planets and is controlled by the local thickness and rheology of the lithosphere. The surface of Venus, although known only at low resolution, displays features both similar to those on Earth (mountain belts, high plateaus) and similar to those on the smaller planets (possible impact basins). Improved understanding of the tectonic evolution of Venus will permit an evaluation of the relative roles of planetary size and chemistry in determining evolutionary style.

  10. The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 Planets

    NASA Astrophysics Data System (ADS)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer; Alvarado-Gómez, Julian D.; Moschou, Sofia P.

    2017-07-01

    Recently, four additional Earth-mass planets were discovered orbiting the nearby ultracool M8 dwarf, TRAPPIST-1, making a remarkable total of seven planets with equilibrium temperatures compatible with the presence of liquid water on their surface. Temperate terrestrial planets around an M-dwarf orbit close to their parent star, rendering their atmospheres vulnerable to erosion by the stellar wind and energetic electromagnetic and particle radiation. Here, we use state-of-the-art 3D magnetohydrodynamic models to simulate the wind around TRAPPIST-1 and study the conditions at each planetary orbit. All planets experience a stellar wind pressure between 103 and 105 times the solar wind pressure on Earth. All orbits pass through wind pressure changes of an order of magnitude and most planets spend a large fraction of their orbital period in the sub-Alfvénic regime. For plausible planetary magnetic field strengths, all magnetospheres are greatly compressed and undergo much more dynamic change than that of the Earth. The planetary magnetic fields connect with the stellar radial field over much of the planetary surface, allowing the direct flow of stellar wind particles onto the planetary atmosphere. These conditions could result in strong atmospheric stripping and evaporation and should be taken into account for any realistic assessment of the evolution and habitability of the TRAPPIST-1 planets.

  11. The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    2017-07-10

    Recently, four additional Earth-mass planets were discovered orbiting the nearby ultracool M8 dwarf, TRAPPIST-1, making a remarkable total of seven planets with equilibrium temperatures compatible with the presence of liquid water on their surface. Temperate terrestrial planets around an M-dwarf orbit close to their parent star, rendering their atmospheres vulnerable to erosion by the stellar wind and energetic electromagnetic and particle radiation. Here, we use state-of-the-art 3D magnetohydrodynamic models to simulate the wind around TRAPPIST-1 and study the conditions at each planetary orbit. All planets experience a stellar wind pressure between 10{sup 3} and 10{sup 5} times the solar windmore » pressure on Earth. All orbits pass through wind pressure changes of an order of magnitude and most planets spend a large fraction of their orbital period in the sub-Alfvénic regime. For plausible planetary magnetic field strengths, all magnetospheres are greatly compressed and undergo much more dynamic change than that of the Earth. The planetary magnetic fields connect with the stellar radial field over much of the planetary surface, allowing the direct flow of stellar wind particles onto the planetary atmosphere. These conditions could result in strong atmospheric stripping and evaporation and should be taken into account for any realistic assessment of the evolution and habitability of the TRAPPIST-1 planets.« less

  12. Kuiper Prize: Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.

    2007-10-01

    The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.

  13. Delivery of Volatiles to Habitable Planets in Extrasolar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Chambers, John E.; Kress, Monika E.; Bell, K. Robbins; Cash, Michele; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The Earth can support life because: (1) its orbit lies in the Sun's habitable zone', and (2) it contains enough volatile material (e.g. water and organics) for life to flourish. However, it seems likely that the Earth was drier when it formed because it accreted in a part of the Sun's protoplanetary nebula that was too hot for volatiles to condense. If this is correct, water and organics must have been delivered to the habitable zone, after dissipation of the solar nebula, from a 'wet zone' in the asteroid belt or the outer solar system, where the nebula was cool enough for volatiles to condense. Material from the wet zone would have been delivered to the Earth by Jupiter and Saturn. Gravitational perturbations from these giant planets made much of the wet zone unstable, scattering volatile-rich planetesimals and protoplanets across the Solar System. Some of these objects ultimately collided with the inner Planets which themselves lie in a stable part of the Solar System. Giant planets are now being discovered orbiting other sunlike stars. To date, these planets have orbits and masses very different from Jupiter and Saturn, such that few if any of these systems is likely to have terrestrial planets in the star's habitable zone. However, new discoveries are anticipated due to improved detector sensitivity and the increase in the timespan of observations. Here we present numerical experiments examining the range of giant-planet characteristics that: (1) allow stable terrestrial Planets to exist in a star's habitable zone, and (2) make a large part of the star's wet zone weakly unstable, thus delivering volatiles to the terrestrial planets over an extended period of time after the dissipation of the solar nebula.

  14. Detection of the Magnetospheric Emissions from Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lazio, J.

    2014-12-01

    Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The

  15. Understanding our Changing Planet: NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  16. Giant Planets: Good Neighbors for Habitable Worlds?

    NASA Astrophysics Data System (ADS)

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  17. Under an Orange Sky: The Many Implications of Organic Haze for Earthlike Planets

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric; Schwieterman, Edward W.; Charnay, Benjamin; Claire, Mark; Hebrard, Eric

    2015-11-01

    Geochemical evidence suggests Archean Earth was intermittently enshrouded in an organic haze resulting from methane photolysis. Hazy exoplanets may be common, and hazes can significantly impact the environment of habitable planets. Earth is frequently studied as an analog for habitable exoplanets, and Archean Earth is the most alien planet we have geochemical data for. We have used 1D photochemical-climate and radiative transfer simulations to examine the climate, surface radiation environment, and spectra of Archean Earth with fractal hydrocarbon haze. We find that haze would have strongly impacted Earth’s climate, lowering the planetary surface temperature by 20-30 K. However, this cooling can be countered by concentrations of greenhouses gases consistent with geochemical constraints. For example, an atmosphere with 2% CO2, 0.37% CH4 and a self-consistent hydrocarbon haze has a globally averaged surface temperature of 274 K, which GCM models have shown is consistent with a large open ocean fraction (Charnay et al 2013). The cooling from haze means that there exists a “hazy habitable zone” closer to the star than the traditional habitable zone boundaries. Our results suggest that the hazy habitable zone can extend to the distance of Venus. An organic haze produces strong, remotely detectable spectral features, especially at wavelengths < 0.5 μm, reddening the planet’s color. The strong absorption of UV radiation by this haze means it could have provided a UV shield for the Archean Earth prior to the rise of oxygen when there was no ozone layer: we show that an organic haze can block 97% of the surface-incident UVC (λ < 0.28 μm) radiation compared to a haze-free planet. UVC radiation directly dissociates DNA, and it is blocked by ozone in the modern atmosphere. Organic hazes may therefore benefit surface biospheres on Earth and similar exoplanets. Finally, assuming geochemical constraints on the Archean atmospheric composition, we show that abiotic

  18. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  19. Observations at the planet Mercury by the plasma electron experiment, Mariner 10

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Scudder, J. D.; Vasyliunas, V. M.; Hartle, R. E.; Siscoe, G. L.

    1976-01-01

    Plasma electron observations made onboard Mariner 10 are reported. Three encounters with the planet Mercury show that the planet interacts with the solar wind to form a bow shock and a permanent magnetosphere. The observations provide a determination of the dimensions and properties of the magnetosphere, independently of and in general agreement with magnetometer observations. The magnetosphere of Mercury appears to be similar in shape to that of the Earth but much smaller in relation to the size of the planet. Electron populations similar to those found in the Earth's magnetotail, within the plasma sheet and adjacent regions, were observed at Mercury; both their spatial location and the electron energy spectra within them bear qualitative and quantitative resemblance to corresponding observations at the Earth. The magnetosphere of Mercury resembles to a marked degree a reduced version of that of the Earth, with no significant differences of structure.

  20. Building a Dashboard of the Planet with Google Earth and Earth Engine

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hancher, M.

    2016-12-01

    In 2005 Google Earth, a popular 3-D virtual globe, was first released. Scientists immediately recognized how it could be used to tell stories about the Earth. From 2006 to 2009, the "Virtual Globes" sessions of AGU included innovative examples of scientists and educators using Google Earth, and since that time it has become a commonplace tool for communicating scientific results. In 2009 Google Earth Engine, a cloud-based platform for planetary-scale geospatial analysis, was first announced. Earth Engine was initially used to extract information about the world's forests from raw Landsat data. Since then, the platform has proven highly effective for general analysis of georeferenced data, and users have expanded the list of use cases to include high-impact societal issues such as conservation, drought, disease, food security, water management, climate change and environmental monitoring. To support these use cases, the platform has continuously evolved with new datasets, analysis functions, and user interface tools. This talk will give an overview of the latest Google Earth and Earth Engine functionality that allow partners to understand, monitor and tell stories about of our living, breathing Earth. https://earth.google.com https://earthengine.google.com

  1. Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet

    NASA Astrophysics Data System (ADS)

    Freilich, Michael

    2017-04-01

    Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.

  2. Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet

    NASA Astrophysics Data System (ADS)

    Freilich, Michael

    2016-04-01

    Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.

  3. Hole-y Debris Disks, Batman! Where are the planets?

    NASA Astrophysics Data System (ADS)

    Bailey, V.; Meshkat, T.; Hinz, P.; Kenworthy, M.; Su, K. Y. L.

    2014-03-01

    Giant planets at wide separations are rare and direct imaging surveys are resource-intensive, so a cheaper marker for the presence of giant planets is desirable. One intriguing possibility is to use the effect of planets on their host stars' debris disks. Theoretical studies indicate giant planets can gravitationally carve sharp boundaries and gaps in their disks; this has been seen for HR 8799, β Pic, and tentatively for HD 95086 (Su et al. 2009, Lagrange et al. 2010, Moor et al. 2013). If more broadly demonstrated, this link could help guide target selection for next generation direct imaging surveys. Using Spitzer MIPS/IRS spectral energy distributions (SEDs), we identify several dozen systems with two-component and/or large inner cavity disks (aka Hole-y Debris Disks). With LBT/LBTI, VLT/NaCo, GeminiS/NICI, MMT/Clio and Magellan/Clio, we survey a subset these SEDselected targets (~20). In contrast to previous disk-selected planet surveys (e.g.: Janson et al. 2013, Wahhaj et al. 2013) we image primarily in the thermal IR (L'-band), where planet-to-star contrast is more favorable and background contaminants less numerous. Thus far, two of our survey targets host planet-mass companions, both of which were discovered in L'-band after they were unrecognized or undetectable in H-band. For each system in our sample set, we will investigate whether the known companions and/or companions below our detection threshold could be responsible for the disk architecture. Ultimately, we will increase our effective sample size by incorporating detection limits from surveys that have independently targeted some of our systems of interest. In this way we will refine the conditions under which disk SED-based target selection is likely to be useful and valid.

  4. Modeling Hf-W Evolution for Earth, Moon and Mars in Grand Tack Accretion Simulations: The Isotopic Consequences of Rapid Accretion

    NASA Astrophysics Data System (ADS)

    Zube, N.; Nimmo, F.; Jacobson, S. A.; Fischer, R. A.

    2017-12-01

    Short-lived isotopes, such as the decay of lithophile 182Hf into siderophile 182W with a half-life of 9 My, can provide constraints on the timescales of planetary core formation and accretion. Classical accretion scenarios have produced Hf-W isotopic outcomes like those measured presently on the Earth [2,3]. We examine Grand Tack accretion simulations [4,5] and determine the mantle equilibration conditions necessary to produce the observed tungsten isotopic anomaly. Additionally, we follow Hf-W evolution for pairs of bodies that experience a last giant impact fitting the conditions of Earth's Moon-forming collision. In this way, we determine the likelihood of producing the observed almost indistinguishable W isotope anomalies of the Earth and Moon mantles [6]. We model Hf-W evolution for growing planets in 141 N-body simulations during late accretion in the Grand Tack scenario. For each case, we vary the equilibration factor during collisions—the fraction of impactor core that experiences re-equilibration with the entire target mantle—in steps ranging from none (cores merging) to complete equilibration. For Earth-like and Mars-like surviving planets, we find that cases with a high equilibration factor (k > 0.8) and an intermediate (2:1 - 4:1) ratio of initial embryo mass to planetesimal mass were most frequently able to approximate the observed W measurements for Earth and Mars. The equilibration factor required is more restrictive than the one found for classical accretion scenarios [2,3] and may not be consistent with fluid-dynamical predictions [7]. Moons made of impactor material from Earth's last giant impact are only able to result in an Earth-Moon pair having sufficiently similar W anomalies with a likelihood of 8% or less across all simulations. This indicates that a scenario where the Moon isotopically equilibrated with the Earth's mantle after the impact [8] may be required to explain the measured values. [1] Kleine et al. 2009 [2] Nimmo et al. 2010

  5. Predictions of Planet Detections with Near-infrared Radial Velocities in the Upcoming SPIRou Legacy Survey-planet Search

    NASA Astrophysics Data System (ADS)

    Cloutier, Ryan; Artigau, Étienne; Delfosse, Xavier; Malo, Lison; Moutou, Claire; Doyon, René; Donati, Jean-Francois; Cumming, Andrew; Dumusque, Xavier; Hébrard, Élodie; Menou, Kristen

    2018-02-01

    The SPIRou near-infrared spectropolarimeter is destined to begin science operations at the Canada–France–Hawaii Telescope in mid-2018. One of the instrument’s primary science goals is to discover the closest exoplanets to the solar system by conducting a three- to five-year long radial velocity survey of nearby M dwarfs at an expected precision of ∼1 m s‑1, the SPIRou Legacy Survey-Planet Search (SLS-PS). In this study, we conduct a detailed Monte Carlo simulation of the SLS-PS using our current understanding of the occurrence rate of M dwarf planetary systems and physical models of stellar activity. From simultaneous modeling of planetary signals and activity, we predict the population of planets to be detected in the SLS-PS. With our fiducial survey strategy and expected instrument performance over a nominal survey length of ∼3 years, we expect SPIRou to detect {85.3}-12.4+29.3 planets including {20.0}-7.2+16.8 habitable-zone planets and {8.1}-3.2+7.6 Earth-like planets from a sample of 100 M1–M8.5 dwarfs out to 11 pc. By studying mid-to-late M dwarfs previously inaccessible to existing optical velocimeters, SPIRou will put meaningful constraints on the occurrence rate of planets around those stars including the value of {η }\\oplus at an expected level of precision of ≲ 45 % . We also predict that a subset of {46.7}-6.0+16.0 planets may be accessible with dedicated high-contrast imagers on the next generation of extremely large telescopes including {4.9}-2.0+4.7 potentially imagable Earth-like planets. Lastly, we compare the results of our fiducial survey strategy to other foreseeable survey versions to quantify which strategy is optimized to reach the SLS-PS science goals. The results of our simulations are made available to the community on GitHub (https://github.com/r-cloutier/SLSPS_Simulations).

  6. Characterizing K2 Planet Discoveries

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew; Montet, Benjamin; Johnson, John; Buchhave, Lars A.; Zeng, Li; Bieryla, Allyson; Latham, David W.; Charbonneau, David; Harps-N Collaboration, The Robo-Ao Team

    2015-01-01

    We present an effort to confirm the first planet discovered by the two-wheeled Kepler mission. We analyzed K2 photometry, correcting for nonuniform detector response as a function of the spacecraft's pointing, and detected a transiting planet candidate. We describe our multi-telescope followup observing campaign, consisting of photometric, spectroscopic, and high resolution imaging observations, including over 40 HARPS-N radial velocity measurements. The new planet is a super-Earth orbiting a bright star amenable to followup observations. HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh.

  7. Planet Traps and Planetary Cores: Origins of the Planet-Metallicity Correlation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro; Pudritz, Ralph E.

    2014-10-01

    Massive exoplanets are observed preferentially around high metallicity ([Fe/H]) stars while low-mass exoplanets do not show such an effect. This so-called planet-metallicity correlation generally favors the idea that most observed gas giants at r < 10 AU are formed via a core accretion process. We investigate the origin of this phenomenon using a semi-analytical model, wherein the standard core accretion takes place at planet traps in protostellar disks where rapid type I migrators are halted. We focus on the three major exoplanetary populations—hot Jupiters, exo-Jupiters located at r ~= 1 AU, and the low-mass planets. We show using a statistical approach that the planet-metallicity correlations are well reproduced in these models. We find that there are specific transition metallicities with values [Fe/H] = -0.2 to -0.4, below which the low-mass population dominates, and above which the Jovian populations take over. The exo-Jupiters significantly exceed the hot Jupiter population at all observed metallicities. The low-mass planets formed via the core accretion are insensitive to metallicity, which may account for a large fraction of the observed super-Earths and hot-Neptunes. Finally, a controlling factor in building massive planets is the critical mass of planetary cores (M c, crit) that regulates the onset of rapid gas accretion. Assuming the current data is roughly complete at [Fe/H] > -0.6, our models predict that the most likely value of the "mean" critical core mass of Jovian planets is langM c, critrang ~= 5 M ⊕ rather than 10 M ⊕. This implies that grain opacities in accreting envelopes should be reduced in order to lower M c, crit.

  8. The "Week Of Planet Earth" Italy Discovering Geosciences: a More Informed Society is a More Engaged Society.

    NASA Astrophysics Data System (ADS)

    Seno, S.; Coccioni, R.

    2016-12-01

    The "Week of Planet Earth" (www.settimanaterra.org) is a science festival that involves the whole of the Italian Regions: founded in 2012, it has become the largest event of Italian Geosciences and one of the biggest European science festivals. During a week in October several locations distributed throughout the Country are animated by events, called "Geoeventi", to disseminate geosciences to the masses and deliver science education by means of a wide range of activities: hiking, walking in city and town centers, open-door at museums and research centers, guided tours, exhibitions, educational and experimental workshops for children and young people, music and art performances, food and wine events, lectures, conferences, round tables. Universities and colleges, research centers, local Authorities, cultural and scientific associations, parks and museums, professionals organize the Geoeventi. The festival aims at bringing adults and young people to Geosciences, conveying enthusiasm for scientific research and discoveries, promoting sustainable cultural tourism, aware of environmental values and distributed all over Italy. The Geoeventi shed light both on the most spectacular and on the less known geological sites, which are often a stone's throw from home. The Week of Planet Earth is growing year after year: the 2016 edition proposes 310 Geoeventi, 70 more than in 2015. The number of places involved in the project also increased and rose from 180 in 2015 to 230 in 2016. This initiative, that is also becoming a significant economic driver for many small companies active in the field of science divulgation, is analyzed, evaluated and put in a transnational network perspective.

  9. MARSIS data and simulation exploited using array databases: PlanetServer/EarthServer for sounding radars

    NASA Astrophysics Data System (ADS)

    Cantini, Federico; Pio Rossi, Angelo; Orosei, Roberto; Baumann, Peter; Misev, Dimitar; Oosthoek, Jelmer; Beccati, Alan; Campalani, Piero; Unnithan, Vikram

    2014-05-01

    MARSIS is an orbital synthetic aperture radar for both ionosphere and subsurface sounding on board ESA's Mars Express (Picardi et al. 2005). It transmits electromagnetic pulses centered at 1.8, 3, 4 or 5 MHz that penetrate below the surface and are reflected by compositional and/or structural discontinuities in the subsurface of Mars. MARSIS data are available as a collection of single orbit data files. The availability of tools for a more effective access to such data would greatly ease data analysis and exploitation by the community of users. For this purpose, we are developing a database built on the raster database management system RasDaMan (e.g. Baumann et al., 1994), to be populated with MARSIS data and integrated in the PlanetServer/EarthServer (e.g. Oosthoek et al., 2013; Rossi et al., this meeting) project. The data (and related metadata) are stored in the db for each frequency used by MARSIS radar. The capability of retrieving data belonging to a certain orbit or to multiple orbit on the base of latitute/longitude boundaries is a key requirement of the db design, allowing, besides the "classical" radargram representation of the data, and in area with sufficiently hight orbit density, a 3D data extraction, subset and analysis of subsurface structures. Moreover the use of the OGC WCPS (Web Coverage Processing Service) standard can allow calculations on database query results for multiple echoes and/or subsets of a certain data product. Because of the low directivity of its dipole antenna, MARSIS receives echoes from portions of the surface of Mars that are distant from nadir and can be mistakenly interpreted as subsurface echoes. For this reason, methods have been developed to simulate surface echoes (e.g. Nouvel et al., 2004), to reveal the true origin of an echo through comparison with instrument data. These simulations are usually time-consuming, and so far have been performed either on a case-by-case basis or in some simplified form. A code for

  10. The Search for Planet Nine

    NASA Astrophysics Data System (ADS)

    Brown, Michael E.; Batygin, Konstantin

    2016-10-01

    We use an extensive suite of numerical simulations to constrain the mass and orbit of Planet Nine, and we use these constraints to begin the search for this newly proposed planet in new and in archival data. Here, we compare our simulations to the observed population of aligned eccentric high semimajor axis Kuiper belt objects and determine which simulation parameters are statistically compatible with the observations. We find that only a narrow range of orbital elements can reproduce the observations. In particular, the combination of semimajor axis, eccentricity, and mass of Planet Nine strongly dictates the semimajor axis range of the orbital confinement of the distant eccentric Kuiper belt objects. Allowed orbits, which confine Kuiper belt objects with semimajor axis beyond 380 AU, have perihelia roughly between 150 and 350 AU, semimajor axes between 380 and 980 AU, and masses between 5 and 20 Earth masses. Orbitally confined objects also generally have orbital planes similar to that of the planet, suggesting that the planet is inclined approximately 30 degrees to the ecliptic. We compare the allowed orbital positions and estimated brightness of Planet Nine to previous and ongoing surveys which would be sensitive to the planet's detection and use these surveys to rule out approximately two-thirds of the planet's orbit. Planet Nine is likely near aphelion with an approximate brightness of 22planet.

  11. Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307

    NASA Astrophysics Data System (ADS)

    Tuomi, M.; Anglada-Escudé, G.; Gerlach, E.; Jones, H. R. A.; Reiners, A.; Rivera, E. J.; Vogt, S. S.; Butler, R. P.

    2013-01-01

    Context. The K2.5 dwarf HD 40307 has been reported to host three super-Earths. The system lacks massive planets and is therefore a potential candidate for having additional low-mass planetary companions. Aims: We re-derive Doppler measurements from public HARPS spectra of HD 40307 to confirm the significance of the reported signals using independent data analysis methods. We also investigate these measurements for additional low-amplitude signals. Methods: We used Bayesian analysis of our radial velocities to estimate the probability densities of different model parameters. We also estimated the relative probabilities of models with differing numbers of Keplerian signals and verified their significance using periodogram analyses. We investigated the relation of the detected signals with the chromospheric emission of the star. As previously reported for other objects, we found that radial velocity signals correlated with the S-index are strongly wavelength dependent. Results: We identify two additional clear signals with periods of 34 and 51 days, both corresponding to planet candidates with minimum masses a few times that of the Earth. An additional sixth candidate is initially found at a period of 320 days. However, this signal correlates strongly with the chromospheric emission from the star and is also strongly wavelength dependent. When analysing the red half of the spectra only, the five putative planetary signals are recovered together with a very significant periodicity at about 200 days. This signal has a similar amplitude as the other new signals reported in the current work and corresponds to a planet candidate with Msini ~ 7 M⊕ (HD 40307 g). Conclusions: We show that Doppler measurements can be filtered for activity-induced signals if enough photons and a sufficient wavelength interval are available. If the signal corresponding to HD 40307 g is a genuine Doppler signal of planetary origin, this candidate planet might be capable of supporting liquid

  12. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    NASA Astrophysics Data System (ADS)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  13. M2K Planet Search: Spectroscopic Screening and Transit Photometry

    NASA Astrophysics Data System (ADS)

    Mann, Andrew; Gaidos, E.; Fischer, D.; Lepine, S.

    2010-10-01

    The M2K project is a search for planets orbiting nearby early M and late K dwarf drawn from the SUPERBLINK catalog. M and K dwarfs are highly attractive targets for finding low-mass and habitable planets because (1) close-in planets are more likely to orbit within their habitable zone, (2) planets orbiting them induce a larger Doppler signal and have deeper transits than similar planets around F, G, and early K type stars, (3) planet formation models predict they hold an abundance of super-Earth sized planets, and (4) they represent the vast majority of the stars close enough for direct imaging techniques. In spite of this, only 10% of late K and early M dwarfs are being monitored by current Doppler surveys. As part of the M2K project we have obtained low-resolution spectra for more than 2000 of our sample of 10,000 M and K dwarfs. We vet our sample by screening these stars for high metallicity and low chromospheric activity. We search for transits on targets showing high RMS Doppler signal and photometry candidates provided by SuperWASP project. By using "snapshot” photometry have been able to achieve sub-millimag photometry on numerous transit targets in the same night. With further follow-up observations we will be able to detect planets smaller than 10 Earth masses.

  14. Views from EPOXI: Colors in Our Solar System as an Analog for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Meadows, V. S.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Lisse, C. M.; Wellnitz, Dennis

    2011-01-01

    The first visible-light studies of Earth-sized extrasolar planets will employ photometry or low-resolution spectroscopy. This work uses EPOCh medium-hand filter photometry between 150 and 950 nm obtained with the Deep Impact (DI) High Resolution Instrument (HRI) of Earth, the Moon, and Mars in addition to previous full-disk observations of the other six solar system planets and Titan to analyze the limitations of using photometric colors to characterize extrasolar planets. We determined that the HRI 350, 550, and 850 nm filters are optimal for distinguishing Earth from the other planets and separating planets to first order based on their atmospheric and surface properties. Detailed conclusions that can be drawn about exoplanet atmospheres simply from a color-color plot are limited due to potentially competing physical processes in the atmosphere. The presence of a Rayleigh scattering atmosphere can be detected by an increase in the 350-550 nm brightness ratio, but the absence of Rayleigh scattering cannot be confirmed due to the existence of atmospheric and surface absorbing species in the UV. Methane and ammonia are the only species responsible for strong absorption in the 850 nm filter in our solar system. The combination of physical processes present on extrasolar planets may differ from those we see locally. Nevertheless, a generation of telescopes capable of collecting such photometric observations can serve a critical role in first-order characterization and constraining the population of Earth-like extrasolar planets.

  15. Stellar variability and its implications for photometric planet detection with Kepler

    NASA Astrophysics Data System (ADS)

    Batalha, N. M.; Jenkins, J.; Basri, G. S.; Borucki, W. J.; Koch, D. G.

    2002-01-01

    Kepler is one of three candidates for the next NASA Discovery Mission and will survey the extended solar neighborhood to detect and characterize hundreds of terrestrial (and larger) planets in or near the habitable zone. Its strength lies in its ability to detect large numbers of Earth-sized planets - planets which produced a 10-4 change in relative stellar brightness during a transit across the disk of a sun-like parent star. Such a detection requires high instrumental relative precision and is facilitated by observing stars which are photometrically quiet on hourly timescales. Probing stellar variability across the HR diagram, one finds that many of the photometrically quietest stars are the F and G dwarfs. The Hipparcos photometric database shows the lowest photometric variances among stars of this spectral class. Our own Sun is a prime example with RMS variations over a few rotational cycles of typically (3 - 4)×10-4 (computed from VIRGO/DIARAD data taken Jan-Mar 2001). And variability on the hourly time scales crucial for planet detection is significantly smaller: just (2 - 5)×10-5. This bodes well for planet detection programs such as Kepler and Eddington. With significant numbers of photometrically quiet solar-type stars, Earth-sized planets should be readily identified provided they are abundant in the solar neighborhood. In support of the Kepler science objectives, we have initiated a study of stellar variability and its implications for planet detection. Herein, we summarize existing observational and theoretrical work with the objective of determining the percentage of stars in the Kepler field of view expected to be photometrically stable at a level which allows for Earth-sized planet detection.

  16. A SEARCH FOR MULTI-PLANET SYSTEMS USING THE HOBBY-EBERLY TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittenmyer, Robert A.; Endl, Michael; Cochran, William D.

    Extrasolar multiple-planet systems provide valuable opportunities for testing theories of planet formation and evolution. The architectures of the known multiple-planet systems demonstrate a fascinating level of diversity, which motivates the search for additional examples of such systems in order to better constrain their formation and dynamical histories. Here we describe a comprehensive investigation of 22 planetary systems in an effort to answer three questions: (1) are there additional planets? (2) where could additional planets reside in stable orbits? and (3) what limits can these observations place on such objects? We find no evidence for additional bodies in any of thesemore » systems; indeed, these new data do not support three previously announced planets (HD 20367 b: Udry et al.; HD 74156 d: Bean et al.; and 47 UMa c: Fischer et al.). The dynamical simulations show that nearly all of the 22 systems have large regions in which additional planets could exist in stable orbits. The detection-limit computations indicate that this study is sensitive to close-in Neptune-mass planets for most of the systems targeted. We conclude with a discussion on the implications of these nondetections.« less

  17. The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Amit; Meadows, Victoria; Crisp, Dave, E-mail: amit0@astro.washington.edu

    2014-09-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each givenmore » planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.« less

  18. Atmospheric circulations of terrestrial planets orbiting low-mass stars

    NASA Astrophysics Data System (ADS)

    Edson, Adam; Lee, Sukyoung; Bannon, Peter; Kasting, James F.; Pollard, David

    2011-03-01

    Circulations and habitable zones of planets orbiting low-mass stars are investigated. Many of these planets are expected to rotate synchronously relative to their parent stars, thereby raising questions about their surface temperature distributions and habitability. We use a global circulation model to study idealized, synchronously rotating (tidally locked) planets of various rotation periods, with surfaces of all land or all water, but with an Earth-like atmosphere and solar insolation. The dry planets exhibit wide variations in surface temperature: >80 °C on the dayside to <-110 °C on the nightside for the 240-h rotator, for example. The water-covered aquaplanets are warmer and exhibit narrower ranges of surface temperatures, e.g., ∼40 °C to >-60 °C for the 240-h orbiter. They also have a larger habitable area, defined here as the region where average surface temperatures are between 0 °C and 50 °C. This concept has little relevance for either dry or aquaplanets, but might become relevant on a planet with both land area and oceans. The circulations on these tidally locked planets exhibit systematic changes as the rotation period is varied. However, they also reveal abrupt transitions between two different circulation regimes and multiple equilibria. For the dry planet, the transition occurs between a 4-day and a 5-day period, while for the aquaplanet, it occurs between a 3-day and a 4-day period. For both dry and aqua planets, this transition occurs when the Rossby deformation radius exceeds half the planetary radius. Further investigation on the dry planet reveals that multiple equilibria exist between 100- and 221-h periods. These multiple equilibria may be relevant for real planets within the habitable zones of late K and M stars, because these planets are expected to have rotation periods between 8 and 100 Earth days.

  19. Exo-Mercury Analogues and the Roche Limit for Close-Orbiting Rocky Planets

    NASA Astrophysics Data System (ADS)

    Rogers, Leslie A.; Price, Ellen

    2015-12-01

    The origin of Mercury's enhanced iron content is a matter of ongoing debate. The characterization of rocky exoplanets promises to provide new independent insights on this topic, by constraining the occurrence rate and physical and orbital properties of iron-enhanced planets orbiting distant stars. The ultra-short-period transiting planet candidate KOI-1843.03 (0.6 Earth-radius, 4.245 hour orbital period, 0.46 Solar-mass host star) represents the first exo-Mercury planet candidate ever identified. For KOI-1843.03 to have avoided tidal disruption on such a short orbit, Rappaport et al. (2013) estimate that it must have a mean density of at least 7g/cc and be at least as iron rich as Mercury. This density lower-limit, however, relies upon interpolating the Roche limits of single-component polytrope models, which do not accurately capture the density profiles of >1000 km differentiated rocky bodies. A more exact calculation of the Roche limit for the case of rocky planets of arbitrary composition and central concentration is needed. We present 3D interior structure simulations of ultra-short-period tidally distorted rocky exoplanets, calculated using a modified version of Hachisu’s self-consistent field method and realistic equations of state for silicates and iron. We derive the Roche limits of rocky planets as a function of mass and composition, and refine the composition constraints on KOI-1843.03. We conclude by discussing the implications of our simulations for the eventual characterization of short-period transiting planets discovered by K2, TESS, CHEOPS and PLATO.

  20. Occurrence of Earth-like bodies in planetary systems.

    PubMed

    Wetherill, G W

    1991-08-02

    Present theories of terrestrial planet formation predict the rapid ;;runaway formation'' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter'' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.