Science.gov

Sample records for al earth planet

  1. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  2. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  3. Managing Planet Earth.

    ERIC Educational Resources Information Center

    Clark, William C.

    1989-01-01

    Discusses the human use of the planet earth. Describes the global patterns and the regional aspects of change. Four requirements for the cultivation of leadership and institutional competence are suggested. Lists five references for further reading. (YP)

  4. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. An overview of the MTPE, flight programs, data and information systems, interdisciplinary research efforts, and international coordination, is presented.

  5. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Koczor, Ron; Lee, Jonathan; Grady, Kevin J.; Hudson, Wayne R.; Johnston, Gordon I.; Njoku, Eni G.

    1990-01-01

    To preserve the earth, it is necessary to understand the tremendously complex interactions of the atmosphere, oceans, land, and man's activities deeply enough to construct models that can predict the consequences of our actions and help us make sound environmental, energy, agriculture, and economic decisions. Mission to Planet Earth is NASA's suggested share and the centerpiece of the U.S. contribution to understanding the environment, the Global Change Research Program. The first major element of the mission would be the Earth Observing System, which would give the simultaneous, comprehensive, long-term earth coverage lacking previously. NASA's Geosynchronous Earth Observatory with two additional similar spacecraft would be orbited by the U.S., plus one each by Japan and the European Space Agency. These would be the first geostationary satellites to span all the disciplines of the earth sciences. A number of diverse data gathering payloads are also planned to be carried aboard the Polar Orbiting Platform. Making possible the long, continuous observations planned and coping with the torrent of data acquired will require technical gains across a wide front. Finally, how all this data is consolidated and disseminated by the EOS Data and Information System is discussed.

  6. Energy for Planet Earth.

    ERIC Educational Resources Information Center

    Davis, Ged R.

    1990-01-01

    Examined is the world society's ability to meet energy needs without destroying the earth. Supply and demand issues are examined. International per capita energy use is compared. Historical trends are described. (CW)

  7. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  8. Earth-Sized Planets Around Nearby Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    Despite having lost two of its reaction wheels, the Kepler mission has proven itself still capable of making discoveries. Now in a mission extension called K2, in which radiation pressure from the Sun stabilizes the spacecraft, Kepler has continued to detect planets in distant solar systems. And one of its latest discoveries is an especially intriguing pair of Earth-sized planets transiting a small, cool star only ~200 light-years away Transiting Discoveries: Earth-sized planets that orbit close to their host stars are thought to be remarkably common. Theyre predicted to exist around more than a quarter of Sun-like stars, and to be nearly ubiquitous around the smaller, cooler M dwarfs. Unfortunately, systems with M-dwarf hosts are hard to find, since theyre often very faint; a large survey is needed to spot the few M dwarfs near enough to be easily detectable. Luckily, Kepler has risen to the occasion Calibrated photometry for the K2-21 system, with the planet transits marked by red and teal ticks. Best-fit light curves for the transits are shown in the lower panels. Click for a closer look [Petigura et al. 2015] In a recent paper, a team of scientists led by Erik Petigura (Hubble Fellow at the California Institute of Technology) reports the discovery of two new transiting, Earth-sized planets around nearby M dwarf K2-21. The team followed up with spectroscopy of the host star, which allowed them to estimate that the two planets, K2-21b and K2-21c, have radii roughly 1.6 and 1.9 times the radius of Earth. These sizes mean that they straddle the boundary between high-density, rocky planets and low-density planets with thick gaseous envelopes.Unique PlanetsOne unanswered question about close-in, small planets common around dwarfs is whether they form in situ, or form far from their host and migrate inward. K2-21b and c have orbital periods of approximately 9.3 and 15.5 days, which means they are very nearly in a 5:3 resonance. This may be evidence that they formed

  9. The Earth: A Changing Planet

    NASA Astrophysics Data System (ADS)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    text: We describe a didactic unit that rises from our own living impression about our experience on the planet. Most of us feel the Earth to be a very static place. Rocks don't easily move and most landscapes always look the same over time. Anyone would say (the same way most scientists believed until the beginning of the last century) that our planet has always remained unchanged, never transformed. But then, all of a sudden, as a misfortune for so many humans, natural hazards appear on the scene: an earthquake causing so many disasters, a tsunami carrying away everything in its path, an eruption that can destroy huge surrounding areas but also bring new geographical relief. Science cannot remain oblivious to these events, we must wonder beyond. What does an earthquake mean? Why does it happen? What about an eruption? If it comes from the inside, what can we guess from it? Researching about all of these events, scientists have been able to arrive to some important knowledge of the planet itself: It has been possible to theorize about Earth's interior. It has also been confirmed that the planet has not always been the quiet and stable place we once thought. Continents, as Wegener supposed, do move about and the Tectonic Plates Theory, thanks to the information obtained through earthquakes and eruption, can provide some interesting explanations. But how do we know about our planet's past? How can we prove that the Earth has always been moving and that its surface changes? The Earth's rocks yield the answer. Rocks have been the only witnesses throughout millions of years, since the planet first came to existence. Let's learn how to read them… Shouldn't we realize that rocks are to Geology what books are to History? This discursive process has been distributed in four learning sequences: 1. Land is not as solid nor firm as it would seem, 2. The Earth planet: a puzzle, 3. The rocks also recycle , 4. Field trip to "Sant Miquel del Fai". The subjects take about 30

  10. Kepler Discovers Earth-size Planet Candidates

    NASA Video Gallery

    NASA's Kepler mission has discovered its first Earth-size planet candidates and its first candidates in the habitable zone, a region where liquid water could exist on a planet's surface. Five of th...

  11. The searches for Earth-like planets

    NASA Astrophysics Data System (ADS)

    Alonso, R.

    2010-12-01

    Several techniques are achieving nowadays the precision levels required to detect few-Earth-mass planets, but still a fruitful path needs to be explored in order to detect a planet like the Earth orbiting inside the habitable zone of a star. We summarize the different approaches followed to reach this goal, and highlight their achievements.

  12. Super-earth Detection and "Planet Fever"

    NASA Astrophysics Data System (ADS)

    Pont, Frederic; Aigrain, S.; Zucker, S.

    2009-09-01

    Radial-velocity spectrographs and space transit searches have become sensitive enough to detect planets only a few times more massive than the Earth - the telluric planets or "super-Earths." We are getting one step nearer to knowing how common are Earth analogs. There is a catch however: many of the super-Earth detections are very close to the detection thresholds, and intrinsic stellar variations are an important source of false positive with both the radial velocity and transit technique. In preparation for the coming harvest of new detections, it seems worth attempting to develop some vaccine against the most extreme strands of "planet fever," the contagious disease of seeing extra-solar planet in any signal.

  13. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-01

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets. PMID:16960000

  14. ATLAS 1: Encountering Planet Earth

    NASA Technical Reports Server (NTRS)

    Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Tygielski, Michele; Mikatarian, Jeff; Wiginton, Margaret (Editor)

    1984-01-01

    Several NASA science programs examine the dynamic balance of sunlight, atmosphere, water, land, and life that governs Earth's environment. Among these is a series of Space Shuttle-Spacelab missions, named the Atmospheric Laboratory for Applications and Science (ATLAS). During the ATLAS missions, international teams of scientists representing many disciplines combine their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigates how Earth's middle atmosphere and upper atmospheres and climate are affected by both the Sun and by products of industrial and agricultural activities on Earth.

  15. Chemical composition of Earth-like planets

    NASA Astrophysics Data System (ADS)

    Ronco, M. P.; Thiabaud, A.; Marboeuf, U.; Alibert, Y.; de Elía, G. C.; Guilera, O. M.

    2015-08-01

    Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, differences exist that can be associated to the dynamical environment in which they were formed.

  16. Polar Views of Planet Earth.

    ERIC Educational Resources Information Center

    Brochu, Michel

    1983-01-01

    In August, 1981, National Aeronautics and Space Administration launched Dynamics Explorer 1 into polar orbit equipped with three cameras built to view the Northern Lights. The cameras can photograph aurora borealis' faint light without being blinded by the earth's bright dayside. Photographs taken by the satellite are provided. (JN)

  17. Mission to Planet Earth - The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Lee, Robert B., III

    1989-01-01

    The Earth Observing System (EOS) is a major component of NASA's Mission to Planet Earth initiative. It seeks to achieve a comprehensive understanding of the earth as a system, including its various components (solid earth, atmosphere, hydrosphere, and biosphere) and its various processes (hydrologic cycle, biogeochemical cycles, and climatic processes). This is to be achieved by space-based remote sensing, using a variety of instrumentation and observing techniques, operating simultaneously, and providing continuous and complete global coverage over a long time period. A few of the investigations to be carried out with EOS, in areas of (1) imagery of the earth from space, and (2) investigations of the earth's radiation budget are described. EOS is expected to make major contributions to the basic earth sciences (geology, meteorology, etc.), but its results also will have important immediate or near-term practical applications which will improve the quality of life on earth.

  18. Mission to Planet Earth - The Earth Observing System

    SciTech Connect

    Carruthers, G.R.; Lee, R.B. III NASA, Langley Research Center, Hampton, VA )

    1989-01-01

    The Earth Observing System (EOS) is a major component of NASA's Mission to Planet Earth initiative. It seeks to achieve a comprehensive understanding of the earth as a system, including its various components (solid earth, atmosphere, hydrosphere, and biosphere) and its various processes (hydrologic cycle, biogeochemical cycles, and climatic processes). This is to be achieved by space-based remote sensing, using a variety of instrumentation and observing techniques, operating simultaneously, and providing continuous and complete global coverage over a long time period. A few of the investigations to be carried out with EOS, in areas of (1) imagery of the earth from space, and (2) investigations of the earth's radiation budget are described. EOS is expected to make major contributions to the basic earth sciences (geology, meteorology, etc.), but its results also will have important immediate or near-term practical applications which will improve the quality of life on earth. 18 refs.

  19. Mission to Planet Earth - The ecological perspective

    NASA Technical Reports Server (NTRS)

    Wickland, Diane E.

    1991-01-01

    The components of Mission to Planet Earth, the coordinated international plan to provide satellite platforms, instruments, data and information systems, and related scientific research to the International Geosphere-Biosphere Program (IGBP) are described. Emphasis is given to those aspects of direct relevance to ecology. An attempt is made to discriminate between those applications of remote sensing that are known to be possible and those that are believed to be possible.

  20. Lunar Science from and for Planet Earth

    NASA Astrophysics Data System (ADS)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th

  1. The Earth is a Planet Too!

    NASA Technical Reports Server (NTRS)

    Cairns, Brian

    2014-01-01

    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  2. Lunar Science from and for Planet Earth

    NASA Astrophysics Data System (ADS)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th

  3. Nicolaus Copernicus - Making the Earth a Planet

    NASA Astrophysics Data System (ADS)

    Gingerich, Owen; MacLachlan, James

    2005-06-01

    Born in Poland in 1473, Nicolaus Copernicus launched a quiet revolution. No scientist so radically transformed our understanding of our place in the universe as this curious bishop's doctor and church official. In his quest to discover a beautiful and coherent system to describe the motions of the planets, Copernicus placed the sun in the center of the system and made the earth a planet traveling around the sun. Today it is hard to imagine our solar system any other way, but for his time Copernicus's idea was earthshaking. In 1616 the church banned his book Revolutions because it contradicted the accepted notion that God placed Earth in the center of the universe. Even though those who knew of his work considered his idea dangerous, Revolutions remained of interest only to other scientists for many years. It took almost two hundred years for his concept of a sun-centered system to reach the general public. None the less, what Copernicus set out in his remarkable text truly revolutionized science. For this, Copernicus, a quiet doctor who made a tremendous leap of imagination, is considered the father of the Scientific Revolution.

  4. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy; Wellnitz, Dennis D.

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  5. Technology for the Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Graham, Amy (Editor)

    1989-01-01

    Mission to Planet Earth is a concept referring to the endeavor of making long term, space based global observations for the purpose of understanding earth system processes. The Ad Hoc Review Team on Space Technology was formed to determine what technologies must be developed in the near term to support this endeavor. The review team's central finding is that the Office of Aeronautics and Space Technology has identified all the correct technologies to pursue, but that the mission and system architecture has not been developed sufficiently to permit determination of meaningful priorities. Some of the specific recommendations of the review team are as follows: (1) long term, space based investigation of global changes and the earth's systems; (2) studies should begin that include the performance of relative cost-benefit trade-off analyses and development of operations concepts; (3) funding should be increased, especially in research and development; (4) pursue new technology in information processing; (5) improve interagency integration and coordination; and (6) after architecture studies are complete, another team should meet to consider questions of technology priorities, development schedules, and funding allocation.

  6. Dynamical constraints on outer planets in super-Earth systems

    NASA Astrophysics Data System (ADS)

    Read, Matthew J.; Wyatt, Mark C.

    2016-03-01

    This paper considers secular interactions within multi-planet systems. In particular, we consider dynamical evolution of known planetary systems resulting from an additional hypothetical planet on an eccentric orbit. We start with an analytical study of a general two-planet system, showing that a planet on an elliptical orbit transfers all of its eccentricity to an initially circular planet if the two planets have comparable orbital angular momenta. Application to the single super-Earth system HD 38858 shows that an additional hypothetical planet below current radial velocity (RV) constraints with M sini = 3-10 M⊕, semi-major axis 1-10 au and eccentricity 0.2-0.8 is unlikely to be present from the eccentricity that would be excited in the known planet (albeit cyclically). However, additional planets in proximity to the known planet could stabilize the system against secular perturbations from outer planets. Moreover, these additional planets can have an M sini below RV sensitivity and still affect their neighbours. For example, application to the two super-Earth system 61 Vir shows that an additional hypothetical planet cannot excite high eccentricities in the known planets, unless its mass and orbit lie in a restricted area of parameter space. Inner planets in HD 38858 below RV sensitivity would also modify conclusions above about excluded parameter space. This suggests that it may be possible to infer the presence of additional stabilizing planets in systems with an eccentric outer planet and an inner planet on an otherwise suspiciously circular orbit. This reinforces the point that the full complement of planets in a system is needed to assess its dynamical state.

  7. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Jacobsen, Stein; Sasselov, Dimitar D.

    2015-01-01

    We propose to use evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called 'late veneer'. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. We plan to build an integrative model of Earth-like planets from the bottom up. We would like to infer their chemical compositions from their mass-radius relations and their host stars' elemental abundances, and understand the origins of volatile contents (especially water) on their surfaces, and thereby shed light on the origins of life on them.

  8. Planet Earth and the New Geoscience

    NASA Astrophysics Data System (ADS)

    Burke, Kevin

    AGU has embarked on a new kind of activity by becoming involved in an ambitious project called “Planet Earth,” the core of which consists of a series of television programs to be seen in the United States on PBS, starting in January of this year (see box). I here review a course text designed to be used in combination with these television specials.Although there is an element of self-interest in reviewing in Eos a book that forms part of a project to which AGU is heavily committed. I have been able to quiet my conscience by convincing myself that there are special reasons for such a review: the concerted text and television approach is novel in our field, the subject matter is of general interest to members of the Union, and (most important) I was not myself involved. The more than 75 people cited in the credits include the current AGU president and several of his distinguished predecessors, as well as numerous geophysicists, with a sprinkling of science journalists, educators, administrators, and television experts.

  9. The study Earth-like planets using spacecraft

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Morozhenko, O. V.

    2014-10-01

    The Solar system consists of the Sun, large (classical), dwarf, small planets and their satellites, comets, meteoroids, small meteoritic particles and dust grains. The eight classical planets are divided into terrestrial planets (Mercury, Venus, Earth, Mars) and giant planets (Jupiter, Saturn, Uranus, Neptune). The main components of the Earth-like planets atmospheres are nitrogen and carbon dioxide. The formation of the terrestrial planets' traced in some detail, calculated the distance between the planets, their mass, orbital period around the Sun, the inclination of the axis satisfactorily agree with observational data. Terrestrial planets have much in common: small size and weight, the average density is several times greater than the density of water, slow rotation around its axis, few satellites or lack thereof, hard surface and so on. There are volcanoes on Venus, Earth and Mars, and in the surface layers of all four planets more or less traces of tectonic activity (mountain building processes) and intense meteorite bombardment as one of the main factors of the Mars and Mercury surface formation. On Earth meteor crater almost completely obliterated by tectonic and erosional processes while they survived much better on Venus.

  10. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Jacobsen, S. B.; Sasselov, D. D.

    2015-12-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called "late veneer". The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars' elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  11. Astronomy: Earth-like planet around Sun's neighbour

    NASA Astrophysics Data System (ADS)

    Hatzes, Artie P.

    2016-08-01

    An Earth-mass planet has been discovered in orbit around Proxima Centauri, the closest star to our Sun. The planet orbits at a distance from the star such that liquid water and potentially life could exist on its surface. See Letter p.437

  12. Earth-type planets (Mercury, Venus, and Mars)

    NASA Technical Reports Server (NTRS)

    Marov, M. Y.; Davydov, V. D.

    1975-01-01

    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  13. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2003-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  14. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2002-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  15. The search for life on Earth and other planets.

    PubMed

    Gross, Michael

    2012-04-10

    As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored. PMID:22611562

  16. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Sasselov, Dimitar; Jacobsen, Stein

    2015-08-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet’s rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called “late veneer”. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet’s surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars’ elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  17. Climate stability of habitable Earth-like planets

    NASA Astrophysics Data System (ADS)

    Menou, Kristen

    2015-11-01

    The carbon-silicate cycle regulates the atmospheric CO2 content of terrestrial planets on geological timescales through a balance between the rates of CO2 volcanic outgassing and planetary intake from rock weathering. It is thought to act as an efficient climatic thermostat on Earth and, by extension, on other habitable planets. If, however, the weathering rate increases with the atmospheric CO2 content, as expected on planets lacking land vascular plants, the carbon-silicate cycle feedback can become severely limited. Here we show that Earth-like planets receiving less sunlight than current Earth may no longer possess a stable warm climate but instead repeatedly cycle between unstable glaciated and deglaciated climatic states. This has implications for the search for life on exoplanets in the habitable zone of nearby stars.

  18. Tectonic asymmetry of the earth and other planets

    NASA Technical Reports Server (NTRS)

    Pushcharovskiy, Y. M.; Kozlov, V. V.; Sulidi-Kondratyev, Y. D.

    1978-01-01

    The structures of Earth, Mars, Venus, and the Moon are examined and compared. Global tectonic characteristics are presented for each. A comparison of the tectonics reveals the structural asymetry of these planets and the moon. Tectonic asymmetry information for the group is used to interpret certain aspects of the earth's geological past.

  19. Eyes on Planet Earth! Exploring Your Local Watershed

    ERIC Educational Resources Information Center

    Smith, Michael J.; Southard, John B.

    2003-01-01

    The American Geological Institute is helping teachers and geoscientists to emphasize the importance of inquiry and active investigation of the world around by selecting "Eyes on Planet Earth: Monitoring Our Changing World" as the theme of this year's Earth Science Week. The activity on the back of this month's poster insert, "Monitoring the…

  20. Comment on: "The ascent of kimberlite: Insights from olivine" by Brett R.C. et al. [Earth Planet. Sci. Lett. 424 (2015) 119-131

    NASA Astrophysics Data System (ADS)

    Kamenetsky, Vadim S.

    2016-04-01

    Brett et al. (2015) proposed a kimberlite factory model that "…involves carbonatitic proto-kimberlite melts preferentially assimilating Opx xenocrysts as they transit the cratonic mantle lithosphere to evolve into silicic-hydrous melts that reach olivine saturation during ascent" (p. 130). A cornerstone of this model is a specific, carbonatitic composition of proto-kimberlite melts ascending through the subcratonic lithospheric mantle "…whereby parental carbonatitic magmas are progressively converted to kimberlite (e.g., Russell et al., 2012, 2013; Bussweiler et al., 2015)" (p. 120). The model by Brett et al. (2015) is based on observations of "the carbonate-sealed cracks" in olivine that "…strongly support to the hypothesis that all kimberlite magmas originate as carbonatitic-melts (e.g., Russell et al., 2012, 2013; Kamenetsky et al., 2013; Pilbeam et al., 2013; Kamenetsky and Yaxley, 2015; Bussweiler et al., 2015)." (p. 129). While the major thrust of the study by Brett et al. (2015) hinges on the premise that the parental kimberlite melt is carbonatitic, the overwhelming majority in the kimberlite community still prefers a carbonated ultramafic/ultrabasic composition for parental kimberlite melts. Thus the suggestion that kimberlites have an initial carbonatite composition is not less than "a paradigm shift" in the kimberlite petrology. It appears that a carbonatite origin for kimberlites has been proposed in many studies that significantly pre-date the publications starting from 2012 that they cite, but which unfortunately are overlooked by Brett et al. (2015). It is, therefore, worth acknowledging the research which has previously advanced this unorthodox idea.

  1. A PLATEAU IN THE PLANET POPULATION BELOW TWICE THE SIZE OF EARTH

    SciTech Connect

    Petigura, Erik A.; Marcy, Geoffrey W.; Howard, Andrew W.

    2013-06-10

    We carry out an independent search of Kepler photometry for small transiting planets with sizes 0.5-8.0 times that of Earth and orbital periods between 5 and 50 days, with the goal of measuring the fraction of stars harboring such planets. We use a new transit search algorithm, TERRA, optimized to detect small planets around photometrically quiet stars. We restrict our stellar sample to include the 12,000 stars having the lowest photometric noise in the Kepler survey, thereby maximizing the detectability of Earth-size planets. We report 129 planet candidates having radii less than 6 R{sub E} found in three years of Kepler photometry (quarters 1-12). Forty-seven of these candidates are not in Batalha et al., which only analyzed photometry from quarters 1-6. We gather Keck HIRES spectra for the majority of these targets leading to precise stellar radii and hence precise planet radii. We make a detailed measurement of the completeness of our planet search. We inject synthetic dimmings from mock transiting planets into the actual Kepler photometry. We then analyze that injected photometry with our TERRA pipeline to assess our detection completeness for planets of different sizes and orbital periods. We compute the occurrence of planets as a function of planet radius and period, correcting for the detection completeness as well as the geometric probability of transit, R{sub *}/a. The resulting distribution of planet sizes exhibits a power law rise in occurrence from 5.7 R{sub E} down to 2 R{sub E} , as found in Howard et al. That rise clearly ends at 2 R{sub E} . The occurrence of planets is consistent with constant from 2 R{sub E} toward 1 R{sub E} . This unexpected plateau in planet occurrence at 2 R{sub E} suggests distinct planet formation processes for planets above and below 2 R{sub E} . We find that 15.1{sup +1.8}{sub -2.7}% of solar type stars-roughly one in six-has a 1-2 R{sub E} planet with P = 5-50 days.

  2. Two Earth-sized planets orbiting Kepler-20.

    PubMed

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2012-02-01

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere. PMID:22186831

  3. Spectral Fingerprints of Earth-like Planets Orbiting Other Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, Sarah; Kaltenegger, Lisa; Sasselov, Dimitar

    2015-01-01

    A wide range of potentially rocky planets in the habitable zone (HZ) have been detected by Kepler as well as ground-based searches. The type of host star influences our ability to detect atmospheric features with future space- and ground-based telescopes like JWST and E-ELT. We present a complete suit of stellar models as well as model atmospheres for an Earth-analogue planets in their HZ for stellar effective temperature from Teff = 2300K to 7000K, sampling the entire FGKM stellar type range. The UV emission from a planet's host star dominates the photochemistry and thus the resultant observable spectral features of the planet. Using the latest UV spectra obtained by Hubble as well as IUE, we model the effect of activity on Earth-like planets. We focus on the primary detectable atmospheric features that indicate habitability on Earth, namely: H2O, O3, CH4, N2O and CH3Cl. We model the emergent as well as transit spectra of Earth-analogue planets orbiting our grid of FGKM stars in the VIS/NIR (0.4 - 4 microns) and the IR (5 - 20 microns) range as input for future missions like JWST and concepts like Darwin/TPF.

  4. Reply on: "Comment on: The ascent of kimberlite: Insights from olivine" authored by Brett R.C. et al. [Earth Planet. Sci. Lett. 424 (2015) 119-131

    NASA Astrophysics Data System (ADS)

    Brett, R. Curtis; Russell, J. K.; Andrews, G. D. M.; Jones, T. J.

    2016-04-01

    The Kamenetsky (2016) comment on the Kimberlite Factory model proposed by Brett et al. (2015) asserts, "A cornerstone of this model is a specific, carbonatitic composition of proto-kimberlite melts ascending through the sub-cratonic lithospheric mantle" and "… the major thrust of the study hinges on the premise that the parental kimberlite melt is carbonatitic". This is a clear misstatement of our central thesis, which is to utilize the attributes of olivine xenocrysts to constrain the physical ascent of kimberlite. Brett et al.'s study does not hinge on the premise that parental kimberlite melt is carbonatitic. Rather, our interpretation that kimberlite melt originates as near carbonatitic hinges on our novel observation that early "carbonate sealed cracks provide evidence of melt being drawn into decompression cracks and precipitating" (p. 129). Our connection between this observation and our interpretation is tied explicitly to earlier published works "in this regard, the carbonate-filled sealed cracks strongly support to the hypothesis that all kimberlite magmas originate as carbonatitic-melts (e.g.,Russell et al., 2012, 2013;Kamenetsky et al., 2013; Pilbeam et al., 2013; Kamenetsky and Yaxley, 2015; Bussweiler et al., 2015)" (p. 129). To state that our interpretation is based on a pre-existing bias towards a model of a carbonatitic origin of kimberlite magmas is incorrect. Rather, our new observational data independently demonstrates that the presence of carbonate-sealed cracks formed during kimberlite ascent.

  5. Understanding Our Changing Planet: NASA's Mission to Planet Earth, 1995 Catalog of Education Programs and Resources.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Mission to Planet Earth (MTPE) is an integrated, sustainable environmental education program that focuses on the concept of Earth system science which integrates fields like meteorology, oceanography, atmospheric science, geology, and biology. The program has the following objectives: training the next generation of scientists to use an…

  6. Planet Earth: Can Other Planets Tell Us Where We Are Going?

    ERIC Educational Resources Information Center

    Cherif, Abour H.; Adams, Gerald E.

    1994-01-01

    Makes comparisons between the Earth and other planets to suggest a possible vehicle for predicting the effects of human-made or natural disasters on our Earth. Also included are brief discussions of the following topics: (1) the atmosphere and greenhouse effect; (2) alterations of the biosphere; (3) climate and climatic change; (4) the water…

  7. Planet logy : Towards Comparative Planet logy beyond the Solar Earth System

    NASA Astrophysics Data System (ADS)

    Khan, A. H.

    2011-10-01

    Today Scenario planet logy is a very important concept because now days the scientific research finding new and new planets and our work's range becoming too long. In the previous study shows about 10-12 years the research of planet logy now has changed . Few years ago we was talking about Sun planet, Earth planet , Moon ,Mars Jupiter & Venus etc. included but now the time has totally changed the recent studies showed that mono lakes California find the arsenic food use by micro organism that show that our study is very tiny as compare to planet long areas .We have very well known that arsenic is the toxic agent's and the toxic agent's present in the lakes and micro organism developing and life going on it's a unbelievable point for us but nature always play a magical games. In few years ago Aliens was the story no one believe the Aliens origin but now the aliens showed catch by our space craft and shuttle and every one believe that Aliens origin but at the moment's I would like to mention one point's that we have too more work required because our planet logy has a vast field. Most of the time our scientific mission shows that this planet found liquid oxygen ,this planet found hydrogen .I would like to clear that point's that all planet logy depend in to the chemical and these chemical gave the indication of the life but we are not abele to developed the adaptation according to the micro organism . Planet logy compare before study shows that Sun it's a combination of the various gases combination surrounded in a round form and now the central Sun Planets ,moons ,comets and asteroids In other word we can say that Or Sun has a wide range of the physical and Chemical properties in the after the development we can say that all chemical and physical property engaged with a certain environment and form a various contains like asteroids, moon, Comets etc. Few studies shows that other planet life affected to the out living planet .We can assure with the example the life

  8. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    NASA Technical Reports Server (NTRS)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  9. Agenda 21: The Earth summit strategy to save our planet

    SciTech Connect

    Sitarz, D.

    1993-01-01

    This summit was held on June 13, 1992 in Rio de Janeiro, Brazil to provide a forum for developing a plan of action to confront and overcome the most pressing environmental, health, and social problem issues facing the planet. AGENDA 21 is the agreement adopted by all participating nations at this summit. The adoption of this document by virtually every nation on Earth has created an unprecedented global partnership to reverse the environmental degradation of the planet.

  10. Earth Walk: Touring Our Planet's Inner Structure.

    ERIC Educational Resources Information Center

    Muller, Eric P.

    1995-01-01

    Describes an excursion that effectively helps students visualize the earth's immense size and numerous structures without the usual scale and ratio distortions found in most textbooks and allows students to compare their body's height to a scaled-down earth. (JRH)

  11. Planet Earth's Place in the Educational Sun.

    ERIC Educational Resources Information Center

    Pannwitt, Barbara

    1990-01-01

    The focus of this curriculum report is on the earth sciences in the K-12 curriculum. High technologies have combined to produce telecommunications, the newest aid and impetus to earth sciences education. Listed in this report are educational service organizations and individual schools that have this service. Included are the names, addresses, and…

  12. Tidal effects on Earth, Planets, Sun by far visiting moons

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The Earth has been formed by a huge mini-planet collision forming our Earth surface and our Moon today. Such a central collision hit was statistically rare. A much probable skimming or nearby encounter by other moons or planets had to occur. Indeed Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past in the geological records. For instance a ten times a terrestrial radius nearby impact scattering by a peripherical encounter by a small moon-like object will force huge tidal waves (hundred meter height), able to lead to huge tsunami and Earth-quake. Moreover the historical cumulative planet hits in larger and wider planets as Juppiter, Saturn, Uranus will leave a trace, as observed, in their tilted spin axis. Finally a large fraction of counter rotating moons in our solar system probe and test such a visiting mini-planet captur origination. In addition the Earth day duration variability in the early past did show a rare discountinuity, very probably indebt to such a visiting planet crossing event. These far planets in rare trajectory to our Sun may, in thousands event capture, also explain sudden historical and recent temperature changes.

  13. Biosignatures from Earth-like planets around M dwarfs.

    PubMed

    Segura, Antígona; Kasting, James F; Meadows, Victoria; Cohen, Martin; Scalo, John; Crisp, David; Butler, Rebecca A H; Tinetti, Giovanna

    2005-12-01

    Coupled one-dimensional photochemical-climate calculations have been performed for hypothetical Earth-like planets around M dwarfs. Visible/near-infrared and thermal-infrared synthetic spectra of these planets were generated to determine which biosignature gases might be observed by a future, space-based telescope. Our star sample included two observed active M dwarfs-AD Leo and GJ 643-and three quiescent model stars. The spectral distribution of these stars in the ultraviolet generates a different photochemistry on these planets. As a result, the biogenic gases CH4, N2O, and CH3Cl have substantially longer lifetimes and higher mixing ratios than on Earth, making them potentially observable by space-based telescopes. On the active M-star planets, an ozone layer similar to Earth's was developed that resulted in a spectroscopic signature comparable to the terrestrial one. The simultaneous detection of O2 (or O3) and a reduced gas in a planet's atmosphere has been suggested as strong evidence for life. Planets circling M stars may be good locations to search for such evidence. PMID:16379526

  14. Terraforming the Planets and Climate Change Mitigation on Earth

    NASA Astrophysics Data System (ADS)

    Toon, O. B.

    2008-12-01

    Hopefully, purposeful geo-engineering of the Earth will remain a theoretical concept. Of course, we have already inadvertently changed the Earth, and over geologic history life has left an indelible imprint on our planet. We can learn about geo-engineering schemes by reference to Earth history, for example climate changes after volcanic eruptions provide important clues to using sulfates to modify the climate. The terrestrial planets and Titan offer additional insights. For instance, Mars and Venus both have carbon dioxide dominated greenhouses. Both have more than 10 times as much carbon dioxide in their atmospheres as Earth, and both absorb less sunlight than Earth, yet one is much colder than Earth and one is much hotter. These facts provide important insights into carbon dioxide greenhouses that I will review. Mars cools dramatically following planet wide dust storms, and Titan has what is referred to as an anti- greenhouse climate driven by aerosols. These data can be used to reassure us that we can model aerosol caused changes to the climate of a planet, and also provide examples of aerosols offsetting a gas-driven greenhouse effect. People have long considered whether we might make the other planets habitable. While most of the schemes considered belong in the realm of science fiction, it is possible that some schemes might be practical. Terraforming brings to mind a number of issues that are thought provoking, but not so politically charged as geo-engineering. For example: What criteria define habitability, is it enough for people to live in isolated glass enclosures, or do we need to walk freely on the planet? Different creatures have different needs. Is a planet habitable if plants can thrive in the open, or do animals also need to be free? Are the raw materials present on any planet to make it habitable? If not, can we make the materials, or do we have to import them? Is it ethical to change a planetary climate? What if there are already primitive

  15. Astronomers Find First Earth-like Planet in Habitable Zone

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Astronomers have discovered the most Earth-like planet outside our Solar System to date, an exoplanet with a radius only 50% larger than the Earth and capable of having liquid water. Using the ESO 3.6-m telescope, a team of Swiss, French and Portuguese scientists discovered a super-Earth about 5 times the mass of the Earth that orbits a red dwarf, already known to harbour a Neptune-mass planet. The astronomers have also strong evidence for the presence of a third planet with a mass about 8 Earth masses. ESO PR Photo 22a/07 ESO PR Photo 22a/07 The Planetary System Around Gliese 581 This exoplanet - as astronomers call planets around a star other than the Sun - is the smallest ever found up to now [1] and it completes a full orbit in 13 days. It is 14 times closer to its star than the Earth is from the Sun. However, given that its host star, the red dwarf Gliese 581 [2], is smaller and colder than the Sun - and thus less luminous - the planet nevertheless lies in the habitable zone, the region around a star where water could be liquid! The planet's name is Gliese 581 c. "We have estimated that the mean temperature of this super-Earth lies between 0 and 40 degrees Celsius, and water would thus be liquid," explains Stéphane Udry, from the Geneva Observatory (Switzerland) and lead-author of the paper reporting the result. "Moreover, its radius should be only 1.5 times the Earth's radius, and models predict that the planet should be either rocky - like our Earth - or fully covered with oceans," he adds. ESO PR Photo 22c/07 ESO PR Photo 22c/07 The star Gliese 581 "Liquid water is critical to life as we know it," avows Xavier Delfosse, a member of the team from Grenoble University (France). "Because of its temperature and relative proximity, this planet will most probably be a very important target of the future space missions dedicated to the search for extra-terrestrial life. On the treasure map of the Universe, one would be tempted to mark this planet with an X." The

  16. Life, hierarchy, and the thermodynamic machinery of planet Earth.

    PubMed

    Kleidon, Axel

    2010-12-01

    Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates

  17. Objective Earth, a planet to discover

    NASA Astrophysics Data System (ADS)

    Borel, G.

    2003-04-01

    Objective Earth is an innovative project part of the "Swiss Virtual Campus", a federal program launched and financially supported by the Swiss University Conference and the Swiss Universities. Objective Earth is an online course devised for first year university students in Geosciences, but is also ideal for people who need or want to broaden their knowledge in Earth Sciences (biologists, civil engineers, high school teachers, etc.). The course is multilingual (English, German, French). The disciplines are integrated in a global approach to the "Earth System," the educational focus is on understanding all the important processes and their interactions in the global context. The pedagogical effort has been placed upon the global understanding of the main processes and their interactions. Our goal is for students to develop the ability to apply their knowledge in a comprehensive way to tackle definite geological problems. Thus, very particular attention has been put on the contextualization of the learning, combining didactically the academic notions and the practical situations. By the study of a thematic context, we intend to deliberately connect the phenomena described by the different disciplines of the geosciences (geology, geography, geophysics, mineralogy) to the way they physically occur in nature. Pages that are delivered to the user are assembled at run-time by the system. Information resources are stored and managed in XML which is the ideal format for structured-documents. Furthermore, using XML, the course structure can be processed separately from the content and re-used in other areas. This technical choice also offers a great flexibility for future developments.

  18. Spectral Fingerprints of Earth-like Planets Around FGK Stars

    PubMed Central

    Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2013-01-01

    Abstract We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions. Key Words: Habitability—Planetary atmospheres—Extrasolar terrestrial planets—Spectroscopic biosignatures. Astrobiology 13, 251–269. PMID:23537136

  19. The earth as a planet - Paradigms and paradoxes

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1984-01-01

    The independent growth of the various branches of the earth sciences in the past two decades has led to a divergence of geophysical, geochemical, geological, and planetological models for the composition and evolution of a terrestrial planet. Evidence for differentiation and volcanism on small planets and a magma ocean on the moon contrasts with hypotheses for a mostly primitive, still undifferentiated, and homogeneous terrestrial mantle. In comparison with the moon, the earth has an extraordinarily thin crust. The geoid, which should reflect convection in the mantle, is apparently unrelated to the current distribution of continents and oceanic ridges. If the earth is deformable, the whole mantle should wander relative to the axis of rotation, but the implications of this are seldom discussed. The proposal of a mantle rich in olivine violates expectations based on evidence from extraterrestrial sources. These and other paradoxes force a reexamination of some long-held assumptions.

  20. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  1. Birth of an Earth-like Planet (Artist concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's conception shows a binary-star, or two-star, system, called HD 113766, where astronomers suspect a rocky Earth-like planet is forming around one of the stars. At approximately 10 to 16 million years old, astronomers suspect this star is at just the right age for forming rocky planets. The system is located approximately 424 light-years away from Earth.

    The two yellow spots in the image represent the system's two stars. The brown ring of material circling closest to the central star depicts a huge belt of dusty material, more than 100 times as much as in our asteroid belt, or enough to build a Mars-size planet or larger. The rocky material in the belt represents the early stages of planet formation, when dust grains clump together to form rocks, and rocks collide to form even more massive rocky bodies called planetesimals. The belt is located in the middle of the system's terrestrial habitable zone, or the region around a star where liquid water could exist on any rocky planets that might form. Earth is located in the middle of our sun's terrestrial habitable zone.

    Using NASA's Spitzer Space Telescope, astronomers learned that the belt material in HD 113866 is more processed than the snowball-like stuff that makes up infant solar systems and comets, which contain pristine ingredients from the early solar system. However, it is not as processed as the stuff found in mature planets and asteroids. This means that the dust belt is made out of just the right mix of materials to be forming an Earth-like planet. It is composed mainly of rocky silicates and metal sulfides (like fool's gold), similar to the material found in lava flows.

    The white outer ring shows a concentration of icy dust also detected in the system. This material is at the equivalent position of the asteroid belt in our solar system, but only contains about one-sixth as much material as the inner ring. Astronomers say it is not clear from the Spitzer observations if

  2. Factors Affecting the Habitability of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; NAI-Virtual Planetary Laboratory Team

    2014-03-01

    Habitability is a measure of an environment's potential to support life. For exoplanets, the concept of habitability can be used broadly - to inform our calculations of the possibility and distribution of life elsewhere - or as a practical tool to inform mission designs and to prioritize specific targets in the search for extrasolar life. Although a planet's habitability does depend critically on the effect of stellar type and planetary semi-major axis on climate balance, work in the interdisciplinary field of astrobiology has identified many additional factors that can affect a planet's environment and its potential ability to support life. Life requires material for metabolism and structures, a liquid medium for chemical transport, and an energy source to drive metabolism and other life processes. Whether a planet's surface or sub-surface can provide these requirements is the result of numerous planetary and astrophysical processes that affect the planet's formation and evolution. Many of these factors are interdependent, and fall into three main categories: stellar effects, planetary effects and planetary system effects. Key abiotic processes affecting the resultant planetary environment include photochemistry (e.g. Segura et al., 2003; 2005), stellar effects on climate balance (e.g. Joshii et al., 2012; Shields et al., 2013), atmospheric loss (e.g. Lopez and Fortney, 2013), and gravitational interactions with the star (e.g. Barnes et al., 2013). In many cases, the effect of these processes is strongly dependent on a specific planet's existing environmental properties. Examples include the resultant UV flux at a planetary surface as a product of stellar activity and the strength of a planet's atmospheric UV shield (Segura et al., 2010); and the amount of tidal energy available to a planet to drive plate tectonics and heat the surface (Barnes et al., 2009), which is in turn due to a combination of stellar mass, planetary mass and composition, planetary orbital

  3. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  4. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  5. Development of educational programs using Dagik Earth, a four dimensional display of the Earth and planets

    NASA Astrophysics Data System (ADS)

    Saito, A.; Akiya, Y.; Yoshida, D.; Odagi, Y.; Yoshikawa, M.; Tsugawa, T.; Takahashi, M.; Kumano, Y.; Iwasaki, S.

    2010-12-01

    We have developed a four-dimensional display system of the Earth and planets to use in schools, science centers, and research institutes. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. The system is named Dagik Earth, and educational programs using Dagik Earth have been developed for schools and science centers. Three dimensional displays can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. There are several systems for the three-dimensional presentation of the Earth, such as Science on a sphere by NOAA, and Geocosmos by Miraikan, Japan. Comparing these systems, the advantage of Dagik Earth is portability and affordability. The system uses ordinary PC and PC projector. Only a spherical screen is the special equipment of Dagik Earth. Therefore Dagik Earth is easy to use in classrooms. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in an attractive way of presentation. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented. Its future plan will also be discussed.

  6. The ultraviolet spectral albedo of planet earth

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Serafino, George N.

    1987-01-01

    The solar backscattered ultraviolet spectral radiometer on the Nimbus 7 satellite provides a unique set of radiation measurements which allows an evaluation of the spectral albedo of the earth and its atmosphere in the wavelength range 300 to 340 nm. Near 340 nm, the derived spectral albedo expressed as a function of latitude and month exceeds that in the visible part of the spectrum, with values near 45 percent existing equatorward of 30 deg and an increase to 60-80 percent toward the poles. At middle to high latitudes, the monthly mean spectral albedo exceeds the contribution from Rayleigh scattering alone by factors of 1.4 to 2.2. At wavelengths from 300 to 310 nm, where absorption by stratospheric ozone is significant, the daylight averaged spectral albedos receive negligible contribution from scattering by tropospheric clouds, yet the derived values exceed those predicted for Rayleigh scattering from a clean stratosphere. These observations are consistent with the presence of an atmospheric scattering layer, distinct from cloudiness, located at an altitude above the tropopause.

  7. An international approach to Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Lawrence, Robert M.; Sadeh, Willy Z.; Tsygichko, Viktor N.

    1992-01-01

    The new international political constellation resulting from the disintegration of the Soviet Union opens up unique opportunities for cooperation in the space arena. Precedents since 1955 indicate a pervasive interest in mutual cooperation to use military reconnaissance and surveillance satellites for space observations to enforce treaty verification and compliance. One of the avenues that offer immediate prospects for fruitful cooperation is the incorporation of the military reconnaissance and surveillance satellite capabilities of both U.S. and Russia into the Mission to Planet Earth. Formation of a United Nations Satellite (UNSAT) fleet drawn from the American and Russian space assets is proposed. The role of UNSAT is to provide world wide monitoring of both military and enviromental activities under the umbrella of the Mission to Planet Earth.

  8. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    NASA Astrophysics Data System (ADS)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  9. ATMOS: Long term atmospheric measurements for mission to planet Earth

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A long-term, space-based measurement program, together with continued balloon and aircraft-borne investigations, is essential to monitor the predicted effects in the atmosphere, to determine to what extent the concentration measurements agree with current models of stratospheric chemistry, and to determine the condition of the ozone layer. The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment is currently making comprehensive, global measurements of Earth's atmosphere as part of the Atmospheric Laboratory for Applications and Science (ATLAS) program on the Space Shuttle. Part of NASA's Mission to Planet Earth, ATLAS is a continuing series of missions to study Earth and the Sun and provide a more fundamental understanding of the solar influences on Earth's atmosphere. The ATMOS program, instruments, and science results are presented.

  10. Experience our Planet - Interpreting Earth Sciences in a Museum Environment

    NASA Astrophysics Data System (ADS)

    Schneider, S.

    2012-12-01

    Earth science interpretation is more than giving your audience facts and figures. It is about relating Earth sciences to something within the personality or experience of your audience. It is about revelation based on information rather than just giving away information per se. And: The chief aim of interpretation is not instruction but provocation. A great environment for Earth science interpretation is a museum. Whether it is an art gallery, a technology exhibition or a national park's visitor center is irrelevant. Earth science interpretation is possible everywhere and sometimes even more successful in unsuspected locations than in natural history museums. Earth sciences have just started to use the potential which lies within museum environments. A historic view on Earth sciences and natural hazard research can be given in art galleries. The technology used in research can be showcased and - sometimes - even tested in science centers and technology museums. National Parks provide the best opportunity to actually experience the dynamic planet Earth live. This talk aims towards giving an insight view on how to conduct interpretive programs in museums, how to utilize the treasures and possibilities provided by museums and national parks and to encourage scientists to go to these places for face-to-face Earth science interpretation.

  11. The Thermal States of Accreting Planets: From Mars-like Embryos to a MAD Earth

    NASA Astrophysics Data System (ADS)

    Stewart, S. T.; Lock, S. J.

    2015-12-01

    The thermal states of rocky planets can vary widely during the process of accretion. The thermal structure affects several major processes on the growing planet, including the mechanics of core formation, pressure-temperature conditions for metal-silicate equilibration, mixing, and atmospheric erosion. Because impact energy is distributed heterogeneously, accretional energy is preferentially deposited in the gravitationally re-equilibrated outer layers of the planet for both small and giant impacts. The resulting stably stratified structure inhibits complete mixing within the mantle. Initially, the specific energy of giant impacts between Mars-mass embryos leads to melting of the mantle. However, as planet formation progresses, the specific energies of giant impacts increase and can drive the mantle into a transient supercritical state. In the hottest regions of the planet, metal and silicates are miscible, and metal exsolution occurs as the structure cools. The cooling time of the supercritical structure is typically longer than the timescale for metal segregation to the core. Thus, these high temperature excursions during planet formation are significant for understanding metal-silicate equilibration. Furthermore, when a supercritical planet is also rapidly rotating, the mantle, atmosphere and disk (MAD) form a continuous dynamic and thermodynamic structure. Lunar origin by condensation from a MAD Earth can explain the major characteristics of the Moon (Lock et al., this meeting). One of the greatest uncertainties in understanding the thermal states of planets during accretion is the changing composition and mass of the atmosphere. After the dispersal of the solar nebula, the thermal boundary condition imposed by the atmosphere can vary between silicate vapor and condensed ices. The coupled problem of atmospheric origin and planetary accretion can be used to constrain the many uncertainties in the growth and divergence of the terrestrial planets in our solar

  12. Planet Earth: Its Past, Our Present, A Future (?)

    NASA Astrophysics Data System (ADS)

    Kieffer, S. W.

    2012-04-01

    We who have lived through the second half of the 20th century into the 21st century have witnessed a profound transition in the biological and physical relationship between humans and the rest of the planet. In the middle of the last century, our planet still had undeveloped islands: there were frontiers that held new lands, mysteries, adventures, cultures, and resources. However, these islands have merged into a relatively seamless planet by a mobile and expanding population, science and technology, and global communication. We are subject to stealth as well as natural disasters. Natural disasters result from the ongoing geological and meteorological processes on our planet, increasingly exacerbated by human presence and behavior. Stealth disasters, on the other hand, are caused by humans, but involve the natural systems that support us. Examples of stealth disasters are climate change, loss of soils, acidification of the oceans, desertification, and loss of groundwater resources. Civilization is a complex system. It has emergent properties, and a tuning parameter--a parameter that is "tuned" until the unexpected happens. The tuning parameter for populations is the number of members relative to the capacities that support them. Because of our sheer numbers, we are driving the stealth disasters, and we will be affected more severely by natural disasters than we have been in the past on a less densely populated planet. To guide our thinking about geoethical issues, we propose a (hypothetical) world organization modeled after the Centers for Disease Control (CDC) in the U.S., and call it the Center for Disaster Control for Planet Earth (CDCPE). This center would have a scientific body to provide impartial facts and uncertainties, an engineering body to propose and implement technical solutions, a negotiating body to balance the realities of political, economic, religious and cultural values, and an enforcement body that is responsive to all of the inputs. How shall

  13. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  14. Microlensing planet detection via geosynchronous and low Earth orbit satellites

    NASA Astrophysics Data System (ADS)

    Mogavero, F.; Beaulieu, J. P.

    2016-01-01

    Planet detection through microlensing is usually limited by a well-known degeneracy in the Einstein timescale tE, which prevents mass and distance of the lens to be univocally determined. It has been shown that a satellite in geosynchronous orbit could provide masses and distances for most standard planetary events (tE ≈ 20 days) via a microlens parallax measurement. This paper extends the analysis to shorter Einstein timescales, tE ≈ 1 day, when dealing with the case of Jupiter-mass lenses. We then study the capabilities of a low Earth orbit satellite on even shorter timescales, tE ≈ 0.1 days. A Fisher matrix analysis is employed to predict how the 1-σ error on parallax depends on tE and the peak magnification of the microlensing event. It is shown that a geosynchronous satellite could detect parallaxes for Jupiter-mass free floaters and discover planetary systems around very low-mass brown dwarfs. Moreover, a low Earth orbit satellite could lead to the discovery of Earth-mass free-floating planets. Limitations to these results can be the strong requirements on the photometry, the effects of blending, and in the case of the low orbit, the Earth's umbra.

  15. On the possibility of Earth-type habitable planets in the 55 Cancri system.

    PubMed

    von Bloh, W; Cuntz, M; Franck, S; Bounama, C

    2003-01-01

    We discuss the possibility of Earth-type planets in the planetary system of 55 Cancri, a nearby G8 V star, which is host to two, possibly three, giant planets. We argue that Earth-type planets around 55 Cancri are in principle possible. Several conditions are necessary. First, Earth-type planets must have formed despite the existence of the close-in giant planet(s). In addition, they must be orbitally stable in the region of habitability considering that the stellar habitable zone is relatively close to the star compared to the Sun because of 55 Cancri's low luminosity and may therefore be affected by the close-in giant planet(s). We estimate the likelihood of Earth-type planets around 55 Cancri based on the integrated system approach previously considered, which provides a way of assessing the long-term possibility of photosynthetic biomass production under geodynamic conditions. PMID:14987474

  16. Earth, Jupiter and Saturn as guides for extrasolar planets and brown dwarfs: a lightning climatology study

    NASA Astrophysics Data System (ADS)

    Hodosán, Gabriella; Asensio Torres, Rubén; Helling, Christiane; Vorgul, Irena

    2015-04-01

    Large-scale electrostatic discharges (i.e. lightning) have been observed in the Solar System. Apart from Earth there are direct detections from Jupiter and Saturn and indirect (only radio) detection from Uranus and Neptune. Recent observations made by the Venus Explorer revealed radio signals that may be related to lightning. Observations indicate that clouds form on extrasolar planets and brown dwarfs. The conditions in these clouds may be good for lightning to occur, which can be a main ionization process in these atmospheres (lightning in mineral clouds e.g.: Bailey et al. 2014, ApJ, 784, 43; Helling at al. 2013, ApJ, 767, 136; Helling et al. 2013, P&SS, 77, 152). In this study our aim is to compare lightning climatology from Earth, Jupiter and Saturn and use these statistics as a guide to study potential lightning on extrasolar planetary objects. Earth is a fair analogy for rocky or ocean planets while Jupiter and Saturn resemble giant planets and brown dwarfs. To give an estimate on the total lightning energy (or power) that can reach us from a particular extrasolar body, we need to know how much lightning can occur on the object globally. We will show the possibilities in the number and quality of the giant planet data sets, which may give a fine comparison of future observations of extrasolar giant gas planets and even brown dwarfs. Data were obtained from Lightning Imaging Sensor (LIS)/Optical Transient Detector (OTD) (e.g.: Cecil et al. 2014, Atmospheric Research, 135, 404), Sferics Timing and Ranging Network (STARNET) (e.g.: Morales Rodrigues et al. 2011, 2014, XIV and XV International Conference on Atmospheric Electricity) and World Wide Lightning Location Network (WWLLN) (e.g.: Hutchins et al. 2012, Radio Science, 47, RS6005), four major lightning detecting networks, which monitor lightning occurrence in the optical or radio range on Earth. We compare flash/stroke rates in space and time and use the data to refer to Earth as a transiting exoplanet. We

  17. The Runaway Greenhouse Effect on Earth and other Planets

    NASA Technical Reports Server (NTRS)

    Rabbette, Maura; Pilewskie, Peter; McKay, Christopher; Young, Robert

    2001-01-01

    Water vapor is an efficient absorber of outgoing longwave infrared radiation on Earth and is the primary greenhouse gas. Since evaporation increases with increasing sea surface temperature, and the increase in water vapor further increases greenhouse warming, there is a positive feedback. The runaway greenhouse effect occurs if this feedback continues unchecked until all the water has left the surface and enters the atmosphere. For Mars and the Earth the runaway greenhouse was halted when water vapor became saturated with respect to ice or liquid water respectively. However, Venus is considered to be an example of a planet where the runaway greenhouse effect did occur, and it has been speculated that if the solar luminosity were to increase above a certain limit, it would also occur on the Earth. Satellite data acquired during the Earth Radiation Budget Experiment (ERBE) under clear sky conditions shows that as the sea surface temperature (SST) increases, the rate of outgoing infrared radiation at the top of the atmosphere also increases, as expected. Over the pacific warm pool where the SST exceeds 300 K the outgoing radiation emitted to space actually decreases with increasing SST, leading to a potentially unstable system. This behavior is a signature of the runaway greenhouse effect on Earth. However, the SST never exceeds 303K, thus the system has a natural cap which stops the runaway. According to Stefan-Boltzmann's law the amount of heat energy radiated by the Earth's surface is proportional to (T(sup 4)). However, if the planet has a substantial atmosphere, it can absorb all infrared radiation from the lower surface before the radiation penetrates into outer space. Thus, an instrument in space looking at the planet does not detect radiation from the surface. The radiation it sees comes from some level higher up. For the earth#s atmosphere the effective temperature (T(sub e)) has a value of 255 K corresponding to the middle troposphere, above most of the

  18. Extrasolar Giant Planet in Earth-like Orbit

    NASA Astrophysics Data System (ADS)

    1999-07-01

    companion . iota Hor b has an orbital period of 320 days. From this period, the known mass of the central star (1.03 solar masses) and the amplitude of the velocity changes, a mass of at least 2.26 times that of planet Jupiter is deduced for the planet. It revolves around the host star in a somewhat elongated orbit (the eccentricity is 0.16). If it were located in our own solar system, this orbit would stretch from just outside the orbit of Venus (at 117 million km or 0.78 Astronomical Units from the Sun) to just outside the orbit of the Earth (the point farthest from the Sun, at 162 million km or 1.08 Astronomical Units) The new giant planet is thus moving in an orbit not unlike that of the Earth. In fact, of all the planets discovered so far, the orbit of iota Hor b is the most Earth-like. Also, with a spectral type of G0 V , its host star is quite similar to the Sun (G2 V). iota Hor b is, however, at least 720 times more massive than the Earth and it is probably more similar to planet Jupiter in our own solar system. While the radial velocity technique described above only determines a minimum value for the planet's mass, an analysis of the velocity with which the star turns around its own axis suggests that the true mass of iota Hor b is unlikely to be much higher. A difficult case Natural phenomena with periods near one solar year always present a particular challenge to astronomers. This is one of the reasons why it has been necessary to observe the iota Hor system for such a long time to be absolutely sure about the present result. First, special care must be taken to verify that the radial velocity variations found in the data are not an artefact of the Earth's movement around the Sun. In any case, the effect of this movement on the measurements must be accurately accounted for; it reaches about ± 30 km/sec over one year, i.e. much larger than the effect of the new planet. In the present case of iota Hor , this was thoroughly tested and any residual influence of

  19. Atmospheric radiative transfer generalised for use on Earth and other planets: ARTS 2.2

    NASA Astrophysics Data System (ADS)

    Mendrok, Jana; Eriksson, Patrick; Buehler, Stefan; Perrin, Agnes; Hartogh, Paul; Rezac, Ladislav; Lemke, Oliver

    2015-04-01

    absorption calculation approach that is able to flexibly handle largely different atmospheric compositions. In order to facilitate this approach, we compiled a spectroscopic catalogue for the 0-3 THz spectral range, that reports broadening and shift parameters for individual molecular species. Currently it covers the most abundant species in Earth and its neighboring planets (Venus, Mars, Jupiter). Additionally, a number of features have been added to the model (radio link and cloud radar modes, zeeman splitting, doppler shifts) and a data package contains atmospheric and surface data for Earth and the planets Venus, Mars, and Jupiter has been compiled. Here, we present the generalized propagation modeling approach and show example results of simulations for different planets underlining the relevance of our approach. [1] Eriksson, P., et al. (2011): ARTS, the atmospheric radiative transfer simulator, Version 2. JQSRT, 112, doi:10.1016/j.jqsrt.2011.03.001.

  20. Earth observations during Space Shuttle Flight STS-46: Atlantis' Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh; Amsbury, David; Wilkinson, M. Justin; Evans, Cynthia; Ackleson, Steve; Shriver, Loren J.; Allen, Andrew M.; Hoffman, Jeffrey A.; Chang-Diaz, Franklin R.; Nicollier, Claude

    1993-01-01

    The photographic and videographic documentation of the Earth during STS-46 mission has enhanced the Space Shuttle Earth Observations Project (SSEOP) database. Increasing numbers of scientists are using this database; many are downloading the imagery from our electronic database for specific scientific analyses. We believe the scientific returns of the Earth Observations photography from this mission will add to the global change databases and will contribute to the better understanding of our home planet. The use of manned space flights in understanding the global process first hand is a vital component in NASA's Mission to Planet Earth. The following are discussed along with photographs from the mission: landforms and geologic observation; environmental observations; meteorological/atmospheric observation; and oceanographic observations.

  1. A statistical look at the retrieval of exoplanetary atmospheres of super Earths and giant planets

    NASA Astrophysics Data System (ADS)

    Rocchetto, Marco; Waldmann, Ingo Peter; Tinetti, Giovanna; Yurchenko, Sergey; Tennyson, Jonathan

    2015-08-01

    Over the past decades transit spectroscopy has become one of the pioneering methods to characterise exoplanetary atmospheres. With the increasing number of observations, and the advent of new ground and spaced based instruments, it is now crucial to find the most optimal and objective methodologies to interpret these data, and understand the information content they convey. This is particularly true for smaller and fainter super Earth type planets.In this conference we will present a new take on the spectral retrieval of transiting planets, with particular focus on super Earth atmospheres. TauREx (Waldmann et al. 2015a,b.) is a new line-by-line radiative transfer atmospheric retrieval framework for transmission and emission spectroscopy of exoplanetary atmospheres, optimised for hot Jupiters and super Earths. The code has been built from scratch with the ideas of scalability, flexibility and automation. This allows to run retrievals with minimum user input that can be scaled to large cluster computing. Priors on the number and types of molecules considered are automatically determined using a custom built pattern recognition algorithm able to identify the most likely absorbers/emitters in the exoplanetary spectra, minimising the human bias in selecting the major atmospheric constituents.Using these tools, we investigate the impact of signal to noise, spectral resolution and wavelength coverage on the retrievability of individual model parameters from transit spectra of super Earths, and put our models to test (Rocchetto et al. 2015). Characterisation of the atmospheres of super Earths through transit spectroscopy is paramount, as it can provide an indirect - and so far unique - way to probe the nature of these planets. For the first time we analyse in a systematic way large grids of spectra generated for different observing scenarios. We perform thousands of retrievals aimed to fully map the degeneracies and understand the statistics of current exoplanetary

  2. Our Mission to Planet Earth: A Guide to Teaching Earth System Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The primary goal of this guide is for children to become familiar with the concept of cycles and to learn that some human activities can cause changes in their environment. Although the guide addresses Earth's components, it does so from the perspective of space to show the planet as a large system with interacting parts. To demonstrate on a much…

  3. PlanetServer/EarthServer: Big Data analytics in Planetary Science

    NASA Astrophysics Data System (ADS)

    Pio Rossi, Angelo; Oosthoek, Jelmer; Baumann, Peter; Beccati, Alan; Cantini, Federico; Misev, Dimitar; Orosei, Roberto; Flahaut, Jessica; Campalani, Piero; Unnithan, Vikram

    2014-05-01

    Planetary data are freely available on PDS/PSA archives and alike (e.g. Heather et al., 2013). Their exploitation by the community is somewhat limited by the variable availability of calibrated/higher level datasets. An additional complexity of these multi-experiment, multi-mission datasets is related to the heterogeneity of data themselves, rather than their volume. Orbital - so far - data are best suited for an inclusion in array databases (Baumann et al., 1994). Most lander- or rover-based remote sensing experiment (and possibly, in-situ as well) are suitable for similar approaches, although the complexity of coordinate reference systems (CRS) is higher in the latter case. PlanetServer, the Planetary Service of the EC FP7 e-infrastructure project EarthServer (http://earthserver.eu) is a state-of-art online data exploration and analysis system based on the Open Geospatial Consortium (OGC) standards for Mars orbital data. It provides access to topographic, panchromatic, multispectral and hyperspectral calibrated data. While its core focus has been on hyperspectral data analysis through the OGC Web Coverage Processing Service (Oosthoek et al., 2013; Rossi et al., 2013), the Service progressively expanded to host also sounding radar data (Cantini et al., this volume). Additionally, both single swath and mosaicked imagery and topographic data are being added to the Service, deriving from the HRSC experiment (e.g. Jaumann et al., 2007; Gwinner et al., 2009) The current Mars-centric focus can be extended to other planetary bodies and most components are general purpose ones, making possible its application to the Moon, Mercury or alike. The Planetary Service of EarthServer is accessible on http://www.planetserver.eu References: Baumann, P. (1994) VLDB J. 4 (3), 401-444, Special Issue on Spatial Database Systems. Cantini, F. et al. (2014) Geophys. Res. Abs., Vol. 16, #EGU2014-3784, this volume Heather, D., et al.(2013) EuroPlanet Sci. Congr. #EPSC2013-626 Gwinner, K

  4. Plate Tectonics on Earth-like Planets: Implications for Habitability

    NASA Astrophysics Data System (ADS)

    Noack, L.; Breuer, D.

    2011-12-01

    Plate tectonics has been suggested to be essential for life (see e.g. [1]) due to the replenishment of nutrients and its role in the stabilization of the atmosphere temperature through the carbon-silicate cycle. Whether plate tectonics can prevail on a planet should depend on several factors, e.g. planetary mass, age of the planet, water content (at the surface and in the interior), surface temperature, mantle rheology, density variations in the mantle due to partial melting, and life itself by promoting erosion processes and perhaps even the production of continental rock [2]. In the present study, we have investigated how planetary mass, internal heating, surface temperature and water content in the mantle would factor for the probability of plate tectonics to occur on a planet. We allow the viscosity to be a function of pressure [3], an effect mostly neglected in previous discussions of plate tectonics on exoplanets [4, 5]. With the pressure-dependence of viscosity allowed for, the lower mantle may become too viscous in massive planets for convection to occur. When varying the planetary mass between 0.1 and 10 Earth masses, we find a maximum for the likelihood of plate tectonics to occur for planetary masses around a few Earth masses. For these masses the convective stresses acting at the base of the lithosphere are strongest and may become larger than the lithosphere yield strength. The optimum planetary mass varies slightly depending on the parameter values used (e.g. wet or dry rheology; initial mantle temperature). However, the peak in likelihood of plate tectonics remains roughly in the range of one to five Earth masses for reasonable parameter choices. Internal heating has a similar effect on the occurrence of plate tectonics as the planetary mass, i.e. there is a peak in the probability of plate tectonics depending on the internal heating rate. This result suggests that a planet may evolve as a consequence of radioactive decay into and out of the plate

  5. Habitability and Multistability in Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Lucarini, V.; Pascale, S.; Boschi, R.; Kirk, E.; Iro, N.

    2013-06-01

    In this paper we explore the potential multistability of the climate for a planet around the habitable zone. We focus on conditions reminiscent to those of the Earth system, but our investigation has more general relevance and aims at presenting a general methodology for dealing with exoplanets. We describe a formalism able to provide a thorough analysis of the non-equilibrium thermodynamical properties of the climate system and explore, using a flexible climate model, how such properties depend on the energy input of the parent star, on the infrared atmospheric opacity, and on the rotation rate of the planet. We first show that it is possible to reproduce the multi-stability properties reminiscent of the paleoclimatologically relevant snowball (SB)-warm (W) conditions. We then characterise the thermodynamics of the simulated W and SB states, clarifying the central role of the hydrological cycle in shaping the irreversibility and the efficiency of the W states, and emphasizing the extreme diversity of the SB states, where dry conditions are realized. Thermodynamics provides the clue for studying the tipping points of the system and leads us to constructing empirical parametrizations allowing for expressing the main thermodynamic properties as functions of the emission temperature of the planet only. Such empirical functions are shown to be rather robust with respect to changing the rotation rate of the planet from the current terrestrial one to half of it. Furthermore, we explore the dynamical range where the length of the day and the length of the year are comparable. We clearly find that there is a critical rotation rate below which the multi-stability properties are lost, and the ice-albedo feedback responsible for the presence of SB and W conditions is damped. The bifurcation graph of the system suggests the presence of a phase transition in the planetary system. Such critical rotation rate corresponds roughly to the phase-lock 2:1 condition. Therefore, if an

  6. International Year of Planet Earth - Activities and Plans in Mexico

    NASA Astrophysics Data System (ADS)

    Alaniz-Alvarez, S.; Urrutia-Fucugauchi, J.

    2007-12-01

    IYPE started as a joint initiative by UNESCO and IUGS with participation of several geosciences organizations, and has developed into a major program in geosciences with inclusion of national committees. In this presentation we focus on current activities and plans in our country, and in the international activities. IYPE activities have concentrated in publications and organization of conferences and meetings. A book series on Earth Science Experiments for Children has been defined, with the first books published on "Atmospheric Pressure and Free Fall of Objects" and "Light and Colors". Following books are on "Standing on Archimedes" and "Foucault and the Climate". Books are distributed free to school children, with more than 10,000 copies given of first volume. Other publications include the special issues of El Faro science magazine edited by the National University, with last issue published and distributed electronically and in hard copies this August. Special events include Conference of IYPE Executive Director presented during the International Day of Science Museums in late May in Science Museum Universum. This was followed by a Planet Earth Week in the University. Current plans include an electronic open-access publication, additional publications of the Planet Earth series, articles and special issues in journals and magazines, and events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Life. The metropolitan area of Mexico City, with around 20 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management. Involvement in international activities includes translation into Spanish of IYPE publications and the participation in programs and activities. In addition to activities in the different countries, we consider that IYPE should result in initiatives for

  7. Modeling the Surface Temperature of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Vladilo, Giovanni; Silva, Laura; Murante, Giuseppe; Filippi, Luca; Provenzale, Antonello

    2015-05-01

    We introduce a novel Earth-like planet surface temperature model (ESTM) for habitability studies based on the spatial-temporal distribution of planetary surface temperatures. The ESTM adopts a surface energy balance model (EBM) complemented by: radiative-convective atmospheric column calculations, a set of physically based parameterizations of meridional transport, and descriptions of surface and cloud properties more refined than in standard EBMs. The parameterization is valid for rotating terrestrial planets with shallow atmospheres and moderate values of axis obliquity (ɛ ≲ 45{}^\\circ ). Comparison with a 3D model of atmospheric dynamics from the literature shows that the equator-to-pole temperature differences predicted by the two models agree within ≈ 5 K when the rotation rate, insolation, surface pressure and planet radius are varied in the intervals 0.5≲ {Ω }/{{{Ω }}\\oplus }≲ 2, 0.75≲ S/{{S}\\circ }≲ 1.25, 0.3≲ p/(1 bar)≲ 10, and 0.5≲ R/{{R}\\oplus }≲ 2, respectively. The ESTM has an extremely low computational cost and can be used when the planetary parameters are scarcely known (as for most exoplanets) and/or whenever many runs for different parameter configurations are needed. Model simulations of a test-case exoplanet (Kepler-62e) indicate that an uncertainty in surface pressure within the range expected for terrestrial planets may impact the mean temperature by ˜ 60 K. Within the limits of validity of the ESTM, the impact of surface pressure is larger than that predicted by uncertainties in rotation rate, axis obliquity, and ocean fractions. We discuss the possibility of performing a statistical ranking of planetary habitability taking advantage of the flexibility of the ESTM.

  8. Remote Sensing Data Analytics for Planetary Science with PlanetServer/EarthServer

    NASA Astrophysics Data System (ADS)

    Rossi, Angelo Pio; Figuera, Ramiro Marco; Flahaut, Jessica; Martinot, Melissa; Misev, Dimitar; Baumann, Peter; Pham Huu, Bang; Besse, Sebastien

    2016-04-01

    Planetary Science datasets, beyond the change in the last two decades from physical volumes to internet-accessible archives, still face the problem of large-scale processing and analytics (e.g. Rossi et al., 2014, Gaddis and Hare, 2015). PlanetServer, the Planetary Science Data Service of the EC-funded EarthServer-2 project (#654367) tackles the planetary Big Data analytics problem with an array database approach (Baumann et al., 2014). It is developed to serve a large amount of calibrated, map-projected planetary data online, mainly through Open Geospatial Consortium (OGC) Web Coverage Processing Service (WCPS) (e.g. Rossi et al., 2014; Oosthoek et al., 2013; Cantini et al., 2014). The focus of the H2020 evolution of PlanetServer is still on complex multidimensional data, particularly hyperspectral imaging and topographic cubes and imagery. In addition to hyperspectral and topographic from Mars (Rossi et al., 2014), the use of WCPS is applied to diverse datasets on the Moon, as well as Mercury. Other Solar System Bodies are going to be progressively available. Derived parameters such as summary products and indices can be produced through WCPS queries, as well as derived imagery colour combination products, dynamically generated and accessed also through OGC Web Coverage Service (WCS). Scientific questions translated into queries can be posed to a large number of individual coverages (data products), locally, regionally or globally. The new PlanetServer system uses the the Open Source Nasa WorldWind (e.g. Hogan, 2011) virtual globe as visualisation engine, and the array database Rasdaman Community Edition as core server component. Analytical tools and client components of relevance for multiple communities and disciplines are shared across service such as the Earth Observation and Marine Data Services of EarthServer. The Planetary Science Data Service of EarthServer is accessible on http://planetserver.eu. All its code base is going to be available on GitHub, on

  9. Quantifying the tailward motion of reconnecting flux ropes at magnetopauses of Earth and other planets

    NASA Astrophysics Data System (ADS)

    Cassak, P.; Doss, C.; Palmroth, M.; Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Dorelli, J.

    2015-12-01

    Flux ropes caused by magnetic reconnection commonly form at the dayside magnetopauses of Earth and other planets, such as Mercury and Jupiter. They are convected tailward due to their interaction with the solar wind and as the result of reconnection. The leading model for their tailward propagation speed at Earth's magnetopause has been described using boundary layer physics (Cowley and Owen, Planet. Space Sci., 37, 1461, 1989). We revisit this topic, noting that during times when the reconnection at both X-lines bracketing the flux ropes remain active, there should be consistency with the scaling laws of asymmetric magnetic reconnection with a flow shear. The convection speed of an isolated reconnecting X-line as a function of arbitrary upstream plasma parameters, including the reconnecting magnetic fields, densities, and upstream flow in the plane of the fields, was recently calculated analytically and tested with two-fluid simulations (Doss et al., J. Geophys. Res., submitted). Here, we present fully electromagnetic kinetic particle-in-cell simulations of local asymmetric reconnection with a flow shear that confirm the prediction in collisionless plasmas relevant to planetary magnetospheres. It is notable that the X-line convects even for sub-Alfvenic flow shear and can reconnect even for flow speeds exceeding twice the magnetosheath Alfven speed, which counters previous models. The application of these results for flux rope motion in global magnetospheric simulations of Earth is discussed, as are applications to the magnetospheres of other planets.

  10. The mass of the super-Earth orbiting the brightest Kepler planet hosting star

    NASA Astrophysics Data System (ADS)

    Lopez-Morales, Mercedes; HARPS-N Team

    2016-01-01

    HD 179070, aka Kepler-21, is a V = 8.25 oscillating F6IV star and the brightest exoplanet host discovered by Kepler. An early analysis of the Q0 - Q5 Kepler light curves by Howell et al. (2012) revealed transits of a planetary companion, Kepler-21b, with a radius of 1.6 R_Earth and an orbital period of 2.7857 days. However, they could not determine the mass of the planet from the initial radial velocity observations with Keck-HIRES, and were only able to impose a 2s upper limit of about 10 M_Earth. Here we present 82 new radial velocity observations of this system obtained with the HARPS-N spectrograph. We detect the Doppler shift signal of Kepler-21b at the 3.6s level, and measure a planetary mass of 5.9 ± 1.6 M_Earth. We also update the radius of the planet to 1.65 ± 0.08 R_Earth, using the now available Kepler Q0 - Q17 photometry for this target. The mass of Kepler-21b appears to fall on the apparent dividing line between super-Earths that have lost all the material in their outer layers and those that have retained a significant amount of volatiles. Based on our results Kepler-21b belongs to the first group. Acknowledgement: This work was supported by funding from the NASA XRP Program and the John Templeton Foundation.

  11. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  12. New worlds on the horizon: Earth-sized planets close to other stars.

    PubMed

    Gaidos, Eric; Haghighipour, Nader; Agol, Eric; Latham, David; Raymond, Sean; Rayner, John

    2007-10-12

    The search for habitable planets like Earth around other stars fulfills an ancient imperative to understand our origins and place in the cosmos. The past decade has seen the discovery of hundreds of planets, but nearly all are gas giants like Jupiter and Saturn. Recent advances in instrumentation and new missions are extending searches to planets the size of Earth but closer to their host stars. There are several possible ways such planets could form, and future observations will soon test those theories. Many of these planets we discover may be quite unlike Earth in their surface temperature and composition, but their study will nonetheless inform us about the process of planet formation and the frequency of Earth-like planets around other stars. PMID:17932279

  13. Then Why Do They Call Earth the Blue Planet?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    While the most common photographs of Earth taken from space show the planet covered in blue water, NASA has managed to produce detailed color images, using satellite imagery, that show the remarkable variation of colors that actually make up the oceanic surface. An ocean s color is determined by the interaction of surface waters with sunlight, and surface waters can contain any number of different particles and dissolved substances, which could then change the color. Then Why Do They Call Earth the Blue Planet? The particles are mostly phytoplankton, the microscopic, single-celled ocean plants that are the primary food source for much marine life. Remote detection of phytoplankton provides information about the uptake and cycling of carbon by the ocean through photosynthesis, as well as the overall health of the water. Inorganic particles and substances dissolved in the water also affect its color, particularly in coastal regions. Satellite images can be used to calculate the concentrations of these materials in surface waters, as well as the levels of biological activity. The satellites allow a global view that is not available from ship or shore. NASA s orbiting satellites offer a unique vantage point for studying the oceans. By resolving the biological, chemical, and physical conditions in surface waters, they have allowed the oceanographic community to make huge leaps in its understanding of oceanographic processes on regional and global fronts. The study of ocean color, in particular, has been integral in helping researchers understand the natural and human-induced changes in the global environment and establishing the role of the oceans in the biochemical cycles of elements that influence the climate and the distribution of life on Earth.

  14. Thermal light curves of Earth-like planets: 1. Varying surface and rotation on planets in a terrestrial orbit

    NASA Astrophysics Data System (ADS)

    Gómez-Leal, I.; Codron, F.; Selsis, F.

    2016-05-01

    The integrated thermal emission of an exoplanet and its variations along the orbital motion can carry information about the climatic conditions and the rotation of the planet. In this study, we use the LMDZ 3D Global Climate Model (GCM) to simulate the climate of a synthetic Earth and three quasi-Earth configurations: a slowly rotating Earth, an ocean-covered Earth and its snowball counterpart. We also generate the time-dependent broadband thermal emission of the planet from these simulations. In a first step, we validate the model by comparing the synthetic Earth emission with the actual emission of our planet as constrained by observations. Then, we determine the main properties of the climate and emission of the three Earth-like planets and compare them to those of the Earth. We show that planets with an uneven distribution of continents exhibit a maximum of emission during the summer of the hemisphere with larger continental masses, and they may exhibit a maximum of emission at apastron. Large convective clouds might form over the continents of slow rotating planets, having an important effect over their climate and their emission. We also show that, in all the modeled cases, the equilibrium temperature, the Bond albedo and the rotation period can in theory be retrieved from the light curve by a distant observer. The values obtained at transiting geometries have a low deviation from the global values for cases with an axis tilt similar to that of the Earth, and we are able to distinguish between the four planets presented here by the data obtained from their light curves. However, this might not be the case under different conditions.

  15. Viability and Detectability of Photosynthesis on Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Wolstencroft, Ramon; Raven, John

    Based on current understanding of how photosynthesis arose and developed on Earth,we consider what factors would limit or encourage the viability of photosynthetically energized organisms on Earth-like planets (ELP's) orbiting nearby ms stars with a range of surface temperature. Assuming that the ELP originally had an atmosphere similar to that of the early Earth and orbited within the parent star's habitable zone ,the main factors are: (1) an adequate photon flux incident on the organism in the photosynthetically active region (400 to 700nm on Earth); and (2) the need to avoid UV-B radiation - prior to the production of an atmospheric UV screen of ozone - which would damage the organism's DNA. Significant photosynthesis with the generation of molecular oxygen could take place with an incident photon flux at the organism of at least ten times that on today's Earth. If the parent star is hot enough for there to be appreciable levels of UV radiation, photosynthetic organisms can seek lower UV light levels in the ELP ocean with the benefit of the greater attenuation of UV-B radiation than of the 400-700nm radiation. In the case of cool stars where the flux of photosynthetically active photons may be too low, a major change in the photosynthetic apparatus would be required from the two-photon photosystem of terrestrial photosynthesis, which energises the electron transfer needed in photosynthesis, to a three- or four-photon photosystem which can make use of lower energy photons. The implications for the viability and spectroscopic detectability of photosynthetic organisms on ELP's will be discussed.

  16. The International Year of Planet Earth: Evaluation and Perspectives

    NASA Astrophysics Data System (ADS)

    de Mulder, Eduardo

    2010-05-01

    The International Year of Planet Earth (IYPE) was initiated by the International Union of Geological Sciences (IUGS) and UNESCO and has been active in the period 2007-2009. The IYPE was proclaimed by the General Assembly of the United Nations for 2008. The International Year aims to raise public and political awareness of the relevance of the Earth sciences for society and in particular to use such knowledge more effectively in decision making to contribute to safer, healthier and more prosperous societies around the world. Following UN proclamation the IYPE Corporation was developed and 80 countries and regions joined the initiative by creating National IYPE Committees. The IYPE Science program focused on 10 themes: groundwater, health, climate, hazards, natural resources, (meg)cities, soils, oceans, deep Earth and life. But IYPE's aims and ambitions were most prominently addressed through its extensive and successful outreach program. This presentation reviews its activities from an international perspective. New initiatives that emerged from the IYPE legacy will be presented.

  17. The International Year of Planet Earth: Evaluation and Perspectives

    NASA Astrophysics Data System (ADS)

    de Mulder, E. F.

    2009-12-01

    The International Year of Planet Earth (IYPE) was initiated by the International Union of Geological Sciences (IUGS) and UNESCO and has been active in the period 2007-2009. The IYPE was proclaimed by the General Assembly of the United Nations for 2008. The International Year aims to raise public and political awareness of the relevance of the Earth sciences for society and in particular to use such knowledge more effectively in decision making to contribute to safer, healthier and more prosperous societies around the world. Following UN proclamation the IYPE Corporation was developed and 80 countries and regions joined the initiative by creating National IYPE Committees. The IYPE Science program focused on 10 themes: groundwater, health, climate, hazards, natural resources, (meg)cities, soils, oceans, deep Earth and life. But IYPE’s aims and ambitions were most prominently addressed through its extensive and successful outreach program. Approaching the end of the IYPE triennium, this presentation will review its activities from an international perspective. New initiatives that emerged from the IYPE legacy will be discussed.

  18. Carbon trading, climate change, environmental sustainability and saving planet Earth

    NASA Astrophysics Data System (ADS)

    Yim, W. W.

    2009-12-01

    Carbon trading namely the reduction of future carbon dioxide levels has been widely touted as a solution needed to counter the problem of climate change. However, there are enormous risks involved as the measure tackles only one of the causes of climate change and may prove to be ineffective. This presentation highlights ten points relevant to the discussion on carbon trading, climate change, environmental sustainability and saving planet Earth for increasing public awareness. They include: (1) Climate has changed throughout Earth’s history. (2) The present level of about 388 parts per million level of carbon dioxide in the atmosphere has already exceeded the maximum level of the past 800,000 years. This value is obtained from air bubbles trapped within the ice in Antarctica but the consequence of further increases remains uncertain. (3) Earth scientists do not have an overwhelming consensus on whether carbon trading alone is an effective measure in mitigating climate change. (4) The present state of the Earth’s demise is largely the result of human actions including population growth and the mismanagement of the Earth. (5) The latest evidence on sea-level changes in the South China Sea a far-field region unaffected by glacial isostatic readjustment is not in support of a ‘rapid’ rate of future sea-level rise through global warming. (6) Volcanic eruptions have an important role in driving the Earth’s climate. Examples of temperature lowering as well as abnormally wet and dry years can both be found in the instrumental record. (7) Humans have drastically modified the ‘natural’ water cycle. This is however not a well recognized cause of climate change compared to the emission of greenhouse gases through fossil fuel consumption. (8) The bulk (~75%) of the rise in mean annual temperature of about 1oC observed at the Hong Kong Observatory Station since record began in 1884 is best explained by the thermal heat island effect. (9) No evidence has been found

  19. Modeling the Earth system in the Mission to Planet Earth era

    NASA Technical Reports Server (NTRS)

    Unninayar, Sushel; Bergman, Kenneth H.

    1993-01-01

    A broad overview is made of global earth system modeling in the Mission to Planet Earth (MTPE) era for the multidisciplinary audience encompassed by the Global Change Research Program (GCRP). Time scales of global system fluctuation and change are described in Section 2. Section 3 provides a rubric for modeling the global earth system, as presently understood. The ability of models to predict the future state of the global earth system and the extent to which their predictions are reliable are covered in Sections 4 and 5. The 'engineering' use of global system models (and predictions) is covered in Section 6. Section 7 covers aspects of an increasing need for improved transform algorithms and better methods to assimilate this information into global models. Future monitoring and data requirements are detailed in Section 8. Section 9 covers the NASA-initiated concept 'Mission to Planet Earth,' which employs space and ground based measurement systems to provide the scientific basis for understanding global change. Section 10 concludes this review with general remarks concerning the state of global system modeling and observing technology and the need for future research.

  20. Our Mission to Planet Earth: A guide to teaching Earth system science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  1. The Formation of the Earth-Moon System and the Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  2. Prevalence of Earth-size planets orbiting Sun-like stars.

    PubMed

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d. PMID:24191033

  3. Mission to Planet Earth Strategic Enterprise Plan 1996-2002

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Mission to Planet Earth's (MTPE's) first Strategic Enterprise Plan, issued in May 1995, defined the Agency's major goals and objectives as well as constraints. This update of the Strategic Enterprise Plan identifies the following major changes: a focused Science Research Plan that integrates space-based and in situ observational critical science to address critical science uncertainties; a technology infusion plan to reduce the cost of future missions; a series of flight opportunities to infuse new science into the overall program; and a tighter coupling between NASA and NOAA to reduce costs and to improve the overall program. Three important new initiatives are also under development and are described briefly in this plan: MTPE Education Strategy, MTPE Commercial Strategy, and an emerging concept for an Integrated Global Observing Strategy. This first update to the MTPE Strategic Enterprise Plan captures these new developments, and takes a significant step forward in planning this complex Earth system science endeavor. The plan and other information on MTPE may be viewed via the Internet at http://www.hq.nasa.gov/office/mtpe/.

  4. Mission to Planet Earth. Strategic enterprise plan, 1995-2000

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Mission to Planet Earth (MTPE) provides long-term understanding of the earth system needed to protect and improve our environment, now and for future generations. This MTPE Strategic Enterprise Plan states how NASA intends to meet its responsibility to the Nation for developing a long-term, integrated program of environmental observation in support of informed decision-making. This plan implements the NASA Strategic Plan for the MTPE Enterprise; it is the first version of a rolling 5-year plan that will be updated annually. It is consistent with the interagency program developed by the Committee on Environment and Natural Resources of the National Science and Technology Council and implemented in large part through the U.S. Global Change Research Program. This report consists of the following sections: (1) introduction; (2) scientific foundation; (3) mission (destination and purposes); (4) principle of operation (ethical and quality assurance standards); (5) customer base (to ensure that the right products and services are delivered); (6) internal and external assessments; (7) assumptions; (8) goals, objectives, and strategies; (9) linkages to other strategic enterprises; and (10) summary.

  5. Mission to Planet Earth. Strategic enterprise plan, 1995-2000

    NASA Astrophysics Data System (ADS)

    1995-05-01

    Mission to Planet Earth (MTPE) provides long-term understanding of the earth system needed to protect and improve our environment, now and for future generations. This MTPE Strategic Enterprise Plan states how NASA intends to meet its responsibility to the Nation for developing a long-term, integrated program of environmental observation in support of informed decision-making. This plan implements the NASA Strategic Plan for the MTPE Enterprise; it is the first version of a rolling 5-year plan that will be updated annually. It is consistent with the interagency program developed by the Committee on Environment and Natural Resources of the National Science and Technology Council and implemented in large part through the U.S. Global Change Research Program. This report consists of the following sections: (1) introduction; (2) scientific foundation; (3) mission (destination and purposes); (4) principle of operation (ethical and quality assurance standards); (5) customer base (to ensure that the right products and services are delivered); (6) internal and external assessments; (7) assumptions; (8) goals, objectives, and strategies; (9) linkages to other strategic enterprises; and (10) summary.

  6. An Earth-sized planet in the habitable zone of a cool star.

    PubMed

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form. PMID:24744370

  7. Un-Earth-like interiors of the Earth-like planets

    NASA Astrophysics Data System (ADS)

    Shim, S. H. D.; Nisr, C.; Pagano, M.; Chen, H.; Ko, B.; Noble, S.; Leinenweber, K. D.; Young, P.; Desch, S. J.

    2015-12-01

    A number of exoplanets have been described as "Earth-like" planets (or even exo-earths) based on the mass-radius relations. Yet, significant variations have been documented in elemental abundances of planet-hosting stars, which will result in very different structures and processes in the interiors of rocky exoplanets. Recent data suggest that the Mg/Si ratio can be as small as less than 1 and as large as more than 2, opening the possibilities for the upper mantles to be dominated by pyroxene and olivine, respectively, and the lower mantles to be dominated by bridgmanite and ferropericlase, respectively. The changes in mineralogy will alter key properties, such as discontinuity structures (and therefore scale of mantle mixing), viscosity, and volatiles storage, of the mantle. Partial melting of such mantles would result in different compositions of the crusts, affecting the tectonics. However, the prediction should be made carefully because oxygen fugacity and contents of volatiles can change the mineralogy even for the same bulk composition. In extremely reducing proto-planetary disks, carbides will form instead of oxides and silicates, and become main constituents of planets in the system. Because carbides have high thermal conductivity and low thermal expansivity, internal heat transport of such planets may be dominated by conduction and mantle mixing would be much more limited than that of the Earth. However, the behaviors and properties of carbides need to be understood better at high pressure and high temperature. Some rocky exoplanets may have very thick layers of water and other icy materials. Interactions between ice (or fluid) and rock at extreme conditions would be the key to understand dynamics and habitability of such exoplanets.

  8. Planetary Formation: From The Earth And Moon To Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of planetary growth, emphasizing the formation of habitable planets, is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost - to orbital decay within the protoplanetary disk. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. Specific issues to be discussed include: (1) how do giant planets influence the formation and habitability of terrestrial planets? (2) could a giant impact leading to lunar formation have occurred - 100 million years after the condensation of the oldest meteorites?

  9. NASA Now Minute: Earth and Space Science: 100 Billion Planets

    NASA Video Gallery

    Stephen Kane, co-author of the article, “Study Shows Our Galaxy has 100Billion Planets” reveals details about this incredible study explainsjust how common planets are in our Milky Way galaxy...

  10. NASA Now: Earth and Space Science: 100 Billion Planets

    NASA Video Gallery

    Discover how a recent coronal mass ejection from the sun affected our planet and hear from Dr. Stephen Kane, an astrophysicist who describes recent findings from a survey of the planets in the Milk...

  11. Prevalence of Earth-size planets orbiting Sun-like stars

    PubMed Central

    Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.

    2013-01-01

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration’s Kepler mission. We found 603 planets, including 10 that are Earth size () and receive comparable levels of stellar energy to that of Earth (). We account for Kepler’s imperfect detectability of such planets by injecting synthetic planet–caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ∼200 d. Extrapolating, one finds % of Sun-like stars harbor an Earth-size planet with orbital periods of 200–400 d. PMID:24191033

  12. A path to the detection of Earth-type planets (Jean Dominique Cassini Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Mayor, Michel

    2016-04-01

    "How many planets in the Milky Way?", "How many planets similar to our Earth?" On the last twenty years, significant results have been obtained in the domain of extrasolar planets. More than two thousand planets have characterized orbits, for several hundred of them their radii are known. We have discovered an amazing diversity of planetary systems. These observations have revealed the importance of new physical process to be taken into account for the formation and evolution of planetary systems. The synergy between ground-based radial velocity measurements and the detection of transiting planets have permitted exciting possibilities to characterize planets. Already we have the possibility to get clues on the internal composition of exoplanets and their atmosphere. Do we have the instrumental capabilities to detect and study planets as Earth analogues? What are the intruments in development and their scientific goals.

  13. The role of dynamics on the habitability of an Earth-like planet

    NASA Astrophysics Data System (ADS)

    Pilat-Lohinger, Elke

    2015-04-01

    From the numerous detected planets outside the Solar System, no terrestrial planet comparable with our Earth has been discovered so far. The search for an Exo-Earth is certainly a big challenge which may require the detections of planetary systems resembling our Solar System in order to find life like on Earth. However, even if we find Solar System analogues, it is not certain that a planet in Earth position will have similar circumstances as those of the Earth. Small changes in the architecture of the giant planets can lead to orbital perturbations which may change the conditions of habitability for a terrestrial planet in the habitable zone (HZ). We present a numerical investigation where we first study the motion of test-planets in a particular Jupiter-Saturn configuration for which we can expect strong gravitational perturbations on the motion at the Earth's position according to a previous work. In this study, we show that these strong perturbations can be reduced significantly by the neighbouring planets of Earth. In the second part of our study, we investigate the motion of test-planets in inclined Jupiter-Saturn systems where we analyse changes in the dynamical behaviour of the inner planetary system. Moderate values of inclination seem to counteract the perturbations in the HZ, while high inclinations induce more chaos in this region. Finally, we carry out a stability study of the actual orbits of Venus, Earth and Mars moving in the inclined Jupiter-Saturn systems for which we used the Solar System parameters. This study shows that the three terrestrial planets will only move in low-eccentric orbits if Saturn's inclination is <=10°. Therefore, it seems that it is advantageous for the habitability of Earth when all planets move nearly in the same plane.

  14. THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS

    SciTech Connect

    Fossati, L.; Haswell, C. A.; Patel, M. R.; Busuttil, R.; Bagnulo, S.; Kowalski, P. M.; Shulyak, D. V.; Sterzik, M. F. E-mail: C.A.Haswell@open.ac.uk E-mail: r.busuttil@open.ac.uk E-mail: kowalski@gfz-potsdam.de E-mail: msterzik@eso.org

    2012-09-20

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the continuous habitable zone (CHZ) for {approx}8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, and hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarization due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 10{sup 2} (10{sup 4}) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow us to reveal the presence of a planet atmosphere, providing a first characterization. Planets in the CHZ of a 0.6 M{sub Sun} white dwarf will be distorted by Roche geometry, and a Kepler-11d analog would overfill its Roche lobe. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

  15. Prevalence of Earth-size Planets Orbiting Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Petigura, Erik Ardeshir

    2015-04-01

    In this thesis, I explore two topics in exoplanet science. The first is the prevalence of Earth-size planets in the Milky Way Galaxy. To determine the occurrence of planets having different sizes, orbital periods, and other properties, I conducted a survey of extrasolar planets using data collected by NASA's Kepler Space Telescope. This project involved writing new algorithms to analyze Kepler data, finding planets, and conducting follow-up work using ground-based telescopes. I found that most stars have at least one planet at or within Earth's orbit and that 26% of Sun-like stars have an Earth-size planet with an orbital period of 100 days or less. The second topic is the connection between the properties of planets and their host stars. The precise characterization of exoplanet hosts helps to bring planet properties like mass, size, and equilibrium temperature into sharper focus and probes the physical processes that form planets. I studied the abundance of carbon and oxygen in over 1000 nearby stars using optical spectra taken by the California Planet Search. I found a large range in the relative abundance of carbon and oxygen in this sample, including a handful of carbon-rich stars. I also developed a new technique called SpecMatch for extracting fundamental stellar parameters from optical spectra. SpecMatch is particularly applicable to the relatively faint planet-hosting stars discovered by Kepler.

  16. The Mt John University Observatory search for Earth-mass planets in the habitable zone of α Centauri

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Bergmann, Christoph; Hearnshaw, John; Barnes, Stuart I.; Wittenmyer, Robert A.; Ramm, David; Kilmartin, Pam; Gunn, Fraser; Brogt, Erik

    2015-04-01

    The `holy grail' in planet hunting is the detection of an Earth-analogue: a planet with similar mass as the Earth and an orbit inside the habitable zone. If we can find such an Earth-analogue around one of the stars in the immediate solar neighbourhood, we could potentially even study it in such great detail to address the question of its potential habitability. Several groups have focused their planet detection efforts on the nearest stars. Our team is currently performing an intensive observing campaign on the α Centauri system using the High Efficiency and Resolution Canterbury University Large Échelle Spectrograph (Hercules) at the 1 m McLellan telescope at Mt John University Observatory in New Zealand. The goal of our project is to obtain such a large number of radial velocity (RV) measurements with sufficiently high temporal sampling to become sensitive to signals of Earth-mass planets in the habitable zones of the two stars in this binary system. Over the past few years, we have collected more than 45 000 spectra for both stars combined. These data are currently processed by an advanced version of our RV reduction pipeline, which eliminates the effect of spectral cross-contamination. Here we present simulations of the expected detection sensitivity to low-mass planets in the habitable zone by the Hercules programme for various noise levels. We also discuss our expected sensitivity to the purported Earth-mass planet in a 3.24-day orbit announced by Dumusque et al. (2012).

  17. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model

    NASA Astrophysics Data System (ADS)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.

    2011-12-01

    Red Sea indicates that a shallow magma-chamber causes a sufficiently high heat-flow to drive a convection cell of seawater. The model shows that salt precipitates along the flow lines within the SCRIW-region (Hovland et al., 2006). During the various stages of planet Mars' development, it must be inferred that zones with very high heat-flow also existed there. This meant that water (brine) confined in the crust of Mars was mobilized in a convective manner and would pass into the SCRIW-zone during the down-going leg (the recharge leg) of the convective cell. The zones with SCRIW out-salting would require accommodation space for large masses of solid salt, as modeled in the Red Sea analogy. However, as the accommodation space for the solid salt fills up, it will pile up and force its way upwards to form large, perhaps layered anticlines, as seen in the Hebes Mensa area of Mars and at numerous locations on Earth, including the Red Sea. Thus, we offer a universal 'hydrothermal salt model', which would be viable on all planets with free water in their interiors or on their surfaces, including Mars and Earth.

  18. The Prospects for Earth-Like Planets within Known Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Gehman, Curtis S.; Adams, Fred C.; Laughlin, Gregory

    1996-11-01

    We consider the possible existence of habitable Earth-like planets in four recently discovered extrasolar planetary systems. Such prospective planets must have orbits that are (1) dynamically stable, and (2) allow for surface temperatures compatible with liquid water. We find that three of the four new systems (51 Peg, rho^1 Cnc, and 47 UMa) are easily capable of supporting habitable planets. The fourth (70 Vir) is capable of having a habitable planet only under rather extreme circumstances. To obtain these results, we develop a probabilistic formulation for the coupled problem of orbital stability and planetary habitability. (SECTION: Extrasolar Planets)

  19. THE OCCURRENCE RATE OF EARTH ANALOG PLANETS ORBITING SUN-LIKE STARS

    SciTech Connect

    Catanzarite, Joseph; Shao, Michael

    2011-09-10

    Kepler is a space telescope that searches Sun-like stars for planets. Its major goal is to determine {eta}{sub Earth}, the fraction of Sun-like stars that have planets like Earth. When a planet 'transits' or moves in front of a star, Kepler can measure the concomitant dimming of the starlight. From analysis of the first four months of those measurements for over 150,000 stars, Kepler's Science Team has determined sizes, surface temperatures, orbit sizes, and periods for over a thousand new planet candidates. In this paper, we characterize the period probability distribution function of the super-Earth and Neptune planet candidates with periods up to 132 days, and find three distinct period regimes. For candidates with periods below 3 days, the density increases sharply with increasing period; for periods between 3 and 30 days, the density rises more gradually with increasing period, and for periods longer than 30 days, the density drops gradually with increasing period. We estimate that 1%-3% of stars like the Sun are expected to have Earth analog planets, based on the Kepler data release of 2011 February. This estimate of {eta}{sub Earth} is based on extrapolation from a fiducial subsample of the Kepler planet candidates that we chose to be nominally 'complete' (i.e., no missed detections) to the realm of the Earth-like planets, by means of simple power-law models. The accuracy of the extrapolation will improve as more data from the Kepler mission are folded in. Accurate knowledge of {eta}{sub Earth} is essential for the planning of future missions that will image and take spectra of Earth-like planets. Our result that Earths are relatively scarce means that a substantial effort will be needed to identify suitable target stars prior to these future missions.

  20. The Prevalence of Earth-size Planets Orbiting Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew

    2015-01-01

    In less than two decades since the discovery of the first planet orbiting another Sun-like star, the study of extrasolar planets has matured beyond individual discoveries to detailed characterization of the planet population as a whole. No mission has played more of a role in this paradigm shift than NASA's Kepler mission. Kepler photometry has shown that planets like Earth are common throughout the Milky Way Galaxy. Our group performed an independent search of Kepler photometry using our custom transit-finding pipeline, TERRA, and produced our own catalog of planet candidates. We conducted spectroscopic follow-up of their host stars in order to rule out false positive scenarios and to better constrain host star properties. We measured TERRA's sensitivity to planets of different sizes and orbital periods by injecting synthetic planets into raw Kepler photometry and measuring the recovery rate. Correcting for orbital tilt and survey completeness, we found that ~80% of GK stars harbor one or more planets within 1 AU and that ~22% of Sun-like stars harbor an Earth-size planet that receives similar levels of stellar radiation as Earth. I will present the latest results from our efforts to characterize the demographics of small planets revealed by Kepler.

  1. DISCOVERING HABITABLE EARTHS, HOT JUPITERS, AND OTHER CLOSE PLANETS WITH MICROLENSING

    SciTech Connect

    Di Stefano, R.

    2012-06-20

    Searches for planets via gravitational lensing have focused on cases in which the projected separation, a, between planet and star is comparable to the Einstein radius, R{sub E} . This paper considers smaller orbital separations and demonstrates that evidence of close-orbit planets can be found in the low-magnification portion of the light curves generated by the central star. We develop a protocol for discovering hot Jupiters as well as Neptune-mass and Earth-mass planets in the stellar habitable zone. When planets are not discovered, our method can be used to quantify the probability that the lens star does not have planets within specified ranges of the orbital separation and mass ratio. Nearby close-orbit planets discovered by lensing can be subject to follow-up observations to study the newly discovered planets or to discover other planets orbiting the same star. Careful study of the low-magnification portions of lensing light curves should produce, in addition to the discoveries of close-orbit planets, definite detections of wide-orbit planets through the discovery of 'repeating' lensing events. We show that events exhibiting extremely high magnification can effectively be probed for planets in close, intermediate, and wide distance regimes simply by adding several-time-per-night monitoring in the low-magnification wings, possibly leading to gravitational lensing discoveries of multiple planets occupying a broad range of orbits, from close to wide, in a single planetary system.

  2. Terrestrial Planet Formation in the Presence of Migrating Super-Earths

    NASA Astrophysics Data System (ADS)

    Izidoro, André; Morbidelli, Alessandro; Raymond, Sean N.

    2014-11-01

    Super-Earths with orbital periods less than 100 days are extremely abundant around Sun-like stars. It is unlikely that these planets formed at their current locations. Rather, they likely formed at large distances from the star and subsequently migrated inward. In this work we use N-body simulations to study the effect of super-Earths on the accretion of rocky planets. In our simulations, one or more super-Earths migrates inward through a disk of Moon-size to Mars-size protoplanetary embryos and much smaller planetesimals embedded in a gaseous disk. In order to qualitatively cover possible scenarios of type-I migration for super-Earths, we have performed simulations considering many different migration speeds and configurations for these bodies. Fast-migrating super-Earths, where super-Earth’s migration is comparable to the traditional type-I isothermal regime (τmig˜0.01-0.1 Myr), only have a modest effect on the protoplanetary embryos and planetesimals. Sufficient material survives to form rocky, Earth-like planets on orbits exterior to the super-Earths'. In contrast, slowly-migrating super-Earths shepherd rocky material interior to their orbits and strongly deplete the terrestrial planet-forming zone. In this situation any Earth-sized planets in the habitable zone are extremely volatile-rich and are therefore probably not Earth-like.

  3. A CONTINUUM OF PLANET FORMATION BETWEEN 1 AND 4 EARTH RADII

    SciTech Connect

    Schlaufman, Kevin C.

    2015-02-01

    It has long been known that stars with high metallicity are more likely to host giant planets than stars with low metallicity. Yet the connection between host star metallicity and the properties of small planets is only just beginning to be investigated. It has recently been argued that the metallicity distribution of stars with exoplanet candidates identified by Kepler provides evidence for three distinct clusters of exoplanets, distinguished by planet radius boundaries at 1.7 R{sub ⨁} and 3.9 R{sub ⨁}. This would suggest that there are three distinct planet formation pathways for super-Earths, mini-Neptunes, and giant planets. However, as I show through three independent analyses, there is actually no evidence for the proposed radius boundary at 1.7 R{sub ⨁}. On the other hand, a more rigorous calculation demonstrates that a single, continuous relationship between planet radius and metallicity is a better fit to the data. The planet radius and metallicity data therefore provides no evidence for distinct categories of small planets. This suggests that the planet formation process in a typical protoplanetary disk produces a continuum of planet sizes between 1 R{sub ⨁} and 4 R{sub ⨁}. As a result, the currently available planet radius and metallicity data for solar-metallicity F and G stars give no reason to expect that the amount of solid material in a protoplanetary disk determines whether super-Earths or mini-Neptunes are formed.

  4. The Habitability of Our Earth and Other Earths: Astrophysical, Geochemical, Geophysical, and Biological Limits on Planet Habitability

    NASA Astrophysics Data System (ADS)

    Lineweaver, Charles H.; Chopra, Aditya

    2012-05-01

    For life-forms like us, the most important feature of Earth is its habitability. Understanding habitability and using that knowledge to locate the nearest habitable planet may be crucial for our survival as a species. During the past decade, expectations that the universe could be filled with habitable planets have been bolstered by the increasingly large overlap between terrestrial environments known to harbor life and the variety of environments on newly detected rocky exoplanets. The inhabited and uninhabited regions on Earth tell us that temperature and the presence of water are the main constraints that can be used in a habitability classification scheme for rocky planets. Our compilation and review of recent exoplanet detections suggests that the fraction of stars with planets is ˜100%, and that the fraction with rocky planets may be comparably large. We review extensions to the circumstellar habitable zone (HZ), including an abiogenesis habitable zone and the galactic habitable zone.

  5. A limit on the presence of Earth-mass planets around a Sun-like star

    SciTech Connect

    Agol, Eric; Steffen, Jason H.; /Fermilab

    2006-10-01

    We present a combined analysis of all publicly available, visible HST observations of transits of the planet HD 209458b. We derive the times of transit, planet radius, inclination, period, and ephemeris. The transit times are then used to constrain the existence of secondary planets in the system. We show that planets near an Earth mass can be ruled out in low-order mean-motion resonance, while planets less than an Earth mass are ruled out in interior, 2:1 resonance. We also present a combined analysis of the transit times and 68 high precision radial velocity measurements of the system. These results are compared to theoretical predictions for the constraints that can be placed on secondary planets.

  6. The atmospheres of the earth and the other planets: Origin, evolution and composition

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1988-01-01

    The current understanding of the composition, chemistry, and structure of the atmospheres of the other planets and the origin, early history, and evolution of the earth's atmosphere is reviewed. The information on the atmospheres of the other planets is based on the successful Mariner, Viking, Pioneer, and Voyager missions to these planets. The information on the origin, early history, and evolution of the atmosphere, which is somewhat speculative, is largely based on numerical studies with geochemical and photochemical models.

  7. ROTATIONAL VARIABILITY OF EARTH'S POLAR REGIONS: IMPLICATIONS FOR DETECTING SNOWBALL PLANETS

    SciTech Connect

    Cowan, Nicolas B.; Robinson, Tyler; Agol, Eric; Meadows, Victoria S.; Shields, Aomawa L.; Livengood, Timothy A.; Deming, Drake; A'Hearn, Michael F.; Wellnitz, Dennis D.; Charbonneau, David; Lisse, Carey M.

    2011-04-10

    We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.

  8. Rotational Variability of Earth's Polar Regions: Implications for Detecting Snowball Planets

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas B.; Robinson, Tyler; Livengood, Timothy A.; Deming, Drake; Agol, Eric; A'Hearn, Michael F.; Charbonneau, David; Lisse, Carey M.; Meadows, Victoria S.; Seager, Sara; Shields, Aomawa L.; Wellnitz, Dennis D.

    2011-04-01

    We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.

  9. Terrestrial planet formation in the presence of migrating super-Earths

    SciTech Connect

    Izidoro, André; Morbidelli, Alessandro; Raymond, Sean N. E-mail: morbidelli@oca.eu

    2014-10-10

    Super-Earths with orbital periods less than 100 days are extremely abundant around Sun-like stars. It is unlikely that these planets formed at their current locations. Rather, they likely formed at large distances from the star and subsequently migrated inward. Here we use N-body simulations to study the effect of super-Earths on the accretion of rocky planets. In our simulations, one or more super-Earths migrate inward through a disk of planetary embryos and planetesimals embedded in a gaseous disk. We tested a wide range of migration speeds and configurations. Fast-migrating super-Earths (τ{sub mig} ∼ 0.01-0.1 Myr) only have a modest effect on the protoplanetary embryos and planetesimals. Sufficient material survives to form rocky, Earth-like planets on orbits exterior to the super-Earths'. In contrast, slowly migrating super-Earths shepherd rocky material interior to their orbits and strongly deplete the terrestrial planet-forming zone. In this situation any Earth-sized planets in the habitable zone are extremely volatile-rich and are therefore probably not Earth-like.

  10. The Now Frontier. Pioneer to Jupiter. Man Links Earth and Planets. Issue No. 1-5.

    ERIC Educational Resources Information Center

    1973

    This packet of space science instructional materials includes five issues related to the planet Jupiter. Each issue presents factual material about the planet, diagramatic representations of its movements and positions relative to bright stars or the earth, actual photographs and/or tables of data collected relevant to Pioneer 10, the spacecraft…

  11. Symbol for a Unified World: A Photograph of the Planet Earth.

    ERIC Educational Resources Information Center

    Malley, James C.

    1987-01-01

    Advocates the use, in the classroom, of a photograph of the planet Earth taken from space. Sees it as a powerful symbol for a unified world and its presence in the classroom as providing an expanded awareness of the unitary nature of the students' global home: one planet, populated by one human family. (KS)

  12. The International Year of Planet Earth: Lessons learned.

    NASA Astrophysics Data System (ADS)

    de Mulder, E. F.; Janoschek, W. R.

    2007-12-01

    In 2001, the International Union of Geological Sciences (IUGS) developed an initiative to launch an International Year of Planet Earth (IYPE). This was followed up directly by UNESCO's Earth Science Division. As politicians, decision makers, the media and the public at large were chosen as the main targets, obtaining a proclamation by the General Assembly of the United Nations was crucial. Not only did the beauty and usefulness of Geosciences have to be demonstrated, but also the potential of the timely use of Geoscientific knowledge to minimise loss of life and property, e.g. during the Tsunami and Katrina disasters, had to be made crystal clear. Some of the lessons learned during the preparation for the IYPE (2007-2009) may be summarized as follows. - Support from scientific organisations: from the onset very positive, many joining as Founding or Associate Partners. - Individual geoscientists: some were sceptical, many (very) positive. - UN diplomats: the major natural disasters in 2004-2005 helped trigger their support throughout the UN proclamation process; so-called small countries proved to be more open-minded in lodging this initiative in the UN Agenda. - Politicians: Support for UN proclamations must be decided at the Ministerial level. This procedure may consume considerable time and cannot be influenced from outside. - National Committees: UN proclamation strongly stimulated the creation of National Committees for the IYPE; on August 31st they number 48 with a potential to reach 60 or more. Most of the actions planned at national level comprise outreach activities. - Fundraising: Significant funds have already been raised by National IYPE Committees. Fundraising for international events and to bolster the infrastructure of the International Year have proved to be more difficult. - Patrons, Goodwill Ambassadors, and Senior Advisors have proved to be essential in promoting the ambitions of the IYPE and in the vital process of fundraising. - Good examples

  13. Selections from 2015: Earth-Sized Planet Found in Star's Habitable Zone

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-03-01

    Editors Note:In these last two weeks of 2015, well be looking at a few selections from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.Discovery and Validation of Kepler-452b: a 1.6 R Super Earth Exoplanet in the Habitable Zone of a G2 StarPublished July2015Main takeaway:A phase-folded light curve showing the transit of Kepler-452b. Its transit lasts 10.5 hours, and its period is 385 days. [Jenkins et al. 2015]A team led by Jon Jenkins (NASA Ames Research Center) announced the discovery and confirmation of Kepler-452b, an exoplanet only 60% larger than Earth and located in the habitable zone of its G2 star. This planet orbits its star at a distance of just over 1 AU, taking 385 days to complete an orbit. Kepler-452b also stands a good chance of being rocky, according to estimates.Why its interesting:Kepler-452b is the first near-Earth-sized planet to be found in the habitable zone of a Sun-like star making this the closest analog to the Earth-Sun system found in the Kepler dataset so far.About the history of the system (and the future of ours?):The authors estimate that the system is ~6 billion years old, and that Kepler-452b has been in the habitable zone of its star throughout its lifetime a substantially longer time than Earth has been around and habitable! Kepler-452bs host star, in addition to being 1.5 billion years older than the Sun, is roughly 10% larger. This system might therefore provide a glimpse of what Earths environment may be like in the future, as the Sun slowly expands on its way to becoming a red giant.CitationJon M. Jenkins et al 2015 AJ 150 56. doi:10.1088/0004-6256/150/2/56

  14. Jupiter and Planet Earth. [planetary and biological evolution and natural satellites

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included.

  15. Mission to Planet Earth: A program to understand global environmental change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A description of Mission to Planet Earth, a program to understand global environmental change, is presented. Topics discussed include: changes in the environment; global warming; ozone depletion; deforestation; and NASA's role in global change research.

  16. Mission to Planet Earth: A program to understand global environmental change

    SciTech Connect

    Not Available

    1994-02-01

    A description of Mission to Planet Earth, a program to understand global environmental change, is presented. Topics discussed include: changes in the environment; global warming; ozone depletion; deforestation; and NASA's role in global change research.

  17. A Direct Path to Finding Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Linder, Don J.

    2009-01-01

    As envisaged by the 2000 astrophysics decadal survey panel: The main goal of Terrestrial Planet Finder (TPF) is nothing less than to search for evidence of life on terrestrial planets around nearby stars . Here, we consider how an optical telescope paired with a free-flying occulter blocking light from the star can reach this goal directly, without knowledge of results from prior astrometric, doppler, or transit exoplanet observations. Using design reference missions and other simulations, we explore the potential of TPF-O to find planets in the habitable zone around their central stars, to spectrally characterize the atmospheres of detected planets, and to obtain rudimentary information about their orbits. We emphasize the importance of ozone absorption in the UV spectrum of a planet as a marker of photosynthesis by plants, algae, and cyanobacteria.

  18. HABITABILITY OF EARTH-MASS PLANETS AND MOONS IN THE KEPLER-16 SYSTEM

    SciTech Connect

    Quarles, B.; Musielak, Z. E.; Cuntz, M. E-mail: zmusielak@uta.edu

    2012-05-01

    We demonstrate that habitable Earth-mass planets and moons can exist in the Kepler-16 system, known to host a Saturn-mass planet around a stellar binary, by investigating their orbital stability in the standard and extended habitable zone (HZ). We find that Earth-mass planets in satellite-like (S-type) orbits are possible within the standard HZ in direct vicinity of Kepler-16b, thus constituting habitable exomoons. However, Earth-mass planets cannot exist in planetary-like (P-type) orbits around the two stellar components within the standard HZ. Yet, P-type Earth-mass planets can exist superior to the Saturnian planet in the extended HZ pertaining to considerably enhanced back-warming in the planetary atmosphere if facilitated. We briefly discuss the potential detectability of such habitable Earth-mass moons and planets positioned in satellite and planetary orbits, respectively. The range of inferior and superior P-type orbits in the HZ is between 0.657-0.71 AU and 0.95-1.02 AU, respectively.

  19. SPE ® water electrolyzers in support of Mission from Planet Earth

    NASA Astrophysics Data System (ADS)

    McElroy, J. F.

    Although the Mission from Planet Earth is still in the early planning stage, several unique and potentially enabling uses of the SPE water electrolyzer have been identified. The maturity of the SPE water electrolyzer cells gained from the Naval applications should give mission planners the confidence to take advantage of the leveraging effects of the SPE cell technology. Although the inherent capabilities of this technology have been proven, significant development effort remains to package these cells for the Mission from Planet Earth applications.

  20. Doppler spectroscopy as a path to the detection of Earth-like planets.

    PubMed

    Mayor, Michel; Lovis, Christophe; Santos, Nuno C

    2014-09-18

    Doppler spectroscopy was the first technique used to reveal the existence of extrasolar planetary systems hosted by solar-type stars. Radial-velocity surveys led to the detection of a rich population of super-Earths and Neptune-type planets. The numerous detected systems revealed a remarkable diversity. Combining Doppler measurements with photometric observations of planets transiting their host stars further provides access to the planet bulk density, a first step towards comparative exoplanetology. The development of new high-precision spectrographs and space-based facilities will ultimately lead us to characterize rocky planets in the habitable zone of our close stellar neighbours. PMID:25230654

  1. Learning to Map the Earth and Planets using a Google Earth - based Multi-student Game

    NASA Astrophysics Data System (ADS)

    De Paor, D. G.; Wild, S. C.; Dordevic, M.

    2011-12-01

    We report on progress in developing an interactive geological and geophysical mapping game employing the Google Earth, Google Moon, and Goole Mars virtual globes. Working in groups of four, students represent themselves on the Google Earth surface by selecting an avatar. One of the group drives to each field stop in a model vehicle using game-like controls. When they arrive at a field stop and get out of their field vehicle, students can control their own avatars' movements independently and can communicate with one another by text message. They are geo-fenced and receive automatic messages if they wander off target. Individual movements are logged and stored in a MySQL database for later analysis. Students collaborate on mapping decisions and submit a report to their instructor through a Javascript interface to the Google Earth API. Unlike real mapping, students are not restricted by geographic access and can engage in comparative mapping on different planets. Using newly developed techniques, they can also explore and map the sub-surface down to the core-mantle boundary. Virtual specimens created with a 3D scanner, Gigapan images of outcrops, and COLLADA models of mantle structures such as subducted lithospheric slabs all contribute to an engaging learning experience.

  2. Kepler: The Search for Earth-Size Planets Begins

    NASA Video Gallery

    Since its launch in March, 2009, the Kepler Mission has announced the discovery of 9 confirmed exoplanets (or planets outside our solar system). This video explores how the team works to combine ph...

  3. A Xenolith-rich, Basaltic Peperite on Earth: Analogue for Other Planets?

    NASA Astrophysics Data System (ADS)

    Obenholzner, J. H.

    2002-12-01

    Peperites are typically the product of wet sediment-magma/lava/hot volcaniclastic deposits interaction and are therefore indicative for the existence of frozen/liquefied or fluid water in the history of a planet. Most of the peperites on Earth are found in a paleo-near-surface environment and are exposed to alteration if burial did not protect them (Skilling et al. 2002). Sediments can be incorporated into ascending magma (Obenholzner et al. 2003). These macro- or micro-xenoliths show various degrees of metamorphism. Carbonate and evaporite xenoliths brought to the surface could include fossils or even bacteria, otherwise hidden deeply in the sedimentary record. A xenolith-rich basaltic peperite of Pliocene age is exposed in a quarry at Neuhaus/Kl./Burgenland/Austria. These alkali basalts are related to the time-equivalent volcanism of the W Pannonian Basin/Hungary. Although the peperite sequence is highly altered the primary structures are well preserved. The xenolith spectrum comprises marls, argillitic and other basement rocks showing various degrees of metamorphism. The xenoliths are white to yellow colored, egg-shaped or blocky and typically manteled by the grey basalt in peperite fragments. This encapsulation of xenoliths by the basalt protects the xenoliths against various atmospheric interaction, execpt for Earth where water easily enters the peperite fragments. This sequence could be used as a structural model for similar sequences on planets known for the occurrences of basaltic volcanism and potential water-bearing sediments. The Neuhaus peperite represents a training site for scientists working with remotely operated analyzers to differentiate between xenoliths, the peperite (basalt and sandy sediment) and alteration-related structures. Similar peperites could be encountered on Mars and would be a proof for the existence of water or other fluids in its history, even if the alteration history of peperite sequences would be different from what is known on

  4. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  5. Atmospheric circulation modeling of super Earths and terrestrial extrasolar planets using the SPARC/MITgcm

    NASA Astrophysics Data System (ADS)

    Kataria, T.; Showman, A. P.; Haberle, R. M.; Marley, M. S.; Fortney, J. J.; Freedman, R. S.

    2013-12-01

    The field of exoplanets continues to be a booming field of research in astronomy and planetary science, with numerous ground-based (e.g., SuperWASP, HARPS-N and S) and space-based surveys (e.g., Kepler) that detect and characterize planets ranging from hot Jupiters, Jovian-sized planets orbiting less than 0.1 AU from their star, to super Earths and terrestrial exoplanets, planets that have masses equal to or less than 10 times that of Earth with a range of orbital distances. Atmospheric circulation modeling plays an important role in the characterization of these planets, helping to constrain observations that probe their atmospheres. These models have proven successful in understanding observations of transiting exoplanets (when the planet passes in front of the star along our line of sight) particularly when the planet is passing through secondary eclipse (when the planet's dayside is visible). In modeling super Earths and terrestrial exoplanets, we must consider not only planets with thick fluid envelopes, but also traditional terrestrial planets with solid surfaces and thinner atmospheres. To that end, we present results from studies investigating the atmospheric circulation of these classes of planets using the SPARC/MITgcm, a state-of-the-art model which couples the MIT General Circulation Model with a plane-parallel, two-stream, non-gray radiative transfer model. We will present results from two studies, the first focusing on the circulation of GJ 1214b, a super-Earth detected by the MEarth ground-based survey, and a second study which explores the circulation of terrestrial exoplanets orbiting M-dwarfs.

  6. Understanding our Changing Planet: NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  7. Mounting Pressures on Planet Earth. A Four-Part Bicentennial Symposium Series.

    ERIC Educational Resources Information Center

    Anderton, David A., Ed.

    Detailed are the proceedings of the 1976 Bicentennial Symposium Series held under the general title of Mounting Pressures on Planet Earth. This event, co-sponsored by the Maryland State Department of Education and the NASA Goddard Space Flight Center, brought together researchers and educators to discuss solutions to the Earth's problems. The…

  8. Search for the transit of a nearby 2 Earth-mass planet

    NASA Astrophysics Data System (ADS)

    Gillon, Michael; Affer, Laura; Bonomo, Aldo; Damasso, Mario; Desidera, Silvano; Micela, Giuseppina; Rebolo, Rafael; Ribas, Ignasi; Sozzetti, Alessandro

    2016-08-01

    The frontier of exoplanetology is being pushed to the identification of Earth-sized exoplanets well-suited for detailed characterization with future observatories, notably with JWST. Transit searches targeting nearby M-dwarfs are at the forefront of this effort. Indeed, the favorable planet-star contrast ratios of M-dwarfs enable the best opportunities in the near-future for detailed characterization studies of transiting terrestrial planets and their atmospheres. In this context, we propose here to use the exquisite photometric precision of Spitzer to search for the transit of a new short-period (2.6d) very-low-mass (2 Earth-mass) super-Earth that we have just detected with the HARPS-N spectrograph. This planet orbits at <0.03 au of a nearby (18pc) M1-type dwarf, resulting in a transit probability of 8%. A transit detection would make possible to discriminate metal-rich, silicate rich, and ice-rich planetary compositions, and to test further the hypothesis that the population of dense, close-in planets of 1-6 Earth-mass can be described by a fixed Earth-like compositional model. Furthermore, it would make the planet join the handful of super-Earths well-suited for detailed atmospheric characterization with JWST, thanks to the infrared brightness (K=6.8) and the small size (0.5 solar radius) of its M-dwarf host star.

  9. Reevaluating the feasibility of ground-based Earth-mass microlensing planet detections

    SciTech Connect

    Jung, Youn Kil; Park, Hyuk; Han, Cheongho; Hwang, Kyu-Ha; Shin, In-Gu; Choi, Joon-Young

    2014-05-10

    An important strength of the microlensing method to detect extrasolar planets is its high sensitivity to low-mass planets. However, many believe that microlensing detections of Earth-mass planets from ground-based observation would be difficult because of limits set by finite-source effects. This view comes from the previous estimation of planet detection probability based on the fractional deviation of planetary signals; however, a proper probability estimation is required when considering the source brightness, which is directly related to the photometric precision. In this paper, we reevaluate the feasibility of low-mass planet detections by considering photometric precision for different populations of source stars. From this, we find that the contribution of improved photometric precision to the planetary signal of a giant-source event is large enough to compensate for the decrease in magnification excess caused by finite-source effects. As a result, we conclude that giant-source events are suitable targets for Earth-mass planet detections with significantly higher detection probability than events involved with source stars of smaller radii, and we predict that Earth-mass planets could be detected by prospective high-cadence surveys.

  10. Temperate Earth-sized planets transiting a nearby ultracool dwarf star.

    PubMed

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J; Triaud, Amaury H M J; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-12

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as 'ultracool dwarfs'. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them--ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system. PMID:27135924

  11. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    NASA Astrophysics Data System (ADS)

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J.; Triaud, Amaury H. M. J.; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K.; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-01

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as ‘ultracool dwarfs’. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them—ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.

  12. Modeling the globally-integrated spectral variability of the Archean Earth: The purple planet

    NASA Astrophysics Data System (ADS)

    Palle, E.; Sanroma, E.; Parenteau, M. N.; Kiang, N. Y.; Gutierrez-Navarro, A. M.; Lopez, R.; Montañes-Rodríguez, P.

    2014-03-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. But the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3 Gyr ago. At that time, one of the more widespread life forms on the planet were purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and bacteria concentration/ distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  13. Hot super-Earths and giant planet cores from different migration histories

    NASA Astrophysics Data System (ADS)

    Cossou, Christophe; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud

    2014-09-01

    Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several M⊕ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones, which move inward and eventually disappear as the disk disperses. Giant planet cores migrate inward with these zones and are stranded at ~1-5 AU. Our model reproduces several properties of the observed extra-solar planet populations. The frequency of giant planet cores increases strongly when the mass in solids is increased, consistent with the observed giant exoplanet - stellar metallicity correlation. The frequency of hot super-Earths is not a function of stellar metallicity, also in agreement with observations. Our simulations can reproduce the broad characteristics of the observed super-Earth population.

  14. The runaway Greenhouse revisited: it's "theoretically possible for an Earth-like planet at 1 AU", plus implications for more diverse planets

    NASA Astrophysics Data System (ADS)

    Goldblatt, C.; Zahnle, K. J.; Crisp, D.; Robinson, T. D.

    2013-12-01

    For water-vapour rich atmospheres, there is an asymptotic limit on thermal emission to space. If more sunlight is absorbed than this limit, energy balance is no longer possible and runaway heating occurs, evaporating the ocean and sterilizing the planet en route. Here, we present recently published work (Goldblatt et al., 2013) which was the first full re-evaluation of the problem since classic 1980's era work (e.g. Watson et al., 1984; Abe & Matsui, 1988; Kasting, 1988). With modern molecular absorption databases and a line-by-line resolution model, we find that the thermal limit is lower than previous estimates (282Wm-2, down from 310Wm-2) and that much more sunlight is absorbed by a steam atmosphere (294Wm-2, up from 222Wm-2). The immediate implication is that a cloud-free moist atmosphere on Earth would cause a runaway greenhouse. Triggering it would simply be a matter of sufficient heating, with around 30,000ppmv being sufficient in our most Earth-like model. This is substantially different than previous calculations, where weak solar absorption meant that a higher solar flux was required. Our published calculations are for the limit of clear-skies; any clouds would reduce both the thermal radiation emitted and the solar radiation absorbed, so clouds could make the runaway greenhouse either more or less likely. It can be shown that and excess of cloud reflection over cloud greenhouse is required to maintain temperate climate on Earth today - but how clouds will change in a warming atmosphere is far from clear. Work in progress (and hopefully ready by December!) on cloudy runaway greenhouse models will hopefully constrain this better. Wider implications for planetary stability will also be discussed. For example, water-world planets, with minimal background gas in the atmosphere may be highly susceptible to runaway greenhouses (heating Europa might take it directly from a snowball to a runaway). High CO2 levels after previous Snowball Earth events did not

  15. Earth a One-of-a-Kind Planet?

    NASA Video Gallery

    Students analyze physical processes that occur on Earth and Mars and compare differences on how particular similar physical features occur. Students will use planetary comparisons in understanding ...

  16. Melting-induced crustal production helps plate tectonics on Earth-like planets

    NASA Astrophysics Data System (ADS)

    Lourenço, Diogo L.; Rozel, Antoine; Tackley, Paul J.

    2016-04-01

    Within our Solar System, Earth is the only planet to be in a mobile-lid regime. It is generally accepted that the other terrestrial planets are currently in a stagnant-lid regime, with the possible exception of Venus that may be in an episodic-lid regime. In this study, we use numerical simulations to address the question of whether melting-induced crustal production changes the critical yield stress needed to obtain mobile-lid behaviour (plate tectonics). Our results show that melting-induced crustal production strongly influences plate tectonics on Earth-like planets by strongly enhancing the mobility of the lid, replacing a stagnant lid with an episodic lid, or greatly extending the time in which a smoothly evolving mobile lid is present in a planet. Finally, we show that our results are consistent with analytically predicted critical yield stress obtained with boundary layer theory, whether melting-induced crustal production is considered or not.

  17. Two Transiting Earth-size Planets Near Resonance Orbiting a Nearby Cool Star

    NASA Astrophysics Data System (ADS)

    Petigura, Erik A.; Schlieder, Joshua E.; Crossfield, Ian J. M.; Howard, Andrew W.; Deck, Katherine M.; Ciardi, David R.; Sinukoff, Evan; Allers, Katelyn N.; Best, William M. J.; Liu, Michael C.; Beichman, Charles A.; Isaacson, Howard; Hansen, Brad M. S.; Lépine, Sébastien

    2015-10-01

    Discoveries from the prime Kepler mission demonstrated that small planets (<3 {R}\\oplus ) are common outcomes of planet formation. While Kepler detected many such planets, all but a handful orbit faint, distant stars and are not amenable to precise follow up measurements. Here, we report the discovery of two small planets transiting K2-21, a bright (K = 9.4) M0 dwarf located 65+/- 6 pc from Earth. We detected the transiting planets in photometry collected during Campaign 3 of NASA’s K2 mission. Analysis of transit light curves reveals that the planets have small radii compared to their host star, {R}P/{R}\\star = 2.60+/- 0.14% and 3.15+/- 0.20%, respectively. We obtained follow up NIR spectroscopy of K2-21 to constrain host star properties, which imply planet sizes of 1.59 ± 0.43 {R}\\oplus and 1.92 ± 0.53 {R}\\oplus , respectively, straddling the boundary between high-density, rocky planets and low-density planets with thick gaseous envelopes. The planets have orbital periods of 9.32414 days and 15.50120 days, respectively, and a period ratio {P}c/{P}b = 1.6624, very near to the 5:3 mean motion resonance, which may be a record of the system’s formation history. Transit timing variations due to gravitational interactions between the planets may be detectable using ground-based telescopes. Finally, this system offers a convenient laboratory for studying the bulk composition and atmospheric properties of small planets with low equilibrium temperatures.

  18. Hydrodynamic simulations of captured protoatmospheres around Earth-like planets

    NASA Astrophysics Data System (ADS)

    Stökl, Alexander; Dorfi, Ernst; Lammer, Helmut

    2015-04-01

    Context. Young terrestrial planets, when they are still embedded in a circumstellar disk, accumulate an atmosphere of nebula gas. The evolution and eventual evaporation of the protoplanetary disk affect the structure and dynamics of the planetary atmosphere. These processes, combined with other mass loss mechanisms, such as thermal escape driven by extreme ultraviolet and soft X-ray radiation from the young host star, determine how much of the primary atmosphere, if anything at all, survives into later stages of planetary evolution. Aims: Our aim is to explore the structure and the dynamic outflow processes of nebula-accreted atmospheres in dependency on changes in the planetary environment. Methods: We integrate stationary hydrostatic models and perform time-dependent dynamical simulations to investigate the effect of a changing nebula environment on the atmospheric structure and the timescales on which the protoatmosphere reacts to these changes. Results: We find that the behavior of the atmospheres strongly depends on the mass of the planetary core. For planets of about Mars-mass the atmospheric structure, and in particular the atmospheric mass, changes drastically and on very short timescales whereas atmospheres around higher mass planets are much more robust and inert.

  19. Discovery and Mass Measurements of a Cold, 10-Earth Mass Planet and Its Host Star

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.; Muraki, Y.; Han, C.; Bennett, D. P.; Gaudi, B. S.

    2011-01-01

    We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, made with the gravitational microlensing method. This planet has a mass of mp = 10.4 +/- M(Earth) and orbits a star of Mstar = 0.56 +/- 0.09 M(Sun) at a semi-major axis of a = 3.2 + 1.9/-0.5 AU, and an orbital period of 7.6 +7.7/-1.5 yrs. The planet and host star mass measurements are due to the measurement of the microlensing parallax effect. This measurement was primarily due to the orbital motion of the Earth, but the analysis also demonstrates the capability measure micro lensing parallax with the Deep Impact (or EPOXI) spacecraft in a Heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a failed gas giant. This and future microlensing detections will test planet formation theory predictions regarding the prevalence and masses of such planets

  20. Extrasolar Giant Planet in Earth-like Orbit

    NASA Astrophysics Data System (ADS)

    1999-07-01

    Discovery from a Long-term Project at La Silla A new extrasolar planet has been found at the ESO La Silla Observatory as a companion to iota Horologii (iota Hor) . This 5.4-mag solar-type star is located at a distance of 56 light-years and is just visible to the unaided eye in the southern constellation Horologium (The Pendulum Clock). The discovery is the result of a long-term survey of forty solar-type stars that was begun in November 1992. It is based on highly accurate measurements of stellar radial velocities, i.e. the speed with which a star moves along the line of sight. The presence of a planet in orbit around a star is inferred from observed, regular changes of this velocity, as the host star and its planet revolve around a common center of gravity. Since in all cases the star is much heavier than the planet, the resulting velocity variations of the star are always quite small. The team that found the new planet, now designated iota Hor b , consists of Martin Kürster , Michael Endl and Sebastian Els (ESO-Chile), Artie P. Hatzes and William D. Cochran (University of Texas, Austin, USA), and Stefan Döbereiner and Konrad Dennerl (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany). Iodine cell provides very accurate velocity measurements iota Hor b represents the first discovery of an extrasolar planet with an ESO instrument [1]. The finding is based on data obtained with ESO's highest-resolution spectrograph, the Coudé Echelle Spectrometer (CES) at the 1.4-m Coudé Auxiliary Telescope (CAT). While this telescope has recently been decommissioned, the CES instrument is now coupled via an optical fiber link to the larger ESO 3.6-m telescope, thus permitting the continuation of this survey. The high precision radial velocity measurements that are necessary for a study of this type were achieved by means of a special calibration technique. It incorporates an iodine gas absorption cell and sophisticated data modelling. The cell is used like

  1. Beyond Kepler: Direct Imaging of Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Belikov, Ruslan

    2012-01-01

    Is there another Earth out there? Is there life on it? People have been asking these questions for over two thousand years, and we finally stand on the verge of answering them. The Kepler space telescope is NASA's first mission designed to study Earthlike exoplanets (exo-Earths), and it will soon tell us how often exo-Earths occur in the habitable zones of their stars. The next natural step after Kepler is spectroscopic characterization of exo-Earths, which would tell us whether they possess an atmosphere, oxygen, liquid water, as well as other biomarkers. In order to do this, directly imaging an exo-Earth may be necessary (at least for Sun-like stars). Directly imaging an exo-Earth is challenging and likely requires a flagship-size optical space telescope with an unprecedented imaging system capable of achieving contrasts of 1(exp 10) very close to the diffraction limit. Several coronagraphs and external occulters have been proposed to meet this challenge and are in development. After first overviewing the history and current state of the field, my talk will focus on the work proceeding at the Ames Coronagraph Experiment (ACE) at the NASA Ames Research Center, where we are developing the Phase Induced Amplitude Apodization (PIAA) coronagraph in a collaboration with JPL. PIAA is a powerful technique with demonstrated aggressive performance that defines the state of the art at small inner working angles. At ACE, we have achieved contrasts of 2(exp -8) with an inner working angle of 2 lambda/D and 1(exp -6) at 1.4 lambda/D. On the path to exo-Earth imaging, we are also pursuing a smaller telescope concept called EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), which was recently selected for technology development (Category III) by NASA's Explorer program. EXCEDE will do fundamental science on debris disks as well as serve as a technological and scientific pathfinder for an exo-Earth imaging mission.

  2. Gas Giant Planets as Dynamical Barriers to Inward-Migrating Super-Earths

    NASA Astrophysics Data System (ADS)

    Morbidelli, Alessandro; Izidoro da Costa, Andre; Raymond, Sean

    2015-08-01

    Planets of 1-4 times Earth’s size on orbits shorter than 100 days exist around 30-50% of all Sun-like stars. In fact, the Solar System is particularly outstanding in its lack of “hot super-Earths” (or “mini-Neptunes”). These planets —or their building blocks—may have formed on wider orbits and migrated inward due to interactions with the gaseous protoplanetary disk. Here, we use a suite of dynamical simulations to show that gas giant planets act as barriers to the inward migration of super-Earths initially placed on more distant orbits. Jupiter’s early formation may have prevented Uranus and Neptune (and perhaps Saturn’s core) from becoming hot super-Earths. Our model predicts that the populations of hot super-Earth systems and Jupiter-like planets should be anti-correlated: gas giants (especially if they form early) should be rare in systems with many hot super-Earths. Testing this prediction will constitute a crucial assessment of the validity of the migration hypothesis for the origin of close-in super-Earths.

  3. GEODYNAMICS AND RATE OF VOLCANISM ON MASSIVE EARTH-LIKE PLANETS

    SciTech Connect

    Kite, E. S.; Manga, M.; Gaidos, E.

    2009-08-01

    We provide estimates of volcanism versus time for planets with Earth-like composition and masses 0.25-25 M {sub +}, as a step toward predicting atmospheric mass on extrasolar rocky planets. Volcanism requires melting of the silicate mantle. We use a thermal evolution model, calibrated against Earth, in combination with standard melting models, to explore the dependence of convection-driven decompression mantle melting on planet mass. We show that (1) volcanism is likely to proceed on massive planets with plate tectonics over the main-sequence lifetime of the parent star; (2) crustal thickness (and melting rate normalized to planet mass) is weakly dependent on planet mass; (3) stagnant lid planets live fast (they have higher rates of melting than their plate tectonic counterparts early in their thermal evolution), but die young (melting shuts down after a few Gyr); (4) plate tectonics may not operate on high-mass planets because of the production of buoyant crust which is difficult to subduct; and (5) melting is necessary but insufficient for efficient volcanic degassing-volatiles partition into the earliest, deepest melts, which may be denser than the residue and sink to the base of the mantle on young, massive planets. Magma must also crystallize at or near the surface, and the pressure of overlying volatiles must be fairly low, if volatiles are to reach the surface. If volcanism is detected in the 10 Gyr-old {tau} Ceti system, and tidal forcing can be shown to be weak, this would be evidence for plate tectonics.

  4. Understanding the Role of Biology in the Global Environment: NASA'S Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Townsend, William F.

    1996-01-01

    NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.

  5. Evolutionary Tracks of the Climate of Earth-like Planets around Different Mass Stars

    NASA Astrophysics Data System (ADS)

    Kadoya, S.; Tajika, E.

    2016-07-01

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO2 in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending on the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO2 degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (˜3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.

  6. Comment on "Paleomagnetic evidence for an inverse rotation history of Western Anatolia during the exhumation of Menderes core complex" by Uzel et al. (Earth Planet. Sci. Lett. 415 (2015) 108-125)

    NASA Astrophysics Data System (ADS)

    Karaoğlu, Özgür; Erkül, Fuat

    2015-10-01

    In a recent article published in EPSL, Uzel et al. (2015) reported a paleomagnetic evidence on various rock types from Western Anatolia. It has been suggested that vertical axis rotations driven by the differential stretching along the İzmir Balıkesir Transfer Zone (İBTZ) were caused by slab detachment and slab tear processes at the northern edge of subducting African slab. Although the paper supplies high quality data regarding the geological evolution of western Anatolia, some points need to clarified in light of recently published data.

  7. A Search for Sub-Earth Sized Transiting Planets 12 Parsecs from the Sun

    NASA Astrophysics Data System (ADS)

    Dittmann, Jason; Charbonneau, David; Berta-Thompson, Zachory; Irwin, Jonathan; Newton, Elisabeth

    2015-10-01

    The MEarth-South Observatory has recently discovered a 1.2 Earth-radius planet around the mid-M dwarf GJ 1132. GJ 1132 is located only 12 parsecs away, and therefore GJ 1132b is the closest transiting rocky planet whose atmosphere is accessible by the James Webb Space Telescope. Previous studies have indicated that planetary systems around M dwarfs are typically multi-planet systems in close orbital configurations. Therefore, there is a significant likelihood that there are additional transiting objects yet to be discovered. The most ambitious and intense ground-based photometric and radial velocity monitoring campaigns would be insensitive to these putative planets. However, Spitzer is capable of discovering transiting planets the size of Mars and exomoons around GJ 1132b the size of Earth's moon. GJ 1132b is already the most interesting target for JWST, any additional planets in the system would also be prime JWST targets. We propose a 100 hour intensive monitoring campaign of GJ 1132 to uncover these potential objects.

  8. Earth Today: A Digital View of Our Dynamic Planet

    NASA Technical Reports Server (NTRS)

    Summey, Barbara; Mayhew, Craig; Hasler, Arthur; Watters, Tom

    2000-01-01

    The problem this talk will address is how to maximize the accessibility of an award winning Earth Science Exhibit through innovative digital means, through museums, schools, and the world wide web. The paper discusses how the exhibit began, what it has developed into and what direction are going in now. The central conclusions: The distribution of accurate, up-to-date Earth Science information is essential for the increased education and awareness of the general public. In this visually oriented society, the most effective way to distribute this information is through breath-taking animations.

  9. Dynamics of the Final Stages of Terrestrial Planet Growth and the Formation of the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  10. Comment on “40Ar / 39Ar dating of the Rajahmundry Traps, eastern India and their relationship to the Deccan Traps” by Knight et al. [Earth Planet Sci. Lett. 208 (2003) 85 99

    NASA Astrophysics Data System (ADS)

    Baksi, Ajoy K.

    2005-11-01

    Knight et al. presented age and chemical data on two (sets of) lava flows from the Rajahmundry area, on either bank of the Godavari River. The age and petrogenesis of these flows and their possible link to sections of the main Deccan Province are of importance to the understanding of many aspects of flood basalt volcanism. I comment on (a) the use of geochemical fingerprints for lava identification/correlation at Rajahmundry, superceding (apparent) field relations, (b) their 40Ar / 39Ar data and its refinement based on statistical tests and the alteration state of the samples (c) correlation of age data and the magnetic polarity of the lavas to the geomagnetic polarity time scale and (d) the possibility that both lavas at Rajahmundry were formed by intracanyon flows derived from ˜1000 km away.

  11. Searching for New Earths: Teaching Children How We Seek Distant Planets

    NASA Astrophysics Data System (ADS)

    Pulliam, C.

    2008-06-01

    Teaching science to children ages 8-13 can be a great challenge, especially if you lack the resources for a full-blown audio/visual presentation. How do you hold their attention and get them involved? One method is to teach a topic no one else covers at this educational level: something exciting and up-to-the-minute, at the cutting edge of science. We developed an interactive 45-minute presentation to convey the two basic techniques used to locate planets orbiting other stars. Activities allowed children to hunt for their own planets in simulated data sets. We also stimulated their imagination by giving each child a take-home, multicolored marble ``planet'' and asking them to discuss their planet's characteristics. The resulting presentation ``Searching for New Earths'' could be adapted to a variety of educational settings.

  12. TRANSITS AND OCCULTATIONS OF AN EARTH-SIZED PLANET IN AN 8.5 hr ORBIT

    SciTech Connect

    Sanchis-Ojeda, Roberto; Rappaport, Saul; Winn, Joshua N.; Levine, Alan; Kotson, Michael C.; Latham, David W.; Buchhave, Lars A. E-mail: sar@mit.edu E-mail: aml@space.mit.edu

    2013-09-01

    We report the discovery of an Earth-sized planet (1.16 {+-} 0.19 R{sub Circled-Plus }) in an 8.5 hr orbit around a late G-type star (KIC 8435766, Kepler-xx). The object was identified in a search for short-period planets in the Kepler database and confirmed to be a transiting planet (as opposed to an eclipsing stellar system) through the absence of ellipsoidal light variations or substantial radial-velocity variations. The unusually short orbital period and the relative brightness of the host star (m{sub Kep} = 11.5) enable robust detections of the changing illumination of the visible hemisphere of the planet, as well as the occultations of the planet by the star. We interpret these signals as representing a combination of reflected and reprocessed light, with the highest planet dayside temperature in the range of 2300 K-3100 K. Follow-up spectroscopy combined with finer sampling photometric observations will further pin down the system parameters and may even yield the mass of the planet.

  13. DISCOVERY AND MASS MEASUREMENTS OF A COLD, 10 EARTH MASS PLANET AND ITS HOST STAR

    SciTech Connect

    Muraki, Y.; Han, C.; Bennett, D. P.; Suzuki, D.; Sumi, T.; Monard, L. A. G.; Street, R.; Jorgensen, U. G.; Kundurthy, P.; Becker, A. C.; Skowron, J.; Gaudi, B. S.; Albrow, M. D.; Fouque, P.; Heyrovsky, D.; Barry, R. K.; Beaulieu, J.-P.; Wellnitz, D. D.; Bond, I. A.; Dong, S. E-mail: bennett@nd.edu

    2011-11-01

    We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, performed with the gravitational microlensing method. This planet has a mass of m{sub p} = 10.4 {+-} 1.7 M{sub +} and orbits a star of mass M{sub *} = 0.56 {+-} 0.09 M{sub sun} at a semimajor axis of a = 3.2{sub -0.5}{sup +1.9} AU and an orbital period of P = 7.6{sub -1.5}{sup +7+7} yrs. The planet and host star mass measurements are enabled by the measurement of the microlensing parallax effect, which is seen primarily in the light curve distortion due to the orbital motion of the Earth. But the analysis also demonstrates the capability to measure the microlensing parallax with the Deep Impact (or EPOXI) spacecraft in a heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a 'failed' gas giant. This and future microlensing detections will test planet formation theory predictions regarding the prevalence and masses of such planets.

  14. An Ancient Extrasolar System with Five Sub-Earth-size Planets

    NASA Astrophysics Data System (ADS)

    Campante, T. L.; Barclay, T.; Swift, J. J.; Huber, D.; Adibekyan, V. Zh.; Cochran, W.; Burke, C. J.; Isaacson, H.; Quintana, E. V.; Davies, G. R.; Silva Aguirre, V.; Ragozzine, D.; Riddle, R.; Baranec, C.; Basu, S.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Bedding, T. R.; Handberg, R.; Stello, D.; Brewer, J. M.; Hekker, S.; Karoff, C.; Kolbl, R.; Law, N. M.; Lundkvist, M.; Miglio, A.; Rowe, J. F.; Santos, N. C.; Van Laerhoven, C.; Arentoft, T.; Elsworth, Y. P.; Fischer, D. A.; Kawaler, S. D.; Kjeldsen, H.; Lund, M. N.; Marcy, G. W.; Sousa, S. G.; Sozzetti, A.; White, T. R.

    2015-02-01

    The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.

  15. AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS

    SciTech Connect

    Campante, T. L.; Davies, G. R.; Chaplin, W. J.; Handberg, R.; Barclay, T.; Huber, D.; Burke, C. J.; Quintana, E. V.; Swift, J. J.; Adibekyan, V. Zh.; Cochran, W.; Isaacson, H.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Bedding, T. R.; Ragozzine, D.; Riddle, R.; Baranec, C.; Basu, S.; and others

    2015-02-01

    The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.

  16. Pioneering Mars: Turning the Red Planet Green with Earth's Smallest Settlers

    ERIC Educational Resources Information Center

    Cwikla, Julie; Milroy, Scott; Reider, David; Skelton, Tara

    2014-01-01

    Pioneering Mars: Turning the Red Planet Green with the Earth's Smallest Settlers (http://pioneeringmars.org) provides a partnership model for STEM (science, technology, engineering, and mathematics) learning that brings university scientists together with high school students to investigate whether cyanobacteria from Antarctica could survive…

  17. Making Nature's Wisdom Public: The Affirmation of Planet Earth as a Living Organism.

    ERIC Educational Resources Information Center

    Cohen, Michael J.

    Planet Earth is a living organism that preserves and regenerates itself and shares information with humans through sensations, feelings, and actions. After early humans migrated from their tropical origins to colder climates, they developed technologies to impose their tropical memories on their new surroundings and lost touch with their ancient…

  18. Topographic Surfaces and Gravitational Fields of the Earth, Moon and Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Kamensky, K. K.; Kislyuk, V. S.; Yatskiv, Ya. S.

    Some aspects of the methodology of planetary dynamics are discussed. The reference frames for planetary dynamics are considered and the classification of planetary figures is given. Determinations of the parameters of topographic and gravitational figures of the Earth, the Moon and terrestrial planets are summarized and some peculiarities of geometrical and dynamical characteristics of these celestial bodies are considered.

  19. Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.

  20. Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars.

    PubMed

    Segura, Antígona; Krelove, Kara; Kasting, James F; Sommerlatt, Darrell; Meadows, Victoria; Crisp, David; Cohen, Martin; Mlawer, Eli

    2003-01-01

    Coupled radiative-convective/photochemical modeling was performed for Earth-like planets orbiting different types of stars (the Sun as a G2V, an F2V, and a K2V star). O(2) concentrations between 1 and 10(-5) times the present atmospheric level (PAL) were simulated. The results were used to calculate visible/near-IR and thermal-IR spectra, along with surface UV fluxes and relative dose rates for erythema and DNA damage. For the spectral resolution and sensitivity currently planned for the first generation of terrestrial planet detection and characterization missions, we find that O(2) should be observable remotely in the visible for atmospheres containing at least 10(-2) PAL of O(2). O(3) should be visible in the thermal-IR for atmospheres containing at least 10(-3) PAL of O(2). CH(4) is not expected to be observable in 1 PAL O(2) atmospheres like that of modern Earth, but it might be observable at thermal-IR wavelengths in "mid-Proterozoic-type" atmospheres containing approximately 10(-1) PAL of O(2). Thus, the simultaneous detection of both O(3) and CH(4) - considered to be a reliable indication of life - is within the realm of possibility. High-O(2) planets orbiting K2V and F2V stars are both better protected from surface UV radiation than is modern Earth. For the F2V case the high intrinsic UV luminosity of the star is more than offset by the much thicker ozone layer. At O(2) levels below approximately 10(-2) PAL, planets around all three types of stars are subject to high surface UV fluxes, with the F2V planet exhibiting the most biologically dangerous radiation environment. Thus, while advanced life is theoretically possible on high-O(2) planets around F stars, it is not obvious that it would evolve as it did on Earth. PMID:14987475

  1. Ozone Concentrations and Ultraviolet Fluxes on Earth-Like Planets Around Other Stars

    NASA Astrophysics Data System (ADS)

    Segura, Antígona; Krelove, Kara; Kasting, James F.; Sommerlatt, Darrell; Meadows, Victoria; Crisp, David; Cohen, Martin; Mlawer, Eli

    2003-12-01

    Coupled radiative-convective/photochemical modeling was performed for Earth-like planets orbiting different types of stars (the Sun as a G2V, an F2V, and a K2V star). O2 concentrations between 1 and 10-5 times the present atmospheric level (PAL) were simulated. The results were used to calculate visible/near-IR and thermal-IR spectra, along with surface UV fluxes and relative dose rates for erythema and DNA damage. For the spectral resolution and sensitivity currently planned for the first generation of terrestrial planet detection and characterization missions, we find that O2 should be observable remotely in the visible for atmospheres containing at least 10-2 PAL of O2. O3 should be visible in the thermal-IR for atmospheres containing at least 10-3 PAL of O2. CH4 is not expected to be observable in 1 PAL O2 atmospheres like that of modern Earth, but it might be observable at thermal-IR wavelengths in "mid-Proterozoic-type" atmospheres containing ~ 10-1 PAL of O2. Thus, the simultaneous detection of both O3 and CH4 - considered to be a reliable indication of life - is within the realm of possibility. High-O2 planets orbiting K2V and F2V stars are both better protected from surface UV radiation than is modern Earth. For the F2V case the high intrinsic UV luminosity of the star is more than offset by the much thicker ozone layer. At O2 levels below ~ 10-2 PAL, planets around all three types of stars are subject to high surface UV fluxes, with the F2V planet exhibiting the most biologically dangerous radiation environment. Thus, while advanced life is theoretically possible on high-O2 planets around F stars, it is not obvious that it would evolve as it did on Earth.

  2. 10 years with Planet Earth essence in the primary school children drawings

    NASA Astrophysics Data System (ADS)

    D'Addezio, Giuliana

    2016-04-01

    "10 years with Planet Earth" is the title of the 2016 INGV calendar for primary schools representing the review of a project conceived as support and complement of 15 years long INGV dissemination activities with schools. We realized 10 calendars together with and for primary schools, every year with a subject related to a World in constant evolution. Earthquakes, volcanic eruptions, tsunami waves, magnetic storms and other phenomena are manifestations of the complexity and dynamicity, which began more than four billion years ago and never halted. Since the Earth originated to the first presence of water, life and oxygen, the Cambrian explosion of species, the domain of dinosaurs, the great extinctions and glaciations, the surface of our planet experiences continents collisions, mountains and oceans formation and life forms emerging and disappearing. Every year we have launched a competition asking children to send drawings on themes chosen to stimulate learning about Earth Sciences and Planet Earth dynamics. We intended to raise awareness on issues as water resources availability, protection against natural disasters and control of environmental degradation. For each competition, we chose the most significant drawings to be included in the yearly calendar about the Earth. The authors of drawings were awarded by scientists, journalists, artists and science communicators and even by a minister. Besides the competitions, these drawings depict their own impressions and reflections, providing an opportunity to illustrate the children's point of view. From drawings and texts arise a great consideration and respect for the Planet, raising hopes that similar initiatives can contribute to increase the knowledge of the Earth and of the fragile human ecosystem in the hearts and minds of future active citizens. The project was made possible thanks to the teachers and to the wonderful students of more than 200 schools that sent about 10,000 drawings that have intrigued

  3. Effect of UV Radiation on the Spectral Fingerprints of Earth-like Planets Orbiting M Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, S.; Kaltenegger, L.; Segura, A.; Linsky, J.; Mohanty, S.

    2015-08-01

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with Teff = 2300 K to Teff = 3800 K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1 AU equivalent distance and show spectra from the visible to IR (0.4-20 μm) to compare detectability of features in different wavelength ranges with the James Webb Space Telescope and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. To observe signatures of life—O2/O3 in combination with reducing species like CH4—we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O2 spectral feature at 0.76 μm is increasingly difficult to detect in reflected light of later M dwarfs owing to low stellar flux in that wavelength region. N2O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH3Cl could become detectable, depending on the depth of the overlapping N2O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future light curves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the habitable zone to design and assess future telescope capabilities.

  4. Earth observations during Space Shuttle mission STS-45 Mission to Planet Earth - March 24-April 2, 1992

    NASA Technical Reports Server (NTRS)

    Pitts, David E.; Helfert, Michael R.; Lulla, Kamlesh P.; Mckay, Mary F.; Whitehead, Victor S.; Amsbury, David L.; Bremer, Jeffrey; Ackleson, Steven G.; Evans, Cynthia A.; Wilkinson, M. J.

    1992-01-01

    A description is presented of the activities and results of the Space Shuttle mission STS-45, known as the Mission to Planet Earth. Observations of Mount St. Helens, Manila Bay and Mt. Pinatubo, the Great Salt Lake, the Aral Sea, and the Siberian cities of Troitsk and Kuybyshev are examined. The geological features and effects of human activity seen in photographs of these areas are pointed out.

  5. Formation and detection of Earth mass planets around low mass stars

    NASA Astrophysics Data System (ADS)

    Montgomery, Ryan; Laughlin, Gregory

    2009-07-01

    We investigate an in situ formation scenario for Earth-mass terrestrial planets in short-period, potentially habitable orbits around low-mass stars (M∗ < 0.3M⊙). We then investigate the feasibility of detecting these Earth-sized planets. We find that such objects can feasibly be detected by a ground-based transit survey if their formation frequency is high and if correlated noise can be controlled to sub-milli-magnitude levels. Our simulations of terrestrial planet formation follow the growth of planetary embryos in an annular region spanning 0.036 AU ⩽ a ⩽ 0.4 AU around a fiducial M7 (0.12M⊙) primary. Initial distributions of planetary embryos are calculated using the semi-analytic evolutionary model outlined by Chambers [Chambers, J., 2006. Icarus 180, 496-513]. This model specifies how planetary embryos grow to the stage where the largest embryo masses lie in the 1024 g ⩽Membryo ⩽ 5 ×1026 g range (corresponding to the close of the so-called oligarchic growth phase). We then model the final phases of terrestrial planet assembly by allowing the embryos to interact with one another via a full N-body integration using the Mercury code. The final planetary system configurations produced in the simulations generally consist of 3-5 planets with masses of order 0.1- 1.0M⊕ in or near the habitable zone of the star. We explore a range of disk masses (0.2M⊕ to 3.3M⊕) to illuminate the role disk mass plays in our results. With a high occurrence fraction or fortunate alignments, transits by the planet formed in our simulations could be marginally detected with modest telescopes of aperture 1 m or smaller around the nearest M-dwarf stars. To obtain a concrete estimate of the detectability of the planets arising in our simulations, we present a detailed Monte-Carlo transit detection simulation incorporating sky observability, local weather, a target list of around 200 nearby M-dwarfs, and a comprehensive photometric noise model. We adopt a baseline 1

  6. Discovery of Temperate Earth-Sized Planets Transiting a Nearby Ultracool Dwarf Star

    NASA Technical Reports Server (NTRS)

    Jehin, Emmanuel; Gillon, Michael; Lederer, Susan M.; Delrez, Laetitia; De Wit, Julien; Burdanov, Artem; Van Grootel, Valerie; Burgasser, Adam; Triaud, Amaury; Demory, Brice-Olivier; Queloz, Didier

    2016-01-01

    We report the discovery of three short-period Earth-sized planets transiting a nearby ultracool dwarf star using data collected by the Liège TRAPPIST telescope, located in la Silla (Chile). TRAPPIST-1 is an isolated M8.0+/-0.5-type dwarf star at a distance of 12.0+/-0.4 parsecs as measured by its trigonometric parallax, with an age constrained to be > 500 Myr, and with a luminosity, mass, and radius of 0.05%, 8% and 11.5% those of the Sun, respectively. The small size of the host star, only slightly larger than Jupiter, translates into Earth-like radii for the three discovered planets, as deduced from their transit depths. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Several orbits remain possible for the third planet based on our current data. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system.

  7. MAPPING EARTH ANALOGS FROM PHOTOMETRIC VARIABILITY: SPIN-ORBIT TOMOGRAPHY FOR PLANETS IN INCLINED ORBITS

    SciTech Connect

    Fujii, Yuka; Kawahara, Hajime

    2012-08-20

    Aiming at obtaining detailed information on the surface environment of Earth analogs, Kawahara and Fujii proposed an inversion technique of annual scattered light curves named spin-orbit tomography (SOT), which enables us to sketch a two-dimensional albedo map from annual variation of the disk-integrated scattered light, and demonstrated the method with a planet in a face-on orbit. We extend it to be applicable to general geometric configurations, including low-obliquity planets like the Earth in inclined orbits. We simulate light curves of the Earth in an inclined orbit in three photometric bands (0.4-0.5 {mu}m, 0.6-0.7 {mu}m, and 0.8-0.9 {mu}m) and show that the distribution of clouds, snow, and continents is retrieved with the aid of the SOT. We also demonstrate the SOT by applying it to an upright Earth, a tidally locked Earth, and Earth analogs with ancient continental configurations. The inversion is model independent in the sense that we do not assume specific albedo models when mapping the surface, and hence applicable in principle to any kind of inhomogeneity. This method can potentially serve as a unique tool to investigate the exohabitats/exoclimes of Earth analogs.

  8. Direct and interferometric imaging approaches for detecting earth-like extrasolar planets

    NASA Technical Reports Server (NTRS)

    Diner, D. J.; Van Zyl, J.; Jones, D. L.; Tubbs, E.; Wright, V.

    1988-01-01

    This paper discusses functional requirements of space-based observational systems with sufficient sensitivity, resolution, and dynamic range to image earth-like extrasolar planets within a search radius of 10 parsecs from the sun. Both direct and interferometric systems operating at visible and infrared wavelengths are evaluated, and the methods used to establish the system tolerances are presented. Due to the more favorable star/planet contrast ratio in the infrared, optical tolerance requirements are less stringent than in the visible. However, reduction of thermal radiation from the telescope requires cooling of the primary optics. Other tradeoffs between various approaches are enumerated.

  9. Kepler: NASA's First Mission Capable of Finding Earth-Size Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William J.

    2009-01-01

    Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning

  10. Probable Spin-Orbit Aligned Super-Earth Planet Candidate KOI2138

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Ahlers, Johnathon P.; Seubert, Shayne A.; Relles, Howard M.

    2015-08-01

    We use rotational gravity darkening in the disk of Kepler star KOI-2138 to show that the orbit of 2.1-{R}\\oplus transiting planet candidate KOI-2138.01 has a low projected spin-orbit alignment of λ =1^\\circ +/- 13^\\circ . KOI-2138.01 is just the second super-Earth with a measured spin-orbit alignment after 55 Cancri e, and the first to be aligned. With a 23.55 days orbital period, KOI-2138.01 may represent the tip of a future iceberg of solar-system-like terrestrial planets having intermediate periods and low-inclination circular orbits.

  11. Ordered positions of formation centers of the earth-like planets and moons

    NASA Astrophysics Data System (ADS)

    Ferrandez, M. G.; Barkin, Yu. V.; Ferrandiz, J. M.

    2002-10-01

    Elementary empirical analysis of the distribution of the centers of different formations of the Earth-like planets and moons (CPF) leads us to a conclusion about ordered character of their positions. The definite inclined belts of the concentration of the CF, grid phenomenon in their latitudinal and longitudinal distribution, antipodal CF are observed on the surface of the Mercury, Venus, Moon, Mars, Io and other planets and satellites. Here we present some first results of the mathematical-statistical analysis by axography method of the ordered center positions of different formations (montes, dorsa, pateras, albedo features and others) for above-mentioned bodies of the Solar system.

  12. Planet Within a Planet: Rotation of the Inner Core of Earth

    PubMed

    Su; Dziewonski; Jeanloz

    1996-12-13

    The time dependence of the orientation of Earth's inner core relative to the mantle was determined using a recently discovered 10-degree tilt in the axis of symmetry of the inner core's seismic-velocity anisotropy. Two methods of analyzing travel-time variations for rays traversing the inner core, on the basis of 29 years of data from the International Seismological Centre (1964-1992), reveal that the inner core appears to rotate about 3 degrees per year faster than the mantle. An anomalous variation in inner-core orientation from 1969 to 1973 coincides in time with a sudden change ("jerk") in the geomagnetic field. PMID:8943196

  13. A comprehensive mission to planet Earth: Woods Hole Space Science and Applications Advisory Committee Planning Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA program Mission to Planet Earth (MTPE) is described in this set of visuals presented in Massachusetts on July 29, 1991. The problem presented in this document is that the earth system is changing and that human activity accelerates the rate of change resulting in increased greenhouse gases, decreasing levels of stratospheric ozone, acid rain, deforestation, decreasing biodiversity, and overpopulation. Various national and international organizations are coordinating global change research. The complementary space observations for this activity are sun-synchronous polar orbits, low-inclination, low altitude orbits, geostationary orbits, and ground measurements. The Geostationary Earth Observatory is the major proposed mission of MTPE. Other proposed missions are EOS Synthetic Aperture Radar, ARISTOTELES Magnetic Field Experiment, and the Global Topography Mission. Use of the NASA DC-8 aircraft is outlined as carrying out the Airborne Science and Applications Program. Approved Earth Probes Program include the Total Ozone Mapping Spectrometer (TOMS). Other packages for earth observation are described.

  14. Transfer of Life-Bearing Meteorites from Earth to Other Planets

    NASA Astrophysics Data System (ADS)

    Hara, Tetsuya; Takagi, Kazuma; Kajiura, Daigo

    2013-03-01

    The probability is investigated that the meteorites originating on Earth are transferred to other planets in our Solar System and to extra solar planets. We take the collisional Chicxulub crater event, and material that was ejected as an example of Earth-origin meteors. If we assume the appropriate size of the meteorites as 1cm in diameter, the number of meteorites to reach the exoplanet system (further than 20 ly) would be much greater than one. We have followed the ejection and capture rates estimated by Melosh (2003) and the discussion by Wallis and Wickramasinghe (2004). If we consider the possibility that the fragmented ejecta (smaller than 1cm) are accreted to comets and other icy bodies, then buried fertile material could make the interstellar journey throughout Galaxy. If life forms inside remain viable, this would be evidence of life from Earth seeding other planets. We also estimate the transfer velocity of the micro-organisms in the interstellar space. In some assumptions, it could be estimated that, if life has originated 10^{10} years ago anywhere in our Galaxy as theorized by Joseph and Schild (2010a, b), it will have since propagated throughout our Galaxy and could have arrived on Earth by 4.6 billion years ago. Organisms disperse.

  15. Collisionless shock structures of Earth and other planets

    NASA Technical Reports Server (NTRS)

    Greenstadt, Eugene W.; Moses, Stewart L.

    1993-01-01

    This report summarizes the closing segment of our multi-spacecraft, multi-instrument study of collisionless shock structure. In this last year of our study, we have necessarily concentrated on subjects that limited time and remaining resources could be expected to bring to reasonable stopping points, if not full conclusions. Our attention has been focused therefore on matters that were either well underway when the year began or that could be expected to yield rapidly completed reports publishable quickly in abbreviated versions. Contemporary publication delays prevent any new initiatives from reaching the literature within the year in the best of circumstances. The topics that fell into these categories were detailed plasma wave (pw) phenomenology in slow shocks in the Earth's distant geomagnetic tail, instantaneous orientations of theta(sub Bn) in quasiparallel (Q(sub parallel)) shock structure, and a comprehensive overview of the relationship between structural ULF waves in the Qll shock environment and waves in the magnetosphere, i.e. geomagnetic ULF pulsations. The remainder of this report describes our freshly completed results, discusses two related investigations of pw waves in the foreshock and magnetosheath, and appends the abstracts of published papers and the texts of papers in press.

  16. VizieR Online Data Catalog: Spectropolarimetric signatures of Earth--like extrasolar planets.

    NASA Astrophysics Data System (ADS)

    Stam, D. M.

    Numerically calculated scattering matrix elements a1 and b1 of 11 different types of Earth-like extrasolar planets are presented. Matrix element a1 is proportional to the total flux that is reflected by the exoplanet, matrix element b1 is proportional to the linearly polarized flux. Also given is the ratio -b1/a1, which is the degree of linear polarization of the light that is reflected by the exoplanet. Each directory contains 91 ASCII files: one file for each planetary phase angle. The phase angles range from 0 degrees ("a full planet") to 180 degrees ("a new planet"), in steps of 2 degrees. Files are labelled DDDAAN.txt, where DDD is the phase angle and AAN the model code (000fo0.txt for 0 degrees in forest0 model, 000oc0.txt for 0 degrees in ocean_0 model, 000000.txt for 0 degrees in lambert000 model). (11 data files).

  17. US National Committee for the International Year of the Planet Earth: Plans and Activities

    NASA Astrophysics Data System (ADS)

    Hess, J. W.

    2007-12-01

    The International Year of the Planet Earth, as proclaimed by Resolution 60/192 of the United Nations General Assembly at its 60th Session, is a 3-year event (2007-2009) aimed at promoting the contribution to sustainable development of society by using geoscience knowledge and information. It is a joint initiative by the International Union of Geological Sciences (IUGS and UNESCO. The US National Committee (USNC) for the International Year of the Planet Earth is responsible for developing national science and outreach activities that contribute to the success of the global awareness on the use of geosociety for society. The USNC plans for a launch activity early in 2008 and a national outreach activity in the fall. Various US based geoscience societies and federal agencies will be conducting IYPE branded activities in support of the year.

  18. High Resolution Infrared Radiative Transfer of Earth-like planets Influenced by Multiple Clouds

    NASA Astrophysics Data System (ADS)

    Vasquez, Mayte; Schreier, Franz; Trautmann, Thomas; Rauer, Heike; Kitzmann, Daniel; Patzer, A. B. C.; Gimeno Garc&ía, Sebastián.

    2012-07-01

    Background:, The emission spectrum of the modern Earth around different types of stars has been modeled in order to study the effects of different incident stellar radiation in the atmosphere. The Earth-like planetary spectra have also been studied in the presence of clouds. Clouds have an impact on the radiative transfer in planetary atmospheres by changing the spectra (intensities and shapes) due to extinction events (scattering and absorption). Thereby, they can influence the atmospheric and surface temperatures and can also generate false-negative biomarker signatures. Methods:, The spectra of Earth-like have been modeled using a line-by-line radiative transfer model coupled with a multiple scattering solver. The atmospheres of these planets were calculated using a convective climate model taking as reference the atmospheric profile from the modern Earth. All main molecular bands found in the thermal region (H2O, CO2, N2O, CH4 and O3) were analyzed at high resolution in order to assess their detectability in the presence of low (water) and high-level (ice) clouds for different percent coverage. Results:, The resulting calculations indicate that the modern Earth spectrum for a cloud-free atmosphere changes in the presence of different stellar types. The pressure-temperature profile and the molecular concentrations of the Earth were altered. In the presence of clouds, the atmospheric temperatures were modified as well. The water cloud cooled down the surface and tropospheric temperatures of the planets while the ice cloud warmed them up. The presence of clouds also decreased the depth of the absorption bands and modified their shapes, consequently producing a false-negative detection of some of the bands. Keywords:, radiation, planets, atmospheres, clouds, aerosols, molecules, scattering, habitability, modeling.

  19. An engineering research and technology program for an evolving, multi-decade Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Johnston, Gordon I.; Hudson, Wayne R.

    1991-01-01

    A study is presented that examines the technological needs of future systems, surveys current and planned activities and highlights significant accomplishments in the research and technology program of the multidecade Mission to Planet Earth (MTPE). Consideration is given to recent program redirection in MTPE, the initiation of the high performance computing and communications program and the potential impact on the technology programs. The technology set is divided into three subsets covering information, observation, and infrastructure technologies.

  20. The physical characteristics of surface Earth-like planets, dwarf and small (asteroids) planets, and their companions, according to distance studies

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Morozhenko, O. V.

    2014-01-01

    The history of exploration and cosmogony of Solar System bodies, the current state of the planetary cosmogony, the process of formation planets and their satellites; the features of the internal structure of terrestrial planets and of the Moon, magnetic fields of the terrestrial planets, satellites and asteroids; the general question of forming of diffusely reflected radiation of rough surfaces, lighting conditions, the parameters of reflected radiation fields (photometric, polarization and thermal properties), radar observations was considered. Given the main results of the study of the Moon, Earth-like planets (Mars, Mercury, Venus) dwarf and small (asteroids) planets Publication is targeted for teachers of higher educational institutions, students and graduate students and specialists who specialize in the study of physical methods, experimental physics and solar system bodies

  1. Plans for living on a restless planet sets NASA's solid Earth agenda

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Baker, V. R.; Bloxham, J.; Booth, J.; Donnellan, A.; Elachi, C.; Evans, D.; Rignot, E.; Burbank, D.; Chao, B. F.; Chave, A.; Gillespie, A.; Herring, T.; Jeanloz, R.; LaBrecque, J.; Minster, B.; Pitman, W. C., III; Simons, M.; Turcotte, D. L.; Zoback, M. L.

    2003-01-01

    What are the most important challenges facing solid Earth science today and over the next two decades? And what is the best approach for NASA, in partnership with other agencies, to address these challenges? A new report, living on a restless planet, provides a blueprint for answering these questions. The top priority for a new spacecraft mission in the area of solid earth science over the next 5 years, according to this report, is a satellite dedicated to interferometric synthetic aperture radar(inSAR).

  2. ISY Mission to Planet Earth Conference: A planning meeting for the International Space Year

    NASA Technical Reports Server (NTRS)

    Meyerson, Harvey

    1991-01-01

    A major theme was the opportunity offered by the International Space Year (ISY) to initiate a long-term program of Earth observation mission coordination and worldwide data standardization. The challenge is immense and extremely time critical. A recommendation was made to inventory the capabilities of Earth observing spacecraft scheduled during the next decade. The ISY effort to strengthen coordination and standardization should emphasize global issues, and also regional initiatives of particular relevance to developing nations. The concepts of a Global Information System Test (GIST) was accepted and applied to specific issues of immediate concern. The importance of ISY Earth observation initiatives extending beyond research to include immediate and direct applications for social and economic development was stressed. Several specific Mission to Planet Earth proposals were developed during the Conference. A mechanism was set up for coordinating participation of the national space agencies or equivalent bodies.

  3. The andesite problem: Why is this planet to be the Earth?

    NASA Astrophysics Data System (ADS)

    Tatsumi, Y.

    2012-12-01

    One characteristic feature of the Earth is the bimodal height distribution at the surface. This is caused by the difference both in density and thickness of the crust. Two types of crust on the Earth, the oceanic and continental crusts, have been created at divergent and convergent plate boundaries, respectively, via. plate tectonics. The bulk composition of continental crust is andesitic (60 wt.% SiO2), in marked contrast with the basaltic oceanic crust with ˜50 wt.% SiO2. This raises the question of how intra-oceanic arcs produce continental crust if the dominant product of mantle wedge melting and a major proportion of intra-oceanic arc lava is basaltic.The essential cause of operation of plate tectonics is the temperature difference within the mantle, which triggers mantle convection. The upper thermal boundary layer of this convection corresponds to the lithospheric plate, but behaves naturally as a stagnant-lid, i.e., the plate should not move. The presence of liquid water at the surface, on the other hand, strongly reduces the yield strength and could cause the fracture within the stagnant-lid, triggering the plate subsidence or subduction. Parameters that govern the presence and absence of liquid water on the terrestrial planets are: the distance from the Sun and the mass of a planet. A conclusion of this consideration would be that the Earth is a shore planet because of the presence of the ocean, which seems to be a conclusion of a Zen dialog.

  4. MAPPING CLOUDS AND TERRAIN OF EARTH-LIKE PLANETS FROM PHOTOMETRIC VARIABILITY: DEMONSTRATION WITH PLANETS IN FACE-ON ORBITS

    SciTech Connect

    Kawahara, Hajime; Fujii, Yuka

    2011-10-01

    We develop an inversion technique of annual scattered light curves to sketch a two-dimensional albedo map of exoplanets in face-on orbits. As a test bed for future observations of extrasolar terrestrial planets, we apply this mapping technique to simulated light curves of a mock Earth-twin at a distance of 10 pc in a face-on circular orbit. A primary feature in recovered albedo maps traces the annual mean distribution of clouds. To extract information of other surface types, we attempt to reduce the cloud signal by taking the difference of two bands. We find that the inversion of reflectivity difference between 0.8-0.9 and 0.4-0.5 {mu}m bands roughly recovers the continental distribution, except for high latitude regions persistently covered with clouds and snow. The inversion of the reflectivity difference across the red edge (0.8-0.9 and 0.6-0.7 {mu}m) emphasizes the vegetation features near the equator. The planetary obliquity and equinox can be estimated simultaneously with the mapping under the presence of clouds. We conclude that the photometric variability of the scattered light will be a powerful means for exploring the habitat of a second Earth.

  5. Cosmogonic curve and positions on it of Earth, asteroids, and the outer planets

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2013-09-01

    The main point of the comparative wave planetology [1 & others] is the statement: "Orbits make structures". All so different celestial bodies (various sizes, masses, densities, chemichal compositions, physical states, positions in the Universe and so on) have two fundamental properties: movement and rotation. Movements in non-circular (keplerian elliptical, parabolic) orbits with changing accelerations induce in bodies wave warpings (standing waves) which in rotating bodies have 4 orthogonal and diagonal directions. An interference of these directions produces uprising, subsiding and neutral tectonic blocks size of which depends on warping wavelengths. The fundamental wave1 long 2πR (R - a body radius) gives ubiquitous tectonic dichotomy (two hemispheres - segments), the first overtone wave2 long πR produces sectoring. Along with these warpings (wave1 with harmonics) exist tectonic granulations. Granule size depends on orbital frequency: higher frequency - smaller granule, lower frequency - larger granule. Terrestrial planets have the following individual granule sizes (a half of a wavelength): Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (Fig. 1, bottom). These granule producing warpings tend to bring planetary spheres to polyhedrons which, for simplicity, are represented by the following figures inscribed in the planetary circles: Mercury- 16-gon, Venus- hexagon, Earth- square, Mars- rectangle, asteroids - line (Fig. 2). Obviously, nearer a figure to circle more it is stable, and this is expressed by the ratio of a figure area to the circle area. Mercury has 0.973, Venus 0.830, Earth 0.637, Mars 0.420, asteroids 0. The line for asteroids means the zero ratio, thus zero stability and no planet in the asteroid zone. Earth is unique by its near to the "golden section" value. In Fig. 1 both axes are logarithmic: the abscissa - solar distances of the planets, the ordinate - relative granule sizes (ratio of an individual wave to the

  6. Comment on "A non-primitive origin of near-chondritic Ssbnd Sesbnd Te ratios in mantle peridotites: Implications for the Earth's late accretionary history" by König S. et al. [Earth Planet. Sci. Lett. 385 (2014) 110-121

    NASA Astrophysics Data System (ADS)

    Wang, Zaicong; Becker, Harry

    2015-05-01

    The abundances and ratios of S, Se and Te in rocks from the Earth's mantle may yield valuable constraints on the partitioning of these chalcophile elements between the mantle and basaltic magmas and on the compositions of these elements in the primitive mantle (PM) (e.g. Wang and Becker, 2013). Recently, König et al. (2014) proposed a model in which the CI chondrite-like Se/Te of mantle lherzolites (Se /Te = 8 ± 2, 1σ) are explained by mixing of sulfide melts with low Se/Te with harzburgites containing supposedly residual sulfides with high Se/Te. In this model sulfide melts and platinum group element (PGE) rich telluride phases with low Se/Te are assumed to have precipitated during refertilization of harzburgites by basic melts to form lherzolites. Because of the secondary nature of these re-enrichment processes, the authors state that abundances and ratios of S, Se and Te in fertile lherzolites cannot reflect the composition of the PM.

  7. Human impact on the planet: an earth system science perspective and ethical considerations

    USGS Publications Warehouse

    Williams, Richard S., Jr.

    2002-01-01

    natural and human history to stop further degradation of Earth?s ecosystems and extinction of its biota? The fate of the biosphere, including humanity, depends on a reaffirmation by all humans of all cultures and religions of the global importance of a planet-wide conservation of the Earth?s biotic heritage. For the world?s religions it means elevation of stewardship of the Earth to a moral imperative and a goal of complete preservation of the Earth?s biotic inheritance, one which is based on a Do No Harm ethic.

  8. RECONSTRUCTING THE PHOTOMETRIC LIGHT CURVES OF EARTH AS A PLANET ALONG ITS HISTORY

    SciTech Connect

    Sanroma, E.; Palle, E.

    2012-01-10

    By utilizing satellite-based estimations of the distribution of clouds, we have studied Earth's large-scale cloudiness behavior according to latitude and surface types (ice, water, vegetation, and desert). These empirical relationships are used here to reconstruct the possible cloud distribution of historical epochs of Earth's history such as the Late Cretaceous (90 Ma ago), the Late Triassic (230 Ma ago), the Mississippian (340 Ma ago), and the Late Cambrian (500 Ma ago), when the landmass distributions were different from today's. With this information, we have been able to simulate the globally integrated photometric variability of the planet at these epochs. We find that our simple model reproduces well the observed cloud distribution and albedo variability of the modern Earth. Moreover, the model suggests that the photometric variability of the Earth was probably much larger in past epochs. This enhanced photometric variability could improve the chances for the difficult determination of the rotational period and the identification of continental landmasses for a distant planets.

  9. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    PubMed

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch. PMID:19630504

  10. Occurrence and core-envelope structure of 1-4× Earth-size planets around Sun-like stars.

    PubMed

    Marcy, Geoffrey W; Weiss, Lauren M; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A

    2014-09-01

    Small planets, 1-4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R⊕ planets with orbital periods under 100 d, and 11% have 1-2 R⊕ planets that receive 1-4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth-Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ = 2:32 + 3:19 R=R ⊕ [g cm(-3)]. Larger planets, in the radius range 1.5-4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ''mini-Neptunes.'' The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life's biochemical origins. PMID:24912169

  11. Check-Up of Planet Earth at the Turn of the Millennium: Anticipated New Phase in Earth Sciences

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Ramanathan, V.

    1998-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-AM) will repeat Langley's experiment, but for the entire planet, thus pioneering calibrated spectral observations from space. Conceived in response to real environmental problems, EOS-AM, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-AM can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment.

  12. Optical Images of an Exosolar Planet 25 Light Years from Earth

    NASA Technical Reports Server (NTRS)

    Kalas, Paul; Graham, James R.; Chiang, Eugene; Fitzgerald, Michael P.; Clampin, Mark; Kite, Edwin S.; Stapelfeldt, Karl; Marois, Christian; Krist, John

    2008-01-01

    Fomalhaut is a bright star 7.7 parsecs (25 light years) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star and 18 AU from the dust belt, matching predictions. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 m is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 micron and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 micron.

  13. Optical Images of an Exosolar Planet 25 Light-Years from Earth

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2008-01-01

    Fomalhaut is a bright star 7.7 parsec (25 light year) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate. Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star, and within 18 All of the dust belt. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 micron flux is also consistent with that of a planet with mass a few limes that of Jupiter. The brightness at 0.6 microns and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 microns.

  14. Optical Images of an Exosolar Planet 25 Light Years from Earth

    SciTech Connect

    Kalas, P; Graham, J R; Chiang, E; Fitzgerald, M P; Clampin, M; Kite, E S; Stapelfeldt, K; Krist, J

    2008-11-12

    Fomalhaut is a bright star 7.7 parsec (25 light years) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star, and within 18 AU of the dust belt. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 {micro}m is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 {micro}m and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 {micro}m.

  15. Optical images of an exosolar planet 25 light-years from Earth.

    PubMed

    Kalas, Paul; Graham, James R; Chiang, Eugene; Fitzgerald, Michael P; Clampin, Mark; Kite, Edwin S; Stapelfeldt, Karl; Marois, Christian; Krist, John

    2008-11-28

    Fomalhaut, a bright star 7.7 parsecs (25 light-years) from Earth, harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. Fomalhaut b lies about 119 astronomical units (AU) from the star and 18 AU of the dust belt, matching predictions of its location. Hubble Space Telescope observations separated by 1.73 years reveal counterclockwise orbital motion. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter; a higher mass would lead to gravitational disruption of the belt, matching predictions of its location. The flux detected at 0.8 mum is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 mum and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observe variability of unknown origin at 0.6 mum. PMID:19008414

  16. Gravitational mechanism of active life of the Earth, planets and satellites

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    From positions of geodynamic model of the forced gravitational swing, wobble and displacements of shells of a planet are studied and fundamental problems of geodynamics, geology, geophysics, planetary sciences are solved etc.: 1) The mechanism of cyclic variations of activity of natural processes in various time scales. 2) The power of endogenous activity of planetary natural processes on planets and satellites. 3) The phenomenon of polar inversion of natural processes on planets and satellites. 4) Spasmodic and catastrophic changes of activity of natural processes. 5) The phenomenon of twisting of hemispheres (latitude zones or belts) of celestial bodies. 6) Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 7) The ordered planetary structures of geological formations. 8) The phenomena of bipolarity of celestial bodies and antipodality of geology formations. Mechanism. The fundamental feature of a structure of celestial bodies is their shell structure. The most investigated is the internal structure of the Earth. For the Moon and wide set of other bodies of solar system models of an internal structure have been constructed on the basis of the data of observations obtained at studying of their gravitational fields as a result of realization of the appropriate space missions. The basic components for the majority of celestial bodies are the core, the mantle and the crust. To other shells we concern atmospheres (for example, at Venus, Mars, the Titan etc.) and oceanic shells (the Titan, the Earth, Enceladus etc.). Shells are the complex (composite) formations. Planets and satellites are not spherical celestial bodies. The centers of mass of shells of the given planet (or the satellite) and their appropriate principal axes of inertia do not coincide. Accordingly, all their shells are characterized by the certain dynamic oblatenesses. Differences of dynamical oblatenesses results in various forced influences of external celestial

  17. A super-Earth around a solar twin with evidence for planet accretion

    NASA Astrophysics Data System (ADS)

    Bedell, Megan

    2015-12-01

    Over the last four years we have been carrying out a HARPS radial velocity planet search program aimed at solar twins. Solar twins are a class of stars uniquely suited for high-precision chemical abundance measurements, and the goal of this project is to search for correlations between stellar abundances and planet frequency at a level of sensitivity only solar twins can provide. We recently discovered a 3 Earth mass planet on a 1.8 day orbital period around one of our targets. Our spectroscopic analysis of the host star indicates that it may have accreted planetary material: its chemical abundance pattern has an enhancement in refractory materials and the stellar rotation rate is unusually high for its age, possibly a marker of spin-up. This raises the intriguing possibility that the super-Earth is the core remnant of an accreted hot Jupiter. We present this system as a case study of the power of high-precision host star characterization.

  18. THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

    SciTech Connect

    Cowan, Nicolas B.; Voigt, Aiko; Abbot, Dorian S.

    2012-09-20

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A

  19. Thermal Phases of Earth-like Planets: Estimating Thermal Inertia from Eccentricity, Obliquity, and Diurnal Forcing

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas B.; Voigt, Aiko; Abbot, Dorian S.

    2012-09-01

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3× the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A pole-on observer

  20. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    PubMed

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  1. Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.

    PubMed

    Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N

    2013-05-01

    We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk. PMID:23599262

  2. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    SciTech Connect

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  3. The New Worlds Observer: An Optimal Path to Direct Study of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Cash, Webster C., Jr.; New Worlds Study Team

    2009-01-01

    Direct detection and spectroscopic study of the planets around the nearby stars is generally recognized as a prime goal of astronomy. The New Worlds Observer mission concept is being studied as an Astrophysics Strategic Mission Concept Study for this purpose. NWO features two spacecraft: a general purpose 4m telescope that operates from the UV to the Near IR, and a starshade, a flower-shaped occulter about 50m in diameter flying in alignment about 70,000km away. Our study shows this is the most effective way to map nearby planetary systems. In this poster we will show that NWO can return much more science than any of the competing approaches at any given price point. Images will show dust and debris down to a fraction of our zodiacal light level. Planets fainter than the Earth can be seen from the Habitable Zone outward, at distances up to 20pc. High throughput and low noise enable immediate follow-up spectroscopy of discovered planets. NWO can discover many more Earth-like planets than all competing approaches including astrometric, interferometric, and internal coronagraphic. Within hours of discovery, a high quality spectrum can determine the true nature of the exoplanet and open the search for biomarkers and life. Over half of the time will be spent with the starshade in transit to the next target. During those times the telescope will be available to for general astrophysics purposes. Operating from the ultraviolet to the near infrared, this will be a true HST follow-on. The study shows all needed technologies already exist. The cost scales primarily with telescope size. The mission is definitely within the financial and technical reach of NASA for the coming decade.

  4. Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars

    PubMed Central

    Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.

    2014-01-01

    Small planets, 1–4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth–Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1–4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ=2.32+3.19R/R⊕ [g cm−3]. Larger planets, in the radius range 1.5–4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ‘‘mini-Neptunes.’’ The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life’s biochemical origins. PMID:24912169

  5. THE HABITABLE ZONE OF EARTH-LIKE PLANETS WITH DIFFERENT LEVELS OF ATMOSPHERIC PRESSURE

    SciTech Connect

    Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio

    2013-04-10

    As a contribution to the study of the habitability of extrasolar planets, we implemented a one-dimensional energy balance model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p = 1/3 to 3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the efficiency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar-type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.

  6. A Laboratory Demonstration of the Capability to Image an Earth-like Extrasolar Planet

    NASA Technical Reports Server (NTRS)

    Trauger, John T.; Wesley, A. Traub

    2007-01-01

    The detection and characterization of an Earth-like planet orbiting a nearby star requires a telescope with an extraordinarily large contrast at small angular separations. At visible wavelengths, an Earth-like planet would be 1 times 10-10 times fainter than the star at angular separations of typically 0.1 arcsecond or less. There are several proposed space telescope systems that could, in principle, achieve this. Here we report a laboratory experiment that reaches these limits. We have suppressed the diffracted and scattered light near a star-like source to a level of 6 times 10-10 times the peak intensity in individual coronagraph images. In a series of such images, together with simple image processing, we have effectively reduced this to a residual noise level of about 0.1 times 10-10. This demonstrates that a coronagraphic telescope in space could detect and spectroscopically characterize nearby exoplanetary systems, with the sensitivity to image an 'Earth-twin' orbiting a nearby star.

  7. The Earth as a living planet: human-type diseases in the earthquake preparation process

    NASA Astrophysics Data System (ADS)

    Contoyiannis, Y. F.; Potirakis, S. M.; Eftaxias, K.

    2013-01-01

    The new field of complex systems supports the view that a number of systems arising from disciplines as diverse as physics, biology, engineering, and economics may have certain quantitative features that are intriguingly similar. The Earth is a living planet where many complex systems run perfectly without stopping at all. The earthquake generation is a fundamental sign that the Earth is a living planet. Recently, analyses have shown that human-brain-type disease appears during the earthquake generation process. Herein, we show that human-heart-type disease appears during the earthquake preparation of the earthquake process. The investigation is mainly attempted by means of critical phenomena, which have been proposed as the likely paradigm to explain the origins of both heart electric fluctuations and fracture-induced electromagnetic fluctuations. We show that a time window of the damage evolution within the heterogeneous Earth's crust and the healthy heart's electrical action present the characteristic features of the critical point of a thermal second-order phase transition. A dramatic breakdown of critical characteristics appears in the tail of the fracture process of heterogeneous system and the injured heart's electrical action. Analyses by means of Hurst exponent and wavelet decomposition further support the hypothesis that a dynamical analogy exists between the geological and biological systems under study.

  8. Cassini VIMS Spectra of the Earth from Saturn Orbit: an Extrasolar Planet Analog

    NASA Astrophysics Data System (ADS)

    Clark, Roger Nelson; Hedman, Matthew M.; Brown, Robert H.; Filacchione, Gianrico; Nicholson, Philip D.; Barnes, Jason W.

    2015-11-01

    Cassini VIMS has obtained spectra of the Earth while in Saturn orbit making observations of the Saturn system when the sun was behind Saturn. The observations, made in September 15, 2006 and July 19, 2013 are visible-near-infrared spectra (0.35 - 5.1 microns) of the Earth obtained at the furthest distance from the sun to date. The Earth was sub-pixel, 0.0088 milliradian in 2013 and 0.0085 milliradian in 2006, and the signal-to-noise ratio is low. A VIMS pixel IFOV is 0.25 x 0.5milliradian. As such, these data are likely representative of the first spectra that might be obtained of extrasolar terrestrial-like planets. What information can be derived from such remote observations? The observation made in 2013 had a phase angle of 97 degrees with multipleimage cubes providing a higher S/N average. The 2006 observation was made at a phase angle of 33 degrees but is a single cube, 1 pixel. The 2006 observation has Africa dominant on the disk, while the 2013 observation is mostly ocean with part of South America in sunlight. The 2013 visible data show clear signatures of Rayleigh scattering but this blue coloring can be from both the atmosphere and/or ocean. The 2006 data show a flatter spectrum, a signature of land. Both observations include the Moon in the field of view. The 0.35-2.5 micron spectral range shows significant absorption due to H2O liquid + gas. The thermal signature is very strong with the highest S/N of the entire spectrum. The best fit preliminary temperatures are 280 K with a small 380 K component (from the Moon), putting at least some of the planet in the goldilocks zone. There is strong absorption by CO2 at 4.25 microns in both 2013 and 2006 data. There is possible detection of chlorophyll and oxygen emission but higher S/N would be required for a positive detection. The spectral profile of the thermal emission could be used to constrain the diameter of the planet. If such spectra were obtained of an extrasolar planet, we could conclude that the

  9. MARSIS data and simulation exploited using array databases: PlanetServer/EarthServer for sounding radars

    NASA Astrophysics Data System (ADS)

    Cantini, Federico; Pio Rossi, Angelo; Orosei, Roberto; Baumann, Peter; Misev, Dimitar; Oosthoek, Jelmer; Beccati, Alan; Campalani, Piero; Unnithan, Vikram

    2014-05-01

    MARSIS is an orbital synthetic aperture radar for both ionosphere and subsurface sounding on board ESA's Mars Express (Picardi et al. 2005). It transmits electromagnetic pulses centered at 1.8, 3, 4 or 5 MHz that penetrate below the surface and are reflected by compositional and/or structural discontinuities in the subsurface of Mars. MARSIS data are available as a collection of single orbit data files. The availability of tools for a more effective access to such data would greatly ease data analysis and exploitation by the community of users. For this purpose, we are developing a database built on the raster database management system RasDaMan (e.g. Baumann et al., 1994), to be populated with MARSIS data and integrated in the PlanetServer/EarthServer (e.g. Oosthoek et al., 2013; Rossi et al., this meeting) project. The data (and related metadata) are stored in the db for each frequency used by MARSIS radar. The capability of retrieving data belonging to a certain orbit or to multiple orbit on the base of latitute/longitude boundaries is a key requirement of the db design, allowing, besides the "classical" radargram representation of the data, and in area with sufficiently hight orbit density, a 3D data extraction, subset and analysis of subsurface structures. Moreover the use of the OGC WCPS (Web Coverage Processing Service) standard can allow calculations on database query results for multiple echoes and/or subsets of a certain data product. Because of the low directivity of its dipole antenna, MARSIS receives echoes from portions of the surface of Mars that are distant from nadir and can be mistakenly interpreted as subsurface echoes. For this reason, methods have been developed to simulate surface echoes (e.g. Nouvel et al., 2004), to reveal the true origin of an echo through comparison with instrument data. These simulations are usually time-consuming, and so far have been performed either on a case-by-case basis or in some simplified form. A code for

  10. MARSIS data and simulation exploited using array databases: PlanetServer/EarthServer for sounding radars

    NASA Astrophysics Data System (ADS)

    Cantini, Federico; Pio Rossi, Angelo; Orosei, Roberto; Baumann, Peter; Misev, Dimitar; Oosthoek, Jelmer; Beccati, Alan; Campalani, Piero; Unnithan, Vikram

    2014-05-01

    MARSIS is an orbital synthetic aperture radar for both ionosphere and subsurface sounding on board ESA's Mars Express (Picardi et al. 2005). It transmits electromagnetic pulses centered at 1.8, 3, 4 or 5 MHz that penetrate below the surface and are reflected by compositional and/or structural discontinuities in the subsurface of Mars. MARSIS data are available as a collection of single orbit data files. The availability of tools for a more effective access to such data would greatly ease data analysis and exploitation by the community of users. For this purpose, we are developing a database built on the raster database management system RasDaMan (e.g. Baumann et al., 1994), to be populated with MARSIS data and integrated in the PlanetServer/EarthServer (e.g. Oosthoek et al., 2013; Rossi et al., this meeting) project. The data (and related metadata) are stored in the db for each frequency used by MARSIS radar. The capability of retrieving data belonging to a certain orbit or to multiple orbit on the base of latitute/longitude boundaries is a key requirement of the db design, allowing, besides the "classical" radargram representation of the data, and in area with sufficiently hight orbit density, a 3D data extraction, subset and analysis of subsurface structures. Moreover the use of the OGC WCPS (Web Coverage Processing Service) standard can allow calculations on database query results for multiple echoes and/or subsets of a certain data product. Because of the low directivity of its dipole antenna, MARSIS receives echoes from portions of the surface of Mars that are distant from nadir and can be mistakenly interpreted as subsurface echoes. For this reason, methods have been developed to simulate surface echoes (e.g. Nouvel et al., 2004), to reveal the true origin of an echo through comparison with instrument data. These simulations are usually time-consuming, and so far have been performed either on a case-by-case basis or in some simplified form. A code for

  11. Two cultures are better than one: Earth sciences and Art for a better planet sustainability

    NASA Astrophysics Data System (ADS)

    Lanza, Tiziana; Rubbia, Giuliana; Negrete, Aquiles

    2015-04-01

    Climate change, pollution, desertification, natural hazard, animals' extinction are some of the problems we face every day. Very often Science and Technology are charged of the solutions while Art is intended mainly for entertainment. Are we sure this is the right attitude? "Technology is a queer thing. It brings you gifts with one hand, and stabs you in the back with the other", says C.P.Snow, author of a milestone book on the Two Cultures, namely Sciences and Humanities. If Science can drive to a rigorous knowledge of the Earth speaking to people's mind, Technology is Science in action. When individuals act very often the reasons behind their actions are linked to their education, values, sense of beauty, presence or absence of feelings, all things pertaining to the emotional sphere of humans usually addressed by humanistic culture. But if in one hand, Science and Technology cannot be left alone to solve the impelling problems that are deteriorating not only our planet resources but also our quality of life, on the other hand the humanistic culture can find a powerful ally in scientific culture for re-awakening in everybody the sense of beauty, values and respect for the planet. To know Earth is to love Earth, since nature is in itself a work of Art. Earth sciences dig out all the secrets that make our planet a unique place in the Universe we know. Every single phenomena can be seen then in a double face value. An Aurora, for instance, can inspire poetry for its beauty and colors but always remains the result of the interaction between the solar wind and the Earth magnetic field. And, most important, an Aurora will never inspire negative feelings. To make our part in creating a common field between Art and Earth sciences, we have created a blog and a related FaceBook page to collect, browsing the web, all the experiences in this trend, to find out that many scientists and artists are already working in this direction as a final and enjoyable surprise.

  12. International Year of Planet Earth Cooperating with Other Years in 2007-2009

    NASA Astrophysics Data System (ADS)

    de Mulder, E. F.

    2006-05-01

    After its inception in 2001, the International Year of Planet Earth was proclaimed for 2008 by the UN General Assembly in December 2005. The UN Year will be in the core of a triennium, starting in January 2007 and closing by the end of 2009. Through UN proclamation, it has gained the political support by 191 UN nations. The International Year of Planet Earth was initiated by the International Union of Geological Sciences (IUGS) finding UNESCO's Earth Sciences Division ready as co-initiator. It enjoys the backing of all relevant IUGS's sister unions in ICSU, including IUGG, IGU, IUSS, ISPRS and INQUA among its 12 Founding Partners and AGI, AAPG and AIPG as major USA based international geoscientific organizations. Moreover, the initiative is supported by 26 more geoscientific and other relevant bodies. The aim of the Year, encapsulated in its subtitle Earth sciences for Society, is to build awareness of the relationship between humankind and Planet Earth, and to demonstrate that geoscientists are key players in creating a balanced, sustainable future for both. In this respect it aims to convince politicians to apply the wealth of geodata and information in day-to-day policy making. The International Year includes a Science and an Outreach Programme, both of equal financial size. The ten Science Themes (Groundwater, Hazards, Health, Climate, Resources, Deep Earth, Ocean, Megacities, Soils, and Life) in the Science Programme were selected for their societal impact, their potential for outreach, as well as their multidisciplinary nature and high scientific potential. Brochures with key questions and invitations for scientists to submit project proposals have been printed for each Theme and can be downloaded from www.yearofplanetearth.org. The same bottom-up mode is applied for the Outreach Programme which will operate as a funding body, receiving bids for financial support - for anything from web-based educational resources to commissioning works of art that will help

  13. Mission to Planet Earth. The living ocean: Observing ocean color from space

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Measurements of ocean color are part of NASA's Mission to Planet Earth, which will assess how the global environment is changing. Using the unique perspective available from space, NASA will observe, monitor, and study large-scale environmental processes, focusing on quantifying climate change. NASA will distribute the results of these studies to researchers worldwide to furnish a basis for informed decisions on environmental protection and economic policy. This information packet includes discussion on the reasons for measuring ocean color, the carbon cycle and ocean color, priorities for global climate research, and SeWiFS (sea-viewing wide field-of-view sensor) global ocean color measurements.

  14. Mission to Planet Earth: Who provides, controls, and owns the data?

    NASA Astrophysics Data System (ADS)

    Holland, Don; Brannon, David

    1997-01-01

    Some of the crucial issues associated with national and international partnerships that Mission to Planet Earth (MTPE) must face in the coming years are in the areas of data policy, data rights, and international agreements. Even with strictly domestic programs, questions inevitably arise concerning who provides, controls, and owns the data and who can sell, resell, or distribute the data. With the international flavor of MTPE, the complexity of the questions will be compounded. NASA's Commercial Remote Sensing Program at Stennis Space Center is analyzing these questions to identify regulatory frameworks, issues, opportunities, and barriers associated with partnerships and other cooperative efforts between MTPE scientists and the rest of the world.

  15. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  16. Earth observations during Space Shuttle Flight STS-49: Endeavor's Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Amsbury, David L.; Evans, Cynthia; Ackleson, Steven; Brumbaugh, Frederick R.; Helms, David R.; Lulla, Kamlesh P.; Wilkinson, M. Justin; Brandenstein, Daniel C.; Chilton, Kevin P.; Hieb, Richard J.

    1994-01-01

    A brief mission overview of STS-49 is given, and some of the pictorially outstanding and scientifically interesting photographs obtained during the mission are presented. The Earth observations are described and include the following: the Southwestern Pacific Ocean -- wind and water; the Southwestern Pacific Ocean -- coasts and volcanoes; the US; Cuba and the Bahamas; South America; Africa; the Red Sea and Western Indian Ocean; and the Indian Subcontinent.

  17. A Scientometric Prediction of the Discovery of the First Potentially Habitable Planet with a Mass Similar to Earth

    PubMed Central

    Arbesman, Samuel; Laughlin, Gregory

    2010-01-01

    Background The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. Methodology/Principal Findings Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. Conclusions/Significance Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields. PMID:20957226

  18. A review of the US Global Change Research Program and NASA's Mission to Planet Earth/Earth Observing System

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Anderson, James G.; Costanza, Robert; Gates, W. Lawrence; Grew, Priscilla C.; Leinen, Margaret S.; Mayewski, Paul A.; McCarthy, James J.; Sellers, Piers J.

    1995-01-01

    This report reflects the results of a ten-day workshop convened at the Scripps Institution of Oceanography July 19-28, 1995. The workshop was convened as the first phase of a two part review of the U.S. Global Change Research Program (USGCRP). The workshop was organized to provide a review of the scientific foundations and progress to date in the USGCRP and an assessment of the implications of new scientific insights for future USGCRP and Mission to Planet Earth/Earth Observing System (MTPE/EOS) activities; a review of the role of NASA's MTPE/EOS program in the USGCRP observational strategy; a review of the EOS Data and Information System (EOSDIS) as a component of USGCRP data management activities; and an assessment of whether recent developments in the following areas lead to a need to readjust MTPE/EOS plans. Specific consideration was given to: proposed convergence of U.S. environmental satellite systems and programs, evolving international plans for Earth observation systems, advances in technology, and potential expansion of the role of the private sector. The present report summarizes the findings and recommendations developed by the Committee on Global Change Research on the basis of the presentations, background materials, working group deliberations, and plenary discussions of the workshop. In addition, the appendices include summaries prepared by the six working groups convened in the course of the workshop.

  19. Oxygen Fugacity of Basalts From Earth and Mars: Implications for Oxidation States of Terrestrial Planet Interiors

    NASA Astrophysics Data System (ADS)

    Herd, C.

    2004-12-01

    The oxidation state of a planetary interior plays an important role in the partitioning of elements between the planet's core and mantle, the geophysical properties of the mantle, the phase equilibria of igneous rocks, and the speciation of gases in the planet's atmosphere. Determining the oxidation state of the interior of the Moon, Mars, and differentiated asteroids is difficult, because planetary samples are dominated by basaltic igneous rocks. Direct mantle samples, such as mantle xenoliths and diamond inclusions, as benefit studies on Earth, are lacking. The oxidation state of these planets' interiors is inferred from the oxygen fugacity recorded in the basaltic samples. Basalts from Mars (martian meteorites) record oxygen fugacity ranging from near the IW buffer to 3 log units above ( ˜QFM), by several methods. The range of igneous rocks on Earth overlaps, but ranges up to ˜7 log units above IW, with the most oxidized samples derived from island arcs. Studies of the relationship between the oxidation state of a basalt and that of its mantle source on the Earth provide potentially important contributions to the interpretation of martian basalt oxygen fugacity and the inferred oxidation state of the martian interior. Thermodynamic considerations of ferrous-ferric mineral equilibria in the spinel and garnet facies of the Earth's mantle dictate that the oxygen fugacity should decrease, relative to the QFM buffer, with increasing pressure. Ballhaus (1995) calculated a decrease of 0.6 log unit per GPa increase, assuming a constant bulk composition. In contrast, C-H-O equilibria have isopleths of opposing slope, such that fluid composition will be dominated by more reduced species (e.g., methane) at greater depths. Ballhaus and Frost (1994) argue that C-H-O buffering influences upwelling asthenosphere, particularly by the presence of graphite, and that the oxygen fugacity of a basalt at the surface depends on the depth at which first melting occurs. This depth is

  20. SPICES: A Mission Concept to Characterize Long Period Planets from Giants to Super-Earths

    NASA Astrophysics Data System (ADS)

    Boccaletti, Anthony; Maire, Anne-Lise; Galicher, Raphaël; Baudoz, Pierre; Mawet, Dimitri; Trauger, John; Schneider, Jean; Traub, Wes; Stam, Daphne; Lagage, Pierre-Olivier; Gratton, Raffaele

    2014-04-01

    SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) was proposed in 2010 for a five-year M-class mission in the context of ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets located at several AUs (0.5-10 AU) from nearby stars (<25 pc) with masses ranging from a few Jupiter masses down to super-Earths (~2 Earth radii, ~10 M⊕), possibly habitable. In addition, circumstellar disks as faint as a few times the zodiacal light in the Solar System can be studied. SPICES is based on a 1.5-m off-axis telescope and can perform spectro-polarimetric measurements in the visible (450 - 900 nm) at a spectral resolution of about 40. This paper summarizes the top science program and the choices made to conceive the instrument. The performance is illustrated for a few emblematic cases.

  1. Habitable Zone Planets: PLATO, and the search for Earth 2.0

    NASA Astrophysics Data System (ADS)

    Brown, D. J. A.

    2015-10-01

    The PLATO mission, part of ESA's Cosmic Vision program, will launch in 2024 and will revolutionize the field of transiting exoplanets. By observing a large sample of bright stars, PLATO will discover thousands of terrestrial planets, including hundreds in the habitable zones of their host stars. The brightness of PLATO targets allows full characterization of both the planets and their host stars, including asteroseismic analysis to precisely determine masses, radii, and ages. Moreover, PLATO host stars will be bright enough to allow atmospheric spectroscopy. Confirmation and characterization of PLATO planets will require a coordinated, ground-based follow-up program to both eliminate false-positives, and derive planetary masses. I will present an introduction to PLATO, discussing the scientific motivation behind the mission, its aims and goals, and the significant contribution that PLATO will make to the search for a second Earth. I will also talk about the requirements and formulation of the follow-up program, showing that the demands are not as onerous as might be feared.

  2. Galactic cosmic rays on extrasolar Earth-like planets. II. Atmospheric implications

    NASA Astrophysics Data System (ADS)

    Grießmeier, J.-M.; Tabataba-Vakili, F.; Stadelmann, A.; Grenfell, J. L.; Atri, D.

    2016-03-01

    Context. Theoretical arguments indicate that close-in terrestial exoplanets may have weak magnetic fields. As described in the companion article (Paper I), a weak magnetic field results in a high flux of galactic cosmic rays to the top of the planetary atmosphere. Aims: We investigate effects that may result from a high flux of galactic cosmic rays both throughout the atmosphere and at the planetary surface. Methods: Using an air shower approach, we calculate how the atmospheric chemistry and temperature change under the influence of galactic cosmic rays for Earth-like (N2-O2 dominated) atmospheres. We evaluate the production and destruction rate of atmospheric biosignature molecules. We derive planetary emission and transmission spectra to study the influence of galactic cosmic rays on biosignature detectability. We then calculate the resulting surface UV flux, the surface particle flux, and the associated equivalent biological dose rates. Results: We find that up to 20% of stratospheric ozone is destroyed by cosmic-ray protons. The effect on the planetary spectra, however, is negligible. The reduction of the planetary ozone layer leads to an increase in the weighted surface UV flux by two orders of magnitude under stellar UV flare conditions. The resulting biological effective dose rate is, however, too low to strongly affect surface life. We also examine the surface particle flux: For a planet with a terrestrial atmosphere (with a surface pressure of 1033 hPa), a reduction of the magnetic shielding efficiency can increase the biological radiation dose rate by a factor of two, which is non-critical for biological systems. For a planet with a weaker atmosphere (with a surface pressure of 97.8 hPa), the planetary magnetic field has a much stronger influence on the biological radiation dose, changing it by up to two orders of magnitude. Conclusions: For a planet with an Earth-like atmospheric pressure, weak or absent magnetospheric shielding against galactic cosmic

  3. International Geo-Years: Cooperation Between Planet Earth and Electronic Years

    NASA Astrophysics Data System (ADS)

    de Mulder, E.

    2005-05-01

    Momentum is growing behind an ambitious international multidisciplinary Earth science initiative. The International Year of Planet Earth project was conceived by the International Union of Geological Sciences (IUGS) finding UNESCO's Earth Sciences Division ready as co-initiator. It now enjoys the backing of all relevant IUGS's sister unions in ICSU, including IUGG, and through a Declaration adopted at the International Geological Congress (2004) of the global geoscience community. It has now won the full political backing of 14 nations, together representing half of the world population. The aim of the Year, encapsulated in its subtitle Earth sciences for Society, is to build awareness of the relationship between humankind and Planet Earth, and to demonstrate that geoscientists are key players in creating a balanced, sustainable future for both. 2007 or 2008 is aimed for the officially endorsed UN-year, but the whole project will begin one year ahead and run through to at least one year after the UN-year. The International Year includes a Science and an Outreach Programme, both of equal financial size. The eight Themes (Groundwater, Hazards, Health, Climate, Resources, Deep Earth, Ocean, and Megacities) in the Science Programme were selected for their societal impact, their potential for outreach, as well as their multidisciplinary nature and high scientific potential. Applications for more Themes (on `Soil' and on `Life') are being considered. Brochures with key questions and invitations for scientists to submit project proposals are being printed for each Theme and can be downloaded from www.esfs.org. The same bottom-up mode is applied for the Outreach Programme which will operate as a funding body, receiving bids for financial support - for anything from web-based educational resources to commissioning works of art that will help reinforce to the general public the central message of the Year. There are many potential interfaces and links between this initiative

  4. Headlines: Planet Earth: Improving Climate Literacy with Short Format News Videos

    NASA Astrophysics Data System (ADS)

    Tenenbaum, L. F.; Kulikov, A.; Jackson, R.

    2012-12-01

    One of the challenges of communicating climate science is the sense that climate change is remote and unconnected to daily life--something that's happening to someone else or in the future. To help face this challenge, NASA's Global Climate Change website http://climate.nasa.gov has launched a new video series, "Headlines: Planet Earth," which focuses on current climate news events. This rapid-response video series uses 3D video visualization technology combined with real-time satellite data and images, to throw a spotlight on real-world events.. The "Headlines: Planet Earth" news video products will be deployed frequently, ensuring timeliness. NASA's Global Climate Change Website makes extensive use of interactive media, immersive visualizations, ground-based and remote images, narrated and time-lapse videos, time-series animations, and real-time scientific data, plus maps and user-friendly graphics that make the scientific content both accessible and engaging to the public. The site has also won two consecutive Webby Awards for Best Science Website. Connecting climate science to current real-world events will contribute to improving climate literacy by making climate science relevant to everyday life.

  5. Heterogeneous growth of meteorites and planets, especially the earth and moon

    NASA Technical Reports Server (NTRS)

    Smith, J. V.

    1982-01-01

    It is pointed out that enough information remains in meteorites to show that the solar nebula was chemically inhomogeneous, and that it did not develop under physical and chemical equilibrium. It is found that the earth is not in chemical equilibrium, and that it still retains vestiges of its heterogeneous growth in spite of prolonged convection and volcanism. The present investigation has the aim to unify simple ideas into a comprehensive, complex scheme for heterogeneous growth of the planets and parent bodies of meteorites. A scheme is considered for the conversion of dust and gas in the solar nebula into the present population of bodies. Attention is given to possible processes for the growth and development of planetesimals from dust via clouds, the major episodes in the development of the solar system, the relation of meteorites to a solar nebula with monotonic variation of temperature and oxidation state, the significance of meteorite properties, the composition of the inner planets, and the development of the earth.

  6. The Power of the Crowd: An Up Close and Personal Perspective on Planet Earth.

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2015-12-01

    The space-based view of Earth has changed the way we look at our home planet, providing a perspective on the Earth as a system that can only be realized when viewed from a distance. Throughout my career as a researcher, including 2 years as NASA Chief Scientist, this "power of perspective" has been a tool through which I have engaged both colleagues and the public. These capabilities have transformed our understanding of climate and weather phenomena, ecosystem dynamics, changes in the cryosphere, and much more, through their macro-scale look at the various, highly complex components of the Earth system. But within these domains, there is a tremendous amount of small-scale variability that, if appropriately observed, can reveal new information about how elements within the Earth system work in ways that can directly impact people's lives. Consequently, there is a different power in this additional local perspective: it is one fueled by up-close and personal data collection. Through their engagement and commitment, citizen scientists are providing valuable data as well as personalized experience in the collection of those data. This presentation will include video clips that show a diverse set of citizen science projects in North America and worldwide, illustrating this scientifically useful combination of local and global. Such projects engage citizens and scientists alike in efforts to understand the world in which we live.

  7. Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet

    NASA Astrophysics Data System (ADS)

    Freilich, Michael

    2016-04-01

    Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.

  8. The Near-Earth Object Camera: A Next-Generation Minor Planet Survey

    NASA Astrophysics Data System (ADS)

    Mainzer, Amy K.; Wright, Edward L.; Bauer, James; Grav, Tommy; Cutri, Roc M.; Masiero, Joseph; Nugent, Carolyn R.

    2015-11-01

    The Near-Earth Object Camera (NEOCam) is a next-generation asteroid and comet survey designed to discover, characterize, and track large numbers of minor planets using a 50 cm infrared telescope located at the Sun-Earth L1 Lagrange point. Proposed to NASA's Discovery program, NEOCam is designed to carry out a comprehensive inventory of the small bodies in the inner regions of our solar system. It address three themes: 1) quantify the potential hazard that near-Earth objects may pose to Earth; 2) study the origins and evolution of our solar system as revealed by its small body populations; and 3) identify the best destinations for future robotic and human exploration. With a dual channel infrared imager that observes at 4-5 and 6-10 micron bands simultaneously through the use of a beamsplitter, NEOCam enables measurements of asteroid diameters and thermal inertia. NEOCam complements existing and planned visible light surveys in terms of orbital element phase space and wavelengths, since albedos can be determined for objects with both visible and infrared flux measurements. NEOCam was awarded technology development funding in 2011 to mature the necessary megapixel infrared detectors.

  9. Melting-induced crustal production helps plate tectonics on Earth-like planets

    NASA Astrophysics Data System (ADS)

    Lourenço, Diogo L.; Rozel, Antoine; Tackley, Paul J.

    2016-04-01

    Within our Solar System, Earth is the only planet to be in a mobile-lid regime. It is generally accepted that the other terrestrial planets are currently in a stagnant-lid regime, with the possible exception of Venus that may be in an episodic-lid regime (Armann and Tackley, JGR 2012). Using plastic yielding to self-consistently generate plate tectonics on an Earth-like planet with strongly temperature-dependent viscosity is now well-established, but such models typically focus on purely thermal convection, whereas compositional variations in the lithosphere can alter the stress state and greatly influence the likelihood of plate tectonics. For example, Rolf and Tackley (GRL, 2011) showed that the addition of a continent can reduce the critical yield stress for mobile-lid behaviour by a factor of around two. Moreover, it has been shown that the final tectonic state of the system can depend on the initial condition (Tackley, G3 2000 - part 2). Weller and Lenardic (GRL, 2012) found that the parameter range in which two solutions are obtained increases with viscosity contrast. We can also say that partial melting has a major role in the long-term evolution of rocky planets: (1) partial melting causes differentiation in both major elements and trace elements, which are generally incompatible (Hofmann, Nature 1997). Trace elements may contain heat-producing isotopes, which contribute to the heat loss from the interior; (2) melting and volcanism are an important heat loss mechanism at early times that act as a strong thermostat, buffering mantle temperatures and preventing it from getting too hot (Xie and Tackley, JGR 2004b); (3) mantle melting dehydrates and hardens the shallow part of the mantle (Hirth and Kohlstedt, EPSL 1996) and introduces viscosity and compositional stratifications in the shallow mantle due to viscosity variations with the loss of hydrogen upon melting (Faul and Jackson, JGR 2007; Korenaga and Karato, JGR 2008). We present a set of 2D spherical

  10. Climate of Earth-Like Planets With and Without Ocean Heat Transport Orbiting a Range of M and K Stars

    NASA Technical Reports Server (NTRS)

    Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki

    2015-01-01

    The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).

  11. Evidence from the Semarkona ordinary chondrite for Al-26 heating of small planets

    NASA Astrophysics Data System (ADS)

    Hutcheon, I. D.; Hutchison, R.

    1989-01-01

    The first observation of radiogenic Mg-26 in nonrefractory meteoritic material, a plagioclase-bearing, olivine-pyroxene clast chondrule in the Semarkona ordinary chondrite, is reported. The inferred initial abundance of Al-26 is sufficient to produce incipient melting in well-insulated bodies of chondritic composition. It is concluded that planetary accretion and diffentiation must have begun on a timescale comparable to the half-life of Al-26 and that, even if widespread melting did not occur, Al-26 heating played a significant role in thermal metamorphism on small planets.

  12. Climate Variability Recorded in Earth System History: Contributions to our Understanding of a Changing Planet

    NASA Astrophysics Data System (ADS)

    Barron, E. J.

    2001-12-01

    The study of Earth System History is characterized by substantial innovation and excitement directed toward addressing the critical issue of understanding a changing planet and promoting new insights into the evolution of the Earth and its resources. Much of this innovation reflects the considerable expansion in the availability and quality of observations, particularly from the oceans, and the development and application of numerical models of the ocean-atmosphere-land-ice system. The key challenge within the Earth sciences is to develop a robust understanding of this coupled earth system and then to develop a predictive capability for natural variability and global change. Our capabilities are limited, among other things, by the fact that the instrumented record is too short to provide a strong sense of the character of change and the sensitivity of the Earth system. For this reason, modern observations are inadequate to demonstrate the capability of climate models to simulate conditions very different from the present day. The importance of Earth system history, and the ocean record in particular, stems from unique capabilities to: (1) assess the temporal and spatial characteristics of system variability, (2) define the nature of Earth sensitivity to a large number of forcing factors, including changes in ocean circulation and in greenhouse gases, (3) examine the integrated climatic, chemical and biologic response of the Earth system to a variety of spatial and temporal perturbations, (4) validate the predictions of numerical models for conditions very different from the present day, and (5) assess the rates of change associated with the evolution of the Earth and its components. Earth system history provides a great diversity of examples yielding a remarkable opportunity to develop insights into a broad range of issues and problems associated with the evolution of our planet. Three examples provide a focus for discussion. First, a careful analysis of climate

  13. Check-Up of Planet Earth at the Turn of the Millennium Anticipated New Phase in Earth Sciences

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Langley's remarkable solar and lunar spectra collected from mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite named recently "Terra" (by Ms. Sasha Jones, a 17 year old student in St. Louis, MO) will repeat Langley's experiment, but for the entire planet, thus pioneering calibrated spectral observations from space. Conceived in response to real environmental problems, EOS-AM, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-AM can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In this talk I shall a give a historical perspective for the need for this expensive mission, give examples of the science that we anticipate to achieve using Terra measurements and describe this exciting mission.

  14. KEPLER-68: THREE PLANETS, ONE WITH A DENSITY BETWEEN THAT OF EARTH AND ICE GIANTS

    SciTech Connect

    Gilliland, Ronald L.; Marcy, Geoffrey W.; Isaacson, Howard; Rowe, Jason F.; Henze, Christopher E.; Lissauer, Jack J.; Rogers, Leslie; Torres, Guillermo; Fressin, Francois; Desert, Jean-Michel; Lopez, Eric D.; Buchhave, Lars A.; Christensen-Dalsgaard, Jorgen; Handberg, Rasmus; Jenkins, Jon M.; Basu, Sarbani; Metcalfe, Travis S.; Hekker, Saskia; and others

    2013-03-20

    NASA's Kepler Mission has revealed two transiting planets orbiting Kepler-68. Follow-up Doppler measurements have established the mass of the innermost planet and revealed a third Jovian-mass planet orbiting beyond the two transiting planets. Kepler-68b, in a 5.4 day orbit, has M{sub P}=8.3{sup +2.2}{sub -2.4} M{sub Circled-Plus }, R{sub P}=2.31{sup +0.06}{sub -0.09} R{sub Circled-Plus }, and {rho}{sub P}=3.32{sup +0.86}{sub -0.98} g cm{sup -3}, giving Kepler-68b a density intermediate between that of the ice giants and Earth. Kepler-68c is Earth-sized, with a radius R{sub P}=0.953{sup +0.037}{sub -0.042} R{sub Circled-Plus} and transits on a 9.6 day orbit; validation of Kepler-68c posed unique challenges. Kepler-68d has an orbital period of 580 {+-} 15 days and a minimum mass of M{sub P}sin i = 0.947 {+-} 0.035M{sub J} . Power spectra of the Kepler photometry at one minute cadence exhibit a rich and strong set of asteroseismic pulsation modes enabling detailed analysis of the stellar interior. Spectroscopy of the star coupled with asteroseismic modeling of the multiple pulsation modes yield precise measurements of stellar properties, notably T{sub eff} = 5793 {+-} 74 K, M{sub *} = 1.079 {+-} 0.051 M{sub Sun }, R{sub *} = 1.243 {+-} 0.019 R{sub Sun }, and {rho}{sub *} = 0.7903 {+-} 0.0054 g cm{sup -3}, all measured with fractional uncertainties of only a few percent. Models of Kepler-68b suggest that it is likely composed of rock and water, or has a H and He envelope to yield its density {approx}3 g cm{sup -3}.

  15. A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR

    SciTech Connect

    Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.; Rowe, Jason F.; Huber, Daniel; Jenkins, Jon M.; Quintana, Elisa V.; Still, Martin; Twicken, Joseph D.; Bryson, Stephen T.; Borucki, William J.; Caldwell, Douglas A.; Clarke, Bruce D.; Christiansen, Jessie L; Coughlin, Jeffrey L.; Ciardi, David; Fischer, Debra A.; and others

    2013-05-10

    We present the discovery of a super-Earth-sized planet in or near the habitable zone of a Sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the 3-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.3%. The inner planet, Kepler-69b, has a radius of 2.24{sup +0.44}{sub -0.29} R{sub Circled-Plus} and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-sized object with a radius of 1.7{sup +0.34}{sub -0.23} R{sub Circled-Plus} and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 {+-} 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near the habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.

  16. Three-dimensional presentation of the earth and planets in classrooms and science centers with a spherical screen

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.; Odagi, Y.; Nishi, N.; Miyazaki, S.; Ichikawa, H.

    2012-12-01

    Educational programs have been developed for the earth and planetary science using a three-dimensional presentation system of the Earth and planets with a spherical screen. They have been used in classrooms of universities, high schools, elementary schools, and science centers. Two-dimensional map is a standard tool to present the data of the Earth and planets. However the distortion of the shape is inevitable especially for the map of wide areas. Three-dimensional presentation of the Earth, such as globes, is an only way to avoid this distortion. There are several projects to present the earth and planetary science results in three-dimension digitally, such as Science on a sphere (SOS) by NOAA, and Geo-cosmos by the National Museum of Emerging Science and Innovation (Miraikan), Japan. These projects are relatively large-scale in instruments and cost, and difficult to use in classrooms and small-scale science centers. Therefore we developed a portable, scalable and affordable system of the three-dimensional presentation of the Earth and planets, Dagik Earth. This system uses a spherical screen and a PC projector. Several educational programs have been developed using Dagik Earth under collaboration of the researchers of the earth and planetary science and science education, school teachers, and curators of science centers, and used in schools and museums in Japan, Taiwan and other countries. It helps learners to achieve the proper cognition of the shape and size of the phenomena on the Earth and planets. Current status and future development of the project will be introduced in the presentation.

  17. Celebration of the International Year of Planet Earth in Canada: A Work in Progress

    NASA Astrophysics Data System (ADS)

    Nowlan, G. S.; Boyd, J. D.; Reimer, J.

    2009-05-01

    The International Year of Planet Earth (IYPE, 2007-2009) has been the inspiration for a variety of projects across Canada. Local events, including speaker series and educational programs in Earth sciences have taken place in several parts of the country in 2008-09. Most Canadian conferences for Earth scientists have developed programs reflecting IYPE in 2008 and 2009. The Walcott Conference, celebrating the 100th anniversary of the discovery of the Burgess Shale fauna, to be held in Banff in August 2009 has sponsorship from IYPE. All these projects have served to raise the local and national profile of IYPE and provide learning opportunities for many Canadians. The Canadian National Committee for IYPE developed the theme WHERE, which is an acronym for Water, Hazards, Energy, Resources and Environment. The tag line is Where on Earth? Where in Canada? Proposals for projects were sought nationally for projects that would leave a legacy following the completion of IYPE. The initial proposals were recast into a program of consolidated projects and funds were sought to support them, mainly from the private sector. Already completed are 32 fact sheets on mineral and energy resources and a poster on the resources required to build and run a snowmobile. There are several projects in various states of completion at the time of writing: these are showcased at www.EarthSciencesCanada.com and are intended to form a legacy that will last for years to come. Other projects were funded directly by local agencies to celebrate IYPE; an example is new signage in Alberta Provincial Parks funded by the Alberta Geological Survey. The WHERE Challenge asks Canadians aged 10-14 to answer two simple questions: What on Earth is in your stuff and where on Earth does it come from? Thousands of students are expected to enter this contest by the end of February by telling a story about the Earth resources required to build everyday objects. The story can be told in any medium and the more

  18. International Year of Planet Earth - Accomplishments, Activities, Challenges and Plans in Mexico

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Alaniz-Alvarez, S.

    2009-12-01

    The International Year of Planet Earth started as a joint initiative by UNESCO and IUGS with the participation of several geosciences organizations, and developed into a major international geosciences program for the triennium 2007-2009, with the inclusion and participation of national and regional committees. In this presentation we focus on current activities and plans in our country and the participation in international activities. Mexican community has been part of international programs since the International Geophysical Year, continuing through its participation in other programs, e.g., Upper Mantle, Geodynamics, Lithosphere, IHY, IPY and eGY. IYPE activities have concentrated in publications, OneGeology, radio/TV programs, organization of conferences, meetings and outreach events. A book series on Earth Science Experiments for Children has been edited, with first books published on “Atmospheric Pressure and Free Fall of Objects”, “Light and Colors”, “Standing on Archimedes”, “Foucault and Climate” and “Earth and its Waves “. Books are distributed to schools, with tens of thousand copies distributed nationwide and new editions underway. Other publications include leaflets, books and special El Faro issues (edited by the National University) and articles in other journals. In 2007 the AGU Joint Assembly with international participation from US, Canada, Europe and Latin America was held in Acapulco. Current plans include an electronic open-access journal, additional publications of the Planet Earth series, articles and special issues in journals and magazines, plus events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Biodiversity. Mexico City metropolitan area, with > 22 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management

  19. Obtaining coincident image observations for Mission to Planet Earth science data return

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.; Farrell, James P.

    1994-01-01

    One objective of the Mission to Planet Earth (MTPE) program involves comparing data from various instruments on multiple spacecraft to obtain a total picture of the Earth's systems. To correlate image data from instruments on different spacecraft, these spacecraft must be able to image the same location on the Earth at approximately the same time. Depending on the orbits of the spacecraft involved, complicated operational details must be considered to obtain such observations. If the spacecraft are in similar orbits, close formation flying or synchronization techniques may be used to assure coincident observations. If the orbits are dissimilar, the launch time of the second satellite may need to be restricted in order to align its orbit with that of the first satellite launched. This paper examines strategies for obtaining coincident observations for spacecraft in both similar and dissimilar orbits. Although these calculations may be performed easily for coplanar spacecraft, the non-coplanar case involves additional considerations which are incorporated into the algorithms presented herein.

  20. Formation of Super-Earth Mass Planets at 125-250 AU from a Solar-type Star

    NASA Astrophysics Data System (ADS)

    Kenyon, Scott J.; Bromley, Benjamin C.

    2015-06-01

    We investigate pathways for the formation of icy super-Earth mass planets orbiting at 125-250 AU around a 1 {{M}⊙ } star. An extensive suite of coagulation calculations demonstrates that swarms of 1 cm-10 m planetesimals can form super-Earth mass planets on timescales of 1-3 Gyr. Collisional damping of 10-2-102 cm particles during oligarchic growth is a highlight of these simulations. In some situations, damping initiates a second runaway growth phase where 1000-3000 km protoplanets grow to super-Earth sizes. Our results establish the initial conditions and physical processes required for in situ formation of super-Earth planets at large distances from the host star. For nearby dusty disks in HD 107146, HD 202628, and HD 207129, ongoing super-Earth formation at 80-150 AU could produce gaps and other structures in the debris. In the solar system, forming a putative planet X at a≲ 300 AU (a≳ 1000 AU) requires a modest (very massive) protosolar nebula.

  1. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability.

    PubMed

    Raymond, Sean N; Quinn, Thomas; Lunine, Jonathan I

    2007-02-01

    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties. PMID:17407404

  2. Modeling the Entry of Micrometeoroids into the Atmospheres of Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Pevyhouse, A. R.; Kress, M. E.

    2011-01-01

    The temperature profiles of micrometeors entering the atmospheres of Earth-like planets are calculated to determine the altitude at which exogenous organic compounds may be released. Previous experiments have shown that flash-heated micrometeorite analogs release organic compounds at temperatures from roughly 500 to 1000 K [1]. The altitude of release is of great importance because it determines the fate of the compound. Organic compounds that are released deeper in the atmosphere are more likely to rapidly mix to lower altitudes where they can accumulate to higher abundances or form more complex molecules and/or aerosols. Variables that are explored here are particle size, entry angle, atmospheric density profiles, spectral type of the parent star, and planet mass. The problem reduces to these questions: (1) How much atmosphere does the particle pass through by the time it is heated to 500 K? (2) Is the atmosphere above sufficient to attenuate stellar UV such that the mixing timescale is shorter than the photochemical timescale for a particular compound? We present preliminary results that the effect of the planetary and particle parameters have on the altitude of organic release.

  3. Fluid dynamics of multiphase flow in volcanic environments on the Earth, Io, and other planets

    NASA Technical Reports Server (NTRS)

    Kieffer, Susan Werner

    1991-01-01

    Data was compiled on H2O, CO2, S, and SO2 and it was analyzed by various techniques to prepare phase diagrams relevant to conditions on the Earth, Io, Mars, and other planets. The use of Cray models for volcanic eruptions was examined. Attempts are being made to develop equations of state of the compounds listed above to be compatible with the Cray code so that they can be called as subroutines for the volcanic models. This is a major project, as the current code uses only the equation of state for a perfect gas, and requires that the atmosphere be the same composition as the volcanic gas. The analysis of the thermodynamic data is time consuming, and was complicated by changes from a VAX/VMS system to Macintosh's, Crays using CTSS, Crays using Unicos, and Sun workstations.

  4. Whole planet cooling and the radiogenic heat source contents of the earth and moon

    NASA Astrophysics Data System (ADS)

    Schubert, G.; Stevenson, D. J.; Cassen, P.

    1980-05-01

    Thermal evolution models based on subsolidus whole mantle convection which indicate that the surface heat flows of the earth and the moon do not necessarily provide good measures of the total amounts of radioactives in these bodies have been constructed. These models assume an initially hot state, but with a wide variety of choices for the parameters characterizing the rheology and convective vigor. All models are constrained to be consistent with present-day surface heat fluxes, and many of the terrestrial models are consistent with the mantle viscosities indicated by postglacial rebound. In the lunar models, heat generation is typically only 70-80% of the surface heat flow, even with allowance for the strong near-surface enhancement of radioactives. Despite the simplicity of these models, the persistence of a significant difference between heat generation and heat output indicates that this difference is real and should be incorporated in geochemical modeling of planets.

  5. Finding Earth-size planets in the habitable zone: the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Borucki, William; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Christensen-Dalsgaard, Jørgen; Cochran, William; Dunham, Edward; Gautier, Thomas N.; Geary, John; Gilliland, Ronald; Jenkins, Jon; Kondo, Yoji; Latham, David; Lissauer, Jack J.; Monet, David

    2008-05-01

    The Kepler Mission is a space-based mission whose primary goal is to detect Earth-size and smaller planets in the habitable zone of solar-like stars. The mission will monitor more than 100,000 stars for transits with a differential photometric precision of 20 ppm at V=12 for a 6.5 hour transit. It will also provide asteroseismic results on several thousand dwarf stars. It is specifically designed to continuously observe a single field of view of greater than 100 square degrees for 3.5 or more years. This overview describes the mission design, its goals and capabilities, the measured performance for those photometer components that have now been tested, the Kepler Input Catalog, an overview of the analysis pipeline, the plans for the Follow-up Observing Program to validate the detections and characterize the parent stars, and finally, the plans for the Guest Observer and Astrophysical Data Program.

  6. Tracing the ingredients for a habitable earth from interstellar space through planet formation.

    PubMed

    Bergin, Edwin A; Blake, Geoffrey A; Ciesla, Fred; Hirschmann, Marc M; Li, Jie

    2015-07-21

    We use the C/N ratio as a monitor of the delivery of key ingredients of life to nascent terrestrial worlds. Total elemental C and N contents, and their ratio, are examined for the interstellar medium, comets, chondritic meteorites, and terrestrial planets; we include an updated estimate for the bulk silicate Earth (C/N = 49.0 ± 9.3). Using a kinetic model of disk chemistry, and the sublimation/condensation temperatures of primitive molecules, we suggest that organic ices and macromolecular (refractory or carbonaceous dust) organic material are the likely initial C and N carriers. Chemical reactions in the disk can produce nebular C/N ratios of ∼1-12, comparable to those of comets and the low end estimated for planetesimals. An increase of the C/N ratio is traced between volatile-rich pristine bodies and larger volatile-depleted objects subjected to thermal/accretional metamorphism. The C/N ratios of the dominant materials accreted to terrestrial planets should therefore be higher than those seen in carbonaceous chondrites or comets. During planetary formation, we explore scenarios leading to further volatile loss and associated C/N variations owing to core formation and atmospheric escape. Key processes include relative enrichment of nitrogen in the atmosphere and preferential sequestration of carbon by the core. The high C/N bulk silicate Earth ratio therefore is best satisfied by accretion of thermally processed objects followed by large-scale atmospheric loss. These two effects must be more profound if volatile sequestration in the core is effective. The stochastic nature of these processes hints that the surface/atmospheric abundances of biosphere-essential materials will likely be variable. PMID:26150527

  7. Tracing the ingredients for a habitable earth from interstellar space through planet formation

    PubMed Central

    Bergin, Edwin A.; Blake, Geoffrey A.; Ciesla, Fred; Hirschmann, Marc M.; Li, Jie

    2015-01-01

    We use the C/N ratio as a monitor of the delivery of key ingredients of life to nascent terrestrial worlds. Total elemental C and N contents, and their ratio, are examined for the interstellar medium, comets, chondritic meteorites, and terrestrial planets; we include an updated estimate for the bulk silicate Earth (C/N = 49.0 ± 9.3). Using a kinetic model of disk chemistry, and the sublimation/condensation temperatures of primitive molecules, we suggest that organic ices and macromolecular (refractory or carbonaceous dust) organic material are the likely initial C and N carriers. Chemical reactions in the disk can produce nebular C/N ratios of ∼1–12, comparable to those of comets and the low end estimated for planetesimals. An increase of the C/N ratio is traced between volatile-rich pristine bodies and larger volatile-depleted objects subjected to thermal/accretional metamorphism. The C/N ratios of the dominant materials accreted to terrestrial planets should therefore be higher than those seen in carbonaceous chondrites or comets. During planetary formation, we explore scenarios leading to further volatile loss and associated C/N variations owing to core formation and atmospheric escape. Key processes include relative enrichment of nitrogen in the atmosphere and preferential sequestration of carbon by the core. The high C/N bulk silicate Earth ratio therefore is best satisfied by accretion of thermally processed objects followed by large-scale atmospheric loss. These two effects must be more profound if volatile sequestration in the core is effective. The stochastic nature of these processes hints that the surface/atmospheric abundances of biosphere-essential materials will likely be variable. PMID:26150527

  8. HIGHLIGHTS AND IMPACTS OF THE INTERNATIONAL YEAR OF PLANET EARTH IN HUNGARY

    NASA Astrophysics Data System (ADS)

    Szarka, L.; Adam, J.; Brezsnyanszky, K.

    2009-12-01

    International Year of Planet Earth (IYPE) activities of various geo-science associations, universities, research institutes and private companies in Hungary have been successfully coordinated by the Hungarian National Committee, which was established by the Hungarian Academy of Sciences, the UNESCO- and the IUGS National Committees. The National Launch Event (April 17, 2008) was followed with a four-days long “Earth Science Fair” at the Hungarian Natural History Museum in Budapest. The IYPE was even briefly reviewed in the Hungarian Parliament. The Science Festival, organized annually by the Hungarian Academy of Sciences, in 2008 had a special IYPE-inspired slogan: “Science for the Habitable Earth”, where lectures were held about the modern content of the Greek Classical Elements (“earth”, “water”, “air” and “fire”, that is energy) and about the Humanity. In 2008/2009 numerous publications (including the Hungarian version of the IYPE booklet series, under the title GEO-FIFIKA, and the “Geological Map of Hungary for tourists” were produced. Throughout the country, symposia, contests, film shows (e.g., the movie “Another Planet”) and other performances were organized, with increasing media coverage. The worldwide premier of the Planet Earth TV took place in Hungary, on the occasion of the IAGA 11th Scientific Assembly (August 23-30, 2009). One of our conferences (“Earth and Heaven - Geology and Theology”) pointed out that there should be no conflict between science and religion, either in the fields of Earth’s history or evolution. Science (and only science) is able to give reliable knowledge how Nature works, and the investigation of the “ultimate Why” (i.e. the “Primordial Cause”) should be left to religions. At the same time, there are antagonistic conflicts between science and pseudo-science, and also between religions and pseudo-religions. Among the scientific programmes the activity of Geological Institute of

  9. FORMING CLOSE-IN EARTH-LIKE PLANETS VIA A COLLISION-MERGER MECHANISM IN LATE-STAGE PLANET FORMATION

    SciTech Connect

    Ji Jianghui; Jin Sheng; Tinney, C. G. E-mail: qingxiaojin@gmail.com

    2011-01-20

    The large number of exoplanets found to orbit their host stars in very close orbits have significantly advanced our understanding of the planetary formation process. It is now widely accepted that such short-period planets cannot have formed in situ, but rather must have migrated to their current orbits from a formation location much farther from their host star. In the late stages of planetary formation, once the gas in the protoplanetary disk has dissipated and migration has halted, gas giants orbiting in the inner disk regions will excite planetesimals and planetary embryos, resulting in an increased rate of orbital crossings and large impacts. We present the results of dynamical simulations for planetesimal evolution in this later stage of planet formation. We find that a mechanism is revealed by which the collision-merger of planetary embryos can kick terrestrial planets directly into orbits extremely close to their parent stars.

  10. Impact of ηEarth on the Capabilities of Affordable Space Missions to Detect Biosignatures on Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Léger, Alain; Defrère, Denis; Malbet, Fabien; Labadie, Lucas; Absil, Olivier

    2015-08-01

    We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars. Relations between performance and mission parameters, such as mirror diameter, distance to targets, and radius of planets, are obtained. Two types of instruments are considered: coronagraphs observing in the visible, and nulling interferometers in the thermal infrared. Missions considered are: single-pupil coronagraphs with a 2.4 m primary mirror, and formation-flying interferometers with 4 × 0.75 m collecting mirrors. The numbers of accessible planets are calculated as a function of ηEarth. When Kepler gives its final estimation for ηEarth, the model will permit a precise assessment of the potential of each instrument. Based on current estimations, ηEarth = 10% around FGK stars and 50% around M stars, the coronagraph could study in spectroscopy only ∼1.5 relevant planets, and the interferometer ∼14.0. These numbers are obtained under the major hypothesis that the exozodiacal light around the target stars is low enough for each instrument. In both cases, a prior detection of planets is assumed and a target list established. For the long-term future, building both types of spectroscopic instruments, and using them on the same targets, will be the optimal solution because they provide complementary information. But as a first affordable space mission, the interferometer looks the more promising in terms of biosignature harvest.

  11. Exoplanet dynamics. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars.

    PubMed

    Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman

    2015-02-01

    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere. PMID:25592420

  12. Planet Earth, Humans, Gravity and Their Connection to Natural Medicine-Essence from a 5000 Yrs Old Ancient Pedagogy

    NASA Astrophysics Data System (ADS)

    Lakshmanan, S.; Monsanto, C.; Radjendirane, B.

    2015-12-01

    According to the Ancient Indian Science, the fundamental constituents of planet earth are the five elements (Solid, Liquid, Heat, Air and Akash (subtlest energy field)). The same five elements constitute the human body. The Chinese and many other native traditions have used their deep understanding of these elements to live in balance with the planet. David Suzuki has elaborated on this key issue in his classic book, The Legacy: "Today we are in a state of crisis, and we must join together to respond to that crisis. If we do so, Suzuki envisions a future in which we understand that we are the Earth and live accordingly. All it takes is imagination and a determination to live within our, and the planet's, means". Gravity, the common force that connects both the body and earth plays a major role in the metabolism as well as the autonomous function of different organs in the body. Gravity has a direct influence on the fruits and vegetables that are grown on the planet as well. As a result, there is a direct relationship among gravity, food and human health. My talk will cover the missing link between the Earth's Gravity and the human health. A new set of ancient axioms will be used to address this and many other issues that are remain as "major unsolved problems" linking modern Geophysical and Health sciences.

  13. Q & A with Kathleen M. Reilly, Author of "Planet Earth: 25 Environmental Projects You Can Build Yourself"

    ERIC Educational Resources Information Center

    Curriculum Review, 2008

    2008-01-01

    This article presents an interview with Kathleen M. Reilly, author of "Planet Earth: 25 Environmental Projects You Can Build Yourself." Environmental awareness needs to begin in childhood, and, through this book, Kathleen M. Reilly encourages children to learn about ecology and ecosystems to begin conservation early in their lives. Children ages 9…

  14. Early stages in the evolution of the atmosphere and climate on the Earth-group planets

    NASA Technical Reports Server (NTRS)

    Moroz, V. I.; Mukhin, L. M.

    1977-01-01

    The early evolution of the atmospheres and climate of the Earth, Mars and Venus is discussed, based on a concept of common initial conditions and main processes (besides known differences in chemical composition and outgassing rate). It is concluded that: (1) liquid water appeared on the surface of the earth in the first few hundred million years; the average surface temperature was near the melting point for about the first two eons; CO2 was the main component of the atmosphere in the first 100-500 million years; (2) much more temperate outgassing and low solar heating led to the much later appearance of liquid water on the Martian surface, only one to two billion years ago; the Martian era of rivers, relatively dense atmosphere and warm climate ended as a result of irreversible chemical bonding of CO2 by Urey equilibrium processes; (3) a great lack of water in the primordial material of Venus is proposed; liquid water never was present on the surface of the planet, and there was practically no chemical bonding of CO2; the surface temperature was over 600 K four billion years ago.

  15. Primary school children and teachers discover the nature and science of planet Earth and Mars

    NASA Astrophysics Data System (ADS)

    Kleinhans, Maarten; Verkade, Alex; Bastings, Mirjam; Reichwein, Maarten

    2016-04-01

    For various reasons primary schools emphasise language and calculus rather than natural sciences. When science is taught at all, examination systems often favour technological tricks and knowledge of the 'right' answer over the process of investigation and logical reasoning towards that answer. Over the long term, this is not conducive to curiosity and scientific attitude in large parts of the population. Since the problem is more serious in primary than in secondary education, and as children start their school career with a natural curiosity and great energy to explore their world, we focus our efforts on primary school teachers in close collaboration with teachers and researchers. Our objective was to spark children's curiosity and their motivation to learn and discover, as well as to help teachers develop self-afficacy in science education. To this end we developed a three-step program with a classroom game and sand-box experiments related to planet Earth and Mars. The classroom game Expedition Mundus simulates science in its focus on asking questions, reasoning towards answers on the basis of multiple sources and collaboration as well as growth of knowledge. Planet Mundus is entirely fictitional to avoid differences in foreknowledge between pupils. The game was tested in hundreds of classes in primary schools and the first years of secondary education and was printed (in Dutch) and distributed over thousands of schools as part of teacher education through university science hubs. Expedition Mundus was developed by the Young Academy of the Royal Netherlands Academy of Arts and Sciences and De Praktijk. The tested translations in English and German are available on http://www.expeditionmundus.org. Following the classroom game, we conducted simple landscape experiments in sand boxes supported by google earth imagery of real rivers, fans and deltas on Earth and Mars. This was loosely based on our fluvial morphodynamics research. This, in the presence of a

  16. PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Wiethoff, T.

    2014-12-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show „inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's inner core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on a flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the

  17. PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome

    NASA Astrophysics Data System (ADS)

    Ballmer, Maxim; Wiethoff, Tobias

    2016-04-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show „inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on the flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the

  18. From Planet Earth to Society: a new dynamics in Portugal about Geosciences Education and Outreach

    NASA Astrophysics Data System (ADS)

    Silva, Elizabeth; Abreu Sá, Artur; José Roxo, Maria

    2013-04-01

    Since the United Nations General Assembly declared the year 2008 as the International Year of Planet Earth (IYPE), during the triennium 2007-2009, under the motto Earth Sciences for Society, many impacts and changes were generated among the Portuguese society. Today is possible to say that those were due to the work of the Portuguese National Committee for the IYPE. After 2009, the Portuguese National Commission for UNESCO created the Portuguese National Committee for the International Programme of Geosciences (IGCP) with the main goal to continue the work done during the IYPE. Among those activities, a Workshop entitled "InFormation in Context" was organized by the UNESCO NatCom - Portugal, in collaboration with the IGCP National Committee and the National Public Television (RTP). This activity was created to reach specially journalists, aiming to give them more information in context, related to Earth matters, mainly related to natural hazards and Climate Change. It is essential that society knows its degree of vulnerability to the occurrence of extreme natural phenomena, which are the basis of natural catastrophes, with serious social and economic consequences. Thus, it is crucial the development of a culture of prevention and precaution, which hinges on a correct information, based in scientific knowledge on causes and consequences of extreme natural phenomena. At the same time, it is necessary the implementation of mitigation and adaptation measures, based on the analysis and cartography of risks, and in an effective monitoring process. During these workshops particular emphasis was given to the need to inform and educate the society in general, and students in particular, to the reality of living in a dynamic planet. Particular importance was given to natural hazards, such as those resulting from earthquakes landslides, floods, droughts, heat and cold waves and storms, which are those with the greatest potential danger in Portugal. An informed society is a

  19. Highlights and impacts of the International Year of Planet Earth in Hungary

    NASA Astrophysics Data System (ADS)

    Szarka, László; Ádám, József; Brezsnyánszky, Károly; Haas, János; Kakas, Kristóf; Koppán, András.

    2010-05-01

    IYPE activities of various geo-science associations, universities, research institutes and private companies in Hungary (www.foldev.hu) have been successfully coordinated by the Hungarian National Committee, which was established by the Hungarian Academy of Sciences, the UNESCO- and the IUGS National Committees. The National Launch Event (April 17, 2008) was followed with a four-days long "Earth Science Fair" at the Hungarian Natural History Museum in Budapest. The IYPE was even briefly reviewed in the Hungarian Parliament. The Science Festival, organized annually by the Hungarian Academy of Sciences, in 2008 had a special IYPE-inspired slogan: "Science for the Habitable Earth", where lectures were held about the modern content of the Greek Classical Elements ("earth", "water", "air" and "fire", that is energy) and about the Humanity. In 2008/2009 numerous publications (including the Hungarian version of the IYPE booklet series, under the title GEO-FIFIKA, the Természet Világa special issue in February 2009, the IYPE number of Földrajzi Közlemények (Geographical Communications), and the "Geological Map of Hungary for Tourists" were produced. Throughout the country, symposia (e.g. HUNGEO 2008, ELGI 100, MÁFI 140, Geotourism Symposium in October 2009), several contests (Hungarian Television "Delta", Élet és Tudomány on the occasion of the UN year, and the annual contests starting in 2007 at Miskolc University), film shows (e.g., the movie "Another Planet") and other performances (e.g. End of the Ice Age in Hungarian Natural History Museum) were organized, with modest but increasing media coverage. The worldwide premier of the Planet Earth TV took place in Hungary, on the occasion of the IAGA 11th Scientific Assembly (August 23-30, 2009, www.iaga2009sopron.hu). One of our conferences ("Earth and Heaven - Geology and Theology") pointed out that there should be no conflict between science and religion, either in the fields of Earth's history or evolution

  20. Increased insolation threshold for runaway greenhouse processes on Earth-like planets.

    PubMed

    Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée

    2013-12-12

    The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can 'run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m(-2), which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars. PMID:24336285

  1. The Earth Microbiome Project and modeling the planets microbial potential (Invited)

    NASA Astrophysics Data System (ADS)

    Gilbert, J. A.

    2013-12-01

    The understanding of Earth's climate and ecology requires multiscale observations of the biosphere, of which microbial life are a major component. However, to acquire and process physical samples of soil, water and air that comprise the appropriate spatial and temporal resolution to capture the immense variation in microbial dynamics, would require a herculean effort and immense financial resources dwarfing even the most ambitious projects to date. To overcome this hurdle we created the Earth Microbiome Project, a crowd-sourced effort to acquire physical samples from researchers around the world that are, importantly, contextualized with physical, chemical and biological data detailing the environmental properties of that sample in the location and time it was acquired. The EMP leverages these existing efforts to target a systematic analysis of microbial taxonomic and functional dynamics across a vast array of environmental parameter gradients. The EMP captures the environmental gradients, location, time and sampling protocol information about every sample donated by our valued collaborators. Physical samples are then processed using a standardized DNA extraction, PCR, and shotgun sequencing protocol to generate comparable data regarding the microbial community structure and function in each sample. To date we have processed >17,000 samples from 40 different biomes. One of the key goals of the EMP is to map the spatiotemporal variability of microbial communities to capture the changes in important functional processes that need to be appropriately expressed in models to provide reliable forecasts of ecosystem phenotype across our changing planet. This is essential if we are to develop economically sound strategies to be good stewards of our Earth. The EMP recognizes that environments are comprised of complex sets of interdependent parameters and that the development of useful predictive computational models of both terrestrial and atmospheric systems requires

  2. Accretion and Core-Mantle Differentiation of the Earth and Other Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Rubie, David C.; Morbidelli, Alessandro; O'Brien, David P.; Young, Edward D.; de Vries, Jellie; Nimmo, Francis; Palme, Herbert; Frost, Dan J.

    2014-11-01

    Using a multi-stage core-mantle differentiation model that incorporates over 250 Grand Tack N-body simulations, we have studied the growth of the Earth’s mantle and core as well as those of Mars, Venus and the embryos, which impacted the Earth (i.e. the proto-lunar impactor Theia). The Grand Tack is the terrestrial planet formation scenario that most successfully matches dynamic and simple compositional constraints. During this scenario, Jupiter and Saturn migrate inwards and then outwards through the inner Solar System. The Earth grows due to the accretion of planetesimals and embryos from throughout the inner disk and from a disk of planetesimals exterior to Jupiter and Saturn, which are scattered inward by their migration. The core-mantle differentiation model uses chemical mass balance and metal-silicate element partitioning data to determine the mantle and core compositions as the Earth grows. Treating the initial oxidation state of the original bodies as free parameters, taking the composition of the Earth’s primitive mantle as a constraint, and assuming that the non-volatile elements are present in Solar System (CI) relative abundances, we use least squares refinement to fit the metal-silicate equilibration pressure, the disequilibrium fraction of projectile cores and 4 parameters defining an initial oxidation gradient in the inner Solar System. Consistent with the Grand Tack scenario’s explanation of the C-type asteroids originating from the outer Solar System, water is delivered from only these bodies. We find that that the accreting Earth evolves in time—accreting increasingly oxidized material and changing the oxidation state of the Earth’s mantle, and that the metal-silicate equilibration pressures are about 60-70% of the core-mantle boundary pressures and nearly all of the metal in each projectile core equilibrates with the some portion of the planet’s silicate mantle. The best fits are found when the planetesimals and embryos closest to

  3. A POPULATION OF VERY HOT SUPER-EARTHS IN MULTIPLE-PLANET SYSTEMS SHOULD BE UNCOVERED BY KEPLER

    SciTech Connect

    Schlaufman, Kevin C.; Lin, D. N. C.; Ida, S. E-mail: lin@ucolick.or

    2010-11-20

    We simulate a Kepler-like observation of a theoretical exoplanet population and show that the observed orbital period distribution of the Kepler giant planet candidates is best matched by an average stellar specific dissipation function Q'{sub *} in the interval 10{sup 6} {approx_lt} Q'{sub *} {approx_lt} 10{sup 7}. In that situation, the few super-Earths that are driven to orbital periods of P < 1 day by dynamical interactions in multiple-planet systems will survive tidal disruption for a significant fraction of the main-sequence lifetimes of their stellar hosts. Consequently, though these very hot super-Earths are not characteristic of the overall super-Earth population, their substantial transit probability implies that they should be significant contributors to the full super-Earth population uncovered by Kepler. As a result, the CoRoT-7 system may be the first representative of a population of very hot super-Earths that we suggest should be found in multiple-planet systems preferentially orbiting the least-dissipative stellar hosts in the Kepler sample.

  4. The problem of iron partition between Earth and Moon during simultaneous formation as a double planet system

    NASA Technical Reports Server (NTRS)

    Cassidy, W. A.

    1984-01-01

    A planetary model is described which requires fractional vapor/liquid condensation, planet accumulation during condensation, a late start for accumulation of the Moon, and volatile accretion to the surfaces of each planet only near the end of the accumulation process. In the model, initial accumulation of small objects is helped if the agglomerating particles are somewhat sticky. Assuming that growth proceeds through this range, agglomeration continues. If the reservoir of vapor is being preferentially depleted in iron by fractional condensation, an iron-rich planetary core forms. As the temperature decreases, condensing material becomes progressively richer in silicates and poorer in iron, forming the silicate-rich mantle of an already differentiated Earth. A second center of agglomeration successfully forms near the growing Earth after most of the iron in the reservoir has been used up. The bulk composition of the Moon then is similar to the outer mantle of the accumulating Earth.

  5. CHARACTERIZING K2 PLANET DISCOVERIES: A SUPER-EARTH TRANSITING THE BRIGHT K DWARF HIP 116454

    SciTech Connect

    Vanderburg, Andrew; Montet, Benjamin T.; Johnson, John Asher; Buchhave, Lars A.; Zeng, Li; Latham, David W.; Angus, Ruth; Bieryla, Allyson; Charbonneau, David; Pepe, Francesco; Udry, Stéphane; Lovis, Christophe; Cameron, Andrew Collier; Molinari, Emilio; Boschin, Walter; Matthews, Jaymie M.; Cameron, Chris; Law, Nicholas; Bowler, Brendan P.; Baranec, Christoph; and others

    2015-02-10

    We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 ± 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H] =–0.16 ± 0.08 and has a radius R {sub *} = 0.716 ± 0.024 R {sub ☉} and mass M {sub *} = 0.775 ± 0.027 M {sub ☉}. The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of R{sub p} = 2.53 ± 0.18 R {sub ⊕}. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 ± 1.33 M {sub ⊕} planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.

  6. Bioremediation at a global scale: from the test tube to planet Earth.

    PubMed

    de Lorenzo, Víctor; Marlière, Philippe; Solé, Ricard

    2016-09-01

    Planet Earth's biosphere has evolved over billions of years as a balanced bio-geological system ultimately sustained by sunpower and the large-scale cycling of elements largely run by the global environmental microbiome. Humans have been part of this picture for much of their existence. But the industrial revolution started in the XIX century and the subsequent advances in medicine, chemistry, agriculture and communications have impacted such balances to an unprecedented degree - and the problem has nothing but exacerbated in the last 20 years. Human overpopulation, industrial growth along with unsustainable use of natural resources have driven many sites and perhaps the planetary ecosystem as a whole, beyond recovery by spontaneous natural means, even if the immediate causes could be stopped. The most conspicuous indications of such a state of affairs include the massive change in land use, the accelerated increase in the levels of greenhouse gases, the frequent natural disasters associated to climate change and the growing non-recyclable waste (e.g. plastics and recalcitrant chemicals) that we release to the Environment. While the whole planet is afflicted at a global scale by chemical pollution and anthropogenic emissions, the ongoing development of systems and synthetic biology, metagenomics, modern chemistry and some key concepts from ecological theory allow us to tackle this phenomenal challenge and propose large-scale interventions aimed at reversing and even improving the situation. This involves (i) identification of key reactions or processes that need to be re-established (or altogether created) for ecosystem reinstallation, (ii) implementation of such reactions in natural or designer hosts able to self-replicate and deliver the corresponding activities when/where needed in a fashion guided by sound ecological modelling, (iii) dispersal of niche-creating agents at a global scale and (iv) containment, monitoring and risk assessment of the whole process

  7. Re-establishing Kepler’s first two laws for planets in a concise way through the non-stationary Earth

    NASA Astrophysics Data System (ADS)

    Y Hsiang, W.; Chang, H. C.; Yao, H.; Lee, P. S.

    2015-07-01

    In this we design a simple and insightful way to achieve Kepler’s first two laws for planets. The approach is quite different from what we have done for the Earth before. It is because the planet-Sun distance can be determined only through the Earth-Sun distance in the analysis. By applying the law of equal areas for the Earth and the observed angular speeds of a planet over the Sun, the law of equal areas for planets can be re-constructed. Furthermore, for the periodicity of a planet to the Sun, the distance from each planet to the Sun may be expressed as an angular periodic function. By coordinating with the observed data, this periodic distance function depicts an exact elliptical path. Here, we apply relatively easy mathematical skills to illustrate the invariant forms of planetary motions and indicate the key factors used to analyse the motions in complicated planetary systems.

  8. ON THE EFFECTS OF THE EVOLUTION OF MICROBIAL MATS AND LAND PLANTS ON THE EARTH AS A PLANET. PHOTOMETRIC AND SPECTROSCOPIC LIGHT CURVES OF PALEO-EARTHS

    SciTech Connect

    Sanroma, E.; Palle, E.; Garcia Munoz, A.

    2013-04-01

    Understanding the spectral and photometric variability of the Earth and the rest of the solar system planets has become of utmost importance for the future characterization of rocky exoplanets. As this is not only interesting at present times but also along the planetary evolution, we studied the effect that the evolution of microbial mats and plants over land has had on the way our planet looks from afar. As life evolved, continental surfaces changed gradually and non-uniformly from deserts through microbial mats to land plants, modifying the reflective properties of the ground and most likely the distribution of moisture and cloudiness. Here, we used a radiative transfer model of the Earth, together with geological paleo-records of the continental distribution and a reconstructed cloud distribution, to simulate the visible and near-IR radiation reflected by our planet as a function of Earth's rotation. We found that the evolution from deserts to microbial mats and to land plants produces detectable changes in the globally averaged Earth's reflectance. The variability of each surface type is located in different bands and can induce reflectance changes of up to 40% in period of hours. We conclude that by using photometric observations of an Earth-like planet at different photometric bands it would be possible to discriminate between different surface types. While recent literature proposes the red-edge feature of vegetation near 0.7 {mu}m as a signature for land plants, observations in near-IR bands can be equally or even better suited for this purpose.

  9. On the Effects of the Evolution of Microbial Mats and Land Plants on the Earth as a Planet. Photometric and Spectroscopic Light Curves of Paleo-Earths

    NASA Astrophysics Data System (ADS)

    Sanromá, E.; Pallé, E.; García Munõz, A.

    2013-04-01

    Understanding the spectral and photometric variability of the Earth and the rest of the solar system planets has become of utmost importance for the future characterization of rocky exoplanets. As this is not only interesting at present times but also along the planetary evolution, we studied the effect that the evolution of microbial mats and plants over land has had on the way our planet looks from afar. As life evolved, continental surfaces changed gradually and non-uniformly from deserts through microbial mats to land plants, modifying the reflective properties of the ground and most likely the distribution of moisture and cloudiness. Here, we used a radiative transfer model of the Earth, together with geological paleo-records of the continental distribution and a reconstructed cloud distribution, to simulate the visible and near-IR radiation reflected by our planet as a function of Earth's rotation. We found that the evolution from deserts to microbial mats and to land plants produces detectable changes in the globally averaged Earth's reflectance. The variability of each surface type is located in different bands and can induce reflectance changes of up to 40% in period of hours. We conclude that by using photometric observations of an Earth-like planet at different photometric bands it would be possible to discriminate between different surface types. While recent literature proposes the red-edge feature of vegetation near 0.7 μm as a signature for land plants, observations in near-IR bands can be equally or even better suited for this purpose.

  10. Confirming the transit of the Earth-mass planet orbiting Alpha Centauri B

    NASA Astrophysics Data System (ADS)

    Demory, Brice-Olivier

    2013-10-01

    One of the most fascinating exoplanet findings of the past years is undoubtedly the discovery of an Earth-mass exoplanet orbiting Alpha Centauri B. Alpha Cen Bb orbits one component of the closest stellar system to the Earth and has the potential to become a true Rosetta stone in exoplanet science, if its transiting nature were revealed. In 2013, we observed Alpha Centauri B during 16 orbits with HST/STIS to search for the transit of Alpha Cen Bb. We recently carried out in-depth photometric analyses of this dataset that resulted in the clear detection of a transit-shaped pattern. Several factors, however, prevent us from securing the planetary nature of the signal found in the STIS time-series. Now that we know where and when to look for, we propose to confirm the repeatability of this signal and to firmly establish Alpha Cen Bb's existence and tighten its physical and orbital properties. We base our observing strategy on the successful approach employed just one year ago with the same instrument. Until Aug 9th 2014, combination of HST available roll angles, Alpha Cen binary separation and position angle will match the nearly-ideal configuration we had in July 2013. It would even be possible to benefit from CVZ status from 24/7/2014 to 28/7/2014, in which one transit of Alpha Centauri Bb is expected. HST/STIS is the only facility able to confirm a transit from such a small planet at a high confidence level.

  11. Kuiper's Double Planet: Mantle Convection In The Present-day Earth

    NASA Astrophysics Data System (ADS)

    Bostrom, R. C.

    To what extent does the gravity field of the Moon, rotating relative to the geocentric field of the Earth [1], affect convection in the mantle? This enquiry follows a formula- tion developed by Chandrasekhar, evaluating convection in a body subject additionally to an external field. The tides have been examined as measure of the Earth-Moon interaction. Dissipation estimates based respectively on an oceanic data set of unprecedented precision [2] and a continental gravimetric set [3] are compatible when observations are referred to the M2 wave, in contrast to a fictitious geostationary bulge. The external contribution required to produce asymmetry in convection internally powered is theoretically infinitesimal, but in practice unknown. Reduced in cog- nizance of the M2 wave, the tidal data indicate that dissipation in the mantle represents a fraction of up to 50 Under Earth's supercritical Rayleigh number, not less than 10(6), internally powered mantle convection must exist but necessarily is a function of the TOTAL field. It seems possible that basically the 'two-body' Rayleigh number determines the phase- lag, hence also the despin rate, in respect to the tidal Earth. The model best-fitting current observations expects a flow bias, sharply peaked in low latitudes. Its sense is to foster the development of the west limb of convection structures. The theoretical surface displacement resembles a continuation of the Cenozoic plate motion found by Gordon and Jurdy (1986). With a view to understanding unexplained aspects of 'plate tectonics', it would be valuable to test the currently best-fitting 2-body model using GPS to overcome the 'absolute-motion' difficulty, by observing latitude-dependence (or otherwise) of rela- tive motion between cratonic stations. [1] RCB 2000: Tectonic Consequences of Earth's Rotation. Oxford UP: sect. 4.3. [2] Ray,R.D. et al. 2001. Geophys. J.Intern. 144: 471-480. [3] Melchior, Bn. P., 1994. Phys. Ea. Plan. Ints. 82: 125-156.

  12. SPE (tm) water electrolyzers in support of mission from planet Earth

    NASA Astrophysics Data System (ADS)

    McElroy, J. F.

    1991-09-01

    During the 1970's, the Solid Polymer Electrolyte (SPE) water electrolyzer, which uses ion exchange membranes as its sole electrolyte, was developed for nuclear submarine metabolic oxygen production. SPE water electrolyzer developments included operation at up to 3,000 psia and at current densities in excess of 1,000 amps per square foot. The SPE water electrolyzer system has accumulated tens of thousands of system hours with the Navies of both the United States and the United Kingdom. During the 1980's, the basic SPE water electrolyzer cell structure developed for the Navies was incorporated into several demonstrators for NASA's Space Station Program. Among these were: (1) the SPE regenerative fuel cell for electrical energy storage; (2) the SPE water electrolyzer for metabolic oxygen production; and (3) the high pressure SPE water electrolyzer for reboost propellant production. In the 1990's, emphasis will be the development of SPE water electrolyzers for Mission from Planet Earth. Currently defined potential applications for the SPE water electrolyzer include: (1) SPE water electrolyzers operating at high pressure as part of a regenerative fuel cell extraterrestrial surface energy storage system; (2) SPE water electrolyzers for propellant production from extraterrestrial indigenous materials; and (3) SPE water electrolyzers for metabolic oxygen and potable water production from reclaimed water.

  13. SPE (tm) water electrolyzers in support of mission from planet Earth

    NASA Technical Reports Server (NTRS)

    Mcelroy, J. F.

    1991-01-01

    During the 1970's, the Solid Polymer Electrolyte (SPE) water electrolyzer, which uses ion exchange membranes as its sole electrolyte, was developed for nuclear submarine metabolic oxygen production. SPE water electrolyzer developments included operation at up to 3,000 psia and at current densities in excess of 1,000 amps per square foot. The SPE water electrolyzer system has accumulated tens of thousands of system hours with the Navies of both the United States and the United Kingdom. During the 1980's, the basic SPE water electrolyzer cell structure developed for the Navies was incorporated into several demonstrators for NASA's Space Station Program. Among these were: (1) the SPE regenerative fuel cell for electrical energy storage; (2) the SPE water electrolyzer for metabolic oxygen production; and (3) the high pressure SPE water electrolyzer for reboost propellant production. In the 1990's, emphasis will be the development of SPE water electrolyzers for Mission from Planet Earth. Currently defined potential applications for the SPE water electrolyzer include: (1) SPE water electrolyzers operating at high pressure as part of a regenerative fuel cell extraterrestrial surface energy storage system; (2) SPE water electrolyzers for propellant production from extraterrestrial indigenous materials; and (3) SPE water electrolyzers for metabolic oxygen and potable water production from reclaimed water.

  14. Intense Gamma-Ray Flashes Above Thunderstorms on the Earth and Other Planets

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    Intense millisecond flashes of MeV photons have been observed with space-borne detectors in Earth orbit. They are expected to be present on other planets that exhibit lightning. The terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi- GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly- Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic "runaway avalanche" electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. They have generated considerable observational and theoretical interest in recent years. This talk will give an overview of the all of the space-borne observations of TGFs that have been made thus far. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms

  15. Interactive Mapping of the Planets: An Online Activity Using the Google Earth Platform

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Gilbert, A.; Harrison, T. N.; Mader, M. M.; Shankar, B.; Tornabene, L. L.

    2013-12-01

    With funding from the Natural Sciences and Engineering Research Council of Canada's PromoScience program and support from the Department of Earth Sciences at The University of Western Ontario, the Centre for Planetary Science and Exploration (CPSX) has developed a new web-based initiative called Interactive Mapping of the Planets (IMAPS). Additional components include in person school visits to deliver inquiry-based workshops, week-long summer camps, and pre-prepared impact rock lending kits, all framed around the IMAPS activity. IMAPS will is now in beta testing mode and will be demonstrated in this session. The general objective of the online activity is for participants to plan and design a rover mission to Mars based on a given mission goal - e.g., to find evidence for past water flow. The activity begins with participants receiving image-analysis training to learn about the different landforms on Mars and which ones are potentially caused by water flow. They then need to pass a short test to show they can consistently identify Martian landforms. From there, the participants choose a landing site and plan a traverse - utilizing the free Google Earth plug-in - and taking into account factors such as hazards and their sites of interest. A mission control blog will provide updates on the status of their mission and a 'choose your rover' option provides the opportunity to unlock more advanced rovers by collaborating with other scientists and rating their missions. Indeed, evaluation of missions will be done using a crowd-sourcing method. In addition to being fully accessible online, CPSX will also target primary- and secondary-school grades in which astronomy and space science is taught. Teachers in K-12 classrooms will be able to sign-up for the activity ahead of time in order to receive a workshop package, which will guide them on how to use the IMAPS online activity with their class. Teachers will be able to set up groups for their classroom so that they can

  16. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    NASA Astrophysics Data System (ADS)

    Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.

    2016-07-01

    Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When

  17. "Urban Fossils": a project enabling reflections concerning human impact on planet Earth.

    NASA Astrophysics Data System (ADS)

    Lozar, Francesca; Delfino, Massimo; Magagna, Alessandra; Ferrero, Elena; Cirilli, Francesca; Bernardi, Massimo; Giardino, Marco

    2016-04-01

    -Piemonte and the Regional Museum of Natural History of Torino; starting from autumn 2015, it is hosted by several Italian museums of Natural History. Since many of the "urban fossils" are ephemeral and doomed to destruction at "catastrophic" events (eg. maintenance of roads and sidewalks), a virtual collection (www.progeopiemonte.it) will preserve in time their photographs, allowing and promoting continue discussion on aspects of paleontology generally neglected outside the academia, such as ichnology and taphonomy, and on the traces that we, humans, will leave on planet Earth and will ultimately be buried in the Anthropocene rocks. "Urban Fossils" is therefore an ongoing project, with a great interdisciplinary value, that represents an opportunity for both geoscientists and society to become more conscious of their role and responsibility in everyday life activities.

  18. On-orbit structural dynamic performance of a low-frequency microwave radiometer for Mission to Planet Earth applications

    NASA Technical Reports Server (NTRS)

    Wahls, Deborah M.; Farmer, Jeffery T.

    1991-01-01

    The present paper addresses the on-orbit dynamic performance of a low-frequency microwave radiometer for earth science applications. The radiometer is one of the earth-observing instruments aboard a geostationary platform proposed as part of the Mission to Planet Earth. The paper includes establishing the structural requirements of the antenna, developing the structural and disturbance models, performing modal and forced response analyses, and evaluating the resulting distortions in terms of the antenna's ability to meet stringent structural performance requirements. Two antenna configurations are discussed: free-flying and platform-mounted. These configurations are analyzed for a representative disturbance function which simulates rotation of the subreflector in order to perform a raster-type scan of the earth disk. Results show that the scanning maneuver modeled did not induce antenna performance errors which were outside their estimated limits.

  19. Exploring Planet Sizes

    NASA Video Gallery

    This lesson combines a series of activities to compare models of the size of Earth to other planets and the distances to other planets. Activities highlight space missions to other planets in our s...

  20. Phase equilibrium and structural properties in the Ca-Al-Si-O system up to the P,T conditions of the Earth's lowermost transition zone.

    NASA Astrophysics Data System (ADS)

    Gréaux, S.; Nishiyama, N.; Kono, Y.; Shinmei, T.; Irifune, T.

    2008-12-01

    Ca- and Al-bearing silicates have been extensively investigated for their importance into the mantle processes. In the transition zone, majorite garnet and Ca-perovskite are reported to be the major hosts of Ca as well as deposits of Al [1]. At higher P, Ca gets completely exsolved from the majorite to the Ca-pv. It is observed that Al plays a significant role in the Ca-Si-O system by inducing new phase equilibriums [2,3,4], and influencing the physical properties of the Ca-pv [5]. It is then suggested that phase transitions and chemical reactions involving Ca- and Al-bearing silicates could conciliate mineralogical results and seismological observations in the region of the transition zone [3,6]. We studied the phase equilibrium at HP-HT in the grossular and anorthite systems using a Kawai-type multi- anvil apparatus up to 25 GPa and 2000 K. Grossular garnet is reported to decompose into a mix of corundum and Ca-pv [3] or to transform into a perovskite of grossular composition [7]. Our study shows that grossular mainly decomposes into a mix of Al-Ca-pv and CAS phase in the same P range and higher T. Anorthite is also found to mainly decompose into a mix of Al-Ca-pv and CAS phase. Despite some Al-content in the Ca-pv, the CAS phase is the major host of Al, which suggests according to previous studies [3,5], a lower solubility of Al into the perovskite structure at high T. The Al-content of the Ca-pv as well as the presence of another Al-rich Ca-bearing silicate in zone of variable temperatures and composition as subducting slabs are discussed for their possible implication into the transition zone processes. [1] T. Irifune, 1994. Nature 370, 131-133 [2] L. Gautron et al., 1996. Phys. Earth Planet. Int. 94, 71-81 [3] N. Takafuji et al., 2002. Phys. Chem. Mineral 29, 532-537 [4] S. Zhai and E. Ito, 2008. Phys. Earth Planet. Int. In press [5] T. Kurashina et al., 2004. Phys. Earth Planet. Int. 145, 67-7 [6] L. Stixrude et al., 1996. Am. Mineral. 81, 1293-1296 [7] H

  1. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases-such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approx. 100 million years after the condensation of the oldest meteorites?

  2. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approximately 100 million years after the condensation of the oldest meteorites?

  3. The Living Planet: A Portrait of the Earth, 1984-85. Evaluation Section Report.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Educational Evaluation.

    In 1984-85, the Mobil Corporation provided the New York City Board of Education with a grant for developing an instructional project related to the Public Broadcasting System series, "The Living Planet." This series explored the concepts of the balance of nature and the adaptations of various life forms to our changing planet. The Living Planet…

  4. Plate Tectonics Initiation on Earth-Like Planets: Insights From Numerical and Theoretical Analysis of Convection-Induced Lithospheric Failure

    NASA Astrophysics Data System (ADS)

    Wong, Teresa

    Plate tectonics is central to many aspects of the geology and evolution of terrestrial planets, yet it is only observed on the Earth while all other known planets are covered with a stagnant lithosphere. Plate motions on the Earth are mostly driven by the pull of subducting slabs, therefore understanding the initiation of subduction is crucial to understanding plate tectonics initiation. On a one-plate planet which lacks the forces due to plate motions, some other mechanisms will have to cause the first episode of subduction to mobilize the surface. Sublithospheric convection has been proposed as a possible mechanism that induce stresses in the lithosphere. The question is whether these stresses can initiate subduction. We develop scaling laws for the criterion of lithospheric failure from single-cell steady-state convection, which has more controlled flow and thus easier to analyze. We show that these scaling laws are applicable to time-dependent convection. We also investigate the time-dependent behavior of convection to understand the factors controlling the timing of lithospheric failure. We find that the variation in timing not only systematically depends on the physical parameters of the convecting mantle; for convective systems with the same set of parameters, small variations in initial conditions result in different structures of the lithosphere. This changes the stresses in the lithosphere and gives rise to different times of lithospheric failure. This study suggests that it is important to address the question of when plate tectonics can initiate on a planet, in addition to finding favorable conditions for lithospheric failure. We extrapolate the scaling laws to planetary conditions to assess the feasibility of plate tectonics for terrestrial planets, and estimate whether plate tectonics can happen in reasonable planetary lifetimes.

  5. Abiotic production of nitrous oxide by lightning. Implications for a false positive identification of life on Earth-Like Planets around quiescent M Dwarfs

    NASA Astrophysics Data System (ADS)

    Navarro, Karina F.; Navarro-Gonzalez, Rafael; McKay, Christopher P.

    Nitrous oxide (N _{2}O) is uniformly mixed in the troposphere with a concentration of about 310 ppb but disappears in the stratosphere (Prinn et al., 1990); N _{2}O is mostly emitted at a rate of 1x10 (13) g yr (-1) as a byproduct of microbial activity in soils and in the ocean by two processes: a) denitrification (reduction of nitrate and nitrite), and b) nitrification (oxidation of ammonia) (Maag and Vinther, 1996). The abiotic emission of N _{2}O in the contemporaneous Earth is small, mostly arising from lightning activity (2x10 (9) g yr (-1) , Hill et al., 1984) and by reduction of nitrite by Fe(II)-minerals in soils in Antarctica (Samarkin et al., 2010). Since N _{2}O has absorption bands in the mid-IR (7.8, 8.5, and 17 mumm) that makes it detectable by remote sensing (Topfer et al., 1997; Des Marais et al., 2002), it has been suggested as a potential biosignature in the search for life in extrasolar planets (Churchill and Kasting, 2000). However, the minimum required concentration for positive identification is 10,000 ppb with missions like Terrestrial Planet Finder and Darwin (Churchill and Kasting, 2000). Therefore, it is not a suitable biomarker for extrasolar Earth-like planets orbiting stars similar to the Sun. Because N _{2}O is protected in the troposphere from UV photolysis by the stratospheric ozone layer, its concentration would decrease with decreasing oxygen (O _{2}) concentrations, if the biological source strength remains constant (Kasting and Donahue, 1980). For a primitive Earth-like (Hadean) atmosphere dominated by CO _{2}, and no free O _{2}, the expected N _{2}O concentration would be about 3 ppb with the current microbial N _{2}O flux (Churchill and Kasting, 2000). The resulting N _{2}O spectral signature of this atmosphere would be undetectable unless the N _{2}O microbial flux would be 10 (4) greater than its present value (Churchill and Kasting, 2000). Since this flux is unlikely, it is impossible to use it as a biomarker in anoxic CO

  6. VULCAN PLANETS: INSIDE-OUT FORMATION OF THE INNERMOST SUPER-EARTHS

    SciTech Connect

    Chatterjee, Sourav; Tan, Jonathan C. E-mail: jt@astro.ufl.edu

    2015-01-10

    The compact multi-transiting systems discovered by Kepler challenge traditional planet formation theories. These fall into two broad classes: (1) formation further out followed by migration and (2) formation in situ from a disk of gas and planetesimals. In the former, an abundance of resonant chains is expected, which the Kepler data do not support. In the latter, required disk mass surface densities may be too high. A recently proposed mechanism hypothesizes that planets form in situ at the pressure trap associated with the dead-zone inner boundary (DZIB) where radially drifting ''pebbles'' accumulate. This scenario predicts planet masses (M{sub p} ) are set by the gap-opening process that then leads to DZIB retreat, followed by sequential, inside-out planet formation (IOPF). For typical disk accretion rates, IOPF predictions for M{sub p} , M{sub p} versus orbital radius r, and planet-planet separations are consistent with observed systems. Here we investigate the IOPF prediction for how the masses, M{sub p,} {sub 1}, of the innermost (''Vulcan'') planets vary with r. We show that for fiducial parameters, M {sub p,} {sub 1} ≅ 5.0(r/0.1 AU) M {sub ⊕}, independent of the disk's accretion rate at time of planet formation. Then, using Monte Carlo sampling of a population of these innermost planets, we test this predicted scaling against observed planet properties, allowing for intrinsic dispersions in planetary densities and Kepler's observational biases. These effects lead to a slightly shallower relation M{sub p,} {sub 1}∝r {sup 0.9} {sup ±} {sup 0.2}, which is consistent with M{sub p,} 1∝r {sup 0.7} {sup ±} {sup 0.2} of the observed Vulcans. The normalization of the relation constrains the gap-opening process, favoring relatively low viscosities in the inner dead zone.

  7. Vulcan Planets: Inside-out Formation of the Innermost Super-Earths

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Tan, Jonathan C.

    2015-01-01

    The compact multi-transiting systems discovered by Kepler challenge traditional planet formation theories. These fall into two broad classes: (1) formation further out followed by migration and (2) formation in situ from a disk of gas and planetesimals. In the former, an abundance of resonant chains is expected, which the Kepler data do not support. In the latter, required disk mass surface densities may be too high. A recently proposed mechanism hypothesizes that planets form in situ at the pressure trap associated with the dead-zone inner boundary (DZIB) where radially drifting "pebbles" accumulate. This scenario predicts planet masses (Mp ) are set by the gap-opening process that then leads to DZIB retreat, followed by sequential, inside-out planet formation (IOPF). For typical disk accretion rates, IOPF predictions for Mp , Mp versus orbital radius r, and planet-planet separations are consistent with observed systems. Here we investigate the IOPF prediction for how the masses, M p, 1, of the innermost ("Vulcan") planets vary with r. We show that for fiducial parameters, M p, 1 ~= 5.0(r/0.1 AU) M ⊕, independent of the disk's accretion rate at time of planet formation. Then, using Monte Carlo sampling of a population of these innermost planets, we test this predicted scaling against observed planet properties, allowing for intrinsic dispersions in planetary densities and Kepler's observational biases. These effects lead to a slightly shallower relation M p, 1vpropr 0.9 ± 0.2, which is consistent with M p, 1vpropr 0.7 ± 0.2 of the observed Vulcans. The normalization of the relation constrains the gap-opening process, favoring relatively low viscosities in the inner dead zone.

  8. Ultralow frequency waves in the magnetotails of the earth and the outer planets

    NASA Technical Reports Server (NTRS)

    Khurana, Krishan K.; Chen, Sheng H.; Hammond, C. M.; Kivelson, Margaret G.

    1992-01-01

    Ultralow frequency waves with periods greater than two minutes are characteristic features of planetary magnetotails. At Jupiter, changes in the wave characteristics across the boundary between the plasma sheet and the lobe have been used to identify this important plasma boundary. In the terrestrial lobes the wave amplitude can be relatively large, especially during intervals of intense geomagnetic activity. The wave power seen in the lobes of the magnetotails of the earth, Jupiter, Saturn and Uranus is evaluated to evaluate a proposal by Smith et al. that the propagating waves generated by the Kelvin-Helmholtz instability on the magnetopause can heat the plasma through a resonant absorption of these waves. The results indicate that the wave power in the lobes is generally small and can be easily understood in the framework of coupled MHD waves generated in the plasma sheet.

  9. Abiotic production of nitrous oxide by lightning. Implications for a false positive identification of life on Earth-Like Planets around quiescent M Dwarfs

    NASA Astrophysics Data System (ADS)

    Navarro, Karina F.; Navarro-Gonzalez, Rafael; McKay, Christopher P.

    Nitrous oxide (N _{2}O) is uniformly mixed in the troposphere with a concentration of about 310 ppb but disappears in the stratosphere (Prinn et al., 1990); N _{2}O is mostly emitted at a rate of 1x10 (13) g yr (-1) as a byproduct of microbial activity in soils and in the ocean by two processes: a) denitrification (reduction of nitrate and nitrite), and b) nitrification (oxidation of ammonia) (Maag and Vinther, 1996). The abiotic emission of N _{2}O in the contemporaneous Earth is small, mostly arising from lightning activity (2x10 (9) g yr (-1) , Hill et al., 1984) and by reduction of nitrite by Fe(II)-minerals in soils in Antarctica (Samarkin et al., 2010). Since N _{2}O has absorption bands in the mid-IR (7.8, 8.5, and 17 mumm) that makes it detectable by remote sensing (Topfer et al., 1997; Des Marais et al., 2002), it has been suggested as a potential biosignature in the search for life in extrasolar planets (Churchill and Kasting, 2000). However, the minimum required concentration for positive identification is 10,000 ppb with missions like Terrestrial Planet Finder and Darwin (Churchill and Kasting, 2000). Therefore, it is not a suitable biomarker for extrasolar Earth-like planets orbiting stars similar to the Sun. Because N _{2}O is protected in the troposphere from UV photolysis by the stratospheric ozone layer, its concentration would decrease with decreasing oxygen (O _{2}) concentrations, if the biological source strength remains constant (Kasting and Donahue, 1980). For a primitive Earth-like (Hadean) atmosphere dominated by CO _{2}, and no free O _{2}, the expected N _{2}O concentration would be about 3 ppb with the current microbial N _{2}O flux (Churchill and Kasting, 2000). The resulting N _{2}O spectral signature of this atmosphere would be undetectable unless the N _{2}O microbial flux would be 10 (4) greater than its present value (Churchill and Kasting, 2000). Since this flux is unlikely, it is impossible to use it as a biomarker in anoxic CO

  10. Check-Up of Planet Earth at the Turn of the Millennium: Contribution of EOS-Terra to a New Phase in Earth Sciences

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical developments that brought to the Terra mission, its objectives and example of application to biomass burning.

  11. THE GJ1214 SUPER-EARTH SYSTEM: STELLAR VARIABILITY, NEW TRANSITS, AND A SEARCH FOR ADDITIONAL PLANETS

    SciTech Connect

    Berta, Zachory K.; Charbonneau, David; Bean, Jacob; Irwin, Jonathan; Burke, Christopher J.; Desert, Jean-Michel; Nutzman, Philip; Falco, Emilio E.

    2011-07-20

    The super-Earth GJ1214b transits a nearby M dwarf that exhibits a 1% intrinsic variability in the near-infrared. Here, we analyze new observations to refine the physical properties of both the star and planet. We present three years of out-of-transit photometric monitoring of the stellar host GJ1214 from the MEarth Observatory and find the rotation period to be long, most likely an integer multiple of 53 days, suggesting low levels of magnetic activity and an old age for the system. We show that such variability will not pose significant problems to ongoing studies of the planet's atmosphere with transmission spectroscopy. We analyze two high-precision transit light curves from ESO's Very Large Telescope (VLT) along with seven others from the MEarth and Fred Lawrence Whipple Observatory 1.2 m telescopes, finding physical parameters for the planet that are consistent with previous work. The VLT light curves show tentative evidence for spot occultations during transit. Using two years of MEarth light curves, we place limits on additional transiting planets around GJ1214 with periods out to the habitable zone of the system. We also improve upon the previous photographic V-band estimate for the star, finding V = 14.71 {+-} 0.03.

  12. The GJ1214 Super-Earth System: Stellar Variability, New Transits, and a Search for Additional Planets

    NASA Astrophysics Data System (ADS)

    Berta, Zachory K.; Charbonneau, David; Bean, Jacob; Irwin, Jonathan; Burke, Christopher J.; Désert, Jean-Michel; Nutzman, Philip; Falco, Emilio E.

    2011-07-01

    The super-Earth GJ1214b transits a nearby M dwarf that exhibits a 1% intrinsic variability in the near-infrared. Here, we analyze new observations to refine the physical properties of both the star and planet. We present three years of out-of-transit photometric monitoring of the stellar host GJ1214 from the MEarth Observatory and find the rotation period to be long, most likely an integer multiple of 53 days, suggesting low levels of magnetic activity and an old age for the system. We show that such variability will not pose significant problems to ongoing studies of the planet's atmosphere with transmission spectroscopy. We analyze two high-precision transit light curves from ESO's Very Large Telescope (VLT) along with seven others from the MEarth and Fred Lawrence Whipple Observatory 1.2 m telescopes, finding physical parameters for the planet that are consistent with previous work. The VLT light curves show tentative evidence for spot occultations during transit. Using two years of MEarth light curves, we place limits on additional transiting planets around GJ1214 with periods out to the habitable zone of the system. We also improve upon the previous photographic V-band estimate for the star, finding V = 14.71 ± 0.03.

  13. Space Science in the Twenty-First Century: Imperatives for the Decades 1995 to 2015. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A unified program is outlined for studying the Earth, from its deep interior to its fluid envelopes. A system is proposed for measuring devices involving both space-based and in-situ observations that can accommodate simultaneously a large range of scientific needs. The scientific objectices served by this integrated infrastructure are cased into a framework of four grand themes. In summary these are: to determine the composition, structure, dynamics, and evolution of the Earth's crust and deeper interior; to establish and understand the structure, dynamics, and chemistry of the oceans, atmosphere, and cryosphere, and their interaction with the solid Earth; to characterize the history and dynamics of living organisms and their interaction with the environment; and to monitor and understand the interaction of human activities with the natural environment. A focus on these grand themes will help to understand the origin and fate of the planet, and to place it in the context of the solar system.

  14. News and Views: L'Aquila verdict poses risk for science; HARPS spots nearby exo-Earth Citizen science finds planet

    NASA Astrophysics Data System (ADS)

    2012-12-01

    The conviction of six Italian seismologists for manslaughter following the L'Aquila earthquake has been met with concern by scientific bodies around the world. European astronomers have found a planet with about the mass of the Earth orbiting a star in the Alpha Centauri system. The planet, the lightest exoplanet discovered around a star like the Sun, was detected using the HARPS instrument on the 3.6 m telescope at ESO's La Silla Observatory in Chile. The citizen science project Planet Hunters has discovered the first planet found in a four-star system.

  15. Understanding Our Changing Planet: NASA's Earth Science Enterprise. 1998 Fact Book.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Greenbelt, MD. Goddard Space Flight Center.

    This document describes NASA's Earth Science Enterprise, a comprehensive program to study the earth as an environmental system. The Earth Science Enterprise has three main components: (1) a series of earth-observing satellites; (2) an advanced data system; and (3) teams of scientists who will study the data. Contents include: (1) "The Earth…

  16. On the existence of another source of heat production for the earth and planets, and its connection with gravitomagnetism.

    PubMed

    Elbeze, Alexandre Chaloum

    2013-01-01

    Recent revised estimates of the Earth's surface heat flux are in the order of 47 TW. Given that its internal radiogenic (mantle and crust) heat production is estimated to be around 20 TW, the Earth has a thermal deficit of around 27 TW. This article will try to show that the action of the gravitational field of the Sun on the rotating masses of the Earth is probably the source of another heat production in order of 54TW, which would satisfy the thermal balance of our celestial body and probably explain the reduced heat flow Qo. We reach this conclusion within the framework of gravitation implied by Einstein's special and general relativity theory (SR, GR). Our results show that it might possible, in principle, to calculate the heat generated by the action of the gravitational field of celestial bodies on the Earth and planets of the Solar System (a phenomenon that is different to that of the gravitational tidal effect from the Sun and the Moon). This result should help physicists to improve and develop new models of the Earth's heat balance, and suggests that contrary to cooling, the Earth is in a phase of thermal balance, or even reheating. PMID:24255828

  17. INTERACTION OF CLOSE-IN PLANETS WITH THE MAGNETOSPHERE OF THEIR HOST STARS. II. SUPER-EARTHS AS UNIPOLAR INDUCTORS AND THEIR ORBITAL EVOLUTION

    SciTech Connect

    Laine, Randy O.; Lin, Douglas N. C. E-mail: randy.laine@normalesup.org

    2012-01-20

    Planets with several Earth masses and orbital periods of a few days have been discovered through radial velocity and transit surveys. Regardless of their formation mechanism, an important evolution issue is the efficiency of their retention in the proximity of their host stars. If these 'super-Earths' attained their present-day orbits during or shortly after the T Tauri phase of their host stars, a large fraction of these planets would have encountered an intense stellar magnetic field. These rocky planets have a higher conductivity than the atmosphere of their host stars and, therefore, the magnetic flux tube connecting them would slip though the envelope of the host stars faster than across the planets. The induced electromotive force across the planet's diameter leads to a potential drop which propagates along a flux tube away from the planet with an Alfven speed. The foot of the flux tube would sweep across the stellar surface and the potential drop across the field lines drives a DC current analogous to that proposed for the electrodynamics of the Io-Jupiter system. The ohmic dissipation of this current produces potentially observable hot spots in the star envelope. It also heats the planet and leads to a torque which drives the planet's orbit to evolve toward both circularization and a state of synchronization with the spin of the star. The net effect is the damping of the planet's orbital eccentricity. Around slowly (or rapidly) spinning stars, this process also causes rocky planets with periods less than a few days to undergo orbital decay (or expansion/stagnation) within a few Myr. In principle, this effect can determine the retention efficiency of short-period hot Earths. We also estimate the ohmic dissipation interior to these planets and show that it can lead to severe structure evolution and potential loss of volatile material in them. However, these effects may be significantly weakened by the reconnection of the induced field.

  18. A Large Sparse Aperture Densified Pupil Hypertelescope Concept for Ground Based Detection of Extra-Solar Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Lyon, R.; Woodruff, R.; Labeyrie, A.; Oegerle, William (Technical Monitor)

    2002-01-01

    A concept is presented for a large (10 - 30 meter) sparse aperture hyper telescope to image extrasolar earth-like planets from the ground in the presence of atmospheric seeing. The telescope achieves high dynamic range very close to bright stellar sources with good image quality using pupil densification techniques. Active correction of the perturbed wavefront is simplified by using 36 small flat mirrors arranged in a parabolic steerable array structure, eliminating the need for large delat lines and operating at near-infrared (1 - 3 Micron) wavelengths with flats comparable in size to the seeing cells.

  19. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO{sub 2} degassing

    SciTech Connect

    Kadoya, S.; Tajika, E. E-mail: tajika@astrobio.k.u-tokyo.ac.jp

    2014-08-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO{sub 2} degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO{sub 2} degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowball climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO{sub 2} degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.

  20. Layered double diffusive convection: From Earth oceans to giant planet interiors.

    NASA Astrophysics Data System (ADS)

    Leconte, J.; Chabrier, G.

    2012-12-01

    Many unknowns remain concerning the internal structure and composition of giant gaseous planets. The existence and the properties of an hypothetical central core, in particular, are still debated. Contrary to conventional interior models for giant (exo)planets, we consider an inhomogeneous mixing of heavy elements in the gaseous H/He envelope of these objects. As in the oceans, such compositional gradients can give rise to layered convection which impedes large scale convection, yielding a hotter, super adiabatic interior. As a result, the metal enrichment predicted by this model is up to 30 to 60% larger than previously thought for Jupiter and Saturn. However, metals are preferentially redistributed in the gaseous envelope and coreless models can be found for Jupiter. This inefficient, layered convection, yielding a slower cooling, can help to explain anomalously inflated Hot Jupiters, but also opens a new window on our understanding of giant planet formation and history inside our Solar System.

  1. The NASA-UC-UH Eta-Earth program. IV. A low-mass planet orbiting an M dwarf 3.6 PC from Earth

    SciTech Connect

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard; Fischer, Debra A.; Boyajian, Tabetha S.; Muirhead, Philip S.; Becker, Juliette C.; Henry, Gregory W.; Von Braun, Kaspar; Wright, Jason T.; Johnson, John Asher

    2014-10-10

    We report the discovery of a low-mass planet orbiting Gl 15 A based on radial velocities from the Eta-Earth Survey using HIRES at Keck Observatory. Gl 15 Ab is a planet with minimum mass Msin i = 5.35 ± 0.75 M {sub ⊕}, orbital period P = 11.4433 ± 0.0016 days, and an orbit that is consistent with circular. We characterize the host star using a variety of techniques. Photometric observations at Fairborn Observatory show no evidence for rotational modulation of spots at the orbital period to a limit of ∼0.1 mmag, thus supporting the existence of the planet. We detect a second RV signal with a period of 44 days that we attribute to rotational modulation of stellar surface features, as confirmed by optical photometry and the Ca II H and K activity indicator. Using infrared spectroscopy from Palomar-TripleSpec, we measure an M2 V spectral type and a sub-solar metallicity ([M/H] = –0.22, [Fe/H] = –0.32). We measure a stellar radius of 0.3863 ± 0.0021 R {sub ☉} based on interferometry from CHARA.

  2. Activity induced detection limits for Earth-sized planets from radial velocity studies

    NASA Astrophysics Data System (ADS)

    Korhonen, Heidi; Gråe Jørgensen, Uffe; Andersen, Jan Marie

    2015-08-01

    The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We have recently investigated the effect of cool starspots on the detectability of exoplanets around solar-like stars and M dwarfs using the radial velocity method. Our methods use full radiative transfer, known stellar atomic and molecular lines, different surface spot configurations, and an added planetary signal. In this talk we present our methods, and apply them to studying the detectability of small planets, and especially the case of alpha Centauri B planet.

  3. Early Science Results from Dharma Planet Survey (DPS), a Robotic, High Cadence and High Doppler Precision Survey of Close-in Super-Earths

    NASA Astrophysics Data System (ADS)

    Ma, Bo; Ge, Jian; Muterspaugh, Matthew W.; Sithajan, Sirinrat; Thomas, Neil B.; Senan Seieroe Grieves, Nolan; Li, Rui; Singer, Michael; Powell, Scott; Varosi, Frank; Zhao, Bo; Liu, Jian; Schofield, Sidney; Jakeman, Hali; Yoder, William; Williamson, Michael W.; Maxwell, Ted; Avner, Louis; Gittelmacher, Jakob

    2015-01-01

    The Dharma Planet Survey (DPS) is ready to monitor ~150 nearby very bright FGKM dwarfs during 2014-2017 using the TOU optical high resolution spectrograph (R~100,000) at the AST 2m telescope (2014-2015) and the 50-inch Robotic Telescope (2015-2017). With ~1m/s RV precision and high cadence (~100 observations per target randomly spread over 300 days), a total of about 90 close-in sub-Neptune planets including about 50 super-Earths and Earth-size planets are expected to be detected, which will provide a unique RV low mass planet sample for studying the occurrence rate and properties of this recently identified dominant planet population. The survey also provides the largest single homogenous high precision RV sample of nearby stars for constraining various planet formation models. Early telescope commissioning results show that TOU achieves ~0.5 m/s RV precision over a month with simultaneous ThAr calibration and has reached about 1.3 m/s RV precision with a RV stable star, Tau Ceti, and ~2 m/s for two other RV stable stars (HD 109358 & HD 185144) over one month and confirmed the 70 Vir giant planet with RV precision of 3 m/s (RMS). Early results including low mass planet candidates from the DPS pilot survey of 20 GK dwarfs will be presented.

  4. The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around HD 20794, HD 85512, and HD 192310

    NASA Astrophysics Data System (ADS)

    Pepe, F.; Lovis, C.; Ségransan, D.; Benz, W.; Bouchy, F.; Dumusque, X.; Mayor, M.; Queloz, D.; Santos, N. C.; Udry, S.

    2011-10-01

    Context. In 2009 we started an intense radial-velocity monitoring of a few nearby, slowly-rotating and quiet solar-type stars within the dedicated HARPS-Upgrade GTO program. Aims: The goal of this campaign is to gather very-precise radial-velocity data with high cadence and continuity to detect tiny signatures of very-low-mass stars that are potentially present in the habitable zone of their parent stars. Methods: Ten stars were selected among the most stable stars of the original HARPS high-precision program that are uniformly spread in hour angle, such that three to four of them are observable at any time of the year. For each star we recorded 50 data points spread over the observing season. The data points consist of three nightly observations with a total integration time of 10 min each and are separated by two hours. This is an observational strategy adopted to minimize stellar pulsation and granulation noise. Results: We present the first results of this ambitious program. The radial-velocity data and the orbital parameters of five new and one confirmed low-mass planets around the stars HD 20794, HD 85512, and HD 192310 are reported and discussed, among which is a system of three super-Earths and one that harbors a 3.6 M⊕-planet at the inner edge of the habitable zone. Conclusions: This result already confirms previous indications that low-mass planets seem to be very frequent around solar-type stars and that this may occur with a frequency higher than 30%. Based on observations made with the HARPS instrument on ESO's 3.6 m telescope at the La Silla Observatory in the frame of the HARPS-Upgrade GTO program ID 086.C-0230.Tables 7-9 (RV data) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A58

  5. Success of the International Year of the Planet Earth through Targeted High-impact Programs at the American Geological Institute

    NASA Astrophysics Data System (ADS)

    Leahy, P.

    2007-12-01

    The American Geological Institute (AGI) is one of the 12 founding partners of the International Year of the Planet Earth (IYPE) and as such AGI serves on its governing board. AGI is a nonprofit federation of 44 geoscientific and professional associations that represents more than 120,000 geologists, geophysicists, and other earth scientists. AGI provides information services to geoscientists, serves as a voice of shared interests in our profession, plays a major role in strengthening geoscience education, and strives to increase public awareness of the vital role the geosciences play in society's use of resources, resilience to natural hazards, and the health of the environment. The outreach and educational opportunities afforded by IYPE provide AGI with an international venue to promote the role of the geosciences in the daily life of society. AGI's successful release of the 4-part television series entitled Faces of Earth done in partnership with the Discovery Communications is a hallmark example of an outreach product that is technically accurate but designed to engage the non-scientific audience in the wonderment of our science. The series focuses on building the planet, shaping the planet, assembling America, and the human world. Custom short cuts have been produced for special purposes and one of these may be used as part of an IYPE-launch event in Europe. AGI's news magazine, Geotimes will highlight appropriate IYPE events to increase the awareness of the American geoscience community. In addition, Geotimes will promote IYPE by using its logo routinely and through publishing advertisements reminding its professional and public readership of the importance of the IYPE triennium. Similarly, as part of AGI's K-12 educational efforts and teacher training and through its development of Earth Science Week materials, the goals, accomplishments, and importance of IYPE will be incorporated into the targeted educational audiences. IYPE activities will be highlighted

  6. Kepler Mission: a Discovery-Class Mission Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  7. The Now Frontier. Linking Earth and Planets. Issue No. 1-4.

    ERIC Educational Resources Information Center

    Jet Propulsion Lab., Pasadena, CA.

    This publication includes four pamphlets providing background material for understanding the NASA program of planetary flights. Each issue presents student involvement activities as well as suggested reading lists. Issue 1 describes the innermost planets of the solar system. Issue 2 gives information about the evolution of the planetary system as…

  8. Upper Atmospheric Research Satellite (UARS) ground data system - The first operational data system for the Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Herring, Ellen L.; Smith, Janice K.; Taylor, K. D.

    1993-01-01

    The initiation of the National Aeronautics and Space Administration (NASA) Mission to Planet Earth was realized with the activation of the Upper Atmosphere Research Satellite (LIARS) in mid-September 1991 following deployment from the Shuttle Transport System (STS) - 48. The UARS provides the first comprehensive study of the chemistry and dynamics of the upper atmosphere. The UARS ground data system provides the capabilities required to support upper atmospheric studies in a timely and flexible manner. The UARS ground data system policy and implementation plan incorporated by the UARS Project team provided the flexibility necessary to be able to respond to changing priorities and requirements and to permit the ground data system to evolve far beyond initial expectations. This paper describes the policies and plans in place during the initial design and implementation phases and provides an overview of the UARS ground data system. The paper then addresses the changing UARS ground data system design and implementation priorities, the early mission experiences instrumental in the achievement of higher than expected goals, and a brief look at the future for UARS, the first Mission to Planet Earth.

  9. Revision of Earth-sized Kepler Planet Candidate Properties with High Resolution Imaging by Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Star, Kimberly Michelle; Gilliland, Ronald L.

    2014-06-01

    In this paper we present the first results of our HST GO/SNAP program GO-12893 and describe how our image analysis using STScI's DrizzlePac software combined with our own empirical point spread function definition were used to re-evaluate the habitability of some of the most interesting Kepler planet candidates. We used our high resolution imaging to calibrate Kp to the F555W and F775W filters on WFC3/UVIS, and spatially resolved the stellar multiplicity of KOI-1422, KOI-2626, and KOI-3049. We found KOI-1422 to be a tight binary star system with a projected separation of 0.217’’ 90 AU). We found KOI-2626 to be a triple star system with a projected separation of 0.201’’ 110 AU) between the primary and secondary components and 0.161’’ 90 AU) between the primary and tertiary components. We found KOI-3049 to be a binary star system with a projected separation of 0.464’’ 330 AU). Using theoretical isochrones from the Dartmouth Stellar Evolution Database, we performed hierarchical fitting using our derived photometry and the synthetic photometry from the isochrones. Revised stellar parameters for the individual components of the systems show that the stars in these systems range from early-K dwarf to early-M dwarf spectral types. We report with high confidence that all three systems are bound and co-eval based on the tight isochrone fitting and false positive analysis. Using our best-fit stellar parameters from the isochrone matches, we solved for the properties of the planets in the three systems and found that the planets range in size from ~2REarth to ~4 REarth, placing them in the Super Earth/mini-Neptune range. Some planets analyzed here are potentially habitable depending on their stellar host and greenhouse effect level.

  10. Is the Earth Flat or Round? Primary School Children's Understandings of the Planet Earth: The Case of Turkish Children

    ERIC Educational Resources Information Center

    Özsoy, Sibel

    2012-01-01

    The purpose of this study is to explore primary school children's understandings about the shape of the Earth. The sample is consisted of 124 first-graders from five primary schools located in an urban city of Turkey. The data of the study were collected through children's drawings and semi-structured interviews. Results obtained from the drawings…

  11. Al Gore attends Fall Meeting session on Earth observing satellite

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    2011-12-01

    Former U.S. vice president Al Gore, making unscheduled remarks at an AGU Fall Meeting session, said, "The reason you see so many pictures" of the Deep Space Climate Observatory (DSCOVR) satellite at this session is "that it already has been built." However, "because one of its primary missions was to help document global warming, it was canceled. So for those who are interested in struggling against political influence," Gore said, "the benefits have been documented well here." Gore made his comments after the third oral presentation at the 8 December session entitled "Earth Observations From the L1 (Lagrangian Point No. 1)," which focused on the capabilities of and progress on refurbishing DSCOVR. The satellite, formerly called Triana, had been proposed by Gore in 1998 to collect climate data. Although Triana was built, it was never launched: Congress mandated that before the satellite could be sent into space the National Academies of Science needed to confirm that the science it would be doing was worthwhile. By the time the scientific validation was complete, the satellite "was no longer compatible with the space shuttle manifest," Robert C. Smith, program manager for strategic integration at the NASA Goddard Space Flight Center, told Eos.

  12. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2008-01-01

    Observations of the Earth from space over the past 30 years has enabled an increasingly detailed view of our Earth's atmosphere, land, oceans, and cryosphere, and its many alterations over time. With the advent of improvements in technology, together with increased understanding of the physical principles of remote sensing, it is now possible to routinely observe the global distribution of atmospheric constituents, including both cloud and aerosol optical properties, land surface reflectance, sea ice and glaciers, and numerous properties of the world's oceans. This talk will review the current status of recent NASA Earth observing missions, and summarize key findings. These missions include EOS missions such as Landsat 7, QuikScat, Terra, Jason-1, Aqua, ICESat, SORCE, and Aura, as well as Earth probe missions such as TRMM and SeaWiFS. Recent findings from Cloud- Sat and CALIPSO from the Earth System Science Pathfinder program will also be summarized, if time permits. Due to its wide utilization by the Earth science community, both in the US and abroad, special emphasis will be placed on the Moderate Resolution Imaging Spectroradiometer (MODIS), developed by NASA and launched onboard the Terra spacecraft in 1999 and the Aqua spacecraft in 2002. As the quintessential instrument of the Earth Observing System, it is widely used for studies of the oceans, land, and atmosphere, and its lengthening time series of Earth observations is finding utilization in many communities for both climate, weather, and applications use.

  13. Piloting a Global Collaborative Experiment to Determine your Place on the Planet and the Circumference of the Earth

    NASA Astrophysics Data System (ADS)

    Solie, D. J.; Paniwozik, R. L.; Wallace, P.

    2012-12-01

    As part of the laboratory component in Bush Physics for the 21st Century, a distance delivered physics course geared toward rural and Indigenous students in Alaska, students determine their village location on earth from simple sun angle measurements at local-noon during the spring equinox. Students measure the length of the sun shadow cast by a rod mounted on a horizontal surface, over short time intervals on or near the spring equinox during mid-day. Local-noon occurs when the sun is the highest and its corresponding shadow the shortest. Local noon, when expressed in Universal Time, can be directly converted to the local longitude in degrees. Local latitude in degrees, is obtained from the local-noon shadow length on the spring equinox and simple trigonometry. As an added bonus, using data from different sites, students can collaborate to approximate the circumference of the earth from their measurements. In the spirit of Eratosthenes, students envision an earth-sized pie wedge cut from a polar great-circle where the curve of the wedge on the earth's surface is the North-South distance between two often road-less sites (determined using Google Earth, a map or a globe), and the angle of the wedge is the difference between the site latitudes. The earth's circumference is calculated from this wedge. In 2012 with the aim of including Indigenous groups from other regions of the planet, we expanded this experiment to include teams from Japan, Puerto Rico, American Samoa, and New Zealand. We present our results from this pilot year.

  14. Coagulation calculations of icy planet formation around 0.1-0.5 M {sub ☉} stars: Super-Earths from large planetesimals

    SciTech Connect

    Kenyon, Scott J.; Bromley, Benjamin C. E-mail: bromley@physics.utah.edu

    2014-01-01

    We investigate formation mechanisms for icy super-Earth-mass planets orbiting at 2-20 AU around 0.1-0.5 M {sub ☉} stars. A large ensemble of coagulation calculations demonstrates a new formation channel: disks composed of large planetesimals with radii of 30-300 km form super-Earths on timescales of ∼1 Gyr. In other gas-poor disks, a collisional cascade grinds planetesimals to dust before the largest planets reach super-Earth masses. Once icy Earth-mass planets form, they migrate through the leftover swarm of planetesimals at rates of 0.01-1 AU Myr{sup –1}. On timescales of 10 Myr to 1 Gyr, many of these planets migrate through the disk of leftover planetesimals from semimajor axes of 5-10 AU to 1-2 AU. A few percent of super-Earths might migrate to semimajor axes of 0.1-0.2 AU. When the disk has an initial mass comparable with the minimum-mass solar nebula, scaled to the mass of the central star, the predicted frequency of super-Earths matches the observed frequency.

  15. Earth observations during Space Shuttle flight STS-35 - Columbia's Mission to Planet Earth, December 2-10, 1990

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Evans, Cynthia A.; Helfert, Michael R.; Brand, Vance D.; Gardner, Guy S.; Lounge, John M.; Hoffman, Jeffery A.; Parker, Robert A.; Durrance, Samuel T.; Parise, Ronald A.

    1991-01-01

    Some of the most significant earth-viewing imagery obtained during Space Shuttle Columbia's flight STS-35, December 2-10, 1990, is reviewed with emphasis on observations of the Southern Hemisphere. In particular, attention is given to environmental observations in areas of Madagascar, Brazil, and Persian Gulf; observation of land resources (Namibia, offshore Australia); and observations of ocean islands (Phillipines, Indonesia, and Reunion). Some of the photographs are included.

  16. Satellite Collectors of Solar Energy for Earth and Colonized Planet Habitats

    NASA Astrophysics Data System (ADS)

    Kusiolek, Richard

    solar energy for thermal heating, desalination, lighting, and electricity. Further, • Clean energy means jobs. For example, the American Solar Energy Society released a report that the 8.5 million Americans working in the energy efficiency and renewable energy industries today can grow to 40 million jobs by 2020 (estimated at 200 million globally). • The EU, Asia Pacific, and North America need carbon-free, local, renewable energy now to fuel their economies. • The solution to global warming can be found in the transition to a sustainable energy economy. Methods and Materials This satellite collector study was undertaken using research methodology using primary and secondary research which began with the Science and Environmental Policy Project, Institute for Energy Research, Hoover Institution, Stanford University and the University of Michigan. The study on using betavoltiacs was conducted by a multi-disciplinary team included researchers from the University of Rochester, the University of Toronto, the Rochester Institute of Technology, and BetaBatt Inc of Houston, Texas and was supported by grants from the NSF Small Business Innovation Research (SBIR) program. Results Less than 2 Discussion Our planet is heading towards a catastrophe unless emissions of greenhouse gas in space and in the earth's atmosphere are substantially reduced. The results of this study are significant for it demonstrates that existing technologies found in the space technologies are being side-stepped in order to support the antiquated land-based energy systems that have focused on oil and gas, wind power, atomic, and water power. All along, the solar system has all the answers to lessen global warming and to create cheap energy that is free of the bureaucracies of global governments.

  17. [Signs of the Impact of the Earth's core on the Planet's Population].

    PubMed

    Malyshkov, Yu P; Malyshkov, S Yu

    2015-01-01

    When investigating the rhythms of the Earth's electromagnetic noise and seismicity, as well as numerous calls for ambulance, cases of baby births and people death, the authors have found that such rhythms have diurnal, seasonal and annual variations and they are principal for human being's life. The analysis of both main regularities and single peculiarities of diurnal and annual rhythms in the living and non-living nature has led us to assumption that the deep-seated processes relating. to the eccentric rotation of the Earth's core and shell could be a powerful conductor of the life and the death on the Earth. The results obtained in our study not only confirm the existence of deep-seated waves generated by the Earth's core but also make us sure that such constantly circulating waves produce a certain impact on a human being's health, birth and death and even "orchestrate" suicides. PMID:26349225

  18. Challenges of Using Earth's Atmosphere as a Proxy for Detecting Biosignatures on Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    DeMarines, J.

    2012-06-01

    Assessing the challenges associated with the detectability of primitive biosignatures present on early Earth (methane and ethane) and addressing the observational difficulties when we begin to observe extrasolar atmospheres with a TPF-O mission.

  19. Lunar Dynamics on Internal Structure of the Moon on the orbit around the planet Earth

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigehisa

    2015-04-01

    This work concerns on problem of dynamics of the Moon rotating on the orbit around the Earth. First, the author introduces what about on the reference data which was updated by NASA in 2013. The NASA's mission of GRAIL (Gravity Recovery and Interior Laboratory)in 2012 was a key to obtain the lunar gravity field on the whole area of the Moon's surface. Now, the author introduces his dynamical model for obtaining an advanced understanding of the lunar internal structure inside of the Moon's surface. The data obtained by NASA had shown that the crust on the moon near side to the Earth was about 30 km thick and that on the moon far side to the Earth was was 50 km. Then, a bold modelling can be introduced for the existing Moon's internal structure referring to the fruuits of the research works in the field of the Earth's gravity found on the basis of the past contributions in the field of geodesy under several bold assumptions wich have been accepted in the fields of astronomy and of the space sciences. In brief, the Moon's gravity could reduce the lunar interface of the core must be surely excentric boldly about 10 km inside of the orbit on the radial line between the Moon and the Earth.Hence, the lunar magnetic field must be freezed to show the reversed polarity relative to that of the Earth. Neverthless, it should be updated to the details in the successive research.

  20. Increasing the Sensitivity of the Kepler Legacy Archive to Habitable Zone Planets and Earth Analogs

    NASA Astrophysics Data System (ADS)

    Still, M.

    2014-04-01

    All legacy light curves archived by the Kepler project are available to the community. They are based upon simple aperture extractions from time-tagged pixel data. We demonstrate that this photometry method works well for the bright end of the Kepler target sample yet there is enormous scope for further gains in sensitivity to planet transits of faint stars in the sample. To this end, all pixel data have been made available in the archive. Methods for the user community to optimize aperture photometry and exploit point spread function modeling are being developed. Exploiting existing Kepler planet candidates, we showcase the signal-to-noise to be gained by these methods. We argue that at the faintest end of the candidate distribution, optimization provides a factor two improvement in sensitivity to transits, reaching beyond the signal-to-noise promised by the eight year mission, curtailed by reaction wheel failure after four years. These methods can provide potentially significant improvement to a number of facets of the Kepler mission: 1. Sensitivity to new planet candidates residing currently below the signal-to-noise detection threshold; 2. Characterizing known transit profiles to higher precision; 3. Identifying contamination from nearby sources and removing contamination bias from transit depths; 4. Mitigating focus and pointing systematics within the Kepler data, and 5. Allowing the direct characterization of time-dependent physical and detector biases within the image background. With exisiting focal plane calibrations, the number of targets that currently benefit from optimized photometry is relatively small, limited to sources of magnitude Kp > 16. However, with additional refinement of the focal plane calibration, improvement in light curve quality for objects 14 < Kp < 16 can be anticipated, impacting 50% of the Kepler target sample. These methods are equally applicable to data from the upcoming TESS mission and are potentially a critical component to

  1. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    PubMed

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus. PMID:27586770

  2. Detection of Extrasolar Planets by Transit Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Webster, Larry; Dunham, Edward; Witteborn, Fred; Jenkins, Jon; Caldwell, Douglas; Showen, Robert; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A knowledge of other planetary systems that includes information on the number, size, mass, and spacing of the planets around a variety of star types is needed to deepen our understanding of planetary system formation and processes that give rise to their final configurations. Recent discoveries show that many planetary systems are quite different from the solar system in that they often possess giant planets in short period orbits. The inferred evolution of these planets and their orbital characteristics imply the absence of Earth-like planets near the habitable zone. Information on the properties of the giant-inner planets is now being obtained by both the Doppler velocity and the transit photometry techniques. The combination of the two techniques provides the mass, size, and density of the planets. For the planet orbiting star HD209458, transit photometry provided the first independent confirmation and measurement of the diameter of an extrasolar planet. The observations indicate a planet 1.27 the diameter of Jupiter with 0.63 of its mass (Charbonneau et al. 1999). The results are in excellent agreement with the theory of planetary atmospheres for a planet of the indicated mass and distance from a solar-like star. The observation of the November 23, 1999 transit of that planet made by the Ames Vulcan photometer at Lick Observatory is presented. In the future, the combination of the two techniques will greatly increase the number of discoveries and the richness of the science yield. Small rocky planets at orbital distances from 0.9 to 1.2 AU are more likely to harbor life than the gas giant planets that are now being discovered. However, new technology is needed to find smaller, Earth-like planets, which are about three hundred times less massive than Jupiter-like planets. The Kepler project is a space craft mission designed to discover hundreds of Earth-size planets in and near the habitable zone around a wide variety of stars. To demonstrate that the

  3. Infrared Doppler instrument (IRD) for the Subaru telescope to search for Earth-like planets around nearby M-dwarfs

    NASA Astrophysics Data System (ADS)

    Kotani, Takayuki; Tamura, Motohide; Suto, Hiroshi; Nishikawa, Jun; Sato, Bun'ei; Aoki, Wako; Usuda, Tomonori; Kurokawa, Takashi; Kashiwagi, Ken; Nishiyama, Shogo; Ikeda, Yuji; Hall, Donald B.; Hodapp, Klaus W.; Hashimoto, Jun; Morino, Jun-Ichi; Okuyama, Yasushi; Tanaka, Yosuke; Suzuki, Shota; Inoue, Sadahiro; Kwon, Jungmi; Suenaga, Takuya; Oh, Dehyun; Baba, Haruka; Narita, Norio; Kokubo, Eiichiro; Hayano, Yutaka; Izumiura, Hideyuki; Kambe, Eiji; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Ikoma, Masahiro; Hori, Yasunori; Omiya, Masashi; Genda, Hidenori; Fukui, Akihiko; Fujii, Yuka; Guyon, Olivier; Harakawa, Hiroki; Hayashi, Masahiko; Hidai, Masahide; Hirano, Teruyuki; Kuzuhara, Masayuki; Machida, Masahiro; Matsuo, Taro; Nagata, Tetsuya; Onuki, Hirohi; Ogihara, Masahiro; Takami, Hideki; Takato, Naruhisa; Takahashi, Yasuhiro H.; Tachinami, Chihiro; Terada, Hiroshi; Kawahara, Hajime; Yamamuro, Tomoyasu

    2014-07-01

    We report the current status of the Infrared Doppler (IRD) instrument for the Subaru telescope, which aims at detecting Earth-like planets around nearby M darwfs via the radial velocity (RV) measurements. IRD is a fiber-fed, near infrared spectrometer which enables us to obtain high-resolution spectrum (R~70000) from 0.97 to 1.75 μm. We have been developing new technologies to achieve 1m/s RV measurement precision, including an original laser frequency comb as an extremely stable wavelength standard in the near infrared. To achieve ultimate thermal stability, very low thermal expansion ceramic is used for most of the optical components including the optical bench.

  4. High-dispersion spectroscopy of extrasolar planets: from CO in hot Jupiters to O2 in exo-Earths.

    PubMed

    Snellen, Ignas

    2014-04-28

    Ground-based high-dispersion spectroscopy could reveal molecular oxygen as a biomarker gas in the atmospheres of twin-Earths transiting red dwarf stars within the next 25 years. The required contrasts are only a factor of 3 lower than that already achieved for carbon monoxide in hot Jupiter atmospheres today but will need much larger telescopes because the target stars will be orders of magnitude fainter. If extraterrestrial life is very common and can therefore be found on planets around the most nearby red dwarf stars, it may be detectable via transmission spectroscopy with the next-generation extremely large telescopes. However, it is likely that significantly more collecting area is required for this. This can be achieved through the development of low-cost flux collector technology, which combines a large collecting area with a low but sufficient image quality for high-dispersion spectroscopy of bright stars. PMID:24664914

  5. A proposal concerning the origin of life on the planet earth

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    1979-01-01

    It is proposed that, contrary to the widely accepted Oparin thesis, life on earth arose not in the oceans but in the earth's atmosphere. Difficulties of the Oparin thesis relating to the nonbiological nature of prebiotic evolution are discussed, and autotrophic, photosynthetic cells are proposed as the first living organisms to emerge, thus avoiding these difficulties. Recent developments in the geology of the earth at the time of the emergence of life are interpreted as requiring the absence of liquid surface water, with water partitioned between a molten crust and a dense, CO2-rich atmosphere, similar to the present state of Venus. Biochemistry in such an atmosphere would be primarily membrane chemistry on the interfaces of atmospheric salt water droplets, proceeding at normal temperatures without the absorption of electrical discharges or UV light. Areas not sufficiently accounted for by this scenario include the development of genetic organization and the breaking of the runaway greenhouse condition assumed.

  6. Earth observations during Space Shuttle flight STS 50 - Columbia's mission to planet earth (June 25-July 9, 1992)

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Helfert, Michael; Amsbury, David; Pitts, David; Evans, Cynthia; Wilkinson, Justin; Helms, David; Chambers, Mark; Brumbaugh, Fred; Richards, Richard N.

    1993-01-01

    A review of the imagery acquired during the STS 50 mission of the Space Shuttle is presented. The earth viewing photography from this flight includes photos of dust plumes over several portions of the Red Sea, Arabian Sea, Persian Gulf, the Mediterranean Sea, and the Atlantic Ocean. Over land, prominent dust plumes were seen over Iraq, North Africa, Sudan, and West Africa. The color infrared photography includes images of the tropical rain forests of South America and South and Southeast Asia. Other examples include photographs of floods in Argentina, photos of Lake Chad in Africa, Coastal Madagascar, the Aswan dam and the Nile, geologic features of North Africa, the center pivot irrigation land areas of Saudi Arabia, flooding in Asian rivers, and sediment plumes of South American and South and Southeast Asian coasts.

  7. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. See the latest spectacular images from NASA remote sensing missions like TRMM, SeaWiFS, Landsat 7, Terra, and Aqua, which will be visualized and explained in the context of global change and man s impact on our world s environment. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights. Shown in high resolution are visualizations of tropical cyclone Eline and the resulting flooding of Mozambique. See flybys of Cape Town, South Africa with its dramatic mountains and landscape, as well as satellite imagery of fires that occurred globally, with a special emphasis on fires in the western US during summer 2001, and how new satellite tools can be used to help fight these disasters from spreading further. See where and when lightning occurs globally, and how dramatic urbanization has been in the desert southwest since 1910. Spectacular visualizations of the global atmosphere and oceans are shown. Learn when and where carbon is absorbed by vegetation on the land and ocean as the product of photosynthesis. See demonstrations of the 3-dimensional structure of hurricanes and cloud structures derived from recently launched Earth-orbiting satellites, and how hurricanes can modify the sea surface temperature in their wake. See massive dust storms in the Middle East as well as dust transport sweeping from north Africa across the Atlantic to the Caribbean and Amazon basin. Learn where and how much the temperature of the Earth s surface has changed during the 20th century, as well as how sea ice has decreased over the Arctic region, how sea level has and is likely to continue to change, and how glaciers have

  8. Geology for youth in Lithuania: International Year of Planet Earth-related and other activities

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Guobyte, Rimante; Skrinskas, Skirmantas; Nemaniene, Jurgita

    2010-05-01

    A great number of Lithuanian secondary and high schools devoted a range of activities to Earth sciences on September 22 (autumn equinox), 2008 proclaimed by the Lithuanian National Committee for IYPE and Ministry of Education and Science of Lithuania as "Earth's day". Beforehand, the 11 IYPE brochures were translated, supplemented with relevant Lithuanian data and placed on the website www.zemesmetai.lt. The activities comprised lessons, competitions, performances, field trips, seminars, excursions to museums and nature sites, meetings with geologists and naturalists etc. In many schools the 10 scientific themes were expanded, transformed and included into different school programmes such as geography, chemistry, physics, biology, Lithuanian language etc. The other schools preferred to organise discussions, performances and concerts where children expressed their concern about future of the Earth and suggested ways to save it. Several schools invited geologists, ecologists or other representatives of Earth sciences or local authorities to provide with information on environmental and geological issues in Lithuania and their own surroundings. Several museums and nature sites were visited. The "Earth's day" was advertised and broadcasted on TV and radio, reflected in the press. The reports from schools were placed on the Lithuanian IYPE website. The Board acknowledged the best participants with special letter of thanks. It turned out that despite the provided information on different subjects of geology only few of them were chosen. School teachers encountered some problems relating the Earth's interior with its surface, recognising modern geological processes etc. They found some brochures to be too complicated for non-specialists. Biodiversity was much easier to explain and present as geodiversity. Nevertheless, everybody admitted the great importance of geosciences in society and insufficient knowledge, and greatly acknowledged the initiative of the IYPE. The

  9. KEPLER-10 c: A 2.2 EARTH RADIUS TRANSITING PLANET IN A MULTIPLE SYSTEM

    SciTech Connect

    Fressin, Francois; Torres, Guillermo; Desert, Jean-Michel; Charbonneau, David; Holman, Matthew J.; Batalha, Natalie M.; Fortney, Jonathan J.; Fabrycky, Daniel C.; Rowe, Jason F.; Allen, Christopher; Borucki, William J.; Bryson, Stephen T.; Henze, Christopher E.; Brown, Timothy M.; Ciardi, David R.; Deming, Drake; Dunham, Edward W.; Gautier III, Thomas N.

    2011-11-01

    The Kepler mission has recently announced the discovery of Kepler-10 b, the smallest exoplanet discovered to date and the first rocky planet found by the spacecraft. A second, 45 day period transit-like signal present in the photometry from the first eight months of data could not be confirmed as being caused by a planet at the time of that announcement. Here we apply the light curve modeling technique known as BLENDER to explore the possibility that the signal might be due to an astrophysical false positive (blend). To aid in this analysis we report the observation of two transits with the Spitzer Space Telescope at 4.5 {mu}m. When combined, they yield a transit depth of 344 {+-} 85 ppm that is consistent with the depth in the Kepler passband (376 {+-} 9 ppm, ignoring limb darkening), which rules out blends with an eclipsing binary of a significantly different color than the target. Using these observations along with other constraints from high-resolution imaging and spectroscopy, we are able to exclude the vast majority of possible false positives. We assess the likelihood of the remaining blends, and arrive conservatively at a false alarm rate of 1.6 x 10{sup -5} that is small enough to validate the candidate as a planet (designated Kepler-10 c) with a very high level of confidence. The radius of this object is measured to be R{sub p} = 2.227{sup +0.052}{sub -0.057} R{sub +} (in which the error includes the uncertainty in the stellar properties), but currently available radial-velocity measurements only place an upper limit on its mass of about 20 M{sub +}. Kepler-10 c represents another example (with Kepler-9 d and Kepler-11 g) of statistical 'validation' of a transiting exoplanet, as opposed to the usual 'confirmation' that can take place when the Doppler signal is detected or transit timing variations are measured. It is anticipated that many of Kepler's smaller candidates will receive a similar treatment since dynamical confirmation may be difficult or

  10. Kepler Mission: A Wide-FOV Photometer Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-like stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 m aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  11. Assessing life's effects on the interior dynamics of planet Earth using non-equilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Dyke, J. G.; Gans, F.; Kleidon, A.

    2010-09-01

    Vernadsky described life as the geologic force, while Lovelock noted the role of life in driving the Earth's atmospheric composition to a unique state of thermodynamic disequilibrium. Here, we use these notions in conjunction with thermodynamics to quantify biotic activity as a driving force for geologic processes. Specifically, we explore the hypothesis that biologically-mediated processes operating on the surface of the Earth, such as the biotic enhancement of weathering of continental crust, affect interior processes such as mantle convection and have therefore shaped the evolution of the whole Earth system beyond its surface and atmosphere. We set up three simple models of mantle convection, oceanic crust recycling and continental crust recycling. We describe these models in terms of non-equilibrium thermodynamics in which the generation and dissipation of gradients is central to driving their dynamics and that such dynamics can be affected by their boundary conditions. We use these models to quantify the maximum power that is involved in these processes. The assumption that these processes, given a set of boundary conditions, operate at maximum levels of generation and dissipation of free energy lead to reasonable predictions of core temperature, seafloor spreading rates, and continental crust thickness. With a set of sensitivity simulations we then show how these models interact through the boundary conditions at the mantle-crust and oceanic-continental crust interfaces. These simulations hence support our hypothesis that the depletion of continental crust at the land surface can affect rates of oceanic crust recycling and mantle convection deep within the Earth's interior. We situate this hypothesis within a broader assessment of surface-interior interactions by setting up a work budget of the Earth's interior to compare the maximum power estimates that drive interior processes to the power that is associated with biotic activity. We estimate that the

  12. Microbial Communities: Tracing Growth Processes from Antarctic Lakes to Early Earth to Other Planets

    NASA Astrophysics Data System (ADS)

    Sumner, D. Y.

    2014-12-01

    Life in the Universe is dominated by microbes: they are numerically the most abundant cells in our bodies and in Earth's biosphere, and they are the only life that might be present elsewhere in our solar system. Life beyond our solar system could include macroscopic organisms, but everything we understand about the origin of life suggests it must start with microbes. Thus, understanding microbial ecosystems, in the absence of macroscopic organisms, is critical to understanding early life on Earth and life elsewhere in the Universe - if it exists. But what are the general principles of microbial ecology in the absence of predation? What happens when each cell is a chemical factory that can swap among metabolic processes in response to environmental and emergent cues? Geobiologists and astrobiologists are addressing these questions in diverse ways using both Earth's modern biosphere and its fossil record. Modern microbial communities in shallow, ice-covered lakes, Antarctica (Fig.), provide a model for high productivity microbial ecosystems with no to low predation. In these lakes, photosynthetic communities create macroscopic pinnacles and domes, sometime lithified into stromatolites. They provide an ecological, geochemical and morphological model for Precambrian microbial communities in low sedimentation, low current environments. Insights from these communities include new growth processes for ancient mats, especially some that grew prior to the oxidation of Earth's atmosphere. The diversity of biosignatures created in these communities also provides context for models of life under ice elsewhere in our solar system such as paleolakes on Mars and on icy moons. Results from the Mars Science Laboratory (MSL) team document formerly habitable fluvial and lacustrine environments. Lacustrine environments, in particular, are favorable for preserving biosignatures, and continued investigations by MSL will provide a deeper understanding of the duration of habitable

  13. The near-Earth objects and their potential threat to our planet

    NASA Astrophysics Data System (ADS)

    Perna, D.; Barucci, M. A.; Fulchignoni, M.

    2013-09-01

    The near-Earth object (NEO) population includes both asteroids (NEAs) and comet nuclei (NECs) whose orbits have perihelion distances q<1.3 AU and which can approach or cross that of the Earth. A NEA is defined as a “potentially hazardous asteroid” (PHA) for Earth when its minimum orbit intersection distance (MOID) comes inside 0.05 AU and it has an absolute magnitude H<22 mag (i.e. mean diameter > 140 m). These are big enough to cause, in the case of impact with Earth, destructive effects on a regional scale. Smaller objects can still produce major damage on a local scale, while the largest NEOs could endanger the survival of living species. Therefore, several national and international observational efforts have been started (i) to detect undiscovered NEOs and especially PHAs, (ii) to determine and continuously monitor their orbital properties and hence their impact probability, and (iii) to investigate their physical nature. Further ongoing activities concern the analysis of possible techniques to mitigate the risk of a NEO impact, when an object is confirmed to be on an Earth colliding trajectory. Depending on the timeframe available before the collision, as well as on the object’s physical properties, various methods to deflect a NEO have been proposed and are currently under study from groups of experts on behalf of international organizations and space agencies. This paper will review our current understanding of the NEO population, the scientific aspects and the ongoing space- and ground-based activities to foresee close encounters and to mitigate the effects of possible impacts.

  14. A possible mechanism for the capture of microparticles by the earth and other planets of the solar system. [planetary gravitation effects on cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Dibenedetto, F.

    1973-01-01

    By application of Lyttleton's theory for the formation of comets, it is shown that a possible mechanism for the origin and formation of a concentration of cosmic particles around the earth and the other planets of the solar system exists. In the vicinity of the neutral point, where the velocity of colliding particles is not greater than 6 km/s, it is found that if the solid particles after collision must remain in a solid state, there can be no possibility of accretion for Mercury, Mars, and the Moon, where the maximum value of the distance of the center of the planet to the asymptotic trajectory is less than the radius of the planet. On the other hand, the capture radii of microparticles in solid form varies from a minimum of 2.95 planetary radii for Venus and 3.47 for the Earth, to about 986 for Jupiter.

  15. Extrasolar Planets and Prospects for Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Marcy, Geoffrey W.; Butler, R. Paul; Vogt, Steven S.; Fischer, Debra A.

    2004-06-01

    Examination of ˜2000 sun--like stars has revealed 97 planets (as of 2002 Nov), all residing within our Milky Way Galaxy and within ˜200 light years of our Solar System. They have masses between 0.1 and 10 times that of Jupiter, and orbital sizes of 0.05--5 AU. Thus planets occupy the entire detectable domain of mass and orbits. News &summaries about extrasolar planets are provided at: http://exoplanets.org. These planets were all discovered by the wobble of the host stars, induced gravitationally by the planets, causing a periodicity in the measured Doppler effect of the starlight. Earth--mass planets remain undetectable, but space--based missions such as Kepler, COROT and SIM may provide detections of terrestrial planets within the next decade. The number of planets increases with decreasing planet mass, indicating that nature makes more small planets than jupiter--mass planets. Extrapolation, though speculative, bodes well for an even larger number of earth--mass planets. These observations and the theory of planet formation suggests that single sun--like stars commonly harbor earth--sized rocky planets, as yet undetectable. The number of planets increases with increasing orbital distance from the host star, and most known planets reside in non--circular orbits. Many known planets reside in the habitable zone (albeit being gas giants) and most newly discovered planets orbit beyond 1 AU from their star. A population of Jupiter--like planets may reside at 5--10 AU from stars, not easily detectable at present. The sun--like star 55 Cancri harbors a planet of 4--10 Jupiter masses orbiting at 5.5 AU in a low eccentricity orbit, the first analog of our Jupiter, albeit with two large planets orbiting inward. To date, 10 multiple--planet systems have been discovered, with four revealing gravitational interactions between the planets in the form of resonances. GJ 876 has two planets with periods of 1 and 2 months. Other planetary systems are ``hierarchical'', consisting

  16. Extreme Planets

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This artist's concept depicts the pulsar planet system discovered by Aleksander Wolszczan in 1992. Wolszczan used the Arecibo radio telescope in Puerto Rico to find three planets - the first of any kind ever found outside our solar system - circling a pulsar called PSR B1257+12. Pulsars are rapidly rotating neutron stars, which are the collapsed cores of exploded massive stars. They spin and pulse with radiation, much like a lighthouse beacon. Here, the pulsar's twisted magnetic fields are highlighted by the blue glow.

    All three pulsar planets are shown in this picture; the farthest two from the pulsar (closest in this view) are about the size of Earth. Radiation from charged pulsar particles would probably rain down on the planets, causing their night skies to light up with auroras similar to our Northern Lights. One such aurora is illustrated on the planet at the bottom of the picture.

    Since this landmark discovery, more than 160 extrasolar planets have been observed around stars that are burning nuclear fuel. The planets spotted by Wolszczan are still the only ones around a dead star. They also might be part of a second generation of planets, the first having been destroyed when their star blew up. The Spitzer Space Telescope's discovery of a dusty disk around a pulsar might represent the beginnings of a similarly 'reborn' planetary system.

  17. Transit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star

    SciTech Connect

    Van Grootel, V.; Gillon, M.; Scuflaire, R.; Valencia, D.; Madhusudhan, N.; Demory, B.-O.; Queloz, D.; Dragomir, D.; Howe, A. R.; Burrows, A. S.; Deming, D.; Ehrenreich, D.; Lovis, C.; Mayor, M.; Pepe, F.; Segransan, D.; Udry, S.; Seager, S.

    2014-05-01

    Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition. We present here the confirmation, based on Spitzer transit observations, that the super-Earth HD 97658 b transits its host star. HD 97658 is a low-mass (M {sub *} = 0.77 ± 0.05 M {sub ☉}) K1 dwarf, as determined from the Hipparcos parallax and stellar evolution modeling. To constrain the planet parameters, we carry out Bayesian global analyses of Keck-High Resolution Echelle Spectrometer (Keck-HIRES) radial velocities and Microvariability and Oscillations of STars (MOST) and Spitzer photometry. HD 97658 b is a massive (M{sub P}=7.55{sub −0.79}{sup +0.83} M{sub ⊕}) and large (R{sub P}=2.247{sub −0.095}{sup +0.098}R{sub ⊕} at 4.5 μm) super-Earth. We investigate the possible internal compositions for HD 97658 b. Our results indicate a large rocky component, of at least 60% by mass, and very little H-He components, at most 2% by mass. We also discuss how future asteroseismic observations can improve the knowledge of the HD 97658 system, in particular by constraining its age. Orbiting a bright host star, HD 97658 b will be a key target for upcoming space missions such as the Transiting Exoplanet Survey Satellite (TESS), the Characterizing Exoplanet Satellite (CHEOPS), the Planetary Transits and Oscillations of stars (PLATO), and the James Webb Space Telescope to characterize thoroughly its structure and atmosphere.

  18. Role of tectonomagmatic processes for surface environmental changes and evolution of biosphere on terrestrial planets: Evidence for evolution of the life on the Earth

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii; Bogina, Maria

    atmospheric circulation. All these processes finally led to the global glaciations. The latters commenced earlier, in the Paleoproterozoic, simultaneously with first manifestations of Fe-Ti basaltic magmatism, which came into force only in the middle Paleoproterozoic. Thus, a fundamental change in tectonomagmatic activity acted as the trigger for environmental changes and biospheric evolution, supplying a qualitatively new material on the Earth's surface. Data available on Venus and Mars suggest that their tectonomagmatic evolution also occurred at the close scenario. Two major types of morphostructures, which are vast plains, composed by young basaltic flows, and older lightweight uplifted segments with a complicated topography (tesseras on the Venus and earths (terras) on the Mars), can evidence about two-stage evolution of these planets. Presence of drainage systems on Mars and valles on Venus assumes existence of liquid water on early stages of their development. Like on the Earth, red beds and global glacials appeared on the Mars at the middle stage of it's evolu-tion, and may be at this period ancient microorganisms existed on Mars (McKay et al., 1996). Powerful eruptions of gigantic volcanoes of Tharsis and Elysium, probably, led to fall of tem-perature and disappearance of liquid water on Mars. In contrast to Mars, on Venus appeared speeded up greenhouse effect, which also led to dry and very hot surface. So, development of tectonomagmatic processes was favourable for the biosphere evolution only on the Earth.

  19. 55 CANCRI: STELLAR ASTROPHYSICAL PARAMETERS, A PLANET IN THE HABITABLE ZONE, AND IMPLICATIONS FOR THE RADIUS OF A TRANSITING SUPER-EARTH

    SciTech Connect

    Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David R.; Tabetha, S. Boyajian; McAlister, Harold A.; White, Russel; Ten Brummelaar, Theo A.; Schaefer, Gail; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Farrington, Chris; Goldfinger, P. J.; Van Belle, Gerard T.; Raymond, Sean N.; Lopez-Morales, Mercedes; Ridgway, Stephen T.

    2011-10-10

    The bright star 55 Cancri is known to host five planets, including a transiting super-Earth. The study presented here yields directly determined values for 55 Cnc's stellar astrophysical parameters based on improved interferometry: R = 0.943 {+-} 0.010 R{sub sun}, T{sub EFF} = 5196 {+-} 24 K. We use isochrone fitting to determine 55 Cnc's age to be 10.2 {+-} 2.5 Gyr, implying a stellar mass of 0.905 {+-} 0.015 M{sub sun}. Our analysis of the location and extent of the system's habitable zone (HZ; 0.67-1.32 AU) shows that planet f, with period {approx}260 days and Msin i = 0.155 M{sub Jupiter}, spends the majority of the duration of its elliptical orbit in the circumstellar HZ. Though planet f is too massive to harbor liquid water on any planetary surface, we elaborate on the potential of alternative low-mass objects in planet f's vicinity: a large moon and a low-mass planet on a dynamically stable orbit within the HZ. Finally, our direct value for 55 Cancri's stellar radius allows for a model-independent calculation of the physical diameter of the transiting super-Earth 55 Cnc e ({approx}2.05 {+-} 0.15 R{sub +}), which, depending on the planetary mass assumed, implies a bulk density of 0.76 {rho}{sub +} or 1.07 {rho}{sub +}.

  20. Migration & Extra-solar Terrestrial Planets: Watering the Planets

    NASA Astrophysics Data System (ADS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2014-04-01

    A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.

  1. The Breath of Planet Earth: Atmospheric Circulation. Assimilation of Surface Wind Observations

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Bloom, Stephen; Otterman, Joseph

    2000-01-01

    Differences in air pressure are a major cause of atmospheric circulation. Because heat excites the movement of atoms, warm temperatures cause, air molecules to expand. Because those molecules now occupy a larger space, the pressure that their weight exerts is decreased. Air from surrounding high-pressure areas is pushed toward the low-pressure areas, creating circulation. This process causes a major pattern of global atmosphere movement known as meridional circulation. In this form of convection, or vertical air movement, heated equatorial air rises and travels through the upper atmosphere toward higher latitudes. Air just above the equator heads toward the North Pole, and air just below the equator moves southward. This air movement fills the gap created where increased air pressure pushes down cold air. The ,cold air moves along the surface back toward the equator, replacing the air masses that rise there. Another influence on atmospheric. circulation is the Coriolis force. Because of the Earth's rotation, large-scale wind currents move in the direction of this axial spin around low-pressure areas. Wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. just as the Earth's rotation affects airflow, so too does its surface. In the phenomenon of orographic lifting, elevated topographic features such as mountain ranges lift air as it moves up their surface.

  2. Prospects for detecting the Rossiter-McLaughlin effect of Earth-like planets: the test case of TRAPPIST-1b and c

    NASA Astrophysics Data System (ADS)

    Cloutier, Ryan; Triaud, Amaury H. M. J.

    2016-08-01

    The Rossiter-McLaughlin effect is the principal method of determining the sky-projected spin-orbit angle (β) of transiting planets. Taking the example of the recently discovered TRAPPIST-1 system, we explore how ultracool dwarfs facilitate the measurement of the spin-orbit angle for Earth-sized planets by creating an effect that can be an order of magnitude more ample than the Doppler reflex motion caused by the planet if the star is undergoing rapid rotation. In TRAPPIST-1's case we expect the semi-amplitudes to be 40 - 50 m s-1 for the known transiting planets. Accounting for stellar jitter expected for ultracool dwarfs and instrumental noise, and assuming radial velocity precisions both demonstrated and anticipated for upcoming near-infrared spectrographs, we quantify the observational effort required to measure the planets' masses and spin-orbit angles. We conclude that if the planetary system is well-aligned then β can be measured to a precision of ≲ 10° if the spectrograph is stable at the level of 2 m s-1. We also investigate the measure of Δβ, the mutual inclination, when multiple transiting planets are present in the system. Lastly, we note that the rapid rotation rate of many late M-dwarfs will amplify the Rossiter-McLaughlin signal to the point where variations in the chromatic Rossiter-McLaughlin effect from atmospheric absorbers should be detectable.

  3. Characterising the three-dimensional ozone distribution of a tidally locked Earth-like planet

    NASA Astrophysics Data System (ADS)

    Proedrou, Elisavet; Hocke, Klemens

    2016-06-01

    We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using the high-resolution, 3D chemistry-climate model CESM1(WACCM) and study how the ozone layer of a tidally locked Earth (TLE) (Ω _{TLE}= 1/365 days) differs from that of our present-day Earth (PDE) (Ω _{PDE}= 1/1 day). The middle atmosphere reaches a steady state asymptotically within the first 80 days of the simulation. An upwelling, centred on the subsolar point, is present on the day side while a downwelling, centred on the antisolar point, is present on the night side. In the mesosphere, we find similar global ozone distributions for the TLE and the PDE, with decreased ozone on the day side and enhanced ozone on the night side. In the lower mesosphere, a jet stream transitions into a large-scale vortex around a low-pressure system, located at low latitudes of the TLE night side. In the middle stratosphere, the concentration of odd oxygen is approximately equal to that of the ozone [({O}x) ≈ ({O}3)]. At these altitudes, the lifetime of odd oxygen is ˜16 h and the transport processes significantly contribute to the global distribution of stratospheric ozone. Compared to the PDE, where the strong Coriolis force acts as a mixing barrier between low and high latitudes, the transport processes of the TLE are governed by jet streams variable in the zonal and meridional directions. In the middle stratosphere of the TLE, we find high ozone values on the day side, due to the increased production of atomic oxygen on the day side, where it immediately recombines with molecular oxygen to form ozone. In contrast, the ozone is depleted on the night side, due to changes in the solar radiation distribution and the presence of a downwelling. As a result of the reduced Coriolis force, the tropical and extratropical air masses are well mixed and the global temperature distribution of the TLE stratosphere has smaller horizontal gradients than the PDE. Compared to the PDE, the total ozone column

  4. Stratospheric Temperatures and Water Loss from Moist Greenhouse Atmospheres of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Kasting, James F.; Chen, Howard; Kopparapu, Ravi K.

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  5. Tales of the Earth - Paroxysms and Perturbations of the Blue Planet

    NASA Astrophysics Data System (ADS)

    Officer, Charles; Page, Jake

    1994-05-01

    In Maryland, late in the Spring of 1816, the snow fell brown, and blue, and even red. Brown snow fell in Hungary that year, and in the village of Taranto in southern Italy, where any snow is rare, the red and yellow snow caused great alarm. In New England, 1816 was called the Year Without a Summer. Crops failed throughout America, the price of corn and wheat soared, and farmers (lacking feed) sold off livestock, bringing about a collapse in beef and pork prices. In western Europe it was even worse, with food riots and armed mobs raiding bakeries and grain markets. This turmoil followed a catastrophic volcanic eruption a year earlier on the other side of the world--the April 1815 explosion of the volcano Tambora, on the Indonesian island of Sumbawa--a blast heard almost a thousand miles away in Sumatra. In Tales of the Earth , Charles Officer and Jake Page describe--often through eye-witness accounts and through the commentary of prominent figures--some of the great events of environmental history. From natural catastrophes such as the Tambora eruption, the great Lisbon earthquake of 1755, and the ice ages, to manmade disasters such as the nuclear fallout from Chernobyl, the killer smog of 1952 in London which killed some four thousand people, acid rain, and the progressive depletion of the ozone layer, Officer and Page provide phenomenal accounts of the earthshattering events that have changed the course of history. A fascinating discussion of natures power over humanity, as well as the trouble humanity makes for nature, Tales of the Earth will interest anyone concerned with the environmental and the natural world.

  6. Mars ecopoiesis test bed: on earth and on the red planet

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Kurk, Michael Andy; Boland, Eugene; Thomas, David; Scherzer, Christopher

    2016-07-01

    surface (multiple units per mission would be expected), protective internal package for the release of organisms, a means of atmosphere exchange, access to sunlight, a means of penetrating the planetary surface, and most importantly a means of acquiring regolith while meeting requirements of planetary protection. An enlarged-scale mock-up of this design was fabricated by additive manufacturing with moving parts that simulate the components of the design. This mock-up assembly marks a starting point for a planetary surface probe for safe implantation on the surface of the Red Planet some decades in the future. This research was supported by NASA NIAC Phase I Grant "Mars Ecopoiesis Testbed" NNX14AM97G.

  7. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars.

    PubMed

    Kasting, James F; Kopparapu, Ravikumar; Ramirez, Ramses M; Harman, Chester E

    2014-09-01

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, "Dune" planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, S(eff), the recently recalculated HZ boundaries are: recent Venus--1.78; runaway greenhouse--1.04; moist greenhouse--1.01; maximum greenhouse--0.35; and early Mars--0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4-0.5. PMID:24277805

  8. THE RADIAL VELOCITY DETECTION OF EARTH-MASS PLANETS IN THE PRESENCE OF ACTIVITY NOISE: THE CASE OF {alpha} CENTAURI Bb

    SciTech Connect

    Hatzes, Artie P.

    2013-06-20

    We present an analysis of the publicly available HARPS radial velocity (RV) measurements for {alpha} Cen B, a star hosting an Earth-mass planet candidate in a 3.24 day orbit. The goal is to devise robust ways of extracting low-amplitude RV signals of low-mass planets in the presence of activity noise. Two approaches were used to remove the stellar activity signal which dominates the RV variations: (1) Fourier component analysis (pre-whitening), and (2) local trend filtering (LTF) of the activity using short time windows of the data. The Fourier procedure results in a signal at P = 3.236 days and K = 0.42 m s{sup -1}, which is consistent with the presence of an Earth-mass planet, but the false alarm probability for this signal is rather high at a few percent. The LTF results in no significant detection of the planet signal, although it is possible to detect a marginal planet signal with this method using a different choice of time windows and fitting functions. However, even in this case the significance of the 3.24 day signal depends on the details of how a time window containing only 10% of the data is filtered. Both methods should have detected the presence of {alpha} Cen Bb at a higher significance than is actually seen. We also investigated the influence of random noise with a standard deviation comparable to the HARPS data and sampled in the same way. The distribution of the noise peaks in the period range 2.8-3.3 days has a maximum of Almost-Equal-To 3.2 days and amplitudes approximately one-half of the K-amplitude for the planet. The presence of the activity signal may boost the velocity amplitude of these signals to values comparable to the planet. It may be premature to attribute the 3.24 day RV variations to an Earth-mass planet. A better understanding of the noise characteristics in the RV data as well as more measurements with better sampling will be needed to confirm this exoplanet.

  9. Stellar and Planetary Properties of K2 Campaign 1 Candidates and Validation of 17 Planets, Including a Planet Receiving Earth-like Insolation

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin T.; Morton, Timothy D.; Foreman-Mackey, Daniel; Johnson, John Asher; Hogg, David W.; Bowler, Brendan P.; Latham, David W.; Bieryla, Allyson; Mann, Andrew W.

    2015-08-01

    The extended Kepler mission, K2, is now providing photometry of new fields every three months in a search for transiting planets. In a recent study, Foreman-Mackey and collaborators presented a list of 36 planet candidates orbiting 31 stars in K2 Campaign 1. In this contribution, we present stellar and planetary properties for all systems. We combine ground-based seeing-limited survey data and adaptive optics imaging with an automated transit analysis scheme to validate 21 candidates as planets, 17 for the first time, and identify 6 candidates as likely false positives. Of particular interest is K2-18 (EPIC 201912552), a bright (K = 8.9) M2.8 dwarf hosting a 2.23 ± 0.25 {R}\\oplus planet with {T}{eq}=272+/- 15 K and an orbital period of 33 days. We also present two new open-source software packages which enable this analysis. The first, isochrones, is a flexible tool for fitting theoretical stellar models to observational data to determine stellar properties using a nested sampling scheme to capture the multimodal nature of the posterior distributions of the physical parameters of stars that may plausibly be evolved. The second is vespa, a new general-purpose procedure to calculate false positive probabilities and statistically validate transiting exoplanets.

  10. An Update on Planet Nine

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Whats the news coming from the research world on the search for Planet Nine? Read on for an update from a few of the latest studies.Artists illustration of Planet Nine, a hypothesized Neptune-sized planet orbiting in the distant reaches of our solar system. [Caltech/Robert Hurt]What is Planet Nine?In January of this year, Caltech researchers Konstantin Batygin and Mike Brown presented evidence of a distant ninth planet in our solar system. They predicted this planet to be of a mass and volume consistent with a super-Earth, orbiting on a highly eccentric pathwith a period of tens of thousands of years.Since Batygin and Browns prediction, scientists have been hunting for further signs of Planet Nine. Though we havent yet discovered an object matching its description, we have come up with new strategies for finding it, we set some constraints on where it might be, and we made some interesting theoretical predictions about its properties.Visualizations of the resonant orbits of the four longest-period Kuiper belt objects, depicted in a frame rotating with the mean angular velocity of Planet Nine. Planet Nines position is on the right (with the trace of possible eccentric orbits e=0.17 and e=0.4 indicated in red). [Malhotra et al 2016]Here are some of the newest constraints on Planet Nine from studies published just within the past two weeks.Resonant OrbitsRenu Malhotra (University of Arizonas Lunar and Planetary Laboratory) and collaborators present further evidence of the shaping of solar system orbits by the hypothetical Planet Nine. The authors point out that the four longest-period Kuiper belt objects (KBOs) have orbital periods close to integer ratios with each other. Could it be that these outer KBOs have become locked into resonant orbits with a distant, massive body?The authors find that a distant planet orbiting with a period of ~17,117 years and a semimajor axis ~665 AU would have N/1 and N/2 period ratios with these four objects. If this is correct, it

  11. The Effect of a Strong Stellar Flare on the Atmospheric Chemistry of an Earth-like Planet Orbiting an M Dwarf

    PubMed Central

    Walkowicz, Lucianne M.; Meadows, Victoria; Kasting, James; Hawley, Suzanne

    2010-01-01

    Abstract Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high-energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect, we estimated a proton flux associated with the flare of 5.9 × 108 protons cm−2 sr−1 s−1 for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the Carrington event. The simulations were performed with a 1-D photochemical model coupled to a 1-D radiative/convective model. Our results indicate that the UV radiation emitted during the flare does not produce a significant change in the ozone column depth of the planet. When the action of protons is included, the ozone depletion reaches a maximum of 94% two years after the flare for a planet with no magnetic field. At the peak of the flare, the calculated UV fluxes that reach the surface, in the wavelength ranges that are damaging for life, exceed those received on Earth during less than 100 s. Therefore, flares may not present a direct hazard for life on the surface of an orbiting habitable planet. Given that AD Leo is one of the most magnetically active M dwarfs known, this conclusion should apply to planets around other M dwarfs with lower levels of chromospheric activity. Key Words: M dwarf—Flare—Habitable zone—Planetary atmospheres. Astrobiology 10, 751–771. PMID:20879863

  12. The Relationship Between the Origins of Life on Earth and the Possibility of Life on Other Planets: A Nineteenth-Century Perspective

    NASA Astrophysics Data System (ADS)

    Tirard, Stéphane

    In this chapter we examine how, during the second part of the nineteenth century and the beginning of the twentieth century, assumptions about the origins of life were specifically linked to the development of theories of evolution and how these conceptions influenced assumptions about the possibility of life on other planets. First we present the theories of the origins of life of Charles Darwin (1809-1882) and Herbert Spencer (1820-1903) and underline how they were linked to the knowledge of physical and chemical conditions of environments. These two examples lead us to think about the relationship between the origin of life, evolutionary biology, and geology, particularly the uniformitarian principle. An important point is the extension of the comprehension of terrestrial conditions of emergence and evolution of life to other planets. We claim that there was a sort of extended uniformitarian principle, based not only on time, but also on space. Second, after a brief look at panspermia theory, we compare two examples of assumptions about life on other planets. The French astronomer Camille Flammarion (1842-1925) and the French biologist Edmond Perrier (1844-1921) presented views that consisted in complex analogies between life on Earth and life on other planets. We analyze how they used neo-Lamarckian biological concepts to imagine living beings in other worlds. Each planet is characterized by a particular stage of biological evolution that they deduce from the state of living beings on Earth. The two scientists explained these different states with neo-Lamarckian principles, which were based on environmental constraints on organisms. Therefore these descriptions presented a sort of history of life, including the past and the future. We claim that their assumptions could be some intellectual exercises testing neo-Lamarckian theories. Moreover the description of human beings on other planets, and particularly the Martian epianthropus presented by Perrier, were

  13. The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf.

    PubMed

    Segura, Antígona; Walkowicz, Lucianne M; Meadows, Victoria; Kasting, James; Hawley, Suzanne

    2010-09-01

    Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high-energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect, we estimated a proton flux associated with the flare of 5.9 × 10⁸ protons cm⁻² sr⁻¹ s⁻¹ for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the Carrington event. The simulations were performed with a 1-D photochemical model coupled to a 1-D radiative/convective model. Our results indicate that the UV radiation emitted during the flare does not produce a significant change in the ozone column depth of the planet. When the action of protons is included, the ozone depletion reaches a maximum of 94% two years after the flare for a planet with no magnetic field. At the peak of the flare, the calculated UV fluxes that reach the surface, in the wavelength ranges that are damaging for life, exceed those received on Earth during less than 100 s. Therefore, flares may not present a direct hazard for life on the surface of an orbiting habitable planet. Given that AD Leo is one of the most magnetically active M dwarfs known, this conclusion should apply to planets around other M dwarfs with lower levels of chromospheric activity. PMID:20879863

  14. From snowball to moist greenhouse: the climatological evolution of Earth-analog planets simulated with a 3D climate system model

    NASA Astrophysics Data System (ADS)

    Wolf, Eric T.; Kopparapu, Ravi; Haqq-Misra, Jacob; Toon, Owen Brian

    2015-12-01

    The host star imposes a primary control on terrestrial planet climate. Both the spectral energy distribution and the main sequence lifetime vary as a function of stellar type. Here we present recent results from three-dimensional climate system models describing the evolutionary sequence of Earth-analog planets throughout their habitable lifetimes. Climatological evolution is traced from snowball to moist greenhouse, representing the conventional end-member states of the habitable zone. For Earth the habitable period would have been tantalizingly short, if not for geological and biological regulation of greenhouse gases. Without active carbon cycling, an early snowball could not have been broken until late in Earth’s history. Abrupt solar driven deglaciation would soon be followed by the onset of the water vapor greenhouse feedback and a moist greenhouse climate, leaving little over 1 billion years of habitable surface conditions. Around bluer stars, the habitable period for terrestrial planets is constricted further due to their reduced main sequence lifetimes and thus more rapid brightening. Planets with long-lived habitable periods are most likely found around stars redder than the Sun due to their more gradual brightening.

  15. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars

    PubMed Central

    Kasting, James F.; Kopparapu, Ravikumar; Ramirez, Ramses M.; Harman, Chester E.

    2014-01-01

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet’s atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, “Dune” planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, Seff, the recently recalculated HZ boundaries are: recent Venus—1.78; runaway greenhouse—1.04; moist greenhouse—1.01; maximum greenhouse—0.35; and early Mars—0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4–0.5. PMID:24277805

  16. The Chlorine Abundance of Earth: Evidence for Early Atmospheric Loss and Creation of a Life-Supporting Planet

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Draper, D. S.

    2009-12-01

    s halogens. Had this massive removal of halogens not occurred, Earth’s oceans would be at halite saturation, roughly equivalent to the Dead Sea. The Earth would have suffered from ‘halogen poisoning’, and life may never have emerged under such conditions. Even if it had, evolution to more complex forms - associated with a drop in salinity and increase in dissolved oxygen (Knauth, Nature, 1998) - would almost certainly never have occurred. Evaporation over a halite-saturated ocean would be one half the modern value, so that precipitation would be drastically reduced or non-existent and terrestrial life would have been severely restricted. Mars, with its higher Cl and lower water contents (Filiberto and Trieman, 2009), would produce oceans with far higher salinities. Atmospheric erosion in chondritic-like star systems may be a necessary condition for life by preventing the formation of halogen-poisoned planets.

  17. Three dimensional finite difference time domain modeling of Schumann resonances on Earth and other planets of the solar system

    NASA Astrophysics Data System (ADS)

    Yang, Heng

    2007-12-01

    variation patterns, which manifest themselves in the diurnal and seasonal variations of SR parameters. In this thesis, the FDTD model is used to account for the realistic cavity at different local time and seasons using asymmetric conductivity profiles derived from International Reference Ionosphere (IRI) model. The FDTD results are compared with observational data in the available literature. The influence of the diurnal and seasonal conductivity variation, the global lightning activity, and the positions of the observation stations on the SR parameters are discussed. Another important factor influencing the SR power is related to the shifts of the global thunderstorm regions due to the El Nino and La Nina phenomena. Due to the different spatial field distributions of SR electric and magnetic components in the Earth-ionosphere cavity, the different power variation patterns are clearly observed in the electric and magnetic components with the motion of the thunderstorm center in our FDTD results. A new method is proposed to detect the shifts of the thunderstorm regions related to the El Nino and La Nina phenomena using a combination of electric and magnetic components of Schumann resonances at a single station. In recent years, there has been an increasing interest in the exploration of the other planets in the Solar System. On January 14, 2005, HUYGENS probe landed on Titan, and started exploration of this largest moon of Saturn. One of multiple missions of HUYGENS probe is to find if there are lightning discharges in the Titan's atmosphere. It is believed that conducting properties of the Titan's atmosphere are favorable for the formation of the cavity for propagation of electromagnetic waves, so the existence of SR will give a support for the existence of the electrical discharges in the lower atmosphere on Titan. SR parameters are also useful in the study of the electromagnetic properties of Titan's lower ionosphere. Several papers have recently been published in the

  18. How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?

    PubMed

    Kleidon, Axel

    2012-03-13

    The Earth's chemical composition far from chemical equilibrium is unique in our Solar System, and this uniqueness has been attributed to the presence of widespread life on the planet. Here, I show how this notion can be quantified using non-equilibrium thermodynamics. Generating and maintaining disequilibrium in a thermodynamic variable requires the extraction of power from another thermodynamic gradient, and the second law of thermodynamics imposes fundamental limits on how much power can be extracted. With this approach and associated limits, I show that the ability of abiotic processes to generate geochemical free energy that can be used to transform the surface-atmosphere environment is strongly limited to less than 1 TW. Photosynthetic life generates more than 200 TW by performing photochemistry, thereby substantiating the notion that a geochemical composition far from equilibrium can be a sign for strong biotic activity. Present-day free energy consumption by human activity in the form of industrial activity and human appropriated net primary productivity is of the order of 50 TW and therefore constitutes a considerable term in the free energy budget of the planet. When aiming to predict the future of the planet, we first note that since global changes are closely related to this consumption of free energy, and the demands for free energy by human activity are anticipated to increase substantially in the future, the central question in the context of predicting future global change is then how human free energy demands can increase sustainably without negatively impacting the ability of the Earth system to generate free energy. This question could be evaluated with climate models, and the potential deficiencies in these models to adequately represent the thermodynamics of the Earth system are discussed. Then, I illustrate the implications of this thermodynamic perspective by discussing the forms of renewable energy and planetary engineering that would

  19. How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?

    PubMed Central

    Kleidon, Axel

    2012-01-01

    The Earth's chemical composition far from chemical equilibrium is unique in our Solar System, and this uniqueness has been attributed to the presence of widespread life on the planet. Here, I show how this notion can be quantified using non-equilibrium thermodynamics. Generating and maintaining disequilibrium in a thermodynamic variable requires the extraction of power from another thermodynamic gradient, and the second law of thermodynamics imposes fundamental limits on how much power can be extracted. With this approach and associated limits, I show that the ability of abiotic processes to generate geochemical free energy that can be used to transform the surface–atmosphere environment is strongly limited to less than 1 TW. Photosynthetic life generates more than 200 TW by performing photochemistry, thereby substantiating the notion that a geochemical composition far from equilibrium can be a sign for strong biotic activity. Present-day free energy consumption by human activity in the form of industrial activity and human appropriated net primary productivity is of the order of 50 TW and therefore constitutes a considerable term in the free energy budget of the planet. When aiming to predict the future of the planet, we first note that since global changes are closely related to this consumption of free energy, and the demands for free energy by human activity are anticipated to increase substantially in the future, the central question in the context of predicting future global change is then how human free energy demands can increase sustainably without negatively impacting the ability of the Earth system to generate free energy. This question could be evaluated with climate models, and the potential deficiencies in these models to adequately represent the thermodynamics of the Earth system are discussed. Then, I illustrate the implications of this thermodynamic perspective by discussing the forms of renewable energy and planetary engineering that would

  20. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2011-02-01

    1. Historical notes on planet formation Bodenheimer; 2. The formation and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal formation Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet formation: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.

  1. Creating Planet Earth

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2013-01-01

    Every generation of new ecologists addresses the need for playscapes to match the landscapes while engendering wonder and beauty into a child's everyday world. Keeler's playground style imitates nature with designs of innovative path finding, inventive structures, and "swarm builds" that make each play space entirely original.

  2. RADIAL VELOCITY PLANETS DE-ALIASED: A NEW, SHORT PERIOD FOR SUPER-EARTH 55 Cnc e

    SciTech Connect

    Dawson, Rebekah I.; Fabrycky, Daniel C. E-mail: daniel.fabrycky@gmail.co

    2010-10-10

    Radial velocity measurements of stellar reflex motion have revealed many extrasolar planets, but gaps in the observations produce aliases, spurious frequencies that are frequently confused with the planets' orbital frequencies. In the case of Gl 581 d, the distinction between an alias and the true frequency was the distinction between a frozen, dead planet and a planet possibly hospitable to life. To improve the characterization of planetary systems, we describe how aliases originate and present a new approach for distinguishing between orbital frequencies and their aliases. Our approach harnesses features in the spectral window function to compare the amplitude and phase of predicted aliases with peaks present in the data. We apply it to confirm prior alias distinctions for the planets GJ 876 d and HD 75898 b. We find that the true periods of Gl 581 d and HD 73526 b/c remain ambiguous. We revise the periods of HD 156668 b and 55 Cnc e, which were afflicted by daily aliases. For HD 156668 b, the correct period is 1.2699 days and the minimum mass is (3.1 {+-} 0.4) M{sub +}. For 55 Cnc e, the correct period is 0.7365 days-the shortest of any known planet-and the minimum mass is (8.3 {+-} 0.3) M{sub +}. This revision produces a significantly improved five-planet Keplerian fit for 55 Cnc, and a self-consistent dynamical fit describes the data just as well. As radial velocity techniques push to ever-smaller planets, often found in systems of multiple planets, distinguishing true periods from aliases will become increasingly important.

  3. Planet Demographics from Transits

    NASA Astrophysics Data System (ADS)

    Howard, Andrew

    2015-08-01

    From the demographics of planets detected by the Kepler mission, we have learned that there exists approximately one planet per star for planets larger than Earth orbiting inside of 1 AU. We have also learned the relative occurrence of these planets as a function of their orbital periods, sizes, and host star masses and metallicities. In this talk I will review the key statistical findings that the planet size distribution peaks in the range 1-3 times Earth-size, the orbital period distribution is characterized by a power-law cut off at short periods, small planets are more prevalent around small stars, and that approximately 20% of Sun-like stars hosts a planet 1-2 times Earth-size in a habitable zone. Looking forward, I will describe analysis of photometry from the K2 mission that is yielding initial planet discoveries and offering the opportunity to measure planet occurrence in widely separated regions of the galaxy. Finally, I will also discuss recent techniques to discover transiting planets in space-based photometry and to infer planet population properties from the ensemble of detected and non-detected transit signals.

  4. An Update on Planet Nine

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Whats the news coming from the research world on the search for Planet Nine? Read on for an update from a few of the latest studies.Artists illustration of Planet Nine, a hypothesized Neptune-sized planet orbiting in the distant reaches of our solar system. [Caltech/Robert Hurt]What is Planet Nine?In January of this year, Caltech researchers Konstantin Batygin and Mike Brown presented evidence of a distant ninth planet in our solar system. They predicted this planet to be of a mass and volume consistent with a super-Earth, orbiting on a highly eccentric pathwith a period of tens of thousands of years.Since Batygin and Browns prediction, scientists have been hunting for further signs of Planet Nine. Though we havent yet discovered an object matching its description, we have come up with new strategies for finding it, we set some constraints on where it might be, and we made some interesting theoretical predictions about its properties.Visualizations of the resonant orbits of the four longest-period Kuiper belt objects, depicted in a frame rotating with the mean angular velocity of Planet Nine. Planet Nines position is on the right (with the trace of possible eccentric orbits e=0.17 and e=0.4 indicated in red). [Malhotra et al 2016]Here are some of the newest constraints on Planet Nine from studies published just within the past two weeks.Resonant OrbitsRenu Malhotra (University of Arizonas Lunar and Planetary Laboratory) and collaborators present further evidence of the shaping of solar system orbits by the hypothetical Planet Nine. The authors point out that the four longest-period Kuiper belt objects (KBOs) have orbital periods close to integer ratios with each other. Could it be that these outer KBOs have become locked into resonant orbits with a distant, massive body?The authors find that a distant planet orbiting with a period of ~17,117 years and a semimajor axis ~665 AU would have N/1 and N/2 period ratios with these four objects. If this is correct, it

  5. Star-planet connection through metallicity

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; Figueira, P.; Santos, N. C.; Israelian, G.; Mortier, A.; Mordasini, C.; Delgado Mena, E.; Sousa, S. G.; Correi, A. C. M.; Oshagh, M.

    2014-07-01

    We used a large sample of FGK dwarf planet-hosting stars with stellar parameters derived in a homogeneous way from the SWEET-Cat database (Santos et al. 2013) to study the relation between stellar metallicity and position of planets in the period-mass diagram. Using this large sample we show that planets orbiting metal-poor stars have longer periods than those in metal-rich systems. This trend is valid for masses at least from ≈ 10 M⊕ to ≈ 4 MJup. Moreover, Earth-like planets orbiting metal-rich stars always show shorter periods (≤20 days) than those orbiting metal-poor stars. However, in the short-period regime there are a similar number of planets orbiting metal-poor stars. Our results suggest that the planets in the P-MP diagram are evolving differently because of a mechanism that operates over a wide range of planetary masses. This mechanism is stronger or weaker depending on the metallicity of the respective system. Most probably planets in metal-poor disks form farther out from their central star and/or they form later and do not have time to migrate as far as the planets in metal-rich systems.

  6. Finding Planets around other stars

    NASA Video Gallery

    Just as the Earth revolves around the sun, our closest star, other planets might orbit the stars you see in the night sky. Think of all the planets in the universe that may be just the right distan...

  7. News and Views: Keep it down! AU becomes au, and is defined in metres; Kepler survey announces two planets in a binary star system; Is there plate tectonics on Mars? Vaporizing Earth - for research!

    NASA Astrophysics Data System (ADS)

    2012-10-01

    Division 1 of the IAU recommended that the astronomical unit - originally the length of the semi-major axis of the Earth's orbit - be redefined as a fixed number of kilometres. A team of observers using data from NASA's Kepler space observatory announced at the IAU General Assembly that they had discovered two planets orbiting a pair of binary stars, and that such planets could exist in the habitable zone of their system. The Red Planet has long been considered something of a dead planet as far as tectonic movements of its crust, but careful analysis of thermal and topographic images of the surface suggest the existence of major faults with horizontal slip along the Valles Marineris. The question of what would happen if Earth were to approach the Sun and start vaporizing has been modelled in order to help to model the composition of super-Earths.

  8. ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search): A possible expert-system based cooperative effort to hunt for planets of Earth mass and below

    NASA Astrophysics Data System (ADS)

    Dominik, M.; Horne, K.; Allan, A.; Rattenbury, N. J.; Tsapras, Y.; Snodgrass, C.; Bode, M. F.; Burgdorf, M. J.; Fraser, S. N.; Kerins, E.; Mottram, C. J.; Steele, I. A.; Street, R. A.; Wheatley, P. J.; Wyrzykowski, Ł.

    2008-03-01

    The technique of gravitational microlensing is currently unique in its ability to provide a sample of terrestrial exoplanets around both Galactic disk and bulge stars, allowing to measure their abundance and determine their distribution with respect to mass and orbital separation. Thus, valuable information for testing models of planet formation and orbital migration is gathered, constituting an important piece in the puzzle for the existence of life forms throughout the Universe. In order to achieve these goals in reasonable time, a well-coordinated effort involving a network of either 2m or 4×1m telescopes at each site is required. It could lead to the first detection of an Earth-mass planet outside the Solar system, and even planets less massive than Earth could be discovered. From April 2008, ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) is planned to provide a platform for a three-step strategy of survey, follow-up, and anomaly monitoring. As an expert system embedded in eSTAR (e-Science Telescopes for Astronomical Research), ARTEMiS will give advice for follow-up based on a priority algorithm that selects targets to be observed in order to maximize the expected number of planet detections, and will also alert on deviations from ordinary microlensing light curves by means of the SIGNALMEN anomaly detector. While the use of the VOEvent (Virtual Observatory Event) protocol allows a direct interaction with the telescopes that are part of the HTN (Heterogeneous Telescope Networks) consortium, additional interfaces provide means of communication with all existing microlensing campaigns that rely on human observers. The success of discovering a planet by microlensing critically depends on the availability of a telescope in a suitable location at the right time, which can mean within 10 min. To encourage follow-up observations, microlensing campaigns are therefore releasing photometric data in real time. On ongoing planetary anomalies, world

  9. Development of Rare-Earth Free Mn-Al Permanent Magnet Employing Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Singh, N.; Shyam, R.; Upadhyay, N. K.; Dhar, A.

    2015-02-01

    Most widely used high-performance permanent magnets are currently based on intermetallics of rare-earths in combination with Fe and Co. Rare-earth elements required for these magnets are getting expensive by the day. Consequently, there is a thrust worldwide to develop economical rare-earth free permanent magnets. It is acknowledged that the phase in Mn-Al alloys possesses magnetic properties without the presence of ferromagnetic elements such as Fe, Co, and Ni. In the present study, we report the synthesis of magnetic phase of Mn54Al46 alloy synthesized using mechanical alloying followed by solutionizing and annealing to obtain the desired magnetic phase. It is well known that Al dissolves partially in Mn matrix hence supersaturated solid solution of Mn54Al46 alloy powder was obtained by mechanical alloying using a planetary high-energy ball mill. For this purpose elemental Mn and Al powders were ball-milled in Argon atmosphere at 400 rpm using stainless steel bowl with ball to powder ratio of 15:1. These mechanically alloyed Mn54Al46 powders were then consolidated using spark plasma sintering at 550°C for 20 min. followed by solution treatment at 1050°C for 5 hrs and then water quenched to retain high temperature phase. Subsequently, the Mn54Al46 samples were annealed in the temperature range 450°C-650°C to obtain the magnetic phase. These samples were characterized by XRD and SEM and the magnetic properties were measured using a vibrating sample magnetometer (VSM). It was observed that the magnetization and coercivity of MnAl magnets exhibited strong dependence on annealing temperature and annealing time.

  10. Project Planet Earth: A Joint Project Between the NASA/Goddard Space Flight Center and the Girl Scouts of Central Maryland.

    NASA Astrophysics Data System (ADS)

    Remer, L.; Mattoo, S.; Anderson, T.; Johnson, C.

    2001-12-01

    Scientists of the NASA/GSFC and the staff of the Girl Scouts of CentralMaryland (GSCM) have teamed up to introduce more girls and young women to earth system science. The girls now have the opportunity to earn the specially designed Planet Earth Council Patch. The Patch program includes a set of requirements tailored to the specific age level of the girl and the resource material to help the girl complete the requirements. At completion of the requirements the girl is awarded a patch to sew onto the back of her sash or vest. Girls do hands-on physical experiments, practice taking data, visit science centers and perform skits in order to complete the requirements. In addition to the Patch program, Project Planet Earth continues to encourage strong collaboration between the Girl Scouts of Maryland and NASA/GSFC. Girls volunteer at the GSFC visitor center during community events and in turn scientists are called on as keynote speakers and consultants for the Council. A special science interest group is forming for the teenage Girl Scouts of the Council that will network with scientists and help these young women pursue their interests, find internships and make career decisions.

  11. Project Planet Earth: A Joint Project Between the NASA/Goddard Space Flight Center and the Girl Scouts of Central Maryland

    NASA Technical Reports Server (NTRS)

    Mattoo, Shana; Remer, Lorraine; Anderson, Terry; Johnson, Courtrina; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Scientists of the NASA/GSFC and the staff of the Girl Scouts of Central Maryland (GSCM) have teamed up to introduce more girls and young women to earth system science. The girls now have the opportunity to earn the specially designed Planet Earth Council Patch. The Patch program includes a set of requirements tailored to the specific age level of the girl and the resource material to help the girl complete the requirements. At completion of the requirements the girl is awarded a patch to sew onto the back of her sash or vest. Girls do hands-on physical experiments, practice taking data, visit science centers and perform skits in order to complete the requirements. In addition to the Patch program, Project Planet Earth continues to encourage strong collaboration between the Girl Scouts of Maryland and NASA/GSFC. Girls volunteer at the GSFC visitor center during community events and in turn scientists are called on as keynote speakers and consultants for the Council. A special science interest group is forming for the teenage Girl Scouts of the Council that will network with scientists and help these young women pursue their interests, find internships and make career decisions.

  12. Apodized Pupil Lyot Coronagraphs for Arbitrary Apertures. V. Hybrid Shaped Pupil Designs for Imaging Earth-like planets with Future Space Observatories

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Soummer, Rémi; Pueyo, Laurent; Carlotti, Alexis; Stark, Christopher C.; Perrin, Marshall D.

    2016-02-01

    We introduce a new class of solutions for Apodized Pupil Lyot Coronagraphs (APLC) with segmented aperture telescopes to remove broadband diffracted light from a star with a contrast level of 1010. These new coronagraphs provide a key advance to enabling direct imaging and spectroscopy of Earth twins with future large space missions. Building on shaped pupil (SP) apodization optimizations, our approach enables two-dimensional optimizations of the system to address any aperture features such as central obstruction, support structures, or segment gaps. We illustrate the technique with a design that could reach a 1010 contrast level at 34 mas for a 12 m segmented telescope over a 10% bandpass centered at a wavelength of {λ }0 = 500 nm. These designs can be optimized specifically for the presence of a resolved star and, in our example, for stellar angular size up to 1.1 mas. This would allow one to probe the vicinity of Sun-like stars located beyond 4.4 pc, therefore, fully retiring this concern. If the fraction of stars with Earth-like planets is {η }\\oplus =0.1, with 18% throughput, assuming a perfect, stable wavefront and considering photon noise only, 12.5 exo-Earth candidates could be detected around nearby stars with this design and a 12 m space telescope during a five-year mission with two years dedicated to exo-Earth detection (one total year of exposure time and another year of overheads). Our new hybrid APLC/SP solutions represent the first numerical solution of a coronagraph based on existing mask technologies and compatible with segmented apertures, and that can provide contrast compatible with detecting and studying Earth-like planets around nearby stars. They represent an important step forward toward enabling these science goals with future large space missions.

  13. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  14. SeaWiFS Technical Report Series. Volume 42; Satellite Primary Productivity Data and Algorithm Development: A Science Plan for Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Falkowski, Paul G.; Behrenfeld, Michael J.; Esaias, Wayne E.; Balch, William; Campbell, Janet W.; Iverson, Richard L.; Kiefer, Dale A.; Morel, Andre; Yoder, James A.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)

    1998-01-01

    Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm.

  15. A STATISTICAL RECONSTRUCTION OF THE PLANET POPULATION AROUND KEPLER SOLAR-TYPE STARS

    SciTech Connect

    Silburt, Ari; Wu, Yanqin; Gaidos, Eric

    2015-02-01

    Using the cumulative catalog of planets detected by the NASA Kepler mission, we reconstruct the intrinsic occurrence of Earth- to Neptune-size (1-4 R {sub ⊕}) planets and their distributions with radius and orbital period. We analyze 76,711 solar-type (0.8 < R {sub *}/R {sub ☉} < 1.2) stars with 430 planets on 20-200 day orbits, excluding close-in planets that may have been affected by the proximity to the host star. Our analysis considers errors in planet radii and includes an ''iterative simulation'' technique that does not bin the data. We find a radius distribution that peaks at 2-2.8 Earth radii, with lower numbers of smaller and larger planets. These planets are uniformly distributed with logarithmic period, and the mean number of such planets per star is 0.46 ± 0.03. The occurrence is ∼0.66 if planets interior to 20 days are included. We estimate the occurrence of Earth-size planets in the ''habitable zone'' (defined as 1-2 R {sub ⊕}, 0.99-1.7 AU for solar-twin stars) as 6.4{sub −1.1}{sup +3.4}%. Our results largely agree with those of Petigura et al., although we find a higher occurrence of 2.8-4 Earth-radii planets. The reasons for this excess are the inclusion of errors in planet radius, updated Huber et al. stellar parameters, and also the exclusion of planets that may have been affected by proximity to the host star.

  16. Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars. II. Thermal emission spectra influenced by clouds

    NASA Astrophysics Data System (ADS)

    Vasquez, M.; Schreier, F.; Gimeno García, S.; Kitzmann, D.; Patzer, B.; Rauer, H.; Trautmann, T.

    2013-09-01

    Context. Clouds play an important role in the radiative transfer of planetary atmospheres because of the influence they have on the different molecular signatures through scattering and absorption processes. Furthermore, they are important modulators of the radiative energy budget affecting surface and atmospheric temperatures. Aims: We present a detailed study of the thermal emission of cloud-covered planets orbiting F-, G-, K-, and M-type stars. These Earth-like planets include planets with the same gravity and total irradiation as Earth, but can differ significantly in the upper atmosphere. The impact of single-layered clouds is analyzed to determine what information on the atmosphere may be lost or gained. The planetary spectra are studied at different instrument resolutions and compared to previously calculated low-resolution spectra. Methods: A line-by-line molecular absorption model coupled with a multiple scattering radiative transfer solver was used to calculate the spectra of cloud-covered planets. The atmospheric profiles used in the radiation calculations were obtained with a radiative-convective climate model combined with a parametric cloud description. Results: In the high-resolution flux spectra, clouds changed the intensities and shapes of the bands of CO2, N2O, H2O, CH4, and O3. Some of these bands turned out to be highly reduced by the presence of clouds, which causes difficulties for their detection. The most affected spectral bands resulted for the planet orbiting the F-type star. Clouds could lead to false negative interpretations for the different molecular species investigated. However, at low resolution, clouds were found to be crucial for detecting some of the molecular bands that could not be distinguished in the cloud-free atmospheres. The CO2 bands were found to be less affected by clouds. Radiation sources were visualized with weighting functions at high resolution. Conclusions: Knowledge of the atmospheric temperature profile is

  17. The Atmospheres of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  18. Rotating Stars Can Help Planets Become Habitable

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    ), average (green), or fast (blue). [Johnstone et al. 2015]Case A(Initial atmospheric mass of 10-4 Earth masses)Entire atmosphere evaporates quickly, regardless of the rotation speed of the host star.Case B(Initial atmospheric mass of 10-3 Earth masses)Entire atmosphere evaporates, but the timescale is much shorter if the stellar host is fast-rotating as opposed to slow-rotating.Case C(Initial atmospheric mass of 10-2 Earth masses)If the stellar host is fast-rotating, entire atmosphere evaporates on a short timescale. If the host is slow-rotating, very little of the atmosphere evaporates.Case D(Initial atmospheric mass of 10-1 Earth masses)Very little of the atmosphere evaporates, regardless of the rotation speed of the host star.These results demonstrate that the initial rotation rate of a host star not only determines whether a planet will lose its protoatmosphere, but also how long this process will take. Thus, the evolution of host stars rotation rates is an important component in our understanding of how planets might evolve to become habitable.CitationC. P. Johnstone et al 2015 ApJ 815 L12. doi:10.1088/2041-8205/815/1/L12

  19. The HARPS search for southern extra-solar planets. XXXVIII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles

    NASA Astrophysics Data System (ADS)

    Díaz, R. F.; Ségransan, D.; Udry, S.; Lovis, C.; Pepe, F.; Dumusque, X.; Marmier, M.; Alonso, R.; Benz, W.; Bouchy, F.; Coffinet, A.; Collier Cameron, A.; Deleuil, M.; Figueira, P.; Gillon, M.; Lo Curto, G.; Mayor, M.; Mordasini, C.; Motalebi, F.; Moutou, C.; Pollacco, D.; Pompei, E.; Queloz, D.; Santos, N.; Wyttenbach, A.

    2016-01-01

    We present the analysis of the entire HARPS observations of three stars that host planetary systems: HD 1461, HD 40307, and HD 204313. The data set spans eight years and contains more than 200 nightly averaged velocity measurements for each star. This means that it is sensitive to both long-period and low-mass planets and also to the effects induced by stellar activity cycles. We modelled the data using Keplerian functions that correspond to planetary candidates and included the short- and long-term effects of magnetic activity. A Bayesian approach was taken both for the data modelling, which allowed us to include information from activity proxies such as log R'HK in the velocity modelling, and for the model selection, which permitted determining the number of significant signals in the system. The Bayesian model comparison overcomes the limitations inherent to the traditional periodogram analysis. We report an additional super-Earth planet in the HD 1461 system. Four out of the six planets previously reported for HD 40307 are confirmed and characterised. We discuss the remaining two proposed signals. In particular, we show that when the systematic uncertainty associated with the techniques for estimating model probabilities are taken into account, the current data are not conclusive concerning the existence of the habitable-zone candidate HD 40307 g. We also fully characterise the Neptune-mass planet that orbits HD 204313 in 34.9 days. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope at La Silla Observatory under the GTO programme ID 072.C-0488, and its continuation programmes ID 183.C-0972, 091.C-0936, and 192.C-0852.Full Tables 3, 6, and 10 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A134

  20. Planets in Motion

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    All the planets in the solar system revolve around the Sun in the same direction, clockwise when viewed from above the North Pole. This is referred to as direct motion. From the perspective on the Earth's surface, the planets travel east across the sky in relation to the background of stars. The Sun also moves eastward daily, but this is an…

  1. Binary Planets

    NASA Astrophysics Data System (ADS)

    Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

    2014-11-01

    Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

  2. Response of Atmospheric Biomarkers to NOx-Induced Photochemistry Generated by Stellar Cosmic Rays for Earth-like Planets in the Habitable Zone of M Dwarf Stars

    PubMed Central

    Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A. Beate C.; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-01-01

    Abstract Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N2), which leads to production of nitrogen oxides (NOx) in the planetary atmosphere, hence affecting biomarkers such as ozone (O3). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NOx production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O3 formation proceeds via the reaction O+O2+M→O3+M. At high NOx abundances, the O atoms arise mainly from NO2 photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O2). For the flaring case, O3 is mainly destroyed via direct titration, NO+O3→NO2+O2, and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O3, Rayleigh scattering by the main atmospheric gases (O2, N2, and CO2) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O3 survived all the stellar-activity scenarios considered except for the strong case, whereas the biomarker

  3. The Earth as an extrasolar transiting planet. II. HARPS and UVES detection of water vapour, biogenic O2, and O3

    NASA Astrophysics Data System (ADS)

    Arnold, L.; Ehrenreich, D.; Vidal-Madjar, A.; Dumusque, X.; Nitschelm, C.; Querel, R. R.; Hedelt, P.; Berthier, J.; Lovis, C.; Moutou, C.; Ferlet, R.; Crooker, D.

    2014-04-01

    detected. Assuming no atmospheric perturbations, we show that the E-ELT is theoretically able to detect the O2A-band in 8 h of integration for an Earth twin at 10 pc. Conclusions: Biogenic O2, O3, and water vapour are detected in Earth observed as a transiting planet, and, in principle, would be within reach of the E-ELT for an Earth twin at 10 pc. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 086.C-0448.

  4. Nonproteinogenic D-amino acids at millimolar concentrations are a toxin for anaerobic microorganisms relevant to early Earth and other anoxic planets.

    PubMed

    Nixon, Sophie L; Cockell, Charles S

    2015-03-01

    The delivery of extraterrestrial organics to early Earth provided a potentially important source of carbon and energy for microbial life. Optically active organic compounds of extraterrestrial origin exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. Although D-enantiomers of proteinogenic amino acids are known to inhibit aerobic microorganisms, the role of concentrated nonproteinogenic meteoritic D-amino acids on anaerobic metabolisms relevant to early Earth and other anoxic planets such as Mars is unknown. Here, we test the inhibitory effect of D-enantiomers of two nonproteinogenic amino acids common to carbonaceous chondrites, norvaline and α-aminobutyric acid, on microbial iron reduction. Three pure strains (Geobacter bemidjiensis, Geobacter metallireducens, Geopsychrobacter electrodiphilus) and an iron-reducing enrichment culture were grown in the presence of 10 mM D-enantiomers of both amino acids. Further tests were conducted to assess the inhibitory effect of these D-amino acids at 1 and 0.1 mM. The presence of 10 mM D-norvaline and D-α-aminobutyric acid inhibited microbial iron reduction by all pure strains and the enrichment. G. bemidjiensis was not inhibited by either amino acid at 0.1 mM, but D-α-aminobutyric acid still inhibited at 1 mM. Calculations using published meteorite accumulation rates to the martian surface indicate D-α-aminobutyric acid may have reached inhibitory concentrations in little over 1000 years during peak infall. These data show that, on a young anoxic planet, the use of one enantiomer over another may render the nonbiological enantiomer an environmental toxin. Processes that generate racemic amino acids in the environment, such as meteoritic infall or impact synthesis, would have been toxic processes and could have been a selection pressure for the evolution of early racemases. PMID:25695622

  5. Does asteroid 4 Vesta, with watery 1 Ceres and the Galilean moons, record the Ringwood-mode iron core construction now predicated for Earth and even apply to the other terrestrial planets?

    NASA Astrophysics Data System (ADS)

    Osmaston, M. F.

    2014-04-01

    . [1] Craddock PR et al. (2013) Abyssal peridotites reveal the near-chondritic Feisotopic composition of the Earth. EPSL 365, 63-76. [2] Halliday AN (2013) Small differences in sameness. Nature 497, 43-45. [3] Ringwood AE (1979) Origin of the Earth and Moon. Springer-Verlag. [4] Wood JA & Hashimoto A (1993)Mineral equilibrium in fractionated nebular systems. GCA 57, 2377-2388. [5] Osmaston MF (2009) What can we learn about solar planetary construction and early evolution of the inner members of the system from their present dynamics? Importance of a 2-stage scenario. EPSC Abstracts 4, EPSC2009-265, 2009. [6] Osmaston MF (2010) Providing solar system water and high planetary angular momentum, using a return to Ringwood's core formation model, supported by the behavioural evolution of the mantle. Goldschmidt 2010, GCA 74(S1), A 779. [7] Valley JW et al. (2014) Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience 7, 219-223. [8] Pearson DG et al. (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221-224. [9] Raymond CA et al. (2013) The Crust and Mantle of Vesta's Southern Hemisphere. EPSC Abstracts - 8, EPSC2013-1002. [10] Hutchison R (2004) Meteorites: a petrologic, chemical and isotopic synthesis. CUP. See p.284. [11] Burbine TH et al. (1996) Mantle material in the main belt: battered to bits? Meteorit. Planet. Sci. 31, 607-620. [12] Greenberg R (2005) Europa - the ocean moon: search for an alien biosphere. Springer/Praxis. [13] Kuskov OL et al. (2011) Internal structure of of icy satellites of Jupiter and Saturn and subsurface oceans. Miner. Mag. Goldschmidt 2011, Prague, Abstr. 1257

  6. Probes to the Inferior Planets - A New Dawn for NEO and IEO Detection Technology Demonstration from Heliocentric Orbits Interior to the Earth's?

    NASA Astrophysics Data System (ADS)

    Grundmann, J. T.; Mottola, S.; Drentschew, M.; Drobczyk, M.; Kahle, R.; Maiwald, V.; Quantius, D.; Zabel, P.; Van Zoest, T.

    2011-11-01

    With the launch of MESSENGER and VENUS EXPRESS, a new wave of exploration of the inner solar system has begun. Noting the growing number of probes to the inner solar system, it is proposed to connect the expertise of the respective spacecraft teams and the NEO and IEO survey community to best utilize the extended cruise phases and to provide additional data return in support of pure science as well as planetary defence. Several missions to Venus and Mercury are planned to follow in this decade. Increased interest in the inferior planets is accompanied by several missions designed to study the Sun and the interplanetary medium (IPM) from a position near or in Earth orbit, such as the STEREO probes and SDO. These augment established solar observation capabilities at the Sun-Earth L1 Lagrangian point such as the SOHO spacecraft. Thus, three distinct classes of spacecraft operate or observe interior to Earth's orbit. All these spacecraft carry powerful multispectral cameras optimized for their respective primary targets. MESSENGER is scheduled to end its six-year interplanetary cruise in March 2011 to enter Mercury orbit, but a similarly extended cruise with several gravity-assists awaits the European Mercury mission BEPICOLOMBO. Unfortunately, the automatic abort of the orbit insertion manoeuvre has also left AKATSUKI (a.k.a. Venus Climate Orbiter (VCO), Planet-C) stranded in heliocentric orbit. After an unintended fly-by, the probe will catch up with Venus in approximately six years. Meanwhile, it stays mostly interior to Venus in a planet-leading orbit. In addition to the study of comets and their interaction with the IPM, observations of small bodies akin to those carried out by outer solar system probes are occasionally attempted with the equipment available. The study of structures in the interplanetary dust (IPD) cloud has been a science objective during the cruise phase of the Japanese Venus probe AKATSUKI from Earth to Venus. IPD observations in the

  7. Response of atmospheric biomarkers to NO(x)-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars.

    PubMed

    Grenfell, John Lee; Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A Beate C; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-12-01

    Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N(2)), which leads to production of nitrogen oxides (NO(x)) in the planetary atmosphere, hence affecting biomarkers such as ozone (O(3)). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NO(x) production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O(3) formation proceeds via the reaction O+O(2)+M→O(3)+M. At high NO(x) abundances, the O atoms arise mainly from NO(2) photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O(2)). For the flaring case, O(3) is mainly destroyed via direct titration, NO+O(3)→NO(2)+O(2), and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O(3), Rayleigh scattering by the main atmospheric gases (O(2), N(2), and CO(2)) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O(3) survived all the stellar-activity scenarios considered except for the strong

  8. The SARG Planet Search

    NASA Astrophysics Data System (ADS)

    Desidera, S.; Gratton, R.; Endl, M.; Fiorenzano, A. F. Martinez; Barbieri, M.; Claudi, R.; Cosentino, R.; Scuderi, S.; Bonavita, M.

    The search for planets in multiple systems allows to improve our knowledge of planet formation and evolution. On one hand, the frequency of planets in binary systems has a strong effect on the global frequency of planets, as more than half of solar-type stars are in binary or multiple systems (Duquennoy and Mayor 1991). On the other hand, the properties of planets in binaries, and their differences with the properties of the planets orbiting single stars, would shed light on the effects caused by the presence of the companion stars. Indeed, the first analysis of the properties of planets in binaries showed the occurrence of some differences with respect to those orbiting single stars (Zucker and Mazeh 2002; Eggenberger et al. 2004).

  9. MODELING THE INFRARED SPECTRUM OF THE EARTH-MOON SYSTEM: IMPLICATIONS FOR THE DETECTION AND CHARACTERIZATION OF EARTHLIKE EXTRASOLAR PLANETS AND THEIR MOONLIKE COMPANIONS

    SciTech Connect

    Robinson, Tyler D.

    2011-11-01

    The Moon maintains large surface temperatures on its illuminated hemisphere and can contribute significant amounts of flux to spatially unresolved thermal infrared (IR) observations of the Earth-Moon system, especially at wavelengths where Earth's atmosphere is absorbing. In this paper we investigate the effects of an unresolved companion on IR observations of Earthlike exoplanets. For an extrasolar twin Earth-Moon system observed at full phase at IR wavelengths, the Moon consistently comprises about 20% of the total signal, approaches 30% of the signal in the 9.6 {mu}m ozone band and the 15 {mu}m carbon dioxide band, makes up as much as 80% of the signal in the 6.3 {mu}m water band, and more than 90% of the signal in the 4.3 {mu}m carbon dioxide band. These excesses translate to inferred brightness temperatures for Earth that are too large by 20-40 K and demonstrate that the presence of undetected satellites can have significant impacts on the spectroscopic characterization of exoplanets. The thermal flux contribution from an airless companion depends strongly on phase, implying that observations of exoplanets should be taken when the star-planet-observer angle (i.e., phase angle) is as large as feasibly possible if contributions from companions are to be minimized. We show that, by differencing IR observations of an Earth twin with a companion taken at both gibbous and crescent phases, Moonlike satellites may be detectable by future exoplanet characterization missions for a wide range of system inclinations.

  10. Observed properties of extrasolar planets.

    PubMed

    Howard, Andrew W

    2013-05-01

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance. PMID:23641110

  11. IN SITU ACCRETION OF HYDROGEN-RICH ATMOSPHERES ON SHORT-PERIOD SUPER-EARTHS: IMPLICATIONS FOR THE KEPLER-11 PLANETS

    SciTech Connect

    Ikoma, M.; Hori, Y. E-mail: yasunori.hori@nao.ac.jp

    2012-07-01

    Motivated by recent discoveries of low-density super-Earths with short orbital periods, we have investigated in situ accretion of H-He atmospheres on rocky bodies embedded in dissipating warm disks, by simulating quasi-static evolution of atmospheres that connect to the ambient disk. We have found that the atmospheric evolution has two distinctly different outcomes, depending on the rocky body's mass: while the atmospheres on massive rocky bodies undergo runaway disk-gas accretion, those on light rocky bodies undergo significant erosion during disk dispersal. In the atmospheric erosion, the heat content of the rocky body that was previously neglected plays an important role. We have also realized that the atmospheric mass is rather sensitive to disk temperature in the mass range of interest in this study. Our theory is applied to recently detected super-Earths orbiting Kepler-11 to examine the possibility that the planets are rock-dominated ones with relatively thick H-He atmospheres. The application suggests that the in situ formation of the relatively thick H-He atmospheres inferred by structure modeling is possible only under restricted conditions, namely, relatively slow disk dissipation and/or cool environments. This study demonstrates that low-density super-Earths provide important clues to understanding of planetary accretion and disk evolution.

  12. New technologies to support NASA's Mission to Planet Earth satellite remote sensing product validation: use of an unmanned autopiloted vehicle (UAV) as a platform to conduct remote sensing

    NASA Astrophysics Data System (ADS)

    Coronado, Patrick L.; Stetina, Fran; Jacob, Dan

    1998-08-01

    As part of the US Global Change program, NASA has initiated its Mission to Planet Earth Program (MTPE) which requires continuous global satellite measurements over an extended 15 years period. Various US and International Earth Observing Satellites will be launched during this period. To ensure continuity of the measurements, a significant instrument calibration and product validation effort is required and is planned as part of this program. However, the validation of satellite products requires extensive ground truthing which is both costly and time consuming and in many cases limited to specific calibration/validation areas. Thus there is a need to extend this validation effort to include more participants and provide new, more cost effective technologies to support the validation effort. The use of unmanned autopiloted vehicles (UAV) and new miniature high performance instruments have been identified as providing this needed additional capability. This paper discusses the development of a UAV, associated avionics and preliminary remote sensing instruments to support the extension of ground truthing and product validation of NASA's MTPE Programs, specifically, earth observing system. The UAV being described is based on thrust vectoring capabilities and a single-axis pivoted wing or 'freewing' design. This unique UAV system is illustrated along with the proposed autonomous avionics and preliminary remote sensing payloads.

  13. Specific features of optical absorption in rare-earth orthoaluminate DyAlO3

    NASA Astrophysics Data System (ADS)

    Valiev, U. V.; Gruber, J. B.; Rakhimov, Sh. A.

    2003-04-01

    Polarization spectra of optical absorption of the 4 f-4 f transition 6 H 15/2 → 6 F 3/2 in the rare-earth orthoaluminate DyAlO3 are theoretically and experimentally studied at the temperature T=78 K. It is shown that the nontrivial character of the anisotropy of the polarization absorption spectra at low temperatures can be explained by the J-J mixing of excited multiplets of the 4 f 9 configuration of Dy3+ ions in a low-symmetry crystal field of the orthoaluminate structure. The energy and wave functions of the Stark sublevels within the excited 6 F 5/2 multiplet in the 4 f 9 configuration of the Dy3+ rare-earth ion in the crystal field of C s symmetry are numerically calculated.

  14. Magnetic Mystery Planets

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.

    2013-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This presentation highlights a classroom presentation and accompanying activity that focuses on the differences between the magnetic fields of Venus, Earth, and Mars, what these differences mean, and how we measure these differences. During the activity, students make magnetic field measurements and draw magnetic field lines around "mystery planets" using orbiting "spacecraft" (small compasses). Based on their observations, the students then determine whether they are orbiting Venus-like, Earth-like, or Mars-like planets. This activity is targeted to middle/high school age audiences. However, we also show a scaled-down version that has been used with elementary school age audiences.

  15. How the World Gains Understanding of a Planet: Analysis of Scientific Understanding in Earth Sciences and of the Communication of Earth-Scientific Explanation

    NASA Astrophysics Data System (ADS)

    Voute, S.; Kleinhans, M. G.; de Regt, H.

    2010-12-01

    A scientific explanation for a phenomenon is based on relevant theory and initial and background conditions. Scientific understanding, on the other hand, requires intelligibility, which means that a scientist can recognise qualitative characteristic consequences of the theory without doing the actual calculations, and apply it to develop further explanations and predictions. If explanation and understanding are indeed fundamentally different, then it may be possible to convey understanding of earth-scientific phenomena to laymen without the full theoretical background. The aim of this thesis is to analyze how scientists and laymen gain scientific understanding in Earth Sciences, based on the newest insights in the philosophy of science, pedagogy, and science communication. All three disciplines have something to say about how humans learn and understand, even if at very different levels of scientists, students, children or the general public. If different disciplines with different approaches identify and quantify the same theory in the same manner, then there is likely to be something “real” behind the theory. Comparing methodology and learning styles of the different disciplines within the Earth Sciences and by critically analyze earth-scientific exhibitions in different museums may provide insight in the different approaches for earth-scientific explanation and communication. In order to gain earth-scientific understanding, a broad suite of tools is used, such as maps and images, symbols and diagrams, cross-sections and sketches, categorization and classification, modelling, laboratory experiments, (computer) simulations and analogies, remote sensing, and fieldwork. All these tools have a dual nature, containing both theoretical and embodied components. Embodied knowledge is created by doing the actual modelling, intervening in experiments and doing fieldwork. Scientific practice includes discovery and exploration, data collection and analyses, verification

  16. Refining Mass Measurements of Kepler Planets with Keck/HIRES.

    NASA Astrophysics Data System (ADS)

    Isaacson, Howard T.; Marcy, Geoffrey W.; Howard, Andrew

    2015-12-01

    We present improved radial velocity mass measurements from Keck/HIRES for exoplanets detected by NASA’s Kepler Mission. Since Kepler’s launch 6 years ago, ~30 planetary systems have been monitored with radial velocities, resulting in measured masses for many planets between 1.0 and 4.0 Earth radii. The resulting planet masses have been used to determine the transition between planets with a rocky interior and those with a lower density interior which requiring significant H/He atmospheres. We provide updated masses and densities for those planets published in Marcy et al (2014) based on two additional observing seasons with HIRES of the Kepler field. These radial velocities also reveal non-transiting planets in systems with previously found transiting planets. One such system has a non-transiting planet with a period between two transiting planets, providing a constraint on the co-planarity of the system. Finally, we provide an updated mass-radius relation, showing the distinction between planets that must have a substantial iron-silicate interior, and those requiring significant contributions from volatiles such as hydrogen and helium.

  17. Dynamical Simulations of Terrestrial Planet Formation During Giant Planet Migration

    NASA Astrophysics Data System (ADS)

    Mandell, A. M.; Raymond, S. N.; Sigurdsson, S.

    2005-12-01

    We present preliminary results of dynamical simulations of young planetary systems undergoing migration of a Jovian-type planet through the terrestrial region. We find that a significant fraction (10-40%) of the initial planetary embryos remain after giant planet migration, and subsequent evolution of the system results in the formation of terrestrial planets in various configurations, often including a planet in the Habitable Zone. In simulations with gas drag, 3-6 Earth mass planets are formed interior to the migrating Jovian planet, swept inward through moving resonances, and eccentricities are damped for all planets. Systematic variations are seen between simulations with and without gas drag. The presence of a second, non-migrating giant planet reduces the water content and mass of the planets formed throughout the system. This research was supported in part by the Penn State Astrobiology Research Center and the Goddard Center for Astrobiology.

  18. Biomarker response to galactic cosmic ray-induced NOx and the methane greenhouse effect in the atmosphere of an Earth-like planet orbiting an M dwarf star.

    PubMed

    Grenfell, John Lee; Griessmeier, Jean-Mathias; Patzer, Beate; Rauer, Heike; Segura, Antigona; Stadelmann, Anja; Stracke, Barbara; Titz, Ruth; Von Paris, Philip

    2007-02-01

    Planets orbiting in the habitable zone of M dwarf stars are subject to high levels of galactic cosmic rays (GCRs), which produce nitrogen oxides (NOx) in Earth-like atmospheres. We investigate to what extent these NO(Mx) species may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources). Our model results suggest that such signals are robust, changing in the M star world atmospheric column due to GCR NOx effects by up to 20% compared to an M star run without GCR effects, and can therefore survive at least the effects of GCRs. We have not, however, investigated stellar cosmic rays here. CH4 levels are about 10 times higher on M star worlds than on Earth because of a lowering in hydroxyl (OH) in response to changes in the ultraviolet. The higher levels of CH4 are less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% lower CH4 fluxes compared to those studies. Unlike on Earth, relatively modest changes in these fluxes can lead to larger changes in the concentrations of biomarker and related species on the M star world. We calculate a CH4 greenhouse heating effect of up to 4K. O3 photochemistry in terms of the smog mechanism and the catalytic loss cycles on the M star world differs considerably compared with that of Earth. PMID:17407408

  19. Results from the HARPS-N 2014 Campaign to Estimate Accurately the Densities of Planets Smaller than 2.5 Earth Radii

    NASA Astrophysics Data System (ADS)

    Charbonneau, David; Harps-N Collaboration

    2015-01-01

    Although the NASA Kepler Mission has determined the physical sizes of hundreds of small planets, and we have in many cases characterized the star in detail, we know virtually nothing about the planetary masses: There are only 7 planets smaller than 2.5 Earth radii for which there exist published mass estimates with a precision better than 20 percent, the bare minimum value required to begin to distinguish between different models of composition.HARPS-N is an ultra-stable fiber-fed high-resolution spectrograph optimized for the measurement of very precise radial velocities. We have 80 nights of guaranteed time per year, of which half are dedicated to the study of small Kepler planets.In preparation for the 2014 season, we compared all available Kepler Objects of Interest to identify the ones for which our 40 nights could be used most profitably. We analyzed the Kepler light curves to constrain the stellar rotation periods, the lifetimes of active regions on the stellar surface, and the noise that would result in our radial velocities. We assumed various mass-radius relations to estimate the observing time required to achieve a mass measurement with a precision of 15%, giving preference to stars that had been well characterized through asteroseismology. We began by monitoring our long list of targets. Based on preliminary results we then selected our final short list, gathering typically 70 observations per target during summer 2014.These resulting mass measurements will have a signifcant impact on our understanding of these so-called super-Earths and small Neptunes. They would form a core dataset with which the international astronomical community can meaningfully seek to understand these objects and their formation in a quantitative fashion.HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National

  20. Planet Ocean

    NASA Astrophysics Data System (ADS)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  1. Selections from 2015: An Ancient System of Small Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-03-01

    Editors Note:In these last two weeks of 2015, well be looking at a few selections from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.An Ancient Extrasolar System with Five Sub-Earth-Size PlanetsPublished January2015Main takeaway:Transit light curves for the five planets orbiting Kepler-444. [Campante et al. 2015]A team led by Tiago Campante (University of Birmingham, Aarhus University) reported Kepler spacecraft observations of Kepler-444, a system of five transiting exoplanets around a metal-poor, Sun-like star. All five planets are sub-Earth-sized. Furthermore, the system is measured to be over 11 billion years old making this the oldest known system of terrestrial-size planets.Why its interesting:While gas-giant planets show a preference for forming around metal-rich stars, smaller planets appear to be less picky. This suggests that Earth-size planets may have been able to form at earlier times in the universes history, when metals were scarcer. The determination that Kepler-444 is 11.2 billion years old confirms that terrestrial-size planets have been able to form throughout most of the universes 13.8 billion year history.Awesome technical achievement:The age of the Kepler-444 system was determined from asteroseismology of the host star. The fact that we can measure oscillations in the interior of this ancient star located 116 light-years away and use this to determine its age to a precision of 9%! is a remarkable achievement made possible by 4 years of continuous, high-quality observations of the system.CitationT. L. Campante et al 2015 ApJ 799 170. doi:10.1088/0004-637X/799/2/170

  2. Telltale Signs of Planets Found Around Nearby Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    A team of scientists led by Catherine Walsh (Leiden Observatory) has found evidence of two planets orbiting a young, hot star located relatively nearby, at just 335 light years from Earth. The star, HD 100546, is surrounded by a disk of gas and dust — which is a prime environment for forming planets. Previous observations have hinted at two planets potentially hiding in this disk, but directly imaging planets in disks is very difficult. Walsh's team took a different approach to finding these subtle planets: rather than looking for them directly, the group instead looked for gaps in the dust of the disk. The team examined the signature of dust particles in the disk around HD 100546 using observations from the Atacama Large Millimeter/Submillimeter Array (ALMA), a telescope located in Chile. They found that rather than forming a solid disk, the dust particles have settled into two nested rings with a gap between them. That gap is telltale evidence of a planet: planets embedded in disks tend to clear out a path as they orbit, accreting the gas and dust onto themselves. Walsh's team followed up the discovery by using different models of planetary formation to try to reproduce ALMA's observations. They found that the best model required there to be two planets in HD 100546's system: one located very close to the star, and a second, newly-forming planet located within the disk gap. This model is consistent with previous estimates of where the two suspected planets might be located, which is promising news for exoplanet enthusiasts. HD 100546 could be our first opportunity to study a planet caught in the act of forming — which is an important step toward understanding how planets are created out of disks around young stars. Citation: Catherine Walsh et al. 2014 ApJ 791 L6 doi:10.1088/2041-8205/791/1/L6

  3. Time scale for the formation of the earth and planets and its role in their geochemical evolution

    NASA Technical Reports Server (NTRS)

    Safronov, V. S.

    1977-01-01

    The initial mass of the solar nebula is discussed. Models of a massive nebula (two solar masses and more) encounter serious difficulties: an effective mechanism of transfer of the momentum from the central part of the nebula outward, capable of leading to formation of the sun and removal of half the mass of the nebula from the solar system has not been found. As a consequence of the instability of these models, their evolution can end with the formation, not a planetary system, but of a binary star. The possibility is demonstrated of obtaining acceptable growth rates for Uranus and Neptune by prolonging the thickening of preplanetary dust in the region of large masses. The important role of large bodies in the process of formation of the planets is noted. The impacts of such bodies, moving in heliocentric orbits, could have imparted considerable additional energy to the forming Moon, which, together with the energy given off by the joining of a small number of large protomoons, could have led to a high initial temperature of the moon.

  4. Kepler Discovers Its First Rocky Planet

    NASA Video Gallery

    NASA's Kepler mission confirmed the discovery of its first rocky planet, named Kepler-10b. Measuring 1.4 times the size of Earth, it is the smallest planet ever discovered outside our solar system....

  5. The planets and life.

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1971-01-01

    It is pointed out that planetary exploration is not simply a program designed to detect life on another planet. A planet similar to earth, such as Mars, when studied for evidence as to why life did not arise, may turn out to be scientifically more important than a planet which has already produced a living system. Of particular interest after Mars are Venus and Jupiter. Jupiter has a primitive atmosphere which may well be synthesizing organic molecules today. Speculations have been made concerning the possibility of a bio-zone in the upper atmosphere of Venus.

  6. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2012-03-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  7. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2007-10-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  8. Magnetic Mystery Planets

    NASA Astrophysics Data System (ADS)

    Fillingim, M.; Brain, D.; Peticolas, L.; Yan, D.; Fricke, K.; Thrall, L.

    2014-07-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and they can even give us clues to the atmospheric history of these planets. This paper highlights a classroom presentation and accompanying activity that focuses on the differences between the magnetic fields of Venus, Earth, and Mars, what these differences mean, and how we measure these differences. During the activity, students make magnetic field measurements and draw magnetic field lines of “mystery planets” using orbiting “spacecraft” (small compasses). Based on their observations, the students then determine whether they are orbiting Venus-like, Earth-like, or Mars-like planets. This activity is targeted to middle and high school audiences. However, we have also used a scaled-down version with elementary school audiences.

  9. Simulation of Prebiotic Processing by Comet and Meteoroid Impact: Implications for Life on Early Earth and Other Planets

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.

    2003-01-01

    We develop a reacting flow model to simulate the shock induced chemistry of comets and meteoroids entering planetary atmospheres. Various atmospheric compositions comprising of simpler molecules (i.e., CH4, CO2, H2O, etc.) are investigated to determine the production efficiency of more complex prebiotic molecules as a function of composition, pressure, and entry velocity. The possible role of comets and meteoroids in creating the inventory of prebiotic material necessary for life on Early Earth is considered. Comets and meteoroids can also introduce new materials from the Interstellar Medium (ISM) to planetary atmospheres. The ablation of water from comets, introducing the element oxygen into Titan's atmosphere will also be considered and its implications for the formation of organic and prebiotic material.

  10. How Giant Planets Shape the Characteristics of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Quintana, Elisa V.

    2016-01-01

    The giant planets in the Solar System likely played a defining role in shaping the properties of the Earth and other terrestrial planets during their formation. Observations from the Kepler spacecraft indicate that terrestrial planets are highly abundant. However, there are hints that giant planets a few AU from their stars are not ubiquitous. It therefore seems reasonable to assume that many terrestrial planets lack a Jupiter-like companion. We use a recently developed, state-of-the-art N-body model that allows for collisional fragmentation to perform hundreds of numerical simulations of the final stages of terrestrial planet formation around a Sun-like star -- with and without giant outer planets. We quantify the effects that outer giant planet companions have on collisions and the planet accretion process. We focus on Earth-analogs that form in each system and explore how giant planets influence the relative frequency of giant impacts occurring at late times and the delivery of volitiles. This work has important implications for determining the frequency of habitable planets.

  11. Astrometric Planet Searches with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.

    2007-01-01

    SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

  12. Critical Evaluation of Chemical Reaction Rates and Collision Cross Sections of Importance in the Earth's Upper Atmosphere and the Atmospheres of Other Planets, Moons, and Comets

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.

    2005-05-01

    We recommend establishment of a long-term program of critical evaluation by domain experts of the rates and cross sections of atomic and molecular processes that are needed for understanding and modeling the atmospheres in the solar system. We envision products resembling those from the ongoing JPL/NASA Panel for Data Evaluation and the efforts of the international combustion modeling community funded by US DOE and its European counterpart. Both of these endeavors already provide some important inputs for modeling the atmospheres of the Earth, planets, moons, and comets. However, their applications restrict the choice of which processes to evaluate and the temperature and pressure ranges to cover, thus leaving large gaps that need to be filled. Interestingly, an older evaluation program once filled some of these gaps. Funded by the US DoD in the 1960s-1980s, the DNA Reaction Rate Handbook provided a thorough treatment of numerous types of collisions and reactions that are important in the Earth's lower ionosphere, and the program even provided funding for new laboratory measurements. Other examples could be given, with the on-line resources at NIST being among the best, but most provide a narrower scope or less critical evaluation. What is needed is not a just a list of processes and numbers (i.e., a "database"), but rather serious comparison of the available information and specific statements from independent expert laboratory/theory data providers about what should be believed, what uncertainty to assign, and what is most in need of redetermination. The major topic areas would include the following: 1. Chemical reactions of neutral atoms and molecules in their ground electronic states 2. Ion-molecule reactions 3. Chemistry, relaxation, and radiation of electronically excited atoms and molecules 4. Vibrational and rotational relaxation and radiation 5. Photoabsorption, photodissociation, and photoionization 6. Electron-impact excitation, dissociation, ionization

  13. Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars. I. Clear-sky thermal emission spectra and weighting functions

    NASA Astrophysics Data System (ADS)

    Vasquez, M.; Schreier, F.; Gimeno García, S.; Kitzmann, D.; Patzer, B.; Rauer, H.; Trautmann, T.

    2013-01-01

    Context. The atmosphere of Earth-like extrasolar planets orbiting different types of stars is influenced by the spectral dependence of the incoming stellar radiation. The changes in structure and composition affect atmospheric radiation, hence the spectral appearance of these exoplanets. Aims: We provide a thorough investigation of infrared radiative transfer in cloud-free exoplanets atmospheres by not only analyzing the planetary spectral appearance but also discussing the radiative processes behind the spectral features in detail and identifying the regions in the atmosphere that contribute most at a given wavelength. Methods: Using cloud-free scenarios provided by a one-dimensional radiative-convective steady-state atmospheric model, we computed high-resolution infrared transmission and emission spectra, as well as weighting functions for exoplanets located within the habitable zone of F, G, K, and M stars by means of a line-by-line molecular absorption model and a Schwarzschild solver for the radiative transfer. The monochromatic spectra were convolved with appropriate spectral response functions to study the effects of finite instrument resolution. Results: Spectra of the exoplanets of F, G, K, and M stars were analyzed in the 4.5 μm N2O band, the 4.3 μm and 15 μm CO2 bands, the 7.7 μm CH4 band, the 6.3 μm H2O band, and the 9.6 μm O3 band. Differences in the state of the atmosphere of the exoplanets clearly show up in the thermal infrared spectra; absorption signatures known from Earth can be transformed to emission features (and vice versa). Weighting functions show that radiation in the absorption bands of the uniformly mixed gases (CO2, CH4, N2O) and (to some extent) ozone comes from the stratosphere and upper troposphere, and also indicate that changes in the atmospheres can shift sources of thermal radiation to lower or higher altitudes. Molecular absorption and/or emission features can be identified in the high-resolution spectra of all planets and

  14. K2's First Five-Planet System

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Whats the latest from the Kepler K2 mission? K2 has found its first planetary system containing more than three planets an exciting five-planet system located ~380 light-years from Earth!Opportunities From K2Raw K2 light curve (blue, top) and systematic corrected light curve (orange, bottom) for HIP 41378. The three deepest transits are single transits from the three outermost planet candidates. [Vanderburg et al. 2016]The original Kepler mission was enormously successful, discovering thousands of planet candidates. But one side effect of Keplers original observing technique, in which it studied the same field for four years, is that it was very good at detecting extremely faint systems systems that were often too faint to be followed up with other techniques.After Keplers mechanical failure in 2013, the K2 mission was launched, in which the spacecraft uses solar pressure to stabilize it long enough to perform an 80-day searches of each region it examines. Over the course of the K2 mission, Kepler could potentially survey up to 20 times the sky area of the original mission, providing ample opportunity to find planetary systems around bright stars. These stars may be bright enough to be followed up with other techniques.Multi-Planet SystemsTheres a catch to the 80-day observing program: the K2 mission is less likely to detect multiple planets orbiting the same star, due to the short time spent observing the system. While the original Kepler mission detected systems with up to seven planets, K2 had yet to detect systems with more than three candidates until now.Led by Andrew Vanderburg (NSF Graduate Research Fellow at the Harvard-Smithsonian Center for Astrophysics), a team of scientists recentlyanalyzed K2 observations ofthe bright star HIP 41378. Theteamfound that this F-type star hosts five potential planetary candidates!Phase-folded light curve for each of the five transiting planets in the HIP 41378 system. The outermost planet (bottom panel) may provide an

  15. Habitable zone limits for dry planets.

    PubMed

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago. PMID:21707386

  16. Modeling Kepler Transit Light Curves as False Positives: Rejection of Blend Scenarios for Kepler-9, and Validation of Kepler-9 d, a Super-Earth-Size Planet in a Multiple System

    NASA Technical Reports Server (NTRS)

    Torres, Guillermo; Fressin, Francois; Batalha, Natalie M.; Borucki, William J.; Brown, Timothy M.; Bryson, Stephen T.; Buchhave, Lars A.; Charbonneau, David; Ciardi, David R.; Dunham, Edward W.; Fabrycky, Daniel C.; Ford, Eric B.; Gauthier, Thomas N., III; Gilliland, Ronald L.; Holman, Matthew J.; Howell, Steve B.; Isaacson, Howard; Jenkins, Jon M.; Koch, David G.; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Monet, David G.; Prsa, Andrej; Quinn, Samuel N.

    2011-01-01

    Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive we describe a procedure (BLENDER) to model the photometry in terms of a blend rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9 (KIC 3323887), a target harboring two previously confirmed Saturn-size planets (Kepler-9 b and Kepler-9 c) showing transit timing variations, and an additional shallower signal with a 1.59 day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals and provide independent validation of their planetary nature. For the shallower signal, we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency, we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9 d) in a multiple system, rather than a false positive. The radius is determined to be 1.64(exp)(sub-14),R, and current spectroscopic observations are as yet insufficient to establish its mass.

  17. MODELING KEPLER TRANSIT LIGHT CURVES AS FALSE POSITIVES: REJECTION OF BLEND SCENARIOS FOR KEPLER-9, AND VALIDATION OF KEPLER-9 d, A SUPER-EARTH-SIZE PLANET IN A MULTIPLE SYSTEM

    SciTech Connect

    Torres, Guillermo; Fressin, Francois; Charbonneau, David; Fabrycky, Daniel C.; Holman, Matthew J.; Latham, David W.; Batalha, Natalie M.; Borucki, William J.; Bryson, Stephen T.; Koch, David G.; Brown, Timothy M.; Buchhave, Lars A.; Ciardi, David R.; Ford, Eric B.; Gautier, Thomas N. III; Howell, Steve B.; Isaacson, Howard; Jenkins, Jon M.

    2011-01-20

    Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive, we describe a procedure (BLENDER) to model the photometry in terms of a 'blend' rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9 (KIC 3323887), a target harboring two previously confirmed Saturn-size planets (Kepler-9 b and Kepler-9 c) showing transit timing variations, and an additional shallower signal with a 1.59 day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals and provide independent validation of their planetary nature. For the shallower signal, we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency, we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9 d) in a multiple system, rather than a false positive. The radius is determined to be 1.64{sup +0.19}{sub -0.14} R{sub +}, and current spectroscopic observations are as yet insufficient to establish its mass.

  18. Planet Formation and the Characteristics of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  19. Helping students understand planet categories using "sensing" personification: Jupiter as want-to-be star, Earth as want-to-be Jupiter, etc.

    NASA Astrophysics Data System (ADS)

    Tabor-Morris, Anne

    2015-11-01

    Students often, in learning about the classification of planets, consider the planets to be in strict categories (such as gas giants and terrestrial planets) and assume that these categories are drastically different in nature. This is not the case. Small objects such as asteroids have a weak gravitational pull such that they cannot hold an atmosphere, while terrestrial planets are capable of holding a gaseous (often transparent) atmosphere according to their larger mass. However, asteroids and terrestrial planets are very similar in composition (though not necessarily in homogeneity due to varying presence of collisional heating during formation). Meanwhile, gas giant planets (also often referred to as Jovian planets) such as Jupiter have been theorized to contain super-sized rocky terrestrial-like planets interior to their dense cloud covering. Hence, due then to their similar natures, the categorization of the terrestrial and gas giant planets is made not due to fundamental differences in the nature of the planets, a concept often ill-understood by students. Examining this further, the gas giants are planets whose masses, and hence gravitational ability to condense their gases, especially those close to their core, is less than those of stars wherein thermonuclear fusion initiates. This implies that stars also have terrestrial cores (albeit likely extremely densely packed), but the gaseous environments of hydrogen are dense enough to start and sustain this process of thermonuclear fusion. It is proposed here that seeing planets as fundamentally related to each other in composition though differing in size allows students to better understand the variety of planet types AND describing these as want-to-be (or wanna-be) in terms of ranking and according to a “sensing” personification that eschews anthropomorphism, animism, or teleology [see A. E. Tabor-Morris, “Thinking in terms of sensors: personification of self as an object in physics problem solving

  20. NASA's Terrestrial Planet Finder Missions

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    2004-01-01

    NASA has decided to move forward with two complementary Terrestrial Planet Finder (TPF) missions, a visible coronagraph and an infrared formation flying interferometer. These missions are major missions in the NASA Office of Space Science Origins Theme. The primary science objectives of the TPF missions are to search for, detect, and characterize planets and planetary systems beyond our own Solar System, including specifically Earth-like planets.

  1. Watching How Planets Form

    NASA Astrophysics Data System (ADS)

    2006-09-01

    explained if the disc contains a large amount of gas, in this case, at least as much as 10 times the mass of Jupiter. It should also contain more than 50 Earth masses in dust. The dust mass derived here is more than thousand times larger than what is observed in debris discs and Kuiper belt-like structures found around older, 'Vega-like' stars, such as Beta Pictoris, Vega, Fomalhaut and HR 4796. The dust around these stars is thought to be produced by collisions of larger bodies. The dust mass observed around HD 97048 is similar to the mass invoked for the (undetected) parent bodies in the more evolved systems. HD 97048's disc is thus most likely a precursor of debris discs observed around older stars. "From the structure of the disc, we infer that planetary embryos may be present in the inner part of the disc," said Lagage. "We are planning follow-up observations at higher angular resolution with ESO's VLT interferometer in order to probe these regions." A video, made by the CEA, is also available. More Information The scientists report their discovery in the 28 September issue of Science Express, the rapid online publication service of the journal Science: "Anatomy of a flaring proto-planetary disc around a young intermediate-mass star", by P.-O. Lagage et al. The team is composed of Pierre-Olivier Lagage, Coralie Doucet, and Eric Pantin, (CEA Saclay, France), Sébastien Charnoz (Paris 7 Denis Diderot University), Emilie Habart (Institut d'Astrophysique Spatiale, Orsay, France), Gaspard Duchêne, François Ménard, and Christophe Pinte (Laboratoire d'Astrophysique de Grenoble, France), and Jan-Willem Pel (Groningen University, The Netherlands).

  2. The Effect of Giant Planets on Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Quintana, Elisa

    2015-12-01

    The giant planets in the Solar System likely played a defining role in shaping the properties of the Earth and other terrestrial planets during their formation. Observations from the Kepler spacecraft indicate that terrestrial planets are highly abundant. However, there are hints that giant planets a few AU from their stars are relatively uncommon based on long baseline radial velocity searches. It therefore seems reasonable to assume that many terrestrial planets lack a Jupiter-like companion. We use a recently developed, state-of-the-art N-body model that allows for collisional fragmentation to perform hundreds of numerical simulations of the final stages of terrestrial planet formation around a Sun-like star -- with and without giant outer planets. We quantify the effects that outer giant planet companions have on collisions and the planet accretion process. We focus on Earth-analogs that form in each system and explore how giant planets influence the relative frequency of giant impacts occurring at late times.

  3. Energy Transfer Processes from Amorphous GaN and AlN Hosts to Rare Earth Intra-Shell Emitters

    NASA Astrophysics Data System (ADS)

    Aldabergenova, Saule; Albrecht, Martin; Strunk, Horst; Viner, John; Taylor, Craig; Davydov, Valery; Andreev, Arkadi

    2000-03-01

    Amorphous thin films of AlN and GaN doped with Er, Tb, Ce, Sm, or Eu are prepared by DC magnetron co-sputtering of Al and Ga targets with additional pellets of metallic rare earths. The intensity of the photoluminescence related to the rare earth ions in the wide gap nitrides is greatly enhanced when the annealing temperature reaches 750°C. Raman scattering measurements show a clear tendency to crystallization of the amorphous host during annealing. High resolution transmission electron microscopy shows that in GaN or AlN after annealing the structure consists of crystallites with diameter of 4 to 7 nm embedded in the respective amorphous GaN or AlN matrix. Photothermal deflection spectroscopy shows that the absorption edges are exponential over several orders of magnitude and are reminiscent of the Urbach behaviour in other amorphous materials. A broad background absorption from the amorphous matrix is superimposed on resonant absorption bands of the rare earth ions. The photoluminescence excitation spectra reveal that optically active trivalent rare earth ions can be excited both indirectly, through the electron-hole pairs in the host, and directly through resonant pumping into f-energy levels.

  4. What Makes a Habitable Planet?

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L.

    2013-04-01

    Space missions help answer one of humanity's most profound questions: Are we alone in the universe? To begin to understand what makes a planet habitable, and thus where to look for life both within and outside of Earth's solar system, scientists need to understand what in planetary formation and what in its subsequent evolution combine to produce a habitable planet.

  5. Taking latitude with Ptolemy: Jamshid al-Kashi's novel geometric model of the motions of the inferior planets

    NASA Astrophysics Data System (ADS)

    van Brummelen, Glen

    2006-07-01

    In terms of complexity, planetary latitudes are the culmination of Ptolemy's mathematical astronomy. Al-Kashi's remarkable system removes its mathematical flaws, and demonstrates that Muslim astronomers not only mastered this apex of Ptolemaic astronomy, but also perfected its mathematics. The remainder of this paper is devoted first to a brief description of the mathematics of Ptolemy's latitude model, and then to a technical account of the part of the Khaqani Zij devoted to al-Kashi's spherical approach. Al-Kashi's text falls roughly into three sections: a geometrical description of the spherical model, a mathematical discussion of how one might generate planetary positions from it, and a sample calculation for Venus. A translation by Sergei Tourkin of the passage in which al-Kashi describes the geometric structure of his model may be found in an appendix.

  6. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS

    NASA Astrophysics Data System (ADS)

    Dehant, Veronique; Breuer, Doris; Claeys, Philippe; Debaille, Vinciane; De Keyser, Johan; Javaux, Emmanuelle; Goderis, Steven; Karatekin, Ozgur; Mattielli, Nadine; Noack, Lena; Spohn, Tilman; Carine Vandaele, Ann; Vanhaecke, Frank; Van Hoolst, Tim; Wilquet, Valerie

    2013-04-01

    The PLANET TOPERS (Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS) group is an Inter-university attraction pole (IAP) addressing the question of habitability in our Solar System. Habitability is commonly understood as "the potential of an environment (past or present) to support life of any kind" (Steele et al., 2005, http://mepag.jpl.nasa.gov/reports/archive.html). Based on the only known example of Earth, the concept refers to whether environmental conditions are available that could eventually support life, even if life does not currently exist (Javaux and Dehant, 2010, Astron. Astrophys. Rev., 18, 383-416, DOI: 10.1007/s00159-010-0030-4). Life includes properties such as consuming nutrients and producing waste, the ability to reproduce and grow, pass on genetic information, evolve, and adapt to the varying conditions on a planet (Sagan, 1970, Encyclopedia Britannica, 22, 964-981). Terrestrial life requires liquid water. The stability of liquid water at the surface of a planet defines a habitable zone (HZ) around a star. In the Solar System, it stretches between Venus and Mars, but excludes these two planets. If the greenhouse effect is taken into account, the habitable zone may have included early Mars while the case for Venus is still debated. Important geodynamic processes affect the habitability conditions of a planet. As envisaged by the group, this IAP develops and closely integrates the geophysical, geological, and biological aspects of habitability with a particular focus on Earth neighboring planets, Mars and Venus. It works in an interdisciplinary approach to understand habitability and in close collaboration with another group, the Helmholtz Alliance "Life and Planet Evolution", which has similar objectives. The dynamic processes, e.g. internal dynamo, magnetic field, atmosphere, plate tectonics, mantle convection, volcanism, thermo-tectonic evolution, meteorite impacts, and erosion, modify the planetary surface

  7. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS

    NASA Astrophysics Data System (ADS)

    Dehant, Véronique; Breuer, Doris; Claeys, Philippe; Debaille, Vinciane; de Keyser, Johan; Javaux, Emmanuelle; Goderis, Steven; Karatekin, Ozgur; Matielli, Nadine; Noack, Lena; Spohn, Tilman; Carine Vandaele, Ann; Vanhaecke, Frank; van Hoolst, Tim; Wilquet, Valérie; The PLANET Topers Team

    2015-04-01

    The PLANET TOPERS (Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS) group is an Inter-university attraction pole (IAP) addressing the question of habitability in our Solar System. Based on the only known example of Earth, the concept refers to whether environmental conditions are available that could eventually support life, even if life does not currently exist. Life is believed to require liquid water, but important geodynamic processes affect the habitability conditions of a planet. The PLANET TOPERS group develops and closely integrates the geophysical, geological, and biological aspects of habitability with a particular focus on Earth neighboring planets, Mars and Venus. Habitability is commonly understood as "the potential of an environment (past or present) to support life of any kind" (Steele et al., 2005). Based on the only known example of Earth, the concept refers to whether environmental conditions are available that could eventually support life, even if life does not currently exist (Javaux and Dehant, 2010). Life includes properties such as consuming nutrients and producing waste, the ability to reproduce and grow, pass on genetic information, evolve, and adapt to the varying conditions on a planet (Sagan, 1970). Terrestrial life requires liquid water. The common view, however, is that extraterrestrial life would probably be based on organic chemistry in a water solvent (Pace, 2001) although alternative biochemistries have been hypothesized. The stability of liquid water at the surface of a planet defines a habitable zone (HZ) around a star. In the Solar System, it stretches between Venus and Mars, but excludes these two planets. If the greenhouse effect is taken into account, the habitable zone may have included early Mars while the case for Venus is still debated. The dynamic processes, e.g. internal dynamo, magnetic field, atmosphere, plate tectonics, mantle convection, volcanism, thermo-tectonic evolution

  8. Taxonomy of the extrasolar planet.

    PubMed

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1. PMID:22506608

  9. Rainbow Earth.

    ERIC Educational Resources Information Center

    Arizona State Dept. of Library and Archives, Phoenix.

    The environment is a great concern in the 1990s, and everyone needs to work at maintaining our planet. The 1992 Arizona State Library Reading Program, "Rainbow Earth," provides children with many techniques they can use to help the Earth. This reading program guide provides information on the following: goals, objectives, and evaluation; getting…

  10. Study on the Microstructure and Wettability of an Al-Cu-Si Braze Containing Small Amounts of Rare Earth Erbium

    NASA Astrophysics Data System (ADS)

    Shi, Yaowu; Yu, Yang; Li, Yapeng; Xia, Zhidong; Lei, Yongping; Li, Xiaoyan; Guo, Fu

    2009-04-01

    The effect of adding small amounts of rare earth Er on the microstructure of an Al-Cu-Si braze alloy has been investigated. Several Al-20Cu-7Si braze alloys containing various contents of Er were prepared, and their melting temperature, microstructure, hardness, and wettability in contact with 3003 aluminum alloy substrates were determined. The results indicate that the constituents of the microstructure of Al-20Cu-7Si-Er braze alloys are similar to those in the Al-20Cu-7Si alloy, and comprise of solid solutions of aluminum, silicon, and the intermetallic compound CuAl2. When the Er content increases, the size of the Al phase decreases, and the needle-like Si phase is thickened, and transformed to a blocky shape. Moreover, small amounts of Er can improve the wettability and hardness of the Al-20Cu-7Si braze alloy; however, the melting temperature of the Al-20Cu-7Si alloy does not change.

  11. A Planet for Goldilocks

    NASA Astrophysics Data System (ADS)

    Batalha, N.

    2014-07-01

    The search for life beyond Earth has inspired Solar System exploration and SETI surveys. Today, the search for life also leads to exoplanet discovery and characterization. Launched in March 2009, NASA's Kepler Mission has discovered thousands of exoplanets with diverse properties. Though each new world is interesting in its own right, Kepler aims to understand the population as a whole. Its primary objective is to determine the frequency of exoplanets of different sizes and orbital periods. Of special interest are the Earth-size planets in the “Goldilocks” (or habitable) Zone where the flux of incoming starlight is conducive to the existence of surface liquid water. Once Kepler establishes the prevalence of such planets in the Solar neighborhood, future missions can be designed to find not just a planet in the Goldilocks Zone but a planet for Goldilocks—a truly habitable environment for life as we know it. Kepler discoveries and progress will be described as well as the resources available to bring Kepler science to the public and into the classroom. The possibility of finding evidence of life beyond Earth is working its way into the public consciousness and has the potential to inspire generations. Scientific literacy is a natural consequence of awakening the spirit of exploration and discovery that led Goldilocks into the forest and leads humans into space.

  12. Making and Differentiating Planets

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2015-07-01

    The rocky planets formed by progressive aggregation of dust to make planetesimals which joined to make large objects called planetary embryos that finally accumulated into planets, one of which we live on. This chaotic process is complicated further by chemical changes with distance from the Sun, including differences in oxidation conditions and water concentration. Once the inner planets began to form, metallic iron sank to form cores, reacting with the rocky portions in the process. David C. Rubie (University of Bayreuth, Germany) and colleagues in Germany, France, and the United States put all this planetary action into an impressively thorough computer model of planet formation and differentiation. They show that the observed compositions of the Earth can be matched by simulations that include the Grand Tack (Jupiter and Saturn migrate inwards towards the Sun and then back out), and chemical gradients in the Solar System, with more reducing conditions near the Sun, more oxidizing farther from the Sun, and oxidizing and hydrated conditions even farther from the Sun. The study identifies other important variables, such as the extent to which metallic iron chemically equilibrated with the silicate making up the Earth's mantle, the pressure at which it happened, and the likelihood that Earth accreted heterogeneously.

  13. Extrasolar planets.

    PubMed

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  14. Extrasolar planets

    PubMed Central

    Lissauer, Jack J.; Marcy, Geoffrey W.; Ida, Shigeru

    2000-01-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  15. Building a virtual planet

    NASA Technical Reports Server (NTRS)

    Meadows, V. S.

    2002-01-01

    The virtual Planetary Laboratory (VPL) is a recently funded 5-yr project, which seeks toimprove our understanding of the range of plausible environments and the likely signatures for life on extrasolar terrestrial planets. To achieve these goals we are developing a suite of innovative modeling tools to simulate the environments and spectra of extrasolar planets. The core of the VPL IS a coupled radiative transfer/climate/chemistry model, which is augmented by interchangeable modules which characterize geological, exogenic, atmospheric escape, and life processes. The VPL is validated using data derived from terrestrial planets within our own solar system. The VPL will be used to explore the plausible range of atmospheric composittions and globally averaged spectra for extrasolar planets and for early Earth, and will improve our understanding of the effect of life on a planet's atmospheric spectrum and composition. The models will also be used to create a comprehensive spectral catalog to provide recommendations on the optimum wavelength range, spectral resolution, and instrument sensitivity required to characterize extrasolar terrestrial planets. Although developed by our team, the VPL is envisioned to be a comprehensive and flexible tool, which can be collaboratively used by the broader planetary science and astrobiology communities. This presentation will describe the project concept, the tasks involved, and will outline current progress to date. This work is funded by the NASA Astrobiology Institute.

  16. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  17. Choosing Stars to Search for Habitable Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    M-dwarf stars are excellent targets for planet searches because the signal of an orbiting planet is relatively larger (and therefore easier to detect!) around small, dim M dwarfs, compared to Sun-like stars. But are there better or worse stars to target within this category when searching for habitable, Earth-like planets?Confusing the SignalRadial velocity campaigns search for planets by looking for signatures in a stars spectra that indicate the star is wobbling due to the gravitational pull of an orbiting planet. Unfortunately, stellar activity can mimic the signal of an orbiting planet in a stars spectrum something that is particularly problematic for M dwarfs, which can remain magnetically active for billions of years. To successfully detect planets that orbit in their stars habitable zones, we have to account for this problem.In a recent study led by Elisabeth Newton (Harvard-Smithsonian Center for Astrophysics), the authors use literature measurements to examine the rotation periods for main-sequence, M-type stars. They focus on three factors that are important for detecting and characterizing habitable planets around M dwarfs:Whether the habitable-zone orbital periods coincide with the stellar rotationFalse planet detections caused by stellar activity often appear as a planet with an orbital period thats a multiple of the stellar rotation period. If a stars rotation period coincides with the range of orbital periods corresponding to its habitable zone, its therefore possible to obtain false detections of habitable planets.How long stellar activity and rapid rotation last in the starAll stars become less magnetically active and rotate more slowly as they age, but the rate of this decay depends on their mass: lower-mass stars stay magnetically active for longer and take longer to spin down.Whether detailed atmospheric characterization will be possibleIts ideal to be able to follow up on potentially habitable exoplanets, and search for biosignatures such as

  18. Does asteroid 4 Vesta, with watery 1 Ceres and the Galilean moons, record the Ringwood-mode iron core construction now predicated for Earth and even apply to the other terrestrial planets?

    NASA Astrophysics Data System (ADS)

    Osmaston, M. F.

    2014-04-01

    I reason that Vesta, the source of HED but too small for appreciable magmatic resurfacing after accretion had ended, preserves valuable clues as to how the Earth and the other terrestrials were built. Setting the scene. Core formation in the terrestrial planets has long been attributed to the percolation of molten iron accreted from the solar nebula, either inward from the surface or from a magma ocean at depth. But it has been found [1,2] that the 56Fe/54Fe ratio in Earth peridotites still has a chondritic ratio, which rules out that Fe percolation has occurred. So we must revert now to Ringwood's model (1960-1978) e.g.[3] for core formation. This uses the nebula to reduce hot FeO in lavas erupted in volcanoes at the protoplanet's surface. The Fe, which then drains to the bottom of the magma chamber and solidifies, is subsequently 'loadsubducted' rapidly to form the core. For Earth's core alone this would generate ~400 earth-ocean volumes of reaction water, a Solar System benefit already foreseen by Ringwood, water being low in star-forming clouds. The heat for the volcanism is internal (accretion, gravitation, radiogenic) so orbital distance in the presence of nebular opacity is immaterial; and important for making the cores in the Galilean moons, otherwise labelled as being at the 'snowline' in the disc. In order to work, prior iron accretion to form the body must have been in oxide form. Thermodynamically this is correct if the nebula is cool (<600K [4]), and should be achieved naturally if the protoplanetary disc material were acquired while the protoSun traversed a further dust cloud (typical 10K or less) [5,6]. Related 'contamination' of the outer Sun, an unmixed star, would explain why its spectrum nearly matches the planets. Ringwood-mode core formation needs nebular presence for the reaction, so it would cease at nebular departure on exit from that cloud, leaving the body's mantle replete with reaction water. For Earth, we see this in the 4374Ma detrital

  19. The Effect of Giant Planets on Habitable Planet Formation

    NASA Astrophysics Data System (ADS)

    Quintana, Elisa V.; Barclay, Thomas

    2016-06-01

    The giant planets in the Solar System likely played a large role in shaping the properties of the Earth during its formation. To explore their effects, we numerically model the growth of Earth-like planets around Sun-like stars with and without Jupiter and Saturn analog companions. Employing state-of-the-art dynamical formation models that allow both accretion and collisional fragmentation, we perform hundreds of simulations and quantify the specific impact energies of all collisions that lead to the formation of an Earth-analog. Our model tracks the bulk compositions and water abundances in the cores and mantles of the growing protoplanets to constrain the types of giant planet configurations that allow the formation of habitable planets. We find significant differences in the collisional histories and bulk compositions of the final planets formed in the presence of different giant planet configurations. Exoplanet surveys like Kepler hint at a paucity of Jupiter analogs, thus these analyses have important implications for determining the frequency of habitable planets and also support target selection for future exoplanet characterization missions.

  20. In-situ laser synthesis of rare earth aluminate coatings in the system Ln-Al-O ( Ln = Y, Gd)

    NASA Astrophysics Data System (ADS)

    de Francisco, I.; Lennikov, V. V.; Bea, J. A.; Vegas, A.; Carda, J. B.; de la Fuente, G. F.

    2011-09-01

    Laser zone melting (LZM) was employed in this work to prepare Ln-Al-O coatings on polycrystalline Al 2O 3 substrates, using the corresponding mixtures of powdered rare-earth oxides and Al 2O 3 as starting materials. In-situ synthesis of the compounds Ln = Y, Gd was performed using a CO 2 laser, emitting at 10.6 μm. Microstructure (SEM) and phase nature (XRD) demonstrated in-situ formation of Al 2O 3/Y 3Al 5O 12(YAG) and Al 2O 3/GdAlO 3(GAP) eutectic systems. The interaction with the substrate resulted in mechanically stable, well integrated 200-500 μm thick composite coatings, as observed in nanoindentation tests. The phase relations found in these materials are consistent with the crystallographic concepts advanced by Vegas (Ramos-Gallardo & Vegas, J. Solid State Chem. 128 (1997) 69), where cation sub-arrays are proposed to play an important role in governing metal oxide structures. These sub-arrays are suggested as the structural drive behind eutectic oxide formation. LZM proves to be a convenient method to investigate the behaviour of complex oxide systems at high temperature, to apply a rational concept towards the understanding of phase relations and to develop design criteria for oxide coatings.

  1. Do Other Planets Have Summer?

    ERIC Educational Resources Information Center

    Nelson, George

    2005-01-01

    It's important to keep two things in mind when thinking about the cause of the seasons: (1) Earth and all the other planets except Pluto and Mercury move around the Sun in almost perfect circles, getting neither closer nor farther away from the Sun during the year; and (2) Earth's rotation axis is tilted with respect to the plane of its orbit…

  2. Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR

    SciTech Connect

    Borucki, William J.; Koch, David G.; Bryson, Stephen T.; Howell, Steve B.; Lissauer, Jack J.; Batalha, Natalie; Rowe, Jason; Caldwell, Douglas A.; DeVore, Edna; Jenkins, Jon M.; Fressin, Francois; Torres, Guillermo; Geary, John C.; Latham, David W.; Christensen-Dalsgaard, Jorgen; Cochran, William D.; Gautier, Thomas N.; Gilliland, Ronald; Gould, Alan; Marcy, Geoffrey W.; and others

    2012-02-01

    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 {+-} 0.060 M{sub Sun} and 0.979 {+-} 0.020 R{sub Sun }. The depth of 492 {+-} 10 ppm for the three observed transits yields a radius of 2.38 {+-} 0.13 Re for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities (RVs) obtained with the High Resolution Echelle Spectrometer on Keck I over a one-year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{sigma} upper limit of 124 M{sub Circled-Plus }, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262 K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the habitable zone of any star other than the Sun.

  3. Giant Impacts on Earth-Like Worlds

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to

  4. The fate of scattered planets

    SciTech Connect

    Bromley, Benjamin C.; Kenyon, Scott J. E-mail: skenyon@cfa.harvard.edu

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.

  5. Students Discover Unique Planet

    NASA Astrophysics Data System (ADS)

    2008-12-01

    , they were a good test case for the students' algorithm, who showed that for one of stars observed, OGLE-TR-L9, the variations could be due to a transit -- the passage of a planet in front of its star. The team then used the GROND instrument on the 2.2 m telescope at ESO's La Silla Observatory to follow up the observations and find out more about the star and the planet. "But to make sure it was a planet and not a brown dwarf or a small star that was causing the brightness variations, we needed to resort to spectroscopy, and for this, we were glad we could use ESO's Very Large Telescope," says Snellen. The planet, which is about five times as massive as Jupiter, circles its host star in about 2.5 days. It lies at only three percent of the Earth-Sun distance from its star, making it very hot and much larger than normal planets. The spectroscopy also showed that the star is pretty hot -- almost 7000 degrees, or 1200 degrees hotter than the Sun. It is the hottest star with a planet ever discovered, and it is rotating very fast. The radial velocity method -- that was used to discover most extrasolar planets known -- is less efficient on stars with these characteristics. "This makes this discovery even more interesting," concludes Snellen.

  6. Accumulation of the planets

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.

    1987-01-01

    In modeling the accumulation of planetesimals into planets, it is appropriate to distinguish between two stages: an early stage, during which approximately 10 km diameter planetesimals accumulate locally to form bodies approximate 10 to the 25th g in mass; and a later stage in which the approximately 10 to the 25th g planetesimals accumulate into the final planets. In the terrestrial planet region, an initial planetesimal swarm corresponding to the critical mass of dust layer gravitational instabilities is considered. In order to better understand the accumulation history of Mercury-sized bodies, 19 Monte-Carlo simulations of terrestrial planet growth were calculated. A Monte Carlo technique was used to investigate the orbital evolution of asteroidal collision debris produced interior to 2.6 AU. It was found that there are two regions primarily responsible for production of Earth-crossing meteoritic material and Apollo objects. The same techniques were extended to include the origin of Earth-approaching asteroidal bodies. It is found that these same two resonant mechanisms predict a steady-state number of Apollo-Amor about 1/2 that estimated based on astronomical observations.

  7. Primitive Earth: So Near to Hell

    ERIC Educational Resources Information Center

    Jastrow, Robert

    1973-01-01

    Discusses the atmospheric characteristics of the earth and their implications for the development of life on earth-like planets. Indicates that the chance of life developing on other planets is not as great as men might have thought. (CC)

  8. Planets Suitable for Life

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    When searching for extraterrestrial life, and particularly intelligent life, elsewhere in the solar system or in our galaxy, the obvious places to look are habitable Earth-like planets. This is because most living organisms are quite vulnerable to harsh conditions, and thus the presence of life will be most likely when very favorable conditions occur. Here organisms that survive under extreme conditions on Earth represent no contradiction, because they have adapted to their way of life by the fierce battle of survival on the basis of Darwin's theory (discussed in Chap. 6). But what are the conditions that are favorable for life?

  9. Magnetocaloric effect in AlFe2B2: toward magnetic refrigerants from earth-abundant elements.

    PubMed

    Tan, Xiaoyan; Chai, Ping; Thompson, Corey M; Shatruk, Michael

    2013-06-26

    AlFe2B2 was prepared by two alternative synthetic routes, arc melting and synthesis from Ga flux. In the layered crystal structure, infinite chains of B atoms are connected by Fe atoms into two-dimensional [Fe2B2] slabs that alternate with layers of Al atoms. As expected from the theoretical analysis of electronic band structure, the compound exhibits itinerant ferromagnetism, with the ordering temperature of 307 K. The measurement of magnetocaloric effect (MCE) as a function of applied magnetic field reveals isothermal entropy changes of 4.1 J kg(-1) K(-1) at 2 T and 7.7 J kg(-1) K(-1) at 5 T. These are the largest values observed near room temperature for any metal boride and for any magnetic material of the vast 122 family of layered structures. Importantly, AlFe2B2 represents a rare case of a lightweight material prepared from earth-abundant, benign reactants which exhibits a substantial MCE while not containing any rare-earth elements. PMID:23731263

  10. Outer Planets

    NASA Video Gallery

    Did you know that through NASA’s various satellite missions we have learned more about these planetary bodies in recent years than we knew collectively since we started to study our planets? Throu...

  11. Rotation of a Moonless Earth

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  12. Rotation of a Moonless Earth

    NASA Astrophysics Data System (ADS)

    Lissauer, J. J.; Barnes, J. W.; Chambers, J.

    2013-12-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1° and 24.5°. Without lunar influence, a frequency-map analysis by Laskar et al. (Laskar, J., Joutel, F., Robutel, P. [1993]. Nature 361, 615-617) showed that the obliquity could vary between 0° and 85°. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25° in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of prograde rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  13. Comments on the paper of Bodin et al. (2010). Journal of African Earth Sciences, 58, pp. 489-506

    NASA Astrophysics Data System (ADS)

    Tlig, Saïd

    2016-06-01

    Bodin et al. (2010) produced an important paper in the Journal of African Earth Sciences. The main goals of this paper were: (1) the petrological and sedimentological treatment of the upper Jurassic and Cretaceous series in southern Tunisia and northern Ghadames Basin including the Hamada El Hamra area and Nafussah Mountain of Libya; (2) the reconstruction of tectonic controls on deposition and basin-fill; (3) the correlation of poorly dated lithostratigraphic columns, poor in diagnostic fauna, from northwestern Libya to southern Tunisia; and (4) the comparison between the authors' findings and assignments of global eustatic and plate tectonic events.

  14. The Metallicity of Giant Planets

    NASA Astrophysics Data System (ADS)

    Thorngren, Daniel P.; Fortney, Jonathan

    2015-12-01

    Unique clues about the formation processes of giant planets can be found in their bulk compositions. Transiting planets provide us with bulk density determinations that can then be compared to models of planetary structure and evolution, to deduce planet bulk metallicities. At a given mass, denser planets have a higher mass fraction of metals. However, the unknown hot Jupiter "radius inflation" mechanism leads to under-dense planets that severely biases this work. Here we look at cooler transiting gas giants (Teff < 1000 K), which do not exhibit the radius inflation effect seen in their warmer cousins. We identified 40 such planets between 20 M_Earth and 20 M_Jup from the literature and used evolution models to determine their bulk heavy-element ("metal") mass. Several important trends are apparent. We see that all planets have at least ~10 M_Earth of metals, and that the mass of metal correlates strongly with the total mass of the planet. The heavy-element mass goes as the square root of the total mass. Both findings are consistent with the core accretion model. We also examined the effect of the parent star metallicity [Fe/H], finding that planets around high-metallicity stars are more likely to have large amounts of metal, but the relation appears weaker than previous studies with smaller sample sizes had suggested. We also looked for connections between bulk composition and planetary orbital parameters and stellar parameters, but saw no pattern, which is also an important result. This work can be directly compared to current and future outputs from planet formation models, including population synthesis.

  15. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  16. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.